Let's reasit Reger's en	cryption scheme.	It turns out the	ut it readily gev	erolizes to give	a fully homomorphic	encappion scheme.
Abstractly: given encrypts	n ctr of value X	under some public	. ker can ise de	rise from that an	encryption of f(x)	for an arbitrary function f?
- So far, we have	enerciation (in the e	xponent): homomorp	his with respect	to addition	(ed.) (ed.)	CITY CIPION TEXTS
- Babaha Ga	h- Nissim i addition	+ 1 multiple ation				
		+ 1 multiplication		1\4\4		
For FHE, reed h	lomomorphism with	respect to two of	oracions. Administra	a had be Gt []	at he he Case Contact	2009
interfor open bish	new w chlopodorbuh (dates back to late 1	1/08:) 71134	solved by stantord	student Craig Gentry	in 2007
→ revolu	tionized lattice-based	y chlodraby;	→ Very su	apprising this is pos	sible: Encryption reed	s to "scramble" messages ny structure to enable arbitrory computation
			to be	secure, but homomorp	hism requires preservi	y structure to enable
						artitions Conference
General blueprint: 1. 8	Build somewhat home	omorphic encryption (s	SWHE) — encry	ption scheme that sup	ports <u>bounded</u> number of	f homomorphic operations
				\		
Focus will be on building	SWHE (has all of	the ingredients for	realizing FHE)	1		
Starting point Reger	encryption					
$pk: A = \begin{bmatrix} \overline{A} \\ \overline{S}^{\dagger} \overline{A} + \end{bmatrix}$	7 € 7 ^{n×m}	1				
L [s. 4+	e' j "g	:Invariant	sTA = eT			
$sk:$ $S^T = \begin{bmatrix} -\bar{S}^T \end{bmatrix}$	11767					
ct: r & fo,13m,	م ا ر)°-' 1 6 ¬¬^		as long as etr is a	small, decryption succeed	s
ct: r ← 10,15,	< + [19	61·M] ~ Zg		U		
			1)	9/ 1		
	-> s ⁷ c = s ⁷	(Ar + [1/27. m]) = e ^T r + L	½·/^1.		
Essentially, with Regev	encryption, the	decryption invariant	:t			
	stc = m. [2]					
Suppose however the	it instead of e	norvatina U Lae	encrypted the	entries of u.st	instead. And also	ignore the scaling factor
Then, the ciphentext	m a ed house	whit (& D _{uxu}	م مار	7		30.5
men, me cipienten	CT (= 41. e ^T	+ 222 2 6 7	UNDE		✓ sTA= eT	
		+ error & Zg			sTA=eT	
	specifically	,: C = AR+ /	ν· ፲ _^	\rightarrow s ^T C = s ^T	AR + μ ·s'	
	1					
		where R	& fo,13 mxn	= e'	R + M·st	
				en	or	
Observe: Suppose C,	was a Reger en	ncryption of M.ST	and C2 o	oas Regev encrypt	ion of $\mu_2 \cdot S^T$.	Then:
		' '				
	چ کر ک	$= (\mu_i \cdot s^T + e^T_i)$	C2 = M, (M2	$\cdot s^{T} + e_2^{T} + e_1^{T} $	2	
	- 1 -		1 1 1 2			
			= 11,112,-5	T + 4 P + 0 T (-		
			1 11.5	+ Me2 + e1 C2		

This is basically an encryption of $\mu_1\mu_2$ with new error term $\mu_1e_2^T+e_1^TC_2$. Small since big because C2 is a Reger ciphertext (has large entries over Zg) $\mu_1 \in \{0,1\}$ and e_2^T is small Due to the large noise, cannot recover the message anymone... Need a way to avoid multiplying by something large. - How to make something small? Binary decomposition? First, we define the "gadget" matrix (there are actually many possible gadget matrices - here, we use a common one sometimes called the "powers- of-two" motrix): $G = \begin{pmatrix} 1 & 2 & 4 & 8 & \cdots & 2^{\lceil \log q \rceil - 1} \\ & & & & & & & \\ \end{pmatrix} & 2 & 4 & \cdots & 2^{\lceil \log q \rceil - 1} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 2 & 4 & \cdots & 2^{\lceil \log q \rceil - 1} \\ & & & & \\ \end{pmatrix} \otimes \mathbf{I}_{n}}_{n} = \mathbf{J}^{\lceil \log q \rceil - 1}$ Each row of G consists of the powers of two (up to 2). Thus, $G \in \mathbb{Z}_g^{n \times n \lceil \log b \rceil}$. Oftentimes, we will just write $G \in \mathbb{Z}_g^{n \times n}$ where $m > n \lceil \log b \rceil$. Note that we can always pad G with all-zero columns to obtain the desired dimension. Observation: given any $y \in \mathbb{Z}_g^n$, it is easy to find an $x \in \{0,1\}^m$ where Gx = y. Let yi, Togo ?- 1, ..., yi, o be the binary decomposition of y: (the it component of y). Then, 1 Observe that this is a 0/2 vector (binary valued vector) We will denote this "bit-decomposition" operation by the function $G^{-1}: \mathbb{Z}_q^n \to \{0,1\}^m$ I important: G-1 is not a matrix (even though G is)! Then, for all y & Zo, G.G'(y) = y and ||G'(y)|| = 1. C low-norm (more absolute value of component of the vector)

```
Approach: instead of encrypting \mu \cdot s^T, we will encrypt \mu \cdot s^TG instead.
Invariant: C is an encryption of \mu if s^T C = \mu \cdot s^T G \in \mathbb{Z}_q^m
               We can construct C as
                              C = AR + MG & Zgxm.
               Then sTC = sTAR + M. STG = eTR + M. STG
Suppose we have two ciphartexts C, and C2 where
                                   stC, = 1, stG + et
                                   s C2 2 μ2 s G+ e2
 Then C1 + C2 is an encryption of \mu1+\mu2?
                                  s^{T}(C_{1}+C_{2})'=(\mu_{1}+\mu_{2})\cdot s^{T}C+e_{1}^{T}+e_{2}^{T}
                                                                                            [erros add]
 To multiply, we compute C, G-1 (C2):
                                st C, G-1 (C2) = (μ, · st G +et) G-1 (C2)
                                                 = \mu_{1} \cdot s^{T}C_{2} + e_{1}^{T}G^{-1}(c_{2})
= \mu_{1}\mu_{2} \cdot s^{T}G + \mu_{1}e_{2}^{T} + e_{1}^{T}G^{-1}(c_{2})
                                                                         small since \mu_1e_2^T + e_1^T G^T(C_2) is also small
To decrypt a ciphertext C, can compute 5 C.G ([$] un) where un = [ ] since stun = 1.
    As long as total error is less than it, decription recovers message
This gives the Gentry-Schair Worters encryption scheme.

- Setup (12): Sample \bar{A} \stackrel{\mathcal{Z}}{\leftarrow} \mathbb{Z}_{g}^{(n-1)\times n} \longrightarrow pk = A = \begin{bmatrix} \bar{A} \\ \bar{s}^{T}\bar{A} + e^{T} \end{bmatrix}
                                                                                          (s^TA = e^T)
                                                  3k = S = [-5 | 1]
    - Encrypt (A, \mu): R \stackrel{\alpha}{\leftarrow} {0,13 m×m
                          C ← AR + M. G € Zgxm
    Decrypt (s, C): compute s^TCG^{-1}(\frac{a}{2}\cdot I_n) and round as usual
Security is some argument as for Reger encryption'.
Namely, by LWE, the public key is indistinguishable from a uniformly roundown mother A & Zgram
         by LHL, (A, AR) is indistinguishable from (A, U) where Uer Zgem
   => U+ µ G perfectly hides µ.
```

Returning to FHE:

```
Let's look at noise growth. Suppose
                                            C, = AR, + µ, G
                                            C2 = AR2+ M2G
Then sTC, = sTAR,+ \mu, sTG = \mu,+sTG + eTR,
                                           noise in the ciphertext: must be small relative to g in order to decrypt
Noise increases with each operation:
      C_1 + C_2 = A(R_1 + R_2) + (\mu_1 + \mu_2) G
                                          >> new noise is R1+R2
      C, G- (C2) = AR, G- (C2) + 1, C2
                  = A(R,G-1(C2) + M,R2) + M,M2G
                                                      ~> new noise is R, G'(C2) + μ, R2
                                                           norm is bounded by IRillog m + IRellog when M, 6 80,13.
After computing a repeated squarings: noise is mold. Will eventually overwhelm g. Thus, there is a bound on number of homomorphic
operations the scheme supports.
Fully homomorphic encryption: support arbitrary number of computations.
From SWHE to FHE. The above construction requires imposing an a priori bound on the multiplicative depth of the computation.
                          To obtain fully homomorphic encryption, we apply Gentry's brilliant insight of bootstrapping.
High-level idea. Suppose we have SWHE with following properties:
                         1. We an evaluate functions with multidicative depth of
                         2. The decryption function can be implemented by a circuit with multiplicative depth d' < d
Then, we can build on FHE scheme as follows:
       - Public key of FHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the
           SWHE public key
       We now describe a ciphertext-refreshing procedure:
               - For each SWHE ciphertext, we can associate a "noise" level that keeps track of how many more homomorphic operations
                 can be performed on the ciphertext (while maintaining correctness).
                   tor instance, we can evaluate depth-d circuits on fresh ciphertexts; after evaluating a single multiplication, we
                      can only evaluate circuits of depth-(d-1) and so on ...
               The refresh procedure takes any valid ciphertext and produces one that supports depth-(d-d') homomorphism;
                   Since of > d', this enables unbounded (i.e., arbitrary) computations on ciphertoxts
 Idea: Suppose we have a ciphertext ct where Decrypt (sk, ct) = x.
        To refresh the ciphertext, use define the Boolean circuit Cct: {0,13 nog 8 -> {0,13
                                                                                              where Cc+ (sk) := Decrypt (sk, c+)
            and homomorphically evaluate Cc+ on the encryption of sk
               Fresh ciphertext that homomorphic evaluation

supports d levels consumes d' levels
                                                                  refreshed ciphertext still supports d-d' levels of multiplication
Security now requires that the public key includes a copy of the decryption key
  1> Requires making a "circular security" assumption
       Open question: FHE without circular security from LWE (possible from 10)
Can be shown that GSW is bootstrappable. [Decryption operation is linear, followed by rounding - can be implemented with low-depth circuit]
```