
CS 395T: Topics in Cryptography (Lattice-Based Cryptography)

Discrete Gaussian Sampling Summary

Instructor: David Wu

Here, we summarize some key results on sampling discrete Gaussians over lattices. Much of the material is adapted

from [Pei16, GPV08, Pei10, MP12].

Gaussians. We define the n-dimensional (spherical) Gaussian function ρs : Rn → (0, 1] with width s > 0 to be the

function

ρs(x) := exp(−π∥x∥2/s2).

For a center c ∈ Rn
, we define the Gaussian with width s centered at c to be the function

ρs,c := exp(−π∥x− c∥2/s2).

The n-dimensional Gaussian function with covariance Σ ∈ Rn×n
is the function

ρ√Σ(x) := exp(−π · xTΣ−1x).

The covariance of a spherical Gaussian with parameter s is simply sIn, where In is the n× n identity matrix. Note

that the covariance matrix is always positive definite (i.e., there exists B ∈ Rn×m
such that Σ = BBT

). If x is a

(spherical) Gaussian with parameter s, thenRx is a Gaussian with covariance RRT
.

Discrete Gaussians over lattices. Let L = L(B) be a lattice. The (spherical) discrete Gaussian distribution DL,s

on a lattice coset c + L is simply the Gaussian distribution with parameter s with its support restricted to c + L.
Namely, for x ∈ c+ L,

Dc+L,s(x) :=
ρs(x)

ρs(c+ L)
=

ρs(x)∑
y∈c+L ρs(y)

,

and for x /∈ c+ L, Dc+L,s(x) = 0. This definition naturally extends to non-spherical Gaussians.

Theorem 1 ([GPV08]). There exists an efficient algorithm that takes as input a basis B for a lattice L = L(B), any
coset c+ L, and any width parameter s ≥ ∥B̃∥ · ω(

√
log n) and outputs a sample that is statistically close to Dc+L,s.

The SIS lattice. For a matrixA ∈ Zn×m
q , the SIS lattice is defined as

L⊥(A) :=
{
x ∈ Zm

q : Ax = 0 mod q
}
⊇ qZm.

For a vector u ∈ Zn
q , we define

L⊥
u (A) :=

{
x ∈ Zm

q : Ax = u mod q
}
= z+ L⊥(A),

for some z ∈ Zm
q where Az = u.

Gadget trapdoors. We say that R ∈ Zm×nℓ
q is a gadget trapdoor for A ∈ Zn×m

q if AR = G. We can take the

following approach (from Micciancio and Peikert [MP12]) to sample from DL⊥
u (A),s using a gadget trapdoor forA:

• Set s′ = ω(
√
log n). Sample a perturbation vector p ← DZm,s2Im−(s′)2RRT . We can do this as long as

s2Im − (s′)2RRT
is positive definite. Taking s = s1(R) · ω(

√
log n), where s1(R) := max∥u∥=1 ∥Ru∥

denotes the largest singular value ofR suffices here. When s2Im − (s′)2RRT
, we can decompose it as LLT

(e.g., by computing its Cholesky decomposition). Then, we can sample p by first sampling p′ ← DZm,1 (using

Theorem 1) and setting p← Lp′
.



• Let z← u−Ap. Sample y← DL⊥
z (G),s′ . Recall thatG has a basis B where ∥B̃∥ ≤

√
5 (when q is a power

of 2, ∥B̃∥ = 2), so we can use Theorem 1 to implement this step.

• Output x← Ry + p.

For correctness, observe that

Ax = ARy +Ap = Gy +Ap = z+Ap = u,

so x ∈ L⊥
u (A). Consider the distribution of x. The distribution of y is a discrete Gaussian with width s′, so Ry

is a discrete Gaussian with covariance (s′)2RRT
. The vector p is Gaussian with covariance s2Im − (s′)2RRT

, so

by the Gaussian convolution lemma (see [Pei10] for a precise description), the sumRy + p is statistically close to

a discrete Gaussian with covariance (s′)2RRT + (s2Im − (s′)2RRT) = s2Im. This precisely coincides with the

desired distribution DL⊥
u (A),s. Refer to [MP12] for more details.

Preimage sampleable trapdoor functions. Using the above algorithm, we can construct a preimage sampleable

trapdoor function as follows:

• TrapGen(n, q): On input lattice parameters n, q, set m̄ = 3n log q, let t = n⌈log q⌉, and m = m̄+ t. Sample

Ā
r←− Zn×m̄

q and R̄← {0, 1}m×t
. Construct matrices

A = [Ā |G− ĀR̄] ∈ Zn×m
q R =

[
R̄
It

]
∈ Zm×t

q .

Output the public matrixA and the trapdoorR. Note that we can also sampleR from other distributions to

get smaller parameters; see [MP12].

• SampleGaussian(m, s): On input the dimensionm, sample and output x← DZm,s (e.g., using Theorem 1).

• SamplePre(A,R,u, s): On input the public matrix A ∈ Zn×2m
q , a trapdoor R ∈ Z2m×m

q , and a target vector

u ∈ Z2m
q , sample and output x← DL⊥

u (A),s (using the procedure described above).

The above algorithms satisfy the following properties:

• Let (A,R)← TrapGen(n, q). By the leftover hash lemma, the distribution ofA is statistically close to uniform

over Zn×m
q . SinceR ∈ {0, 1}m×t

, we can naïvely bound s1(R) by
√
mt = O(n log q).

• Let x← SampleGaussian(m, s). If s ≥ s1(R) · ω(
√
log n), then the distribution of Ax is statistically close to

uniform over Zn
q . This follows from the fact that η(L⊥(A)) ≤ s1(R) ·ω(

√
log n) (see [MP12, Lemma 5.3]) and

the result shown from class.

• When s ≥ s1(R) · ω(
√
log n), the following two distributions are statistically indistinguishable:

{x← SampleGaussian(m, s) : (x,Ax)} and

{
y

r←− Zn
q ,x← SamplePre(A,R,y, s) : (x,y)

}
.
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