
Thus far
, we have assumed that parties have a shared key.

Where does the shared key come from?

Can we do this using the tools we have developed so far ?

So far in this course :

OWFs = PROSE PREsECPA
secure encryptiona

=> authenticated encryption
-

basic building block key agreement :

of symmetric cryptography Alice Bob
->

Can we show OWEs (or even OWPs) => key agreement ? I - Requirements :

i
-> 1)k ,

= kz = k
- with high

↓
I

I probability
-2) Eaves dropper

cannot learn

k (efficiently)

#erklepuzzles : Suppose f : X -> Y is an injective one-way function

-> f is one-way if for all efficient adversaries A
,

Alice Bob Pr[f(A(f(x))) = f(x) = x
= X) = ney) -

-

X , , . . ., Xn = X

~f(xi)En = f(x))
↑

A is trying to find preimage of fla

if [n]
When f is injective,

then this is simply

find X: such that f(xi) =

y : [solve the "puzzle"]
PrEA(f(x)) = x]

= negli

EncryptAE(k, m) derive a key k from Xi I
modeled as random oracle

↓ Le.g , using hard-core bit or hash the input
try each keyto

derived from x:

decrypt ciphertext

Suppose it takes time + to solve a puzzle . Adversary needs time Olut) to solve all puzzles and identify key
.

Honest parties
work in time O(n+).

↳
Only provides Linearap between honest parties and adversary

Can we get a super-polynomial gap just using OWFs ? Very difficult ! [Impagliazzo- Rudich]

Can we get a super-linear gap just using
OWIs? Very difficult ! [Barak-Mahmoody)

↳ A positive result will require non-black-box

techniques.

Impaglizzzo-Rudich : Proving the existence of key-agreement that makes black-box use of OWPs implies 4 NP.



Implication of black-box separations : Constructing secure key agreement will require more than just one-way functions
-> Distinction between Minicrypt and Cryptomania in "Impaglizzzo's fire worlds"

We will turn to algebral number theory for new sources of hardness to build key agreement protocols.

Definition.

A
group consists of a set G together with an operation

* that satisfies the following properties
:

-

>losure : If 9. .927 D
,

then g,gE 6

-Associativity : For all 91 , 92, 93 t0 , g.
* (gz* gz) = (g ,

* gz) * 93
-

Identity : There exists an element eEG such that exg =

g
=

g
* e for all ge 6

-

Inverse : For
every element gEO ,

there exists an element g"tD such that
g

* g" = e =g *

g
In addition

,
we say a group is commutative (or abelia) if the following property also holds :

-Commutative : For all gi , gz
ED

, g,
* g2

=

gz*g)

-
called "multiplicative" notation

#otation : Typically ,
we will use

"o" to demote the
group operation (unless explicitly specified otherwise)

.
We will write

gX to

denote gigg
(the usual exponential notation)

.

We use "I to denote the miplicative identity

Examplesof
groups

: (TR
,
+ ) : real numbers under addition

(K, +) : integers under addition

([p , +) : integers modulop under addition [sometimes written as <7/pI]

Thestructure ofThereis
im

t
group

for cryptography) :

* = EXXp : there exists y t &
p

where Xy
= 1 (mod p))

& the set of elements with multiplicative inverses modulo
p



What are the elements in Ip*?

>
greatest common

divisor

&

Bezout's identity : For all positive integers X
,Y &I

,
there exists integers a

,
bEX such that ax + by = gad (x, y).

Corollary : For prime p,
+ 31

,
2, .... p

- 13.

Proof. Take
any X [1

,
2

, ..., y-13. By Bezout's identity , gad (X
,p) = 1 so there exists integers a

,
bEC where 1 = ax + bp.

Modulo
p ,

this is ax = 1 (modp) so a = x
+ (modp).

Coefficients G
,
b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm :

=nclidean algorithm : algorithm for computing gcd(a,
b) for positive integers ad :

relies on fact that gcd (a , b) = gcd (b
,

a (mod b) :

to see this : take any
a Lb

->
we can write a = big + + where g : 1 is the quotient and

O <r < b is the remainder

↳> d divides a and b) & divides b and r

↳ gcd(a ,b) = gcd(b , r) = gcd(b ,
a (modb)

gives an explicit algorithm for computing ged : repeatedly divide :

gcd (60
,
27) : 60 = 27(2) + 6 (g = 2

,
r = 6) u ged(60

,
27) = gcd (27

,
6)

2 -
2) = 6(4) + 3 (g = 4

,
r = 3) m gcd (27,6) = gcd(6, 3)

--L
6 = 3(2) + 0 [g = 2

,
r = 0] m gcd(6 ,3) = gcd (3

, 0) = 3

"rewind" to recover coefficients in Bezout's identity :

60 = 27(2) + 6
extended =

Euclidean S 27 = 6(4) + 3 -> 3 = 27-
5 46

= 60 -

27(2)727
- 160 - 27(2)4

-algorithm 6 = 3(2) + 0 = 27(9) + 60(- 4)
4 -
coefficients

#terationsneeded : Olloya) - i .e., bitlength of the input (worst case inputs : Fibonacci numbers]

#mplication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)



↓ cyclic groups are commutative ~
defined to be the identity element

101-13 .&efinition. A
group D is eic if there exists a generator o

such that D = Ego , g, ..., 9
&efinition. For an element ge , we write (g) = /gog,..,gi) to demote the set generated by g (which need not be the

entire set. The Cardinality of (g) is the order of g
(i .e.,

the size of the "subgroup" generated by g)
Example. Consider **: [1

,
2

,
3
,
4

,
5

,
63

.

In this care, ↳ means that good(g) = 1

127 = [1 ,
2

, 43 (2 is not a generator of #
* ) ord(2) = 3

(3) = 91 , 3
.
2

,
6

,
4

,
53 (3 is a generator of #* ] ord (3) : C

-Lagrange'sTheoremForgroup, andanyelementY , ord(g)(Id (the order of
g

is a divisoro

-Corollary (Fermat's Theorem) : For all x&p ,

XP" = 1 (modp)
Pot .

I** 1 = 191 ,
2, . . ., p

-13) =

p
- 1 ↓ for integer I

By Lagrange's Theorem, ord(X)/p-1 so we can write p-l
= koord(X) and so XP" = (xord(x))" = 1" = 1 (modp)

#mplication : Suppose X and we want to compute X
&
ETp

*
for some large integer y P

↳ We can compute this as

x
Y

= yy(modp
- 1)

(modp)
since XP" = / (mod p)

↳ Specifically ,
the exponents operate modulo the order of the group

↳
Equivalently :

group (g) generated by g is insomorphic to the group (*g ,+) where g = ord (g)

(g) = (4g , +)

gx +X

Notation : g denotes timeg
g

*
denotes (gX)"[inverse of group element gY)

g
*

denotes g(X) where X computed mod ord(g) - need to make sure this inverse exists!

Computingon group elements : In cryptography ,
the groups we typically work with will be large (e.g.,

2230 or 21024 (
-

Size of group element (#bits) : ~log /6) bits (256 bits/2048 bits)

-

Group operations in #p: log p bits per group
element

addition of mod
p elements : Ollogp)

multiplication of mod
p

values : naively Ollogp)
Karatsuba Ollog" p)
Schnhage-Strassen (GMP library) : Ollog ploglog plogloglogy)
best algorithm Ollog ploglog p) [2019]

↳> not yet practical (224096 Leits to be faster ... )

exponentiation :

using repeated squaring
:

g , g2 , g40 ...logp
,

can implement using Ollog
+ a

multiplications [Ollog3p) with naive multiplication]
->

time/space trade-offs with more precomputed values

division (inversion) : typically Ollogp) using Euclidean algorithm (can be improved


