
Next
, we will consider digital signatures. To do so

, we first introduce a "dual" of the LWE problem :

&

Short Integer Solutions (SIS) : The SIS problem is defined with respect to lattice parameters m
, m , g and a norm bound p. .

The SISn
,mig, B

problem says that for AXxm, no efficient adversary can find a non-zero rector XEFM where
M

Ax = 0EXg and 1X11 ** [ In this course
,

we will always use the ly-norm]

In lattice-based cryptography, the lattice dimension n will be the primary security parameter.

#tes: ·The norm bound p
should satisfy pag . Otherwise

,
a trivial solution is to set X = (g,

0
,
0, ...,
0

-

We need to choose m
, p to be large enough so that a solution does exist.

-> When m =&Inlogg) and prm a solution always exists. In particular,
when m = Tnlogg) ,

there always exists

* e 9-1 ,
0

,
13 such that Ax = 0 :

-

There are 2m > Inlogg = g Vectors ye 50 , 13m J By a counting argument ,
there exist

SinceAy A,therearmostpossiboutputsAyyyzo
such that A As

R
andIly ,-yall Im

Observe that LWE implies SIS. Namely ,
an algorithm for SIS can be used to break LWE :

1. On input an LWE challenge (A
, bT)

, use the SIS solver to obtain a low-norm XTig where AX = 0.

2. Output 1 if Ibix1 is small and 0 otherwise
.

If b = siA+eT
,

then bix = STAx + eTX = eX
,

which is small

If b zg ,
then bix is uniform over Eq (since X & 0)

,
so lb'x1 will not be small.

We can directly appeal to SIS to obtain a CRHF : H : ** x50, 13m -> E where we set m < In loggi ·

In this case ,
domain has size 2 > phlogs = gh ,

which is the size of the output space. Collision resistance follows assuming SISn,m, g, i

for
any p ? 1

The SIS hash function supports efficient local updates :

Suppose you
have a public hash h = H(X) of a bit-string Xt50, 13? Later

, you want to update X & X ' where X and x' only
differ on a few indices Leg, updating an entry in an address book). For instance

, suppose x and X'differ only on the first bit

le.g.,
X

,
= 0 and X = 1)

.

Then observe the following
h = H(k ,

x) = A - X

=( ... am)() =Xia since

h' = H(k,
x)) = A -x

=Ca = XaXai =a = ath sinX = X for alisI

Thus
,

we can easily update h to h' by just adding to it the first column of A without (relcomputing the full hash function.



We will now show how to construct digital signatures from SIS in the random oracle model.

We first introduce the inhomogeneous SIS (ISIS) problem.

Inhomogeneous SIS : The inhomogeneous SIS problem is defined with respect to lattice parameters m
, m , g and a norm bound B. The ISISn

,mig, B

problem says that for AXxm n
& Ey , no efficient adversary can find a non-zero rector XEFM where

&

M

Ax = utXg and 1X11 **

For
many choices of

parameters ,
hardness of SIS => hardness of inhomogeneous SIS

The SIS and ISIS problems can be leveraged to construct lattice trapdoors. We define the syntax here :

= TrapGen (n,m , g, B) -> (A
,

+dA) : On input the lattice parameters R .
m

, g ,
the trapdoor-generation algorithm outputs a matrix

Atgaxm and a trapdoor +A
-> fa(x) ->

y : On input XXgm , computes y
: AXE

· fr(tdA
, y) -X : On input the trapdoortda and an element y EY ,

the inversion algorithm outputs a value

11 XII = B
Moreover

,
for a suitable choice of n, m

, g,,
these algorithms satisfy the following properties :

->

For all ye Eg ,
filtdA

, y) outputs XIg such that 11x1)[B and Ax =

y
nxm

->

The matrix A output by Trapben is statistically close to uniform over
g

Lattice trapdoors have received significant amount of study and we will not have time to study it extensively. Here
, we will

describe the high-level idea behind a very useful and versatile trapdoor known as a "gadget" trapdoor

Observation : SIS is easy with respect to 6 :

6 . () =O > norm of this rector is

Inhomogenous SIS is also easy with respect to 6 : take
any target rector

y Elig and output 6"(y) E 50 , 13?.

We now have a matrix with a "public" trapdoor. To construct aecet trapdoor function (useful for cryptographic applications) ,
we will

"hide" the gadget matrix in the matrix A
,

and the trapdoor will be a "short" matrix (i
.e., matrix with small entries) that recovers the

gadget.



nxk
More precisely,

a gadget trapdoor for a matrix At Kg is a short matrix RE Lym such that

A . R = 6 E &Xm
We say that R is "short" if all values are small

. (We will write I/RII to refer to the largest value in R] .

Suppose we know RE &*** such that AR = G.
We can then define the inversion algorithm as follows :

- fr(tda = R
, y 4q) : Output X = R : G

+

(y) . Important note : When using trapdoor functions in a setting where the
-

We check two properties. adversary can see trapdoor evaluations, we actually need to

randomize the computation of fa
.

-

1. Ax = ARG"(y) = 6 . 6"(y) =

y so x is indeed a valid pre-image Otherwise
, we leak the trapdoor

2.1IXII = 1R · G+ (y)11 -
>

m . IRIIIIGy(// = m . IRII
(We will revisit this later)

Thus,
if I/RII is small

,
then 11X11 is also small (think of as a large polynomial in n).

(Recall we are usingles norm now

Remainingquestion
: How do we generate A together with a trapdoor land so that A is statistically close to uniform)?

Many techniques to do so; we will

look atoneapproach using the L

Sample
M

nX2m
Set A = TA/AR + 6) E Fig
Output A <q2, +da = R= YE Limxm

First
,

we have by construction that AR = -ER+ AR + C = G
,

and moreover IRI =

1

. It suffices to argue that A is

statistically close to uniform (without the trapdoor R). This boils down to showing that AR + G is statistically close to uniform given

E .
We appeal to the LHL:

1. From the
previous lecture

,
the function fA(x) = Ax is universal

2. Thus
, by the LHL

, if m ? Inlogg ,
then Ar is statistically close to uniform in EY when r 50 ,13

3. Claim now follows by a hybrid argument (applied to each column of R)

Thus
, given A

,
the matrix ER is still statistically close to uniform

. Corresponding ,
A is statistically close to uniform.



Digital signatures from lattice trapdoors : We can use lattice trapdoors to obtain a digital signature scheme in the random oracle model

(this is essentially an analog of RSA signatures) :

- KeyGen : (A, tda) =Trapfen (n
, m . g , B) [lattice parameters n

, m
, g , p are based on security parameter x

Output vK = A and sk = +dA
- Sign (sk , m) : Output o -FF (tdA

,
H(m))

·

Here
,

H : 40, 13
*
-> E is modeled as a random oracle.

-

Verify (vk
,

m
,
o) : Check that lo11[p and that fa(o) = H(m).

Consider instantiation with gadget trapdoors : Rationale for security
:

- verification key : At &xm
- To forge a signature on m

, adversary has to find

signing key : RE 50, 13mxm such that AR = C ~ such that Av = H(m)
-

signature on m
:

y
= H(m) EZg ·

Matrix A is statistically close to uniform and v is

output o = v =

1) 57
uniform

,
so this corresponds to solving the ISIS problem

- Verification : check that

A - v = ARG (y) = 6 . 6 (y) =

y &
Problem :

Signing queries leak information about R.

and v is short Adversary can compute H(m) =

y and G"(y),

· so signing becomes a lear function !

Early approach of Goldreich-Goldwasser - Halevi In the context of the security proof,
simulator needs

was insecure
-

explicit key-recovery attack by Nguyen , Ryer a way
to answer signing queries (without a

trapdoor for A).

&Requirement Randomize the signing algorithm to hide trapdoor R

Approach : Instead of outputting a fixed (deterministic) preimage ,
use the trapdoor to sample a preimage where Av = H(m).

-> Can show that sample does not leak the trapdoor used Esee Gentry - Peikert-Vaikuntanathan)

This is the basis of the Falcon post-quantum signature scheme standardized by NIST.


