
- not ideal
2

#epad [Vigenere cipher where key is as long as the message']
12 =90,134 Encrypt (k, m): output c=k#m

m =90,13" Decrypt (k,c): output m
=k* C

c =90,134
·

bitwise exclusive OR operation (addition mod 2)

↑ectness: Take any K+ 30,1)", on a 90,130:

&ecrypt (K. Encrypt(k,m() = k *(k+ m) =(k0() Am =

m (since k*k =0

I

s this secure? How do we define security?
- Given a ciphertext, cannot recover the key?

Not 6000: Says nothing about hiding message. Encrypt (k, m) = m would be secure under this definition, but this scheme

is totally insecure intuitively!
-

Given a ciphertext, cannot recover the message.

NOT6OOD! Can leak part of the message. Encrypt(K, lmo, ml) = (mo, m, 0K). This encryption might be considered secure

but leaks half the message. [Imagine if message was "username: alice I password:g4bos
might be the

- Given a ciphertext, cannot recover any bit of
the message.

NOT GOOD! Can still learn parity of the bits (or every pair of bits), etc. Information still leaked ... string that is
leaked!

- Given a ciphertext, learn nothing about the message.
Coop! But how to define this?

Coming up
with good definitions is difficult.Definitions have to rule out all adversarial behavior (i.e., capture broad enough class

of attacks)
->

Big part of crypto is getting the definitions right. Ure-1970s: cryptography has relied on intuition, but intuition is often

wrong! Just because I cannot break it does not mean

How do we capture "learning nothing about the message"? someone else cannot ...

If the key is random, then ciphertext should not give information about the message.

*inition. A cipher (Encrypt, Decrypt satisfies ofsecrecy if for all messages Mo, m, EM, and all ciphertexts (tC:

*
Encrypt(K, mo) =c] = Pr2k *K: Encrypt(k,m,) =c]

probability that encryption of mo
is c, where the probability is
taken over the random choice of

the key In

Perfect secrecy says that given a ciphertext, any two messages are equally likely.
=>Cannot infer anything about underlying message given only the ciphertext (i.e., "ciphertext-only" attack)

#

orem. The one-time pad satisfies perfect secrecy.
↑of. Take any message M+

30113" and ciphertext (t 9011). Then,

PrSk = 90,13": Encrypt(k,m) =c] =Pr(k* 9011)":k0m =c]

=PrCk*(0,13M:k =mdc]

= In
This holds for all messages m and ciphertexts c, so one-time pad satisfies perfect secrecy.

Are we done? We now have a perfectly-secure cipher!
if we can share keys of this length, can use same mechanism toNo! Keys are very long! In fact, as long as the message... [

"One-time" restriction
shave the message itself

Malleable

Issues with the one-time pad:
*

ime: Very important. Never reuse the one-time pad to encrypt two messages. Completely broken!

Suppose C= km, and C2 = kt Ma

Then, c, (2 = (k+m.) A(k+mc -can leverage this
to recover messages

=
m, # Mz

->learn the "for of two messages!
One-time pad reuse:
-

Project Verona (U.S. counter-intelligence operation against U.S.S.R during Cold War)
-> Soviets reused some pages in

codebook - led to decryption of 3000 messages sent by Soviet

intelligence over 37-year period (notably exposed espionage by Julius and Ethel Rosenberg]
- Microsoft Point- to-Point Tunneling (MS-PPTP) in Windows 98/NT (used for VPN)

->same key (in stream cipher) used for both server to client communication AND for client -> server

communication
->(RC4)

- 802.11 WEP: both client and server use same key to encrypt traffic

many problems just beyond one-time pad reuse (can even recover key after observing small

number of frames!)
* eable: one-time pad provides no integrity; anyone can modify the ciphertext:

m +kc

replace (with <0m
=>kO(c m') =mOm' -adversary's change now coved into orginal message

(Shannon). If a cipher satisfies perfect secrecy, then 1101 (M1.

#
ution: Every ciphertext can decrypt to at most (K/<IM1 messages. This means that ciphertext leaks information about

the message (not all messages equally likely). Cannot be perfectly secret.

H

roof. We will use a "counting" argument. Suppose (K) >IM1. Take any ciphertext (5 Encrypt(k,m) for some KER, mEM.

This ciphertext can only decrypt to at most (K) possible messages (one for each choice of key). Since (K) < IM), there

is some message m'tM such that

UKE12: Decrypt (k,c) #m

Bycorrectness of the cipher,

*K71: Encrypt(k, m') FC
This means that

↑o[kK: Encrypt(k,m) =c] =0 3 Cannot be perfectly secret"
PoCk*R: Encrypt(k,m)

=c] > 0

#away: Perfect secrecy requires long keys.Very impractical (except in the most critical scenarios - exchanging daily codebooks)

If we want something efficient/usable, we need to compromise somewhere.

-

observe: Perfect secrecy is an oration-theoretic (i.e., a mathematical)
property

Evenan:powerful (computationally - unbounded) adversary cannot break security
We

willrelaxthispoorandonlyrequireare efficient) adversaries

Idea:
"

compress
"

the one- time pad : we will generate a long random-looking string from a shirt seed (e.g. , S E {0,13128) .

I typically : se {0,13
" (X is the seed length or securityparameter)

-
-

-
-

-
-
-
e

-

- -

-

G (s) t {0,13
"

where n → x
←
n is the "stretch

" of a PRG

Stamper : K
-

- {0,131
M = C = {0,13

"

Encrypt (k, m) : c← m ①/G Instead of xor-ing with the key, we use the key to derive a "

stream
" of random-

Decrypt (k, c) : m ← c Ot G(K) looking bits and use that in place of the one- time pad

If X s n
,
then this scheme cannot be perfectly secure ! So we need a di¥ notion of security

Intuitively : want a stream cipher to function
"

like
"

a one- time pad to
any

" reasonable
"

adversary .
⇒ Equivalently : output of a PRG should " look" like uniformly - random string

what is a
"

reasonable
"

adversary?
-

Theoretical answer : algorithm runs in (probabilistic) polynomial time
- Practical answer : runs in time < 280 and

space
C 264 (can use larger numbers as well)

Goat : construct a PRG so no efficient adversary can distinguish output from random .

Captured by defining two experiments or games :

M s I do.B" 1-1⇐ + Ego, ,gn
the input to the adversary Lt) is

adversary ← t ← Gcs) adversary often called the challenge
-

-

↳ be so , is
- Z> BE {o ,B

Experiment 0 Experiment 1

Adversary 's goal is to distinguish between Experiment 0 (pseudorandom string) and Experiment 1 (truly random string)
↳ It is given as input a string t of length n (either t ← Gcs) or t £10,13

") / Remember : adversary knows the algorithm G;

↳ It outputs a guess (a single bit b E {0.13) i-onyseed.is hidden ! .

Let Wo : = Pr [adversary outputs 1 in Experiment 0] } define the distinguishing advantage of A as Do Not RELY ON

WI := Pr (adversary outputs I in Experiment I] PRGAdv [A, G] : = / Wo - W , I ISECURITYBYOBSCURITY.ly
f- probabilistic polynomial time

Definition
.
A PRG G :{0,131 → {0.13

"

is secure if for all efficient adversaries A, smaller than any
inverse polynomial

PRGAdv CA, G) =neglC
↳ negligible function (in the input length) /

e'S" II , 2109
"

v

- Theoretical definition : f- (x) is negligible if f E off
') for all a- IN

- Practical definition : quantity
S 2-80 or

E 2-
'28

