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Abstract

Non-interactive batch arguments (BARGs) for NP allow a prover to prove ℓ NP statements with a

proof whose size scales sublinearly with ℓ . In this work, we construct a pairing-based BARG where the

size of the common reference string (CRS) scales linearly with the number of instances and the prover’s

computational overhead is quasi-linear in the number of instances. Our construction is fully black box

in the use of the group. Security relies on a 𝑞-type assumption in composite-order pairing groups.

The best black-box pairing-based BARG prior to this work has a nearly-linear size CRS (i.e., a CRS of

size ℓ1+𝑜 (1) ) and the prover overhead is quadratic in the number of instances. All previous pairing-based

BARGs with a sublinear-size CRS relied on some type of recursive composition and correspondingly,

non-black-box use of the group. The main technical insight underlying our construction is to substitute

the vector commitment in previous pairing-based BARGs with a polynomial commitment. This yields

a scheme that does not rely on cross terms in the common reference string. In previous black-box

pairing-based schemes, the super-linear-size CRS and quadratic prover complexity was due to the need

for cross terms.

1 Introduction

In a non-interactive batch argument (BARG) for anNP relationR [BHK17, KPY19], a prover has a batch ofNP
statements x1, . . . , xℓ together with their associated witnesses w1, . . . ,wℓ , and its goal is to produce a short

proof 𝜋 such that R(x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [ℓ]. The size of the proof 𝜋 should be poly(𝜆, |R |, log ℓ), where 𝜆
is the security parameter and |R | is the size of the Boolean circuit that computes the NP relation R. Beyond
their immediate application to amortizing the communication cost of NP verification, batch arguments (and

their generalizations) have proven to be useful for building numerous cryptographic primitives including

aggregate signatures [WW22, DGKV22, BCJP24, NWW24, NWW25], RAM delegation [KVZ21, CJJ21b,

KLVW23, GSW23, ACG
+
24b], incremental verifiable computation [DGKV22, PP22], non-interactive zero-

knowledge proofs [CW23, BKP
+
24, BWW24, BDS25], homomorphic signatures [ABF24, ACG24a], and more.

Driven by their numerous applications, batch arguments have been extensively studied in recent years,

and we currently have constructions frommany number-theoretic assumptions. These include learning with

errors (LWE) [CJJ21b], the 𝑘-Lin assumption over a pairing group [WW22], the sub-exponential decisional

Diffie-Hellman (DDH) assumption in a pairing-free group [CGJ
+
23], or a combination of quadratic residuos-

ity (QR) and either LWE or sub-exponential DDH [CJJ21a]. Among these constructions, the pairing-based

construction of Waters and Wu [WW22] has two appealing properties:

• Does not require “heavy machinery:” The [WW22] batch argument gives a direct construction

from pairing groups and does not require any heavyweight tools or non-black-box use of cryptography.

In contrast, the alternative approaches for constructing batch arguments rely on the correlation-

intractability framework [CGH04, CCH
+
19], and in many cases, the PCP theorem (c.f., [CJJ21b,
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CGJ
+
23]). Consequently, the [WW22] scheme (or the variant from [GLWW24]) is still the most

concretely-efficient BARG based on standard cryptographic assumptions.

• Somewhere statistical soundness: Another appealing property of the [WW22] construction is

that it satisfies somewhere statistical soundness (or extractability). This means that the common

reference string of the BARG can be programmed to be statistically sound on a hidden index 𝑖 .

When the CRS is programmed to be statistically sound for index 𝑖 , there does not exist any proofs

for any batch of statements (x1, . . . , xℓ ) where x𝑖 is false. In contrast, other constructions based

on correlation-intractable hash functions only provide somewhere computational soundness (or
extractability), which only asserts that such proofs are computationally hard to find. This stronger

notion of somewhere statistical soundness is relevant for applications that combine BARGs with

witness encryption or indistinguishability obfuscation (e.g., [DJWW25]).

A limitation: CRS size and prover complexity. A major limitation of the [WW22] BARG is that

it relies on a structured reference string whose size scales quadratically with the number of instances.

Namely, to support a proof of over ℓ statements, their scheme requires a CRS with 𝑂 (ℓ2) group elements.

Correspondingly, the prover complexity in [WW22] is also quadratic in the number of instances: namely,

|𝐶 | ·𝑂 (ℓ2) group operations. A recent work of Garg, Lu, Waters, and Wu [GLWW24] showed how to reduce

the size of the CRS to be nearly linear (i.e., ℓ1+𝑜 (1) ) via a combinatoric approach of progression-free sets.
1

The prover overhead is still quadratic in the number of instances even with progression-free sets. In both

constructions, the size of the CRS is super-linear and the prover complexity is quadratic because the scheme

relies on “cross terms” (see Section 1.1) that are essential for correctness.

A natural question is whether we can construct a pairing-based BARGwith a strictly linear-size CRS (and

sub-quadratic prover overhead). With recursive composition and non-black-box use of the group, it is known
how to obtain a BARGwith CRS size ℓ𝜀 for any constant 𝜀 > 0 [WW22], or even polylog(ℓ) [KLVW23]. Thus,

we ask whether we can reduce the size of the CRS (and prover complexity) without needing non-black-box

use of the group. Such a BARG would be very appealing from a concrete efficiency standpoint.

This work. In this work, we show how to adapt the [WW22] framework to obtain a BARG with a

linear-size CRS using composite-order pairing groups. Moreover, constructing a proof requires |𝐶 | · �̃� (ℓ)
group operations, where �̃� (·) suppresses polylogarithmic factors. In other words, the total prover cost is

quasi-linear in the number of instances (and linear in the size of the circuit). Like [WW22, GLWW24], our

construction is fully black-box in the use of the group and satisfies somewhere statistical soundness (or

extractability). Security relies on a new 𝑞-type assumption over composite-order pairing groups (which can

be viewed as a combination of the bilinear Diffie-Hellman exponent assumption [BBG05] with the classic

subgroup decision assumption [BGN05]). A notable feature of our construction is that it obviates the need

to give out “cross terms” in the CRS, which is the reason for the super-linear-size CRS and quadratic prover

overhead in previous pairing-based constructions. We summarize our construction in the following theorem:

Theorem 1.1 (Informal). Let 𝜆 be a security parameter and ℓ be the number of instances. Under the ℓ-subgroup
decision exponent assumption (Assumption 3.2) over composite-order pairing groups, there exists a publicly-

1
The work of [GLWW24] notes that the ℓ1+𝑜 (1) construction is interesting mostly in an asymptotic sense. For many practical

values of ℓ (e.g., ℓ ≤ 10
5
; see [GK24, Appendix VII]), the most concretely-efficient progression-free set construction is the

construction based on ternary encodings from [ET36], which gives a scheme with a CRS of size ℓ log2 3. For ℓ = 10
5
, the CRS from

[GLWW24] would contain roughly 10
8
group elements, which is already colossal. The asymptotic savings of more sophisticated

progression-free set constructions only kick in beyond this point. On the flip side, the CRS in our construction contains exactly

ℓ + 1 group elements, where ℓ is the number of instances.
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verifiable non-interactive BARG for any NP relation R (on statements of size 𝑛) with proof size poly(𝜆, |R |),
prover complexity �̃� (ℓ)·|R|·poly(𝜆), verification complexity poly(𝜆, 𝑛, ℓ)+poly(𝜆, |R |), and CRS size ℓ ·poly(𝜆).

1.1 Technical Overview

The starting point of our construction is the Waters-Wu BARG [WW22]. We start by sketching their

approach over composite-order pairing groups. A (symmetric) composite-order pairing group consists of

two cyclic groupsG,G𝑇 of order𝑁 = 𝑝𝑞, where 𝑝, 𝑞 are distinct primes, along with an efficiently-computable

non-degenerate bilinear map 𝑒 : G×G→ G𝑇 . In the following, we let 𝑔 ∈ G be a generator for G, and write

𝑔𝑝 := 𝑔𝑞 and 𝑔𝑞 := 𝑔𝑝 to denote generators of the order-𝑝 and order-𝑞 subgroups of G, respectively. We will

often writeG𝑝 andG𝑞 to denote the order-𝑝 and order-𝑞 subgroups ofG, respectively. By bilinearity, we have

∀𝑢, 𝑣, 𝑥,𝑦 ∈ Z𝑁 : 𝑒
(
𝑔𝑢𝑝𝑔

𝑣
𝑞 , 𝑔𝑥𝑝𝑔

𝑦
𝑞

)
= 𝑒 (𝑔𝑝 , 𝑔𝑝)𝑢𝑥 · 𝑒 (𝑔𝑞, 𝑔𝑞)𝑣𝑦 .

Suppose we want to construct a BARG for ℓ instances. The CRS in the [WW22] scheme consists of ℓ

random group elements 𝐴1, . . . , 𝐴ℓ where 𝐴𝑖 = 𝑔
𝛼𝑖
𝑝 and 𝛼𝑖

r← Z𝑝 together with a collection of cross terms

𝐵𝑖,𝑖′ = 𝑔
𝛼𝑖𝛼𝑖′
𝑝 for all 𝑖 ≠ 𝑖′. The idea in [WW22] construction is then as follows:

• Setup. Consider the language of Boolean circuit satisfiability. Let 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}
be a Boolean circuit with 𝑠 gates and 𝑡 wires. Let x1, . . . , xℓ ∈ {0, 1}𝑛 be a list of statements, and

w1, . . . ,wℓ ∈ {0, 1}ℎ be the associated witnesses. For each 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡], let𝑤𝑖, 𝑗 ∈ {0, 1} be the
value of the 𝑗 th wire of 𝐶 (x𝑖 ,w𝑖).

• Wire commitments. The [WW22] prover starts by committing to all of the wires. In particular,

for each 𝑗 ∈ [𝑡], the prover constructs a “vector commitment” to the values of wire 𝑗 across the ℓ

instances. Concretely, the prover computes

𝑈 𝑗 =
∏
𝑖∈[ℓ ]

𝐴
𝑤𝑖,𝑗

𝑖
= 𝑔

∑
𝑖∈ [ℓ ] 𝛼𝑖𝑤𝑖,𝑗

𝑝 . (1.1)

The prover includes the wire commitments𝑈1, . . . ,𝑈𝑡 in the proof.

• Proving validity of the commitments. Next, the [WW22] prover constructs proofs that the

commitments𝑈1, . . . ,𝑈𝑡 are properly constructed. There are two types of claims:

– Wire validity: First, the prover needs to convince the verifier that each𝑈 𝑗 is a commitment

to a 0/1 vector. The idea is to exploit the fact that 𝑤𝑖, 𝑗 ∈ {0, 1} if and only if 𝑤2

𝑖, 𝑗 = 𝑤𝑖, 𝑗 . In

particular, this means

©«
∑︁
𝑖∈[ℓ ]

𝛼𝑖𝑤𝑖, 𝑗
ª®¬ ©«

∑︁
𝑖′∈[ℓ ]

𝛼𝑖′𝑤𝑖′, 𝑗
ª®¬ =

∑︁
𝑖∈[ℓ ]

𝛼2

𝑖𝑤
2

𝑖, 𝑗 +
∑︁
𝑖∈[ℓ ]

∑︁
𝑖′≠𝑖

𝛼𝑖𝛼𝑖′𝑤𝑖, 𝑗𝑤𝑖′, 𝑗

=
∑︁
𝑖∈[ℓ ]

𝛼2

𝑖𝑤𝑖, 𝑗 +
∑︁
𝑖∈[ℓ ]

∑︁
𝑖′≠𝑖

𝛼𝑖𝛼𝑖′𝑤𝑖, 𝑗𝑤𝑖′, 𝑗

=
©«
∑︁
𝑖∈[ℓ ]

𝛼𝑖
ª®¬ ©«

∑︁
𝑖′∈[ℓ ]

𝛼𝑖′𝑤𝑖′, 𝑗
ª®¬ +

∑︁
𝑖∈[ℓ ]

∑︁
𝑖′≠𝑖

𝛼𝑖𝛼𝑖′ (𝑤𝑖, 𝑗𝑤𝑖′, 𝑗 −𝑤𝑖′, 𝑗 ) .

(1.2)
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Using the cross terms, the prover can compute

𝑉𝑗 =
∏
𝑖∈[ℓ ]

∏
𝑖′≠𝑖

𝐵
𝑤𝑖,𝑗𝑤𝑖′, 𝑗−𝑤𝑖′, 𝑗
𝑖,𝑖′ = 𝑔

∑
𝑖∈ [ℓ ]

∑
𝑖′≠𝑖 𝛼𝑖𝛼𝑖′ (𝑤𝑖,𝑗𝑤𝑖′, 𝑗−𝑤𝑖′, 𝑗 )

𝑝 .

If𝑤2

𝑖, 𝑗 = 𝑤𝑖, 𝑗 for all 𝑖 ∈ [ℓ], then Eq. (1.2) implies

𝑒 (𝑈 𝑗 ,𝑈 𝑗 ) = 𝑒 (𝐴,𝑈 𝑗 ) · 𝑒 (𝑔𝑝 ,𝑉𝑗 ), (1.3)

where 𝐴 =
∏

𝑖∈[ℓ ] 𝐴𝑖 = 𝑔

∑
𝑖∈ [ℓ ] 𝛼𝑖

𝑝 . The prover includes 𝑉1, . . . ,𝑉𝑡 as part of the proof.

– Gate validity: For each gate in the circuit, the prover includes an analogous proof that the wire

commitments associated with the gate are consistent with the wire commitments associated with

the inputs to the gate. Concretely, consider a NAND gate𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) where 𝑘1, 𝑘2 ∈ [𝑡] are
the indices of the input wire and 𝑘3 is the index of the output wire. If𝑤𝑖,𝑘3 = NAND(𝑤𝑖,𝑘1,𝑤𝑖,𝑘2),
then it holds that𝑤𝑖,𝑘3 = 1−𝑤𝑖,𝑘1𝑤𝑖,𝑘2 . This is again a quadratic relation of the wire values, which
can be handled in an analogous manner as the wire validity checks. Specifically, for each gate

𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) in the circuit, the prover constructs the group element𝑊𝑘 ∈ G corresponding

to the “cross term” associated with the verification relation and the verifier checks that

𝑒 (𝐴,𝑈𝑘3) =
𝑒 (𝐴,𝐴)

𝑒 (𝑈𝑘1,𝑈𝑘2)
· 𝑒 (𝑔𝑝 ,𝑊𝑘 ) . (1.4)

The prover includes𝑊1, . . . ,𝑊𝑠 as part of the proof.

• Verification: To check the proof 𝜋 = (𝑈1, . . . ,𝑈𝑡 ,𝑉1, . . . ,𝑉𝑡 ,𝑊1, . . . ,𝑊𝑠), the verifier checks that the
commitments to the statement wires are correctly computed (it can compute these itself), that Eq. (1.3)

holds for all 𝑗 ∈ [𝑡], that Eq. (1.4) holds for all 𝑘 ∈ [𝑠], and that the output commitment 𝑈𝑡 is a

commitment to the all-ones vector (i.e.,𝑈𝑡 = 𝐴).

The CRS in the [WW22] construction has size that scales quadratically with the number of instances ℓ . This

is due to the cross terms 𝐵𝑖,𝑘 , which the prover uses to construct the wire validity and gate validity proofs.

Similarly, constructing the wire validity proofs 𝑉𝑗 and gate validity proofs𝑊𝑘 requires |𝐶 | ·𝑂 (ℓ2) group
operations. The recent work of [GLWW24] show how to use progression-free sets [ET36, Beh46, Elk10] to

reduce the number of cross terms that need to be given out to be nearly linear in the number of instances

(i.e., ℓ1+𝑜 (1) ). This work essentially exploits the fact that different pairs of indices (𝑖, 𝑗) and (𝑖′, 𝑗 ′) could
“share” a single cross term 𝐵𝑖, 𝑗 . This reduce the number of cross terms in the CRS. However, in light of lower

bounds on the minimum size of progression-free sets [Rot53, HB87, Sze90, BS20, KM23], this approach

cannot give a construction with a strictly-linear-size CRS. Moreover, even though multiple pairs of indices

may share a cross term, the prover computation still requires iterating over all distinct pairs of indices 𝑖 ≠ 𝑖′.

Encoding wire values using polynomials. The key insight in this work is to use a different mechanism

to commit to the wire values. Whereas previous approaches [WW22, GLWW24] used a Pedersen-style

vector commitment (see Eq. (1.1)) to commit to the wire values, we instead commit to a polynomial that
represents the wire values. Specifically, for each wire 𝑗 ∈ [𝑡], let (𝑤1, 𝑗 , . . . ,𝑤ℓ, 𝑗 ) be the vector of wire values
across the ℓ instances. Define the polynomial Φ𝑗 ∈ Z𝑁 [𝑥] to be the (unique) polynomial of degree at most

ℓ − 1 where Φ𝑗 (𝑖) = 𝑤𝑖, 𝑗 . Suppose we want to argue that𝑤𝑖, 𝑗 ∈ {0, 1} for all 𝑖 ∈ [ℓ]. As above, this amounts

to checking that Φ𝑗 (𝑖) = Φ2

𝑗 (𝑖) for all 𝑖 ∈ [ℓ]. Equivalently, this means Φ2

𝑗 (𝑖) − Φ𝑗 (𝑖) = 0 on all 𝑖 ∈ [ℓ]. Let
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𝜁 (𝑥) := ∏
𝑖∈[ℓ ] (𝑥 − 𝑖) be the vanishing polynomial that is zero on all inputs 𝑖 ∈ [ℓ]. Then, 𝜁 (𝑥) divides

Φ2

𝑗 (𝑥) − Φ𝑗 (𝑥) if and only if Φ𝑗 (𝑖) = Φ2

𝑗 (𝑖) for all 𝑖 ∈ [ℓ], or equivalently, if and only if𝑤𝑖, 𝑗 = Φ𝑗 (𝑖) ∈ {0, 1}.
Thus, checking whether the vector of wire values (𝑤1, 𝑗 , . . . ,𝑤ℓ, 𝑗 ) ∈ {0, 1}ℓ is binary or not boils down to

checking whether the polynomial 𝜁 (𝑥) divides the polynomial Φ2

𝑗 (𝑥) − Φ𝑗 (𝑥). The latter is equivalent to
showing that there exists a quotient polynomial 𝑄 𝑗 ∈ Z𝑁 [𝑥] such that

𝑄 𝑗 (𝑥) · 𝜁 (𝑥) = Φ2

𝑗 (𝑥) − Φ𝑗 (𝑥) . (1.5)

We now proceed as follows:

• For each wire 𝑗 ∈ [𝑡], the prover commits to the polynomial Φ𝑗 (𝑥) that interpolates the values

associated with wire 𝑗 . Let𝑈1, . . . ,𝑈𝑡 be the commitments to Φ1, . . . ,Φ𝑡 .

• For each wire 𝑗 ∈ [𝑡], the prover also commits to the quotient polynomial𝑄 𝑗 (𝑥) that satisfies Eq. (1.5).
This check ensures that Φ𝑗 is a commitment to a valid set of wire assignments. Let 𝑉1, . . . ,𝑉𝑡 be the

commitments to 𝑄1, . . . , 𝑄𝑡 .

• For each NAND gate 𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3), the prover commits to a quotient polynomial 𝑅𝑘 (𝑥) where

𝑅𝑘 (𝑥) · 𝜁 (𝑥) = 1 − Φ𝑘3 (𝑥) − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥). (1.6)

By construction, if Φ𝑘3 (𝑖) = NAND(Φ𝑘1 (𝑖),Φ𝑘2 (𝑖)) for all 𝑖 ∈ [ℓ], then 𝜁 (𝑥) divides the polynomial

(1 − Φ𝑘3 (𝑥) − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥)), and correspondingly, the polynomial 𝑅𝑘 exists. Let𝑊1, . . . ,𝑊𝑠 be the

commitments to 𝑅1, . . . , 𝑅𝑠 .

Similar to [WW22], the proof now consists of the commitments (𝑈1, . . . ,𝑈𝑡 ,𝑉1, . . . ,𝑉𝑡 ,𝑊1, . . . ,𝑊𝑠), and
the verifier checks the same set of relations as in [WW22]. The question now is how to construct the

commitments to the polynomials and how the verifier checks Eq. (1.5) and Eq. (1.6).

• Constructing the commitments. The structure of our polynomial commitment is the same as

the classic pairing-based construction from [KZG10], except we work over composite-order groups.

Working over composite-order groups will enable us to argue somewhere extractability of our overall

BARG. Specifically, the commitment to a polynomial 𝑓 ∈ Z𝑁 [𝑥] is an encoding of 𝑓 (𝛼) where 𝛼 ∈ Z𝑁
is a random point. To support this, the common reference string contains the group elements𝐴𝑖 = 𝑔𝛼

𝑖

𝑝

for 𝑖 ∈ [0, ℓ − 1]. In addition to 𝐴0, . . . , 𝐴ℓ−1, the CRS also contains a commitment 𝑍 = 𝑔
𝜁 (𝛼 )
𝑝 to the

polynomial 𝜁 (𝑥). Concretely, the CRS in our construction has the following form:

crs = ((G,G𝑇 , 𝑒, 𝑔, 𝑔𝑝), 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ) where 𝐴𝑖 = 𝑔𝛼
𝑖

𝑝 and 𝑍 = 𝑔
𝜁 (𝛼 )
𝑝 . (1.7)

Now, to commit to a polynomial 𝑓 (𝑥) := ∑
𝑖∈[0,𝑑 ] 𝑓𝑖𝑥

𝑖
of degree at most 𝑑 ≤ ℓ − 1, the prover can

compute ∏
𝑖∈[0,𝑑 ]

𝐴
𝑓𝑖
𝑖
= 𝑔

∑
𝑖∈ [0,𝑑 ] 𝑓𝑖𝛼

𝑖

𝑝 = 𝑔
𝑓 (𝛼 )
𝑝 .

• Wire validity checks. Suppose𝑈 𝑗 is a commitment to Φ𝑗 (𝑥) and𝑉𝑗 is a commitment to the quotient

polynomial𝑄 𝑗 (𝑥) satisfying Eq. (1.5). This means𝑈 𝑗 = 𝑔
Φ𝑗 (𝛼 )
𝑝 and𝑉𝑗 = 𝑔

𝑄 𝑗 (𝛼 )
𝑝 . To check that Eq. (1.5)

holds, the verifier can simply check that

𝑒 (𝑉𝑗 , 𝑍 ) =
𝑒 (𝑈 𝑗 ,𝑈 𝑗 )
𝑒 (𝐴0,𝑈 𝑗 )

. (1.8)
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This relations holds only if

𝑄 𝑗 (𝛼) · 𝜁 (𝛼) = Φ2

𝑗 (𝛼) − Φ𝑗 (𝛼) mod 𝑝.

Intuitively, the verification test in Eq. (1.8) is checking polynomial equality by evaluating the polyno-

mials in Eq. (1.5) at the random point 𝛼 . Since a (univariate) polynomial (over Z𝑝 ) of degree 2(ℓ − 1)
has at most 2(ℓ − 1) roots, this test will only pass if Eq. (1.5) holds (except with negligible probability

over the choice of 𝛼). The wrinkle, of course, is that the CRS includes encodings of the powers of

𝛼 , and as such, we cannot simply argue that 𝛼 is hidden from the view of the prover. The actual

soundness analysis is more delicate, but this captures the basic intuition.

• Gate validity checks. The gate validity checks are implemented in an analogous manner as the

wire validity checks. Namely, the prover commits to the quotient polynomial 𝑅𝑘 (𝑥) for each gate

(see Eq. (1.6)). Let𝑊𝑘 = 𝑔
𝑅𝑘 (𝛼 )
𝑝 be the commitment. The verifier then checks Eq. (1.6) by checking

𝑒 (𝑊𝑘 , 𝑍 ) =
𝑒 (𝐴0, 𝐴0)

𝑒 (𝐴0,𝑈𝑘3) · 𝑒 (𝑈𝑘1,𝑈𝑘2)
. (1.9)

Observe that this essentially corresponds to checking that Eq. (1.6) holds at the random point 𝛼 .

The advantage of encoding the wire values as polynomials is that we no longer need to give out cross terms

in the CRS. The pairing relations just correspond to checking whether the polynomial evaluations at a single
point match or not. For this reason, the resulting scheme only needs a CRS whose size is linear in the number

of instances. In fact, the CRS in the scheme contains exactly ℓ + 1 group elements. Moreover, the most

expensive component of the prover computation is interpolating the polynomials Φ𝑗 (𝑥) for each 𝑗 ∈ [𝑡].
This can be done in quasi-linear time �̃� (ℓ), so the overall prover complexity now consists of |𝐶 | · �̃� (ℓ)
group operations

2
as opposed to |𝐶 | ·𝑂 (ℓ2) in previous pairing-based constructions [WW22, GLWW24].

Somewhere extractability. The security requirement on the BARG is somewhere extractability [CJJ21b].

Specifically, there should be a trapdoor algorithm that takes as input an index 𝑖∗ ∈ [ℓ] and outputs a CRS and
an extraction trapdoor td. The “trapdoor CRS” should be computationally indistinguishable from the normal

CRS (Eq. (1.7)). Moreover, there should be an efficient algorithm that takes as input the trapdoor td, a batch of
statements (x1, . . . , xℓ ), and an accepting proof 𝜋 , and outputs a witnessw𝑖∗ where𝐶 (x𝑖∗,w𝑖∗) = 1. In particu-

lar, this means the BARG is statistically sound on index 𝑖 when the CRS is sampled to be extractable on index 𝑖 .

We achieve this property using a similar idea as in [WW22, GLWW24]. Specifically, we lift the elements

in the CRS from the G𝑝 subgroup to the full group instead. We set things up so the G𝑞 component of the

wire commitments 𝑈1, . . . ,𝑈𝑡 exactly encodes the wire value associated with instance 𝑖∗; moreover, the

wire validity and gate validity checks enforce that the wire values in the G𝑞 subgroup satisfy the respective

requirements. If all of the checks pass, then we can extract the wires associated with instance 𝑖 , and

specifically, the inputs x𝑖∗ and w𝑖∗ such that𝐶 (x𝑖∗,w𝑖∗) = 1. This suffices to argue somewhere extractability.

In more detail, recall in the above construction that for each wire 𝑗 ∈ [𝑡], the value of the polynomial

Φ𝑗 at 𝑖 is exactly the wire value 𝑤𝑖, 𝑗 ∈ {0, 1}. To support extracting the wire values for instance 𝑖∗ from
a commitment, we define the CRS components 𝐴𝑖 (see Eq. (1.7)) as

𝐴𝑖 = 𝑔𝛼
𝑖

𝑝 → 𝐴𝑖 = 𝑔𝛼
𝑖

𝑝 𝑔
(𝑖∗ )𝑖
𝑞 .

We make a few observations:

2
More precisely, our construction requires �̃� (ℓ) operations over Z𝑁 (for polynomial interpolation) followed by 𝑂 (ℓ) group
operations.
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• Consider an honest commitment𝑈 𝑗 to Φ𝑗 . In this case, the user would compute

𝑈 𝑗 = 𝑔
Φ𝑗 (𝛼 )
𝑝 𝑔

Φ𝑗 (𝑖∗ )
𝑞 = 𝑔

Φ𝑗 (𝛼 )
𝑝 𝑔

𝑤𝑖∗, 𝑗
𝑞 .

Observe that the G𝑞-component of𝑈 𝑗 is precisely the value𝑤𝑖∗, 𝑗 of the 𝑗 th wire in instance 𝑖∗.

• Suppose the prover chooses wire commitments 𝑈1, . . . ,𝑈𝑡 . By the Chinese Remainder Theorem, we

can express each of these elements as 𝑈 𝑗 = 𝑔
𝛾 𝑗,𝑝
𝑝 𝑔

𝛾 𝑗,𝑞
𝑞 for some 𝛾 𝑗,𝑝 , 𝛾 𝑗,𝑞 ∈ Z𝑁 . Consider now the

wire validity check from Eq. (1.8), and in particular, consider the check in the order-𝑞 subgroup. By

definition, the element 𝑍 = 𝑔
𝜁 (𝛼 )
𝑝 is in the order-𝑝 subgroup

3
, so 𝑒 (𝑉𝑗 , 𝑍 ) vanishes in the order-𝑞

subgroup. Since 𝐴0 = 𝑔𝑝𝑔𝑞 , Eq. (1.8) holds if and only if 𝛾2𝑗,𝑞 = 𝛾 𝑗,𝑞 mod 𝑞. Namely, 𝛾 𝑗,𝑞 ∈ {0, 1}.

• Next, consider the gate validity check. If we again consider the check in the order-𝑞 subgroup and

use the fact that 𝑍 vanishes in the order-𝑞 subgroup, Eq. (1.9) holds if and only if

𝛾𝑘3,𝑞 + 𝛾𝑘1,𝑞𝛾𝑘2,𝑞 = 1 mod 𝑞,

or equivalently, if 𝛾𝑘3,𝑞 = 1 − 𝛾𝑘1,𝑞𝛾𝑘2,𝑞 = NAND(𝛾𝑘1,𝑞, 𝛾𝑘2,𝑞).

This shows that the wire validity checks and gate validity checks enforce that the G𝑞-components of

the wire commitments are binary-valued and satisfy the gate constraints. Coupled with the fact that the

statements are correctly computed and that the output is a commitment to 1, this means theG𝑞-components

of 𝑈1, . . . ,𝑈𝑡 correspond to the wire values of 𝐶 (x𝑖∗,w𝑖∗) for some w𝑖∗ where 𝐶 (x𝑖∗,w𝑖∗) = 1. Projecting

into the G𝑞 subgroup allows us to extract a witness w𝑖∗ for x𝑖∗ , thus proving somewhere extractability.

CRS indistinguishability. The final requirement is that the trapdoor CRS (which has the hidden index 𝑖)

is computationally indistinguishable from the normal CRS in Eq. (1.7). To argue this, it suffices to show that

the subgroup decision assumption holds [BGN05] (i.e., a random element of the subgroup G𝑝 is compu-

tationally indistinguishable from a random element of the full group G) even given powers (𝑔𝛼𝑝 , . . . , 𝑔𝛼
ℓ−1

𝑝 ).
Specifically, we require the following two distributions be computationally indistinguishable:(

𝑔𝑝 , 𝑔
𝛼
𝑝 , 𝑔

𝛼2

𝑝 , . . . , 𝑔𝛼
ℓ−1

𝑝

)
and

(
𝑔𝑝𝑔𝑞, 𝑔

𝛼
𝑝 , 𝑔

𝛼2

𝑝 , . . . , 𝑔𝛼
ℓ−1

𝑝

)
,

where𝑔𝑝 , 𝑔𝑞 are random generators ofG𝑝 andG𝑞 , respectively. In Appendix A, we show that this assumption

holds (assuming hardness of factoring) in the generic composite-order bilinear group model.

A retrospective: pairing-based SNARGs for NP. Beginning with the seminal work of Groth [Gro10],

a long sequence of works (c.f., [Lip12, PHGR13, GGPR13, BCI
+
13, DFGK14, Gro16]) has showed how to

reduce the CRS size and prover complexity of pairing-based succinct non-interactive arguments (SNARGs)

for NP. Similar to the case with pairing-based BARGs, the initial constructions either had a quadratic-size

CRS [Gro10] or a nearly-linear size CRS [Lip12] (using progression-free sets). The [Gro10, Lip12] con-

structions (implicitly) rely on a “linear PCP” [IKO07, GGPR13, BCI
+
13] based on the Hadamard encoding,

and the CRS for the SNARG essentially consists of encodings of pairwise products (i.e., the analog of

cross terms in the BARG setting). In fact, the Hadamard encoding of a statement-witness pair (x,w) is
precisely a random linear combination of the wire values of 𝐶 (x,w). This is conceptually similar to how

3
Technically, the reduction constructs 𝑍 by evaluating the polynomial 𝜁 using the components 𝐴0 = 𝑔𝑝𝑔𝑞, . . . , 𝐴ℓ = 𝑔𝛼

ℓ

𝑝 𝑔
(𝑖∗ )ℓ
𝑞

from the CRS components. Since 𝜁 (𝑖∗) = 0, this ensures 𝑍 = 𝑔
𝜁 (𝛼 )
𝑝 ∈ G𝑝 .
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the [WW22, GLWW24] BARG encodes the wire labels for different instances by taking a random linear

combination of the wire values associated with each instance.

The breakthrough work of Gennaro, Gentry, Parno, and Raykova [GGPR13] showed how to eliminate

the cross-terms with a new linear PCP based on quadratic arithmetic programs. Essentially, these con-

structions operate by encoding the instances as evaluations of a polynomial (and more generally, as the

codewords of a multiplication code [BBC
+
19, BHI

+
24]). This yielded the first pairing-based SNARGs for

NP with a linear-size CRS and the core approach has subsequently enabled many efficient pairing-based

constructions [PHGR13, BCG
+
13, BCI

+
13, BCTV14, DFGK14, Gro16].

We can view the progress on BARG constructions as following a similar trajectory. The [WW22,

GLWW24] constructions can be viewed as analogs of the early SNARGs with a quadratic or nearly-linear

CRS. These construction essentially rely on a Hadamard-like encoding of the instances, and correct-

ness requires publishing a collection of cross terms in the CRS. In this work, we represent the instances

as polynomial evaluations, which is similar to the pairing-based SNARGs with a linear-size CRS (e.g.,

[GGPR13, BCI
+
13, DFGK14, Gro16]). In the case of SNARGs, the prover constructs a polynomial that inter-

polates all of the wires in the circuit whereas in our application to BARGs, the prover constructs a polynomial

for each wire that interpolates to the wire values across the different instances. The key difference between

these two lines of work is the fact that with BARGs, we demand security from falsifiable assumptions,

whereas the aforementioned SNARGs for NP have all relied on stronger knowledge assumptions.

2 Preliminaries

Throughout this work, we write 𝜆 to denote the security parameter. For an integer 𝑛 ∈ N, we write

[𝑛] := {1, . . . , 𝑛}. We use bold lowercase letters (e.g., x) to denote vectors. We use non-boldface letters to

refer to their components (e.g., x = [𝑥1, . . . , 𝑥𝑛]). We write poly(𝜆) to denote a fixed function that is bounded
by some polynomial in 𝜆 and negl(𝜆) to denote a function that is negligible in 𝜆 (i.e., 𝑓 (𝜆) = negl(𝜆) if
𝑓 = 𝑜 (𝜆−𝑐) for all constants 𝑐 ∈ N). We say an algorithm is efficient if it runs in probabilistic polynomial time

in the length of its input. We say that two ensembles of distributions D0 = {D0,𝜆}𝜆∈N and D1 = {D1,𝜆}𝜆∈N
are computationally indistinguishable if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,

| Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D0,𝜆] − Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D1,𝜆] | = negl(𝜆).

We say the two distributions are statistically indistinguishable if the statistical distance between D0,𝜆 and

D1,𝜆 is negl(𝜆). We say an event occurs with overwhelming probability if its complement occurs with

negligible probability.

Boolean circuits. Like [WW22], we focus exclusively on the NP-complete language of Boolean circuit

satisfiability and assume without loss of generality that the circuit consists exclusively of NAND gates. For

a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} with 𝑡 wires and 𝑠 NAND gates, we associate wires 1, . . . , 𝑛

with the bits of the statement, wires 𝑛 + 1, . . . , 𝑛 + ℎ with the wires of the witness, and wire 𝑡 with the

output wire. We model each NAND gate as a triple 𝐺 = (𝑘1, 𝑘2, 𝑘3) where 𝑘1, 𝑘2 correspond to the indices

of the input wire, and 𝑘3 corresponds to the index of the output wire.

Batch argument for NP. We now define the notion of a somewhere-extractable batch argument for

circuit satisfiability [CJJ21b]:
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Definition 2.1 (Batch Argument for Circuit Satisfiability). A non-interactive batch argument (BARG) for

circuit satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following

properties:

• Setup(1𝜆, 1ℓ , 1𝑠) → crs : On input the security parameter 𝜆 ∈ N, the number of instance ℓ ∈ N, and
a bound on the circuit size 𝑠 ∈ N, the setup algorithms outputs a common reference string crs.

• Prove(crs,𝐶, (x1, . . . , xℓ ), (w1, . . . ,wℓ )) → 𝜋 : On inputs the common reference string crs, a Boolean
circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, statements x1, . . . , xℓ ∈ {0, 1}𝑛 , andwitnessesw1, . . . ,wℓ ∈ {0, 1}ℎ ,
the prover algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, (x1, . . . , xℓ ), 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements x1, . . . , xℓ ∈ {0, 1}𝑛 , and a proof 𝜋 , the verification algorithm

outputs a bit 𝑏 ∈ {0, 1}. The verification algorithm is deterministic.

Moreover, we require ΠBARG to satisfy the following properties:

• Completeness: For all 𝜆, ℓ, 𝑠 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most

𝑠 , all statements x1, . . . , xℓ ∈ {0, 1}𝑛 , and all witnesses w1, . . . ,wℓ ∈ {0, 1}ℎ where 𝐶 (x𝑖 ,w𝑖) = 1 for

all 𝑖 ∈ [ℓ], we have

Pr

[
Verify(crs,𝐶, (x1, . . . , xℓ ), 𝜋) = 1 :

crs← Setup(1𝜆, 1ℓ , 1𝑠)
𝜋 ← Prove(crs,𝐶, (x1, . . . , xℓ ), (w1, . . . ,wℓ ))

]
= 1.

• Somewhere extractable: There exists a pair of efficient algorithms (TrapSetup, Extract) with the

following syntax:

– TrapSetup(1𝜆, 1ℓ , 1𝑠 , 𝑖∗) → (crs, td): On input the security parameter 𝜆 ∈ N, the number of

instances ℓ ∈ N, a bound on the circuit size 𝑠 ∈ N, and a special index 𝑖∗ ∈ [𝑛], the trapdoor
setup algorithm outputs a common reference string crs and an extraction trapdoor td.

– Extract(td,𝐶, (x1, . . . , xℓ ), 𝜋) → w∗: On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a tuple of statements x1, . . . , xℓ ∈ {0, 1}𝑛 , and a proof 𝜋 , the extraction

algorithm outputs a witness w∗ ∈ {0, 1}ℎ .

Moreover, these algorithms satisfy the following properties:

– CRS indistinguishability: For integers ℓ, 𝑠 ∈ N, an adversary A, and a bit 𝑏 ∈ {0, 1}, we
define the CRS indistinguishability experiment as follows:

1. On input (1𝜆, 1ℓ , 1𝑠), algorithm A outputs an index 𝑖∗ ∈ [ℓ].
2. If 𝑏 = 0, the challenger samples crs ← Setup(1𝜆, 1ℓ , 1𝑠). If 𝑏 = 1, the challenger samples

(crs, td) ← TrapSetup(1𝜆, 1ℓ , 1𝑠 , 𝑖∗). The challenger gives crs to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠBARG satisfies CRS indistinguishability if for all polynomials ℓ = ℓ (𝜆), 𝑠 = 𝑠 (𝜆),
and all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆)

in the CRS indistinguishability experiment.
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– Somewhere extractable in trapdoor mode: For integers ℓ, 𝑠 ∈ N and an adversary A, we

define the somewhere extractability experiment as follows:

1. On input (1𝜆, 1ℓ , 1𝑠), algorithm A outputs an index 𝑖∗ ∈ [ℓ].
2. The challenger samples (crs, td) ← TrapSetup(1𝜆, 1ℓ , 1𝑠 , 𝑖∗) and gives crs to A.

3. Algorithm A outputs a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a collection of statements

x1, . . . , xℓ ∈ {0, 1}𝑛 , and a proof 𝜋 .

4. The output of the experiment is𝑏′ = 1 ifVerify(crs,𝐶, (x1, . . . , xℓ ), 𝜋) = 1 and𝐶 (x𝑖∗,w∗) = 0,

where w∗ ← Extract(td,𝐶, (x1, . . . , xℓ ), 𝜋).
We say that ΠBARG is somewhere extractable in trapdoor mode if for all polynomials ℓ = ℓ (𝜆),
𝑠 = 𝑠 (𝜆), and all efficient adversaries A, there exists a negligible function negl(·) such that for

all 𝜆 ∈ N,
Pr[𝑏′ = 1] = negl(𝜆)

in the somewhere extractability game. If this holds for all (possibly unbounded) adversaries

A, then we say ΠBARG is statistically somewhere extractable in trapdoor mode.

3 BARG with Linear-Size CRS from Composite-Order Bilinear Groups

In this section, we show how to construct a BARG for NP with a linear-size CRS using composite-order

pairing groups. We begin by recalling the notion of a composite-order pairing group.

Definition 3.1 (Composite-Order Bilinear Group [BGN05]). A (symmetric) composite-order bilinear group

generator is an efficient algorithm CompGroupGen that takes as input the security parameter 𝜆 ∈ N and

outputs the description (G,G𝑇 , 𝑝, 𝑞, 𝑔, 𝑒) of a bilinear group where 𝑝, 𝑞 > 2
𝜆
are distinct primes, G, G𝑇 are

cyclic groups of order 𝑁 = 𝑝𝑞, and 𝑒 : G × G→ G𝑇 is a non-degenerate bilinear map. Moreover, the group

operation in G and G𝑇 as well as the pairing 𝑒 are efficiently-computable.

Subgroup decision exponent assumption. Security of our scheme will rely on a variant of the subgroup

decision assumption that combines features of the standard subgroup decision assumption [BGN05] and

the bilinear Diffie-Hellman exponent assumption [BBG05]. The standard subgroup decision assumption in

a pairing group (G,G𝑇 , 𝑁 , 𝑔, 𝑒) of composite order 𝑁 = 𝑝𝑞 asserts that a random element of the subgroup

G𝑝 ⊂ G of order 𝑝 is computationally indistinguishable from a random element of the full group G. In

this work, we assume subgroup decision holds even given 𝑔𝛼𝑝 , 𝑔
𝛼2

𝑝 , . . . , 𝑔𝛼
ℓ

𝑝 for any polynomially-bounded

ℓ = ℓ (𝜆) and where 𝛼
r← Z𝑁 , and 𝑔𝑝 is a random generator of the subgroup of order 𝑝 . We give the formal

statement below, and show that the assumption holds in the generic composite-order bilinear group model

(assuming hardness of factoring) in Appendix A.

Assumption 3.2 (Subgroup Decision Exponent). Let ℓ ∈ N. We say the ℓ-subgroup decision exponent

assumption holds with respect to a composite-order group generator CompGroupGen if the distributions

D0 = {D0,𝜆}𝜆∈N and D1 = {D1,𝜆}𝜆∈N are computationally indistinguishable. Both distributions D0,𝜆 and

D1,𝜆 start by sampling (G,G𝑇 , 𝑝, 𝑞, 𝑔, 𝑒) ← CompGroupGen(1𝜆). Set 𝑁 = 𝑝𝑞, sample a random 𝑟
r← Z𝑁 ,

and let 𝑔𝑝 = 𝑔𝑞𝑟 , 𝑔𝑞 = 𝑔𝑝𝑟 be random generators of the order-𝑝 and order-𝑞 subgroups of G, respectively.

Let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒). In addition, sample 𝛼
r← Z𝑁 . The output of each distribution is then

• D0,𝜆 : Output (G, (𝑔𝛼𝑝 , . . . , 𝑔𝛼
ℓ

𝑝 ), 𝑔𝑝).

• D1,𝜆 : Output (G, (𝑔𝛼𝑝 , . . . , 𝑔𝛼
ℓ

𝑝 ), 𝑔𝑝𝑔𝑞).
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BARG from composite-order pairing groups. We now describe our BARG from composite-order

pairing groups.

Construction 3.3 (BARG for NP from Composite-Order Pairing Groups). Let CompGroupGen be a

composite-order group generator. We construct a BARG for the language of circuit satisfiability as follows.

• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆 and the number of instances ℓ ≤ 2
𝜆
, the setup

algorithm proceeds as follows:

– Run (G,G𝑇 , 𝑝, 𝑞, 𝑒, 𝑔) ← CompGroupGen(1𝜆). Let 𝑁 = 𝑝𝑞, sample 𝑟
r← Z𝑁 , and set 𝑔𝑝 = 𝑔𝑞𝑟 .

Let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒).
– Sample 𝛼

r← Z𝑁 . For each 𝑖 ∈ [0, ℓ − 1], let 𝐴𝑖 = 𝑔𝛼
𝑖

𝑝 .

– Define the polynomial 𝜁 (𝑥) := ∏
𝑖∈[ℓ ] (𝑥 − 𝑖) ∈ Z𝑁 [𝑥] and let 𝑍 = 𝑔

𝜁 (𝛼 )
𝑝 .

– Output the common reference string crs = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ).

• Prove(crs,𝐶, (x1, . . . , xℓ ), (w1, . . . ,wℓ )): On input the reference string crs = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ), a
Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, instances x1, . . . , xℓ ∈ {0, 1}𝑛 , and witnessesw1, . . . ,wℓ ∈
{0, 1}ℎ , let 𝑡 be the number of wires in𝐶 and 𝑠 be the number of gates in𝐶 . For each 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡],
let𝑤𝑖, 𝑗 denote the value of the 𝑗 th wire in 𝐶 (x𝑖 ,w𝑖). The prover constructs the proof as follows:

– Interpolate wire values: For each 𝑗 ∈ [𝑡], let Φ𝑗 ∈ Z𝑁 [𝑥] be the (unique) polynomial of

degree at most ℓ − 1where Φ𝑗 (𝑖) = 𝑤𝑖, 𝑗 for all 𝑖 ∈ [ℓ]. Compute Φ𝑗 using Lagrange interpolation

modulo 𝑁 .
4

– Encoding wire values: For each 𝑗 ∈ [𝑡], write Φ𝑗 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝜑 𝑗,𝑖𝑥
𝑖
. Compute 𝑈 𝑗 =∏

𝑖∈[0,ℓ−1] 𝐴
𝜑 𝑗,𝑖

𝑖
.

– Validity of wire assignments: For each 𝑗 ∈ [𝑡], define the polynomial

𝑄 𝑗 (𝑥) :=
Φ2

𝑗 (𝑥) − Φ𝑗 (𝑥)
𝜁 (𝑥) .

Write 𝑄 𝑗 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝑞 𝑗,𝑖𝑥
𝑖
. If the polynomial 𝑄 𝑗 does not exist or cannot be written in this

form, then abort with output ⊥. Compute 𝑉𝑗 =
∏

𝑖∈[0,ℓ−1] 𝐴
𝑞 𝑗,𝑖

𝑖
.

– Validity of gate computation: For each NAND gate 𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3 where 𝑘 ∈ [𝑠],
compute the polynomial

𝑅𝑘 (𝑥) :=
1 − Φ𝑘3 (𝑥) − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥)

𝜁 (𝑥) .

Write 𝑅𝑘 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝑟𝑘,𝑖𝑥
𝑖
. If the polynomial 𝑅𝑘 does not exist or cannot be written in this

form, then abort with output ⊥. Compute𝑊𝑘 =
∏

𝑖∈[0,ℓ−1] 𝐴
𝑟𝑘,𝑖
𝑖

.

Finally, output the proof 𝜋 = ({( 𝑗,𝑈 𝑗 ,𝑉𝑗 )} 𝑗∈[𝑡 ], {(𝑘,𝑊𝑘 )}𝑘∈[𝑠 ]).
4
In particular, when ℓ ≤ 2

𝜆 < 𝑝, 𝑞, where 𝑝, 𝑞 are the prime factors of 𝑁 , the interpolation base {1, . . . , ℓ} consists of unique
elements over Z𝑝 and Z𝑞 . Correctness of Lagrange interpolation and uniqueness of the interpolating polynomial now follow

via the Chinese Remainder theorem.
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• Verify(crs,𝐶, (x1, . . . , xℓ ), 𝜋): On input the common reference string crs = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ), a
Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, instances x1, . . . , xℓ ∈ {0, 1}𝑛 , and a proof 𝜋 =

({( 𝑗,𝑈 𝑗 ,𝑉𝑗 )} 𝑗∈[𝑡 ], {(𝑘,𝑊𝑘 )}𝑘∈[𝑠 ]), the verification algorithm checks the following properties:

– Statement check: For each 𝑗 ∈ [𝑛], let Φ𝑗 ∈ Z𝑁 [𝑥] be the (unique) polynomial of degree at

most ℓ − 1 where Φ𝑗 (𝑖) = 𝑥𝑖, 𝑗 . Compute Φ𝑗 using Lagrange interpolation modulo 𝑁 . Write

Φ𝑗 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝜑 𝑗,𝑖𝑥
𝑖
and check that

𝑈 𝑗 =
∏

𝑖∈[0,ℓ−1]
𝐴
𝜑 𝑗,𝑖

𝑖
. (3.1)

– Validity of wire assignments: For each 𝑗 ∈ [𝑡], check that

𝑒 (𝑈 𝑗 ,𝑈 𝑗 ) = 𝑒 (𝐴0,𝑈 𝑗 ) · 𝑒 (𝑍,𝑉𝑗 ) .

– Validity of gate computation: For each NAND gate 𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3 where 𝑘 ∈ [𝑠],
check that

𝑒 (𝑈𝑘1,𝑈𝑘2) · 𝑒 (𝐴0,𝑈𝑘3) · 𝑒 (𝑍,𝑊𝑘 ) = 𝑒 (𝐴0, 𝐴0) .

– Output satisfiability: Check that𝑈𝑡 = 𝐴0.

Output 1 if all checks pass and 0 otherwise.

Theorem 3.4 (Completeness). Construction 3.3 is complete.

Proof. Take any circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, instances x1, . . . , xℓ ∈ {0, 1}𝑛 , andwitnessesw1, . . . ,wℓ ∈
{0, 1}ℎ such that 𝐶 (x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [ℓ]. Let

crs← Setup(1𝜆, 1ℓ )
𝜋 ← Prove(crs,𝐶, (x1, . . . , xℓ ), (w1, . . . ,wℓ )).

We show that Verify(crs,𝐶, (x1, . . . , xℓ ), 𝜋) outputs 1. First, write 𝜋 = ({( 𝑗,𝑈 𝑗 ,𝑉𝑗 )} 𝑗∈[𝑡 ], {(𝑘,𝑊𝑘 )}𝑘∈[𝑠 ]),
where 𝑡 is the number of wires in 𝐶 and 𝑠 is the number of gates. Then, the elements in 𝜋 satisfy the

following properties:

• For each 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡], let𝑤𝑖, 𝑗 denote the value assigned to the 𝑗 th wire in 𝐶 (x𝑖 ,w𝑖).

• For all 𝑗 ∈ [𝑡], let Φ𝑗 (𝑥) be the unique polynomial of degree at most ℓ − 1 where Φ𝑗 (𝑖) = 𝑤𝑖, 𝑗 . Write

Φ𝑗 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝜑 𝑗,𝑖𝑥
𝑖
. Next, 𝐴𝑖 = 𝑔𝛼

𝑖

𝑝 so we can write

𝑈 𝑗 =
∏

𝑖∈[0,ℓ−1]
𝐴
𝜑 𝑗,𝑖

𝑖
= 𝑔

∑
𝑖∈ [0,ℓ−1] 𝜑 𝑗,𝑖𝛼

𝑖

𝑝 = 𝑔
Φ𝑗 (𝛼 )
𝑝 . (3.2)

• Since 𝐶 is a Boolean circuit, it holds that 𝑤𝑖, 𝑗 ∈ {0, 1} for all 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡]. Correspondingly,
this means that𝑤2

𝑖, 𝑗 = 𝑤𝑖, 𝑗 . Since Φ𝑗 (𝑖) = 𝑤𝑖, 𝑗 this means that for all 𝑗 ∈ [𝑡]:

∀𝑖 ∈ [ℓ] : Φ2

𝑗 (𝑖) = 𝑤2

𝑖, 𝑗 = 𝑤𝑖, 𝑗 = Φ𝑗 (𝑖) .
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In particular, this means that for all 𝑖 ∈ [ℓ], Φ2

𝑗 (𝑖)−Φ𝑗 (𝑖) = 0. This means the polynomialΦ2

𝑗 (𝑥)−Φ𝑗 (𝑥)
has roots at 𝑥 ∈ {1, . . . , ℓ}, and thus, there exists a polynomial 𝑄 𝑗 ∈ Z𝑁 [𝑥] such that

Φ2

𝑗 (𝑥) − Φ𝑗 (𝑥) = 𝑄 𝑗 (𝑥) ·
∏
𝑖∈[ℓ ]
(𝑥 − 𝑖) = 𝑄 𝑗 (𝑥) · 𝜁 (𝑥) . (3.3)

Since Φ2

𝑗 − Φ𝑗 has maximum degree 2(ℓ − 1) and 𝜁 has degree ℓ , we conclude that the polynomial 𝑄 𝑗

has degree at most ℓ − 2, and thus 𝑄 𝑗 (𝑥) can always be written as 𝑄 𝑗 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝑞 𝑗,𝑖𝑥
𝑖
. Finally,

the prove algorithm computes

𝑉𝑗 =
∏

𝑖∈[0,ℓ−1]
𝐴
𝑞 𝑗,𝑖

𝑖
= 𝑔

∑
𝑖∈ [0,ℓ−1] 𝑞 𝑗,𝑖𝛼

𝑖

𝑝 = 𝑔
𝑄 𝑗 (𝛼 )
𝑝 . (3.4)

• Finally, take any NAND gate 𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3 in 𝐶 (where 𝑘 ∈ [𝑠]). By construction, we have

for all 𝑖 ∈ [ℓ] that𝑤𝑖,𝑘3 = NAND(𝑤𝑖,𝑘1,𝑤𝑖,𝑘2) = 1 −𝑤𝑖,𝑘1𝑤𝑖,𝑘2 . This means for all 𝑖 ∈ [ℓ],

0 = 1 −𝑤𝑖,𝑘1𝑤𝑖,𝑘2 −𝑤𝑖,𝑘3 = 1 − Φ𝑘1 (𝑖)Φ𝑘2 (𝑖) − Φ𝑘3 (𝑖) .

This means the polynomial 1 − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥) − Φ𝑘3 (𝑥) has roots at 𝑥 ∈ {1, . . . , ℓ}, and thus, there

exists a polynomial 𝑅𝑘 ∈ Z𝑁 [𝑥] such that

1 − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥) − Φ𝑘3 (𝑥) = 𝑅𝑘 (𝑥) ·
∏
𝑖∈[ℓ ]
(𝑥 − 𝑖) = 𝑅𝑘 (𝑥) · 𝜁 (𝑥) . (3.5)

Since 1 − Φ𝑘1 (𝑥)Φ𝑘2 (𝑥) − Φ𝑘3 (𝑥) has maximum degree 2(ℓ − 1) and 𝜁 has degree ℓ , the polynomial

𝑅𝑘 has degree at most ℓ − 2, and thus 𝑅𝑘 can always be written as 𝑅𝑘 (𝑥) =
∑

𝑖∈[0,ℓ−1] 𝑟𝑘,𝑖𝑥
𝑖
. Finally,

the prove algorithm computes

𝑊𝑘 =
∏

𝑖∈[0,ℓ−1]
𝐴
𝑟𝑘,𝑖
𝑖

= 𝑔

∑
𝑖∈ [0,ℓ−1] 𝑟𝑘,𝑖𝛼

𝑖

𝑝 = 𝑔
𝑅𝑘 (𝛼 )
𝑝 . (3.6)

Consider now the verification checks that Verify performs:

• Statement check: For each 𝑗 ∈ [𝑛], the Verify algorithm interpolates the polynomial Φ𝑗 (𝑥) where
Φ𝑗 (𝑖) = 𝑥𝑖, 𝑗 = 𝑤𝑖, 𝑗 . Thus, the Verify algorithm constructs the same polynomials Φ1, . . . ,Φ𝑛 as the

Prove algorithm, and correspondingly, the same elements 𝑈1, . . . ,𝑈𝑛 . Thus, this check passes by

construction.

• Validity of wire assignments: From Eqs. (3.2) to (3.4), we can write

𝑒 (𝑈 𝑗 ,𝑈 𝑗 ) = 𝑒
(
𝑔
Φ𝑗 (𝛼 )
𝑝 , 𝑔

Φ𝑗 (𝛼 )
𝑝

)
= 𝑒 (𝑔𝑝 , 𝑔𝑝)Φ

2

𝑗
(𝛼 )

= 𝑒 (𝑔𝑝 , 𝑔𝑝)Φ𝑗 (𝛼 ) · 𝑒 (𝑔𝑝 , 𝑔𝑝)𝑄 𝑗 (𝛼 )𝜁 (𝛼 )

= 𝑒 (𝐴0,𝑈 𝑗 ) · 𝑒 (𝑍,𝑉𝑗 ),

since 𝐴0 = 𝑔𝛼
0

𝑝 = 𝑔𝑝 , 𝑍 = 𝑔
𝜁 (𝛼 )
𝑝 , and 𝑉𝑗 = 𝑔

𝑄 𝑗 (𝛼 )
𝑝 . Thus, the wire validity check passes.

• Validity of gate computation: From Eqs. (3.2), (3.5) and (3.6), we can write

𝑒 (𝐴0, 𝐴0) = 𝑒 (𝑔𝑝 , 𝑔𝑝) = 𝑒 (𝑔𝑝 , 𝑔𝑝)Φ𝑘
1
(𝛼 )Φ𝑘

2
(𝛼 )+Φ𝑘

3
(𝛼 )+𝑅𝑘 (𝛼 )𝜁 (𝛼 )

= 𝑒
(
𝑔
Φ𝑘

1
(𝛼 )

𝑝 , 𝑔
Φ𝑘

2
(𝛼 )

𝑝

)
𝑒
(
𝑔𝑝 , 𝑔

Φ𝑘
3
(𝛼 )

𝑝

)
𝑒
(
𝑔
𝜁 (𝛼 )
𝑝 , 𝑔

𝑅𝑘 (𝛼 )
𝑝

)
= 𝑒 (𝑈𝑘1,𝑈𝑘2)𝑒 (𝐴0,𝑈𝑘3)𝑒 (𝑍, 𝑅𝑘 ),

so the gate validity check passes.
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• Output satisfiability: From Eq. (3.2), the prover computes 𝑈𝑡 = 𝑔
Φ𝑡 (𝛼 )
𝑝 , where Φ𝑡 is the unique

polynomial of degree at most ℓ − 1 that satisfies Φ𝑡 (𝑖) = 𝑤𝑖,𝑡 = 1 for all 𝑖 ∈ [ℓ]. This means Φ𝑡 (𝑥) ≡ 1

is the constant polynomial equal to 1 everywhere. In this case𝑈𝑡 = 𝑔
Φ𝑡 (𝛼 )
𝑝 = 𝑔𝑝 = 𝐴0, as required.

Since all of the verification checks pass, we conclude that Verify outputs 1. □

Theorem 3.5 (Somewhere Extractability). Suppose the ℓ-subgroup decision exponent assumption (Assump-
tion 3.2) holds with respect to CompGroupGen. Then Construction 3.3 satisfies somewhere extractability.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1𝜆, 1ℓ , 𝑖∗): On input the security parameter 𝜆, the number of instances ℓ , and the target

index 𝑖∗ ∈ [ℓ], the trapdoor setup algorithm works as follows:

– Run (G,G𝑇 , 𝑝, 𝑞, 𝑒, 𝑔) ← CompGroupGen(1𝜆). Let 𝑁 = 𝑝𝑞, sample 𝑟
r← Z𝑁 , and set 𝑔𝑝 = 𝑔𝑞𝑟 ,

𝑔𝑞 = 𝑔𝑝𝑟 . Let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒).

– Sample 𝛼
r← Z𝑁 . For each 𝑖 ∈ [0, ℓ − 1], let 𝐴𝑖 = 𝑔𝛼

𝑖

𝑝 𝑔
(𝑖∗ )𝑖
𝑞 .

– Define the polynomial 𝜁 (𝑥) := ∏
𝑖∈[ℓ ] (𝑥 − 𝑖) ∈ Z𝑁 [𝑥] and let 𝑍 = 𝑔

𝜁 (𝛼 )
𝑝 .

– Output the common reference string crs = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ) and the extraction trapdoor

td = 𝑔𝑞 .

• Extract(td,𝐶, (x1, . . . , xℓ ), 𝜋): On input the trapdoor td = 𝑔𝑞 , the circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
instances x1, . . . , xℓ ∈ {0, 1}𝑛 , and a proof 𝜋 = ({(𝑘,𝑈 𝑗 ,𝑉𝑗 )} 𝑗∈[𝑡 ], {(𝑘,𝑊𝑘 )}𝑘∈[𝑠 ]), the extraction algo-

rithm sets wire value 𝑤∗𝑗 = 0 if 𝑒 (𝑔𝑞,𝑈 𝑗 ) = 1 and 𝑤∗𝑗 = 1 otherwise for all 𝑗 ∈ [𝑛 + 1, 𝑛 + ℎ]. Then,
it outputs the extracted witness w∗ = (𝑤∗𝑛+1, . . . ,𝑤∗𝑛+ℎ).

We now show the CRS indistinguishability and the somewhere extractability in trapdoor mode properties.

Lemma 3.6 (CRS Indistinguishability). Suppose the ℓ-subgroup decision exponent assumption (Assumption 3.2)
holds with respect to CompGroupGen. Then Construction 3.3 satisfies CRS indistinguishability.

Proof. Take any ℓ = ℓ (𝜆) where ℓ ≤ 2
𝜆
. Suppose there exists an efficient adversaryA that can break CRS in-

distinguishability. We useA to construct an adversary B for the ℓ-subgroup decision exponent assumption:

1. At the beginning of the game, algorithm B receives a challenge G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), a list of group
elements 𝑌1, . . . , 𝑌ℓ ∈ G, and a challenge element 𝑇 ∈ G.

2. Algorithm B starts running algorithm A which starts by outputting an index 𝑖∗ ∈ [ℓ]. Algorithm
B now constructs the crs as follows:

• For all 𝑖 ∈ [0, ℓ], compute

𝐴𝑖 = 𝑇 (𝑖
∗ )𝑖

∏
𝑗∈[𝑖 ]

𝑌
(𝑖𝑗) (𝑖∗ )𝑖− 𝑗
𝑗

.

• Next, it defines the polynomial 𝜁 (𝑥) = ∏
𝑖∈[ℓ ] (𝑥 − 𝑖), writes 𝜁 (𝑥) =

∑
𝑖∈[0,ℓ ] 𝜁𝑖𝑥

𝑖
, and computes

𝑍 =
∏

𝑖∈[0,ℓ ] 𝐴
𝜁𝑖
𝑖
.

Algorithm B gives crs = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ) to A and outputs whatever A outputs. Note that 𝐴ℓ

is used in computing 𝑍 but not published in crs.
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By construction, the challenger in the ℓ-subgroup decision exponent assumption samples (G,G𝑇 , 𝑝, 𝑞, 𝑔, 𝑒) ←
CompGroupGen(1𝜆) and then sets 𝑁 = 𝑝𝑞, 𝑔𝑝 = 𝑔𝑞𝑟 , 𝑔𝑞 = 𝑔𝑝𝑟 , where 𝑟

r← Z𝑁 , and G = (G,G𝑇 , 𝑁 , 𝑔𝑝 , 𝑒).
In addition, it also samples 𝛼

r← Z𝑁 and sets 𝑌𝑖 = 𝑔𝛼
𝑖

𝑝 . Consider now the distribution of each 𝐴𝑖 and 𝑍 :

• If 𝑇 = 𝑔𝑝 , then

𝐴𝑖 = 𝑇 (𝑖
∗ )𝑖

∏
𝑗∈[𝑖 ]

𝑌
(𝑖𝑗) (𝑖∗ )𝑖− 𝑗
𝑗

= 𝑔
(𝑖∗ )𝑖+∑𝑗 ∈ [𝑖 ] (𝑖𝑗)𝛼 𝑗 (𝑖∗ )𝑖− 𝑗
𝑝 = 𝑔

(𝛼+𝑖∗ )𝑖
𝑝 .

Moreover,

𝑍 =
∏

𝑖∈[0,ℓ ]
𝐴
𝜁𝑖
𝑖
=

∏
𝑖∈[0,ℓ ]

𝑔
𝜁𝑖 (𝛼+𝑖∗ )𝑖
𝑝 = 𝑔

𝜁 (𝛼+𝑖∗ )
𝑝 .

Since the distribution of 𝛼
r← Z𝑁 is independent of 𝑖∗, the distribution of (𝛼 + 𝑖∗) is uniform over

Z𝑁 . Thus, the crs outputs by this process is distributed according to Setup(1𝜆, 1ℓ ).

• If 𝑇 = 𝑔𝑝𝑔𝑞 , then

𝐴𝑖 = 𝑇 (𝑖
∗ )𝑖

∏
𝑗∈[𝑖 ]

𝑌
(𝑖𝑗) (𝑖∗ )𝑖− 𝑗
𝑗

= 𝑔
(𝑖∗ )𝑖+∑𝑗 ∈ [𝑖 ] (𝑖𝑗)𝛼 𝑗 (𝑖∗ )𝑖− 𝑗
𝑝 𝑔

(𝑖∗ )𝑖
𝑞 = 𝑔

(𝛼+𝑖∗ )𝑖
𝑝 𝑔

(𝑖∗ )𝑖
𝑞 .

Moreover,

𝑍 =
∏

𝑖∈[0,ℓ ]
𝐴
𝜁𝑖
𝑖
=

∏
𝑖∈[0,ℓ ]

𝑔
𝜁𝑖 (𝛼+𝑖∗ )𝑖
𝑝 𝑔

𝜁𝑖 (𝑖∗ )𝑖
𝑞 = 𝑔

𝜁 (𝛼+𝑖∗ )
𝑝 𝑔

𝜁 (𝑖∗ )
𝑞 = 𝑔

𝜁 (𝛼+𝑖∗ )
𝑝 ,

since 𝜁 (𝑥) vanishes at 𝑖∗ ∈ [ℓ]. In this case the distribution of crs is precisely that output by

TrapSetup(1𝜆, 1ℓ , 𝑖∗).

We conclude that B breaks the ℓ-subgroup decision exponent assumption with the same advantage 𝜀. □

Lemma 3.7 (Somewhere Extractable in Trapdoor Mode). Construction 3.3 is statistically somewhere ex-
tractable in trapdoor mode.

Proof. Take any polynomial ℓ = ℓ (𝜆) and let 𝑖∗ ← A(1𝜆, 1ℓ ). Then, sample (crs∗, td) ← TrapSetup(1𝜆, 1ℓ , 𝑖∗).
Then, we can write

crs∗ = (G, 𝐴0, . . . , 𝐴ℓ−1, 𝑍 ),

where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), 𝐴𝑖 = 𝑔𝛼
𝑖

𝑝 𝑔
(𝑖∗ )𝑖
𝑞 , 𝑍 = 𝑔

𝜁 (𝛼 )
𝑝 , where 𝛼, 𝑟

r← Z𝑁 and 𝑔𝑝 = 𝑔𝑞𝑟 , 𝑔𝑞 = 𝑔𝑝𝑟 . Let

G𝑝 ⊂ G be the subgroup of G of order 𝑝 and G𝑞 ⊂ G be the subgroup of G of order 𝑞. With over-

whelming probability over the choice of 𝑟 , 𝑔𝑝 is a generator of G𝑝 and 𝑔𝑞 is a generator of G𝑞 . Then, by

the Chinese Remainder Theorem, we can decompose every element ℎ ∈ G as 𝑔
𝛾𝑝
𝑝 𝑔

𝛾𝑞
𝑞 for some choice of

𝛾𝑝 ∈ Z𝑝 , 𝛾𝑞 ∈ Z𝑞 . Take any circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, instances x1, . . . , xℓ ∈ {0, 1}𝑛 and a proof

𝜋 = ({(𝑘,𝑈 𝑗 ,𝑉𝑗 )} 𝑗∈[𝑡 ], {(𝑘,𝑊𝑘 )}𝑘∈[𝑠 ]) where Verify(crs∗,𝐶, (x1, . . . , xℓ ), 𝜋) = 1. We now consider each of

the verification checks:

• Write 𝑈 𝑗 = 𝑔
𝛾 𝑗,𝑝
𝑝 𝑔

𝛾 𝑗,𝑞
𝑞 for some choice of 𝛾 𝑗,𝑝 ∈ Z𝑝 , 𝛾 𝑗,𝑞 ∈ Z𝑞 . We first claim that 𝛾 𝑗,𝑞 ∈ {0, 1} for

all 𝑗 ∈ [𝑡]. Consider the wire validity check. Since 𝜋 is a valid proof, this means 𝑒 (𝑈 𝑗 ,𝑈 𝑗 ) =

𝑒 (𝐴0,𝑈 𝑗 ) · 𝑒 (𝑍,𝑉𝑗 ). Consider this relation in the mod-𝑞 subgroup. By construction 𝑍 ∈ G𝑝 , so if

we restrict our attention to only the mod-𝑞 components, then this verification relation implies that

𝛾2𝑗,𝑞 = 𝛾 𝑗,𝑞 , which means 𝛾 𝑗,𝑞 ∈ {0, 1}, as required.
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• Next, for every NAND gate 𝐺𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3, we claim that NAND(𝛾𝑘1,𝑞, 𝛾𝑘2,𝑞) = 𝛾𝑘3,𝑞 . We use

the gate validity check. Again, because 𝜋 is a valid proof, this means 𝑒 (𝑈𝑘1,𝑈𝑘2) ·𝑒 (𝐴0,𝑈𝑘3) ·𝑒 (𝑍, 𝑅𝑘 ) =
𝑒 (𝐴0, 𝐴0). Again, if we just consider the relation in the mod-𝑞 subgroup and using again the fact

that 𝑍 ∈ G𝑝 , we obtain the relation 𝛾𝑘1,𝑞𝛾𝑘2,𝑞 + 𝛾𝑘3,𝑞 = 1. This is equivalent to the statement

NAND(𝛾𝑘1,𝑞, 𝛾𝑘2,𝑞) = 𝛾𝑘3,𝑞 .

• Finally, we argue that 𝛾 𝑗,𝑞 = 𝑥𝑖∗, 𝑗 for all 𝑗 ∈ [𝑛]. This follows from the input validity check. Since

the verification algorithm passes, we have 𝑈 𝑗 =
∏

𝑖∈[0,ℓ−1] 𝐴
𝜑 𝑗,𝑖

𝑗
= 𝑔

Φ𝑗 (𝛼 )
𝑝 𝑔

Φ𝑗 (𝑖∗ )
𝑞 , where Φ𝑗 (𝑥) =∑

𝑖∈[0,ℓ−1] 𝜑 𝑗,𝑖𝑥
𝑖
satisfies Φ𝑗 (𝑖) = 𝑥 𝑗,𝑖 for all 𝑖 ∈ [ℓ]. If we consider again the verification relation in

the mod-𝑞 subgroup, then we conclude that 𝛾 𝑗,𝑞 = Φ𝑗 (𝑖∗) = 𝑥𝑖∗, 𝑗 .

• Finally, the output validity check requires that𝑈𝑡 = 𝐴0 = 𝑔𝑝𝑔𝑞 . This means 𝛾𝑡,𝑞 = 1.

Taken together, the above properties show that 𝛾1,𝑞, . . . , 𝛾𝑡,𝑞 ∈ {0, 1} are a valid labeling of the wires of 𝐶

where the first 𝑛 inputs coincide with x𝑖∗ and the output bit is 𝛾𝑡,𝑞 = 1. To complete the proof, we analyze

the output of w∗ = Extract(td,𝐶, (x1, . . . , xℓ ), 𝜋). By definition, 𝑤∗𝑖 = 0 if and only if 𝑒 (𝑔𝑞,𝑈 𝑗 ) = 1, or

equivalently, if 𝛾 𝑗,𝑞 = 0. Alternatively, 𝑤∗𝑖 = 1 if and only if 𝑒 (𝑔𝑞,𝑈 𝑗 ) ≠ 1, or equivalently, if 𝛾 𝑗,𝑞 ≠ 0. We

conclude then that w∗ = (𝛾𝑛+1,𝑞, . . . , 𝛾𝑛+ℎ,𝑞). The above analysis shows that 𝐶 (x,w∗) = 1, so extraction

succeeds (with overwhelming probability over the choice of 𝑔𝑝 and 𝑔𝑞). □

Somewhere extractability now follows by combining Lemmas 3.6 and 3.7. □

Theorem 3.8 (Succinctness). Construction 3.3 is succinct.

Proof. Take any 𝜆, ℓ, 𝑠 ∈ N and consider a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of at most size s.

Let 𝑡 = poly(𝑠) be the number of wires in circuit 𝐶 . We check each property:

• Proof size: A proof 𝜋 consists of 2𝑡 + 𝑠 elements in G, each of which can be represented by poly(𝜆)
bits. Thus the proof size satisfies |𝜋 | = (2𝑡 + 𝑠) · poly(𝜆) = poly(𝜆, 𝑠).

• CRS size: The common reference string crs consists of the group description G, and ℓ + 1 elements

in G. Thus, |crs| = ℓ · poly(𝜆).

• Verification complexity: The running time of the verification algorithm is then

𝑛 · poly(𝜆, ℓ)︸         ︷︷         ︸
statement check

+ 𝑡 · poly(𝜆)︸      ︷︷      ︸
wire validity check

+ 𝑠 · poly(𝜆)︸      ︷︷      ︸
gate validity check

+ poly(𝜆)︸  ︷︷  ︸
output check

= poly(𝜆, 𝑛, ℓ) + poly(𝜆, 𝑠)

since 𝑛, 𝑡 = poly(𝑠). □

Remark 3.9 (Faster Verification with Preprocessing). Like the [WW22] construction, if the statements

x1, . . . , xℓ ∈ {0, 1}𝑛 are known in advance, we can precompute the “correct” statement encodings𝑈1, . . . ,𝑈𝑛

in an “offline” phase (via Eq. (3.1)). This requires time poly(𝜆, 𝑛, ℓ). In the online phase, the verifier can use the
pre-computed encodings and implement the statement check in𝑛 ·poly(𝜆) time (i.e., independent of the num-

ber of instances ℓ). Correspondingly, the online verification complexity is simply poly(𝜆, 𝑠), independent of ℓ .
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A Generic Hardness of Assumption 3.2

In this section, we show that the subgroup decision exponent assumption (Assumption 3.2) we rely on

holds in the generic bilinear group model of composite order. To do so, we rely on the “master theorems”

from [KSW08, Appendix A]; specifically, we use the corrected version from [GLWW24, Theorem D.4]. We

start by recalling the generic bilinear group model and [GLWW24, Theorem D.4]. Our definitions are taken

nearly verbatim from [GLWW24, Appendix D].

Definition A.1 (Generic Bilinear Group Model). For a positive integer 𝑁 ∈ Z, let L ⊆ {0, 1}∗ be a set
of strings of cardinality at least 𝑁 . The generic (symmetric) bilinear group model is initialized with two

random injective mappings 𝜎, 𝜎𝑇 : Z𝑁 → L (which map a discrete log over Z𝑁 to an associated label in L).
Here, 𝜎 is the labeling function associated with the base group and 𝜎𝑇 is the labeling function associated

with the target group. In the generic group model, the parties have oracle access to a generic bilinear group

oracle which supports the following operations:

• Base group encoding: On input 𝑥 ∈ Z𝑁 , the oracle responds with 𝜎 (𝑥).

• Base group operation: On input labels ℓ1, ℓ2 ∈ L, if both ℓ1, ℓ2 are in the image of 𝜎 , then the oracle

replies with 𝜎 (𝜎−1(ℓ1) + 𝜎−1(ℓ2)). Otherwise, if either ℓ1 or ℓ2 is not in the image of 𝜎 , then the oracle

replies with ⊥.

• Target group encoding: On input 𝑥 ∈ Z𝑁 , the oracle responds with receives 𝜎𝑇 (𝑥).

• Target group operation: On input labels ℓ1, ℓ2 ∈ L, if both ℓ1, ℓ2 are in the image of𝜎𝑇 , then the oracle

replies with 𝜎𝑇 (𝜎−1𝑇
(ℓ1) +𝜎−1𝑇

(ℓ2)). If either ℓ1 or ℓ2 is not in the image of 𝜎𝑇 , the oracle replies with ⊥.

• Pairing: On input labels ℓ1, ℓ2 ∈ L, if both ℓ1, ℓ2 are in the image of 𝜎 , then the oracle replies with

𝜎𝑇 (𝜎−1(ℓ1) · 𝜎−1(ℓ2)). If either ℓ1 or ℓ2 is not in the image of 𝜎 , then the oracle replies with ⊥.

Notation. We will write 𝑔 to denote the label for 𝜎 (1) and 𝑔𝑥 to denote 𝜎 (𝑥). Similarly, we write 𝑒 (𝑔,𝑔) to
denote 𝜎𝑇 (1) and 𝑒 (𝑔,𝑔)𝑥 to denote 𝜎𝑇 (𝑥). We write G and G𝑇 to denote the groups induced by the labeling

functions 𝜎 and 𝜎𝑇 , respectively (i.e., G = {𝜎 (𝑥) : 𝑥 ∈ Z𝑁 } and G𝑇 = {𝜎𝑇 (𝑥) : 𝑥 ∈ Z𝑁 }). To analyze

our assumptions, we follow the methodology from [BBG05, KSW08, GLWW24] by enumerating a set of

sufficient conditions for security to hold unconditionally in the generic bilinear group model. We begin

with a notion of independence and then recall [GLWW24, Theorem D.4] which we use for our analysis.

Definition A.2 (Independence of Polynomials). Let 𝑁 =
∏

𝑖∈[𝑚] 𝑝𝑖 be a positive integer that is a product of
𝑚 ≥ 1 distinct primes 𝑝𝑖 . Let P = {𝑃𝑖}𝑖∈[𝑘 ] be a collections of polynomials where each 𝑃𝑖 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛]
is an 𝑛-variate polynomial over Z𝑁 . By the Chinese Remainder Theorem, we can view each poly-

nomial 𝑃𝑖 as a tuple of 𝑚 polynomials 𝑃𝑖,1 ∈ Z𝑝1 [𝑋1, . . . , 𝑋𝑛], . . . , 𝑃𝑖,𝑚 ∈ Z𝑝𝑚 [𝑋1, . . . , 𝑋𝑛] and where

20



𝑃𝑖, 𝑗 (𝑥1, . . . , 𝑥𝑛) = 𝑃𝑖 (𝑥1, . . . , 𝑥𝑛) mod 𝑝 𝑗 for all 𝑗 ∈ [𝑚]. We say that a polynomial 𝑓 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛]
(with associated components 𝑓1, . . . , 𝑓𝑚) is dependent on P if there exists coefficients 𝛼𝑖 ∈ Z𝑁 such that

∀𝑗 ∈ [𝑚] : 𝑓𝑗 (𝑋1, . . . , 𝑋𝑛) =
∑︁
𝑖∈[𝑘 ]

𝛼𝑖𝑃𝑖, 𝑗 (𝑋1, . . . , 𝑋𝑛) mod 𝑝 𝑗 .

We say 𝑓 is independent on P if 𝑓 is not dependent on P.

Theorem A.3 (Generic Hardness in Composite-Order Groups [GLWW24, Theorem D.4]). Let 𝑁 =∏
𝑗∈[𝑚] 𝑝 𝑗 be a product of distinct primes where each 𝑝 𝑗 ≥ 2

𝜆 . Let P = {𝑃𝑖}𝑖∈[𝑘 ] and Q = {𝑄𝑖}𝑖∈[ℓ ] be
collections of linearly independent polynomials where each 𝑃𝑖 , 𝑄𝑖 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] is an 𝑛-variate polynomial
over Z𝑁 . We assume that 𝑃1 = 𝑄1 = 1. As in Definition A.2, we write 𝑃𝑖, 𝑗 and𝑄𝑖, 𝑗 to denote the action of the poly-
nomial 𝑃𝑖 and𝑄𝑖 , respectively, modulo 𝑝 𝑗 . Let𝑇0,𝑇1 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] be two challenge polynomials. Then, for a
bit𝑏 ∈ {0, 1} and an adversaryA, define the following experiment in the generic bilinear groupmodel of order𝑁 :

• At the beginning of the game, the challenger samples 𝑥1, . . . , 𝑥𝑛
r← Z𝑁 . For each 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ],

it computes

ℓ𝑖 = 𝜎 (𝑃𝑖 (𝑥1, . . . , 𝑥𝑛))
ℓ ′𝑗 = 𝜎𝑇 (𝑄 𝑗 (𝑥1, . . . , 𝑥𝑛))
𝜏0 = 𝜎 (𝑇0(𝑥1, . . . , 𝑥𝑛))
𝜏1 = 𝜎 (𝑇1(𝑥1, . . . , 𝑥𝑛)) .

• The challenger gives
(
𝑁, {ℓ𝑖}𝑖∈[𝑘 ], {ℓ ′𝑗 } 𝑗∈[ℓ ], 𝜏𝑏

)
to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

For an adversary A, define its advantage 𝛿A to be

𝛿A := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] |

in the above distinguishing experiment. Let P2
:= {𝑃𝑖𝑃 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}. For a bit 𝑏 ∈ {0, 1}, let

S (𝑏 ) := P2 ∪ Q ∪ {𝑇𝑏𝑃𝑖 : 𝑖 ∈ [𝑘]}.

For an index 𝑖 ∈ [𝑘], define S (𝑏 )
𝑖

:= S (𝑏 ) \ {𝑇𝑏𝑃𝑖}. Suppose now the following properties hold:

• The total degree of 𝑃𝑖 , 𝑄 𝑗 ,𝑇0,𝑇1 is at most 𝑑 .

• For all 𝑖 ∈ [𝑘] and 𝑏 ∈ {0, 1}, the polynomial 𝑇𝑏 is independent of P.

• For all 𝑖 ∈ [𝑘], if 𝑇0𝑃𝑖 ≠ 𝑇1𝑃𝑖 , then for all 𝑏 ∈ {0, 1}, the polynomial 𝑇𝑏𝑃𝑖 is independent of S (𝑏 )𝑖
.

• For all 𝑏 ∈ {0, 1}, the polynomial 𝑇 2

𝑏
is independent of S (𝑏 ) .

Then, for all adversaries A making at most 𝑞 queries to the generic group oracle, if A has distinguishing
advantage 𝛿A in the above distinguishing experiment, then there is an algorithm that runs in time polyno-
mial in 𝜆 and the running time of A that outputs a non-trivial factor of 𝑁 with success probability at least
𝛿A −𝑂 ((𝑞 + 𝑘 + ℓ)2𝑑/2𝜆).
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Theorem A.4 (Generic Hardness of Assumption 3.2). If factoring a product of two primes (each of size
2
𝜆) is computationally hard, then for all polynomials ℓ = ℓ (𝜆), the ℓ-subgroup decision exponent assumption

(Assumption 3.2) holds in the generic group model of order𝑁 where𝑁 is a product of two primes (each of size 2𝜆).

Proof. The components given out in Assumption 3.2 can be expressed as polynomials over the formal

variables 𝛼, 𝑟 ∈ Z𝑁 . The components in the assumption correspond to the polynomials 𝑃𝑖 (𝛼, 𝑟 ) :=

[𝑃𝑖,1(𝛼, 𝑟 ), 𝑃𝑖,2(𝛼, 𝑟 )] = [𝛼𝑖𝑟, 0] for all 𝑖 ∈ [ℓ]. Let P = {𝑃𝑖}𝑖∈[ℓ ] . The challenge polynomials are then

𝑇0(𝛼, 𝑟 ) := [𝑟, 0] and 𝑇1(𝛼, 𝑟 ) := [𝑟, 𝑟 ]

We now consider the conditions in Theorem A.3:

• The total degree of the polynomials appearing in the challenge and the assumption is at most ℓ + 1.

• By definition, 𝑇0 and 𝑇1 are monomials in 𝑟 only whereas each polynomial 𝑃𝑖 is a non-zero monomial

in both 𝛼 and 𝑟 . Thus, any non-zero linear combination of {𝑃𝑖}𝑖∈[ℓ ] would yield either a constant poly-
nomial or one that is non-zero in 𝛼 . Thus𝑇0 and𝑇1 are independent on the set of polynomials {𝑃𝑖}𝑖∈[ℓ ] .

• By construction, 𝑇0 and 𝑇1 are distributed identically in the G𝑝 subgroup and only differ in the G𝑞
subgroup. By construction of 𝑃𝑖 , this means 𝑇0𝑃𝑖 = 𝑇1𝑃𝑖 for all 𝑖 ∈ [ℓ].

• For the final condition, let S (𝑏 ) = P2 ∪ {𝑇𝑏𝑃𝑖 : 𝑖 ∈ [ℓ]}. First,𝑇 2

0
(𝛼, 𝑟 ) = [𝑟 2, 0] and𝑇 2

1
(𝛼, 𝑟 ) = [𝑟 2, 𝑟 2].

Notably, 𝑇0 and 𝑇1 are monomials in 𝑟 only. For all 𝑖, 𝑗 ∈ [ℓ], the polynomial 𝑃𝑖𝑃 𝑗 is a monomial in

both 𝛼 and 𝑟 ; similarly, 𝑇𝑏𝑃𝑖 is a monomial in 𝛼 and 𝑟 . So, any non-zero linear combination of the

polynomials in S (𝑏 ) would lead to a polynomial that is either a constant polynomial or one that is

non-zero in 𝛼 . Thus, 𝑇 2

𝑏
is independent of S (𝑏 ) .

Since ℓ = poly(𝜆) and the number of terms given out in the assumption is also ℓ , the claim now follows

from Theorem A.3. □
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