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Abstract

An aggregate signature scheme allows a user to take 𝑁 signatures from 𝑁 users and aggregate them into a

single short signature. One approach to aggregate signatures uses general-purpose tools like indistinguishability

obfuscation or batch arguments for NP. These techniques are general, but lead to schemes with very high concrete

overhead. On the practical end, the seminal work of Boneh, Gentry, Lynn, and Shacham (EUROCRYPT 2003) gives

a simple and practical scheme, but in the random oracle model. In the plain model, current practical constructions

either rely on interactive aggregation or impose restrictions on how signatures can be aggregated (e.g., same-message

aggregation, same-signer aggregation or only support sequential or synchronized aggregation).

In this work, we focus on simple aggregate signatures in the plain model. We construct a pairing-based aggregate

signature scheme that supports aggregating an a priori bounded number of signatures 𝑁 . The size of the aggregate

signature is just two group elements. Security relies on the (bilateral) computational Diffie-Hellman (CDH) problem

in a pairing group. To our knowledge, this is the first group-based aggregate signature in the plain model where

(1) there is no restriction on what type of signatures can be aggregated; (2) the aggregated signature contains a

constant number of group elements; and (3) security is based on static falsifiable assumptions in the plain model.

The limitation of our scheme is that our scheme relies on a set of public parameters (whose size scales with 𝑁 ) and

individual signatures (before aggregation) also have size that scale with 𝑁 . Essentially, individual signatures contain

some additional hints to enable aggregation.

Our starting point is a new notion of slotted aggregate signatures. Here, each signature is associated with a “slot”

and we only support aggregating signatures associated with distinct slots. We then show how to generically lift

a slotted aggregate signature scheme into a standard aggregate signature scheme at the cost of increasing the size

of the original signatures.

1 Introduction
An aggregate signature scheme allows a user to take 𝑁 signatures from 𝑁 users and aggregate them into a single short

signature. More precisely, given a collection of 𝑁 triples (vk1,𝑚1, 𝜎1), . . . , (vk𝑁 ,𝑚𝑁 , 𝜎𝑁 ), where 𝜎𝑖 is a signature on𝑚𝑖

with respect to verification key vk𝑖 , it should be possible to publicly obtain an aggregate signature𝜎agg on the list of mes-

sages (𝑚1, . . . ,𝑚𝑁 ) that verifies with respect to the list of verification keys (vk1, . . . , vk𝑁 ). Moreover, the size of the ag-

gregate signature𝜎agg should be sublinear in the number of signatures𝑁 . In this work, we focus exclusively on schemes

with non-interactive aggregation. Namely, there is no interaction between the aggregator and the individual signers.

Aggregate signatures are useful whenever we have an application that requires communicating multiple signatures

from different users. For instance, when a client connects to a server over TLS, the server will send a certificate chain

that authenticates its public key. Each certificate in the chain contains a signature from one certificate authority on a

cryptographic key. An aggregate signature would allow the server to send a single signature rather than 𝑁 signatures

(when considering a certificate chain of length 𝑁 ). More recently, aggregate signatures have found applications to

blockchains. Here, signatures from many different users (e.g., authorizing different transactions) are compressed into a

single short signature that is recorded on the blockchain. Aggregate signatures are also a useful consensus mechanism

where signatures from multiple independent validators are compressed into a single short certificate of validity.

One of the simplest aggregate signature schemes is the pairing-based scheme of Boneh, Gentry, Lynn, and

Shacham [BGLS03], which essentially augments the Boneh-Lynn-Shacham (BLS) signature scheme [BLS01] to support

aggregation. While this scheme is simple and lightweight, its security relies on the random oracle heuristic. A natural
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question is to design efficient aggregate signatures in the plain model without random oracles. This is the focus of

this work.

Aggregate signatures in the plain model. Previously, the works of [BCCT13, HKW15] built universal signature
aggregators from succinct non-interactive arguments of knowledge (SNARKs) for NP and from indistinguishability

obfuscation, respectively. These schemes allow aggregating arbitrary signatures. More recently, the flurry of works on

constructing batch arguments forNP [CJJ21a, CJJ21b, WW22, DGKV22, PP22, KLVW23, CGJ
+
23, CEW25] also directly

imply aggregate signatures in the plain model (c.f., [WW22, DGKV22]). However, the reliance on indistinguishability

obfuscation or general-purpose batch arguments incurs substantial concrete overheads. For instance, these approaches

all make non-black-box use of an existing digital signature scheme. Our goal in this work is to develop a more direct

approach for constructing aggregate signatures in the plain model. Specifically, we seek constructions that only need

to make black-box use of a (pairing) group, and moreover, the size of the aggregate signature consists of a constant
number of group elements.

1
There has also been a line of work studying relaxations of aggregate signatures to enable

efficient constructions in the plain model. Typically, these schemes impose restrictions on what types of signatures

can be aggregated; we refer to Section 1.2 for a discussion of these approaches.

This work. In this work, we construct an aggregate signature from the (bilateral) computational Diffie-Hellman

(CDH) assumption in pairing groups. Our scheme supports aggregating an a priori bounded number of signatures

𝑁 . An aggregate signature on up to 𝑁 messages consists of just two group elements. To our knowledge, this is the

first group-based aggregate signature in the plain model where (1) there is no restriction on what type of signatures

can be aggregated (see Section 1.2 for more discussion); (2) the aggregated signature contains a constant number

of group elements; and (3) security is based on static falsifiable assumptions in the plain model. The limitation is

that our scheme requires a set of long public parameters (𝑁 1+𝛼
for any constant 𝛼 > 0) and moreover, the size of

individual signatures before aggregation scales with 𝑁 (specifically, individual signatures have size 𝑁 · poly(𝜆, log𝑁 ),
where 𝜆 is the security parameter).

The individual signatures in our scheme contain additional information that enables aggregation, but are essentially

unnecessary for signature verification. For this reason, the aggregation process still yields short signatures consisting of

a constant number of group elements. While it may seem undesirable for individual signatures to be long, inmany appli-

cations of aggregate signatures, only the aggregated signature needs to be transmitted or stored long term. For instance,

when communicating certificate chains in a TLS connection, a server only needs to transmit an aggregate signature

to the clients. In blockchain applications, only the aggregated signature for a set of transactions needs to be stored on

the blockchain. In both types of applications, the long individual signatures do not need to be communicated or stored.

For these applications, our construction offers a compelling solution to aggregate signatures without random oracles.

1.1 Technical Overview
To design an aggregate signature scheme in the plain model, it helps to start with an ordinary signature scheme.

In this work, we consider the signature scheme that is derived from the Boneh-Boyen [BB04] selectively-secure

identity-based encryption (IBE) scheme.
2
The Boneh-Boyen signature scheme has appealing properties:

• Based on simple assumptions. The Boneh-Boyen signature scheme is a simple scheme whose security

reduces to the standard computational Diffie-Hellman (CDH) problem over bilinear groups.

• Easily extensible to adaptive security. While the Boneh-Boyen signature scheme is selectively-secure, one

can swap in the Waters [Wat05] hash and adapt the analysis to prove adaptive security.

1
If we combine a group-based batch argument for NP (e.g., [WW22, CGJ

+
23, CEW25]) with an existing digital signature scheme, the size of

the resulting signature would contain poly(𝜆) group elements, where 𝜆 is a security parameter. Specifically, in these constructions, the size of the

aggregate signature grows with the size of the Boolean circuit that computes the signature verification algorithm. This circuit has super-constant

size since it must read the signature. The resulting aggregate signature then contains a super-constant number of group elements.

2
Specifically, the signature for a message𝑚 is an IBE decryption key for identity𝑚. However, instead of using this key to decrypt a ciphertext

(as in IBE), the user verifies the signature by using the bilinear map to check that the decryption key is well-formed. We remark that BLS

signatures [BLS01] are derived in an analogous manner from the Boneh-Franklin [BF01] IBE scheme (in the random oracle model).
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• Aggregatable multi-signature. The work of Lu, Ostrovsky, Sahai, Shacham, and Waters [LOS
+
06] previously

showed how to aggregate signatures from many signers under the restriction that every signature is on the

same message.
3
In other words, the [LOS

+
06] scheme is an aggregatable “multi-signature.” However, as we

demonstrate below, it is unclear how to support general aggregation (of signatures with arbitrary messages

under arbitrary verification keys).

The Boneh-Boyen signature scheme. To illustrate our techniques, we start by recalling the Boneh-Boyen [BB04]

signature scheme. To simplify the exposition, we describe everything using a symmetric pairing group.
4
Let (G,G𝑇 )

be a symmetric bilinear pairing group with prime order 𝑝 . Let 𝑔 be a generator for G, and 𝑒 : G × G → G𝑇 be an

efficiently-computable bilinear map. The Boneh-Boyen signature scheme then works as follows:

• Key-generation: The key-generation algorithm samples a random exponent 𝛼
r← Z𝑝 and random group

elements 𝑢,ℎ
r← G. The secret key is the exponent sk = 𝛼 while the public key is the triple vk = (𝑒 (𝑔,𝑔)𝛼 , 𝑢, ℎ).

• Signature: To sign a message𝑚 ∈ Z𝑝 , the signer samples 𝑟
r← Z𝑝 and outputs 𝜎 = (𝜎1, 𝜎2) where

𝜎1 = 𝑔
𝛼 (𝑢𝑚ℎ)𝑟 and 𝜎2 = 𝑔

𝑟 .

We can view the element 𝑢𝑚ℎ as the “Boneh-Boyen hash” of the message𝑚. We could alternatively replace this

with the bit-by-bit hash function from [Wat05] to obtain an analogous signature scheme. Using [Wat05] allows

us to prove adaptive security in the plain model, but at the expense of longer public keys.

• Verification: To check a signature 𝜎 = (𝜎1, 𝜎2) with respect to a verification key vk = (𝑒 (𝑔,𝑔)𝛼 , 𝑢, ℎ), the
verifier checks that

𝑒 (𝑔,𝑔)𝛼 ?

=
𝑒 (𝜎1, 𝑔)
𝑒 (𝜎2, 𝑢𝑚ℎ)

.

Supporting same-message aggregation. Next, we describe the [LOS
+
06] approach of extending the Boneh-Boyen

scheme to an aggregatable multi-signature (i.e., a scheme that supports aggregating signatures on the same message).

First, the [LOS
+
06] scheme assumes that the users’ verification keys share a common 𝑢,ℎ. In other words, the

group elements 𝑢,ℎ are now part of the public parameters for the aggregate multi-signature. Each user’s individual

verification key is 𝑒 (𝑔,𝑔)𝛼 and the exponent 𝛼 is their signing key.

Suppose we have two users with public keys vk1 = 𝑒 (𝑔,𝑔)𝛼1 and vk2 = 𝑒 (𝑔,𝑔)𝛼2 . Moreover, suppose 𝜎1 is a

signature on𝑚 under vk1 (with signing randomness 𝑟1) and 𝜎2 is a signature on𝑚 under vk2 (with signing randomness

𝑟2). Then, we can write

𝜎1 = (𝜎1,1, 𝜎1,2) =
(
𝑔𝛼1 (𝑢𝑚ℎ)𝑟1 , 𝑔𝑟1

)
𝜎2 = (𝜎2,1, 𝜎2,2) =

(
𝑔𝛼2 (𝑢𝑚ℎ)𝑟2 , 𝑔𝑟2

)
The aggregate signature 𝜎agg on𝑚 is then

𝜎agg =
(
𝜎1,1𝜎2,1, 𝜎1,2𝜎2,2

)
=

(
𝑔𝛼1+𝛼2 (𝑢𝑚ℎ)𝑟1+𝑟2 , 𝑔𝑟1+𝑟2

)
.

By construction, this is a signature on𝑚 with respect to the “aggregated verification key”

vkagg = vk1 · vk2 = 𝑒 (𝑔,𝑔)𝛼1+𝛼2

and signing randomness 𝑟1 + 𝑟2. This approach naturally extends to 𝑁 users, and the size of the aggregate multi-

signature remains at exactly two group elements. The above aggregation procedure critically relies on the the fact

that 𝜎1 and 𝜎2 are signatures on the same message, and thus, share a common base 𝑢𝑚ℎ.

3
Technically they showed this for the Waters [Wat05] signature, but since the Waters’ scheme shares the same basic structure as the Boneh-Boyen

construction, their approach applies equally well to the Boneh-Boyen scheme.

4
Everything here readily extends to asymmetric groups and in the technical sections (e.g., Section 3.1), we describe our constructions using

asymmetric pairing groups.
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Aggregating signatureswith common randomness. Consider now themore general settingwhere the signatures

are on different messages𝑚1 and𝑚2:

𝜎1 = (𝜎1,1, 𝜎1,2) =
(
𝑔𝛼1 (𝑢𝑚1ℎ)𝑟1 , 𝑔𝑟1

)
𝜎2 = (𝜎2,1, 𝜎2,2) =

(
𝑔𝛼2 (𝑢𝑚2ℎ)𝑟2 , 𝑔𝑟2

)
As written, there does not appear to be a simple way to aggregate these signatures since the signatures have different

bases: (𝑢𝑚1ℎ in 𝜎1 and 𝑢
𝑚2ℎ in 𝜎2) and different randomness 𝑟1, 𝑟2. However, suppose for a moment that the users had

used the same randomness to construct 𝜎1 and 𝜎2: namely, let 𝑟1 = 𝑟2 = 𝑟 . In this case, a simple aggregation strategy

is to compute

𝜎agg = (𝛾1, 𝛾2) = (𝜎1,1𝜎2,1, 𝜎1,2) =
(
𝑔𝛼1+𝛼2 (𝑢𝑚1ℎ)𝑟 (𝑢𝑚2ℎ)𝑟 , 𝑔𝑟

)
. (1.1)

Observe first that the aggregate signature only consists of two group elements, which is exactly the same size as a plain

Boneh-Boyen signature. Moreover, given the public parameters pp = (𝑢,ℎ), the aggregate signature 𝜎agg = (𝛾1, 𝛾2),
the users’ verification keys vk1 = 𝑒 (𝑔,𝑔)𝛼1 , vk2 = 𝑒 (𝑔,𝑔)𝛼2 , and the messages𝑚1,𝑚2, one can verify the aggregate

signature by checking

vk1 · vk2 = 𝑒 (𝑔,𝑔)𝛼1 · 𝑒 (𝑔,𝑔)𝛼2
?

=
𝑒 (𝛾1, 𝑔)

𝑒 (𝛾2, 𝑢𝑚1ℎ · 𝑢𝑚2ℎ) . (1.2)

We can view vk1 · vk2 as the aggregated verification key associated with (vk1, vk2). This approach naturally extends

to the setting where there are 𝑁 signatures, provided that all of the signatures share the same signing randomness.

Introducing helper terms to facilitate aggregation. The problem is we cannot expect independent signers

to choose the same randomness when signing. In fact, security of the Boneh-Boyen scheme critically relies on the

signing randomness 𝑟 being random and unknown to the adversary. To tackle this, we start by considering a relaxed

version of the problem where there are two types of public keys and signatures (which we denote by “Type-1” and

“Type-2”). Moreover, the scheme only supports aggregating a Type-1 signature with a Type-2 signature. We now

describe our modified approach:

• Public parameters: The public parameters for Type-1 and Type-2 signatures are (independently-generated)

public parameters for the Boneh-Boyen multi-signature. Namely, the public parameters for Type-1 signatures

is the pair (𝑢1, ℎ1); similarly, the public parameters for Type-2 signatures is the pair (𝑢2, ℎ2).

• Signing and verification keys: A user’s signing key is still sk = 𝛼 ∈ Z𝑝 and their verification key is

vk = 𝑒 (𝑔,𝑔)𝛼 , exactly as before.

• Signature: A Type-1 signature 𝜎1 on a message𝑚1 (with signing key 𝛼1 and signing randomness 𝑟1) contains a

standard Boneh-Boyen signature with respect to the Type-1 public parameters together with additional helper

components with respect to the Type-2 public parameters. Namely,

𝜎1 =
(
𝑔𝛼1 (𝑢𝑚1

1
ℎ1)𝑟1 , 𝑔𝑟1 , 𝑢𝑟1

2
, ℎ

𝑟1
2

)
,

Similarly, a Type-2 signature 𝜎2 on a message𝑚2 (with signing key 𝛼2 and signing randomness 𝑟2) has the

following structure:

𝜎2 =
(
𝑔𝛼2 (𝑢𝑚2

2
ℎ2)𝑟2 , 𝑔𝑟2 , 𝑢𝑟2

1
, ℎ

𝑟2
1

)
.

The helper components in 𝜎1, 𝜎2 essentially couple the signing randomness used to construct the signature

with the public parameters of the other type. These extra components will enable aggregation.

To aggregate the Type-1 signature 𝜎1 with the Type-2 signature 𝜎2, we use the additional helper components to

transform each into a signature with common randomness 𝑟agg = 𝑟1 + 𝑟2 (and with respect to public parameters

(𝑢1𝑢2, ℎ1ℎ2)). Specifically, given 𝜎1, 𝜎2 and𝑚1,𝑚2, the aggregation algorithm first computes

𝜎 ′
1
=

(
𝑔𝛼1 (𝑢𝑚1

1
ℎ1)𝑟1 · (𝑢𝑟2

1
)𝑚1 · ℎ𝑟2

1
, 𝑔𝑟1 · 𝑔𝑟2

)
=

(
𝑔𝛼1 (𝑢𝑚1

1
ℎ1)𝑟1+𝑟2 , 𝑔𝑟1+𝑟2

)
𝜎 ′
2
=

(
𝑔𝛼2 (𝑢𝑚2

2
ℎ2)𝑟2 · (𝑢𝑟1

2
)𝑚2 · ℎ𝑟1

2
, 𝑔𝑟1 · 𝑔𝑟2

)
=

(
𝑔𝛼2 (𝑢𝑚2

2
ℎ2)𝑟1+𝑟2 , 𝑔𝑟1+𝑟2

)
.
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At this point, 𝜎 ′
1
and 𝜎 ′

2
are Boneh-Boyen signatures with common randomness 𝑟1 + 𝑟2, so we can aggregate them

using the procedure from Eq. (1.1):

𝜎agg = (𝛾1, 𝛾2) = (𝜎 ′1,1𝜎 ′2,1, 𝜎 ′1,2) =
(
𝑔𝛼1+𝛼2 (𝑢𝑚1

1
ℎ1)𝑟1+𝑟2 (𝑢𝑚2

2
ℎ2)𝑟1+𝑟2 , 𝑔𝑟1+𝑟2

)
.

Given the Type-1 public parameters pp
1
= (𝑢1, ℎ1), the Type-2 public parameters pp

2
= (𝑢2, ℎ2), the aggregate

signature 𝜎agg = (𝛾1, 𝛾2), the users’ verification keys vk1 = 𝑒 (𝑔,𝑔)𝛼1 , vk2 = 𝑒 (𝑔,𝑔)𝛼2 , and the messages𝑚1,𝑚2, the

corresponding aggregate verification algorithm is then

vk1 · vk2 = 𝑒 (𝑔,𝑔)𝛼1 · 𝑒 (𝑔,𝑔)𝛼2
?

=
𝑒 (𝛾1, 𝑔)

𝑒 (𝛾2, 𝑢𝑚1

1
ℎ1 · 𝑢𝑚2

2
ℎ2)

.

It is not difficult to see that the ideas above can generalize to support aggregation between 𝑁 different types of

signatures where 𝑁 is fixed at system setup. The public parameters now scale linearly with 𝑁 (corresponding to 𝑁 sets

of public parameters, one for each signature type). For all 𝑠 ∈ [𝑁 ], a Type-𝑠 signature contains a total of 2𝑁 group ele-

ments. This includes (1) a Boneh-Boyen signature with respect to the Type-𝑠 parameters; and (2) cross terms that relate

the signing randomness with the Type-𝑡 public parameters for all 𝑡 ≠ 𝑠 . The additional cross terms enable our aggre-

gation procedure described above. The size of the aggregate signature always consists of exactly two group elements.

Slotted aggregate signatures. In Section 3, we refer to the above scheme as a “slotted aggregate signature” scheme.

Namely, in this setting, there are 𝑁 slots (corresponding to the 𝑁 different signature types). A Type-𝑠 signature is

associated with the slot 𝑠 ∈ [𝑁 ]. The aggregation algorithm takes as input a list of tuples {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}𝑠∈𝑆 where
each 𝜎𝑠 is a Type-𝑠 signature (associated with the slot 𝑠 ∈ 𝑆) and aggregates the list of signatures into a short signature
𝜎agg. The restriction in a slotted signature scheme is we can only aggregate a list of signatures where each signature

in the list is associated with a distinct slot (e.g., we cannot aggregate two signatures that are both associated with the

same slot 𝑠). Subsequently, we will describe a generic way to lift a slotted aggregate signature scheme into a standard

aggregate signature scheme that supports bounded aggregation without any slot restrictions.

Security for a slotted aggregate signature scheme. The security requirement on a slotted aggregate signature

scheme is that the adversary cannot forge an aggregate signature on any list {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 where there exists some

slot 𝑠 ∈ 𝑆 ⊆ [𝑁 ] where vk𝑠 is uncorrupted (i.e., honestly-generated), and moreover, the adversary did not request

a Type-𝑠 signature on𝑚𝑠 under vk𝑠 . For ease of exposition, we consider a selective version of the security game

where the adversary commits to both the slot index 𝑠∗ ∈ [𝑁 ] as well the challenge message𝑚𝑠∗ associated with slot

𝑠∗ at the beginning of the security game. Note that we can generically lift the scheme to an adaptively-secure one

by having the reduction guess the slot index 𝑠∗ (incurring a 1/𝑁 loss) as well as the challenge message𝑚∗ (incurring
a 1/2𝜆 loss5) and then relying on sub-exponential hardness. With complexity leveraging, the scheme parameters

would scale with poly(𝜆, log𝑁 ), which maintain our succinctness property. Alternatively, we could also replace the

Boneh-Boyen hash function [BB04] implicitly used in our construction with the Waters hash function [Wat05] and

adapt his techniques to directly argue adaptive security. We elected to focus on the simpler case of selective security

to highlight the techniques novel to our construction.

Slot-specific user keys. The basic scheme described above supports aggregation, but does not achieve the security

property we described above. The problem is that the verification equation (Eq. (1.2)) for aggregate signatures is

agnostic to the association between verification keys and messages. For instance, consider the following two scenarios

where we have two users with signing keys 𝛼1 and 𝛼2:

• User 1 creates a Type-1 signature 𝜎1 on𝑚1 with randomness 𝑟1 and User 2 creates a Type-2 signature 𝜎2 on

𝑚2 with randomness 𝑟2.

• User 1 creates a Type-2 signature 𝜎 ′
1
on𝑚2 with randomness 𝑟1 and User 2 creates a Type-1 signature 𝜎 ′

2
on

𝑚1 with randomness 𝑟2.

5
Without loss of generality, it suffices to support signatures on 𝜆-bit messages as we can always compose with a collision-resistant hash function

to support signing longer messages.
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This yields the following signatures:

𝜎1 =
(
𝑔𝛼1 (𝑢𝑚1

1
ℎ1)𝑟1 , 𝑔𝑟1 , 𝑢𝑟1

2
, ℎ

𝑟1
2

)
𝜎 ′
1
=

(
𝑔𝛼1 (𝑢𝑚2

2
ℎ2)𝑟1 , 𝑔𝑟1 , 𝑢𝑟1

1
, ℎ

𝑟1
1

)
𝜎2 =

(
𝑔𝛼2 (𝑢𝑚2

2
ℎ2)𝑟2 , 𝑔𝑟2 , 𝑢𝑟2

1
, ℎ

𝑟2
1

)
𝜎 ′
2
=

(
𝑔𝛼2 (𝑢𝑚1

1
ℎ1)𝑟2 , 𝑔𝑟2 , 𝑢𝑟2

2
, ℎ

𝑟2
2

)
.

Aggregating both (𝜎1, 𝜎2) and (𝜎 ′1, 𝜎 ′2) in this case yields the same aggregate signature 𝜎agg:

𝜎agg =
(
𝑔𝛼1+𝛼2 (𝑢𝑚1

1
ℎ1𝑢

𝑚2

2
ℎ2)𝑟1+𝑟2 , 𝑔𝑟1+𝑟2

)
.

Essentially, in the above scheme, 𝜎agg binds to a pair of verification keys vk1 = 𝑒 (𝑔,𝑔)𝛼1 and vk2 = 𝑒 (𝑔,𝑔)𝛼2 as well
as a pair of messages𝑚1,𝑚2, but it does not say whether which verification key vk1 or vk2 a particular message is

associated. A normal aggregate signature scheme should bind each message to a specific verification key.

The basic scheme described above does bind each message to a specific slot. Namely, if a message𝑚 is associated

with slot 𝑠 , then the “hash” of the message used during verification is (𝑢𝑚𝑠 ℎ𝑠 ), where (𝑢𝑠 , ℎ𝑠 ) are the public parameters

associated with slot 𝑠 . The problem is that the verification keys are independent of 𝑠 . A simple way to fix this is to have

each user generate 𝑁 different verification keys, one associated with each slot. For instance, a user’s verification key

could be 𝑒 (𝑔,𝑔)𝛼1 , . . . , 𝑒 (𝑔,𝑔)𝛼𝑁 . When verifying a signature on the set {(𝑠, vk𝑠 ,𝑚𝑠 )}, where vk𝑠 = (vk𝑠,1, . . . , vk𝑠,𝑁 ),
the aggregated verification key associated with this set would now be

∏
𝑠∈𝑆 vk𝑠,𝑠 . The aggregated verification key estab-

lishes an association between verification keys and slots. Since there is already a binding between slots and messages,

this combination establishes a binding between verification keys and messages. This in turn suffices for security.

While having each user sample 𝑁 independent verification keys suffices for correctness and security, it results in

long verification keys. We observe that we can use the pairing to compress them. Namely, instead of having the user

verification keys be 𝑒 (𝑔,𝑔)𝛼1 , . . . , 𝑒 (𝑔,𝑔)𝛼𝑁 , where 𝛼1, . . . , 𝛼𝑁 are uniform, we instead set them in a correlated manner.

Namely, we take 𝛼𝑠 = 𝛼𝑎𝑠 where each 𝑎𝑠
r← Z𝑝 is a fixed value determined by the public parameters. To facilitate this,

the user would publish 𝑔𝛼 as their verification key and the public parameters would include 𝐴𝑠 = 𝑔
𝑎𝑠

for all 𝑠 ∈ [𝑁 ].
Given vk = 𝑔𝛼 , the verification algorithm computes 𝑒 (vk, 𝐴𝑠 ) = 𝑒 (𝑔,𝑔)𝛼𝑎𝑠 , which is the user’s verification key associ-

ated with slot 𝑠 . With this optimization, we reduce the size of each user’s verification key back to a single group element

while still maintaining a binding between verification keys and messages. We give the full scheme in Construction 3.3.

Proving security. Security of our construction relies on the computational Diffie-Hellman (CDH) assumption in

G. When we instantiate the scheme over asymmetric groups, we rely on the bilateral version of CDH where the

CDH challenge is given out in both base groups. As noted above, we consider selective security where the adversary

commits to both a slot 𝑠∗ ∈ [𝑁 ] and a challenge message𝑚∗ at the beginning of the security game. Its goal is to

forge an aggregate signature where slot 𝑠∗ is associated with message𝑚∗ and the challenge verification key. In the

security proof, we program the CDH challenge into the public parameters for the chosen slot 𝑠∗. We rely on a similar

cancellation trick used to simulate identity keys in the Boneh-Boyen IBE scheme to answer the signing queries. We

refer to Section 3.1, and specifically, the proof of Theorem 3.5 for the full details.

Lifting a slotted scheme into an unslotted scheme. The limitation of a slotted aggregate signature scheme is it

only supports a list of signatures associated with distinct slots. However, if there is no coordination among signers, it is

not clear how to enforce this distinct-slot requirement. Our second contribution in this work is a generic compiler that

transforms a slotted aggregate signature scheme into a standard aggregate signature scheme that supports aggregating

an a priori bounded number of signatures where there is no slot restriction. Our approach follows the methodology

from [GLWW23], who described a similar compiler to transform a distributed broadcast encryption scheme into

a flexible broadcast encryption scheme. They describe a solution based on bipartite matching. A similar approach

applies in our setting. A caveat of the approach in [GLWW23] is they rely on random oracles for the analysis. Since

we focus on the plain model in this work, we describe an alternative realization of the [GLWW23] idea using expander

graphs [GUV07]. This allows us to generically transform the slotted aggregate signature scheme into an unslotted

aggregate signature scheme with only modest overhead (and without needing random oracles). Our setup is as follows:

• Suppose we want to support aggregation for up to 𝑁 signatures. We will use a slotted aggregate signature

scheme with𝑀 ≥ 𝑁 slots.
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• To sign a message𝑚, the signer will choose a set of slots 𝑆 ⊆ [𝑀] and generates a signature on𝑚 with respect

to each slot 𝑠 ∈ 𝑆 . The resulting signature is the collection 𝜎 = {(𝑠, 𝜎𝑠 )}𝑠∈𝑆 .

• Suppose we have 𝑁 signatures 𝜎1, . . . , 𝜎𝑁 where 𝜎𝑖 = {(𝑠, 𝜎𝑖,𝑠 )}𝑠∈𝑆𝑖 . To aggregate these signatures, the goal is

to “assign” each signature 𝜎𝑖 to a slot 𝑠𝑖 ∈ 𝑆𝑖 such that 𝑠1, . . . , 𝑠𝑁 are all distinct. Similar to [GLWW23], we can

model this as a bipartite matching problem. Specifically, we consider a bipartite graph with 𝑁 nodes on the left

(corresponding to the𝑁 signatures) and𝑀 nodes on the right (corresponding to the slots for the slotted signature

scheme). There is an edge between node 𝑖 on the left and node 𝑗 on the right if 𝑗 ∈ 𝑆𝑖 (i.e., the 𝑖th signature 𝜎𝑖
contains a slotted signature in slot 𝑗 ). If there is a way to associate a unique slot with each signature, then we

can invoke the aggregation algorithm for the underlying slotted scheme to obtain the final aggregate signature.

The question now is choosing the sets 𝑆𝑖 ⊆ [𝑀] associated with individual signatures so as to guarantee that for

any choice of 𝑁 (valid) signatures, there always exists a complete matching in the associated bipartite graph.
6
We

describe two approaches:

• The simplest approach is to take𝑀 = 𝑁 (i.e., use a slotted scheme with 𝑁 slots) and require that each signature

includes a signature for every slot (i.e., 𝑆 = [𝑀]). In this case, the graph associated with any collection of

signatures is complete, and as such, a complete matching always exists. Thus, correctness is immediate in this

case. The drawback, of course, is that this approach blows up the size of individual signatures by a factor of

𝑁 . When applied to our pairing-based construction, this yields a construction where the public parameters

contain 𝑂 (𝑁 ) group elements, normal signatures contain 𝑂 (𝑁 2) group elements, and the aggregate signature

consists of two group elements.

• We then show a more efficient approach where instead of including a signature for every slot, we choose the

slots based on the edges of an expander graph. In particular, the induced bipartite graph associated with any set

of 𝑁 signatures is an expander, and by setting the parameters properly, we can ensure that a complete matching

always exists. If we instantiate the expander graph using the explicit construction of [GUV07], a complete

matching exists so long as the number of slots satisfies𝑀 = 𝑁 1+𝛼 · poly(𝜆, log𝑁 ) and each signature consists of

𝐷 = poly(𝜆, log𝑁 ) signatures for the underlying slotted scheme. Here, 𝛼 > 0 can be any constant (and where

the poly(·) factors depend on 𝛼 ; see Corollary 4.16). When applied to our pairing-based construction, this yields

a construction where the public parameters contain 𝑁 1+𝛼 · poly(𝜆, log𝑁 ) group elements, normal signatures

contain 𝑁 · poly(𝜆, log𝑁 ) group elements, and the aggregate signature consists of two group elements.

We describe our approach and these two instantiations in Section 4. We refer to Corollaries 4.11 and 4.16 for the

specific instantiations of our approach. Taken together, we obtain an aggregate signature scheme that supports

aggregating an a priori bounded number of signatures. Individual signatures in our scheme grow with the bound,

but the aggregated signature is short (consisting of just two group elements).

1.2 Additional Related Work
Aggregate signatures in the plain model. A natural question is whether we can directly prove security of the

classic pairing-based (aggregate) signature schemes from [BLS01, BGLS03] without the random oracle heuristic. This

would immediately give an aggregatable signature in the plain model. However, this seems to be a challenging

question. Namely, the [BLS01] signature scheme (the basis for the aggregate signature scheme in [BGLS03]) can

be viewed as a “full domain hash” signature. There have been some attempts to argue security of such schemes

in the plain model, but so far, existing approaches have either required multilinear maps [FHPS13, HSW13] or

indistinguishability obfuscation [HSW14]. This is the case regardless of whether one is aiming for adaptive security

or a relaxed notion such as selective or static security. Proving selective security of [BLS01, BGLS03] in the plain

model from simple pairing-based assumptions like CDH would be a major breakthrough in this area.

6
Note that because we want aggregation to succeed for any set of valid signatures, this rules out the strategy of having the signer pick 𝐷 < 𝑁

slots at random. If we allow the signer to choose slots uniformly at random, then there will always exist a collection of 𝑁 (valid) signatures

that occupy the same set of slots. If we work in the random oracle, then we can derive the slots deterministically via the random oracle, which

does yield a viable strategy. The work of [GLWW23] take such an approach in the context of flexible broadcast encryption. Since we focus

exclusively on plain model constructions in this work, we opt for a different approach.
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Interactive aggregation. A number of works have studied signature schemes that support interactive aggrega-
tion [BN06, MPSW19, DEF

+
19, BK20]. In this setting, signers are allowed to interact with each other to construct

an aggregate signature. Our focus in this work is on non-interactive aggregation.

Other notions of aggregation. Many relaxations of aggregate signatures have been proposed in order to enable

simple or more efficient constructions in the plain model. In a synchronized aggregate signature [GR06, AGH10,

LLY13, HW18, FSZ22, KS23], signers are assumed to share a synchronized clock and aggregation is possible for

signatures generated in the same epoch. Moreover, there is an additional assumption that each users signs at most

one message per epoch. Sequential aggregate signatures [LMRS04, LOS
+
06, BGOY07] consider a different relaxation

where the signers perform the aggregation. Namely, signer 𝑖 would take an aggregate signature 𝜎 ′agg on the first 𝑖 − 1
messages and output a new aggregate signature 𝜎agg on the first 𝑖 messages. In the standard setting of aggregate

signatures, we do not require interaction or coordination between signers.

Multisignatures [Ita83, OO99, MOR01, Bol03, LOS
+
06, BN06, BN07, RY07, BDN18, MPSW19, DGNW20, FSZ22,

WTW
+
24, BPW25] are a special case of aggregate signatures where we only support aggregating signatures from

multiple parties on the same message. Finally, Goyal and Vaikuntanathan [GV22] consider an aggregate signature

scheme with the opposite limitation where one can aggregate signatures on different messages but only from a

single party. They give a direct bilinear map construction in this setting where the number of signatures that can

be aggregated is a priori bounded. Security in this case can be proven in the plain model if the attacker declares all

of its signing queries ahead of time (i.e., the scheme satisfies static security).

In this work, we focus on the standard notion of aggregate signatures where there are no restrictions on how

signatures are aggregated (other than the bound on the number of signatures that can be aggregated).

Registration-based cryptography. Our techniques are also conceptually similar to techniques used in recent works

on registration-based cryptography [GHMR18]. At a high level, the goal in registration-based cryptography is to aggre-

gate public keys frommultiple independent parties into a single short key. Many recent pairing-based and lattice-based

schemes for registration-based cryptography [HLWW23, ZZGQ23, FFM
+
23, KMW23, GLWW24, AT24, CW24, BLM

+
24,

CHW25, WW25] rely on a similar cross-term technique to facilitate key aggregation and decryption. In each of these

schemes, users are associated with a slot, and each user’s public key includes cross terms that are a function of the user’s

key-generation secret key and the slot-specific components in the scheme parameters. In our setting, we also start with

a slotted scheme and rely on having the user include cross terms in their signatures in order to facilitate aggregation.

In the setting of registration-based cryptography, a number of works have also studied way to lift from a

slotted scheme (where users register keys associated with a slot) to a general scheme where there are no such

restrictions. These include approaches based on the powers-of-two trick [GHMR18, GHM
+
19, HLWW23], bipartite

matching [GLWW23], or cuckoo hashing [FKdP23]. In this work, we leverage the bipartite matching approach

from [GLWW23], who previously considered it in the setting of distributed broadcast encryption.

2 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write

[𝑛] := {1, . . . , 𝑛}. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of

its input. We write poly(𝜆) to denote a function that is bounded by a fixed polynomial in the parameter 𝜆 and negl(𝜆)
to denote a negligible function in 𝜆 (i.e., a function 𝑓 (𝜆) where 𝑓 = 𝑜 (𝜆−𝑐 ) for all constants 𝑐 ∈ N).

Prime-order pairing groups. We recall the notion of a prime-order pairing group and the bilateral computational

Diffie-Hellman (CDH) assumption we use in this work. The bilateral CDH assumption is essentially the standard

CDH assumption over asymmetric groups where the challenge is given out in both groups.

Definition 2.1 (Prime-Order Bilinear Group). An (asymmetric) prime-order group generatorGroupGen is an efficient

algorithm that takes as input the security parameter 1
𝜆
and outputs a description G = (G,G′,G𝑇 , 𝑝, 𝑔, 𝑔′, 𝑒) consisting

of groups G, G′, and G𝑇 , each of prime order 𝑝 = 2
Θ (𝜆), and where 𝑔 is a generator of G, 𝑔′ is a generator of G′, and

𝑒 : G × G′ → G𝑇 is a non-degenerate bilinear map. We additionally require that the group operation in G,G′,G𝑇
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and the pairing operation 𝑒 are efficiently-computable. We assume that GroupGen outputs a fixed prime 𝑝 = 𝑝 (𝜆)
for each security parameter 𝜆 ∈ N.

Assumption 2.2 (Bilateral Computational Diffie-Hellman). Let GroupGen be a prime-order group generator. We

say that the bilateral computational Diffie-Hellman (bilateral CDH) assumption holds with respect to GroupGen if

for all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[A(G, 𝑔𝑥 , 𝑔𝑦, (𝑔′)𝑥 , (𝑔′)𝑦) = 𝑔𝑥𝑦] = negl(𝜆),

where G = (G,G′,G𝑇 , 𝑝, 𝑔, 𝑔′, 𝑒) ← GroupGen(1𝜆), and 𝑥,𝑦 r← Z𝑝 .

3 Slotted Aggregate Signatures
In this section, we give the formal definition of a slotted aggregate signature scheme. As described in Section 1.1,

in a slotted aggregate signature scheme, the signer associates a signature with a specific slot, and the aggregation

algorithm only works for signatures assigned to distinct slots. We give the formal definition below:

Definition 3.1 (SlottedAggregate Signatures). A slotted aggregate signature scheme onmessage spaceM = {M𝜆}𝜆∈N
is a tuple of efficient algorithms ΠSAS = (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) with the following syntax:

• Setup(1𝜆, 1𝑁 ) → pp: On input the security parameter 𝜆 and the number of slots 𝑁 , the setup algorithm outputs

the public parameters pp. We assume that pp includes a description of 1
𝜆
and 1

𝑁
.

• KeyGen(pp) → (vk, sk): On input the public parameters pp, the key-generation algorithm outputs a verification

key vk and a signing key sk.

• Sign(pp, sk,𝑚, 𝑠) → 𝜎 : On input the public parameters pp, the signing key sk, a message𝑚 ∈ M, and a slot

𝑠 ∈ [𝑁 ], the signing algorithm outputs a signature 𝜎 .

• Verify(pp, vk,𝑚, 𝑠, 𝜎) → 𝑏: On input the public parameters pp, a verification key vk, a message𝑚 ∈ M, a slot

𝑠 ∈ [𝑁 ], and a signature 𝜎 , the verification algorithm outputs 𝑏 = 1 if the signature is valid and 𝑏 = 0 otherwise.

• Aggregate(pp, {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}𝑠∈𝑆 ) → 𝜎agg: On input the public parameters pp, a list of verification keys vk𝑠 ,
messages𝑚𝑠 ∈ M𝜆 , and signatures 𝜎𝑠 for 𝑠 ∈ 𝑆 where 𝑆 ⊆ [𝑁 ], the aggregation algorithm outputs an aggregate

signature 𝜎agg (or a special symbol ⊥ to indicate a failure).

• AggVerify(pp, {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) → 𝑏: On input the public parameters pp, a list of verification keys vk𝑠
and messages𝑚𝑠 ∈ M𝜆 for 𝑠 ∈ 𝑆 where 𝑆 ⊆ [𝑁 ], and a signature 𝜎agg, the aggregate-verification algorithm

outputs 𝑏 = 1 if 𝜎agg is a valid signature and 𝑏 = 0 otherwise.

We require ΠSAS to satisfy the following correctness, succinctness, and unforgeability properties:

• Correctness: For all security parameters 𝜆 ∈ N, all polynomials 𝑁 = poly(𝜆), all slot indices 𝑠 ∈ [𝑁 ], and all

messages𝑚 ∈ M𝜆 ,

Pr

Verify(pp, vk,𝑚, 𝑠, 𝜎) = 1 :

pp← Setup(1𝜆, 1𝑁 );
(vk, sk) ← KeyGen(pp)
𝜎 ← Sign(pp, sk,𝑚, 𝑠)

 = 1.

In addition, for all pp in the support of Setup(1𝜆, 1𝑁 ) and all collections {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}𝑠∈𝑆 where 𝑆 ⊆ [𝑁 ] and

∀𝑠 ∈ 𝑆 : Verify(pp, vk𝑠 ,𝑚𝑠 , 𝑠, 𝜎𝑠 ) = 1,

we have that

Pr

[
AggVerify(pp, {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) = 1

]
= 1,

where 𝜎agg ← Aggregate(pp, {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}).

9



• Succinctness: There exists a fixed polynomial poly(·, ·) such that in the completeness experiment above, the

size of the aggregate signature 𝜎agg satisfies |𝜎agg | = poly(𝜆, log𝑁 ).

• Unforgeability: We define unforgeability against a fully malicious adversary that is allowed to choose arbitrary

verification keys other than the target one. Formally, we begin by defining the unforgeability game, which

is parameterized by a security parameter 𝜆 and an adversary A:

– Setup: The challenger gives 1𝜆 to A and receives from A the number of slots 1
𝑁
. The challenger runs

pp← Setup(1𝜆, 1𝑁 ) and (vk∗, sk∗) ← KeyGen(pp). It sends (pp, vk∗) to the adversary A.

– Signing queries: The adversary can now make adaptive signing queries. On each query, the adversary

specifies a slot 𝑠 ∈ [𝑁 ] and a message𝑚 ∈ M𝜆 . The challenger responds with 𝜎 ← Sign(pp, sk∗,𝑚, 𝑠).
– Output: At the end of the game, the adversary outputs a pair ({(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) where 𝑆 ⊆ [𝑁 ].

The challenger outputs 1 if the following conditions hold:

∗ AggVerify(pp, {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) = 1.

∗ There exists some 𝑠 ∈ 𝑆 where vk𝑠 = vk∗ and moreover, algorithm A did not make a signing query

on slot 𝑠 with message𝑚𝑠 .

Otherwise, the challenger outputs 0.

We say the signature scheme is unforgeable if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the unforgeability game.

Definition 3.2 (Selective Security). For a slotted aggregate signature scheme ΠSAS, we define the selective unforge-

ability game exactly as in Definition 3.1, except we require the adversary to output a slot index 𝑠∗ ∈ [𝑁 ] and the

message𝑚∗ ∈ M𝜆 at the beginning of the setup phase (before seeing the public parameters). The adversary in the

selective unforgeability game wins if the conditions in Definition 3.1 hold, and moreover, 𝑠∗ ∈ 𝑆 , vk𝑠∗ = vk∗, and
𝑚𝑠∗ =𝑚

∗
. We say ΠSAS is selectively-secure if the advantage of any efficient adversary is bounded by negl(𝜆) in the

selective unforgeability game.

3.1 Slotted Aggregate Signatures in the Plain Model
In this section, we describe our slotted aggregate signature scheme from the bilateral CDH assumption in a prime-order

pairing group.

Construction 3.3 (Slotted Aggregate Signature). Let GroupGen be an asymmetric prime-order group generator (Def-

inition 2.1). Let 𝑝 = 𝑝 (𝜆) be the order of the groups output by GroupGen. We construct a slotted aggregate signature

scheme ΠSAS = (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) with message spaceM = {Z𝑝 (𝜆) }𝜆∈N as follows:
7

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the number of slots 𝑁 , the setup algorithm starts

by sampling G = (G,G′,G𝑇 , 𝑝, 𝑔, 𝑔′, 𝑒) ← GroupGen(1𝜆). For each 𝑖 ∈ [𝑁 ], the setup algorithms samples

𝑎𝑖 , 𝑣𝑖 , 𝑡𝑖
r← Z𝑝 and sets

𝑢𝑖 = 𝑔
𝑣𝑖 , ℎ𝑖 = 𝑔

𝑡𝑖 , 𝑢′𝑖 = (𝑔′)𝑣𝑖 , ℎ′𝑖 = (𝑔′)𝑡𝑖 , 𝐴𝑖 = 𝑔𝑎𝑖 .

It outputs the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]).

• KeyGen(pp): On input the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]) the key-generation algorithm

samples 𝛼
r← Z𝑝 . It outputs the verification key vk = (𝑔𝛼 , (𝑔′)𝛼 ) and the signing key sk = 𝛼 .

• Sign(pp, sk,𝑚, 𝑠): On input the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]), the signing key sk = 𝛼 , a

message𝑚 ∈ Z𝑝 , and a slot index 𝑠 ∈ [𝑁 ], the signing algorithm samples 𝑟
r← Z𝑝 and computes randomization

components𝑈 𝑗 = 𝑢
𝑟
𝑗 and 𝐻 𝑗 = ℎ

𝑟
𝑗 for all 𝑗 ≠ 𝑠 . Then it outputs the signature

𝜎 =
(
𝐴𝛼𝑠 · (𝑢𝑚𝑠 ℎ𝑠 )𝑟 , 𝑔𝑟 , {( 𝑗,𝑈 𝑗 , 𝐻 𝑗 )} 𝑗≠𝑠

)
.

7
Note that we can support signing arbitrary messages by first hashing into Z𝑝 using any collision-resistant hash function.
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• Verify(pp, vk,𝑚, 𝑠, 𝜎): On input the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]), the verification

key vk = (𝑉 ,𝑉 ′), a message𝑚 ∈ Z𝑝 , a slot index 𝑠 ∈ [𝑁 ], and a signature 𝜎 = (𝜎1, 𝜎2, {( 𝑗,𝑈 𝑗 , 𝐻 𝑗 )} 𝑗≠𝑠 ), the
verification algorithm checks the following conditions:

– 𝑒 (𝑔,𝑉 ′) = 𝑒 (𝑉 ,𝑔′);
– 𝑒 (𝜎1, 𝑔′) = 𝑒 (𝐴𝑠 ,𝑉 ′) · 𝑒 (𝜎2, (𝑢′𝑠 )𝑚ℎ′𝑠 ); and
– for all 𝑗 ∈ [𝑁 ] where 𝑗 ≠ 𝑠 , 𝑒 (𝑈 𝑗 , 𝑔′) = 𝑒 (𝜎2, 𝑢′𝑗 ) and 𝑒 (𝐻 𝑗 , 𝑔′) = 𝑒 (𝜎2, ℎ′𝑗 ).

If all checks pass, the verification algorithm outputs 1; otherwise, it outputs 0.

• Aggregate(pp, {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}𝑠∈𝑆 ): On input the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]), a list
of verification keys vk𝑠 , messages𝑚𝑠 ∈ Z𝑝 , and signatures 𝜎𝑠 = (𝜎𝑠,1, 𝜎𝑠,2, {( 𝑗,𝑈𝑠,𝑗 , 𝐻𝑠,𝑗 )} 𝑗≠𝑠 ), the aggregation
algorithm proceeds as follows:

– Compute 𝛾2 =
∏
𝑠∈𝑆 𝜎𝑠,2 ∈ G.

– Then for 𝑠 ∈ 𝑆 , compute an intermediate value 𝛿𝑠 ∈ G where

𝛿𝑠 = 𝜎𝑠,1 ·
∏
𝑗≠𝑠

𝑈
𝑚𝑠

𝑗,𝑠
𝐻 𝑗,𝑠

Finally, it computes 𝛾1 =
∏
𝑠∈𝑆 𝛿𝑠 ∈ G.

Finally it outputs the aggregate signature 𝜎agg = (𝛾1, 𝛾2).

• AggVerify(pp, {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg): On input the public parameters pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]), a
list of verification keys vk𝑠 = (𝑉𝑠 ,𝑉 ′𝑠 ) and messages𝑚𝑖 ∈ Z𝑝 , and an aggregate signature 𝜎agg = (𝛾1, 𝛾2), the
verification algorithm outputs 1 if for all 𝑠 ∈ 𝑆 , 𝑒 (𝑔,𝑉 ′𝑠 ) = 𝑒 (𝑉𝑠 , 𝑔′), and moreover,

𝑒 (𝛾1, 𝑔′) =
∏
𝑠∈𝑆

(
𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) · 𝑒 (𝛾2, (𝑢′𝑠 )

𝑚𝑠ℎ′𝑠 )
)
. (3.1)

Otherwise, it outputs 0.

Theorem 3.4. Construction 3.3 is correct.

Proof. Take any 𝜆 ∈ N and 𝑁 = poly(𝜆). Take pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]) ← Setup(1𝜆, 1𝑁 ) and (vk, sk) ←
KeyGen(pp). Take any slot 𝑠 ∈ [𝑁 ] and any message𝑚 ∈ Z𝑝 . Let 𝜎 ← Sign(pp, sk,𝑚, 𝑠). By construction, 𝑢𝑖 = 𝑔

𝑣𝑖
,

ℎ𝑖 = 𝑔
𝑡𝑖
, 𝑢′𝑖 = (𝑔′)𝑣𝑖 , and ℎ′𝑖 = (𝑔′)𝑡𝑖 . In addition, sk = 𝛼 , vk = (𝑉 ,𝑉 ′) = (𝑔𝛼 , (𝑔′)𝛼 ) and

𝜎 = (𝜎1, 𝜎2, {( 𝑗,𝑈 𝑗 , 𝐻 𝑗 )} 𝑗≠𝑠 ) =
(
𝐴𝛼𝑠 · (𝑢𝑚𝑠 ℎ𝑠 )𝑟 , 𝑔𝑟 , {( 𝑗,𝑈 𝑗 , 𝐻 𝑗 )} 𝑗≠𝑠

)
,

where𝑈 𝑗 = 𝑢
𝑟
𝑗 and 𝐻 𝑗 = ℎ

𝑟
𝑗 , and 𝑟 ∈ Z𝑝 is the signing randomness. By definition, 𝑒 (𝑉 ,𝑔′) = 𝑒 (𝑔,𝑔′)𝛼 = 𝑒 (𝑔,𝑉 ′). Next,

it follows that

𝑒 (𝜎1, 𝑔′) = 𝑒 (𝐴𝛼𝑠 · (𝑢𝑚𝑠 ℎ𝑠 )𝑟 , 𝑔′)
= 𝑒 (𝐴𝛼𝑠 , 𝑔′) · 𝑒 ((𝑢𝑚𝑠 ℎ𝑠 )𝑟 , 𝑔′)
= 𝑒 (𝐴𝑠 , (𝑔′)𝛼 ) · 𝑒 (𝑔𝑟 , (𝑢′𝑠 )𝑚ℎ′𝑠 )
= 𝑒 (𝐴𝑠 ,𝑉 ′) · 𝑒 (𝜎2, (𝑢′𝑠 )

𝑚
ℎ′𝑠 )

which matches the verification equation. Next, for all 𝑗 ≠ 𝑠 , we also have

𝑒 (𝑈 𝑗 , 𝑔′) = 𝑒 (𝑢𝑟𝑗 , 𝑔′) = 𝑒 (𝑔𝑟 , 𝑢′𝑗 ) = 𝑒 (𝜎2, 𝑢′𝑗 )
𝑒 (𝐻 𝑗 , 𝑔′) = 𝑒 (ℎ𝑟𝑗 , 𝑔′) = 𝑒 (𝑔𝑟 , ℎ′𝑗 ) = 𝑒 (𝜎2, ℎ′𝑗 ).
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Thus, Verify(pp, vk,𝑚, 𝑠, 𝜎) = 1. We now move on to verifying the correctness of aggregate signatures. Take any

collection {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}𝑠∈𝑆 where

∀𝑠 ∈ 𝑆 : Verify(pp, vk𝑠 ,𝑚𝑠 , 𝑠, 𝜎𝑠 ) = 1.

Let 𝜎agg = (𝛾1, 𝛾2) ← Aggregate(pp, {(𝑠, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 )}) and consider AggVerify(pp, {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg). Write

vk𝑠 = (𝑉𝑠 ,𝑉 ′𝑠 ). Since Verify(pp, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 ) = 1, this means 𝑒 (𝑉𝑠 , 𝑔′) = 𝑒 (𝑔,𝑉 ′𝑠 ) for all 𝑠 ∈ 𝑆 , so the first verifica-

tion requirement is satisfied. Consider now the second relation (Eq. (3.1)). Write 𝜎𝑠 = (𝜎𝑠,1, 𝜎𝑠,2, {( 𝑗,𝑈𝑠,𝑗 , 𝐻𝑠,𝑗 )} 𝑗≠𝑠 )
and 𝜎𝑠,2 = 𝑔

𝑟𝑠
for some 𝑟𝑠 ∈ Z𝑝 . Again, since Verify(pp, vk𝑠 ,𝑚𝑠 , 𝜎𝑠 ) = 1, the following properties must hold:

• Since 𝑒 (𝜎𝑠,1, 𝑔′) = 𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) · 𝑒 (𝜎𝑠,2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠 ), this means

𝑒 (𝜎𝑠,1, 𝑔′) = 𝑒 (𝑔𝑎𝑠 , (𝑔′)𝛼𝑠 )𝑒 (𝑔𝑟𝑠 , (𝑔′)𝑚𝑠 𝑣𝑠+𝑡𝑠 ) = 𝑒 (𝑔𝑎𝑠𝛼𝑠+𝑟𝑠 (𝑚𝑠 𝑣𝑠+𝑡𝑠 ) , 𝑔′).

This means

𝜎𝑠,1 = 𝑔
𝑎𝑠𝛼𝑠+𝑟𝑠 (𝑚𝑠 𝑣𝑠+𝑡𝑠 ) = 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠

𝑠 ℎ𝑠 )𝑟𝑠 .

• Since 𝑒 (𝑈𝑠,𝑗 , 𝑔′) = 𝑒 (𝜎𝑠,2, 𝑢′𝑗 ), this means

𝑒 (𝑈𝑠,𝑗 , 𝑔′) = 𝑒 (𝑔𝑟𝑠 , (𝑔′)𝑣𝑗 ) = 𝑒 (𝑔𝑟𝑠 𝑣𝑗 , 𝑔′).

Thus,𝑈𝑠,𝑗 = 𝑔
𝑟𝑠 𝑣𝑗 = 𝑢

𝑟𝑠
𝑗
. Similarly, since 𝑒 (𝐻𝑠,𝑗 , 𝑔′) = 𝑒 (𝜎𝑠,2, ℎ′𝑗 ), this means 𝐻𝑠,𝑗 = ℎ

𝑟𝑠
𝑗
.

Let 𝑟 ∗ =
∑
𝑠∈𝑆 𝑟𝑠 . Then, the Aggregate algorithm computes

𝛾2 =
∏
𝑠∈𝑆

𝜎𝑠,2 =
∏
𝑠∈𝑆

𝑔𝑟𝑠 = 𝑔𝑟
∗
.

Next, for each 𝑠 ∈ 𝑆 , it also computes

𝛿𝑠 = 𝜎𝑠,1 ·
∏
𝑗≠𝑠

𝑈
𝑚𝑠

𝑗,𝑠
𝐻 𝑗,𝑠

= 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟𝑠 ·

∏
𝑗≠𝑠

𝑢
𝑚𝑠𝑟 𝑗
𝑠 ℎ

𝑟 𝑗
𝑠

= 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟𝑠 · (𝑢𝑚𝑠

𝑠 )
∑

𝑗≠𝑠 𝑟 𝑗 · ℎ
∑

𝑗≠𝑠 𝑟 𝑗
𝑠

= 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟𝑠 · (𝑢𝑚𝑠

𝑠 )𝑟
∗−𝑟𝑠 · ℎ𝑟 ∗−𝑟𝑠𝑠

= 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟𝑠 · (𝑢𝑚𝑠

𝑠 ℎ𝑠 )𝑟
∗−𝑟𝑠

= 𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟

∗

We can now think of the pair (𝛿𝑠 , 𝛾2) as a signature on the message𝑚𝑠 under the aggregated randomness 𝑟 ∗. Finally,
we have that

𝛾1 =
∏
𝑠∈𝑆

𝛿𝑠 =
∏
𝑠∈𝑆

𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟

∗
.

Finally, consider the aggregate verification relation (Eq. (3.1)):

𝑒 (𝛾1, 𝑔′) = 𝑒
(∏
𝑠∈𝑆

𝐴𝛼𝑠𝑠 (𝑢𝑚𝑠
𝑠 ℎ𝑠 )𝑟

∗
, 𝑔′

)
=

∏
𝑠∈𝑆

(
𝑒 (𝐴𝛼𝑠𝑠 , 𝑔′) · 𝑒 ((𝑢𝑚𝑠 ℎ𝑠 )𝑟

∗
, 𝑔′)

)
=

∏
𝑠∈𝑆

(
𝑒 (𝐴𝑠 , (𝑔′)𝛼𝑠 ) · 𝑒 (𝑔𝑟

∗
, (𝑢′𝑠 )

𝑚𝑠ℎ′𝑠 )
)

=
∏
𝑠∈𝑆

(
𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) · 𝑒 (𝛾2, (𝑢′𝑠 )

𝑚𝑠ℎ′𝑠 )
)
.

Corresponding, Eq. (3.1) holds and AggVerify outputs 1, as required. □
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Theorem 3.5 (Selective Unforgeability). Suppose the bilateral CDH assumption (Assumption 2.2) holds with respect
to GroupGen. Then, Construction 3.3 satisfies selective unforgeability.

Proof. Suppose there exists an efficient adversary A that wins the selective unforgeability game (Definition 3.2)

with non-negligible probability 𝜀. We construct a reduction algorithm B that solves the bilateral CDH problem with

respect to GroupGen. Algorithm B works as follows:

• Initialization: Algorithm B receives the security parameter 1
𝜆
and the bilateral CDH challenge (G, 𝑋, 𝑋 ′, 𝑌 , 𝑌 ),

where G = (G,G′,G𝑇 , 𝑝, 𝑔, 𝑔′, 𝑒), 𝑋 = 𝑔𝑥 , 𝑋 ′ = (𝑔′)𝑥 , 𝑌 = 𝑔𝑦 , and 𝑌 ′ = (𝑔′)𝑦 , and 𝑥,𝑦 r← Z𝑝 . Algorithm B runs

A on input 1
𝜆
. Algorithm A responds by outputting the number of slots 1

𝑁
, a challenge index 𝑠∗ ∈ [𝑁 ], and

a challenge message𝑚∗ ∈ Z𝑝 .

• Setup: For each 𝑖 ∈ [𝑁 ], algorithm B samples random integers 𝑣𝑖 , 𝑡𝑖 , 𝑎𝑖
r← Z𝑝 . Then for all 𝑖 ∈ [𝑁 ] \ {𝑠∗} it sets

𝑢𝑖 = 𝑔
𝑣𝑖 , 𝑢′𝑖 = (𝑔′)𝑣𝑖 , ℎ𝑖 = 𝑔𝑡𝑖 , ℎ′𝑖 = (𝑔′)𝑡𝑖 , 𝐴𝑖 = 𝑔𝑎𝑖

as in the normal setup algorithm. For index 𝑠∗, it sets

𝑢𝑠∗ = 𝑋𝑔
𝑣𝑠∗ , 𝑢′𝑠∗ = 𝑋

′ (𝑔′)𝑣𝑠∗ , ℎ𝑠∗ = 𝑋 −𝑚
∗
𝑔𝑡𝑠∗ , ℎ′𝑠∗ = (𝑋 ′)−𝑚

∗ (𝑔′)𝑡𝑠∗ , 𝐴𝑠∗ = 𝑋 .
In particular, the challenge message𝑚∗ is “programmed” into the parameters for the challenge slot 𝑠∗. Algorithm
B gives pp = (G, {(𝑖, 𝑢𝑖 , ℎ𝑖 , 𝑢′𝑖 , ℎ′𝑖 , 𝐴𝑖 )}𝑖∈[𝑁 ]) and vk∗ = (𝑌,𝑌 ′) to A.

• Signing queries: Whenever A makes a signing query on a slot 𝑠 ∈ [𝑁 ] and a message 𝑚 ∈ Z𝑝 (where

(𝑠,𝑚) ≠ (𝑠∗,𝑚∗)), algorithm B proceeds as follows:

– Case 1: For a query (𝑠,𝑚) where 𝑠 ≠ 𝑠∗, algorithm B computes the signature by sampling 𝑟
r← Z𝑝 . Then,

for each 𝑗 ≠ 𝑠 , it computes𝑈 𝑗 = 𝑢
𝑟
𝑗 and 𝐻 𝑗 = ℎ

𝑟
𝑗 . Finally, it responds to A with the signature

𝜎 =
(
𝑌𝑎𝑠 · (𝑢𝑚𝑠 ℎ𝑠 )𝑟 , 𝑔𝑟 , {( 𝑗,𝑈 𝑗 , 𝐻 𝑗 )} 𝑗≠𝑠

)
.

This is nearly identical to the actual signing algorithm except algorithm replaces𝐴𝛼𝑠 with 𝑌𝑎𝑠 . This change

does not effect the distribution of signatures since in vk∗ we implicitly set 𝛼 = 𝑦. Thus 𝐴𝛼𝑠 = 𝐴
𝑦
𝑠 = 𝑔𝑎𝑠𝑦 =

𝑌𝑎𝑠 . In the actual signing algorithm, the signer knows the discrete log 𝛼 of the verification key. The

reduction algorithm (which cannot know the signing key 𝛼 = 𝑦) compensates by using knowledge of the

exponent 𝑎𝑠 associated with 𝐴𝑠 instead.

– Case 2: For a query (𝑠,𝑚) where 𝑠 = 𝑠∗ and 𝑚 ≠ 𝑚∗, algorithm B cannot compute 𝐴
𝑦

𝑠∗ = 𝑋 𝑦 = 𝑔𝑥𝑦

itself, since this is the solution to the bilateral CDH problem. Thus, to construct a signature on a message

𝑚 ≠𝑚∗, it will sample the signing randomness in a careful way that cancels out this component in a spirit

similar to the Boneh-Boyen identity-based encryption (IBE) scheme [BB04]. The reduction algorithm

does this in two steps:

∗ First, algorithm B will deterministically construct a signature on the message𝑚 (using knowledge

of the exponents 𝑣𝑖 , 𝑡𝑖 algorithm B chose at the beginning). However, the structure of this signature

reveals a correlation with𝑚∗ being planted in the public parameters (i.e., it does not have the correct

distribution).

∗ In the second step, the reduction algorithm re-randomizes the signature from the first step to en-

sure that the resulting signature has the correct distribution. Unlike the first step, this second

re-randomization step only requires knowledge of the public parameters and not the exponents 𝑣𝑖 , 𝑡𝑖 .

Concretely, algorithm B works as follows:

∗ The reduction algorithm computes

𝜎2 = 𝑌
−1/(𝑚−𝑚∗ )

𝜎1 = 𝜎2
𝑚𝑣𝑠∗+𝑡𝑠∗ = 𝑌 −(1/(𝑚−𝑚

∗ ) ) (𝑚𝑣𝑠∗+𝑡𝑠∗ )

∀𝑗 ≠ 𝑠∗ : 𝑈̃ 𝑗 = 𝜎̃
𝑣𝑗
2

= 𝑌 −(1/(𝑚−𝑚
∗ ) )𝑣𝑗

∀𝑗 ≠ 𝑠∗ : 𝐻̃ 𝑗 = 𝜎̃
𝑡 𝑗
2
= 𝑌 −(1/(𝑚−𝑚

∗ ) )𝑡 𝑗 .
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These terms are efficiently computable by B since they are simply raising 𝑌 to an exponent known

to B. We remark that (1/(𝑚 −𝑚∗)) is well defined in Z𝑝 since𝑚 ≠𝑚∗. Observe that

𝐴
𝑦

𝑠∗ · (𝑢
𝑚
𝑠∗ℎ𝑠∗ )−𝑦/(𝑚−𝑚

∗ ) = 𝑔𝑥𝑦 (𝑋𝑚−𝑚∗𝑔𝑚𝑣𝑠∗+𝑡𝑠∗ )−𝑦/(𝑚−𝑚∗ )

= 𝑔 (𝑚𝑣𝑠∗+𝑡𝑠∗ ) (−𝑦/(𝑚−𝑚
∗ ) )

= 𝜎̃
𝑚𝑣𝑠∗+𝑡𝑠∗
2

= 𝜎̃1 .

In particular, this means that

𝜎̃ =
(
𝜎̃1, 𝜎̃2, {( 𝑗, 𝑈̃ 𝑗 , 𝐻̃ 𝑗 )} 𝑗≠𝑠

)
is a well-defined signature with randomness 𝑟 = −𝑦/(𝑚 −𝑚∗).

∗ Now B computes the final signature by re-randomizing 𝜎̃ . Specifically, it samples 𝑟
r← Z𝑝 . It then

computes

𝜎1 = 𝜎1 · (𝑢𝑚ℎ)𝑟 , 𝜎2 = 𝜎2 · 𝑔𝑟

and for all 𝑗 ≠ 𝑠∗, it computes𝑈 𝑗 = 𝑈̃ 𝑗𝑢
𝑟
𝑗 and 𝐻 𝑗 = 𝐻̃ 𝑗ℎ

𝑟
𝑗 .

Algorithm B replies with the signature 𝜎 = (𝜎1, 𝜎2, {𝑈 𝑗 , 𝐻 𝑗 } 𝑗≠𝑠∗ ). By construction, 𝜎 is a signature with

randomness 𝑟 = −𝑦/(𝑚 −𝑚∗) + 𝑟 .

• Output: At the end of the game, the attacker outputs a list {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 where 𝑆 ⊆ [𝑁 ] together with a

signature 𝜎agg = (𝛾1, 𝛾2). The reduction B first checks that

– AggVerify(pp, {(𝑥, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) = 1.

– 𝑠∗ ∈ 𝑆 and vk𝑠∗ = vk∗ and𝑚𝑠∗ =𝑚
∗
.

Algorithm B rejects if either property does not hold. If both properties hold, then algorithm B parses each

vk𝑠 = (𝑉𝑠 ,𝑉 ′𝑠 ) and computes the values

𝛾1 = 𝛾1

∏
𝑗≠𝑠∗

𝑉
−𝑎 𝑗
𝑗

and 𝛾2 = 𝛾2,

and outputs

𝛾1 · 𝛾2−
∑

𝑠∈𝑆 (𝑣𝑠𝑚𝑠+𝑡𝑠 ) .

By construction, algorithm B is efficient if A is efficient. Next, we argue that algorithm B currently simulates an

execution of the unforgeability game. Consider first the distribution of the public parameters:

• First, the bilateral CDH challenger samples G ← GroupGen(1𝜆), exactly as in the real scheme. In addition, we

can write 𝑋 = 𝑔𝑥 , 𝑋 ′ = (𝑔′)𝑥 , 𝑌 = 𝑔𝑦 , and 𝑌 ′ = (𝑔′)𝑦 , where the bilateral CDH challenger samples 𝑥,𝑦
r← Z𝑝 .

• Next, for all 𝑖 ≠ 𝑠∗ the reduction constructs 𝑢𝑖 , 𝑢
′
𝑖 , ℎ𝑖 , ℎ

′
𝑖 , 𝐴𝑖 exactly as in the real scheme.

• What remains is to analyze the joint distribution of vk∗, 𝑢𝑠∗ , 𝑢′𝑠∗ , ℎ𝑠∗ , ℎ
′
𝑠∗ , 𝐴𝑠∗ . By construction, the reduction

algorithm sets

vk∗ =
(
𝑔𝑦, (𝑔′)𝑦

)
𝐴𝑠∗ = 𝑔

𝑥

𝑢𝑠∗ = 𝑋𝑔
𝑣𝑠∗ = 𝑔𝑥+𝑣𝑠∗ 𝑢′𝑠∗ = 𝑋

′ (𝑔′)𝑣𝑠∗ = (𝑔′)𝑥+𝑣𝑠∗

ℎ𝑠∗ = 𝑋
−𝑚∗𝑔𝑡𝑠∗ = 𝑔−𝑚

∗𝑥+𝑡𝑠∗ ℎ′𝑠∗ = (𝑋 ′)−𝑚
∗ (𝑔′)𝑡𝑠∗ = (𝑔′)−𝑚∗𝑥+𝑡𝑠∗ .

Let 𝑣𝑠∗ = 𝑥 + 𝑣𝑠∗ , 𝑡𝑠∗ = −𝑚∗𝑥 + 𝑡𝑠∗ , 𝛼 = 𝑦, and 𝑎𝑠∗ = 𝑥 . Since 𝑥,𝑦, 𝑣𝑠∗ , 𝑡𝑠∗ are all uniform over Z𝑝 (and sampled

independently of all previous elements), the values 𝛼, 𝑣𝑠∗ , 𝑡𝑠∗ , 𝑎𝑠∗ are uniform and independent over Z𝑝 . This
means we can alternatively write

vk∗ =
(
𝑔𝛼̃ , (𝑔′)𝛼̃

)
, 𝑢𝑠∗ = 𝑔

𝑣̃𝑠∗ , 𝑢′𝑠∗ = (𝑔′) 𝑣̃𝑠∗ , ℎ𝑠∗ = 𝑔𝑡𝑠∗ , ℎ′𝑠∗ = (𝑔′)𝑡𝑠∗ , 𝐴𝑠∗ = 𝑔𝑎̃𝑠∗ .

This coincides with the distribution in the real scheme.
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Consider now the signing queries. We again consider the two cases:

• Case 1: As described in the reduction, B constructs signatures in the same manner as the actual scheme except

it replaces the term 𝐴𝛼𝑠 with 𝑌𝑎𝑠 . Since 𝐴𝛼𝑠 = 𝐴
𝑦
𝑠 = 𝑔𝑎𝑠𝑦 = 𝑌𝑎𝑠 , this produces an identical result.

• Case 2: As shown in the reduction algorithm itself, the signature 𝜎 algorithm B constructs can be viewed as a

signature output by the signing algorithm with randomness 𝑟 = −𝑦/(𝑚 −𝑚∗) + 𝑟 . Since the reduction samples

𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform over Z𝑝 . This coincides with the distribution of the signatures

in the real scheme.

We conclude that algorithm B perfectly simulates an execution of the selective unforgeability game forA. This means

with probability 𝜀, algorithmA outputs {(𝑠, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 where 𝑆 ⊆ [𝑁 ] togetherwith a signature𝜎agg = (𝛾1, 𝛾2)where

• AggVerify(pp, {(𝑥, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) = 1.

• 𝑠∗ ∈ 𝑆 and vk𝑠∗ = vk∗ and𝑚𝑠∗ =𝑚
∗
.

In this case, consider the output of algorithm B. Write vk𝑠 = (𝑉𝑠 ,𝑉 ′𝑠 ). Since AggVerify(pp, {(𝑥, vk𝑠 ,𝑚𝑠 )}𝑠∈𝑆 , 𝜎agg) = 1,

this means

∀𝑠 ∈ 𝑆 : 𝑒 (𝑔,𝑉 ′𝑠 ) = 𝑒 (𝑔′,𝑉𝑠 ), (3.2)

and moreover,

𝑒 (𝛾1, 𝑔′) =
∏
𝑠∈𝑆

(
𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) · 𝑒 (𝛾2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠 )

)
. (3.3)

Since 𝛾1 = 𝛾1 ·
∏

𝑗≠𝑠∗ 𝑉
−𝑎 𝑗
𝑗

and 𝛾2 = 𝛾2, we now appeal to Eqs. (3.2) and (3.3) to conclude that

𝑒 (𝛾1, 𝑔′) ·
∏
𝑠∈𝑆

𝑒
(
𝛾2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠

)−1
= 𝑒 (𝛾1, 𝑔′) ·

∏
𝑗≠𝑠∗

𝑒
(
𝑉
−𝑎 𝑗
𝑗

, 𝑔′
)
·
∏
𝑠∈𝑆

𝑒
(
𝛾2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠

)−1
=

∏
𝑠∈𝑆

𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) ·
∏
𝑗≠𝑠∗

𝑒
(
𝑉
−𝑎 𝑗
𝑗

, 𝑔′
)

= 𝑒 (𝐴𝑠∗ ,𝑉 ′𝑠∗ ) ·
∏
𝑗≠𝑠∗

(
𝑒 (𝑔,𝑉 ′𝑗 )𝑎 𝑗 · 𝑒 (𝑉𝑗 , 𝑔′)−𝑎 𝑗

)
= 𝑒 (𝐴𝑠∗ ,𝑉 ′𝑠∗ ) ·

∏
𝑗≠𝑠∗

(
𝑒 (𝑉𝑗 , 𝑔′)𝑎 𝑗 · 𝑒 (𝑉𝑗 , 𝑔′)−𝑎 𝑗

)
= 𝑒 (𝐴𝑠∗ ,𝑉 ′𝑠∗ ) = 𝑒 (𝑋,𝑌 ′) = 𝑒 (𝑔,𝑔′)𝑥𝑦 .

(3.4)

Now, for all 𝑗 ≠ {𝑠∗}, we have that (𝑢′𝑗 )𝑚 𝑗ℎ′𝑗 = (𝑔′)𝑣𝑗𝑚 𝑗+𝑡 𝑗
. Similarly,

(𝑢′𝑠∗ )𝑚
∗
ℎ′𝑠∗ = (𝑋 ′)𝑚

∗ (𝑔′)𝑚∗𝑣𝑠∗ (𝑋 ′)−𝑚∗ (𝑔′)𝑡𝑠∗ = (𝑔′)𝑣𝑠∗𝑚∗+𝑡𝑠∗ = (𝑔′)𝑣𝑠∗𝑚𝑠∗+𝑡𝑠∗

since𝑚𝑠∗ =𝑚
∗
. It then follows that∏

𝑠∈𝑆
𝑒
(
𝛾2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠

)−1
=

∏
𝑠∈𝑆

𝑒
(
𝛾
−(𝑣𝑠𝑚𝑠+𝑡𝑠 )
2

, 𝑔′
)
= 𝑒

(
𝛾
−∑

𝑠∈𝑆 (𝑣𝑠𝑚𝑠+𝑡𝑠 )
2

, 𝑔′
)
. (3.5)

Combining Eqs. (3.4) and (3.5), we see that

𝑒 (𝑔𝑥𝑦, 𝑔′) = 𝑒 (𝛾1, 𝑔′) ·
∏
𝑠∈𝑆

𝑒
(
𝛾2, (𝑢′𝑠 )𝑚𝑠ℎ′𝑠

)−1
by Eq. (3.4)

= 𝑒 (𝛾1, 𝑔′) · 𝑒
(
𝛾
−∑

𝑠∈𝑆 (𝑣𝑠𝑚𝑠+𝑡𝑠 )
2

, 𝑔′
)

by Eq. (3.5)

= 𝑒
(
𝛾1𝛾
−∑

𝑠∈𝑆 (𝑣𝑠𝑚𝑠+𝑡𝑠 )
2

, 𝑔′
)

by bilinearity.

It follows that 𝛾1𝛾2
−∑

𝑠∈𝑆 𝑣𝑠𝑚𝑠+𝑡𝑠
is a solution to the bilateral CDH problem and so, algorithm B succeeds with the

same advantage 𝜀. □
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Theorem 3.6 (Succinctness). Construction 3.3 is succinct.

Proof. By construction, the size of the aggregate signature in Construction 3.3 consists of two group elements, so

it has size 2 · |G| = poly(𝜆), as required. □

Corollary 3.7 (Slotted Aggregate Signatures). Let 𝜆 be a security parameter and𝑁 be the number of slots. Then, under the
bilateral CDH assumption in a pairing group, there exists a slotted aggregate signature scheme with the following properties:

• The public parameters contain 3𝑁 + 1 elements in G and 2𝑁 + 1 elements in G′.

• Each verification key consists of one element in each of G and G′. The secret key is a field element in Z𝑝 .

• Each signature contains 2𝑁 elements in G. Signing requires 𝑂 (𝑁 ) exponentiations in G and verification also
requires 𝑂 (𝑁 ) pairings.

• An aggregate signature consists of just two elements in G. Aggregation requires 𝑂 (𝑁 ) exponentiations. Verifying
an aggregate signature requires 𝑂 (𝑁 ) pairings.

Remark 3.8 (Reducing the Verification Cost). To verify an aggregate signature on |𝑆 | ≤ 𝑁 messages, the aggregate

verification algorithm in Construction 3.3 needs to compute 3|𝑆 | + 2 pairings: |𝑆 | pairings are needed to compute

the per-slot public key 𝑒 (𝐴𝑠 ,𝑉 ′𝑠 ) and 2|𝑆 | pairings are needed to check well-formedness of each individual (i.e., that

𝑒 (𝑔,𝑉 ′𝑠 ) = 𝑒 (𝑉𝑠 , 𝑔′)). We first remark that all of these pairings can be precomputed (e.g., in an offline phase) if the

signers and slots information are known before the signature is verified. Also, in settings where one expects to verify

multiple signatures from the same set of signers, the per-slot verification keys can be cached and reused (and similarly,

there is no need to re-check the well-formedness of their verification keys).

Second, when checking well-formedness of the |𝑆 | verification keys, a simple strategy to reduce the number of pair-

ings (and replace them with exponentiations) is to have the verifier sample random 𝛽𝑠
r← Z𝑝 for all 𝑠 ∈ 𝑆 and checking

𝑒 (𝑔,∏𝑠∈𝑆 (𝑉 ′𝑠 )𝛽𝑠 ) = 𝑒 (
∏
𝑠∈𝑆 𝑉𝑠

𝛽𝑠 , 𝑔′). This will detect if any key is invalid with 1 − 1/𝑝 probability. One could also use

a “small exponents” technique to choose 𝛽𝑠 values from a smaller range to reduce the exponentiation time in exchange

for a higher probability of accepting a signature with respect to a malformed set of verification keys [FGHP09].

4 From a Slotted Scheme to an Unslotted Scheme
In this section, we describe how to upgrade a slotted aggregate signature scheme into a standalone aggregate signature

scheme (without slots). We work in the setting of bounded aggregation where there is an a priori bound on the

number of signatures that will be aggregated. We start with the formal definition:

Definition 4.1 (Aggregate Signatures with Bounded Aggregation). An aggregate signature scheme that supports

bounded aggregation on message spaceM = {M𝜆}𝜆∈N is a tuple of efficient algorithms ΠAS = (Setup,KeyGen, Sign,
Verify,Aggregate,AggVerify) with the following syntax:

• Setup(1𝜆, 1𝑁 ) → pp: On input the security parameter 𝜆 and a bound on the number of signatures that will

be aggregated, the setup algorithm outputs the public parameters pp. We assume that pp includes a description

of 1
𝜆
and 1

𝑁
.

• KeyGen(pp) → (vk, sk): On input the public parameters pp, the key-generation algorithm outputs a verification

key vk and a signing key sk.

• Sign(pp, sk,𝑚) → 𝜎 : On input the public parameters pp, the signing key sk, and a message𝑚 ∈ M, the signing

algorithm outputs a signature 𝜎 .

• Verify(pp, vk,𝑚, 𝜎) → 𝑏: On input the public parameters pp, a verification key vk, a message𝑚 ∈ M, and a

signature 𝜎 , the verification algorithm outputs 𝑏 = 1 if the signature is valid and 𝑏 = 0 otherwise.
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• Aggregate(pp, {(𝑖, vk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑖∈[𝐾 ]) → 𝜎agg: On input the public parameters pp, verification keys vk𝑖 , mes-

sages𝑚𝑖 ∈ M𝜆 , and signatures 𝜎𝑖 for all 𝑖 ∈ [𝐾] where 𝐾 ≤ 𝑁 , the aggregation algorithm outputs an aggregate

signature 𝜎agg (or a special symbol ⊥ to indicate a failure). Without loss of generality, we assume that each

(vk𝑖 ,𝑚𝑖 ) pair is distinct in the input.

• AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg) → 𝑏: On input the public parameters pp, verification keys vk𝑖 and mes-

sages𝑚𝑖 ∈ M𝜆 for all 𝑖 ∈ [𝐾] where 𝐾 ≤ 𝑁 , and a signature 𝜎agg, the aggregate-verification algorithm outputs

𝑏 = 1 if 𝜎agg is a valid signature and 𝑏 = 0 otherwise.

We require ΠAS to satisfy the following correctness, succinctness, and unforgeability properties:

• Correctness: For all security parameters 𝜆 ∈ N, all polynomials 𝑁 = poly(𝜆), and all messages𝑚 ∈ M𝜆 ,

Pr

Verify(pp, vk,𝑚, 𝜎) = 1 :

pp← Setup(1𝜆, 1𝑁 );
(vk, sk) ← KeyGen(pp)
𝜎 ← Sign(pp, sk,𝑚)

 = 1.

In addition, for all pp in the support of Setup(1𝜆, 1𝑁 ), all 𝐾 ≤ 𝑁 , and all collections {(vk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑖∈[𝐾 ] where

∀𝑖 ∈ [𝐾] : Verify(pp, vk𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1,

we have that

Pr

[
AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg) = 1

]
= 1,

where 𝜎agg ← Aggregate(pp, {(𝑖, vk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑖∈[𝐾 ]).

• Succinctness: There exists a fixed polynomial poly(·, ·) such that in the completeness experiment above, the

size of the aggregate signature 𝜎agg satisfies |𝜎agg | = poly(𝜆, log𝑁 ).

• Unforgeability: For a security parameter 𝜆 and an adversaryA, we define the unforgeability game as follows:

– Setup: The challenger gives 1𝜆 toA and receives the bound 1
𝑁
. The challenger runs pp← Setup(1𝜆, 1𝑁 )

and (vk∗, sk∗) ← KeyGen(pp). It sends (pp, vk∗) to the adversary A.

– Signing queries: The adversary can now make adaptive signing queries. On each query, the adversary

specifies a message𝑚 ∈ M𝜆 . The challenger responds with 𝜎 ← Sign(pp, sk∗,𝑚).
– Output: At the end of the game, the adversary outputs {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] for some 𝐾 ≤ 𝑁 together with

a signature 𝜎agg. The challenger outputs 1 if the following conditions hold:

∗ AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg) = 1.

∗ There exists some 𝑖 ∈ [𝐾] where vk𝑖 = vk∗ and moreover, algorithm A did not make a signing query

on message𝑚𝑖 .

Otherwise, the challenger outputs 0.

We say the signature scheme is unforgeable if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the unforgeability game.

Definition 4.2 (Selective Unforgeability). Similar to Definition 3.2, we can define a selective variant of the unforge-

ability game in Definition 4.1 where the adversary has to declare a challenge message𝑚∗ ∈ M𝜆 at the beginning

of the game (before it sees the public parameters). At the end of the game the adversary is successful if it outputs

{(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] and 𝜎agg where the following conditions hold:

• AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg) = 1 as in Definition 4.1.

• There exists 𝑖 ∈ [𝐾] where vk𝑖 = vk∗ and𝑚𝑖 =𝑚
∗
and algorithmA does not make a signing query on message

𝑚𝑖 .

We say ΠAS is selectively-secure if the advantage of any efficient adversary is bounded by negl(𝜆) in the selective

unforgeability game.
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4.1 Slotted-to-Unslotted Transformation
We now show how to construct an aggregate signature scheme with bounded aggregation from any slotted aggregate

signature scheme. As described in Section 1.1, to support aggregation of up to 𝑁 signatures, the idea is to instantiate

a slotted aggregate signature scheme with𝑀 ≥ 𝑁 slots. Each signature for the main scheme will consist of 𝐷 ≤ 𝑀
signatures on the same message but to different slots. Suppose we now have a collection of 𝐾 ≤ 𝑁 signatures. We

can use the underlying slotted aggregate signature scheme to aggregate the signatures as long as we can associate

a distinct slot (of the slotted scheme) with each of the 𝐾 signatures. Similar to [GLWW23], we can formulate this

assignment process as a bipartite graph matching problem. Namely, we consider a bipartite graph with 𝐾 nodes on the

left (representing the 𝐾 signatures we are aggregating) and𝑀 nodes on the right (representing the slots of the slotted

aggregate signature scheme). An edge exists between a signature 𝜎𝑖 and a slot 𝑠 ∈ [𝑀] if 𝜎𝑖 includes a slotted signature
for slot 𝑠 . Since each signature contains 𝐷 slotted signatures, each node on the left has degree 𝐷 . Whenever there is a

complete matching in this graph, we can aggregate the signatures using the underlying slotted scheme. Before giving

the formal construction, we recall the basic graph-theoretic tools we will use. The definitions of bipartite graphs,

Hall’s theorem, and the statement of the Hopcroft-Karp algorithm is taken (nearly) verbatim from [GLWW23, §3.1].

Bipartite graphs and matchings. A bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) consists of two sets of vertices 𝑈 and 𝑉 and

a set of edges 𝐸. Each edge 𝑒 ∈ 𝐸 is a pair of nodes (𝑢, 𝑣) ∈ 𝑈 × 𝑉 . We say 𝐺 has left-degree 𝐷 if for every node

𝑢 ∈ 𝑈 has degree exactly 𝐷 . A matching𝑀 = (𝑆, 𝜌) on𝐺 from𝑈 to𝑉 is a set of nodes 𝑆 ⊆ 𝑈 and an injective labeling
function 𝜌 : 𝑆 → 𝑉 where

∀𝑢 ∈ 𝑆 : (𝑢, 𝜌 (𝑢)) ∈ 𝐸.

We say 𝑀 = (𝑆, 𝜌) is a complete matching if 𝑆 = 𝑈 and that it is maximal if for every matching 𝑀 ′ = (𝑆 ′, 𝜌 ′) on
𝐺 from 𝑈 to 𝑉 , it holds that |𝑆 | ≥ |𝑆 ′ |. For a set 𝑆 ⊆ 𝑈 , we write Γ(𝑆) ⊆ 𝑉 to denote the neighborhood of 𝑆 :

Γ(𝑆) = {𝑣 ∈ 𝑉 | ∃𝑢 ∈ 𝑆 : (𝑢, 𝑣) ∈ 𝐸}.

Theorem 4.3 (Hall’s Marriage Theorem [Hal35]). Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a bipartite graph. Then, 𝐺 has a complete
matching from𝑈 to 𝑉 if and only if for every subset 𝑆 ⊆ 𝑈 , |Γ(𝑆) | ≥ |𝑆 |.

Theorem 4.4 (Hopcroft-Karp [HK71]). There exists a deterministic algorithm FindMatch that takes as input a bipartite
graph 𝐺 = (𝑈 ,𝑉 , 𝐸) and outputs a maximal matching from𝑈 to 𝑉 in time 𝑂

(
|𝐸 | · |𝑉 |1/2

)
.

Slotted-to-unslotted transformation. We now give our slotted-to-unslotted transformation.

Construction 4.5. Our construction relies on the following primitives:

• Let ΠSAS = (Setup′,KeyGen′, Sign′,Verify′,Aggregate′,AggVerify′) be a slotted aggregate signature scheme

with message spaceM = {M𝜆}𝜆∈N. Let ℓ = ℓ (𝜆) be the length of a pair (vk,𝑚), where vk is a verification key

and𝑚 ∈ M𝜆 is a message for ΠSAS.

• Let FindMatch be the bipartite matching algorithm from Theorem 4.4.

• Let H = {𝐻ℓ,𝑀,𝐷 }ℓ,𝑀,𝐷∈N be a family of hash functions 𝐻ℓ : {0, 1}ℓ → [𝑀]𝐷 . We assume the description of

𝐻ℓ,𝑀,𝐷 includes a description of the parameters ℓ ,𝑀 , and 𝐷 . Let𝑀 = 𝑀 (𝜆, 𝑁 ) and 𝐷 = 𝐷 (𝜆, 𝑁 ) be polynomials

which will be set in the security analysis.

We construct an aggregate signature scheme ΠAS = (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) that supports
bounded aggregation with the same message spaceM as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and a bound on the number of signatures, compute ℓ = ℓ (𝜆),
𝑀 = 𝑀 (𝜆, 𝑁 ), 𝐷 = 𝐷 (𝜆, 𝑁 ), and pp′ ← Setup′ (1𝜆, 1𝑀 ). Output pp = (pp′, 𝐻ℓ,𝑀,𝐷 ).

• KeyGen(pp): On input the public parameters pp = (pp′, 𝐻ℓ,𝑀,𝐷 ), output (vk′, sk′) ← KeyGen′ (pp). Output
the signing key sk = (vk′, sk′) and the verification key vk = vk′.
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• Sign(pp, sk,𝑚): On input the public parameters pp = (pp′, 𝐻ℓ,𝑀,𝐷 ), a signing key sk = (vk′, sk′), and a message

𝑚 ∈ M𝜆 , the signing algorithm computes (𝑠1, . . . , 𝑠𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′,𝑚). Then, for each 𝑖 ∈ [𝐷], it computes

𝜎 ′𝑖 ← Sign′ (pp′, sk′,𝑚, 𝑠𝑖 ). Output 𝜎 = (𝜎 ′
1
, . . . , 𝜎 ′

𝐷
).

• Verify(pp, vk,𝑚, 𝜎): On input the public parameters pp = (pp′, 𝐻ℓ,𝑀,𝐷 ), a verification key vk = vk′, a message

𝑚 ∈ M𝜆 , and a signature 𝜎 = (𝜎 ′
1
, . . . , 𝜎 ′

𝐷
), the verification algorithm computes (𝑠1, . . . , 𝑠𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′,𝑚)

and output 1 if Verify′ (pp′, vk′,𝑚, 𝑠𝑖 , 𝜎 ′𝑖 ) = 1 for all 𝑖 ∈ [𝐷]. Otherwise, it outputs 0.

• Aggregate(pp, {(𝑖, vk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑖∈[𝐾 ]): On input the public parameters pp = (pp′, 𝐻ℓ,𝑀,𝐷 ), verification keys

vk𝑖 = vk′𝑖 , messages𝑚𝑖 ∈ M𝜆 , and signatures 𝜎𝑖 = (𝜎𝑖,1, . . . , 𝜎𝑖,𝐷 ) for all 𝑖 ∈ [𝐾] where 𝐾 ≤ 𝑁 , the aggregation

algorithm proceeds as follows:

– First, define a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) where 𝑈 = [𝐾] and 𝑉 = [𝑀]. For each 𝑖 ∈ [𝐾], compute

(𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′𝑖 ,𝑚𝑖 ). Define the edges to be 𝐸 = {(𝑖, 𝑠𝑖, 𝑗 ) | 𝑖 ∈ [𝐾], 𝑗 ∈ [𝐷]}.
– Compute a matching (𝑈 ′, 𝜌) = FindMatch(𝐺). If𝑈 ′ ≠ 𝑈 , then output ⊥.
– For each 𝑖 ∈ [𝐾], let 𝑗𝑖 ∈ [𝐷] be the index such that 𝑠𝑖, 𝑗𝑖 = 𝜌 (𝑖). Compute and output 𝜎 ′agg ←

Aggregate′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 , 𝜎
′
𝑖, 𝑗𝑖
)}𝑖∈[𝐾 ])

• AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg): On input the public parameters pp = (pp′, 𝐻ℓ,𝑀,𝐷 ), the verification keys

vk𝑖 = vk′𝑖 and messages𝑚𝑖 ∈ M𝜆 for each 𝑖 ∈ [𝐾] where 𝐾 ≤ 𝑁 , and the aggregated signature 𝜎agg = 𝜎
′
agg, the

aggregation algorithm proceeds as follows:

– First, define a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) where 𝑈 = [𝐾] and 𝑉 = [𝑀]. For each 𝑖 ∈ [𝐾], compute

(𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′𝑖 ,𝑚𝑖 ). Define the edges to be 𝐸 = {(𝑖, 𝑠𝑖, 𝑗 ) | 𝑖 ∈ [𝐾], 𝑗 ∈ [𝐷]}.
– Compute a matching (𝑈 ′, 𝜌) = FindMatch(𝐺). If𝑈 ′ ≠ 𝑈 , then output ⊥.
– Compute and output AggVerify′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎 ′agg).

Correctness and security analysis. We now give the correctness and security analysis of our construction.

Observe that Construction 4.5 uses the hash function 𝐻ℓ,𝑀,𝐷 to define a bipartite graph that is used to assign sig-

natures to slots during aggregation. For aggregation to be successful, this mapping must define a bipartite graph

with a complete matching. Thus, we say the hash function 𝐻ℓ,𝑀,𝐷 is “𝑁 -match-inducing” if for all distinct inputs

𝑥1, . . . , 𝑥𝑁 ∈ {0, 1}ℓ , the bipartite graph induced by 𝐻ℓ,𝑀,𝐷 (𝑥1), . . . , 𝐻ℓ,𝑀,𝐷 (𝑥𝑁 ) contains a matching (where the graph

is the one from Construction 4.5). We formally define this property below and then give the correctness and security

analysis. Afterwards, we describe several ways to instantiate the match-inducing family of hash functions that

provide various trade-offs (in terms of signature size vs. public parameter size).

Definition 4.6 (Match-Inducing Hash Function). Let 𝐻ℓ,𝑀,𝐷 : {0, 1}ℓ → [𝑀]𝐷 be a hash function. For a collection

of distinct inputs 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}ℓ , we define the bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) induced by 𝐻ℓ,𝑀,𝐷 on inputs

(𝑥1, . . . , 𝑥𝐾 ) as follows:

• Let𝑈 = [𝐾] and 𝑉 = [𝑀].

• For each 𝑖 ∈ [𝐾], let (𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) = 𝐻ℓ,𝑀,𝐷 (𝑥𝑖 ). Let 𝐸 = {(𝑖, 𝑠𝑖, 𝑗 ) | 𝑖 ∈ [𝐾], 𝑗 ∈ [𝐷]}.

We say 𝐻ℓ,𝑀,𝐷 is 𝑁 -match-inducing if for every collection of distinct inputs 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}ℓ , where 𝐾 ≤ 𝑁 , the

bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) induced by 𝐻ℓ,𝑀,𝐷 on inputs (𝑥1, . . . , 𝑥𝐾 ) has a complete matching from𝑈 to 𝑉 .

Theorem 4.7 (Correctness). Suppose ΠSAS is correct. In addition, suppose that for all 𝜆, 𝑁 ∈ N, the hash function
𝐻ℓ (𝜆),𝑀 (𝜆,𝑁 ),𝐷 (𝜆,𝑁 ) is 𝑁 -match-inducing. Then, Construction 4.5 is correct.

Proof. Take any 𝜆 ∈ N, any polynomial 𝑁 = 𝑁 (𝜆), and any message 𝑚 ∈ M𝜆 . Let pp ← Setup(1𝜆, 1𝑁 ),
(vk, sk) ← KeyGen(pp), and 𝜎 ← Sign(pp, sk,𝑚). Then we have the following:

• First pp = (pp′, 𝐻ℓ,𝑀,𝐷 ) where pp′ ← Setup(1𝜆, 1𝑀 ). Since 𝑀 = poly(𝜆, 𝑁 ) and 𝑁 = poly(𝜆), 𝑀 is also

polynomially-bounded in 𝜆.
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• Next, sk = (vk′, sk′) and vk = vk′ where (vk′, sk′) ← KeyGen′ (pp).

• Finally, 𝜎 = (𝜎 ′
1
, . . . , 𝜎 ′

𝐷
) where 𝜎 ′𝑖 ← Sign′ (pp′, sk′,𝑚, 𝑠𝑖 ) and (𝑠1, . . . , 𝑠𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′,𝑚).

• By correctness of ΠSAS, Verify′ (pp′, vk′,𝑚, 𝑠𝑖 , 𝜎 ′𝑖 ) = 1 for all 𝑖 ∈ [𝐷]. This means Verify(pp, vk,𝑚, 𝜎) = 1, as

required.

For the second property, take any collection of tuples (vk𝑖 ,𝑚𝑖 , 𝜎𝑖 ) where 𝑖 ∈ [𝐾] and Verify(pp, vk𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1. This

means for all 𝑖 ∈ [𝑁 ] and all 𝑗 ∈ [𝐷], we can write vk𝑖 = vk′𝑖 and 𝜎𝑖 = (𝜎 ′𝑖,1, . . . , 𝜎 ′𝑖,𝐷 ) where

Verify′ (pp′, vk′𝑖 ,𝑚𝑖 , 𝜎
′
𝑖, 𝑗 , 𝑠𝑖, 𝑗 ) = 1, (4.1)

and (𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′𝑖 ,𝑚𝑖 ). Then, the following holds:

• Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be the bipartite graph induced by 𝐻ℓ,𝑀,𝐷 on the input ((vk′
1
,𝑚1), . . . , (vk′𝐾 ,𝑚𝐾 )) computed

by Aggregate. By construction,𝑈 = [𝐾] and 𝑉 = [𝑀].

• Since 𝐻ℓ,𝑀,𝐷 is 𝑁 -match-inducing and 𝐾 ≤ 𝑁 , the graph 𝐺 contains a complete matching from 𝑈 to 𝑉 . By

Theorem 4.4, this means (𝑈 ′, 𝜌) = FindMatch(𝐺) outputs a matching where 𝑈 ′ = 𝑈 . This means the values

of 𝜌 (1), . . . , 𝜌 (𝐾) ∈ [𝑀] are all distinct. By construction of𝐺 , for every 𝑖 ∈ [𝐾], there exists an index 𝑗𝑖 ∈ [𝐷]
such that 𝑠𝑖, 𝑗𝑖 = 𝜌 (𝑖). By Eq. (4.1), this means

∀𝑖 ∈ [𝐾] : Verify′ (pp′, vk′𝑖 ,𝑚𝑖 , 𝜎
′
𝑖, 𝑗𝑖
, 𝜌 (𝑖)) = 1. (4.2)

• Let 𝜎 ′agg ← Aggregate′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 , 𝜎𝑖, 𝑗𝑖 )}𝑖∈[𝐾 ]). By Eq. (4.2) and correctness of ΠSAS, this means

AggVerify′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ]) = 1.

By construction of AggVerify, this means AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎 ′agg) = 1. Correctness holds since

AggVerify constructs the graph 𝐺 using the identical procedure as Aggregate and the FindMatch algorithm is

deterministic. As such, AggVerify and Aggregate compute the same matching (𝑈 ′, 𝜌). □

Theorem 4.8 (Succinctness). If ΠSAS is succinct, then Construction 4.5 is also succinct.

Proof. Take any 𝜆, 𝑁 ∈ N. The size of an aggregate signature in Construction 4.5 is poly(𝜆, log𝑀). Since 𝑀 =

poly(𝜆, 𝑁 ), we conclude that |𝜎agg | = poly(𝜆, 𝑁 ), as required. □

Theorem 4.9 (Selective Unforgeability). If ΠSAS satisfies selective unforgeability, then Construction 4.5 is also selectively
unforgeable.

Proof. Let A be an adversary for the selective unforgeability game. We define a sequence of hybrid experiments:

• Hyb
0
: This is the real selective unforgeability experiment:

– Setup: In this experiment, the challenger gives 1
𝜆
to A and receives the bound 1

𝑁
along with a

challenger message 𝑚∗. Then, it computes ℓ = ℓ (𝜆), 𝑀 = 𝑀 (𝜆, 𝑁 ), and 𝐷 = 𝐷 (𝜆, 𝑁 ), and samples

pp′ ← Setup(1𝜆, 1𝑀 ). The challenger also samples (vk′, sk′) ← KeyGen′ (pp). The challenger gives

pp = (pp′, 𝐻ℓ,𝑀,𝐷 ) and vk∗ = vk′ to A.

– Signing queries: Whenever algorithm A makes a signing query on a message 𝑚 ≠ 𝑚∗ ∈ M𝜆 , the

challenger computes (𝑠1, . . . , 𝑠𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk∗,𝑚). Then it computes 𝜎 ′𝑖 ← Sign′ (pp′, sk′,𝑚, 𝑠𝑖 ) and gives

𝜎 = (𝜎 ′
1
, . . . , 𝜎 ′

𝐷
) to A.

– Output: At the end of the game, algorithmA outputs {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] and a signature 𝜎agg. The output

of the experiment is 1 if the following conditions hold:
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∗ AggVerify(pp, {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg) = 1. Specifically, the challenger first defines the bipartite

graph 𝐺 = (𝑈 ,𝑉 , 𝐸) where 𝑈 = [𝐾] and 𝑉 = [𝑀]. For each 𝑖 ∈ [𝐾], compute (𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) =
𝐻ℓ,𝑀,𝐷 (vk𝑖 ,𝑚𝑖 ). Define the edges to be 𝐸 = {(𝑖, 𝑠𝑖, 𝑗 ) | 𝑖 ∈ [𝐾], 𝑗 ∈ [𝐷]}. Then the challenger

computes a matching (𝑈 ′, 𝜌) = FindMatch(𝐺). It checks that

𝑈 ′ = 𝑈 and AggVerify′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg).

∗ There exists an index 𝑖 ∈ [𝐾] where vk𝑖 = vk∗ = vk′ and𝑚𝑖 =𝑚
∗
.

• Hyb
1
: Same as Hyb

0
, except in the setup phase, the challenger samples an index 𝑗∗ r← [𝑀]. At the end of the

game, the challenger additionally checks that 𝜌 (𝑖) = 𝑗∗ where 𝑖 ∈ [𝐾] is the index where vk𝑖 = vk′ and𝑚𝑖 =𝑚
∗
.

For an adversary A, we write Hyb
0
(A) and Hyb

1
(A) to denote the output distribution of an execution of Hyb

0
and

Hyb
1
with adversary A, respectively. First, Hyb

0
and Hyb

1
are identical experiments from the view of the adversary.

If the challenger outputs 1 in Hyb
0
, then it must be the case that 𝜌 (𝑖) ∈ [𝑀] where 𝑖 ∈ [𝐾] is the special index that

satisfies vk𝑖 = vk′ and𝑚𝑖 =𝑚
∗
. Since the challenger samples 𝑗∗ r← [𝑀], with probability 1/𝑀 , 𝑗∗ = 𝜌 (𝑖). Thus, we

conclude that

Pr[Hyb
1
(A) = 1] = 1

𝑀
· Pr[Hyb

0
(A) = 1] .

Suppose now that algorithm A breaks selective unforgeability with non-negligible probability 𝜀. This means

Pr[Hyb
0
(A) = 1] = 𝜀 and Pr[Hyb

1
(A) = 1] = 𝜀

𝑀
, which is also non-negligible since𝑀 = poly(𝜆, 𝑁 ) and𝑁 = poly(𝜆).

We now use A to construct an adversary B that breaks selective unforgeability of ΠSAS:

• Setup phase: On input the security parameter 1
𝜆
, algorithm B starts running algorithm B on the same input

1
𝜆
. Algorithm B outputs the bound 1

𝑁
and a target message𝑚∗ ∈ M𝜆 . Algorithm B then computes ℓ = ℓ (𝜆),

𝑀 = 𝑀 (𝜆, 𝑁 ), and 𝐷 = 𝐷 (𝜆, 𝑁 ). It then samples an index 𝑗∗ r← [𝑀], and gives the slot count 1
𝑀
, the slot index

𝑗∗ ∈ [𝑀], and the message𝑚∗ to its challenger. The challenger responds with the public parameters pp′ and
a verification key vk′. Algorithm B gives pp = (pp′, 𝐻ℓ,𝑀,𝐷 ) and vk∗ = vk′ to A.

• Signing queries: Whenever B issues a signing query on a message 𝑚 ≠ 𝑚∗, algorithm B first computes

(𝑠1, . . . , 𝑠𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk∗,𝑚). For each 𝑖 ∈ [𝐷], algorithm B makes a signing query on message𝑚 and slot 𝑠𝑖
to obtain a signature 𝜎 ′𝑖 . Algorithm B responds with 𝜎 = (𝜎 ′

1
, . . . , 𝜎 ′

𝐷
) to A.

• Output: At the end of the game, algorithm A outputs {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] and a signature 𝜎agg. Algorithm B
first defines the bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) where 𝑈 = [𝐾] and 𝑉 = [𝑀]. For each 𝑖 ∈ [𝐾], it computes

(𝑠𝑖,1, . . . , 𝑠𝑖,𝐷 ) = 𝐻ℓ,𝑀,𝐷 (vk′𝑖 ,𝑚𝑖 ). and then defines the edges to be 𝐸 = {(𝑖, 𝑠𝑖, 𝑗 ) | 𝑖 ∈ [𝐾], 𝑗 ∈ [𝐷]}. Then algo-

rithm B computes a matching (𝑈 ′, 𝜌) = FindMatch(𝐺). Algorithm B outputs {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] together
with the signature 𝜎agg.

By construction, the challenger for the selective unforgeability game for ΠSAS samples pp′ ← Setup′ (1𝜆, 1𝑀 ) and
(vk′, sk′) ← KeyGen′ (pp), which coincides with the distribution in Hyb

1
. Next, for the signing queries on a message

𝑚 and slot 𝑠𝑖 , the challenger responds with 𝜎
′
𝑖 ← Sign′ (pp′, sk′,𝑚, 𝑠𝑖 ), which again coincides with the behavior in

Hyb
1
. We conclude that algorithm B perfectly simulates an execution of Hyb

1
for A. Thus, with probability 𝜀/𝑀 ,

algorithm B outputs {(𝑖, vk𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ] and a signature 𝜎agg where the following conditions hold:

• Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be the bipartite graph induced by 𝐻ℓ,𝑀,𝐷 on input ((vk1,𝑚1), . . . , (vk𝐾 ,𝑚𝐾 )) and (𝑈 ′, 𝜌) =
FindMatch(𝐺). Then

𝑈 ′ = 𝑈 and AggVerify′ (pp′, {(𝜌 (𝑖), vk′𝑖 ,𝑚𝑖 )}𝑖∈[𝐾 ], 𝜎agg).

• There exists an index 𝑖 ∈ [𝐾] where 𝜌 (𝑖) = 𝑗∗, vk𝑖 = vk∗, and𝑚𝑖 =𝑚
∗
.

In this case, algorithm B wins the selective unforgeability game for ΠSAS, and the claim holds. □
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4.2 Constructing Match-Inducing Hash Functions
In this section, we describe two possible ways to instantiate the match-inducing hash function in Construction 4.5.

The two constructions offer different trade-offs. The first is a “brute force” approach that increases the size of the

signatures by a factor of 𝑁 , but keeps the public parameter size unchanged relative to the slotted aggregate signature

scheme. The second approach is based on expander graphs and increases the size of the signature by a poly(𝜆, log𝑁 )
factor, but slightly increases the size of the public parameters relative to the slotted aggregate signature scheme.

Construction 4.10 (Brute-Force Match-Inducing Hash Function). Take any input length ℓ = ℓ (𝜆) and set𝑀 (𝜆, 𝑁 ) =
𝐷 (𝜆, 𝑁 ) = 𝑁 . Define 𝐻ℓ,𝑀,𝐷 (𝑥) := (1, 2, . . . , 𝑀). Namely, the hash function 𝐻ℓ,𝑀,𝐷 is a constant function that outputs

(1, 2, . . . , 𝑀) on every input.

By construction, for all 𝜆, 𝑁 ∈ N, all inputs 𝑥1, . . . , 𝑥𝐾 where 𝐾 ≤ 𝑁 , the graph 𝐺 = (𝑈 ,𝑉 , 𝐸) induced by the hash

function 𝐻ℓ (𝜆),𝑀 (𝜆,𝑁 ),𝐷 (𝜆,𝑁 ) ≡ 𝐻ℓ,𝑁 ,𝑁 from Construction 4.10 is a complete bipartite graph. Since |𝑈 | = 𝐾 ≤ 𝑁 = |𝑉 |,
this is always a matching from 𝑈 to 𝑉 , so 𝐻ℓ,𝑁 ,𝑁 is 𝑁 -match-inducing. In the context of the aggregate signature

scheme, this corresponds to the setting where we use a slotted aggregate signature scheme with 𝑁 slots and a signature

on a message𝑚 consists of 𝑁 signatures for the slotted scheme, one for each slot. By construction, this allows us

to aggregate any collection of 𝑁 signatures. Combined with Construction 3.3, we obtain the following corollary:

Corollary 4.11 (Aggregate Signature with Bounded Aggregation). Under the bilateral CDH assumption in a prime-
order pairing group, there exists an aggregate signature scheme that supports bounded aggregation with the following
efficiency properties:

• For a security parameter 𝜆 and a bound 𝑁 on the number of signatures that can be aggregated, the public parameters
consists of 𝑂 (𝑁 ) group elements.

• The verification key consists of a single group element and the secret key consists of a single field element.

• A signature consists of 𝑂 (𝑁 2) group elements.

• An aggregate signature on any number of 𝐾 ≤ 𝑁 message/verification key pairs consists of 2 group elements.

A construction based on expander graphs. A limitation of using Construction 4.10 in Construction 4.5 is that

it blows up the signature size by a factor of 𝑁 , where 𝑁 is the maximum number of signatures that can be aggregated.

The blowup is due to the use of a hash function that always induces a complete bipartite graph to achieve the

match-inducing property. A natural approach to reduce the signature size overhead is to use a sparse bipartite graph
instead (where a matching is still guaranteed to exist). Here, we describe another instantiation based on expander

graphs. We first recall some basic definitions. All of our definitions are adapted from [GUV07]:

Definition 4.12 (Bipartite Expander). A bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) with left-degree 𝐷 is a (𝐾,𝐴)-expander if for
every set 𝑆 ⊆ 𝑈 of size at most 𝐾 , we have |Γ(𝑆) | ≥ 𝐴 · |𝑆 |. We say that 𝐺 has an explicit description if there is an

algorithm that takes as input a node 𝑢 ∈ 𝑈 and outputs Γ(𝑢) in poly(log |𝑈 | + log𝐷) time.

Theorem4.13 (Explicit Bipartite Expander [GUV07, Theorem 1.3]). For every constant𝛼 > 0, every𝑇 ∈ N, every𝐾 ≤ 𝑇 ,
and every 𝜀 > 0, there is an explicit (𝐾, (1− 𝜀)𝐷)-expander𝐺 = (𝑈 ,𝑉 , 𝐸) with left-degree 𝐷 = 𝑂 ((log𝑇 ) (log𝐾)/𝜀)1+1/𝛼 ,
𝑈 = [𝑇 ], and 𝑉 = [𝑀] where𝑀 ≤ 𝐷2𝐾1+𝛼 .

Construction 4.14 (Expander-Based Match-Inducing Hash Function). Take any constant 𝛼 > 0, and any function

ℓ = ℓ (𝜆). Let 𝐺 = (𝑈 ′,𝑉 ′, 𝐸′) be the explicit expander graph from Theorem 4.13 with parameters 𝛼 , 𝑇 = 2
ℓ
, 𝐾 = 𝑁 ,

and 𝜀 = 1/2. Let𝑀 (𝜆, 𝑁 ) = |𝑉 | and 𝐷 (𝜆, 𝑁 ) be the left-degree of 𝐺 . We associate the elements of 𝑈 ′ = [2ℓ ] with the

bit strings {0, 1}ℓ in the canonical way (e.g., lexicographically). Then, on input 𝑥 ∈ {0, 1}ℓ define 𝐻ℓ,𝑁 ,𝐷 (𝑥) to be the 𝐷
neighbors of 𝑥 in the graph𝐺 . Note that Γ(𝑥) can be computed in poly(ℓ, log𝐷)-time since𝐺 has an explicit description.

Theorem 4.15 (Expander-Based Match-Inducing Hash Function). Take any constant 𝛼 > 0. Then, for all suffi-
ciently large ℓ = ℓ (𝜆), the hash function 𝐻ℓ,𝑀,𝐷 from Construction 4.14 is an 𝑁 -match-inducing hash function where
𝐷 = poly(ℓ, log𝑁 )1+1/𝛼 and𝑀 = 𝐷2𝑁 1+𝛼 .
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Proof. Let 𝐺 = (𝑈 ′,𝑉 ′, 𝐸′) be the expander graph from Construction 4.14. By Theorem 4.13, 𝐺 has left-degree

𝐷 = 𝑂 (ℓ log𝑁 )1+1/𝛼 and moreover, 𝐺 is a (𝑁, 𝐷/2)-expander. For sufficiently-large ℓ , this means 𝐷/2 > 1. In

this case, the expansion property ensures that every collection of 𝐾 ≤ 𝑁 distinct nodes 𝑥1, . . . 𝑥𝐾 ∈ [2ℓ ] has a
neighborhood of size |Γ({𝑥1, . . . , 𝑥𝐾 }) | ≥ (𝐷/2) · 𝐾 ≥ 𝐾 . By Theorem 4.3, this means there is a complete matching

from {𝑥1, . . . , 𝑥𝐾 } ⊆ 𝑈 to 𝑉 = [𝑀] in 𝐺 . By construction, the graph induced by 𝐻ℓ,𝑀,𝐷 with respect to any set of

inputs 𝑥1, . . . , 𝑥𝐾 is the subgraph of 𝐺 obtained by taking {𝑥1, . . . , 𝑥𝐾 } to be the left nodes and the nodes [𝑀] on the

right. As argued previously, there exists a matching in this graph, so 𝐻ℓ,𝑀,𝐷 is 𝑁 -match-inducing, as required. □

Combining Construction 3.3 with Construction 4.5 and the match-inducing hash function from Theorem 4.13,

we obtain the following corollary:

Corollary 4.16 (Aggregate Signature with Bounded Aggregation). Take any constant 𝛼 > 0. Under the bilateral CDH
assumption in a prime-order pairing group, there exists an aggregate signature scheme that supports bounded aggregation
with the following efficiency properties:

• For a security parameter 𝜆 and a bound 𝑁 on the number of signatures that can be aggregated, the public parameters
consists of poly(𝜆, log𝑁 )2+2/𝛼𝑁 1+𝛼 group elements.

• The verification key consists of a single group element and the secret key consists of a single field element.

• A signature consists of 𝑁 · poly(𝜆, log𝑁 )1+1/𝛼 group elements.

• An aggregate signature on any number of 𝐾 ≤ 𝑁 message/verification key pairs consists of 2 group elements.

Suppose we set 𝛼 = 1. Then Corollary 4.16 gives an aggregate signature scheme where the public parameters have size

𝑁 2 · poly(𝜆, log𝑁 )4 and where the signature size is 𝑁 · poly(𝜆, log𝑁 )2. Asymptotically, by setting 𝛼 to be arbitrarily

small, we obtain a scheme where the public parameters have size 𝑁 1+𝛼 · poly(𝜆, log𝑁 ) and individual signatures

have size 𝑁 · poly(𝜆, log𝑁 ). In this case, the slotted-to-unslotted transformation only incurs poly(𝜆, log𝑁 )-overhead
in the signature size over the underlying slotted construction.
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