Focus: lattice-based cryptography
- Conjectured post-quantum resilience
- Number-theoretic assumptions like discrete log and factoring are insecure against quantum computers
- Basis of many NIST post-quantum cryptography standards for post-quantum key agreement and digital signatures
- Security based on worst-case hardness
- Cryptography has typically relied on average-case hardness (i.e., there exists some distribution of hard instances)
- Lattice-based cryptography can be based on worst-case hardness (there does not exist an algorithm that solves all instances)
- Enables advanced cryptographic capabilities

Definition: An n-dimensional lattice \(\mathbb{L} \subseteq \mathbb{R}^n \) is a discrete additive subspace of \(\mathbb{R}^n \)
- Discrete: For every \(x \in \mathbb{L} \), there exists a neighborhood around \(x \) that only contains \(x \):
 \[
 B_\varepsilon(x) = \{ y \in \mathbb{R}^n : ||x - y|| \leq \varepsilon \}
 \]
 discrete means \(B_\varepsilon(x) \cap \mathbb{L} = \{ x \} \)
- Additive subspace: For all \(x, y \in \mathbb{L} \): \(x + y \in \mathbb{L} \)
 \(-x \in \mathbb{L} \)

Examples:
- \(\mathbb{Z}^n \) (n-dimensional integer-valued vectors)
- \(\mathbb{Q} \cdot \mathbb{Z}^n \) (n-dimensional integer-valued vectors where each coordinate is multiple of \(q \)) “\(q \)-ary” lattice

Lattices typically contain infinitely-many points, but are finitely-generated by taking integer linear combinations of a small number of basis vectors:

\[
B = [b_1 \mid b_2 \mid \ldots \mid b_k] \in \mathbb{R}^{n \times k} \quad \text{(vectors are linearly independent over IR)}
\]

\[
\mathbb{L}(B) = \{ \sum_{i=1}^{k} \alpha_i b_i \mid \alpha_i \in \mathbb{Z} \} \quad \text{(full-rank: } k = n)
\]

A lattice can have many basis:

<table>
<thead>
<tr>
<th>Standard basis for (\mathbb{Z}^2)</th>
<th>Alternative basis for (\mathbb{Z}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of basis makes a big difference in hardness of lattice problems</td>
<td></td>
</tr>
<tr>
<td>Bad basis is public key</td>
<td></td>
</tr>
<tr>
<td>Good basis is trapdoor</td>
<td></td>
</tr>
</tbody>
</table>
Definition. Let \(\mathcal{L} \) be an \(n \)-dimensional lattice. Then, the minimum distance \(\lambda_1(\mathcal{L}) \) is the norm of the shortest non-zero vector in \(\mathcal{L} \):
\[
\lambda_1(\mathcal{L}) = \min_{v \in \mathcal{L} \setminus \{0\}} \|v\|
\]
The \(i \)-th successive minimum \(\lambda_i(\mathcal{L}) \) is the smallest \(r \in \mathbb{R} \) such that \(\mathcal{L} \) contains \(i \) linearly independent basis vectors of norm at most \(r \).

Computational problems on lattices: [problems parameterized by lattice dimension \(n \)] (can solve exactly using Gauss' algorithm)
- Shortest vector problem (SVP): Given a basis \(B \) of an \(n \)-dimensional lattice \(\mathcal{L} = \mathcal{L}(B) \), find \(v \in \mathcal{L} \) such that \(\|v\| = \lambda_1(\mathcal{L}) \)
- Approximate SVP (SVP\(_\gamma \)): Given a basis \(B \) of an \(n \)-dimensional lattice \(\mathcal{L} = \mathcal{L}(B) \), find \(v \in \mathcal{L} \) such that \(\|v\| \leq \gamma \cdot \lambda_1(\mathcal{L}) \)
- Decisional approximate SVP (GapSVP\(_\gamma \)): Given a basis \(B \) of an \(n \)-dimensional lattice \(\mathcal{L} = \mathcal{L}(B) \), decide if \(\lambda_1(\mathcal{L}) \leq 1 \) or if \(\lambda_1(\mathcal{L}) \geq \gamma \)

Complexity of GapSVP depends on approximation factor \(\gamma \):

<table>
<thead>
<tr>
<th>Approximation Factor</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma = 1)</td>
<td>(\text{NP-hard}^*)</td>
</tr>
<tr>
<td>(\gamma \ll 1)</td>
<td>(\text{quasi-NP-hard}^*)</td>
</tr>
<tr>
<td>(\gamma \gg 1)</td>
<td>(\text{NP} \cap \text{coAM})</td>
</tr>
<tr>
<td>(\gamma \ll \sqrt{n})</td>
<td>(\text{NP} \cap \text{coNP})</td>
</tr>
<tr>
<td>(\gamma \gg \sqrt{n})</td>
<td>(\text{BPP})</td>
</tr>
</tbody>
</table>

Example language in \(\text{NP} \cap \text{coAM} \): graph isomorphism (not known to be \(\text{NP} \)-hard)

Approximation factor \(\gamma \) sufficient for cryptography (e.g., OWF/PKE exists)

Unlikely to allow basing crypto on NP-hardness since for approximation factors bigger than \(\sqrt{n} \), GapSVP\(_\gamma \) \(\in \text{NP} \cap \text{coNP} \)

Algorithms for SVP:
- Lenstra - Lenstra - Lovasz (LLL) algorithm (lattice reduction)
 - Polynomial time algorithm for \(\gamma = 2^{\log^* n} \) approximation
 - Known algorithms for poly(\(n \)) approx run in time \(2^{O(n)} \) (many need similar space as well)
 - Can trade-off time for approximation factor: solve GapSVP\(_\gamma \) in time \(2^{\Theta(n/\log \gamma)} \)
 - Some asymptotics with quantum algorithms

Main problems we use for cryptography are short integer solutions (SIS) and learning with errors (LWE)

- These reduce to GapSVP and SVP\(_\gamma \)
- Currently open: basing crypto on search-SVP (SVP or SVP\(_\gamma \))
Short Integer Solutions (SIS): The SIS problem is defined with respect to lattice parameters \(m, n, q \) and a norm bound \(p \). The SIS\(_{m,n,q}_p\) problem says that for \(A \in \mathbb{Z}_q^{n \times m} \), no efficient adversary can find a non-zero vector \(X \in \mathbb{Z}^m \) where \(Ax = 0 \in \mathbb{Z}_q^n \) and \(\|X\| < p \).

In lattice-based cryptography, the lattice dimension \(m \) will be the primary security parameter.

Notes:
- The norm bound \(p \) should satisfy \(p < g \). Otherwise, a trivial solution is to set \(X = (g, 0, 0, \ldots, 0) \).
- We need to choose \(m, p \) to be large enough so that a solution does exist.

\[\implies \text{When } m = \Omega(n \log q) \text{ and } p > \sqrt{n}, \text{ a solution always exists.} \]

\[\text{In particular, when } m \geq \Omega(n \log q), \text{ there always exists } x \in \{-1, 0, 1\}^m \text{ such that } Ax = 0: \]

- There are \(2^m \geq 2^{n \log q} = q^n \) vectors \(y \in \{0, 1\}^m \).
- Since \(Ay \in \mathbb{Z}_q^n \), there are at most \(q^n \) possible outputs of \(Ay \).
- Thus, if we set \(x = y - y_0 \in \{-1, 0, 1\}^m \), then \(Ax = A(y - y_0) = A_y - A_y = 0 \in \mathbb{Z}_q^n \) and \(\|y - y_0\| < p \).

SIS can be viewed as an average-case SVP on a lattice defined by \(A \in \mathbb{Z}_q^{n \times m} \):

\[
\mathbb{L}^d(A) = \{ x \in \mathbb{Z}^m : Ax = 0 \pmod{q} \}.
\]

\[\uparrow \text{ called a "g-ary" lattice} \]

\[\text{since } q \mathbb{Z}^m \subseteq \mathbb{L}^d(A) \]

Theorem: For any \(m = \text{poly}(n) \), any \(\beta > 0 \), and sufficiently large \(g \geq \beta \cdot \text{poly}(n) \), there is a probabilistic polynomial time (PPT) reduction from solving \(\text{GapSVP}_g \) or \(\text{SIVP}_g \) in the worst case to solving \(\text{SIS}_{m,n,q,p} \) with non-negligible probability, where \(\gamma = \beta \cdot \text{poly}(n) \).

We can use SIS to directly obtain a collision-resistant hash function (CRHF).

Definition: A keyed hash family \(H : K \times X \rightarrow Y \) is collision-resistant if the following properties hold:

- Compressing: \(|Y| < |X| \)
- Collision-Resistant: For all efficient adversaries \(A \):

\[\Pr \left[k \in K ; (z, x) \leftarrow A(\mathbb{Z}^n, p) : H(k, z) = H(k, x) \text{ and } z \neq x \right] = \text{negl}(\lambda) \]
We can directly appeal to SIS to obtain a CRHF: \(H : \mathbb{Z}_q^{m \times n} \times \{0,1\}^m \rightarrow \mathbb{Z}_q^n \) where we set \(m > \lceil \ln \log q \rceil \).

In this case, domain has size \(2^n > 2^{\lceil \ln \log q \rceil} = q^n \), which is the size of the output space. Collision-resistance follows assuming SIS \(n, q, p \) for any \(p \geq \sqrt{\ln \log q} \).

The SIS hash function supports efficient local updates:

Suppose you have a public hash \(h = H(x) \) of a bit-string \(x \in \{0,1\}^n \). Later, you want to update \(x \rightarrow x' \) where \(x \) and \(x' \) only differ on a few indices (e.g., updating an entry in an address book). For instance, suppose \(x \) and \(x' \) differ only on the first bit \((e.g., x = 0 \text{ and } x' = 1) \). Then observe the following:

\[
\begin{align*}
 h(x) &= \left(\begin{array}{c}
 a_1 \\
 a_2 \\
 \vdots \\
 a_m
 \end{array} \right) \\
 h'(x') &= \left(\begin{array}{c}
 a_1' \\
 a_2' \\
 \vdots \\
 a_m'
 \end{array} \right)
\end{align*}
\]

Then, we can easily update \(h \) to \(h' \) by just adding to it the first column of \(A \) without recomputing the full hash function.

The SIS hash function is universal — this will be a very useful property (in conjunction with the leftover hash lemma).

Definition. Let \(H : K \times X \rightarrow Y \) be a keyed hash function. We say \(H \) is universal if for all \(X_0, X_1 \in X \) where \(X_0 \neq X_1 \), \(\Pr[k \in K : H(k, X_0) = H(k, X_1)] \leq \frac{1}{|Y|} \).

Lemma. The SIS hash function \(H : \mathbb{Z}_q^{m \times n} \times \{0,1\}^m \rightarrow \mathbb{Z}_q^n \) is universal.

Proof. Take any \(x_0, x_1 \in \{0,1\}^n \) with \(x_0 \neq x_1 \). If \(H(A, x_0) = H(A, x_1) \), then \(A(x_0 - x_1) = 0 \). Let \(a_1, \ldots, a_m \in \mathbb{Z}_q^n \) be columns of \(A \). Then,

\[
A(x_0 - x_1) = \sum_{i \in [m]} a_i \cdot (x_{0i} - x_{1i})
\]

Since there exists some \(j \in [n] \) where \(x_{0j} \neq x_{1j} \), the above relation holds only if \(\sum_{i \in [n]} a_i = 0 \).

\[
a_j = \frac{(x_{0j} - x_{1j}) \sum_{i \in [n]} a_i \cdot (x_{0i} - x_{1i})}{x_{1j} - x_{0j}}
\]

is independent of \(a_j \).

Thus, \(\Pr[A \in \mathbb{Z}_q^{m \times n} : A(x_0 - x_1) = 0] \)

\[
= \Pr[a_1, \ldots, a_m \in \mathbb{Z}_q^n : a_j = \frac{(x_{0j} - x_{1j}) \sum_{i \in [n]} a_i \cdot (x_{0i} - x_{1i})}{x_{1j} - x_{0j}}]
\]

\[
= \frac{1}{q^n}
\]

Note: When \(q \) is prime, this argument also extends to any domain that is subset of \(\mathbb{Z}_q^n \). Namely, \(H : \mathbb{Z}_q^{m \times n} \rightarrow \mathbb{Z}_q^n \) is universal.
Definition. Let X be a random variable taking on values in a finite set S. We define the guessing probability of X to be

$$\max_{s \in S} \Pr[X = s]$$

We define the min-entropy of X to be

$$\text{Hoo}(X) = -\log \max_{s \in S} \Pr[X = s]$$

Intuitively: if a random variable has k bits of min-entropy, then its most likely outcome occurs with probability at most 2^{-k} (i.e., there exists at least 2^k possible values for X)

Definition. Let D_0, D_1 be distributions with a common support S. Then, the statistical distance between D_0 and D_1 is defined to be

$$\Delta(D_0, D_1) = \frac{1}{2} \sum_{s \in S} |\Pr[t + D_0 : t = s] - \Pr[t + D_1 : t = s]|$$

If D_0 and D_1 are ϵ-close, then no adversary can distinguish with advantage better than ϵ

\implies When ϵ is negligible, we say the two distributions are statistically indistinguishable.

\implies Contrast with computational indistinguishability which says no efficient adversary can distinguish.

denoted $D_0 \approx D_1$

denoted $D_0 \triangleq D_1$

Theorem (Leftover Hash Lemma). Let $H: K \times X \rightarrow Y$ be an universal hash function. Suppose $X \in X$ is a random variable with t bits of min-entropy. Then, define the following two distributions:

$D_0: k \sim K, y \sim H(k, x); \text{ output } (k, y)$

$D_1: k \sim K, y \sim Y; \text{ output } (k, y)$

The statistical distance between D_0 and D_1 is at most

$$\Delta(D_0, D_1) \leq \frac{1}{2} \sqrt{181/2^t}$$

Typical setting: H is universal and $|Y| = 2^t - 2^n$. By LHL, $\Pr[(k, H(k, x)) \neq (k, y)]$ where $y \sim Y$.

This is an example of a “randomness extractor.”

We have a source (x) with min-entropy, but not necessarily uniform. We want to extract from it a uniform random value.

LHL shows that universal hash functions can “smooth” out a non-uniform distribution.

Incorporates loss of $2N$ bits of entropy.

Common application: extracting uniformly random cryptographic keys from non-uniform source.

\implies Consider $H: Z_2^{n+m} \rightarrow \{0,1\}^n$:

$H(A, x) = A \oplus x$

could be binary representation of a group element

suitable for use as a symmetric key

Not typically used in practice because we need distribution with at least $n + 2N$ bits of min-entropy ($\geq 3N$ bits if $n = \log q = 2N$)

Practical heuristic: use random oracle.

In lattices: If $A \in Z_q^{n+m}$ and $v \in \{0,1\}^m$, then $AV \in Z_q^n$ is uniform when $m > n \log q + 2N$ the security parameter and $q = \Theta(n \log q)$

By a hybrid argument, if we sample $R \in \{0,1\}^{n+m}$, then AR is statistically close to uniform over Z_q^n.

We will see this used in many constructions.
Commitments from SIS (recall: commitment is a "sealed envelope")

- Setup (14): $\text{crs} = (A, A_x)$: Samples a common reference string crs: Samples m_r with randomness r

 - $\text{Commit (crs, } m; r) \rightarrow o$: $\text{Commits to a message } m$ with randomness r

 - $\text{Setup (1): Let } n, q \text{ be lattice parameters, and } m = \Theta(n \log q)$

 Sample $A, A_x \in \mathbb{Z}_q^m$. Output $\text{crs} = (A, A_x)$

 - $\text{Commit (crs, } m; r) \rightarrow o$: $\text{Output } o = A, m + A_x r$ where $\text{crs} = (A, A_x)$

Useful building block for zero-knowledge proofs and other cryptographic protocols.

- Setup (2): Let n, q be lattice parameters, and $m = \Theta(n \log q)$

 Sample $A, A_x \in \mathbb{Z}_q^m$. Output $\text{crs} = (A, A_x)$

 - $\text{Commit (crs, } m; r) \rightarrow o$: $\text{Output } o = A, m + A_x r$ where $\text{crs} = (A, A_x)$

Here, opening can simply be the pair (m, r).

Verifier checks that $o = \text{Commit (crs, } m; r)$

Theorem (Statistically Hiding). If $m > 3n \log q$, then scheme is statistically hiding.

Proof. By the LHL, for $r \in \{0,1\}^n$, $A_x r \approx \text{Uniform } (\mathbb{Z}_q^n)$. Thus, $A_x r$ acts as a one-time pad for A, m.

Theorem (Computational Hiding). Under SIS$_n, \sigma, g, \mu_n$, the commitment scheme is computationally binding.

Proof. Suppose A can break the binding property. We use A to construct SIS adversary B:

Algorithm B

Algorithm A

If A is successful, then μ, μ_x and $[A_1 | A_x][\mu + r]$ = $\sigma = [A_1 | A_x][\mu_x + r]$ which means $\sigma = [A_1 | A_x][\mu + r] = 0$.

Since μ, μ_x this is a non-zero SIS solution with norm at most $\frac{1}{2} m$.

Compare this with Pedersen commitments from discrete log:

Setup (1^*): Take a prime-order group $G \leftarrow \text{GroupGen}(1^*)$. Let p be the order of G

Sample $g, h \leftarrow G$. Output $\text{crs} = (g, h)$

Commit (crs, $m; r$): Output $g^{m + h r}$.

We will see many similar parallels between discrete log-based systems and lattice-based systems.