CS 395T: Topics in Cryptography (Lattice-Based Cryptography)

Discrete Gaussian Sampling Summary

Instructor: David Wu

Here, we summarize some key results on sampling discrete Gaussians over lattices. Much of the material is adapted
from [Peil6, GPV08, Peil0, MP12].

Gaussians. We define the n-dimensional (spherical) Gaussian function ps: R™ — (0, 1] with width s > 0 to be the
function
pa(x) 1= exp(—r|x]2/s).

For a center ¢ € R"”, we define the Gaussian with width s centered at ¢ to be the function
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The n-dimensional Gaussian function with covariance ¥ € R™*™ is the function

pys (%) 1= exp(—m - x"2 x).

The covariance of a spherical Gaussian with parameter s is simply sI,,, where I, is the n x n identity matrix. Note
that the covariance matrix is always positive definite (i.e., there exists B € R"*™ such that ¥ = BBT). If x is a
(spherical) Gaussian with parameter s, then Rx is a Gaussian with covariance RR.".

Discrete Gaussians over lattices. Let £ = £(B) be a lattice. The (spherical) discrete Gaussian distribution D g
on a lattice coset ¢ 4 L is simply the Gaussian distribution with parameter s with its support restricted to ¢ + L.
Namely, for x € ¢ + L,
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and for x ¢ ¢+ £, Dy 1 s(x) = 0. This definition naturally extends to non-spherical Gaussians.

Theorem 1 ([GPV08]). There exists an efficient algorithm that takes as input a basis B for a lattice L = L(B), any
coset ¢ + L, and any width parameter s > ||B|| - w(+/log n) and outputs a sample that is statistically close to D¢y 5.

The SIS lattice. For a matrix A € Z;X’", the SIS lattice is defined as
LE(A) = {x e Zy" : Ax =0 mod q} 2 qZ™.
For a vector u € Z, we define
Li(A):={x¢€ Zy :Ax=umod q} =z + LE(A),

for some z € ZZI” where Az = u.

Gadget trapdoors. We say that R € Z;"XM is a gadget trapdoor for A € Zy*™ if AR = G. We can take the
following approach (from Micciancio and Peikert [MP12]) to sample from D1 (a), s using a gadget trapdoor for A:

« Set s = w(y/logn). Sample a perturbation vector p « Dgm 21, —(s)>rRR7- We can do this as long as
s?I,, — (s')?RRT is positive definite. Taking s = s;(R) - w(v/logn), where s1(R) := maxy|=1 [|Ru]|
denotes the largest singular value of R suffices here. When s1,,, — (s’)2RR.T, we can decompose it as LLT
(e.g., by computing its Cholesky decomposition). Then, we can sample p by first sampling p’ < Dzm 1 (using
Theorem 1) and setting p < Lp’.



« Letz <~ u— Ap. Sample y <~ D/ (@), Recall that G has a basis B where ||]:3>|| < /5 (when ¢ is a power

of 2, EH = 2), so we can use Theorem 1 to implement this step.

« Output x <+ Ry + p.

For correctness, observe that
Ax=ARy+Ap=Gy+Ap=z+ Ap = u,

sox € L (A). Consider the distribution of x. The distribution of y is a discrete Gaussian with width s/, so Ry
is a discrete Gaussian with covariance (s')2RR.". The vector p is Gaussian with covariance s%I,,, — (s')?RRT, so
by the Gaussian convolution lemma (see [Peil0] for a precise description), the sum Ry + p is statistically close to
a discrete Gaussian with covariance (s')2RRT + (521, — (s')?2RRT) = s2I,,. This precisely coincides with the
desired distribution D1 (a), - Refer to [MP12] for more details.

Preimage sampleable trapdoor functions. Using the above algorithm, we can construct a preimage sampleable
trapdoor function as follows:

« TrapGen(n, q): On input lattice parameters n, g, set m = 3nloggq, let t = n[log ¢|, and m = m + t. Sample
AL Z7*™ and R« {0,1}"**. Construct matrices

R
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t
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Output the public matrix A and the trapdoor R. Note that we can also sample R from other distributions to
get smaller parameters; see [MP12].
« SampleGaussian(m, s): On input the dimension m, sample and output x <— Dzm s (e.g., using Theorem 1).

« SamplePre(A, R, u, s): On input the public matrix A € Z**™, a trapdoor R € Z2"*™, and a target vector
ue ng, sample and output X <= D1 (a),, (using the procedure described above).

The above algorithms satisfy the following properties:

. Let (A, R) < TrapGen(n, q). By the leftover hash lemma, the distribution of A is statistically close to uniform
over Zy*™. Since R € {0, 1}"**, we can naively bound s;(R) by vmt = O(nlogq).

« Let x < SampleGaussian(m, s). If s > s1(R) - w(y/logn), then the distribution of Ax is statistically close to
uniform over Z". This follows from the fact that (£ (A)) < s1(R) - w(y/logn) (see [MP12, Lemma 5.3]) and
the result shown from class.

« When s > s1(R) - w(y/logn), the following two distributions are statistically indistinguishable:

{x + SampleGaussian(m, s) : (x, Ax)} and {y & Zy,x < SamplePre(A, Ry, s) : (x,y)} .
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