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Abstract

Moderately hard functions are a common cryptographic tool for tasks such as password hashing,
spam prevention, and proofs of work. The goal of a moderately hard function is that it should be rela-
tively easy for an honest party to compute a small number of times, but prohibitively expensive for an
adversary to brute force. Memory hard functions (MHFs) are a type of moderately hard function that
rely on using large amounts of space. Such functions become prohibitive for an adversary to compute
in parallel, making them ideal candidates for tasks like password hashing. A well designed memory
hard function should not only require a large amount of space, but require it in a large number of
steps. This idea has been formalized in the cumulative and consistent space complexities. In this
survey we look at two MHF constructions and their upper and lower bounds under different metrics
of space and time complexity.

1 Introduction

Space complexity is often a factor that is overlooked when investigating the efficiency of a computation.
Often times we are able to prove space-time trade-offs, allowing tasks to be computed in a fewer number
of steps at a cost of additional space [Hel80, CDG18]. There are lower bounds for the space time com-
plexity of important computational tasks such as sorting [BST98]. Additionally we have many problems
where under cryptographic assumptions we are able to lower bound the amount of space (or a steep
space time trade-off) needed to solve the problem, creating what is known as a memory hard functions
[ABP17, BCGS16].

Sometimes when discussing the space complexity of a problem we are only concerned with the max-
imum space usage. Such a metric can be misleading about the complexity of a problem, as an adversary
can abuse computation that requires only a single spike in memory usage [AS14]. Rather than looking
at the maximum space usage of an algorithm, it can be informative to look at the space used over time.
Some metrics for this include the cumulative complexity (CC), which is the sum of the space used per
step, and counting the number of high memory steps in the computation [AS14, RD16]. In this survey I
investigate the assumptions underpinning MHFs, existing constructions, and attacks.

2 Preliminaries

2.1 Space time complexity

There are a couple of measures for the space complexity of algorithms. These definitions can be easily
generalized to average or worst case inputs, as well as to lower bounds over all algorithms for some
problem instance.
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Definition 1. Let A be an algorithm that uses S(At (x)) space in the t ’th step for input x. The transient
space of A on input x is S(A(x)) = maxt S(At (x)).

Often times it is possible to solve a problem with less space by using a larger number of steps. This
notion is captured in a space time trade-off. While there are many possible trade-offs between space and
time for algorithms, we will focus on the duration of space usage for a computation. This is captured in
the space time complexity.

Definition 2. Let A be an algorithm that runs in T (A(x)) steps. The space time of A on input x is
ST (A(x)) = S(A(x))T (A(x)).

The above two definitions are standard measures of complexity in algorithms. When analyzing mem-
ory hardness, we often want a stronger notion than the above definitions can provide. For example, it
is possible to amortize spikes in memory cost by staggering multiple instances of an algorithm on inde-
pendent inputs [AS14]. We now give our definition of cumulative complexity, which was first formally
defined in [AS14].

Definition 3 (cumulative complexity). The cumulative complexity ofA on input x is cc(A(x)) =∑
t S(At (x)).

Cumulative complexity has some nice properties. For example, the cumulative complexity for solv-
ing n independent instances of algorithm A is given by ncc(A). While cumulative complexity protects
against parallel instance attacks, the definition tells us very little about possible space-time trade-offs.
Consistent memory hardness gives us a way to guarantee that a large amount of memory is used in
many steps [RD16].

Definition 4. The S′ consistent memory of A on input x is the number of steps t where S(At (x)) ≥ S′. We
denote this value as SS′(A(x)).

2.2 The black pebble game

The black pebble game is a tool originally created to study compiler operations. Given a DAG represent-
ing the dependency of intermediate values in a computation on one another, a pebbling corresponds to
a strategy for allocating registers to complete the computation [Set75]. The black pebble game is formally
defined as follows:

Definition 5 (Black pebble game). The black pebble game is as one player game played on a DAG G =
(V ,E). Let S ⊆ V be the nodes with in-degree zero. The goal of the black pebble game is to place pebbles
on some set T ⊆ V of nodes with out-degree zero. A pebble may be placed on any node v if and only if
all in-nodes of v contain pebbles. A pebble may be removed from a node at any time. A pebbling strategy
P = {P0,P1, . . . ,Pt } is an ordered list of subsets of V , where Pi ⊆ V is the set of nodes pebbled at step i .
P0 =; and T ⊆Pt . The number of steps in P is t and the number of pebbles (space) is given by maxi |Pi |.
For all v ∈ (Pi+1 \Pi ), we require that the in-nodes of v are in Pi . In the sequential black pebble game, we
additionally require that |Pi ⊔Pi+1| = 1.

If a dependency graph G represents some computation, then black pebbling strategies give space
time trade-offs for that computation. The time for a pebbling strategy P = {P0, . . . ,Pt } is the number of
steps, and the total space usage is the number of pebbles. We can additionally think of the cumulative
complexity as

∑
i |Pi | and the S′-consistent memory as the number of i where |Pi | ≥ S′. In general, the

number of pebbles required for an arbitrary DAG is PSPACE-hard to approximate [DL17], but we are able
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to construct explicit graphs with bounded degree that require a large number of pebbles [LT82, PTC76,
RD16].

Since the pebble game is just an abstraction, if we want to use it to lower bound the space complexity
of problems, we need a concrete problem enforcing the pebble game rules. It has been shown that with
a random oracle H the problem of labeling indexed nodes in a DAG G using the following function h :
V → {0,1}λ implements the black pebble game [DNW05, ABFG14, KK14, RD16] (exact construction from
[RD16]):

h(vi ) =
{
H(i , x) vi ∈ S

H (i ,h(u1),h(u2), . . . ,h(ud )) where u j is an in-node of vi

This informally follows from the fact that we need to know the labels to all in-nodes of v in order to
compute h(v). Unfortunately it is not clear that notions of storing space over time such as cumulative
complexity are correctly captured by this problem, but there has been recent work towards proving this
[DFKP13, ACK+16, AS14].

Using the above labeling problem, we can construct computations that require a large amount of
space from DAGs that require a large number of pebbles. Previous works have shown that pebbling
stacked supercontractors have high space complexity [LT82, PTC76], which was adopted into a memory
hard function [FLW13].

2.3 Memory hard functions

Memory hard functions are a type of moderately hard function where it is easy for an honest party to
compute the function but moderately hard to invert [AT17]. For a sequential algorithm the number of
steps gives an upper-bound on the space used by an algorithm. As such a memory hard algorithm must
also take time proportional to its space usage. This is defined formally below.

Definition 6 (from [PER09]). A memory hard algorithm is one that uses S(n) space and T (n) operations
where S(n) =Ω(T (n)1−ϵ)

Definition 7. An N -memory hard function is an f : X → Y such that for any x ∈ X , f (x) can be com-
puted in O(poly(N )) steps using N space, but an adversary with only N −1 space has no more than a 1

|Y |
probability of guessing f (x).

The only known (N , N )-memory hard function relies on a random oracle and requires O(N 2) time
[DKW11]. There exists many more time efficient memory hard functions, but they have unproven gaps
between the most space efficient known algorithms and the proven lower bounds on space complexity
[DFKP13, KK14]. Some of these functions additionally allow space time trade-offs, so adversaries can
circumvent the space bound by paying in additional time costs [PER09, RD16, FLW13]. This leads us to
consider a more relaxed definition of memory hardness.

Definition 8 (from [RD16]). An (N , N ′)-memory hard function with security parameter λ is an f : X → Y
that satisfies these three criteria:

1. non-triviality: The size of the input is independent of N .

2. efficiency: An honest algorithm can compute f using at most N space and time poly(N ,k).

3. memory-hardness: Any algorithm that uses less than N ′ space and computes f (x) with non negli-
gible probability must use time at least 2λ.
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Memory hard functions generally fall into two categories depending on their memory access pat-
terns. We will focus on data-independent memory hard functions (iMHFs), whose memory access pat-
terns are independent of the input. Note that all memory hard functions constructed from pebbling
games are data-independent.

3 Memory hard functions

3.1 Argon2i [BDK16]

Argon2i is the winner of the password hashing competition. The initial proposal of the algorithm had no
proofs of memory hardness, but more recent works have proven forms of memory hardness in the ran-
dom oracle model using pebbling. For simplicity we will only look at the sequential version of Argon2i.

Definition 9 (from [BZ17]). An (n,δ,D = {Di })-random DAG is a randomly generated DAG on n nodes
with maximum in-degree δ. The graph has edges (vi , vi+1) for each i ∈ [0,n) and δ− 1 random edges
(vr (i ,1), vi ), . . ., (vr (i ,δ−1), vi ) for each vi , where r (i , j ) ∼ Di .

Definition 10 (Argon2i graph). An Argon2i-A graph is an (N ,2,U )-random DAG. The Argon2i-B graph is
an (N ,2,D)-random DAG, where Di is the distribution:

Pr[Di = j ] = Pr
x∈N

[
i

(
1− x2

N 2

)
∈ ( j −1, j ]

]
While Argon2i was not initially presented with any proofs of hardness, recent work on pebbling mem-

ory hard functions have given us some bounds.

Theorem 1 (from [BCGS16]). Pebbling the Argon2i-A graph with S pebbles where 16 < N ′ ≤ S requires a
space time complexity of:

ST ≥ N 2

1536

except with probability N 225−N ′/2.

We defer the proof of this theorem to theorem 34 in [BCGS16], but it follows the same type of analysis
as the sandwich graphs used in theorem 3 in this paper. The parallel cumulative complexity of Argon2i-A
and B was lower bounded in [BZ17] as Ω̃(N

5
3 ). This is a direct consequence of the following theorem:

Theorem 2 (from [BZ17]). Let G be an (n,δ,U )-random DAG. With probability 1−o(n−7) we have that

cc∥(G) = Ω̃(n5/3)

While this theorem cannot be directly applied to Argon2i-B, the proof can be extended since the
edges are independently sampled and Prx∼Di [x = j ] =Ω(1/i ) [BZ17].

3.2 Balloon hashing [BCGS16]

Balloon hashing is a recent memory hard functions based on pebbling.
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Figure 1: A balloon hash graph G5,3,2 (N = 5,R = 3,δ= 2). The black edges are fixed and the red ones are
(pseudo)randomly generated. The node on the bottom right is the target.

Definition 11 (Balloon hashing graph). The Balloon hash graph GN ,R,δ = ({vn,r }n<N ,r<R ,E) where the
nodes are divided into R layers of N nodes. There is an edge from each vertex vn,r to vn+1,r and to vn,r+1.
There are additional edges from each vN−1,r to v0,r+1. Finally there is a set of edges E ′ where for each
0 < n < N and 0 ≤ r < R there are δ edges selected uniformly at random from the set {(vn′,r ′ , vn,r ) s.t. ((n′ <
n)∧ (r ′ = r ))∨ ((n′ > n)∧ (r ′ = r −1))}. The target node is vN−1,R−1.

For concrete initialization of this function, E ′ is defined pseudorandomly with respect to a salt. Fig-
ure 3.2 gives an example construction of the Balloon hashing graph. In [BCGS16] they prove the following
theorem about pebbling this graph:

Theorem 3 (from [BCGS16]). Let A be an algorithm that pebbles node vN−1,R−1 in graph GN ,R,δ=3. If A
uses at most S pebbles, then with overwhelming probability A must use space time complexity:

ST (A) ≥ RN 2

32

When δ= 7 and S < N /64, A must use space time complexity:

ST (A) ≥ (2R −1)N 2

32

Corollary 1. GN ,R,δ=7 defines an (N , N
64 )-memory hard function with security parameter R.

This means that any attacker who tries to pebble GN ,R,δ=7 using sublinear in N space pays an expo-
nential cost in time. We deffer the full proof of the above theorem to the appendices of [BCGS16], but
provide a bit of intuition here. Assuming there are not too many pebbles placed on the graph, it has two
nice properties (with high probability) that are found in a lot of iMHF constructions:

1. Well-Spreadedness: There exists a kδ such that for any set of kδ adjacent nodes in the same level
V ′ = {vn,r , vn+1,r , . . . , vn+k−1,r }, at least N

4 nodes on level r −1 are on unpebbled paths1 to V ′.

2. Expansion: All sets of kδ nodes on each layer have unpebbled paths back to at least 2kδ vertices on
the previous layer.

These properties tell us that we can fix kδ nodes that are not currently pebbled in our graph and they must
have many predecessors that cannot also be pebbled by a space efficient adversary. Thus an adversary
that wants to save on space must do a large amount of recomputing. As we mentioned in section 2.2, the

1Paths that do not have a pebbled vertex.
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problem of pebbling a graph can be instantiated with a graph labeling problem. Since the paper where
it was first proposed, the analysis of balloon hashing has been tightened by viewing the graph as a stack
of localized expanders [RD16]. By setting the correct parameters any efficient algorithm for balloon hash
has an Ω(N )-consistent memory of Ω(N R) [RD16]. The cumulative complexity of balloon hashing was
lower bounded by Ω̃((N R)5/3) using properties of Balloon hashing that make it similar to an (N R,δ−1,U )
random graph, allowing us to apply theorem 2.

3.3 Cumulative complexity attacks

Both Argon2i and Balloon hash are vulnerable to a generic attack on random DAGs described in [AB16].
Cumulative complexity allows an adversary to remain efficient when using algorithms that feature small
duration spikes in memory usage.

Theorem 4 (from [AB16]). Let G be an (n,δ,U )-random DAG. Then there exists an algorithm A that peb-
bles the graph with parallel cumulative complexity cc∥ =O(n

7
4 δ logn) with high probability.

Corollary 2. Argon2i and Balloon hash graphs with n nodes can be labeled in parallel cumulative com-
plexity cc∥ =O(n

7
4 logn).

This algorithm relies on the observation that with high probability, random DAGs with constant in-
degree have are not depth robust [AB16]. This means that for a random DAG G , there exists a small set of
nodes S such that the graph G \S has a small depth d . The algorithm proceeds in two phases. In a balloon
phase up to O(n) nodes of G are pebbled in a greedy fashion to place pebbles at higher depth nodes of
G . In a light phase, all nodes that will not be needed for the next balloon phase, are not the highest
depth node computed so far, and are not in S are unpebbled. Since we keep the nodes in S pebbled, the
remaining graph G \ S has low depth and thus pebbles removed during the light phases can be replaced
in at most d rounds.

More recently [ABP17] exploited additional structure present in Argon2i-A and Balloon hashing to

label these graphs with parallel cumulative complexity Õ(n1+1/
p

2). It uses a stronger notion of non
depth robustness to recursively perform the pebbling algorithm in [AB16] to pebble specific intermediate
nodes. This improves on a greedy pebbling strategy featured in the balloon phase of the construction.

4 Conclusion

In this survey we looked at how to formally define data-independent memory hard functions (iMHFs)
using the black pebbling game, saw two candidate iMHF constructions with bounds on different metrics
of space and time complexity, and a high level picture on a general attack against iMHFs exploiting low
depth robustness. Some open problems in the area include getting tighter bounds on memory hardness
through either stronger attacks on existing constructions or a tighter analysis of pebbling lower bounds.
Another interesting direction is analyzing the cumulative complexity of arbitrary DAGs. If we can effi-
ciently compute the cumulative complexity of a DAG, then this will give us a good way to evaluate new
iMHF candidates.
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