```
Fine-grained access control to encrypted data
Standard public-key encryption: knowledge of public key needed to encrypt
                           public-key is an algebraic object - complex to remember and send
Can the public key be a username or an email address?
  La Notion of identity-based encryption first proposed by Shamir in 1984
  > First solved by Boneh and Frontzlin in 2001 using bitness maps and concurrently by Cooks from quadrotic residuosity
  > Now also known from CDH or factoring [Döttling-Gang 2017]
We will see a lattice-based construction by Gentry-Peikert-Vaikuuntuuudhan
                                    Model is different from PKE
IBE syntax:
  - Setup -> mpk, msk
                                         Key Distributor (trusted entity)
  - Key Gen (msk, id) -> skid
  - Encrypt (mpk, id, m) → ct
                                      skapire/ skedo skchorlic
  -Decrypt (sk, ct) -> m
                                       Alice Bob Charlie - Normally, users would pick their own key
Correctness: for all identities id and all messages m,
             P e 80'13
Security: consider the semantic security game;
                                          challenger (mpt, mak) 
Setup
                adversory
                           skid Skid - KeyGen (msk, id)
                           We say the IBE scheme is seame of for all efficient A:
                | Pr[b'=1 | b=0 ] - Pr[b'=1 | b=1] / < negl.
Main challenge: IBE "compresses" many user keys (one per identity) into a set of short public parameters
```

```
Starting point: "dual Regar encryption" where public key is random and ciphertoct contains on CNE sample
    Setup: A = Znkm
                                                   pk= (A,b)
              r € {0,13m b = Ar
                                                   sk= r
   Encrypt (pk, M): S = Zg
                                                   ct = (sTA+eT, sTb+e'+ M. (2)
                       e ← xm
              /r e' ← x
   Decrypt (sk (c., Ci)): compute C2-C,T and round
Correctness: C2 - CTT = ST (Ar) + e + M. [2] - (STA + eT) r
                         = \mu \cdot \lfloor \frac{4}{2} \rfloor + (e' - e^{T}r)
correct as long as |e' - e^{T}r| < \frac{4}{4}
              if x is B-bounded, then le'-eTr | < B+mB, so we can set g>4B (m+1).
Security: By LHL, (A, b) is statistically close to uniform over Zg, Zz,

By LWE, st[A]b]+[eTle'] is computationally indistinguishable from uniform.
   => Ciphertexts are pseudoromdom under LWE.
We often treat ras a "recoding vector." It translates an LWE instance with respect to A to one with respect to b.
Idea for IBE: mostrix A is the public key
                    each user is associated with a dual Reger public key plad = (A, bid) where bid = H(id)
                    Observe that H(id) To publicly competable so public key for every user is publicly-derivable!
 To decrypt, were needs to know the dual Regar decryption key: a recoding vector Tid where ATid = bid = H(id)
   This is precisely a GPV signosture on id! We can sample it by setting mak = trapdoor for A (i.e., GPV signing key).
Setup: Sample \overline{A} \stackrel{a}{\leftarrow} \mathbb{Z}_{g}^{n_{KM}}
\overline{R} \stackrel{a}{\leftarrow} \{0,1\}^{m_{KM}}
        Let A = [A | AR+G]
                                    (i.e., R is a tropdoor for A)
           R= [-R]
        mpk = A
                    msk=R
Kay Gen (mak, id): skid ← A-1 (H(id)) [As in GPV, this is a roundomized procedure (to avoid leaking R)]
Encrypt (mpk, id, M): 5 = Zo bid = H(id)
                    e ← x<sup>m</sup>
Decrypt (skid, (ci, ci)): \mu \leftarrow round(c_2 - c_1^r r_{id}).
                                                               [Dual Regar encryption with respect to pkid = (A, bid)]
Corrections: Same analysis as for dual Reger encryption (except 11 bid 11 skightly larger).
Security: Follows under LWE in random crack model (model H as ideal hash function)
```

L> Rely on random oracle to answer key-generation queres

(Sbac	we.	the	ત ક	Secn	et la	دري	in	albo	ve.	sch	ewe_	Vie	. s`	imply	G1	Ργ	signot	wes c	n H	he	brebî	ity									
																			ewe					ìs.	Jen	åty þ	e.	for	(m			
																			breke							,	'					
				7					۲.,- ی)	_					, -	•															
7	ر د	shoc!	ک ہ ہا	тъ	ኣፑ :	Co	nton l	لدرر				ىد.		ea	. L			⇒	e; aala	د. د.	2.	۰ادع										
•	, w	NO.	L 01		JE •	Ce	,	OSCIT	317	Jew.	Total C	7 71	و	Secre	JT FL	eys			single q	011	G(/	torus.										
,	,			_						,			, ,	7																		
C			hous						•												2											
		→	Same	. ch	orpession	ge:	how	, 40	Cov	wpres	s po	iblic	reys	inte	s sh	ort	set	o l	Paraw	excs.												
1			colled		-				1																							
		A	dice		> p	ka -	\																									
		Ţ	ob ob		* P	kp ·	\geq	=}	موه	regod	κd	into	mp	k																		
		C	harlic	 ⇒	, bl	kc ((
1	Evec	ypt	(mpk,	, id,	M)	-	· ૮+		LSa	me s	synta	* a2	تماح د	νI	BE]																	
		•	•		•																											
-	Б.	لددم	y pl , (lve.	seci	ret k	ey.	(usea	genu	rocted	۸۵ ر	t sha	حا ر	sidh (any on	()																
							,		J		•				·	•																
Ţ	-inex	\a-	tice -	pased	λ w	water	tim.	Ьч	Dāt	itline -	-Kolo	ne.los	-Lai	- L	in-M	ماميد	Ha-	Rahim	in s	.023												
ľ																			ic key		sîna.	0.00	ST	s h	dea	ť"	ction					
																			ociacted							4.5						
		U	ec yr	ווטיז	C23	CALILO	oiy -	100	مس	, ,	٠.	-ih.	W 162	•	10	114	14	CON	00 W.C.	_ W1	יוי ע	عود	عانل	UΥ	<u> </u>							
							′										•					•										
							,										•					•										
												•					•															
							•					•					•															
							,										•															
																	•															
																	•															