Next up: homomorphic signatures

Define unforgeability: adversary

\[\sigma = \text{Sign}(vk, x) \]

\[
\begin{align*}
\sigma & \rightarrow \sigma_f \\
x, \sigma_f & \rightarrow y = f(x) \\
\sigma_y \leftarrow \text{Eval}(f, x, \sigma) \\
\end{align*}
\]

\[\downarrow \]

Check that \(\sigma_y \) is a signature on \(y \) with respect to function \(f \).

- Can view as signature on pair \((f, y) \) \(\leftarrow \) Why not just on \(y \) alone?

Requirements:

- Unforgeability: Cannot construct signature \(\sigma \) on \((f, y) \) where \(y \neq f(x) \).
- Succinctness: Size of \(\sigma_y \) should be \(\|y\| \cdot \text{poly}(\lambda) \). In particular, should not depend on \(\|x\| \) or \(\|f\| \).
- Efficient verification: Can decompose verification algorithm as follows: \(\downarrow \)

- Preprocess \((vk, f) \rightarrow vk_f \) (generates short function verification key \(vk_f = (vk, \text{poly}(\lambda, \|f\|)) \))
- Verify \((vk_f, y, \sigma) \rightarrow \sigma/1 \) (runs in time \(\text{poly}(\lambda, d, \|y\|) \))

Homomorphic signatures allow computations on authenticated data.

Construct: relies on similar homomorphic structure as GSW (for message space \(\text{poly}(\lambda) \))

- KeyGen(\(\lambda \)):
 Set lattice parameters \(n = n(\lambda), g = g(\lambda) \).
 Sample \((A, T) \leftarrow \text{TrapGen}(n, g) \)
 Sample \(B_1, \ldots, B_k \leftarrow \mathbb{Z}_g^\times \)
 Output \(vk = (A, B_1, \ldots, B_k), sk = R \)

- Sign(\(sk, x \)):
 Compute \(R_i \leftarrow A^i(B_i - x \cdot G) \) for \(i \in [k] \) using \(T \)
 In particular:
 \[
 A[R_1, \ldots, R_k] = [B_1 - x, G \ldots B_k - x \cdot G] \\
 = [B_1 \ldots B_k] - x \cdot G
 \]
 Output \(\sigma = (R_1, \ldots, R_k) \)

- Verify(\(vk, x, \sigma \)):
 Check that \(\|R_i\| \leq B \) and that \(A[R_1, \ldots, R_k] = [B_1 \ldots B_k] - x \cdot G \)
 \[\downarrow \]
 Bound based on quality of trapdoor (lattice parameters)
Homomorphic evaluation:

\[A[R_1, \ldots, R_k] = [B_i - x_i G, \ldots, B_e - x_e G] \]

To derive a signature on the sum of two bits \((x_i + x_j)\):

\[
\begin{align*}
R_i &= R_i + R_j \\
B_i &= B_i + B_j
\end{align*}
\]

Verification: \(AR_i = B_i - (x_i + x_j) G\) addition operation

To derive a signature on the product of two bits \((x_i x_j)\):

\[
\begin{align*}
AR_i &= B_i - x_i G \\
AR_j &= B_j - x_j G
\end{align*}
\]

AR \(x\) is a new verification component associated with

\[
AR(x) = B_x - x_i x_j G
\]

function of \(R_i, R_j\)

\[
\begin{align*}
AR_i &= B_i - x_i G \\
AR_j &= B_j - x_j G \\
AR_i G^{-1}(B_i) &= (B_i - x_i G) G^{-1}(B_i)
\end{align*}
\]

\[
B_j G^{-1}(B_i) = x_j B_i
\]

\[
B_j G^{-1}(B_i) - x_j B_i
\]

\[
= B_j G^{-1}(B_i) - A(x_j) B_i - x_i x_j G
\]

\[
\Rightarrow a(R_j G^{-1}(B_i) + x_j R_i) = B_j G^{-1}(B_i) - x_i x_j G
\]

\[
R_x = R_j G^{-1}(B_i) + x_j R_i
\]

\[
B_x = B_j G^{-1}(B_i)
\]

function of signature, input

\[\|R_x\|_o \leq \|R_j\|_o + \|R_i\|_o \]

(\(h_1: \mathbb{Z}_q\) homomorphic multiplication)

Can depend on \(R_i, R_j, x\)

Small linear function of \(R_i\) and \(R_j\)

Composition to compute signature on \(R_{x,x}\) on evaluation \(f(x)\)

By above analysis, multiplication scales noise by a factor of \(t\) so if \(f\) can be computed by a circuit of depth \(d\), \(\|R_{x,x}\|_o \leq t^{O(d)}\)

To verify a signature \(R_{x,x}\) on \((f(x), y = f(x))\), verifier computes \(B_j\) from \(B_i, \ldots, B_e\) and checks that \(\|R_{x,x}\|_o \leq t^{O(d)}\)

More generally:

\[R_{x,x} = [R_1, \ldots, R_k] H_{f,x} \]

where \(H_{f,x} \in \mathbb{Z}_q^{2^{k+1}}\) and \(\|R_{x,x}\|_o \leq t^{O(d)} = (n \log q)^{O(d)}\)

where \(d\) is the (multiplicative) depth of the circuit computing \(f\)

Now, if \(AR_i = B_i - x_i G\), then from the above,

\[AR_{x,x} = B_x - f(x) G \]

where \(B_j\) is the matrix obtained by evaluating \(f\) on \(B_i, \ldots, B_e\)

This can be expanded as

\[
AR_{x,x} = A[R_1, \ldots, R_k] H_{f,x} = [B_i - x_i G, \ldots, B_e - x_e G] H_{f,x}
\]

\[= B_x - f(x) G \]
Decouple into two equations:
- Input-independent evaluation: \([B_1 \cdots B_k]: H_y = B_y\)
- Input-dependent evaluation: \([B_i - x_i G : \cdots : B_k - x_k G] H_{f,x} = B_y - f(x) : G\)

Unforgeability: Will consider a weaker (selective) notion of security where the message that is signed is independent of the verification key [not difficult to get full adaptive security, but somewhat tedious]

Unforgeability: Will consider a weaker (selective) notion of security where the message that is signed is independent of the verification key [not difficult to get full adaptive security, but somewhat tedious]

\[
\begin{aligned}
\text{challenge} & : \chi \\
\text{adversary} & : (vk, sk) \leftarrow \text{Key Gen}(1^k) \\
& : \sigma_x \leftarrow \text{Sign}(sk, \chi) \\
& : f, y, \sigma_{f,y} \leftarrow \text{Output} 1 \text{ if } y \neq f(x) \text{ and } V_{vk_f}(vk, f) \\
\end{aligned}
\]

Proof of unforgeability.

Observe: If correctly simulates verification key by LH1, suppose A succeeds: then \(AR_x = B_y - y : G\)
\(AR_x = B_y - f(x) : G\)
\(\Rightarrow A(R-R^*) = (f(x)-y) : G\)
\[d(x) \neq y \Rightarrow f(x)-y \in \{-1,1\}\]

\(R^*\) is short since signature verifies \(R^*\) is short since \(R_1, H_{f, x}\) are small

R is short since signature verifies \(R-R^*\) is a trapdoor for A
Context-hiding for homomorphic signatures:

- In many settings, we also want the computed signature to hide information about the input to the computation.

\[
\text{Alice} \xrightarrow{\chi, \sigma} \text{Server} \xrightarrow{f} \text{Bob}
\]

Bob wants to check signature on \(y = f(x) \) but should not learn anything about \(x \).

We will see one application of this type of property to (designated-prover) NIZKs.

We say a homomorphic signature scheme is context-hiding if there exists an efficient simulator \(S \) where for all \((vk, sk) = \text{KeyGen}(1^n)\), \(x \in \{0,1\}^n \), and \(f: \{0,1\}^n \rightarrow \{0,1\} \):

\[
\{ vk, \text{Eval}(vk, f, \sigma) \} \approx \{ vk, S(sk, vk, f, f(x)) \}
\]

\(\leftarrow\) simulator needs to simulate valid signatures so it needs to know the signing key; however, it does not know the input \(x \), only the value \(f(x) \).

\(\rightarrow\) this means signature reveals no information about \(x \) other than \((f, f(x))\).

Current construction is not context-hiding:

\[
R_{f,x} := [R_1 \ldots R_k] \cdot H_{f,x}
\]

\(\leftarrow\) this is a function of \(x \)!

To achieve context-hiding, we need a way to re-randomize a signature.

Suppose \(AR_{f,x} = By - y \cdot G \) where \(y \in \{0,1\} \).

Evaluator knows \(y \) so it can compute the matrix

\[
V := [A \mid By + (y-1) \cdot G] = [A \mid AR_{f,x} + (2y-1) \cdot G]
\]

Now, since \(y \in \{0,1\}, 2y-1 \in \{-1,1\} \). Then \(R_{f,x} \) is a trapdoor for \(V \):

\[
V \cdot \begin{bmatrix} -R_{f,x} \\ I \end{bmatrix} = (2y-1) \cdot G = G - G
\]

The public key then includes a random target \(z \in \mathbb{Z}_q^n \) and the signature is formed by sampling a short vector \(t \) such that \(Vt = z \):

\[
t \leftarrow V^{-1}(z) \text{ using trapdoor } [-R_{f,x}]
\]

To verify a signature, the verifier computes \(By \) from \(B_1, \ldots, B_k \) constructs \(V \) from the verification key and checks that \(Vt = z \) and \(\|t\|_\infty \leq \beta \) where \(\beta = (n \log q)^{o(1)} \) is the noise bound.

\(\leftarrow\) quality of trapdoor is \(\| [-R_{f,x}] \|_1 \) which is \((n \log q)^{o(1)} \) so norm bound is also \((n \log q)^{o(1)} \).
Recap:

Homomorphic Encryption

- **Public Key**: \(A = \left[\frac{A}{s^T A + e^T} \right] \)
- **Ciphertext**: \(C = AR + \mu \cdot G \)

Homomorphic Signatures

- **Private Key**: \(A \leftarrow \mathbb{Z}_p \)
- **Signature**: \(AR = B - \mu \cdot G \)

Ciphertext Evaluation

\(C_1, \ldots, C_e, f \mapsto C_f \)

\([C_1 - x, 1 \ldots C_e - x_e \cdot G] H_y = C_f - f(x) \cdot G \)

\(A [R_1 \ldots 1R_e] H_y \mapsto [R_1 \ldots 1R_e] H_y x = R_y x \)

Homomorphic on Randomness

GSW homomorphisms are homomorphic on both messages and on randomness.

Signature Evaluation

\(C_f = AR_f + f(x) \cdot G \)

\(C \) homomorphic on randomness

Verification

He: cipher text evaluation

He: signature evaluation

He: verification
Another view: We can view GSW/homomorphic signatures as homomorphic commitment scheme:

$$ \mathbf{pp} : \mathbf{A} \in \mathbb{Z}_{}^{m \times n} $$

to commit to a message \(x \in \{0,1\}^n \), sample \(R \in \mathbb{Z}_{}^m \) and output \(C \leftarrow AR + x G \)

to open a commitment to message \(\mu \), reveal \(R \), and check that

$$ C = AR + \mu G \quad \text{and} \quad \| R \|_2 < \beta \quad \text{(for some noise bound \(\beta \))} $$

Observe: commitment is just GSW ciphertext, so supports arbitrary computation

$$ C = AR + \mu G \quad \Rightarrow \quad C_j = AR_{j,x} + f(x) \cdot G $$

where \(R_{j,x} = [R_1, \ldots, R_L] \cdot H_{j,x} \)

To see this, sample \((A, T) \leftarrow \text{TrapGen}(n, g) \). Then \(A \) is statistically close to uniform.

To generate opening for commitment \(C \) to message \(\mu \in \{0,1\}^n \),

$$ R \leftarrow \text{SamplePre}(A, T, C - \mu G, \varepsilon) $$

This yields short \(R \) where

$$ \text{AR} = C - \mu G \quad \Rightarrow \quad C = AR + \mu G $$

Succinct homomorphic commitments (i.e., functional commitments):

Commitment to \(x \): \(C_i = AR_i + x_i G \)

\(C_L \) grows with the input length \(L \)

$$ C_L = AR_L + x_L G $$

Can we compress further? Yes, but will need a stronger assumption.

\(l \)-succinct SIS: SIS with respect to \(A \in \mathbb{Z}_{}^{m \times n} \) holds even given a trapdoor for the related matrix

$$ B = \left[\begin{array}{cc|c} A & \cdots & W_1 \\ A & \cdots & W_2 \\ \vdots & \ddots & \vdots \\ A & \cdots & W_l \end{array} \right] \quad \text{where} \quad W_i \in \mathbb{Z}_{}^{n \times t} \)