
sofar inthiscourse:assumption isthatadversaryisClick into detail but will state main results :

Grover'salgorithm : Given black-box access to a function f : [N] -> 50 ,
13

,
Grover's algorithm finds an X [N] such that

f(x) = 1 by making O(N) queries to f.

"Searching an unsorted database of size N in time OCON)"

-

Massically : Searching an unstructured database of size N requires time or (N) - cannot do better than a linear

Scan .

-

Quantum: Grover's algorithm is fight for unstructured search
. Any quartum algorithm for the unstructured search

problem requires making(IN) queries (to the function/database).
=> Quantum computes provide a quadratic speedup for unstructured search

,
and more broadly,

function

inversion.

Implicationsin cryptography : Consider a one-way function over a 128-bit domain. The task of inverting a one-way function is to

find XE40 , 1318 such that f(x) =

y
for some fixed target value f

.

Exhaustive search would take

time -2128 on a classical computer , but using Grover's algorithm, can perform in time = NIRO = 26.

=> For symmetric cryptography,
need toAble key-sizes to maintain same level of security (unless there are new quantum

attacks on the underlying construction itself.

=> Use AES-256 instead of AES-128 (not a significant change !)

Similar algorithm can be applied to obtain a quantum collision-finding algorithm that runs in time T where N is the

size of the domain (compare toNo for the best classic algorithm)
↳ Instead of using SHA-256

, use SHA-384 (not a significant change)
↳ The quantum algorithm require a large amount of space , so not clear that this is a significant threat

,
but even if it were,

using hash functions with 384-bits of output suffices for security

Attaintakeaway : Symmetric cryptography mostly unaffected by quantum computers
-

generally just require a modest increase in key size

↳ e.g., symmetric encryption, MACs,
authenticated encryption



Story more complicated for public-key primitives :

- Simon's algorithm and Show's algorithm providedynomial-time algorithms for solving discrete log (in any group
with an efficiently -

computable group operation) and for factoring
-

Both algorithms rely on period finding (and more broadly ,
on solving the hidden subgroup problem)

Intuition for discrete log algorith (as a period finding problem) :

- Let (g ,
h = ga) be the discrete log instance in a group

of prime order p
-

Let f :pX *
p
- O be the function

f(x , y) =

g
+ Ey

·

By construction
,

f(x+ a
, y + 1) = gx

+4
+

y -1
= gxy -g(

+
=

g
+ hy = f(x, y)

-

Thus
,

the element (d
, -1) is the period of J

,
so using Shor's algorithm, we can efficient compute (2

,
-1) from (g.

h),

which yields the discrete log of h

Thus ,
if large scale quantum computers come online

,
we will need new cryptographic assumptions for our public-key primitives

↳ All the algebraic assumptions we have considered so for le.g .,
discrete log , factoring) are broken

#realistic is this threat ? - Lots of
progress

in building quantum computers recently by both academia and industry le
.g.,

see initiatives

by Google , IBM
,

etc.)

-

To run show's algorithm to factor a 2048-bit RSA modulus
,

estimated to need a quantum computer with

~ 2000 logical qubits(analog of a bit in classical computers)
↳ With

quantum error correction
,

this requires millions ofhysical qubits to realize

-
Today : machines with ~100physical qubits , so still very

far from being able to run Show's

algorithm
-

Optimistic estimate : At least 10-15
years away

~

Should we be concerned? Quantum computers would break existing key-exchange and signature schemes

-

> Snatures : Future adversaries would be able to forge signatures under today's public keys ,
so if quantum computers come online

,
we

can switch to and only use post-quantum schemes

#Exchange : Future adversaries can break confidentiality of today's messages (i .e.,
we lose forward secrecy)

- this is coblematic in

many scenarios (e.g.,
businesses want trade secrets to remain hidden for 50 years)

↑this course : will just focus on getting post-quantum signatures (will not discuss post-quantum key exchange
General approach for post-quantum cryptography : base hardness on assumptions believed to be hard on quantumI

computers (eng .,
lattice-based cryptography, isogery-based cryptograph).

For digital signatures,
we can show that OWFs => digital signatures

->
Signatures can be based onmmmetric primitives ,

so gives one approach to post-quartum signatures



For public-key cryptography,
we will need new assumptions to get post-quantum security

We will see a brief flavor today
- lattice assumptions

-earning with Errors (LWE) : The LWE problemis defined with respect to lattice parameters n ,
m , g,

X
,

where X is an error distribution
-

over Eg (oftentimes, this is a discrete Gaussian distribution over [g). The LWEnm
,gx assumption states

that for a random choice AXSE*g ,
=X the following two distributions are computationally

indistinguishable :

(A
,
STA + eT) = (A

,
r)

where g.

Symmetric encryption from LWE (for binary-valued messages) [Regev]
Setup (1) : Sample &Y

zoit

Encrypt (s
, pl : Sample a Z and e*X

. Output (a
,

sta + e +

p
- (5))

.

Decrypt (S
,

ct) :

Outputsit
So

&
take Xeay to be representative between
Doperation"

(XIz = 9 .
0it

x <

-orrectress : Itz-sict, = sa + e + m. (E)
- Sta

=

m
. (E) + e

if let > E
,

then decryption ecors the correctbit
ot manySecurity : By the LWEn

, my, x assumption,
(a ,

state) = (a
,
r) Im= )

where o Eg
. Thus, (message encrypted in "most significant bits" of the ciphertext)

(a ,
sa + e +

m
. (t) = (a,

r + m . (t)) ↳ will see variant in HWJ

↑
reg : one-time pad encryption of the

message M

Observe : this encryption scheme is additively homomorphic lover [2) :

(a
,

Sa
,

+ e
,

+ p, (f) => (a ,
+an

,
s(a ,

+ an) + (e,+2) + (m ,
+ m) · (t))

(az
,

saz + e2 + M2 (t))

decryption then computes
(M .

+m2) · (2) + e,
+ ez

which when rounded yields MiMu (mod 2) provided that le + e + 171*

This will give a simple approach for constructing a publickey encryption scheme from LWE


