
&

Recall ; the one-time pad is not reusable (i.e, the two-time pad is totally broken(
NEVER REUSE THE KEY TO A STREAM CIPHERI

But wait... we "proved" that a stream cipher was secure
,

and yet ,
there is an attack ?

Recall security game
: bE50 , 13 #serve : adversary only sees re ciphertext

↓
adversary hallenger key is only used an

Mo
, M.
-> k*K

↳ Cy- Encrypt (k
,mp) => Security in this model saysthing

↓ about multiple messages/ciphertexts
b'E50 ,13

Poblem : If we want security with multiple ciphertexts, we need a different or stronger definition (CPA security)

adversarydoesnotsReusablesecurity
:

security against chosen-plaintext attacks /COA-security)) ~ choose the messages to be

↳> semantic security should hold even if adversary sees multiple encrypted messagesofchoosing encrypted :

↳
captures many settings where adversary might know the message that is encrypted (e .g., predictable headers or

site content in web traffic) or be able to influence it(e.

g,
client replies to an email sent by adversary)

->
goal is to capture as broad of a range of attacks as possible

&efinition : An encryption scheme TISE = (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) it for all efficient

adversaries A :

CPAAdvIA, TIse] = /Pr[Wo = 13 -Pr[Wi = 1]) = negl.
where Wa (bE 90,13) is the output of the following experiment :

be so ,13

adversary allenger

#some idea as in original semantic security game, but allow adversa,a
to make encryption queries (also called a "left-or-right" oracle(

be 50, 13
Adversary's goal is to

guess which of mo or m
, was encrypted, given access

output of experiment we [to an encryptionoracle (i .e
., adversary gets to see encryptions of messages I

of its choice.

&aim
.

A stream cipher is not CPA-secure .

Proof. Consider the following adversary :

be 50, 13

adversary engao,choose Mo ,
m

,
Ec Pr[b = 1/b = 0) = 0 since c = mot((s) = <

where mo F m , Pr[b = 1/b = 1] = 1 since c = m
,

G(s) + C

output

one m
=> CPAAdvIA

,
TIse] = 1

output 1 if CFC

Observe : Above attack works for
any

deterministic encryption scheme,

=> CPA-secure encryption must be randomized!
=> To be reusable

,
cannot be deterministic

, Encrypting the same message twice should not reveal that identical

messages were encrypted.

To build a CPA-secure encryption scheme
, we will use a "block cipher"

~

Block cipher is an invertible keyed function that takes a block of n input bits and produces a block ofa output bits

-

Examples include 3DES (key size 168 bits
, block size 64 bits)

AES (key size 128 bits
,

block size 128 bits) block ciphers

Will define block ciphers abstractly first : pseudorandom functions (PRFs) and TTseudorandompermutations(PRPs)
↳

Generalidea : PRFs behave like random functions

PRPs behave like random permutations

Refinition. A function F : KXX+ Y with key-space K
, domain X

,
and range Y is a pseudorandom function (PRF) if for all

efficient adversaries A
,
/Wo-Wil = negl , where Wa is the probability the adversary outputs 1 in the following

experiment : bE 50, 13

adversary hallenger!

if b = 1#defunctions from x+

(function f Funs[X, Y] can be represented by a truth table of

size (y/IX)) - this is usually exponentially large !

b' = 90, 13

PRFAdvIA
,
F) = / Wo-W , l = /Pr[A outputs 1/b = 0) - Pr[A outputs 11b

= 1]/

#Intuitively : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded
adversary)

3DES : 90
,

13168 x 50, 1364 + 90 , 1364 114) = 2168 /Funs[X
,
y)) = (264)(264)

111 = 210 /Funs[X, y)) = (210)(218) /space of random functions is

AES : 40 , 1318 x 50 ,1328 -> 90, 1328 exponentially-larger than key-space!

&efinition : A function F : KXX + X is a pseudorandom permutation (PRP) if
- for all keys K

,
F(K

,
:) is a permutation and moreover

,
there exists an efficient algorithm to compute

F- (k
,

%) :

VkEK : VxeX : F" (k
,
F(k

,x) = X

- for IEK
,

the input-output behavior of F(K
,

:) is computationally indistinguishable from f() whe

- & Perm[X] and Perm[X] is the set of all permutations on X Lanalogous to PRE security)

#te: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a block cipher can be used to construct a PRG :

: 50,13
*

x50,13" 50,13" be a block cipher

Define 6 : 50,13
*
-> 50, 1394 as

G (k) = F(k
, 1) (lF(k

,
2)/l ... (lF(k

,
1) - this stream cipher allows dom access !

↑ ↑

string concatenation write input as an n-bit string

we said PRP above
Ijust require thatm< loge)

Iwill revisit thisI
#heorem

. If F is a secure PRF
,

then 6 is a secure PRO
.

Proof . As usual
, we show the contrapositive: if G is not a secure PRG,

then F is not a secure PRF.

Suppose we have efficient adversary A for 6
.

We use A to build adversary for F :

bE 50, 13

Algorithm for breaking F I

&El
-

1. If l = poly ,
then B is efficient

2. If b = 0 : Bsends G(k) to A

where k is a uniformly
f(1) random keym

to A

T 2

string If is random function)

- If b = 1 : B sends uniformly random

be 50, 13 3. PRFAdv[B
,
F] =r[b' = 1/b =0] -

Pr[b'= 11 b = 1)/
= (PrEA outputs 11 b= 0] -PrTA outputs1(b=1)
= PRGAdv[A

, G]

which is non-negligible by assumption.

But
...

we used a block cipher (PRP) in our construction above.
Does the proof still

go through?

Not quit...
for a random function

,
f(1) = f(z) with probability in & but I'" might be

very very small...

for a random permutation,
f(l) = +(2) with probabilityO adversary won't notice unless it sees a

"Collision" [i .e
.,

two values X
,y

where

f(x) = f(y))

&FSwitching Lemma.
Let F : KXX -> X be a secure PRP

.
Then

,
for

any Q-query adversary A :

IPRPAdvTA
,
F) - PRFAdCA,F]/ =c

&roof Idea
. Adversary essentially cannot tell the difference unless it sees a collision. If there is no collision

,
then it is just

seeing random values. How
many queries before there is a collision ? Birthday paradox : Q - IT

Fake-away : If IXI is large leg, exponential) ,
then we can use a PRP as a PRF

·

-DAS64 SLitadversarymakesqueriesthecanusitas
a

PRa

#hufar : PRP/PRF in "counter mode" gives us a stream cipher (one-time encryption scheme)

↓ typically ,
the IV is divided into a

#Howdo we reuse it? Choose a random starting point (called an initialization rector) nonce /value that does not repeat) and

"randomized counter mode
" a counter : IV = noncell counter

randommmm2/my 1 my1 divide message into blocks (based on block size of PRE)

#
Ciphertext

#serve : ciphertext is longer than the

message (required for CPA security)

Theorem: Let F : /XX - Y be a secure PRF and let TciR denote the randomized counter mode encryption scheme

from above for 1-block
messages (M

= X*)
.

Then
,

for all efficient CPA adversaries A
,

there exists an

efficient PRE adversary B such that

CPAAdvIA
, TIciR]>O + 2 . PREAdvIB

,
F]

↑
Q : number of encryption queries
&: number of blocks in message

#tuition : 1
.

If there are no collisions (i.e
., PRF never evaluated on the same block)

,
then it is as if everything is

encrypted under a fresh one-time pad.

2. Collision event : (X
,

X +, . .

.,
X + 1- 1) overlaps with (X1

,
x' + 1, . .

.,
X + 1- 1) when X

,
X * X

#
X -eXX+ 1

&

probability that x lies in this interval is

There are
=Q2

possible pairs (X
,

X')
, so by a union bound,

Pr[collision]o

Encrypt Mo with PRF

C. Remaining factor of

ainadvantagedete intermediatedistributionEncrypt mo with fresh one-time pad
&0

Encrypt M
, with PRF

Interpretation: If IX) = 2 18 (e.g., AES)
,

and messages are 1 MB long (2 blocks) and we want the distinguishing advantage
to be below 2-32

,
then we can use the same key to encrypt

Q2 (trillion messages

