
Let's revisit Reger's encryption scheme. It turns out that it readily generalizes to give a ly homomorphic encryption scheme.

#stractly :

given encryption Ctx of value X under some public key ,
can we derive from that an encryption of f(x) for an arbitrary function f ?

-So far
,

we have seen examples of
encryption

schemes that support one type of operation (e.g.,
addition) on ciphertexts

- ElGamal encryption (in the exponent) : homomorphic with respect to addition
/I

- Boneh-Goh-Nissim : addition + 1 multiplication
-

For FHE
, need homomorphism with respect to two operations : addition and multiplication
-
Major opeproblem in cryptography (dates back to late 1970s ! ) - first solved by Stanford Student Craig Gentry in 2009

↳ revolutionized lattice-based cryptography ↳
very surprising this is possible :

encryption needs to "scramble" messages
to be secure

,
but homomorphism requires preserving structure to enable

arbitrary computation

Generalblueprint : 1 . Build somewhat homomorphic encryption (SWHE) -

encryption scheme that supportsounded number of homomorphic operations
2. Bootstrap SWHE to THE lessentially a way to "refresh ciphertext)

Focus will be on building SWHE I has all of the ingredients for realizing FHE)

#artingpoint: Reger encryption

pk : A =[ei]e m

G Invariant : STA = eT

ski s = [- ji/1] E Fig

ct: red,i
,

< = Ar + Lim) E Fig as
long as etr is small

, decryption succeeds

W↳
sc = s (Ar + [m]) = eir + 1%m).

Essentially , with Regar encryption ,
the decryption invariant if

sic =

M
. LE1 + error

Suppose however that instead of encryptingp ,
we encrypted the entries of

M
. ST instead. And also ignore the scaling factor.

nxn

Then
,

the ciphertext would be a matrix CE Lg where

5 C =

M
. St + error E Zg

-> Sic = STESTA&
specifically : C = AR + M . In

where RS0 , 13
man

=eR +

M
. S

error

Observe : Suppose C
, was a Regen encryption of M .. ST and C was Regen encryption of M2

. St· Then :

5 C
, C = (Mis + e) (z =

M , (M2 · S + e2) + eiC

= NiMz-sT + Me + eC2



This is basically an encryption of M,M2 with new error term M ,
ez + e C2.

↑ ↑
big because C is a Regen ciphertext

small since
Chas large entries over Tg

* )
M, E 50, 13 and es is small

Due to the large noise
, cannot recover the message anymoree ...

Need a way
to avoid multiplying by something large,

- How to make something small ? Binary decomposition !

First
, we define the "gadget" matrix (there are actually many possible gadget matrices - here

, we use a common one sometimes called

the "powers-of-two" matrix) :

1 24 8 ... zologg7
= 1

6 = ( · 24 ... 20824
...245) In=

Each row of 6 consists of the powers
of twolup to 20097%. Thus

, 6-glogy) Oftentives
,

we will just write

6 >xm where m > nlogg) ·
Note that we can always pad 6 with all-zero columns to obtain the desired dimension.

Observation :

given any ye ,
it is easy to find an Xe 30 , 13"where GX =

y.

Let Yi, logg7-1
, ..., yoo be the binary decomposition of

y: (the ith component of
y).

Then,

Y1,
0

Y1, 2

Y

Y : Tlogg7-1 regis(Tlogg7-1
So· = I : I& ynij

j= 0

Yn,Toggl-1

& Observe that this is a 0/1 vector (binary valued rector)

We will denote this "bit-decomposition" operation by the function 6 : Eg 20 , 13m
&

important : Ot is not a matrix (even though G is) !

Then
,

for ally ,
6 . 6 " (y) =

y
and 116+ (yi/l =

1
.

↑ No-norm (max absolute value of component of the rector)



ReturningH encrypting Most , we will encrypt Most G instead.

Invariant : ( is an encryption ofpe if

sc =

M
. St6E Ea

We can construct Cas

C = AR + MG Eg
*

M

Then SC = STAR + M
. ST6 = eR + M

. STC

Suppose we have two ciphertexts C and C2 where

sc,
=

M.. ST6 + eT

sC = M2
. SG + es

Then C + C2 is an encryption of M +pez
:

s (C + (2) = (M ,
+ M2) . s 6 + e + e Ferros add]

To multiply ,
we compute C , G"(C2) :

546"((2) = (p· 56 + e) 6 "(c)
=

M .. st22 + e, 6 " (b)
=

M , M2
. st6 +

entileT6"() is also small

To decrypt a ciphertext C
, can compute "C. G")(Eun) where Un= ) since srn : 1

.

As long as total error is less thanF
, decryption recovers message.

This gives the Gentry-Sahai-Waters encryption scheme.

(n-1) Xm
-

Setup (14) : Sample # Tg -> pk = A = [s + eT]
(STA = eT)

5 <g+ sk = s = [-5/1]
e = ym

-

Encrypt (A , M) : R = 50, 13axm

CAR + m
. G E Tim

-

Decrypt(s , C) :

compute STCG")E · In) and round as usual

Security is some argument as for Regen encryption
!

Namely, by LWE, thepublickeyisindistinguishable froma uniformlyandomMatrix
An a

=U+ MG perfectly hides M .



Let's look at noise growth. Suppose C = AR
,

+

M .
G

C2 : ARz + M2G
Then STC = STAR ,

+
M,

ST6 = MitsT6 + eTR ,

-
noise in the ciphertext : must be small relative to o in order to decrypt

Noise increases with each operation
:

C + C2 = A(R+R2) + (,
+M2)6>

new noise is R,tR2

C. 6" ((2) = AR
,
G"(C2) + m , C2

= A(R ,G"(() + M , R2) +
M , McG ut

new noise is R
, G"(C) + M, Rz

norm is bounded by 11Rilla'm + 1/Rallas when M,
E 30 ,

13 .

After computing& repeated squarings : noise is mold)· Will eventually overwhelm g .
Thus

,
there is a bound on number of homomorphic

operations the scheme supports.

Fully homomorphic encryption
:

support arbitrary number of computations .

FromSWHE to THE
.

The above construction requires imposing an a priori bound on the multiplicative depth of the computation.

To obtain fully homomorphic encryption ,
we apply Gentry's brilliant insight of bootstrapping.

High-levelidea . Suppose we have SWHE with following properties
:

1 . We can evaluate functions with multiplicative depth d
2. The decryption function can be implemented by a circuit with multiplicative depth d'ad

Then
, we can build an FHE scheme as follows :

- Public key ofFHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the

SWHE public key
- We now describe a ciphertext - refreshing procedure:

- For each SWHE ciphertext, we can associate a "noise" level that keeps track of how
many more homomorphic operations

can be performed on the ciphertext (while maintaining correctness).
↳ for instance

,
we can evaluate depth-d circuits on fresh ciphertexts ; after evaluating a single multiplication,

we

can only evaluate circuits of depth-1d-1) and so on ...

- The refresh procedure takes any valid ciphertext and produces one that supports depth-(d-d') homomorphism ;
since d > d'

,
this enablesunbounded (i .e ., arbitrary) computations on ciphertexts

Idea: Suppose we have a ciphertextIt where Decrypt (sk
,
ct) = X

.

To refresh the ciphertext ,
we define the Boolean circuit(c+: 50

,
137138 -+ 50 , 13 where (c+ (sk) : = Decrypt (sk ,

c+)

and homomorphically evaluate Oct on the encryption of sk

↳ Encrypt(pk ,
sk) - Encrypt(pk , (+ (sk))

↑ ↑ ↓I refreshed ciphertext still
fresh ciphertext that homomorphic evaluation

supports d-d'levels of multiplication
supports & levels consumesdlevels

Security now requires that the public key includes a copy of the decryption key
↳ Requires making a "circular security" assumption

&n question
: THE without circular security from LWE (possible from iO)

Can be shown that GSW is bootstrappable. [Decryption operation is linear
,

followed by rounding
-

can be implemented with low-depth circuit. I


