
Access Control Encryption for General Policies from

Standard Assumptions

Sam Kim
Stanford University

skim13@cs.stanford.edu

David J. Wu
Stanford University

dwu4@cs.stanford.edu

Abstract

Functional encryption enables fine-grained access to encrypted data. In many scenarios,
however, it is important to control not only what users are allowed to read (as provided
by traditional functional encryption), but also what users are allowed to send. Recently,
Damg̊ard et al. (TCC 2016) introduced a new cryptographic framework called access control
encryption (ACE) for restricting information flow within a system in terms of both what users
can read as well as what users can write. While a number of access control encryption schemes
exist, they either rely on strong assumptions such as indistinguishability obfuscation or are
restricted to simple families of access control policies.

In this work, we give the first ACE scheme for arbitrary policies from standard assumptions.
Our construction is generic and can be built from the combination of a digital signature scheme,
a predicate encryption scheme, and a (single-key) functional encryption scheme that supports
randomized functionalities. All of these primitives can be instantiated from standard assumptions
in the plain model and therefore, we obtain the first ACE scheme capable of supporting general
policies from standard assumptions. One possible instantiation of our construction relies upon
standard number-theoretic assumptions (namely, the DDH and RSA assumptions) and standard
lattice assumptions (namely, LWE). Finally, we conclude by introducing several extensions to
the ACE framework to support dynamic and more fine-grained access control policies.

1 Introduction

In the last ten years, functional encryption [BSW11, O’N10] has emerged as a powerful tool
for enforcing fine-grained access to encrypted data. But in many real-world scenarios, system
administrators need to restrict not only what users are allowed to read, but also, what users are
allowed to send—for example, users with top-secret security clearance in a system should not be able
to make sensitive information publicly available. Recently, Damg̊ard, Haagh, and Orlandi [DHO16]
introduced the notion of access control encryption (ACE) to enable cryptographic control of the
information flow within a system

Access control encryption. An access control encryption scheme [DHO16] provides a crypto-
graphic mechanism for restricting information flow in a system, both in terms of what parties can
read, as well as in terms of what parties can write. Of course, cryptography alone is insufficient
here since a malicious sender can always broadcast sensitive messages in the clear. To address this,
Damg̊ard et al. [DHO16] introduce an additional party called the sanitizer. All communication
between senders and receivers is routed through the sanitizer, which performs some processing on

1

the message before broadcasting it to the receivers. The goal in access control encryption is to
simplify the operation of the sanitizer so that its function can be outsourced to a party that is only
trusted to execute correctly (in particular, the sanitizer does not need to know either the identity of
the sender or receiver of each message, nor the security policy being enforced).

Concretely, an ACE scheme is defined with respect to a set of senders S, a set of receivers
R, and an access control policy π : S × R → {0, 1}, where π(S,R) = 1 if a receiver R ∈ R is
allowed to read messages from sender S ∈ S (and vice versa). Each sender S has an encryption
key ekS and each receiver R has a decryption key dkR. To send a message m, the sender first
encrypts ct ← ACE.Encrypt(ekS ,m) and sends ct to the sanitizer. The sanitizer performs some
simple processing on ct to obtain a new ciphertext ct′, which it broadcasts to all of the receivers. The
correctness requirement of an ACE scheme is that if π(S,R) = 1, then ACE.Decrypt(dkR, ct

′) = m.
Critically, the sanitizer does not know the identities of the sender or receiver, nor does it know the
policy π.

The security requirements of an ACE scheme mirror those in the Bell-LaPadula [BL73] security
model. In particular, the no-read rule requires that any set of unauthorized receivers {Rj} (even in
collusion with the sanitizer) cannot learn any information from a sender S if π(S,Rj) = 0 for all j.
The no-write rule says that no set of (possibly malicious) senders {Si} can transfer any information
to any set of (possibly malicious) receivers {Rj} if π(Si, Rj) = 0 for all i, j.

Existing constructions of ACE. Damg̊ard et al. [DHO16] gave two constructions of ACE capable
of supporting arbitrary policies π : {0, 1}n × {0, 1}n → {0, 1} (here, the senders and receivers are
represented as n-bit identities). Their first construction takes a brute-force approach and is based on
standard number-theoretic assumptions such as the decisional Diffie-Hellman assumption (DDH) or
the decisional composite residuosity assumption (DCR). The limitation, however, is that ciphertexts
in their construction grow exponentially in n, thus rendering the scheme inefficient when the set of
identities is large. Their second construction is more efficient (the ciphertext size is polylogarithmic
in n), but relies on the full power of indistinguishability obfuscation (iO) [BGI+01, GGH+13].

Subsequently, Fuchsbauer et al. [FGKO17] showed how to construct access control encryption
for restricted classes of predicates (i.e., equality, comparisons, and interval membership) from
standard assumptions on bilinear maps—namely, the symmetric external Diffie-Hellman assumption
(SXDH). While their constructions are asymptotically efficient (their ciphertexts are linear in n),
the functionalities they can handle are specialized to a restricted class of predicates.

Recently, Tan et al. [TZMT17] showed how to instantiate the Damg̊ard et al. brute-force
construction using the learning with errors (LWE) assumption. Since their construction follows the
Damg̊ard et al. approach, ciphertexts in their construction also grown exponentially in n.

A natural question is whether it is possible to construct an asymptotically-efficient ACE
scheme for arbitrary functionalities without relying on powerful assumptions like indistinguishability
obfuscation. In this work, we show that under standard assumptions (for instance, the DDH, RSA,
and LWE assumptions suffice), we obtain an asymptotically-efficient ACE scheme for general policies.

1.1 Our Contributions

Our main contribution in this work is a new construction of access control encryption that is asymp-
totically efficient, supports arbitrary policies, and relies only on simple, well-studied assumptions.
All previous constructions of ACE were either inefficient, restricted to simple policies, or relied on
indistinguishability obfuscation. We refer to Table 1 for a comparison with the state-of-the-art.

2

Construction Predicate Ciphertext Size Assumption

Damg̊ard et al. [DHO16, §3] arbitrary O(2n) DDH or DCR
Damg̊ard et al. [DHO16, §4] arbitrary poly(n) iO
Fuchsbauer et al. [FGKO17] restricted poly(n) SXDH
Tan et al. [TZMT17] arbitrary O(2n) LWE

This work arbitrary poly(n) DDH, RSA, and LWE

Table 1: Concrete comparison of the ACE construction in this work with previous ACE
constructions [DHO16, FGKO17, TZMT17] for predicates π : {0, 1}n×{0, 1}n → {0, 1}.
For the predicate class, we write “arbitrary” if the scheme can support arbitrary access
control policies and “restricted” if it can only handle a small set of access control
policies (e.g., equality, comparisons, interval testing).

In this work, we give a generic construction of access control encryption from three main
ingredients: a digital signature scheme, a general-purpose predicate encryption scheme [GVW15],
and a (single-key) functional encryption scheme that supports randomized functionalities [GJKS15,
AW17]. We give a high-level overview of our construction here and provide the formal description
in Section 3. In Section 3.1, we show how to instantiate the underlying primitives to obtain an
ACE scheme from standard assumptions. Our work thus resolves the main open question posed
by Damg̊ard et al. [DHO16] on constructing asymptotically-efficient ACE schemes for arbitrary
functionalities from standard assumptions.

Starting point: predicate encryption. First, we review the syntax of a predicate encryption
scheme. In a predicate encryption scheme [BW07, SBC+07, KSW08], ciphertexts are associated
with a message m in addition to a set of attributes x, and secret keys are associated with functions f .
Decrypting a ciphertext associated with an attribute-message pair (x,m) using a secret key for
a function f outputs m if and only if f(x) = 1. Moreover, ciphertexts in a predicate encryption
scheme hide both the attribute x as well as the message m from all parties that are not able to
decrypt the ciphertext.1 Not surprisingly, a predicate encryption scheme that supports general
policies can be used to obtain a primitive that resembles an access control encryption scheme. Each
sender’s encryption key is just the public key for the predicate encryption scheme. To encrypt a
message m, the sender encrypts m with its identity as the attribute (i.e., an n-bit string). The
sanitizer would simply forward the ciphertext along. The decryption key for a receiver R is a
predicate encryption key that implements the policy π(·, R). Of course, because the sanitizer simply
broadcasts the sender’s message to the receivers, this basic scheme does not satisfy the no-write
rule. A malicious sender can simply broadcast the message in the clear.

Sanitizing the ciphertext. To provide security against malicious senders, the sanitizer must
perform some kind of re-randomization of the sender’s ciphertexts. Damg̊ard et al. [DHO16] achieve
this by introducing the notion of “sanitizable functional encryption,” which is a functional encryption
scheme that supports re-randomization of ciphertexts. However, constructing sanitizable functional
encryption seems to require indistinguishability obfuscation. In this work, we take a different
strategy similar in spirit to proxy re-encryption [AFGH05]. Specifically, we view the sanitizer as

1This is in contrast to the weaker notion of attribute-based encryption [SW05, GPSW06, BSW07] where the attribute
is public.

3

implementing a “proxy” that takes as input a sender’s ciphertext (under some encryption scheme)
and then re-encrypts that ciphertext under the predicate encryption scheme (with the attribute set
to the sender’s identity). The guarantee we seek is that the output of the sanitizer is either ⊥ (if
the input ciphertext is invalid) or a fresh encryption of the sender’s message under the predicate
encryption scheme. With this guarantee, the no-read and no-write properties reduce to the security
of the predicate encryption scheme.

The problem of building ACE thus reduces to constructing a suitable proxy re-encryption scheme.
Here, we rely on a single-key functional encryption for randomized functionalities [GJKS15, AW17].
In a standard functional encryption [BSW11, O’N10] (FE) scheme, secret keys are associated with
functions f and ciphertexts are associated with messages m. The combination of a decryption
key for a function f and a ciphertext for a message m should together reveal f(m) and nothing
more. Recently, Alwen et al. [ABF+13] and Goyal et al. [GJKS15] extended the notion of functional
encryption to also consider issuing keys for randomized functionalities.

A (general-purpose) FE scheme that supports randomized functionalities immediately gives a way
of implementing the proxy re-encryption functionality for the sanitizer. First, to encrypt a message
m, sender S encrypts the pair (S,m) under the FE scheme. The sanitizer is given a functional key for
the re-encryption function that takes as input a pair (S,m) and outputs a predicate encryption of m
with attribute S. The receivers’ behavior is unchanged. By appealing to the correctness and security
of the FE scheme, the sanitizer’s output is distributed like a fresh predicate encryption ciphertext.2

Importantly for our construction, the FE scheme only needs to support issuing a single decryption
key (for the sanitizer). This means that it is possible to instantiate the FE scheme from standard
assumptions (i.e., by applying the transformation in [AW17] to standard FE constructions such
as [SS10, GVW12, GKP+13]). Our construction is conceptually similar to the approach in [DHO16]
based on sanitizable FE. In Remark 3.5, we compare our approach to the one in [DHO16] and
highlight the key differences that allow us to avoid the need for indistinguishability obfuscation (as
seemingly needed for sanitizable FE), and thus, base our construction on simple assumptions.

Signatures for policy enforcement. The remaining problem with the above construction is that
the sender has the freedom to choose the identity S at encryption time. Thus, a malicious sender
could choose an arbitrary identity and trivially break the no-write security property. We address
this by requiring the sender “prove” its identity to the sanitizer when submitting its ciphertext (but
without revealing its identity to the sanitizer in the process). This can be done using a standard
technique described in [DHO16] (and also applied in several other contexts [BF14, BGI14]) by
giving each sender S a signature σS on its identity (included as part of the sender’s encryption key).
Then, to encrypt a message m, the sender would construct an FE ciphertext for the tuple (S, σS ,m)
containing its identity, the signature on its identity, and the message. The sanitizer’s FE key then
implements a re-encryption function that first checks the validity of the signature on the identity
before outputting a fresh predicate encryption of the message m (still with attribute S). Thus, a
malicious sender is only able to produce valid ciphertexts associated with identities for which it
possesses a valid signature. With this modification, we can show that the resulting construction is a
secure ACE scheme (Theorems 3.3 and 3.4).

2In the actual construction, satisfying the no-write property requires the stronger property that decrypting a maliciously-
generated ciphertext, say, from a corrupt sender, also yields a fresh ciphertext under the predicate encryption scheme.
This is the notion of security against malicious encrypters first considered in [GJKS15] and subsequently extended
in [AW17]. The work of [AW17] shows how to obtain functional encryption for randomized functionalities with
security against malicious encrypters from any functional encryption scheme supporting deterministic functionalities
in conjunction with standard number-theoretic assumptions.

4

Instantiating our construction. Our construction above gives a generic construction of ACE
from digital signatures, predicate encryption, and a single-key general-purpose functional encryption
scheme for randomized functionalities. In Section 3.1, we show that all of the requisite building
blocks of our generic construction can be instantiated from standard assumptions. In particular,
security can be reduced to the decisional Diffie-Hellman (DDH) assumption [Bon98], the RSA
assumption [RSA78], and the learning with errors (LWE) assumption [Reg05]. This yields the first
ACE scheme that supports general policies from standard assumptions.

Extending ACE. In Section 4, we describe several extensions to the notion of ACE that naturally
follow from our generic construction. We primarily view these extensions as ways of augmenting
the schema of access control encryption to provide increased flexibility or to support additional
functionalities, and not as qualitatively new properties specific to our particular construction.
Indeed, the iO-based construction of Damg̊ard et al. [DHO16] can also be extended to achieve
these properties. Our primary contribution is showing that we can achieve these stronger properties
without relying on iO. We briefly summarize our main extensions:

• Dynamic policies: In the standard notion of ACE [DHO16], the access control policy is
specified at the time of system setup. In realistic scenarios, senders and receivers may need
to be added to the system, and moreover, access control policies can evolve over time. In
Section 4.1, we show that our ACE construction allows us to associate an access control policy
specific to each receiver’s decryption key. Thus, each receiver’s policy can be determined
at the time of receiver key generation rather than system setup, which enables a dynamic
specification of access control policies.

• Fine-grained sender policies: The standard notion of ACE only considers policies express-
ible as a function of the sender’s and receiver’s identities. In many scenarios, we may want
to impose additional restrictions on the types of messages that a sender could send. For
instance, a sender could be allowed to send messages to any receiver with top-secret security
clearance, but we want to ensure that all of the messages they send contains a signature from
both the sender as well as their supervisor (who would certify the contents of the message).
In Section 4.2, we show that a straightforward extension of our construction allows us to
additionally enforce policies on the types of messages a user is allowed to send. We also
introduce a new security notion for ACE that captures the property that a sender should only
be allowed to send messages that conform to their encryption policy.

• Beyond all-or-nothing decryption: In a standard ACE scheme, decryption is “all-or-
nothing:” receivers who are authorized to decrypt a particular ciphertext are able to do so and
learn the underlying message, while receivers who are not authorized to decrypt learn nothing
about the message. Just as functional encryption extends beyond all-or-nothing encryption by
enabling decrypters to learn partial information about an encrypted message, we can consider
a functional encryption analog of access control encryption where receivers are allowed to learn
only partial information about messages in accordance with the precise access control policies
of the underlying scheme. As a concrete example, an analyst with secret security clearance
might only be authorized to learn the metadata of a particular encrypted communication,
while an analyst with top-secret security clearance might be authorized to recover the complete
contents of the communication. In a “functional ACE” scheme, decryption keys are associated
with functions and the decryption algorithm computes a function on the underlying message.

5

In Section 4.3, we show how our ACE scheme can be easily extended to obtain a functional
ACE scheme.

Concurrent work. Concurrent to this work, Badertscher et al. [BMM17] introduced several
strengthened security notions for access control encryption such as security against chosen ciphertext
attacks (CCA-security). They then show how to extend the ACE scheme (for restricted policies)
in [FGKO17] to achieve their new security notions. In contrast, our focus in this work is constructing
an ACE scheme (under the original security notions from [DHO16]) for arbitrary policies from
standard assumptions.

Open problems. We leave as an open problem the construction of an ACE scheme (for general
policies) where the sanitizer key can be public. This is the case for the ACE construction for
restricted policies in [FGKO17], but not the case for our construction or the iO-based construction
in [DHO16]. Another open problem is constructing an ACE scheme that provides full sender
anonymity (see Remark 2.10 for more details). Notably, this is possible from iO [DHO16], but
seems non-trivial from standard assumptions.

1.2 Additional Related Work

Information flow control is a widely studied topic in computer security (see, for instance [BL73,
Den76, DD77, San93, SCFY96, OSM00, SM03] and the references therein). In particular, the
“no read” and “no write” security notions for access control encryption are inspired by the “no
read-up” and “no write-down” security policies first introduced in the seminal work of Bell and
LaPadula [BL73]. In this work, we focus on designing cryptographic solutions for information flow
control.

Numerous cryptographic primitives, starting with identity-based encryption [Sha84, BF01,
Coc01], and progressing to attribute-based encryption [SW05, GPSW06, BSW07], predicate encryp-
tion [BW07, KSW08, LOS+10, OT09], and finally, culminating with functional encryption [SS10,
BSW11, O’N10], have focused on ways of enabling fine-grained access to encrypted data (i.e., impose
policies on the decryption capabilities of users in a system). Access control encryption seeks to
simultaneously enforce policies on both the encryption capabilities of the sender as well as the
decryption capabilities of the receiver.

A key challenge in access control encryption (and how it differs from traditional notions of
functional encryption) is in preventing corrupt senders from communicating (covertly or otherwise)
with unauthorized recipients. One way of viewing these goals is as a mechanism for protecting against
steganography techniques [HLvA02]. Recent works on cryptographic reverse firewalls [MS15, DMS16]
have looked at preventing compromised or malicious software from leaking sensitive information.
Raykova et al. [RZB12] studied the problem of access control for outsourced data. Their goal was
to hide access patterns from the cloud and preventing corrupt writers from updating files that they
are not authorized to update. Their work considers a covert security model where malicious writers
are caught; in contrast, with ACE, we require the stronger guarantee that communication between
corrupt senders and unauthorized receivers are completely blocked.

Also related to access control encryption is the recent line of work on sanitizable signa-
tures [ACdMT05, BFF+09, FF15]. These works study the case where an intermediate party
can sanitize messages and signatures that are sent over a channel while learning minimal information
about the messages and signatures. The notion of sanitizable signatures is conceptually different

6

from that of ACE since sanitizable signatures are not designed to prevent corrupt senders from
leaking information to corrupt receivers.

2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D, we write
x← D to denote that x is a sampled from D. For a finite set S, we write x←R S to denote that x
is sampled uniformly at random from S. For a randomized function f , we write f(x; r) to denote
an evaluation of f using randomness r. Unless otherwise noted, we always write λ for the security
parameter. We say a function f(λ) is negligible in the security parameter λ (denoted f(λ) = negl(λ))
if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = poly(λ) to denote that f is a (fixed) polynomial
in λ. An algorithm is efficient if it runs in polynomial time in the length of its input. For two

ensembles of distributions D1 and D2, we write D1
c
≈ D2 if the two distributions are computationally

indistinguishable (that is, no efficient algorithm can distinguish D1 from D2 except with negligible
probability).

2.1 Digital Signatures

A digital signature scheme with message spaceM is a tuple of algorithms ΠSig = (Sig.Setup,Sig.Sign,
Sig.Verify) with the following properties:

• Sig.Setup(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm
outputs a signing key sk and a verification key vk.

• Sig.Sign(sk,m)→ σ: On input a signing key sk, and a message m ∈M, the signing algorithm
outputs a signature σ.

• Sig.Verify(vk,m, σ)→ {0, 1}: On input a verification key vk, a message m and a signature σ,
the verification algorithm either accepts (with output 1) or rejects (with output 0).

Definition 2.1 (Correctness). A signature scheme ΠSig = (Sig.Setup, Sig.Sign, Sig.Verify) over a
message space M is correct if for all messages m ∈M and (vk, sk)← Sig.Setup(1λ), it follows that

Pr[Sig.Verify(vk, Sig.Sign(sk,m)) = 1] = 1.

Definition 2.2 (Unforgeability). We say that a signature scheme ΠSig = (Sig.Setup, Sig.Sign,Sig.Verify)
is existentially unforgeable under a chosen message attack if for all efficient adversaries A, setting
(vk, sk)← Sig.Setup(1λ), (m∗, σ∗)← ASig.Sign(sk,·)(1λ, vk), we have that

Pr[(m∗, σ∗) /∈ Q and Sig.Verify(vk,m∗, σ∗) = 1] = negl(λ),

where Q is the set of message-signature pairs (m,σ) the algorithm A submits and obtains from the
signing oracle Sig.Sign(sk, ·).

2.2 Predicate Encryption

In a (key-policy) predicate encryption scheme [BW07, SBC+07, KSW08], ciphertexts are associated
with a message m in addition to a set of descriptive attributes x, and secret keys are associated

7

with functions f . Decrypting a ciphertext encrypting an attribute-message pair (x,m) with a secret
key for a function f outputs m if and only if f(x) = 1. The security requirement for a predicate
encryption scheme states that an adversary learns nothing about either the attribute x or the
message m from a ciphertext given any arbitrary collection of keys for functions f where f(x) = 0.
This is closely related to the notion of attribute-based encryption (ABE) [SW05, GPSW06], where
the attributes associated with the ciphertext are public. In predicate encryption, the attributes are
hidden. A predicate encryption scheme is said to be weakly attribute-hiding [OT09, LOS+10] if the
attribute is hidden as long as the adversary does not have a key for a function f on which f(x) = 1.
A predicate encryption scheme is said to be fully attribute-hiding [BW07, SBC+07, KSW08] if the
attribute remains hidden even if the adversary has a key for a function f where f(x) = 1.

Syntax. We now give the formal definition of a predicate encryption scheme. Our definitions
are adapted from those in [GVW15]. A predicate encryption scheme over a message space M,
an attribute space X , and a function family F = {f : X → {0, 1}} is a tuple of algorithms ΠPE =
(PE.Setup,PE.KeyGen,PE.Encrypt,PE.Decrypt) with the following properties:

• PE.Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs
the public parameters pp and the master secret key msk.

• PE.KeyGen(msk, f) → skf : On input the master secret key msk and a predicate f ∈ F , the
key-generation algorithm outputs a secret key skf .

• PE.Encrypt(pp, x,m)→ ctx,m: On input the public parameters pp, an attribute x ∈ X , and a
message m ∈M, the encryption algorithm outputs a ciphertext ctx,m.

• PE.Decrypt(sk, ct)→ m′: On input a secret key sk and a ciphertext ct, the decryption algorithm
outputs a message m′ ∈M∪ {⊥}.

Definition 2.3 (Correctness). A predicate encryption scheme ΠPE = (PE.Setup,PE.KeyGen,
PE.Encrypt,PE.Decrypt) over an attribute space X , message space M, and function family F
is (perfectly) correct if for all messages m ∈M, all attributes x ∈ X , and all predicates f ∈ F , then
setting (pp,msk)← PE.Setup(1λ), we have the following:

• If f(x) = 1, then Pr[PE.Decrypt(PE.KeyGen(msk, f),PE.Encrypt(pp, x,m)) = m] = 1.

• If f(x) = 0, then Pr[PE.Decrypt(PE.KeyGen(msk, f),PE.Encrypt(pp, x,m)) = ⊥] = 1.

Definition 2.4 (Security). Fix a predicate encryption scheme ΠPE = (PE.Setup,PE.KeyGen,
PE.Encrypt,PE.Decrypt) over an attribute space X , message space M, and function family F .
For a security parameter λ and a bit b ∈ {0, 1}, we define the predicate encryption security experi-
ment ExptPEΠPE,A(λ, b) as follows. The challenger first samples (pp,msk)← PE.Setup(1λ). It gives pp
to the adversary. Then, A is given access to the following oracles:

• Key-generation oracle: On input a function f ∈ F , the challenger responds with a key
sk← PE.KeyGen(msk, f).

• Challenge oracle: On input a pair of attributes (x0, x1) ∈ X × X and a pair of messages
(m0,m1) ∈M, the challenger responds with a ciphertext ct← PE.Encrypt(pp, xb,mb).

8

At the end of the game, the adversary outputs a bit b ∈ {0, 1}, which is also the output of the
experiment. An adversary A is admissible for the predicate encryption security game if it makes
exactly one challenge query (x0, x1,m0,m1), and for all key-generation queries f the challenger
makes, f(x0) = 0 = f(x1). We say that the predicate encryption scheme ΠPE is secure if for all
efficient and admissible adversaries A,∣∣∣Pr

[
ExptPEΠPE,A(λ, 0)

]
− Pr

[
ExptPEΠPE,A(λ, 1)

]∣∣∣ = negl(λ).

2.3 Functional Encryption for Randomized Functionalities

Functional encryption (FE) [SS10, BSW11, O’N10] is a generalization of predicate encryption. In an
FE scheme, secret keys are associated with functions and ciphertexts are associated with messages.
Given a secret key skf for a (deterministic) function f and a ciphertext ctx encrypting a value x, the
decryption function in an FE scheme outputs f(x). The security guarantee roughly states that skf
and ctx together reveal f(x), and nothing more. Alwen et al. [ABF+13] and Goyal et al. [GJKS15]
extended the notion of functional encryption to include support for randomized functionalities (i.e.,
secret keys are associated with randomized functions). Subsequently, Komargodski et al. [KSY15],
as well as Agrawal and Wu [AW17] showed how to generically transform FE schemes that support
deterministic functions into schemes that support randomized functions; the former transforma-
tion [KSY15] applies in the secret-key setting while the latter [AW17] applies in the public-key
setting.

Syntax. We now give the formal definition of a functional encryption for randomized functionalities
in the public-key setting. Our definitions are adapted from those in [GJKS15, AW17]. A functional
encryption for randomized functionalities for a function family F over a domain X , range Y,
and randomness space R is a tuple of algorithms ΠrFE = (rFE.Setup, rFE.KeyGen, rFE.Encrypt,
rFE.Decrypt) with the following properties:

• rFE.Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs
the public parameters pp and the master secret key msk.

• rFE.KeyGen(msk, f) → skf : On input the master secret key msk and the description of a
(possibly randomized) function f : X → Y, the key-generation algorithm outputs a secret key
skf .

• rFE.Encrypt(pp, x) → ctx: On input the public parameters pp and a message x ∈ X , the
encryption algorithm outputs a ciphertext ctx.

• rFE.Decrypt(sk, ct)→ y: On input a secret key sk, and a ciphertext ct, the decryption algorithm
outputs a value y ∈ Y ∪ {⊥}.

Correctness. The correctness property for an FE scheme that supports randomized functionalities
states that given a secret key skf for a randomized function f and a ciphertext ctx encrypting
a value x, the decryption function rFE.Decrypt(skf , ctx) outputs a random draw from the output
distribution of f(x). Moreover, when multiple function keys are applied to multiple ciphertexts,
decryption should output an independent draw from the output distribution for each ciphertext-key
pair. This property should hold even given the public parameters as well as the function keys for
the function encryption scheme. We give the formal definition below:

9

Definition 2.5 (Correctness [GJKS15, AW17, adapted]). A functional encryption scheme for
randomized functionalities ΠrFE = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) over a message
space X for a (randomized) function family F (operating over a randomness space R) is correct if for
every polynomial n = n(λ), every collection of functions (f1, . . . , fn) ∈ Fn, and every collection of
messages (x1, . . . , xn) ∈ X n, setting (pp,msk) ← rFE.Setup(1λ), ski ← rFE.KeyGen(msk, fi), ctj ←
rFE.Encrypt(pp, xj), and ri,j ←R R for i, j ∈ [n], the following two distributions are computationally
indistinguishable:(

pp, {ski}i∈[n] , {rFE.Decrypt(ski, ctj)}i,j∈[n]

)
and

(
pp, {ski}i∈[n] , {fi(xj ; ri,j)}i,j∈[n]

)
.

Remark 2.6 (Weaker Correctness Notions). Existing constructions of functional encryption for ran-
domized functionalities [GJKS15, AW17] consider a weaker correctness requirement that the joint dis-
tribution {rFE.Decrypt(ski, ctj)}i,j∈[n] be computationally indistinguishable from {fi(xj ; ri,j)}i,j∈[n].
In this work, we require the stronger property that these two distributions remain computationally
indistinguishable even given the public parameters as well as the (honestly-generated) decryp-
tion keys. It is not difficult to see that existing constructions such as the Agrawal-Wu generic
construction [AW17] satisfy this stronger correctness requirement.3

Security. In this work, we use a simulation-based definition of security. Our access control
encryption construction relies critically on our FE scheme providing robustness against malicious
encrypters. This can be viewed as the analog of CCA-security in the context of public-key
encryption [RS91], and is captured formally in the security game by giving the adversary access
to a decryption oracle (much like in the CCA-security game). We give a simplified variant of the
definition from [GJKS15, AW17] where the adversary is only allowed to issue key-queries before
making challenge queries (i.e., the adversary is restricted to making non-adaptive key queries). In
this non-adaptive setting, Gorbunov et al. [GVW12] showed that security against an adversary
who makes a single challenge query implies security against an adversary that makes a polynomial
number of of challenge queries. This is the definition we use in this work. Additionally, for the
decryption queries, we also consider the simplified setting of [GJKS15] where the adversary can only
submit a single ciphertext on each decryption query.4 We now give the formal definition:

Definition 2.7 (q-NA-SIM Security [GJKS15, AW17, adapted]). Let ΠrFE = (rFE.Setup, rFE.KeyGen,
rFE.Encrypt, rFE.Decrypt) be a functional encryption scheme for randomized functionalities over
a message space X for a (randomized) function family F (with randomness space R). We say
that ΠrFE is q-NA-SIM-secure against malicious encrypters if there exists an efficient (stateful)
simulator S = (S1,S2,S3,S4) such that for all efficient adversaries A = (A1,A2) where A1 makes
at most q key-generation queries, the outputs of the following two experiments are computationally
indistinguishable:

3Specifically, the generic construction of functional encryption for randomized functionalities from standard functional
encryption in [AW17] uses a PRF key for derandomization. In their construction, they secret share the PRF key across
the ciphertext and the decryption key. By appealing to related-key security of the underlying PRF [Bih93, BK03,
BC10, BCM11], the randomness used for function evaluation during decryption is computationally indistinguishable
from a random string. Moreover, this holds even if one of the key-shares is known (in our setting, this is the key-share
embedded within the decryption key).

4Subsequent work [AW17] showed how to extend the security definition to also capture adversaries that can induce
correlations across multiple ciphertexts, but this strengthened definition is not necessary in our setting.

10

Experiment RealΠrFE,A(1λ):
(pp,msk)← rFE.Setup(1λ)

st← AO1(msk,·),O3(msk,·,·)
1 (1λ, pp)

α← AO2(pp,·),O3(msk,·,·)
2 (st)

Output ({g} , {y} , α)

Experiment IdealΠrFE,A,S(1λ):
(pp, st′)← S1(1λ)

st← AO
′
1(st′,·),O′3(st′,·,·)

1 (1λ, pp)

α← AO
′
2(st′,·),O3(st′,·,·)

2 (st)
Output ({g′} , {y′} , α)

where the key-generation, encryption, and decryption oracles are defined as follows:

Real experiment RealΠrFE,A(1λ):

• Key-generation oracle: O1(msk, ·) implements rFE.KeyGen(msk, ·).

• Encryption oracle: O2(pp, ·) implements rFE.Encrypt(pp, ·).

• Decryption oracle: On input (g, ct) where g ∈ F and ct ∈ {0, 1}∗, the decryption oracle
O3(msk, ·, ·) computes skg ← rFE.KeyGen(msk, g) and outputs y = rFE.Decrypt(skg, ct). The
(ordered) set {g} consists of the set of functions that appear in the decryption queries of A
and the (ordered) set {y} consist of the responses of O3.

Ideal experiment IdealΠrFE,A,S(1λ):

• Key-generation oracle: On input a function f ∈ F , the ideal key-generation oracle O′1
computes (sk′f , st

′)← S2(st′, f), and returns sk′f . The updated simulator state st′ is carried
over to future invocations of the simulator.

• Encryption oracle: On input a message x ∈ X , the ideal encryption oracle O′2 sam-
ples r1, . . . , rq ←R R, and sets yi = fi(x; ri) for i ∈ [q], where fi is the ith key-generation
query A1 made to the key-generation oracle. The oracle computes (ct′, st′)← S3(st′, {yi}i∈[q])

and returns ct′.

• Decryption oracle: On input (g′, ct′) where g′ ∈ F and ct′ ∈ {0, 1}∗, the ideal decryption
oracle O′3 invokes the simulator algorithm (x, st′)← S4(st′, ct′), where x ∈ X ∪ {⊥}. If x 6= ⊥,
the oracle samples r ←R R and replies with g′(x; r). Otherwise, if x = ⊥, the oracle replies
with ⊥. The (ordered) set {g′} denotes the functions in the decryption queries of A and {y′}
denotes the outputs of O′3.

2.4 Access Control Encryption (ACE)

In this section, we review the definition of access control encryption (ACE) [DHO16, FGKO17,
TZMT17]. An access control encryption scheme over an identity space I, a message spaceM, and a
ciphertext space C is defined by a tuple of algorithms ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) with the following properties:

• ACE.Setup(1λ, π)→ (sank,msk): On input a security parameter λ and an access control policy
π : I × I → {0, 1}, the setup algorithm outputs the sanitizer key sank and the master secret
key msk.

11

• ACE.EKGen(msk, i) → eki: On input the master secret key msk and a sender identity i ∈ I,
the encryption key-generation algorithm outputs an encryption key eki.

• ACE.DKGen(msk, j)→ dkj : On input the master secret key msk, and a receiver identity j ∈ I,
the decryption key-generation algorithm returns a decryption key dkj .

• ACE.Encrypt(ek,m) → ct: On input an encryption key ek, and a message m ∈ M, the
encryption algorithm outputs a ciphertext ct.5

• ACE.Sanitize(sank, ct)→ ct′: On input the sanitizer key sank and a ciphertext ct, the sanitize
algorithm outputs a ciphertext ct′ ∈ C ∪ {⊥}.

• ACE.Decrypt(dk, ct′) → m′: On input a decryption key dk and a ciphertext ct′ ∈ C, the
decryption algorithm outputs a message m′ ∈M∪ {⊥}.

Definition 2.8 (Correctness [DHO16]). An ACE scheme ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) over an identity space I and a message space M is correct
if for all messages m ∈M, all policies π : I ×I → {0, 1}, and all identities i, j ∈ I where π(i, j) = 1,
setting (sank,msk) ← ACE.Setup(1λ, π), eki ← ACE.EKGen(msk, i), dkj ← ACE.DKGen(msk, j), we
have that

Pr[ACE.Decrypt(dkj ,ACE.Sanitize(sank,ACE.Encrypt(eki,m))) = m] = 1− negl(λ).

Security definitions. Damg̊ard et al. [DHO16] introduced two security notions for an ACE scheme:
the no-read rule and the no-write rule. The no-read rule captures the property that only the intended
recipients of a message (namely, those authorized to decrypt it) should be able to learn anything
about the message. In particular, a subset of unauthorized receivers should be unable to combine
their respective decryption keys to learn something about a ciphertext they are not authorized to
decrypt. Moreover, this property should hold even if the recipients collude with the sanitizer. The
no-write rule captures the property that a sender can only encrypt messages to receivers that it
is authorized to do so. Specifically, no sender with identity i should be able to form a ciphertext
that can be decrypted by a receiver with identity j where π(i, j) = 0. Furthermore, this property
should hold even when multiple senders and receivers collude. We now review the formal definitions
introduced in [DHO16].

Definition 2.9 (No-Read Rule [DHO16]). Let ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) be an ACE scheme over an identity space I and a message
space M. Let A be an efficient adversary and π : I × I → {0, 1} be an access control policy. For a

security parameter λ and a bit b ∈ {0, 1}, we define the no-read rule experiment Expt
(Read)
ΠACE,A,π(λ, b)

as follows. The challenger first samples (sank,msk)← ACE.Setup(1λ, π), and gives the sanitizer key
sank to A. Then, A is given access to the following oracles:

• Encryption oracle. On input a message m ∈M and a sender identity i ∈ I, the challenger
responds with a ciphertext ct← ACE.Encrypt(ACE.EKGen(msk, i),m).

5Note that we do not require that ct ∈ C. In particular, the ciphertexts output by the encryption algorithm can be
syntactically different from those output by the sanitize algorithm. To simplify the notation, we only explicitly model
the ciphertexts space C corresponding to those produced by the ACE.Sanitize algorithm.

12

• Encryption key-generation oracle. On input a sender identity i ∈ I, the challenger
responds with an encryption key eki ← ACE.EKGen(msk, i).

• Decryption key-generation oracle. On input a receiver identity j ∈ I, the challenger
responds with a decryption key dkj ← ACE.DKGen(msk, j).

• Challenge oracle. On input a pair of messages (m0,m1) ∈ M×M and a pair of sender
indices (i0, i1) ∈ I × I, the challenger responds with ACE.Encrypt(ACE.EKGen(msk, ib),mb).

At the end of the experiment, adversary A outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment. An adversary A is admissible for the no-read rule security game if for all queries
j ∈ I that A makes to the receiver key-generation oracle, π(i0, j) = 0 = π(i1, j). We say that
ΠACE satisfies the no-read rule if for all policies π : I × I → {0, 1}, and all efficient and admissible
adversaries A, ∣∣∣Pr

[
Expt

(Read)
ΠACE,A,π(λ, 0) = 0

]
− Pr

[
Expt

(Read)
ΠACE,A,π](λ, 1) = 1

]∣∣∣ = negl(λ).

Remark 2.10 (Sender Anonymity). The definition of the no-read rule given in [DHO16] also
imposes the stronger requirement of sender anonymity, which guarantees the anonymity of the
sender even against adversaries that are able to decrypt the ciphertext. In contrast, our definition
only ensures sender anonymity (in addition to message privacy) against a coalition of receivers that
cannot decrypt the challenge ciphertext. This is akin to the notion of “weak attribute-hiding” in the
context of predicate encryption [OT09, LOS+10], and was also the notion considered in [FGKO17]
for building ACE for restricted classes of functionalities.

Definition 2.11 (No-Write Rule [DHO16]). Let ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) be an ACE scheme over an identity space I and a message
spaceM. Let A be an efficient adversary, and let π : I ×I → {0, 1} be an access control policy. For

a security parameter λ and a bit b ∈ {0, 1}, we define the no-write rule experiment Expt
(Write)
ΠACE,A,π(λ, b)

as follows. The challenger begins by sampling (sank,msk) ← ACE.Setup(1λ, π). Then, A is given
access to the following oracles:

• Encryption oracle. On input a message m ∈ M and a sender identity i ∈ I, the chal-
lenger responds by first computing eki ← ACE.EKGen(msk, i) and returning ACE.Sanitize(sank,
ACE.Encrypt(eki,m)).

• Encryption key-generation oracle. On input a sender index i ∈ I, the challenger responds
with an encryption key eki ← ACE.EKGen(msk, i).

• Decryption key-generation oracle. On input a receiver index j ∈ I, the challenger
responds with a decryption key dkj ← ACE.DKGen(msk, j).

• Challenge oracle. On input a ciphertext ct∗ ∈ {0, 1}∗ and a sender identity id∗ ∈ I,
the challenger sets ct0 = ct∗. Then, the challenger samples m′ ←R M, computes ct1 ←
ACE.Encrypt(ACE.EKGen(msk, id∗),m′), and responds with ACE.Sanitize(sank, ctb).

At the end of the experiment, adversary A outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment. An adversary A is admissible for the no-write rule security game if the following
conditions hold:

13

• The adversary A makes at most one query to the challenge oracle.6

• For all identities i ∈ I that A submits to the encryption key-generation oracle prior to its
challenge and all identities j ∈ I that A submits to the decryption key-generation oracle,
π(i, j) = 0.

• The adversary A makes an encryption key-generation query on the challenge identity id∗ ∈ I
prior to making its challenge query.

We say that ΠACE satisfies the no-write rule if for all policies π : I × I → {0, 1}, and all efficient
and admissible adversaries A,∣∣∣Pr

[
Expt

(Write)
ΠACE,A,π(λ, 0) = 0

]
− Pr

[
Expt

(Write)
ΠACE,A,π(λ, 1) = 1

]∣∣∣ = negl(λ).

3 Generic Construction of Access Control Encryption

In this section, we show how to generically construct access control encryption for general policies
from a digital signature scheme, a predicate encryption scheme, and a general-purpose functional
encryption scheme for randomized functionalities. Then, in Section 3.1, we describe our concrete
instantiation of an ACE scheme that supports arbitrary policies from standard assumptions.

Construction 3.1. Let I be the identity space and M be the message space. Our access control
encryption for general access policies relies on the following primitives:

• Let ΠSig = (Sig.Setup, Sig.Sign, Sig.Verify) be a signature scheme with message space I. Let T
denote the space of signatures output by the Sig.Sign algorithm.

• Let ΠPE = (PE.Setup,PE.KeyGen,PE.Encrypt,PE.Decrypt) be a (public-key) predicate encryp-
tion scheme with attribute space I and message space M. Let C denote the ciphertext space
for ΠPE, and let R denote the space for the encryption randomness for PE.Encrypt (namely,
the space of values from which the randomness used in PE.Encrypt is sampled).

• Let ΠrFE = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) be a general-purpose public-key
functional encryption scheme for randomized functionalities (with security against malicious
encrypters) with domain I × T ×M, range C, and randomness space R.

We construct the ACE scheme ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,ACE.Encrypt,ACE.Sanitize,
ACE.Decrypt) as follows:

• ACE.Setup(1λ, π): On input the security parameter λ and a policy π : I×I → {0, 1}, the setup
algorithm samples (Sig.vk,Sig.sk) ← Sig.Setup(1λ), (PE.pp,PE.msk) ← PE.Setup(1λ), and
(rFE.pp, rFE.msk)← rFE.Setup(1λ). Next, it defines the function FSig.vk,PE.pp : I ×T ×M→ C
as follows:

FSig.vk,PE.pp(i, σ,m; r) =

{
PE.Encrypt(PE.pp, i,m; r) if Sig.Verify(Sig.vk, i, σ) = 1

⊥ otherwise.

6We impose this restriction to simplify the security definition. A standard hybrid argument shows that security against
an adversary that makes a single challenge query implies security against one that makes multiple challenge queries.

14

Then, it generates a decryption key rFE.skF ← rFE.KeyGen(rFE.msk, FSig.vk,PE.pp). Finally, it
outputs the sanitizer key sank = rFE.skF and the master secret key

msk = (π,Sig.sk,PE.msk, rFE.pp).

• ACE.EKGen(msk, i): On input the master secret key msk = (π,Sig.sk,PE.msk, rFE.pp), and
an identity i ∈ I, the encryption key-generation algorithm constructs a signature σ ←
Sig.Sign(Sig.sk, i) and outputs eki = (rFE.pp, i, σ).

• ACE.DKGen(msk, j): On input the master secret key msk = (π,Sig.sk,PE.msk, rFE.pp), and
an identity j ∈ I, the decryption key-generation algorithm generates a key PE.sk ←
PE.KeyGen(PE.msk, fπ,j) where fπ,j(i) : I → {0, 1} is defined as fπ,j(i) = π(i, j), and outputs
dkj = PE.sk.

• ACE.Encrypt(eki,m): On input the encryption key eki = (rFE.pp, i, σ) and a message m ∈M,
the encryption algorithm outputs rFE.Encrypt(rFE.pp, (i, σ,m)).

• ACE.Sanitize(sank, ct): On input the sanitizer key sank = rFE.skF and a ciphertext ct, the
sanitize algorithm outputs rFE.Decrypt(rFE.skF , ct).

• ACE.Decrypt(dkj , ct
′): On input a decryption key dkj = PE.sk and a ciphertext ct′, the

decryption algorithm outputs PE.Decrypt(PE.sk, ct′).

We now state that our main correctness and security theorems. Specifically, we show that assuming
correctness and security of the underlying primitive ΠSig, ΠPE, and ΠFE, our access control encryption
scheme satisfies correctness (Definition 2.8), no-read security (Definition 2.9), and no-write security
(Definition 2.11). We give the formal proofs in Sections 3.2, 3.3, and 3.4. We conclude this subsection
with a remark comparing our construction to the Damg̊ard et al. [DHO16] construction of ACE
from sanitizable FE.

Theorem 3.2 (Correctness). Suppose ΠSig is a correct signature scheme (Definition 2.1), ΠPE is a
correct predicate encryption scheme (Definition 2.3), and ΠFE is a correct functional encryption
scheme for randomized functionalities (Definition 2.5). Then, the access control encryption scheme
from Construction 3.1 is correct (Definition 2.8).

Theorem 3.3 (No-Read Rule). Suppose ΠSig is perfectly correct (Definition 2.1), ΠPE is a secure
predicate encryption scheme (Definition 2.4) and ΠrFE is an 1-NA-SIM-secure functional encryption
scheme for randomized functionalities (Definition 2.7). Then, the access control encryption scheme
from Construction 3.1 satisfies the no-read rule (Definition 2.9).

Theorem 3.4 (No-Write Rule). If ΠSig is existentially unforgeable (Definition 2.2), ΠPE is a secure
predicate encryption scheme (Definition 2.4), and ΠrFE is a 1-NA-SIM-secure functional encryption
for randomized functionalities (Definition 2.7). Then, the access control encryption scheme from
Construction 3.1 satisfies the no-write rule (Definition 2.11).

Remark 3.5 (Comparison with Sanitizable FE). The high-level schema of our access control
encryption scheme bears some similarities to the ACE construction from sanitizable functional
encryption in [DHO16]. Here, we highlight some of the key differences between our construction and
that of [DHO16]. In [DHO16], the sanitizer key is used only to test whether a particular ciphertext

15

is valid or not. After validating the certificate, the sanitizer relies on the algebraic structure of the
sanitizable FE scheme to re-randomize the ciphertext. In contrast, in our construction, the sanitizer
actually performs a re-encryption of the incoming ciphertext under a different (predicate) encryption
scheme, and moreover, the validation procedure (that the ciphertext originated from a valid sender)
is embedded within the re-encryption key possessed by the sanitizer. As such, our construction only
requires us to issue a single functional encryption key to the sanitizer. This means that we can
base our construction on standard cryptographic assumptions. While it may be possible to build
sanitizable FE from an FE scheme that supports randomized functionalities, it seems difficult to
reduce security to standard assumptions (because the existing general-purpose FE schemes from
standard assumptions [SS10, GVW12, GKP+13] remain secure only if we give out an a priori
bounded number of decryption keys). Thus, using re-encryption rather than re-randomization offers
qualitatively better properties that enables a construction that does not rely on strong assumptions
like indistinguishability obfuscation.

3.1 Concrete Instantiations

In this section, we describe one candidate instantiation of Construction 3.1 that yields an access
control encryption scheme for arbitrary policies from standard assumptions. All of our primitives can
be built from standard assumptions, namely the decisional Diffie-Hellman assumption (DDH) [Bon98],
the RSA assumption (RSA) [RSA78], and the learning with errors assumption (LWE) [Reg05]. The
DDH and RSA assumptions are needed to leverage the generic construction of functional encryption
for randomized functionalities from standard functional encryption (for deterministic functionalities)
in [AW17]. The remaining primitives can be built from LWE. We now describe one possible
instantiation of the primitives in Construction 3.1:

• The signature scheme ΠSig can be instantiated using the standard-model construction of
Cash et al. [CHKP10] based on LWE. Note that because our construction makes non-black-box
use of the underlying signature scheme (in particular, we need to issue an FE key that performs
signature verification), we are unable to instantiate our construction with a signature scheme
that relies on a random oracle.

• The (general-purpose) predicate encryption scheme ΠPE can be instantiated using the con-
struction of Gorbunov et al. [GVW15] based on the LWE assumption.

• The (general-purpose) 1-NA-SIM-secure FE scheme ΠrFE for randomized functionalities that
provides security against malicious encrypters can be instantiated by applying the Agrawal-Wu
deterministic-to-randomized transformation [AW17] to a 1-NA-SIM-secure FE scheme for
deterministic functionalities. The underlying 1-NA-SIM-secure FE scheme can in turn be based
on any public-key encryption [GVW12] or on the LWE assumption [GKP+13]. Applying the
deterministic-to-randomized transformation to the former yields an FE scheme for randomized
functionalities from the DDH and RSA assumptions (cf. [AW17, Corollary 5.5]), while applying
the transformation to the latter yields an FE scheme based on the DDH, RSA, and LWE
assumptions.

Putting the pieces together, we obtain the following corollary to Theorems 3.3 and 3.4:

Corollary 3.6. Under standard assumptions (namely, the DDH, RSA, and LWE assumptions),
there exists an access control scheme for general policies over arbitrary identity spaces I = {0, 1}n
where n = poly(λ) that satisfies the no-read and no-write security properties.

16

3.2 Proof of Theorem 3.2

Take any message m ∈ M, access control policy π : I × I → {0, 1}, and identities i, j ∈
I where π(i, j) = 1. Let (sank,msk) ← ACE.Setup(1λ, π), eki ← ACE.EKGen(msk, i), dkj ←
ACE.DKGen(msk, j), and ct← ACE.Encrypt(eki,m). By construction, eki = (rFE.pp, i, σ) where σ is
a signature on i under Sig.vk, and ct = rFE.Encrypt(rFE.pp, (i, σ,m)). It suffices to show that with
probability 1− negl(λ),

ACE.Decrypt(dkj ,ACE.Sanitize(sank, ct)) = m.

To show this, we define two hybrid distributions as follows:

• Hyb0: This is the real distribution where the output is ACE.Decrypt(dkj , ct
′) where ct′ =

ACE.Sanitize(sank, ct).

• Hyb1: Same as Hyb0, except ct′ = PE.Encrypt(PE.pp, i,m; r) where r ←R R.

Lemma 3.7. If ΠSig and ΠrFE are correct, then Hyb0 and Hyb1 are computationally indistinguishable.

Proof. In Hyb0, ACE.Sanitize(sank, ct) computes rFE.Decrypt(rFE.skF , ct), where rFE.skF is a key
for the randomized function FSig.vk,PE.pp. Since σ is a signature on i, by correctness of ΠSig, we
have that Sig.Verify(Sig.vk, i, σ) = 1. Thus, the output distribution of FSig.vk,PE.pp(i, σ,m) precisely
coincides with that of PE.Encrypt(PE.pp, i,m). Since ct is an (honestly-generated) encryption of
(i, σ,m), the lemma now follows by correctness of ΠrFE.

To conclude the proof, we appeal to correctness of ΠPE to argue that in Hyb1, the output is m with
probability 1. This follows from the fact that dkj is a PE key for the function fπ,j . In Hyb1, ct′ is an
honestly-generated predicate encryption of attribute i with message m. Since fπ,j(i) = π(i, j) = 1,
(perfect) correctness of ΠPE states that ACE.Decrypt(dkj , ct

′) = m with probability 1, so Hyb1

outputs m with probability 1. Since Hyb0 and Hyb1 are computationally indistinguishable, the
output in Hyb0 is m with probability at least 1− negl(λ). Correctness follows.

3.3 Proof of Theorem 3.3

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.
First, fix an access control policy π : I × I → {0, 1}. We now define our sequence of hybrid
experiments:

• Hyb0: This is the ACE security experiment Expt
(Read)
ΠACE,A,π(λ, 0) from Definition 2.9. Specifically,

at the beginning of the game, the challenger samples keys (Sig.vk,Sig.sk) ← Sig.Setup(1λ),
(PE.pp,PE.msk) ← PE.Setup(1λ), and (rFE.pp, rFE.msk) ← rFE.Setup(1λ). It then generates
the sanitizer key rFE.skF ← rFE.KeyGen(rFE.msk, FSig.vk,PE.pp) and gives sank = rFE.skF to the
adversary. It sets msk = (π,Sig.sk,PE.msk, rFE.pp). During the query phase, the challenger
answers the adversary’s queries to the encryption and key-generation oracles by computing the
encryption and key-generation algorithms exactly as in the real scheme. When the adversary
makes a challenge oracle query with messages (m0,m1) ∈M×M and identities (i0, i1) ∈ I×I,
the challenger responds with ACE.Encrypt(ACE.EKGen(msk, i0),m0).

17

• Hyb1: Same as Hyb0, except that the challenger uses the simulator S = (S1,S2,S3,S4,)
for ΠrFE to construct the public parameters, the sanitizer key sank, and in replying to the
adversary’s challenge queries. Specifically, we make the following changes to the challenger:

– Setup: At the beginning of the game, instead of sampling rFE.pp using rFE.Setup, the
challenger instead runs the simulation algorithm (rFE.pp, st′)← S1(1λ). For the sanitizer
key, the challenger computes rFE.skF ← S2(st′, FSig.vk,PE.pp). It saves rFE.pp as part of
the master secret key and gives sank = (rFE.skF) to the adversary.

– Challenge queries: When the adversary submits a challenge (m0,m1, i0, i1), the chal-
lenger first computes ct′ ← PE.Encrypt(PE.pp, i0,m0). Then it replies to the adversary
with the simulated ciphertext ct← S3(st′, ct′).

The encryption and key-generation queries are handled exactly as in Hyb0.

• Hyb2: Same as Hyb1, except when answering challenge queries (m0,m1, i0, i1), the challenger
instead computes ct′ ← PE.Encrypt(PE.pp, i1,m1) and replies with the simulated ciphertext
ct← S3(st′, ct′).

• Hyb3: Same as Hyb2, except that the challenger constructs the public parameters rFE.pp and
the sanitizer key sank as described in the real scheme. For challenge queries (m0,m1, i0, i1), the
challenger replies with the ciphertext ACE.Encrypt(ACE.EKGen(msk, i1),m1). This corresponds

to the ACE security experiment Expt
(Read)
ΠACE,A,π(λ, 1) from Definition 2.9.

We now argue that each pair of hybrid experiments are computationally indistinguishable. For an
adversary A, we write Hybi(A) to denote the output of Hybi. In the following, we implicitly assume
that the adversary in each pair of hybrid arguments is admissible.

Lemma 3.8. If ΠSig is perfectly correct and ΠrFE is 1-NA-SIM-secure, then for all efficient adver-
saries A, |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish between Hyb0 and Hyb1. We use
A to construct an algorithm B that can distinguish between RealΠrFE,A(1λ) and IdealΠrFE,A,S(1λ).
Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters rFE.pp. It constructs
the other components of the master secret key msk for the ACE scheme exactly as in Hyb0

and Hyb1.

2. Algorithm B makes a key-generation query for the function FSig.vk,PE.pp and receives a key
rFE.skF . It sets sank = rFE.skF and gives rFE.skF to A.

3. Algorithm B answers the encryption and key-generation queries exactly as in Hyb0 and Hyb1

(this is possible because these queries only rely on rFE.pp).

4. Whenever A makes a challenge query (m0,m1, i0, i1), algorithm B computes a signature
σ ← Sig.Sign(Sig.sk, i0) and queries its encryption oracle on the value (i0, σ,m0) to obtain a
challenge ciphertext ct. It gives ct to the adversary.

5. At the end of the game, algorithm B outputs whatever A outputs.

18

First, we note that B makes a single non-adaptive key query, so it is a valid adversary for the
1-NA-SIM security game. By construction, if the public parameters, the key-generation oracle and
the encryption oracle are implemented according to RealΠrFE,A(1λ), then B perfectly simulates Hyb0

for A. We claim that if the public parameters, the key-generation oracle, and the encryption oracle
are implemented according to IdealΠrFE,A,S(1λ), then B perfectly simulates Hyb1. It suffices to check
that the challenge queries are correctly simulated.

• In Hyb1, on a challenge query (m0,m1, i0, i1), the challenger responds by computing S3(st′, ct′)
where ct′ ← PE.Encrypt(PE.pp, i0,m0).

• In the reduction, if the encryption oracle is implemented according to IdealΠrFE,A,S(1λ), then
B’s response ct to a challenge query (m0,m1, i0, i1) is the output of S3(st′, ct′), where ct′ ←
FSig.vk,PE.pp(i0, σ,m0) and σ ← Sig.Sign(Sig.sk, i0). By perfect correctness of ΠSig and definition
of FSig.vk,PE.pp, the output distribution of FSig.vk,PE.pp(i0, σ,m0) is exactly a fresh encryption
PE.Encrypt(PE.pp, i0,m0).

We conclude that if the oracles are implemented according to IdealΠrFE,A,S(1λ), then B perfectly
simulates Hyb1 for A. The claim then follows by 1-NA-SIM security of ΠrFE.

Lemma 3.9. If ΠPE is secure, then for all efficient adversaries A,

|Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish between Hyb1 and Hyb2. We use
A to construct an algorithm B that can break the security of the predicate encryption scheme ΠPE

(Definition 2.4). Algorithm B works as follows:

1. At the beginning of the game, B receives PE.pp from the predicate encryption challenger. It
samples the parameters for the signature scheme as well as the parameters for the functional
encryption scheme as described in Hyb1 and Hyb2 (in particular, the simulator uses the honest
key-generation algorithm to sample the parameters for ΠSig and uses the simulator S for ΠrFE

to construct the parameters rFE.pp). Algorithm B constructs the sanitizer key sank as in Hyb1

and Hyb2 (using PE.pp), and gives sank to the adversary. It also defines msk as in the real
scheme, with the exception that it leaves PE.msk unspecified.

2. During the query phase, B answers the encryption and encryption key-generation queries
exactly as in Hyb1 and Hyb2 (these queries only depend on quantities known to B). The
decryption key-generation and challenge queries are handled as follows:

• Decryption key-generation oracle: When A queries for a decryption key for an
identity j ∈ I, algorithm B submits the function fπ,j : I → {0, 1} (where fπ,j(i) = π(i, j))
to the key-generation oracle for the predicate encryption game, and receives the key
PE.skfπ,j . It gives PE.skfπ,j to A.

• Challenge oracle: When A makes its challenge query (m0,m1, i0, i1), algorithm B
submits the pairs (i0,m0), (i1,m1) as its challenge query to the predicate encryption
challenger and receives a ciphertext ct′. It runs the simulator ct← S3(st′, ct′) and returns
ct to A.

19

Since A is admissible for the no-read rule security game, π(i0, j) = 0 = π(i1, j) for all identities j that
the adversary submits to the decryption key-generation oracle. This means that each function fπ,j
that B submits to the predicate encryption challenger satisfies fπ,j(i0) = 0 = fπ,j(i1). Thus, B is
admissible for the predicate encryption security game. By construction, if B is interacting according
to ExptPEΠPE,B(λ, 0), then B perfectly simulates Hyb1 for A, and if B is interacting according to

ExptPEΠPE,B(λ, 1), then B perfectly simulates Hyb2 for A. Thus, if A is able to distinguish between
Hyb1 and Hyb2 with non-negligible advantage, then B is able to break the security of ΠPE with the
same advantage.

Lemma 3.10. If ΠSig is perfectly correct, and ΠrFE is 1-NA-SIM-secure, then for all efficient
adversaries A, |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(λ).

Proof. Follows by a similar argument as that used in the proof of Lemma 3.8.

Combining Lemmas 3.8 through 3.10, we conclude that the ACE scheme in Construction 3.1 satisfies
the no-read rule.

3.4 Proof of Theorem 3.4

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• Hyb0: This is the ACE security experiment Expt
(Write)
ΠACE,A,π(λ, 0) from Definition 2.11. The chal-

lenger begins by sampling (Sig.vk,Sig.sk)← Sig.Setup(1λ), (PE.pp,PE.msk)← PE.Setup(1λ),
and (rFE.pp, rFE.msk) ← rFE.Setup(1λ). Then, it generates the decryption key rFE.skF ←
rFE.KeyGen(rFE.msk, FSig.vk,PE.pp), and sets sank = rFE.skF and msk = (π,Sig.sk,PE.msk, rFE.pp).
During the query phase, the challenger answers the adversary’s key-generation and encryption
queries exactly as in the real scheme. When the adversary makes a challenge query on a
ciphertext ct∗ and an identity id∗ ∈ I, the challenger responds with ACE.Sanitize(sank, ct∗).

• Hyb1: Same as Hyb0, except the challenger responds to the adversary’s encryption queries with
independently-generated predicate encryption ciphertexts. Specifically, for each encryption
query on a message m ∈M and identity i ∈ I, the challenger responds with a fresh encryption
PE.Encrypt(PE.pp, i,m). The rest of the experiment remains unchanged.

• Hyb2: Same as Hyb1, except the challenger constructs the public parameters for the FE scheme,
the sanitizer key, and its response to the challenge query using the simulator S = (S1,S2,S3,S4)
for ΠrFE from Definition 2.7. Specifically, we make the following changes to the challenger:

– Setup: At the beginning of the game, instead of sampling rFE.pp using rFE.Setup, the
challenger instead runs the simulation algorithm (rFE.pp, st′)← S1(1λ). For the sanitizer
key, the challenger computes rFE.skF ← S2(st′, FSig.vk,PE.pp). The challenger samples
(Sig.vk,Sig.sk) and (PE.pp,PE.msk) as in the real scheme.

– Challenge query: For the challenge query (ct∗, id∗), the challenger first invokes the
simulator to obtain y∗ ← S4(st′, ct∗). If y∗ 6= ⊥, it parses y∗ = (i∗, σ∗,m∗), and checks if

Sig.Verify(Sig.vk, i∗, σ∗)
?
= 1. If so, then the challenger returns PE.Encrypt(PE.pp, i∗,m∗).

In all other cases, the challenger outputs ⊥.

The rest of the experiment is identical to Hyb1.

20

• Hyb3: Same as Hyb2, except the challenger aborts during the challenge phase if after computing
y∗ ← S4(st′, ct∗) and parsing y∗ = (i∗, σ∗,m∗), the following two conditions hold:

– Adversary A did not previously make an encryption key-generation query for identity i∗.

– Sig.Verify(Sig.vk, i∗, σ∗) = 1.

Otherwise, the challenger proceeds as in Hyb2.

• Hyb4: Same as Hyb3, except the challenger answers the challenge query with a sanitized
encryption of a random message. Specifically, when the challenger receives a challenge query
(ct∗, id∗), it computes y∗ ← S4(st′, ct∗) as usual and returns ⊥ if y∗ = ⊥. Otherwise, it parses
y∗ = (i∗, σ∗,m∗) and checks that Sig.Verify(Sig.vk, i∗, σ∗) = 1 (outputting ⊥ if not). The
challenger also checks the abort condition in Hyb3. If all the checks pass, the challenger
samples a message m′ ←R M and returns PE.Encrypt(PE.pp, id∗,m′) to the adversary. The rest
of the experiment is unchanged.

• Hyb5: Same as Hyb4, except we remove the abort condition from the challenger.

• Hyb6: Same as Hyb5, except the challenger samples the public parameters for the FE scheme,
the sanitizer key, and its response to the challenge query using the real algorithms ΠrFE rather
than the simulator. In particular, when responding to the challenge query (ct∗, id∗), the
challenger responds with rFE.Decrypt(sank, rFE.Encrypt(rFE.pp, (id∗, σ,m′))) where m′ ←R M
and σ is a signature on id∗ under Sig.vk.

• Hyb7: Same as Hyb6, except the challenger responds to the adversary’s encryption queries
honestly as in the real scheme instead of responding with independently generated predicate

encryption ciphertexts. This corresponds to the ACE security experiment Expt
(Write)
ΠACE,A,π(λ, 1)

from Definition 2.11.

Lemma 3.11. If ΠSig is perfectly correct and ΠrFE is correct, then for all efficient adversaries A,
we have that |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = negl(λ).

Proof. The only difference between Hyb0 and Hyb1 is the way the challenger responds to the
adversary’s encryption queries. First, let sank = rFE.skF ← rFE.KeyGen(rFE.pp, FSig.vk,PE.pp) be the
sanitizer key generated by the challenger at setup. Suppose the adversary makes Q encryption
queries on message-identity pairs (m1, i1), . . . , (mQ, iQ). In Hyb0, the challenger responds to each
query (mk, ik) by first computing the signature σk ← Sig.Sign(Sig.sk, ik) and the ciphertext ctk ←
rFE.Decrypt(rFE.skF , rFE.Encrypt(rFE.pp, (ik, σk,mk))). By correctness of ΠrFE, we have that(

rFE.pp, rFE.skF , {ctk}k∈[Q]

)
c
≈
(
rFE.pp, rFE.skF , {FSig.vk,PE.pp(ik, σk,mk; rk)}k∈[Q]

)
,

where rk ←R R. Since σk is a signature on ik, by perfect correctness of ΠSig and definition of
FSig.vk,PE.pp, the output distribution of FSig.vk,PE.pp(ik, σk,mk; rk) is precisely a fresh encryption
PE.Encrypt(PE.pp, ik,mk). This is the distribution in Hyb1. Note that we include the sanitizer
key rFE.skF in the joint distributions above because it is needed to simulate the response to the
adversary’s challenge query in Hyb0 and Hyb1.

Lemma 3.12. If ΠrFE is 1-NA-SIM-secure, then for all efficient adversaries A, we have that
|Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

21

Proof. Suppose there exists an adversary A that can distinguish between Hyb1 and Hyb2. We use
A to construct an algorithm B that can distinguish between RealΠrFE,A(1λ) and IdealΠrFE,A,S(1λ).
Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters rFE.pp. It constructs
the other components of the master secret key msk for the ACE scheme exactly as in Hyb1

and Hyb2.

2. Algorithm B answers the encryption and key-generation queries exactly as in Hyb1 and Hyb2.
These queries only depend on rFE.pp (and not rFE.msk and sank, both of which are unspecified).

3. When A makes a challenge query (ct∗, id∗), algorithm B queries its decryption oracle on the
pair (FSig.vk,PE.pp, ct

∗) to obtain a value z∗. It gives z∗ to the adversary.

4. At the end of the game, algorithm B outputs whatever A outputs.

First, we note that B does not make any key queries or encryption queries, so it is trivially admissible
for the 1-NA-SIM security game. By construction, if the public parameters, the key-generation
oracle, the encryption oracle, and the decryption oracle are implemented according to RealΠrFE,A(1λ),
then B perfectly simulates Hyb1 for A. In particular, we note that the sanitizer key sank is only
needed when responding to the challenge query, and so, the key sampled by the decryption oracle in
RealΠrFE,A(1λ) plays the role of sank. To conclude the proof, we show that if the public parameters,
the key-generation oracle, the encryption oracle, and the decryption oracle are implemented according
to IdealΠrFE,A,S(1λ), then B perfectly simulates Hyb2. It suffices to check that the challenge query is
correctly simulated.

• In Hyb2, on a challenge query (ct∗, id∗), the challenger computes y∗ ← S4(st′, ct∗). If y∗ = ⊥,
then the challenger responds with ⊥. Otherwise, it parses y∗ = (i∗, σ∗,m∗), and checks whether

Sig.Verify(Sig.vk, i∗, σ∗)
?
= 1 accepts. If so, it returns PE.Encrypt(PE.pp, i∗,m∗; r) where r ←R R.

Otherwise, it returns ⊥. This logic precisely corresponds to evaluating FSig.vk,PE.pp(y∗; r).

• In the reduction, if the decryption oracle is implemented according to IdealΠrFE,A,S(1λ), then
the oracle first computes y∗ ← S4(st′, ct∗). If y∗ = ⊥, the oracle returns ⊥. Otherwise, it
returns FSig.vk,PE.pp(y∗; r) where r ←R R. This is precisely the behavior in Hyb2.

We conclude that if the oracles are implemented according to IdealΠrFE,A,S(1λ), then B perfectly
simulates Hyb2 for A. The claim then follows by 1-NA-SIM security of ΠrFE.

Lemma 3.13. If ΠSig is existentially unforgeable, then for all efficient adversaries A, we have that
|Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(λ).

Proof. Hybrids Hyb2 and Hyb3 are identical except for the extra abort condition in Hyb3. Suppose
there exists an adversary A that can distinguish between Hyb2 and Hyb3 with non-negligible
advantage ε. Then, it must be the case that A can cause Hyb3 to abort with probability at least ε
(otherwise, the two experiments are identical). We use A to construct an algorithm B that breaks
the security of ΠSig. Algorithm B works as follows:

1. At the beginning of the existential unforgeability game, B is given the verification key Sig.vk.
Algorithm B chooses the parameters for the predicate encryption scheme and the functional
encryption scheme as in Hyb2 and Hyb3. It constructs the sanitizer key sank and msk as in
Hyb2 and Hyb3, except it leaves Sig.sk unspecified in msk.

22

2. During the query phase, B answers the encryption queries and the decryption key-generation
queries exactly as in Hyb2 and Hyb3 (since none of these queries depend on knowledge of
Sig.sk). Algorithm B answers the encryption key-generation and challenge queries as follows:

• Encryption key-generation queries: When A queries for an encryption key for an
identity i ∈ I, algorithm B submits i to its signing oracle and receives a signature σ. It
gives (rFE.pp, i, σ) to A.

• Challenge queries: When A makes its challenge query (ct∗, i∗), algorithm B runs the
simulator y∗ ← S4(st′, ct∗). If y∗ = ⊥, then B replies with ⊥. Otherwise, it parses
y∗ = (i∗, σ∗,m∗), and submits (i∗, σ∗) as its forgery in the existential unforgeability
game.

By construction, B perfectly simulates Hyb2 and Hyb3 for A. Thus, with probability at least ε,
algorithm A is able to produce a ciphertext ct∗ that causes Hyb3 to abort. This corresponds to the
case where A never makes an encryption key-generation query for identity i∗, and yet, σ∗ is a valid
signature on i∗. Since B only queries the signing oracle when A makes an encryption key-generation
query, by assumption, B never queries the signing oracle on the message i∗. In this case, σ∗ is a
valid forgery for the signature scheme, and B is able to break the security of the signature scheme
with non-negligible advantage ε.

Lemma 3.14. If ΠPE is secure, then for all efficient adversaries A, we have that

|Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish between Hyb3 and Hyb4. We use
A to construct an algorithm B that can break the security of the predicate encryption scheme ΠPE

(Definition 2.4). Algorithm B works as follows:

1. At the beginning of the game, B receives the public parameters PE.pp from the predicate
encryption challenger. It samples (Sig.vk,Sig.sk), rFE.pp, and sank exactly as in Hyb3 and
Hyb4. It constructs msk exactly as in Hyb3 and Hyb4, except it leaves PE.msk unspecified.

2. During the query phase, B answers the encryption queries and the encryption key-generation
queries exactly as in Hyb3 and Hyb4 (since they do not depend on PE.msk). The decryption
key-generation queries and the challenge queries are handled as follows:

• Decryption key-generation oracle: When A queries for a decryption key for an
identity j ∈ I, algorithm B submits the function fπ,j : I → {0, 1} (where fπ,j(i) = π(i, j))
to the key-generation oracle for the predicate encryption game, and receives the key
PE.skfπ,j . It gives PE.skfπ,j to A.

• Challenge oracle: When A makes its challenge query (ct∗, id∗), algorithm B first
computes y∗ ← S4(st′, ct∗). If y∗ = ⊥, algorithm B responds with ⊥. Otherwise, it parses
y∗ = (i∗, σ∗,m∗) and checks the abort condition. If B does not abort, then it samples a
message m′ ←R M, and submits the pairs (i∗,m∗), (id∗,m′) as its challenge query for the
predicate encryption security game. The predicate encryption challenger replies with a
challenge ciphertext z which B sends to A.

23

First, we argue that B is admissible for the predicate encryption security game. Since Hyb3 and
Hyb4 behave identically if B aborts, it suffices to reason about the case where the experiment does
not abort. We analyze each case individually:

• If y∗ = ⊥ or Sig.Verify(Sig.vk, i∗, σ∗) 6= 1, then the challenger responds with ⊥ in both Hyb3

and Hyb4 (as does B).

• If Sig.Verify(Sig.vk, i∗, σ∗) = 1, then A must have previously queried the encryption key-
generation oracle on identity i∗ (otherwise, the challenger in Hyb3 and Hyb4 would have
aborted). Since A is admissible for the no-write security game, for all identities j ∈ I that
A submits to the decryption key-generation oracle, it must be the case that π(i∗, j) = 0.
Similarly, by admissibility of A, it must have submitted its challenge identity id∗ to the
encryption key-generation oracle prior to making its challenge query. Thus, we also have that
π(id∗, j) = 0. This means that each function fπ,j , that B submits to the predicate encryption
challenger satisfies fπ,j(i

∗) = 0 = fπ,j(id
∗).

We conclude that B is admissible. Moreover, if B is interacting according to ExptPEΠPE,B(λ, 0), then B
perfectly simulates Hyb3 for A and if B is interacting according to ExptPEΠPE,B(λ, 1), then B perfectly
simulates Hyb4 for A. The lemma follows.

Lemma 3.15. If ΠSig is existentially unforgeable, then for all efficient adversaries A, we have that
|Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]| = negl(λ).

Proof. Follows by a similar argument as that used in the proof of Lemma 3.13.

Lemma 3.16. If ΠrFE is 1-NA-SIM-secure, then for all efficient adversaries A, we have that
|Pr[Hyb5(A) = 1]− Pr[Hyb6(A) = 1]| = negl(λ).

Proof. Follows by a similar argument as that used in the proof of Lemma 3.12.

Lemma 3.17. If ΠSig is perfectly correct and ΠrFE is correct, then for all efficient adversaries A,
|Pr[Hyb6(A) = 1]− Pr[Hyb7(A) = 1]| = negl(λ).

Proof. Follows by a similar argument as that used in the proof of Lemma 3.11.

Combining Lemmas 3.11 through 3.17, we conclude that the ACE scheme in Construction 3.1
satisfies the no-write rule.

4 Extensions

In this section, we describe several extensions to access control encryption that follow immediately
from our generic ACE construction in Section 3. We present these extensions primarily as ways of
extending the schema of access control encryption to provide increased flexibility, rather than as
conceptually new properties achieved by our specific construction. Indeed, it is not too difficult
to modify the iO-based ACE construction from Damg̊ard et al. [DHO16] to also provide these
properties.

24

4.1 Dynamic Policies

The access control encryption schema in Section 2.4 required that the access control policies be
specified at setup time. In this section, we show how to modify Construction 3.1 so that policies
can be associated with individual decryption keys rather than globally. This means that the access
control policy no longer has to be fixed at the time of system setup, and moreover, different access
control policies can be implemented for each receiver. Thus, the system can support new policies
as new receivers are added to the system, and in addition, receivers can update their keys (i.e.,
obtain new keys from the key distributor) when the access control policies change. Notably, with
this extension, changes to the access control policy do not require updating or re-issuing the sender
keys. More formally, we would make the following two modifications to the schema of ACE scheme
from Section 2.4:

• ACE.Setup(1λ)→ (sank,msk): On input the security parameter λ, the setup algorithm outputs
the sanitizer key sank and the master secret key msk. Notably, the setup algorithm does not
take the access control policy π as input.

• ACE.DKGen(msk, j, πj) → dkj,πj : On input the master secret key msk, the receiver identity
j ∈ I, and an access control policy πj : I → {0, 1} (the access control policy takes in a
sender identity i ∈ I and outputs a bit), the decryption key-generation algorithm outputs a
decryption key dkj,π.

The usual notion of access control encryption from Section 2.4 just corresponds to the special case
where the receiver-specific policy πj is simply the global access control policy π (specialized to the
particular receiver identity j). The correctness and security notions generalize accordingly.

Supporting dynamic policies. It is easy to modify Construction 3.1 to support dynamic policies
according to the above schema. In fact, policy enforcement in Construction 3.1 is already handled
by embedding the access control policy within the receiver’s decryption keys. Thus, supporting
receiver-specific policies πj : I → {0, 1} in ACE.DKGen can be implemented by simply generating the
decryption key as dkj,πj ← PE.KeyGen(PE.msk, πj). The correctness and security analysis remain
unchanged.

4.2 Fine-Grained Sender Policies

As noted in Section 1.1, it is often desirable to support fine-grained sender policies that depend not
only on the sender’s identity, but also on the contents of the sender’s message. In this section, we
describe how to extend Construction 3.1 to support fine-grained sender policies. We also give a
new security definition (Definition 4.1) to capture the property that a sender should only be able
produce encryptions of messages that conform to its particular policy.

Schema changes. In the context of access control encryption, fine-grained sender policies can be
captured by modifying the schema for the encryption key-generation algorithm to additionally take
in a sender policy (which can be represented as a predicate on the message space of the encryption
scheme). Formally, we write

• ACE.EKGen(msk, i, τ) → eki,τ : On input the master secret key msk, a sender identity i ∈ I,
and a sender policy τ : M → {0, 1}, the encryption key-generation algorithm outputs an
encryption key eki,τ .

25

To support fine-grained sender policies, we first relax the correctness definition (Definition 2.8)
by requiring that correctness only holds for messages m ∈M that satisfy the sender’s encryption
policy. The no-read and no-write rules remain largely unchanged (they are defined with respect
to the “always-accept” sender policy). To capture the property that a sender should only be able
to encrypt messages for which it is authorized, we introduce a new “soundness” requirement that
effectively states that a sender with encryption keys for some collection of policies τ1, . . . , τQ cannot
produce a new ciphertext ct that encrypts a message m (with respect to some decryption key dk)
where τk(m) = 0 for all k ∈ [Q]. More formally, we define the following soundness property:

Definition 4.1 (Soundness). Fix an ACE scheme ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) over an identity space I and a message spaceM. Let A be
an efficient adversary and π : I × I → {0, 1} be an access control policy. For a security parameter λ,

we define the soundness experiment Expt
(Sound)
ΠACE,A,π(λ) as follows. The challenger begins by sampling

(sank,msk)← ACE.Setup(1λ, π). The adversary A is then given access to the following oracles:

• Encryption oracle. On input a message m ∈M, and a sender identity i ∈ I, the challenger
first generates a sender key eki ← ACE.EKGen(msk, i, τ), where τ(m) = 1 for all m ∈M. The
challenger responds with the ciphertext ct← ACE.Sanitize(sank,ACE.Encrypt(eki,m)).

• Encryption key-generation oracle. On input a sender identity i ∈ I and a sender policy
τ : M→ {0, 1}, the challenger responds with an encryption key eki,τ ← ACE.EKGen(msk, i, τ).

• Decryption key-generation oracle. On input a receiver identity j ∈ I, the challenger
responds with a decryption key dkj ← ACE.DKGen(msk, j).

At the end of the experiment, adversary A outputs a ciphertext ct∗ ∈ {0, 1}∗, and a receiver
identity j∗ ∈ I. The output of the experiment is 1 if and only if the following conditions hold:

• ACE.Decrypt(ACE.DKGen(msk, j∗),ACE.Sanitize(sank, ct∗)) = m∗ for some m∗ ∈M.

• Let {(ik, τk)}k∈[Q] be the queries A makes to the sender key-generation oracle. For all k ∈ [Q]
where π(ik, j

∗) = 1, τk(m
∗) = 0, where m∗ is the decrypted message defined above.

We say that ΠACE is sound if for all policies π : I × I → {0, 1}, and all efficient adversaries A,

Pr
[
Expt

(Sound)
ΠACE,A,π(λ) = 1

]
= negl(λ).

Supporting sender policies. It is straightforward to extend Construction 3.1 to support arbitrary
sender policies with little additional overhead. Concretely, we make the following changes to
Construction 3.1:

• Instead of a signature on the identity i, the encryption key for an identity i ∈ I and sender
policy τ : M→ {0, 1} contains a signature on the tuple (i, τ), as well as a description of the
policy. Namely, eki = (rFE.pp, i, τ, σ) where σ ← Sig.Sign(Sig.sk, (i, τ)).

• An encryption of a message m ∈ M under the encryption key eki = (rFE.pp, i, τ, σ) is an
encryption of the tuple (i, τ, σ,m) using ΠrFE.

26

• The (randomized) sanitizer function FSig.vk,PE.pp now takes as input the tuple (i, τ, σ,m) and
outputs PE.Encrypt(PE.pp, i,m) if Sig.Verify(Sig.vk, (i, τ), σ) = 1 and τ(m) = 1. Otherwise,
FSig.vk,PE.pp outputs ⊥. The sanitizer key sank is then a decryption key rFE.skF for the modified
sanitizer function: rFE.skF ← rFE.KeyGen(msk, FSig.vk,PE.pp).

At a high level, the sanitizer key implicitly checks that a sender’s message is compliant with the
associated policy, and outputs a ciphertext that can be decrypted only if this is the case. Here, the
signature is essential in ensuring that the sender is only able to send messages that comply with one
of its sending policies. In particular, we show the following theorem:

Theorem 4.2. Suppose ΠSig is existentially unforgeable (Definition 2.2) and ΠrFE is a 1-NA-SIM-
secure functional encryption scheme for randomized functionalities (Definition 2.7). Then the access
control encryption scheme from Construction 3.1 with the above modifications satisfies soundness
(Definition 4.1).

Proof. Our proof proceeds via a sequence of hybrid arguments that closely resembles the hybrid
structure used in the proof of Theorem 3.4 in Section 3.4. We define our hybrid experiments as
follows:

• Hyb0: This is the real soundness experiment Expt
(Sound)
ΠACE,A,π(λ) from Definition 4.1.

• Hyb1: Same as Hyb0 except the challenger responds to the adversary’s encryption queries with
independently generated predicate encryption ciphertexts. This is analogous to Hyb1 in the
proof of Theorem 3.4.

• Hyb2: Same as Hyb1, except the challenger constructs the public parameters of the FE scheme
and the sanitizer key using the simulator S = (S1,S2,S3,S4) for ΠrFE. Moreover, at the end of
the game, after the adversary outputs its challenge ciphertext ct∗ and a receiver identity j∗ ∈ I,
the challenger computes y∗ ← S4(st′, ct∗). The challenger outputs 1 only if the following
conditions hold:

– The value y∗ is not ⊥.

– Writing y∗ = (i∗, τ∗, σ∗,m∗), the signature σ∗ is a valid signature on (i∗, τ∗) under Sig.vk
and τ∗(m∗) = 1.

If either condition is not satisfied, the challenger outputs 0. Otherwise, the challenger substi-
tutes FSig.vk,PE.pp(y∗) for ACE.Sanitize(sank, ct∗) and proceeds as in Hyb1. This is analogous
to Hyb2 in the proof of Theorem 3.4.

For an efficient adversary A, we write Hybi(A) to denote the output of hybrid experiment Hybi
when interacting with adversary A. Using a similar argument as that used to prove Lemmas 3.11
and 3.12, the outputs of Hyb0 and Hyb2 are computationally indistinguishable. Thus, it suffices to
show the following lemma.

Lemma 4.3. If ΠSig is existentially unforgeable, then for all efficient adversaries A, we have that
Pr[Hyb2(A) = 1] = negl(λ).

Proof. Suppose there exists an efficient adversary A such that Hyb2(A) = 1 with non-negligible
probability ε. We use A to build an adversary B that breaks existential unforgeability of ΠSig:

27

• At the beginning of the existential unforgeability game, B is given the verification key Sig.vk.
Algorithm B chooses the parameters for ΠPE and ΠrFE exactly as described in Hyb2. It
constructs the sanitizer key and msk as in Hyb2, except it leaves the Sig.sk unspecified in msk.

• During the query phase, B can answer all of the encryption queries and the decryption
key-generation queries as in Hyb2 (since those do not depend on Sig.sk). When A makes an
encryption key-generation query for an identity i ∈ I and policy τ :M→ {0, 1}, algorithm B
submits (i, τ) to its signing oracle and receives a signature σ. It gives (rFE.pp, i, σ, τ) to A.

• When A outputs its ciphertext ct∗ ∈ {0, 1}∗ and receiver identity j∗ ∈ I, algorithm B invokes
the simulator y∗ ← S4(st′, ct∗). If y∗ 6= ⊥, then B parses y∗ as y∗ = (i∗, τ∗, σ∗,m∗) and
outputs σ∗ as its forgery on the message (i∗, τ∗).

By construction, B perfectly simulates Hyb2 for A, so with probability ε, adversary A will output
(ct∗, j∗) such that Hyb2(A) = 1. Taking y∗ = (i∗, τ∗, σ∗,m∗) ← S4(st′, ct∗), this means that the
following conditions hold:

• The signature σ∗ is a valid signature on (i∗, τ∗) under Sig.vk and τ∗(m∗) = 1. This means
that FSig.vk,PE.pp(i∗, τ∗, σ∗,m∗) outputs a predicate encryption ciphertext PE.ct∗ for message
m∗ under attribute i∗.

• By perfect correctness of the predicate encryption scheme, PE.Decrypt(sk,PE.ct∗) either
outputs ⊥ or m∗ for an (honestly-generated) decryption key sk. Since Hyb2(A) = 1, it
must be the case that ACE.Decrypt(ACE.DKGen(msk, j∗),PE.ct∗) = m∗. By construction,
ACE.DKGen(msk, j∗) outputs a predicate encryption key for the function fπ,j∗ : I → {0, 1}
where fπ,j∗(i) = π(i, j∗). Since PE.ct∗ is a ciphertext with respect to the attribute i∗, and
PE.Decrypt(sk,PE.ct∗) = m∗, correctness of the predicate encryption scheme implies that
π(i∗, j∗) = 1.

• For all encryption key-generation queries (i, τ) made by A, if π(i, j∗) = 1, then it must be the
case that τ(m∗) = 0 (by admissibility of A). From the preceding arguments, we have both
π(i∗, j∗) = 1 and τ∗(m∗) = 1. Thus, A must not have made an encryption key-generation
query on the pair (i∗, τ∗).

The first condition shows that σ∗ is a valid signature on (i∗, τ∗), and the final condition shows that B
never queries the signing oracle on (i∗, τ∗) in the reduction. The latter follows from the fact that
B only queries the signing oracle to answer encryption key-generation queries, and an admissible
adversary A cannot ask for an encryption key for sender i∗ on policy τ∗. Thus, we conclude that B
is admissible and breaks the unforgeability of ΠSig with the same non-negligible advantage ε.

Since for all efficient adversaries A, we have that Pr[Hyb2(A) = 1] = negl(λ), and moreover, the
output distributions of Hyb0 and Hyb2 are computationally indistinguishable, we conclude that
Pr[Hyb0(A) = 1] = negl(λ), and the theorem follows.

Relation to constrained PRFs and constrained signatures. This notion of constraining the
encryption key to only produce valid encryptions on messages that satisfy the predicate is very
similar to the concept of constrained pseudorandom functions (PRF) [BW13, BGI14, KPTZ13] and
constrained signatures [MPR11, BGI14, BF14]. Constrained PRFs (resp., constrained signatures)

28

allow the holder of the secret key to issue a constrained key for a predicate that only allows PRF
evaluation on inputs (resp., signing messages) that satisfy the predicate. When extending ACE
to support fine-grained sender policies, the encryption key-generation algorithm can be viewed as
giving out a constrained version of the corresponding sender key. Our technique for constraining
the encryption key by including a signature of the predicate and having the encrypter “prove
possession” of the signature is conceptually similar to the technique used in [BGI14] to construct
functional signatures and in [BF14] to construct policy-based signatures. In [BGI14, BF14], this
proof of possession is implemented by having the user provide a non-interactive zero-knowledge
proof of knowledge of the signature, while in our setting, it is handled by having the user encrypt
the signature under an FE scheme and giving out an FE key (to the sanitizer) that performs the
signature verification.

4.3 Beyond All-or-Nothing Decryption

As described in Section 1.1, in a “functional ACE” scheme, the receivers’ decryption keys are
associated with functions and the decryption algorithm computes a function on the underlying
message. In this section, we show that it is straightforward to augment our construction to obtain a
functional ACE scheme.

Supporting functional ACE. Our generic construction of access control encryption naturally
extends to support issuing functional keys for the receivers. In Construction 3.1, each receiver has a
predicate encryption key that implements the underlying access control policy. To support arbitrary
receiver functionalities, we simply substitute a (public-key) general-purpose functional encryption
scheme for the predicate encryption scheme. The sanitizer key then becomes a re-encryption key for
the functional encryption scheme. Concretely, instantiating the underlying functional encryption
scheme with one secure against bounded collusions yields a functional ACE scheme where the no-read
rule holds against a bounded number of corrupt receivers (but an arbitrary number of corrupt
senders). Such schemes can be based on the existence of public-key encryption [SS10, GVW12] or
the learning with errors [GKP+13] problem. Robustness against polynomially-unbounded collusions
is also possible, but requires a collusion-resistant FE scheme. To date, this can be built from concrete
assumptions on multilinear maps [GGHZ16] or indistinguishability obfuscation [GGH+13, Wat15].

Acknowledgments

We thank Shashank Agrawal and the anonymous reviewers for helpful comments. This work was
funded by NSF, DARPA, a grant from ONR, and the Simons Foundation. Opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Stefano
Tessaro, and David A. Wilson. On the relationship between functional encryption,
obfuscation, and fully homomorphic encryption. In Cryptography and Coding, 2013.

29

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
signatures. In ESORICS, 2005.

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In NDSS,
2005.

[AW17] Shashank Agrawal and David J. Wu. Functional encryption: Deterministic to random-
ized functions from simple assumptions. In EUROCRYPT, 2017.

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. In CRYPTO, 2010.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key
attacks and tampering. In ASIACRYPT, 2011.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, 2001.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC, 2014.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,
Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable
signatures revisited. In PKC, 2009.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In PKC, 2014.

[Bih93] Eli Biham. New types of cryptanalytic attacks using related keys. In EUROCRYPT,
1993.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
Rka-prps, rka-prfs, and applications. In EUROCRYPT, 2003.

[BL73] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical
foundations. Technical report, DTIC Document, 1973.

[BMM17] Christian Badertscher, Christian Matt, and Ueli Maurer. Strengthening access control
encryption. 2017.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In ANTS, 1998.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE S&P, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

30

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In ASIACRYPT, 2013.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Cryptography and Coding, 2001.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7), 1977.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5), 1976.

[DHO16] Ivan Damg̊ard, Helene Haagh, and Claudio Orlandi. Access control encryption: En-
forcing information flow with cryptography. In TCC, 2016.

[DMS16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message transmission
with reverse firewalls - secure communication on corrupted machines. In CRYPTO,
2016.

[FF15] Victoria Fehr and Marc Fischlin. Sanitizable signcryption: Sanitization over encrypted
data (full version). IACR Cryptology ePrint Archive, 2015, 2015.

[FGKO17] Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk, and Claudio Orlandi. Access control
encryption for equality, comparison, and more. In PKC, 2017.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In TCC, 2016.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption
for randomized functionalities. In TCC, 2015.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, 2013.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In ACM CCS, 2006.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

31

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In CRYPTO, 2015.

[HLvA02] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography.
In CRYPTO, 2002.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In ACM CCS, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, 2008.

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized
functionalities in the private-key setting from minimal assumptions. In TCC, 2015.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Wa-
ters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In EUROCRYPT, 2010.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures.
In CT-RSA, 2011.

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In
EUROCRYPT, 2015.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010, 2010.

[OSM00] Sylvia L. Osborn, Ravi S. Sandhu, and Qamar Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies. ACM Trans.
Inf. Syst. Secur., 3(2), 2000.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for
inner-products. In ASIACRYPT, 2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In CRYPTO, 1991.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2), 1978.

[RZB12] Mariana Raykova, Hang Zhao, and Steven M. Bellovin. Privacy enhanced access control
for outsourced data sharing. In FC, 2012.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11), 1993.

[SBC+07] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian
Perrig. Multi-dimensional range query over encrypted data. In IEEE S&P, 2007.

32

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2), 1996.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, 1984.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[TZMT17] Gaosheng Tan, Rui Zhang, Hui Ma, and Yang Tao. Access control encryption based
on LWE. In APKC@AsiaCCS, 2017.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO, 2015.

33

	Introduction
	Our Contributions
	Additional Related Work

	Preliminaries
	Digital Signatures
	Predicate Encryption
	Functional Encryption for Randomized Functionalities
	Access Control Encryption (ACE)

	Generic Construction of Access Control Encryption
	Concrete Instantiations
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Extensions
	Dynamic Policies
	Fine-Grained Sender Policies
	Beyond All-or-Nothing Decryption

