
An Overview of Proof Systems

Steven Xu and Jonathan Li

May 8, 2022

Abstract

In this survey, we compile a introduction for various constructions of argument and proof systems.
We start off with a construction of linear PCPs, and then go over a construction of zk-SNARKs using
square span programs. Finally, we take a look at a construction of preprocessing SNARKs from LIPs.

1 Introduction

In cryptography, a proof system is a way for a prover to convince a verifier of true some statement. The
correctness and security of proof systems is defined by completeness and soundness— the ability to
prove all statements of a certain type and the inability for the prover to lie respectively. Proof systems
have many uses, especially in the world of authentication, where a user could use a proof system to
convince a system of its identity. Modern proof systems come in many types, with some aiming to be
zero knowledge, succinct, non-interactive, and/or proofs of knowledge.

2 Preliminaries

2.1 Interactive Proof and Argument Systems

An interactive proof system is a system between a prover P and a verifier V , where the prover is attempt-
ing to convince the verifier that a certain statement x is in some language L. P and V exchange messages
until V , and at the end of the interaction, V either accepts or rejects the proof, with 〈P,V 〉(x) denoting
the V ’s choice: 0 for reject and 1 for accept. We also use ViewV (〈P,V 〉(x)) to denote the transcript of the
interaction between P and V .

The verifier is computationally bounded and must run in randomized polynomial time, whereas the
prover is not computationally bounded. An interactive argument system is then an interactive proof
system, except the prover can be assumed to be computationally bounded as well.

A proof system must satisfy two properties—completeness and soundness. Completeness states
that for all statements x ∈ L, the verifier must always accept at the end of the prover-verifier exchange.
Soundness states that for all x ∉L and potentially malicious prover P∗, Pr[〈P∗,V 〉(x) = 1] < 1

3 .

2.2 Proofs of Knowledge and Zero Knowledge

A proof system is considered a proof of knowledge system for some relation R if there exists some ef-
ficient extractor E such that for all statements x and (potentially malicious) provers P∗, we have that
Pr[w ← EP∗

: R(x, w) = 1] ≥ Pr[〈P∗,V 〉(x) = 1]−ε. EP∗
means that the extractor is given blackbox access

1

to P∗, including the power to rewind. In essence, a proof of knowledge system should convince the ver-
ifier that the prover knows a witness w to a statement x. Note that knowledge implies soundness, since
the prover cannot know a witness w if it doesn’t exist (x is not a true statement).

An interactive proof system is considered zero knowledge if for all (potentially malicious) verifiers
V ∗, there exists an efficient simulator S such that for all x ∈L, the distributions ViewV (〈P,V 〉(x)) and S(x)
are indistinguishable. There are three variants of zero knowledge: perfect, statistical, and computational,
requiring that the two distributions be the equal, statistically indistinguishable, and computationally
indistinguishable respectively. S is given access to the V ∗’s random coins and the statement x.

For non-interactive proof systems, there are two models of security for zero knowledge. The first is
the CRS model, where a common reference string (CRS) σ is setup by a trusted third party ahead of time.
S and E are given access to a simulation trapdoor τ which is also output by the setup, but which neither
P or V ever see. The second model is the random oracle model, where both P and V are given access to
some shared random oracle H , and S,E are allowed to program the random oracle.

Combining all our definitions above, the term SNARK means succinct non-interactive argument of
knowledge, and a zk-SNARK is a SNARK which is also zero knowledge.

3 Linear PCPs and LIPs

Definition 1. A linear probabilistically-checkable proof (LPCP) system for a binary relation R over a
finite field F is a proof system in which the PCP oracle is restricted to compute a linear functionπ : Fm → F

of the verifier’s queries. More formally, let PLPCP and VLPCP be a deterministic prover algorithm and a
probabilistic oracle verifier algorithm, respectively. We say that (PLPCP,VLPCP) is an input-oblivious k-
query LPCP for R over Fwith knowledge error ε and query length m if it satisfies the following:

• Syntax. The verifier makes k input-oblivious queries to π on any input x and oracle π then decides
whether to accept or reject.

• Completeness. For every (x, w) ∈ R, PLPCP(x, w) outputs a description of a linear function π :
Fm → F such that V π

LPCP(x) accepts with probability 1.

• Knowledge. There exists a knowledge extractor ELPCP such that for every linear functionπ∗ : Fm →
F, if the probability that V π∗

LPCP(x) accepts is greater than ε, then Eπ∗
LPCP(x) outputs w such that

(x, w) ∈R.

LPCPs are of interest because they are easier to construct than traditional PCPs and can be used to
construct LIPs, which can in turn be used to construct SNARKs. Such a construction is presented in
section 5.

Definition 2. A linear interactive proof (LIP) over a finite field F is defined as a standard interactive
proof (as given by Goldwasser et al.) but with the following differences:

• Each message exchanged between the prover PLIP and the verifier VLIP is a vector qi ∈ Fm .

• Each of the prover’s messages is computed by applying a linear functionΠi : Fm → Fk , determined
only by the input x, the witness w , and the round number i , to the verifier’s previous messages
(q1, . . . ,qi).

• Knowledge should hold only with respect to affine prover strategiesΠ∗ = (Π,b), whereΠ is a linear
function, and b is some affine shift.

2

The following LPCP construction from the Walsh-Hadamard Code is given by [BCI+13], which is an
extension of the Hadamard-based PCP of Arora et al. (ALMSS).

Let F be a finite field, and let C : Fn ×Fh → Fℓ be an arithmetic circuit over F of size s.

Definition 3. The LPCP prover algorithm PLPCP takes as input (x,w) ∈ Fn × Fh such that C (x,w) = 1,
computes the values z1, . . . , zs of all wires in C (x,w), and outputs the linear function π : Fs+s2 → F given by
zi for all i ∈ [s] and zi · z j for all i , j ∈ [s].

Definition 4. The LPCP query algorithm QLPCP consists of a matrix AC ∈ Fs×(s+s2) and a vector bC ∈ Fs−n .
Vectors q1,q2,q3 ∈ Fs+s2

are computed and output as follows:

1. r = (r1,r2) ← F2s . Define rx as the first n coordinates of r1 and rC as the last s −n coordinates of r1;

2. q1 := r1 · AC ;

3. the first s elements of q2 is r2 and the last s2 elements are 0;

4. the first s elements of q3 are 0 and the last s2 elements are r2[i] · r2[j] for all i , j ∈ [s].

Definition 5. The LPCP decision algorithm DLPCP takes as input x, u = (uC ,rx), and answers a1, a2, a3 ∈
F and verifies that (a1 − (uC +〈rx,x〉), a2

2 −a3) = (0,0).

Theorem 1. The given construction is a 3-query LPCP with knowledge error 2/|F|, query length s+ s2, and
degree (2,2). Furthermore,

• PLPCP is an arithmetic circuit of size O(s2);

• QLPCP is an arithmetic circuit of size O(s2);

• DLPCP is an arithmetic circuit of size O(n).

4 zk-SNARKs from Square Span Programs

[DFGK14] introduces a new characterization of NP relations called square span programs, which they
then use along with bilinear groups maps to construct a zk-SNARK. We’ll refer to this zk-SNARK as the
square span argument system.

Definition 6. A square span program Q over a finite field F is a set of m+1 polynomials v0(x), . . . , vm(x) ∈
F[x] along with a target polynomial t (x) ∈ F[x] such that deg vi (x) ≤ deg t (x) for all i . Q is defined to
accept an input a1, . . . , al ∈ F if and only if there exist al+1, . . . , am ∈ F such that

t (x) divides

(
v0(x)+

m∑
i=1

ai vi (x)

)2

−1.

m is called the size of Q, and d = deg t (x) is called the degree of Q. We say that Q satisfies a circuit
C : {0,1}l → {0,1} if Q accepts if and only if a1, . . . , al ∈ {0,1} and C (a1, . . . , al).

Theorem 2. Square span programs are NP-complete, and a boolean circuit C consisting of m wires and n
gates has a square span program overZp of size m and degree m+n which verifies C , where p ≥ max(n,8).

3

In the construction of the square span argument system, we will split the input into a1, . . . , alu and
alu+1, . . . , al . The first part will contain the object x of the argument (e.g a graph in a Hamiltonian cycle
argument), and the second part (of length lw = l − lu) will contain the witness w . C will check that w is a
valid witness for x for the relevant relation R ⊂U ×W .

The next tool we’ll need are bilinear group maps. The bilinear group generator defined below gives
us a bilinear group map along with its three associated groups (2 input, 1 output) for every security
parameter λ.

Definition 7. G is called a bilinear group generator for any security parameter λ if G(1λ) returns a five-
tuple (p,G, Ĝ,GT ,e), where G, Ĝ,GT are groups of order p, and e : G× Ĝ→ GT . e must be a bilinear map,
i.e. e(U a ,V b) = e(U ,V)ab for all U ,V . If U ,V are generators, then e(U ,V) must be a generator.

For the remainder of this section, G , H ,V are taken to be inG and Ĝ , Ĥ ,V̂ ∈ Ĝ by default. We will need
three assumptions to hold for our groups and bilinear group map in order for the square span argument
system to be knowledge-sound:

1. The q-power knowledge of exponent (q-PKE) assumption states that given G ,Ĝ ,G s ,Ĝ s , . . . ,G sq
,Ĝ sq

as well as an auxiliary input generator Z , it’s difficult to create V ,V̂ such that e(V ,Ĝ) = e(G ,V̂)
without knowing a0, . . . , aq such that V =∏q

i=0(G si)ai . For the square span argument system, Z will
simply output the parts of the CRS which are not already given.

2. The q-power Diffie-Hellman (q-PDH) assumption states that given G ,Ĝ ,G s ,Ĝ s , . . . ,������XXXXXXG sq+1
,Ĝ sq+1

, . . . ,
G s2q

,Ĝ s2q
, it’s difficult to compute G sq+1

.

3. The q-target strong Diffie-Hellman (q-TSDH) states that given G ,Ĝ ,G s ,Ĝ s , . . . ,G sq
,Ĝ sq

, it’s hard
find an r ∈Zp and compute e(G ,Ĝ)

1
s−r .

Finally, we are ready to construct the square span argument system. Let R be the relevant relation
and λ the security parameter.

• Setup(1λ):

1. Sample the bilinear group generator to get g k = (p,G, Ĝ,GT ,e) ←G(λ).

2. Compute the boolean circuit Cr : {0,1}l
u × {0,1}l

w → {0,1} which checks R, and generate a
square span program Q = (v0, . . . , vm , t) which satisfies Cr over Zp with degree d .

3. Sample G
R−→G, Ĝ ,G̃

R−→ Ĝ, and β, s
R−→Zp such that t (s) ̸= 0.

4. Return σ= (
Q, g k,

{
G si

,Ĝ si }d
i=1,

{
Gβvi (s)

}
i>lu

,Gβt (s),G̃ ,G̃β
)

as the CRS.

• Prove(σ,u, w): Parse u as (a1, . . . , alu) ∈ {0,1}lu and use w to compute alu+1, . . . , al such that t (x)

divides (r (x))2 −1, where r (x) = v0(x)+∑m
i=1 ai vi (x). Sample δ

R−→Zp , and let

ru(x) =
lu∑

i=1
ai vi (x), rw (x) =

m∑
i>lu

ai vi (x), q(x) = rw (x)+δt (x), h(x) = (q(x))2 −1

t (x)
,

Finally, return
π= (H ,V̂ ,Vw ,Bw) = (

Gh(s),Ĝr (s)+δt (s),Gq(s),Gβq(s)).

4

• Verify(σ,u,π): Compute V =Gru (s)Vw =Gr (s)+δt (s) and check that

e(V ,Ĝ) = e(G ,V̂), e(H ,Ĝ t (s)) = e(V ,V̂)e(G ,Ĝ)−1, e(Vw ,G̃β) = e(Bw ,G̃).

Note that since the verifier does not have w , it does not know alu+1, . . . , al . However, it does have
u, allowing it to compute a1, . . . , alu .

Completeness follows by translating the three verification criterion into the exponent—i.e

r (s)+δt (s) = r (s)+δt (s), h(x)t (x) = (q(s))2 −1, q(s)β=βq(s).

for the first, second, and third check respectively. Informally, zero knowledge holds because δ is random
and t (s) ̸= 0, so q(s) is random in Zp . But all of π can be efficiently computed from q(s), since r (s) =
ru(s)+q(s) and ru(s) is public. Therefore, the proof doesn’t leak any information about the witness.

Finally, we can give a high level overview of the knowledge soundness. By d-PKE assumption, since
the adversary was able to compute V ,V̂ , it must know the coefficients of what’s supposed to be logG (V) =
r (x)+δt (x) and therefore rw (x). rw (x) then allows us to calculate the witness w . The correctness of the
exponent of V is enforced by the d-PDH and d-TSDH assumptions.

5 Preprocessing SNARKs from LIPs

[BCI+13] gives the following construction to combine an arbitrary LIP with linear-only encryption to
obtain a designated-verifier preprocessing SNARK.

Definition 8. A preprocessing SNARK is a SNARK where the generator G may run in poly(λ,T) time,
where λ is the security parameter, and T is the time bound.

Let {Fλ}λ∈N be a field ensemble, C = {Cℓ}ℓ∈N a family of circuits, and (PLIP,VLIP) an input-oblivious
two-message LIP for a relation RC , where for the field Fλ, the verifier message is in Fk

λ
, the prover mes-

sage is in Fk
λ

, and the knowledge error is ε(λ). Let E = (Gen,Enc,Dec,Add, ImVer) be a linear-only encryp-
tion scheme with plaintext field Fλ, for security parameter λ. We now construct a preprocessing SNARK
(G ,P,V) for RC as follows.

• G(1λ,1ℓ) uses the LIP query algorithm QLIP(Fλ,1ℓ) to generate a LIP message q ∈ Fm
λ

and a se-

cret state u ∈ Fm , generates (sk,pk) ←Gen(1λ), computes ci ← Enc(pk, qi) for i ∈ [m], and outputs
((pk,c1, . . . ,cm), (sk,u)).

• P (σ, x, w) uses the LIP prover algorithm PLIP(Fλ,1ℓ, x, w) to get a matrix Π ∈ Fk×m
λ

representing its
message function, generates ciphertexts c ′1, . . . ,c ′k encryptingΠq usingAdd, and outputs (c ′1, . . . ,c ′k).

• V (τ, x,π) verifies that ImVer(sk,c ′i) = 1, for i ∈ [k], defines ai :=Dec(sk,c ′i), and outputs the decision

of DLIP(Fλ,1ℓ, x,u, (a1, . . . , ak)).

This construction gives a preprocessing SNARK with knowledge error ε(λ)+negl(λ). Furthermore,

• time(G) = time(QLIP)+m ·poly(λ),

• time(P) = time(PLIP)+k2m ·poly(λ),

• time(V) = time(DLIP)+k ·poly(λ),

5

• |σ| = m ·poly(λ), |τ| = poly(λ)+m′, and |π| = k ·poly(λ).

Definition 9. An encryption scheme has the linear targeted malleability property if for any polynomial-
size adversary A and plaintext generator M there exists a polynomial-size simulator S such that

pk,
a1, . . . , am

s
Dec(sk,c ′1), . . . ,Dec(sk,c ′k)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk,pk) ←Gen(1λ)
(s, a1, . . . , am) ←M(pk)

(c1, . . . ,cm) ← (Enc(pk, a1), . . . ,Enc(pk, am))
(c ′1, . . . ,c ′k) ← A(pk,c1, . . . ,cm ; z)

where
ImVer(sk,c ′1) = 1, . . . , ImVer(sk,c ′k) = 1


and 

pk,
a1, . . . , am

s
a′

1, . . . , a′
k

∣∣∣∣∣∣∣∣∣
(sk,pk) ←Gen(1λ)

(s, a1, . . . , am) ←M(pk)
(Π,b) ← S(pk; z)

(a′
1, . . . , a′

k)T ←Π · (a1, . . . , am)T+b

 ,

where Π ∈ Fk×m , b ∈ Fk , and s is an arbitrary string, are computationally indistinguishable for any suffi-
ciently large λ ∈N and any auxiliary input z ∈ {0,1}poly(λ).

If the LIP (PLIP,QLIP) has knowledge error ε(λ) and E is an encryption scheme with linear targeted
malleability, then the above construction is a designated-verifier non-adaptive preprocessing SNARK.

6 Related Work

One area we didn’t get to cover is (not linear) PCPs. The construction of PCPs is long and difficult, with
one of the “easier" proofs of the PCP theorem being [Din07]. Some proof systems are built on top of
PCPs, one of which is Kilian’s protocol [Kil92], which is succinct.

The papers we covered are also mostly theoretical in nature. There are some works concerned with
the implementation and practical efficiency, one of which is Pinocchio [PHGR13]. The authors of Pinoc-
chio implemented and benchmarked a verifiable computation toolchain, and they claim that verifiable
computation is "almost practical".

There are also proof systems built on lattice based cryptography, which is conjectured to be post-
quantum. One such work is [ISW21], a construction which greatly increased the efficiency of post-
quantum zkSNARKs, especially in size.

7 Future Work

It is an open question whether preprocessing SNARK from LIP construction in section 5 maintains se-
curity against adaptively-chosen statements. There are no known attacks on the construction in the
adaptive case, but no proofs of security are known either. Future work could include an investigation
into this problem.

Another direction of study could concern implementations of various existing zk-SNARK construc-
tions. Most constructions do not come with an implementation, and hence efficiency is difficult to com-
pare. For example, Pinocchio is based on quadratic span programs rather than the simpler square span
programs, but it’s not obvious how to compare their efficiency.

6

Finally, we can always dream that one day, our cryptographic assumptions will be either proven or
disproven, solving P = NP in the process.

References

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. 2013.

[DFGK14] George Danezis, Cedric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct nizk arguments. 2014.

[Din07] Irit Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12–es, jun 2007.

[ISW21] Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier
zksnarks from lattices. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 212–234, New York, NY, USA, 2021. Association for
Computing Machinery.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC
’92, page 723–732, New York, NY, USA, 1992. Association for Computing Machinery.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252,
2013.

7

	Introduction
	Preliminaries
	Interactive Proof and Argument Systems
	Proofs of Knowledge and Zero Knowledge

	Linear PCPs and LIPs
	zk-SNARKs from Square Span Programs
	Preprocessing SNARKs from LIPs
	Related Work
	Future Work

