
Privacy-Preserving Chi-Squared Tests Using Homomorphic
Encryption

Charlotte LeMay

May 6, 2022

1 Introduction

1.1 Motivation

In the wake of the rapid development of genome sequencing technology, genomic data has become
widely available. This has allowed for medical research on large quantities of genetic data, such as
Genome-Wide Association Studies (GWASs), which seek statistical to associate the incidence of traits
and diseases with single-nucleotide polymorphisms (SNPs), or individual DNA base pairs which have
multiple common variations in the population. GWASs have successfully identified risk factors for many
conditions, including prostate cancer [GSM+07], Crohn’s disease [WBZ+10], and Alzheimer’s disease
[KDW+12]. To facilitate this research, many open-access genomic datasets have been made publically
available, such as the 1000 genomes project [Siv08].

The potential for better ability to predict and manage disease is a source for optimism about the
future. However, the easy availability of the genomes of real people raises serious privacy concerns.
Various strategies exist for identifying subjects based on genomic sequence data, even when the data is
anonymized [EN14]. The individuals who consented to have their genomes sequenced very likely did not
consent to having their risk of developing various diseases made into publically available information.
The ideal scenario would be to allow for medical research computations to be performed on genomic
data in such a way that only the results of these computations can be obtained, and not the genomes
themselves.

Modern cryptography provides a tool that could achieve this scenario, namely Fully Homomorphic
Encryption (FHE). Broadly speaking, FHE allows for the encrypted computation of a function f with inputs
x1, x2, ..., xn . That is, a FHE scheme allows a party given encryptions E(x1),E(x2), ...,E(xn) to compute
an encryption E(f (x1, x2, ..., xn)), without ever learning the value of x1, ..., xn or f (x1, ..., xn). A scheme
with this intriguing property was first developed by Gentry [Gen09], and in the past decade, many more
constructions and improvements have followed. Many new constructions have been so-called levelled
FHE schemes, which are more efficient than Gentry’s FHE, but which evaluate a more limited class of
functions, namely functions with bounded circuit depth. This survey will focus on levelled FHE schemes
and their applications to a particular problem within secure GWASs, namely the evaluation of the chi 2

statistic.

1.2 Overview

We begin by defining the notion of a levelled FHE scheme, and its correctness and security properties.
We also define the underlying assumption behind many efficient levelled FHE schemes, namely the Ring

Learning with Errors (RLWE) assumption. We then describe in detail the construction of three RLWE-based
levelled FHE schemes, and how these schemes have been deployed in the computation of the χ2 statistic.

2 Definitions

2.1 Homomorphic Encryption

Craig Gentry discovered a means of achieving Fully Homomorphic Encryption (FHE), or encryption in
which arbitrary-depth computation can be performed on ciphertexts, and the result can still be recovered
by decryption [Gen09]. This uses a method called bootstrapping, which is asymptotically fast but which,
as of the present writing, introduces large constants and is inefficient for practical use.

Therefore, since we focus in this paper on a practical application, we will define the more relaxed
notion of levelled homomorphic encryption (LHE), which requires a maximum computation depth to be
specified in advance. We will refer to this value as the encryption level and denote it by L. Informally, we
expect ciphertexts encrypted at level L to be able to be multiplied up to L times and still return a valid
answer.

Formally, define the depth of an arithmetic circuit C to be the length of the longest chain of successive
operations the circuit. For example, ((4+ 1)× (2× (3+ 5))) has depth 3. Another relevant quantity is
the multiplicative depth, or the length of the longest chain of successive multiplications (2 in the prior
example. In typical constructions of homomorphic encryption, multiplication will amplify noise much
more than addition, so multiplicative depth is more important. However our definitions will focus on
depth since addition can in principle still amplify noise.

We now define homomorphic encryption, roughly basing our definitions on those of [ABC+15].
A homomorphic encryption (HE) scheme for a circuit familyC is a collection of probabilistic polynomial-

time algorithms (Setup,KeyGen,Encrypt,Decrypt,Eval) where:

• Setup(1λ,L) takes a security parameter λ and starting encryption level L, and outputs model pa-
rameters pp.

• KeyGen(pp) takes the model parameters, and outputs a secret key, public key, and evaluation key
(sk,pk,evk).

• Encrypt(pk,m) takes a public key and a message m, and outputs a ciphertext ct.

• Decrypt(sk,ct) takes a secret key and a ciphertext ct, and outputs a message m.

• Eval(evk,C , (ct1,ct2, ...,ctk)) takes the evaluation key, a circuit C ∈ C with m inputs, and input cipher-
texts ct1, ...,ctk , and outputs a new ciphertext ct.

Let M be the space of possible plaintexts given λ. We say that an HE scheme is correct if it satisfies:

• Correct decryption: For allλ,L ∈Z+, and all messages m ∈ M , if (sk,pk,evk) ←KeyGen(Setup(1λ,L)),
then

Pr
[
Decrypt(sk,Encrypt(pk,m)) = m

]= 1.

• Correct evaluation: There exists a negligible function negl(·) such that for all λ,L ∈Z+, all circuits
C ∈ C of depth at most L, and all m1, ...,mk ∈ M , if (sk,pk,evk) ←KeyGen(Setup(1λ,L)), and cti ←
Encrypt(pk,mi), then

Pr
[
Decrypt(m,Eval(evk,C , (ct1, ...,ctk))) =C (m1, ...,mk)

]≥ 1−negl(λ).

Note that the above definitions do not rule out the following trivial construction: encrypt ciphertexts
with a regular public-key encryption scheme, append a circuit description at evaluation time, and then
decrypt by recovering the original message and computing the circuit on it. This construction defeats the
purpose of using homomorphic encryption by forcing the secret key holder to perform the computation
themselves. No “computation on ciphertexts” is being done at all.

We therefore introduce the following additional requirement. We say that an HE scheme is compact if
it satisfies:

• Compactness: There exists a polynomial p such that for all λ, all L, all circuits C ∈ C of depth at most
L, and all ct1, ...,ctk ∈ CT 0, if (sk,pk,evk) ←KeyGen(1λ) and ct←Eval(evk,C , (ct1, ...,ctk)), then the
length of ct is bounded by p(λ). This bound is independent of L and of the size of C .

Note that this size bound applies to the output of the evaluation circuit. In the schemes we will
describe, freshly encrypted ciphertexts will have a length proportional to the encryption level L, and will
become shorter as they are evaluated on. This is allowed, so long as the length of the eventual output does
not depend on L.

A levelled homomorphic encryption scheme is a homomorphic encryption scheme that satisfies correct
decryption, correct evaluation, and compactness. We say it is a levelled fully homomorphic encryption if
when setup with parameter L, it can evaluate on all arithmetic circuits of depth at most L.

2.2 Security

We have not so far discussed security, but of course as we are defining an encryption scheme, we must
have some notion of security. The common notions of cryptographic security in the context of public key
encryption are as follows:

• CPA Security: The multi-purpose security definition with the oracles O1,O2 providing no function-
ality whatsoever. Note that the adversary can always perform arbitrary encryptions on its own since
the encryption key pk is public.

• CCA-1 Security: The multi-purpose security definition with oracle O1 = {Decrypt(sk, ·)} and O2

providing no functionality.

• CCA-2 Security: The multi-purpose security definition with oracles O1 =O2 = {Decrypt(sk, ·)}, and
where we do not permit the adversary A2 to query Decrypt(sk,c).

• Multi-purpose security definition: An encryption scheme (KeyGen,Encrypt,Decrypt) satisfies
security if for all polynomials p, for all λ, and for all adversaries A= (A1,A2),∣∣∣Pr [Game(A,λ,0) → 1]−Pr [Game(A,λ,1) → 1]

∣∣∣≤ 1

p(λ)
,

where Game(A,λ,b) denotes the output of:

(pk,sk) ←KeyGen(1λ), m0,m1, state ←AO1
1 (1λ,pk),

c ←Encrypt(pk,mb), b̂ ←AO2
2 (c, state), outputb̂.

CCA-2 security is not achievable with a homomorphic encryption scheme. This is because an adversary
could easily find some function f such that f (m0) 6= f (m1), homomorphically evaluate f on the ciphertext
c, and use the decryption oracle to get either f (m0) or f (m1) and thereby distinguish b = 0 from b = 1.

The best security we can therefore hope for is CCA-1 security. In fact, a scheme that uses the boot-
strapping method of Gentry can also not be CCA-1 secure, since this method involves encryptions of the
secret key which an adversary could decrypt. For levelled homomorphic schemes, CCA-1 security is a
possibility, but the constructions we give here are only CPA secure. For a CCA-1 key recovery attack that
works on the BGV scheme, see [CT14].

2.3 Ring LWE

The following is a special case of the Ring-LWE problem described in [LPR10], which will suffice for the
purposes of this paper.

For n = 2d , Let Φn(X) be the cyclotomic polynomial, that is, the unique irreducible polynomial that
divides xn−1 and does not divide xk−1 for any k < n. Then the Ring Learning with Errors (RLWE) problem
is as follows:

Definition 1 (Decision ring-LWE). Given a security parameter λ, let n, q ∈Z be bounded by a polynomial in
λ, n a power of 2, Rq =Zq [X]/〈Φn(X)〉, and χ an error distribution over Rq . Then the R-LWEn,q,χ problem
is to distinguish the following distributions:

• (a,u), with a,u
R←− Rq .

• (a, as +e), with s
R←− Rq fixed for all samples, and a

R←− Rq and e ←χ redrawn for each sample.

It was shown in [LPR10] that there exists a quantum reduction to R-LWEn,q,χ from the approximate
shortest vector problem (SVPγ) in the worst case, with approximation factor γ= poly(λ)/α, where α< 1
corresponds roughly to the width of χ. For polynomial-size γ, the best known algorithms for SVPγ
are exponential [Sch87], so it is commonly assumed that average-case R-LWEn,q,χ is hard to solve in
polynomial time.

3 Constructions

We will describe three instantiations of CPA-secure levelled fully homomorphic encryption based on
RLWE, all of which have been applied to the secure GWAS problem. The first, BGV, can be considered
the canonical example of ring-based levelled FHE. The second, YASHE, is another common variant that
can sometimes be more efficient for small plaintext spaces. The third, CKKS, is a variant of BGV that is
optimized for approximate, real-number computations.

3.1 BGV

The following is the construction of [BGV14]. We omit the details of the modulus-switching mechanism
as that is not the focus of this paper, and simply describe its functionality. In essence, multiplication
of ciphertexts results in a ciphertext encrypted under a larger secret key, and a special operation called
Refresh reduces this back to the original secret key, while also reducing the size of the modulus. A fuller
expanation can be found in [BGV14] (or in Problem 5 of this class’s first homework set).

The construction is as follows:

• Setup(1λ,L) : Choose an integer n, moduli Q1 <Q2 < ·· · <QL (with each Q` of size roughly double
that of Q`−1), a plaintext modulus t , and distributions χer r and χke y over R =Z[X]/Φn(X). Output
parameters pp= (L,n, {Qi }, t ,χer r ,χke y).

• KeyGen(pp) : Sample s′ R←− χke y , and set s = (s′,1). Sample a′ R←− Rn
q and e

R←− χer r , and set a ←
(a′,−a′s′+ te). Output (pk,sk,evk) ← (a,s,RefreshKeyGen(pp,s)).

• Encrypt(pk= a,m ∈ Rt) : Sample r ← R2 and e′ ←χer r . Output
[
(0,m)+ te′+ar

]
QL

.

• Decrypt(sk= s,c) : Take in c encrypted with modulus Q`. Output
[[

sT c
]

Q`

]
t
.

• Eval(rk,C ,c1, ...,cn): Composition based on C of:

Add(rk,c1,c2) : Take in c1 and c2 encrypted with modulus Q`. Set c+ ← c1 +c2. Depending on
the level of noise growth, output either c+ or Refresh(rk,c+,Q`,Q`−1).

Mult(rk,c1,c2) : Take in c1 and c2 encrypted with modulus Q`. Set c× to be the coefficients of
the quadratic terms of the product of c1 and c2 considered as linear polynomials in the secret key
entries. Output Refresh(rk,c×,Q`,Q`−1).

• RefreshKeyGen(pp,sk): Output a refresh key rk.

• Refresh(rk,c,Q`,Q`−1): Output a new ciphertext encoding the same message as c, under the original
secret key sk from key generation, and modulus Q`−1.

The BGV scheme is characterized by ciphertexts which are pairs polynomials in R , and by the modulus
switching strategy. A message with n log t bits is encoded at level ` as a vector with 2n logQ` bits. Assuming
our final modulus Q1 is of size close to t , 2n logQ` ≈ 2n` log t , so the encryption rate of the scheme (for
fresh encryption where `= L) is approximately 1

2L .
The key issue for the efficiency of BGV is the Refresh step. Evaluation would run faster if this step were

not needed after every level of multiplication.

3.2 YASHE

YASHE (Yet Another Somewhat Homomorphic Encryption scheme) [BLLN13] has single polynomial
ciphertexts rather than pairs of polynomials, and replaces the Refresh step with a key-switching step that
does not change the modulus.

The construction is as follows:

• Setup(1λ,L) : Choose an integer n, a ciphertext modulus Q and plaintext modulus t , and distribu-
tions χke y ,χer r over R =Z[X]/Φn(X). Output pp= (L,n,Q, t ,χer r ,χke y).

• KeyGen(pp) : Sample s′, a′ ← χke y , and set s ← t s′ + 1, resampling s′ if s is not invertible. Set
a ← [

t a′s−1
]

Q . Output (pk,sk,evk) = (a, s,SwitchKeyGen(pp, s)).

• Encrypt(pk= a,m ∈ Rt) : Sample e,r ←χer r , and output c ←
[
bQ

t c ·m +e +ar
]

Q
∈ RQ .

• Decrypt(sk= s,c) : Output m ←
[⌊

t
Q · [s ·c]Q

⌉]
t
.

• Eval(evk,C ,c1, ...,cn): Composition based on C of:

Add(c1,c2) : Output c+ = [c1 +c2]Q .

Mult(evk,c1,c2) : Output c× = SwitchKey
(
evk,

[⌊
t
Q ·c1 ·c2

⌉]
t

)
.

• SwitchKeyGen(pp,sk): Output a switching key evk.

• KeySwitch(evk,c1): If evk was constructed as SwitchKeyGen(sk1,sk2) and Decrypt(sk1,c1) = m, out-
put c2 such that Decrypt(sk2,c2) = m, and c2 has a lower encryption level corresponding to larger
noise.

The YASHE scheme encrypts a message in Rt with n log t bits as a ciphertext in RQ with n logQ bits.

The encryption rate is therefore log t
logQ , which depends on the setting of the parameter Q. Q is usually set to

be on the order of t ·2poly(λ), so we expect an approximately 1/poly(λ) encryption rate. How the encryption
rate and evaluation efficiency compare with BGV depends on the plaintext modulus, with BGV slightly
more efficient for large t , and YASHE slightly more efficient for small t [CS16].

3.3 CKKS

Cheon, Kim, Kim, and Song constructed a variant of BGV that is optimized for arithmetic on real numbers.
[CKKS17] This scheme is important as our intended application, computing χ2, is really best expressed in
the setting of real-number arithmetic rather than integer arithmetic.

Since in real-number arithmetic, we are generally only interested in the most significant digits of the
computation, the CKKS construction is much looser with error. Rather than using number theory and
modular arithmetic to make the error vanish after decryption, decryption simply yields the message plus
some error e, and the bits affected by the error are discarded.

In place of
The construction is as follows:

• Setup(1λ,L) : Choose an integer n, ciphertext moduli Q1, ...,QL (usuallly set as Q` = 2`), an integer P
and distributionsχer r ,χke y , andχenc over R =Z[X]/Φn(X). Output pp= (L,n, {Qi },P,χer r ,χke y ,χenc).

• KeyGen(pp) : Sample s′ ← χke y , a′ R←− RQL , and e ← χer r . Set s ← (1, s′) and a ← (b′, a′), where b′ ←[−a′s′+e
]

QL
. Sample a′ R←− RL , and e ′ ← χer r and set v ← (b′′, a′′) where b′ ← [−a′s +e ′+Ps2

]
P ·QL

.
Output (pk,sk,evk) ← (a,s,v).

• Encrypt(pk= a,m ∈R[X]/Φn(X)) : Sample r ←χenc and e ←χ2
er r , and output c ← [(m,0)+e+ar]QL .

• Decrypt(sk= s,c) : Take in c encrypted at level `, and output
[
sT c

]
Q`

.

• Eval(evk,C ,c1, ...,cn): Composition based on C of:

Add(c1,c2) : Take in c1 and c2 encrypted at level `, and ouput c+ ← [c1 +c2]Q`
.

Mult(evk = v,c1,c2) : Ouput c× ← [
(d0,d1)+⌊

P−1 ·d2 ·v
⌉]

Q`
, where (d0,d1,d2) = (b1b2, a1b2 +

a2b1, a1a2).

• Rescale(`→ `′,c) : Given `,`′ ∈ [L] and c ∈ R2
`

, output c′ ←
[⌊

Q`′
Q`

·c
⌉]

Q`′
.

The key addition of this construction to BGV is its encoding of non-integral polynomials, and its the
rescaling procedure, which truncates off the least significant digits of the encrypted value, and stores the
new value in the smaller modulus under smaller precision. This prevents noise from building up during
the course of the computation. Rescaling can be performed to truncate noise whenever it is needed
during evaluation, with its use varying with the application.

Because of the non-integral nature of plaintexts, encryption rate is more difficult to evaluate than for
the previous constructions. It is a close relative of BGV, but depending on the desired precision one can
pack more or less information into its ciphertexts.

4 Applications

4.1 χ2 Tests for GWASs

Each of the three constructions above has been used as a model for homomorphically evaluating the
chi-squared statistic. We will begin by giving a mathematical formulation of the χ2 test for a GWAS study,
then describe the specifics of its implementation.

In the setting of a GWAS, we assume a collection of Single Nucleotide Variants (SNVs), which are
individual DNA locuses in which members of the population have one of two possible alleles, A and B
(each representing either the nucleotides A, G, T, or C, or possibly ⊥ indicating that the locus is deleted in
this variation). Since human beings are diploid and have two copies of all (non-sex-linked) chromosomes,
each individual will have either the genotype A A, AB , or BB for each locus.

Suppose we are focused on a particular SNV, and we sample the genomes of N individuals, of which
some have a particular disease (the cases), and the rest do not (the control). Then by the representation
A A → 0, AB → 1, BB → 2, we can represent an individual’s genome by a value in {0,1,2}. The participant
genomes, then, can be represented by a vector s ∈ {0,1,2}N . The i -th entry of s, si , corresponds to the
number of copies person i has of the A allele at locus j . Let y ∈ {0,1}N be a vector corresponding to the
disease status of a person (yi = 1 if person i have the disease, and yi = 0 if they do not).

Define the following allele counts (table adapted from [BGPG20]):

A B Total
Control n00 n01 r0

Cases n10 n11 r1

Total c0 c1 2N

We can compute n11 by yT s, c1 by (1,1, ...,1)T s, and r1 by (1,1, ...1)T y. As we will see, these values are
sufficient to compute the χ2 statistic.

The χ2 statistic at SNV j measures the likelihood of the results of the study, under the null hypothesis
that disease status and genotype at SNV j are uncorrelated. It is computed as follows:

χ2 = ∑
i∈{0,1}

∑
j∈{0,1}

(
ni j − c j · ri

2N

)2

c j · ri
2N

.

This expression can be simplified into the following form:

χ2 = 2N · (2N n11 − r1c1)2

r1(2N − r1) · c1(2N − c1)
. (1)

This is the form of the expression used by [BGPG20]. To get the form used by [KL15], we must assume
that r0 = r1 = N , since in their setting, we assume separate collections of case and control data of equal
size. Under this assumption,

χ2 = 2N · (n10 −n11)2

(n10 +n11) · (2N − (n10 +n11))
. (2)

4.2 χ2 Test with BGV and YASHE

Kim and Lauter [KL15] have applied both BGV and YASHE to homomorphically evaluating the χ2 statistic
by Eq. (2).

Let M be the number of SNV locuses. The input data needed to compute χ2 consists of y ∈ {0,1}N , the
vector indicating the disease status of each patient, and S ∈ {0,1,2}N×M , the matrix whose (i , j) entry is
the number of copies of allele A participant i has at locus j .

Since the expression for χ2 is a fraction, and none of the HE schemes described so far have supported a
division operation, the schemes described will compute the numerator and denominator of the expression
separately, and allow the decryptor to decrypt at the end. Therefore the encrypted inputs to HE will y and
S, and the encrypted outputs will be the numerator and denominator of χ2. Once decrypted, these will
yield two vectors, χ2

num and χ2
den , each of length M . Dividing corresponding entries will yield the χ2 value

at each SNV.
However, in the work of [KL15], the disease status vector y is not encrypted – rather it is implicit, since

they assume a separation between the encrypted case and control data. That is, in their conception,
the algorithm works with two separate lists of encrypted genotypes, one corresponding to disease cases
and one corresponding to the control group. We can treat this as equivalent to the algorithm taking y in
the clear. This is a laxer security requirement than [BGPG20] will assume below, and if the aggregator of
genotype ciphertexts knows the identity of the message senders, it will learn information about their the
disease status. Once could imagine scenarios in which this would be undesirable, such as if the aggregator
is in a position to sell this information to insurance companies. This potential issue will be fixed in the
second construction.

[KL15] also do not directly compute χ2
num and χ2

den , but instead only n01+n11 and n01−n11, and leave
the rest of Eq. (2) to the decryptor, so this instead is the output value.

Below are shown the Encode functions used to represent rows of Si (that is, individual genomes) as
messages compatible with the corresponding HE Encrypt function. The encryption of S will be the list
consisting of the encryption of each row’s encoding. This method of encoding allows each individual
participant to encrypt their genome separately, without sharing their data.

For BGV, we assume that the plaintext modulus [Φm(X)]t factors as f1 f2 · · · f`, where the fi are irre-
ducible polynomials, and ` ≥ M . Then CRT(r1,r2, ...,r`) indicates the unique polynomial in Rt whose
residue modulo fi is ri for i ∈ [`]. The most important feature of this CRT or residue number system
representation is that the multiplicative and additive properties of the representation are the same as for
the vector of residues treated component-wise, so we pack ` pieces of information into a single ciphertext.

• BGV.Encode(Si ∈ {0,1,2}M) : On input a row Si of S, append zeroes to Si to make S′
i ∈ {0,1,2}`, and

output mi ←CRT(S′
i).

For YASHE, we allow the ability to pack multiple participant genomes within one ciphertext. Let
n′ = ⌊ n

M

⌋
, where n = m/2 is the degree of the modulus Φm(X) of R. We may pack n′ participants into one

ciphertext, which gives efficiency gains for n′ > 1.

• YASHE.Encode(Si ·n′ , ...,Si ·n′+n′−1 ∈ {0,1,2}M) : On input n′ rows Si ·n′ ...,Si ·n′+n′−1 of S, output

mi ←
∑

0≤b<n′

∑
1≤ j≤M

Si ·n′+b, j X b·M+(j−1) ∈ Rt ,

or simply the polynomial whose coefficients are the entries of given rows.

This type of encoding works because the polynomial addition is performed by adding the individ-
ual components, and Kim and Lauter’s method only uses homomorphic addition, not multiplication.
(However they avoid multiplication by making the decryptor perform the necessary multiplications after
decryption.)

Let n′ = N in the case of BGV. Algorithm 1 shows how Kim and Lauter compute Eq. (2). We distinguish
ciphertexts from unencrypted values by putting [·] around ciphertexts.

Algorithm 1 Computing χ2 with BGV or YASHE
Input: y, [S]
Output: [n01 +n11] = {[

n01 j +n11 j
]}

j∈[M] , [n01 −n11] = {[
n01 j −n11 j

]}
j∈[M]

1: un′ ← {1}n′
i=1 ∈ RN

2: for j ∈ [M] do
3: [n01 j] ← (

un′ −y
)T [S j]

4: [n11 j] ← yT [S j]
5: [n01 j +n11 j] ← [n01 j]+ [n11 j]
6: [n01 j −n11 j] ← [n01 j]− [n11 j]
7: end for

This algorithm requires on the order of Mn′ additions, with steps 3 and 4 being the most significant
contribution. It requires only a multiplicative depth of 1 (in steps 3 and 4). It never requires multiplying
two encrypted values – homomorphic multiplication is not actually required! However, this is an artifact
of the offloading of all multiplicative work onto the decryptor, which seems in some sense to defeat the
purpose of homomorphic encryption. It allows a potential adversary to learn the sum and difference of
the values n01 and n11, from which can be computed these values themselves. These are the counts for
each allele in the case group, and while leaking simple counts may not seem at first to be an issue, it could
become problematic in a scenario where, for example, it might leak ethnic information about the group
studied.

4.3 χ2 Test with CKKS

The work of [BGPG20] uses a construction of HE that is essentially the same as that of [CKKS17], with a
few optimizations made for better efficiency in the specific low-depth setting of the GWAS. The primary
modifications are:

• Instead of using moduli of the form Q` = 2`, they use moduli of the form Q` = ∏`
i=1 qi , where

{q1, ...qL} are primes of similar size.

• Multiplication and key switching now involve the residue number system (RNS) – decomposing
ciphertexts into their residues modulo the qi , performing those operations on the residues, and
recombining the residues. This requires on the order of `2 number-theoretic transforms, but for
low-depth computation (where ` will be small), it gives an efficiency improvement.

The encoding method used is similar to the BGV method shown above, using RNS over the polynomial
ring (as opposed to RNS over the integers), to encode both y and S as ciphertexts.

Algorithm 2 shows the method used by [BGPG20] to compute χ2 using CKKS. After decryption, the
final computation of χ2 will be found by multiplying 2N with the ratio of the numerator and denominator
at each index.

Algorithm 2 Computing χ2 with CKKS
Input: [y], [S]

Output:
[
χ2

num

]= {[
χ2

j ,num

]}
j∈[M]

,
[
χ2

den

]= {[
χ2

j ,num

]}
j∈[M]

1: uM ← {1}M
i=1 ∈ RM , uN ← {1}N

i=1 ∈ RN

2: γ← 0.1 ·N−2

3: d ← 2N ·uM

4: d∗ ← γ ·d
5: [r1] ← 2 · [y]T uN (Computed with binary tree addition)
6: [r∗1] ← γ · r1

7: for j ∈ [M] do
8: [n11] ← [y]T [S j]
9: [c1] ← uT

N [S j]
10: [c∗1] ← γ · [c1]

11:
[
χ2

j ,num

]
= (

[n11]?d∗− [c1]? [r∗1]
)2

12:
[
χ2

j ,den

]
= [c1]?

(
d∗− [c∗1]

)
? [r1]?

(
d∗− [r∗1]

)
13: end for

The value γ is introduced in order to keep the magnitude of the numerator and denominator small
enough that the decrypted message fits inside a singe RNS modulus, to reduce the number of such moduli
needed. The multiplicative depth in this scheme is 3 (the value stored in step 11 depends on the square,
which depends on the multiplication of [n11] and d∗, which depends on the multiplication in step 8), so 4
moduli are used.

This algorithm requires on the order of M N additions and M N homomorphic multiplications, with
step 8 and 9 dominating the running time (the products in steps 8 and 9 are significantly slower than the
? products since it is the SIMD optimization cannot be used). The product in step 8 in particular is slower
than its equivalent in Algorithm 1, since once [y] is encrypted, it is no longer a 0/1 vector, and nontrivial
multiplications must be computed.

In comparison to [KL15], the scheme of [BGPG20] requires greater multiplicative complexity. However,
this is because [BGPG20] delegates a great deal of computation to the unencrypted steps, both separating
the case and control groups beforehand (or equivalently leaving y unencrypted), and requiring the
decryptor to perform multiplications with the decrypted data. [KL15] leaves only one division and
multiplication by 2N (for each entry) to after decryption, and so it is closer to being in line with the spirit
of homomorphic encryption.

The choice of the CKKS construction for use in Algorithm 2 is important because CKKS supports
real-number mutliplication, rather than just integer multiplication. This allows the multiplicative factor
γ to be introduced, which in turn allows the number of RNS moduli needed to be very small, which
reduces ciphertext size and computation time. Thus CKKS allows for secure and fast GWAS computations
– [BGPG20] reports that a study of N = 100,000 individuals and M = 500,000 SNVs ran in 5.6 hours. This is

a potential demonstration of the capability of HE to be implemented practically for real-world tasks.

References

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Chris-
tian A Reuter, and Martin Strand. A Guide to Fully Homomorphic Encryption. Cryptology
ePrint Archive, 2015.

[BGPG20] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. Secure Large-scale
Genome-wide Association Studies using Homomorphic Encryption. Proceedings of the Na-
tional Academy of Sciences, 117(21):11608–11613, 2020.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) Fully Homomorphic
Encryption without Bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[BLLN13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a
Ring-Based Fully Homomorphic Encryption Scheme. In IMA International Conference on
Cryptography and Coding, pages 45–64. Springer, 2013.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic Encryption
for Arithmetic of Approximate Numbers. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 409–437. Springer, 2017.

[CS16] Ana Costache and Nigel P Smart. Which ring based somewhat homomorphic encryption
scheme is best? In Cryptographers’ Track at the RSA Conference, pages 325–340. Springer, 2016.

[CT14] Massimo Chenal and Qiang Tang. On key recovery attacks against existing somewhat homo-
morphic encryption schemes. In International Conference on Cryptology and Information
Security in Latin America, pages 239–258. Springer, 2014.

[EN14] Yaniv Erlich and Arvind Narayanan. Routes for Breaching and Protecting Genetic Privacy.
Nature Reviews Genetics, 15(6):409–421, 2014.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. Stanford university, 2009.

[GSM+07] Julius Gudmundsson, Patrick Sulem, Andrei Manolescu, Laufey T Amundadottir, Daniel
Gudbjartsson, Agnar Helgason, Thorunn Rafnar, Jon T Bergthorsson, Bjarni A Agnarsson,
Adam Baker, et al. Genome-wide Association Study Identifies a Second Prostate Cancer
Susceptibility Variant at 8q24. Nature genetics, 39(5):631–637, 2007.

[KDW+12] MI Kamboh, FY Demirci, X Wang, RL Minster, MM Carrasquillo, VS Pankratz, SG Younkin,
AJ Saykin, G Jun, C Baldwin, et al. Genome-wide Association Study of alzheimer’s Disease.
Translational psychiatry, 2(5):e117–e117, 2012.

[KL15] Miran Kim and Kristin Lauter. Private Genome Analysis through Homomorphic Encryption.
In BMC medical informatics and decision making, volume 15, pages 1–12. BioMed Central,
2015.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with
Errors over Rings. In Annual international conference on the theory and applications of
cryptographic techniques, pages 1–23. Springer, 2010.

[Sch87] Claus-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms.
Theoretical computer science, 53(2-3):201–224, 1987.

[Siv08] Nayanah Siva. 1000 Genomes Project. Nature biotechnology, 26(3):256–257, 2008.

[WBZ+10] Kai Wang, Robert Baldassano, Haitao Zhang, Hui-Qi Qu, Marcin Imielinski, Subra Kugathasan,
Vito Annese, Marla Dubinsky, Jerome I Rotter, Richard K Russell, et al. Comparative Genetic
Analysis of Inflammatory Bowel Disease and Type 1 Diabetes Implicates Multiple Loci with
Opposite Effects. Human molecular genetics, 19(10):2059–2067, 2010.

	Introduction
	Motivation
	Overview

	Definitions
	Homomorphic Encryption
	Security
	Ring LWE

	Constructions
	BGV
	YASHE
	CKKS

	Applications
	2 Tests for GWASs
	2 Test with BGV and YASHE
	2 Test with CKKS

