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Abstract

In a batched identity-based encryption (IBE) scheme, ciphertexts are associated with a batch label tg* and an
identity id* while secret keys are associated with a batch label tg and a set of identities S. Decryption is possible
whenever tg = tg* and id* € S. The primary efficiency property in a batched IBE scheme is that the size of the de-
cryption key for a set S should be independent of the size of S. Batched IBE schemes provide an elegant cryptographic
mechanism to support encrypted memory pools in blockchain applications.

In this work, we introduce a new algebraic framework for building pairing-based batched IBE. Our framework
gives the following:

- First, we obtain a selectively-secure batched IBE scheme under a g-type assumption in the plain model. Both
the ciphertext and the secret key consist of a constant number of group elements. This is the first pairing-based
batched IBE scheme in the plain model. Previous pairing-based schemes relied on the generic group model
and the random oracle model.

+ Next, we show how to extend our base scheme to a threshold batched IBE scheme with silent setup. In this setting,
users independently choose their own public and private keys, and there is a non-interactive procedure to derive
the master public key (for a threshold batched IBE scheme) for a group of users from their individual public keys.
We obtain a statically-secure threshold batched IBE scheme with silent setup from a g-type assumption in the
plain model. As before, ciphertexts and secret keys in this scheme contain a constant number of group elements.
Previous pairing-based constructions of threshold batched IBE with silent setup relied on the generic group
model, could only support a polynomial number of identities (where the size of the public parameters scaled lin-
early with this bound), and ciphertexts contained O(1/log 1) group elements, where A is the security parameter.

« Finally, we show that if we work in the generic group model, then we obtain a (threshold) batched IBE scheme
with shorter ciphertexts (by 1 group element) than all previous pairing-based constructions (and without
impacting the size of the secret key).

Our constructions rely on classic algebraic techniques underlying pairing-based IBE and do not rely on the signature-
based witness encryption viewpoint taken in previous works.

1 Introduction

Suppose we have a set of B ciphertexts S = {cty, ..., ctg} encrypted under a public key pk. The batch decryption
problem is to derive a decryption key skg that can be used to decrypt the ciphertexts in S while still ensuring semantic
security for all ciphertexts outside the set S. A trivial solution to this problem is to use hybrid encryption. Namely, to
encrypt a message m, the encrypter samples a random symmetric key k and encrypts the message m using k and then
encrypts the key k using the public key pk. A batch decryption key for the set S = {cty, ..., ctp} is the list of symmetric
keys ki, ..., kp associated with cty, ..., ctg. Though simple, this trivial solution is inefficient because the size of the
decryption key scales linearly with the number of ciphertexts. The goal in batch decryption is to support decryption
keys for arbitrary sets of ciphertexts with size that is sublinear (and ideally, polylogarithmic) in the size of the set.
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An application to mempool privacy. Batch decryption and its generalizations have received extensive study in
the last two years [CGPP24, SAA24, BEOQ25, AFP25, CGPW25, BLT25, BCF*25]. A key motivation for studying batch
decryption is it provides an elegant cryptographic solution for defending against market manipulation in blockchain
and decentralized finance applications. Specifically, when users wish to post a transaction to a blockchain, they first
submit the transaction to a public memory pool (“mempool”). Subsequently, miners select a subset of transactions
in the mempool to include as part of the next block on the blockchain. Since miners have a lot of freedom to choose
which transactions from the mempool to include in the next block, if the transaction details are public, then miners
may re-order or selectively include or omit certain transactions to their own financial benefit and to the detriment
of the transaction issuer. The additional value that a miner can derive through such front-running or back-running
attacks is referred to as the miner extractable value or MEV [DGK™*20].

A natural technique to defend against MEV attacks is for users to encrypt their transactions when they are submitted
to the mempool [BO22, KLJD23, CGPP24]. Specifically, the blockchain specifies a public key pk and the associated secret
key is secret shared across a decryption committee of nodes that operate the blockchain. When a user wants to perform
a transaction, they encrypt it under pk before submitting it to the encrypted mempool. After the miners select a set of en-
crypted transactions to commit to the blockchain, the decryption committee publish shares of the batch decryption key
that can be used to decrypt the transactions in the block. This way, transactions become public only afterthey have been
committed to the blockchain; this is critical for defending against MEV attacks. Because the decryption shares for each
batch of transactions must be published on the blockchain, it is important for the batch decryption key to be succinct.

Batched identity-based encryption. In this work, we focus on the notion of batched identity-based encryption
(batched IBE) introduced in the recent work of Agarwal, Fernando, and Pinkas [AFP25]. The work of [AFP25] show
that batched IBE directly implies a batch decryption scheme; analogously, threshold batched IBE implies the notion
of threshold batch decryption considered in other works [CGPP24, SAA24, BFOQ25, CGPW25, BCF*25].

In a vanilla IBE scheme [Sha84, BF01, Coc01], one can encrypt a message m with respect to the (master) public key
mpk and an identity id. The holder of the master secret key msk can in turn issue decryption keys sk;q for an identity.
The decryption key skiq can decrypt all ciphertexts encrypted to the associated identity id. In batched IBE, the holder
of the master secret key msk can issue a decryption key skgs associated with a set of identities. The key skgs can decrypt
ciphertexts encrypted to any identity id € S, and moreover, the size of sks should be sublinear in the size of the set S.

It is easy to see that batched IBE implies batch decryption. To encrypt a message m, the encrypter would sample
a random identity id & {0,1}* and encrypt m with respect to id. The batch decryption key for a collection of
ciphertexts is simply a batch key for the set of identities S associated with the ciphertexts in the batch. Since the
honest encryption algorithm samples the identity uniformly at random from {0, 1}*, the probability that the id
associated with an honestly-generated ciphertext (outside the decryption batch) is contained in S is negligible. Thus,
sks does not compromise the semantic security of (honestly-generated) ciphertexts outside the batch.

Recent constructions of batched IBE and batch decryption impose an additional restriction on the functional-
ity [CGPP24, SAA24, AFP25, CGPW25]. Namely, they assume that each ciphertext is additionally associated with
a batch label tg (also called an “epoch” [CGPP24, SAA24, CGPW25]). Similarly, decryption keys are also associated
with a batch label tg together with a set of identities (or ciphertexts). A decryption key with batch label tg can only
decrypt ciphertexts with the same label. The main compromise is that semantic security holds only in the setting
where the adversary sees a single decryption key associated with each batch label.! In the setting of MEV prevention
for blockchain applications, the batch label could be the current block number. Since block numbers are unique,
decrypters would only publish a single decryption key (or single set of decryption key shares) for each block number.
The disadvantage of this is users would have to predict the block number for their transaction when they send their
ciphertext to the encrypted mempool (or they need to prepare multiple independent ciphertexts).

1.1 Owur Results

In this work, we introduce a new algebraic framework for constructing batched IBE from pairing groups. Our
framework enables the following instantiations:

The schemes we develop in this work can allow giving out K decryption keys for each batch label, at the cost of increasing the size of the decryption
keys and the ciphertexts by an additive factor of K group elements or field elements. We refer to Section 2.1 and Appendix C for more details.



Scheme |mpk| |ct] |sk| Assumption

[AFPZS] 2|G]| + B|Gg| 3|Gl| + |GT| |Gg| GGM + ROM
Corollary 4.5 5|Gy| + B|Gy| + |Gr|  3|Gy| +|Gr|  2|G2| +1Zy|  g-type
Corollary D.6  4|Gq| + B|G;| 2|Gq| +|Gr| |Gy GGM + ROM

Table 1: Comparison of our batched IBE schemes with the [AFP25] scheme. For each scheme, we report the sizes of
the master public key mpk, ciphertext ct, and decryption key sk as well as the underlying assumption. We write B to
denote the batch size. We write |G|, |G|, |Gt, |Z,| to refer to the sizes of an element from G, G, G, Z,,, respectively.
We write “GGM” to denote the generic bilinear group model and “ROM” to denote the random oracle model.

« A selectively-secure scheme in the plain model. Our first construction is a selectively-secure scheme?
based on a g-type assumption in the plain model (Construction 4.2), where ¢ = O(B) and B is the batch size.
Ciphertexts in this scheme consist of 4 group elements while the secret key consists of 2 group elements and 1
field element. This is the first pairing-based batched IBE scheme with security in the plain model. Previous
batched IBE schemes (and batch decryption schemes) [SAA24, AFP25, CGPW25] all relied on the generic
group model (together with the random oracle model). In Appendix C, we also describe ways to extend the
construction to support adaptive security in the plain model, albeit with a longer common reference string (but
without affecting the secret key size or the ciphertext size).

« An adaptively-secure scheme in the generic group model. If we work in the generic group (and random
oracle) models, then we can obtain an adaptively-secure scheme with shorter ciphertexts (3 group elements) and
secret keys (1 group element). Compared to the prior schemes for batched IBE and batch decryption [SAA24,
AFP25, CGPW25], we save one group element in the ciphertext, one exponentiation during encryption and one
pairing operation during decryption. Our master public key contains two extra group elements.

We provide a concrete comparison of the parameter sizes with the previous batched IBE scheme of [AFP25] in Table 1.
We also compare the running times of encryption and decryption in Table 2.

Threshold batched IBE. Our techniques translate readily to the threshold setting where the secret key is shared
across a decryption committee. In this work, we focus on two different threshold settings (though other combinations
are also possible):

« Threshold batched IBE with silent setup in the plain model. First, we show how to extend our batched
IBE in the plain model to a threshold batched IBE scheme with silent setup (Construction 5.5). In this context,
silent setup [GKPW24, BCF*25] means that users in the decryption committee can derive their decryption
shares non-interactively and without relying on a trusted dealer. Our work gives the first threshold batched
IBE scheme with silent setup in the plain model. Ciphertexts in our scheme consists of 5 group elements and
decryption key shares consist of 3 group/field elements. The public parameters contain O(LB) group elements
where L is the size of the decryption committee the scheme supports and B is a bound on the batch size.

The best prior construction is the work of [BCF*25], which is a pairing-based scheme in the generic group model
and only supports a polynomial-size identity space (albeit without needing to assume batch labels). Ciphertexts
in their scheme contain O(# + log B) group elements (where B in their setting is also the bound on the size
of the identity space), decryption shares consist of 3 group/field elements, and the public parameters contain
(£L + B) group elements, where £ = Q(A/log A). In particular, the number of group elements in their scheme
scales with the security parameter, whereas it is constant in our scheme. In the context of encrypted mempools,

%In a selectively-secure scheme, the adversary has to declare the challenge batch label tg* and challenge identity id* at the beginning of the
game. This can be lifted to the standard adaptive security notion via complexity leveraging and assuming sub-exponential hardness (Remark 3.4)
as well as via other techniques that do not need sub-exponential hardness (see Appendix C and Remark C.16).



it is important to support an exponential-size identity space, as otherwise, users would have to coordinate and
associate distinct identities with their transactions when submitting transactions to an encrypted mempool;
with an exponential-size identity space, users could simple associate a random identity with each transaction.

Threshold batched IBE in the generic group model. We also present a threshold version of our scheme
in the generic group model (Construction E.2). The size of the scheme parameters are the same as for the
centralized scheme in the generic group model described above. Like [AFP25], this scheme satisfies adaptive
security with static corruptions. Following the same transformation from [AFP25] (i.e., taking the identity to
be a random string), we also obtain a threshold batch decryption scheme [CGPP24, CGPW25].

As was the case in our centralized scheme, this scheme reduces the size of the ciphertext from 4 group elements
to 3 group elements compared to the current state-of-the-art [CGPW25, AFP25] while increasing the size of
the master public key by 2 group elements (B + 4 group elements vs. B + 2 group elements from prior work).

Compared to many previous works on batch decryption [CGPP24, SAA24, AFP25, CGPW25, BCF*25], we take a
conceptually-different approach in this work. These previous works typically start by setting the secret keys for their
scheme to be signatures under some pairing-based signature scheme (e.g., [BLS01]) and then design a “compatible”
ciphertext structure around it (i.e., a witness encryption scheme for for the verification relation of the signature
scheme). In contrast, we design the ciphertext and secret key structure in tandem in our scheme. Specifically, we
start with a simple base scheme satisfying a weak notion of security (e.g., security without key-generation queries)
and gradually build up to a fully secure scheme. Along the way, we leverage techniques and insights from the
pairing-based IBE literature [BF01, BB04] to derive our final constructions.

2 Technical Overview

We now provide an overview of our construction. We start by recalling the syntax of a batched IBE scheme, as
formulated in [AFP25]. As mentioned before, we work in the model where secret keys and ciphertexts are both
associated with a batch label tg and a secret key with batch label tg can only decrypt ciphertexts encrypted with
respect to the same batch label. We now give the full syntax:

« Setup: The setup algorithm samples a master secret key msk (used to issue keys) and a master public key (used
for encryption).

« Encryption: The encryption algorithm takes the master public key mpk, a batch label tg, an identity id, and a
message m, and outputs a ciphertext ctig .

« Key-generation: The key-generation algorithm takes the master secret key msk, a batch label tg, and a set of
identities S = {idy, ..., idp}, and outputs a decryption key sks s associated with the batch label tg and the set S.
The succinctness requirement is that skg should be sublinear (ideally, polylogarithmic) in the size of S.

+ Decryption: Finally, the decryption algorithm takes as input a decryption key sks s and a ciphertext ctig- g+
If tg = tg" (i.e., the batch label associated with the key matches that associated with the ciphertext), and id* € S,
then the decryption algorithm outputs the message. Otherwise, it outputs L.

The main security requirement for a batched IBE scheme is that a ciphertext ctjg- 1o+ should computationally hide
the underlying message against an adversary who only has decryption keys sks; where either tg # tg* or id" ¢ S.
Following [AFP25], we also impose an additional restriction that the adversary is only allowed to ask for a single
decryption key for each batch label.

Notation. We leverage asymmetric prime-order pairing groups to build our batched IBE scheme. An asymmetric
prime-order pairing group consists of a tuple (G;, G;, Gr), where Gy, G, Gt are groups of prime order p and there is an
efficiently-computable non-degenerate bilinear map e: Gy xG, — Gr. Throughout this work, we write group elements
using implicit notation [EHK"13]. Specifically, if g; and g, are generators of G; and G, respectively, we write [x]1,
[x]2, and [x]7 to denote g7, g5, and e(g1, g2)*, respectively. Similarly, we write [x]; - [y]2 = e([x]1, [y]2) = [xy]7.



Starting point: a correct but insecure scheme. We begin by describing a simple template for building batched
IBE. Our base construction will satisfy correctness and succinctness, but only provides security for adversaries that
make no key-generation queries. We then show how to systematically introduce additional components to obtain
a secure construction.

Following [AFP25], we assume identities are elements of Z,, and we take B to be a bound on the batch size (i.e., the
size of the set S associated with each decryption key has size at most B). We allow the size of the master public key to
grow with the batch size B. Similar to previous constructions [KZG10, CGPP24, SAA24, AFP25, CGPW25], we encode
a set of identities S C Z,, using a polynomial Fs(x) = []jjes(x — id). Our base construction then proceeds as follows:

« Setup: The setup algorithm samples two exponents r ¢~ Z, and a <~ Z,. Then the master public key and
master secret key are as follows:

mpk = ([7]1, [7]2, .. ., [TB]z, [¢]T) and msk=a.

As in [CGPP24, SAA24, AFP25, CGPW25], the “powers-of-7” in the public parameters are used to encode the
set S (specifically, the polynomial Fs) while « is used for encrypting the message.

« Encryption: To encrypt a message [m]t € Gy with respect to an identity id € Z,, the encrypter samples
s € Z, and outputs the ciphertext

ctig = ([s]1, [s(z = id)]4, [salr + [m]7).

Throughout this work, we take the target group element [m]t to be the message and decryption only needs
to recover the group element [m]y rather than the exponent m € Z,. If we are using hybrid encryption, the
encryption algorithm would sample a random [m]t <~ Gt and use [m] to derive a symmetric key that is then
used to encrypt the payload.

+ Key-generation: The secret key for a set S C Z, of size at most B is sks = [a + Fs(7)]2, where Fs(7) =
[Tiges(r — id) is the polynomial associated with the set S. Note that [Fs(r)]2 can be computed using the
powers-of-7 in the CRS as long as |S| < B.

Since the secret key is independent of the size of the set S, succinctness is immediate. Moreover, when id € S, we
can write Fs(7) = (7 — id) - Fs\iq} (7). Correctness then follows from the following observation:

ctig sks ctig mpk
—_—

[salr= [s] -[a+Fs(r)]2—[s(r —id)]1 - [Fs\(iay (D)]2 -

This scheme is insecure as soon as the adversary makes a single key query. This is because the ciphertext is malleable.
Specifically, the adversary can convert a ciphertext with respect to an identity id into one with respect to any identity
id’ by computing [s(7 —id)]; + (id — id") - [s]; = [s(z — id")];.

A one-key secure scheme. We can defend against this mauling strategy by introducing an additional scalar
w ¢ Z, and replace [s(r — id)]; in the ciphertext with [sw(r — id)];.” To preserve correctness, we also include
[w]; and [wr]; as part of the public key and update the secret key to be sks = [a + w - Fs(7)]2. Observe that these
modifications are sufficient to recover correctness:

ctig sks ctig mpk
—

[salr = [sli -[a+w:Fs(n)]2— [sw(r —id)]1 - [Fs\iay (]2

With this modification, it is possible to prove security of this scheme from a g-type assumption as long as the adversary
is restricted to making at most one key-generation query.* On the other hand, this scheme becomes insecure if the

3A similar idea is used in the design of the Boneh-Boyen IBE scheme [BB04]. There, the corresponding ciphertext term is [s(z — w-id) |1, with [w];
instead of [ wr]; in the public key. The prior schemes [SAA24, AFP25, CGPW25] implicitly defend against this mauling strategy by adding an
additional group element to the ciphertext. We refer to Appendix A for a more direct comparison between our construction and the previous ones.

4Specifically, by adapting the techniques used to analyze our main constructions, we could show that this basic scheme satisfies static security
where the adversary has to commit to the challenge identity as well as its key-generation query ahead of time. We elide the details since we
view this scheme as a stepping stone to our main constructions.



adversary can make two key-generation queries. For instance, suppose the adversary requested secret keys sk; and
sk, for the singleton sets S; = {1} and S; = {2}, respectively. In this case, Fs, (x) = (x — 1) and Fs, (x) = (x — 2).
Correspondingly, the associated secret keys are

sk =[a+w-(r-1)]2
sky = [a+w- (- 2)],.

The adversary can now take a linear combination of sk; and sk; to obtain

sk sky

sk =2-[a+w-(r=2)]=[a+w-(t=1]z=[a+w-(r-3)],,

which is a secret key for the set S’ = {3}.

From one-key security to batched IBE. To go from a one-key scheme to a batched IBE scheme, previous
works [CGPP24, SAA24, AFP25, CGPW25] introduced the concept of a batch label tg and associated the batch label
with each decryption key. Similarly, these works also associate a batch label with each ciphertext and decryption
is only possible when the batch label associated with the decryption key matches that associated with the ciphertext.
In turn, the one-key restriction applies per batch label. Namely, the adversary is restricted to requesting at most one
key for each batch label. In some sense, using the master public key and a batch label tg, one can implicitly derive
a public key for a one-key scheme specific to tg.

This problem is reminiscent of the task of constructing vanilla identity-based encryption: the objective in IBE is to
derive identity-specific public keys and secret keys from a single master public key and master secret key, respectively.
Indeed, the previous work of [AFP25, CGPW25] can be viewed as taking a one-key-secure scheme and implicitly
composing it with the Boneh-Franklin IBE scheme [BF01]. We take a similar approach here, except for our first
construction, we integrate our one-key scheme with ideas from the Boneh-Boyen IBE scheme [BB04]. In conjunction
with several additional ideas, this will ultimately allow us to prove security in the plain model.

Recall first that in the Boneh-Boyen IBE scheme, the master secret key is a, 0, h & Z,, the master public key
is ([a]T, [v]1, [h]1), an encryption of message [m] for identity tg is ([s]1, [s(v + h - tg)]1, [sa]T + [m]7), and the
secret key is a pair ([r]z, [a + r(v + h - tg)]2), where s ¢ Z, is the encryption randomness and r ¢ Z, is the
key-generation randomness. If we integrate this structure to embed batch labels in our one-key secure scheme, we
obtain the following scheme (where the additional Boneh-Boyen elements are highlighted in green):

mpk = ([w]y, [wrly, [0] 1 [A]1, [7]ar - [P ]2, [ 1)
ctidgtg = ([s]1, [sw(z—id)], [s(v+h-tg)li, [salr+[m]T)
sksig = ([r]2, [a+7r(v+h-tg)+w-Fs(1)]2).

Correctness follows via the composition of correctness for our one-key scheme together with correctness of the
Boneh-Boyen IBE scheme:

ctid,tg sksitg ctid,tg sksitg ctid,tg m
t t t pk
[salt = [s]i -[a+r(o+h-tg)+w-Fs(D)]o—[s(o+h-tg)]i- [r]s — [sw(r —id)]1 - [Fs\(iay (D)]2 - (2.1)

Proving security in the plain model. We now describe our approach to proving security in the plain model. We
prove selective security (where the adversary declares the batch label tg* and the identity id* associated with the
challenge ciphertext) from the following g-type assumption:

[b]1 [ [ ]y, [ab]y, [abt]y, [abst]y,

. sl1,
Ve | a1, [bla, (£l [£8]2, (@bl [ab?®]s,

distinguish  [abs]t from [z]t (2.2)

where a,b, 7,5,z & Z,, are random exponents. In Appendix B, we show that this assumption holds unconditionally in
the generic bilinear group model [Sho97, BBGO05]. A key challenge in proving security in the plain model is designing



a reduction strategy that has the ability to generate keys for all batch labels tg and sets S where tg # tg" or (tg = tg*
and id ¢ S). To do so, our proof combines the classic Boneh-Boyen puncturing strategy (which allows the reduction to
simulate keys when tg # tg*) with a new puncturing strategy (to allow the reduction to simulate keys where tg = tg*
but id ¢ S). We now describe our overall proof strategy:

+ Consider a selective adversary (A for the batched IBE security game. Algorithm A starts by committing to
the challenge batch label tg* and the challenge identity id*.

« The reduction algorithm takes the challenge from Eq. (2.2) and programs tg* into the Boneh-Boyen parameters
(v, h) and id* into the powers-of-7. Specifically, it sets the components of the public parameters as follow:

— The reduction implicitly setsv =0+ b - tg* and h = h — b where 6,h & Z,, are random scalars chosen by
the reduction. This is the same strategy used to prove selective security of the Boneh-Boyen IBE scheme.

— The reduction implicitly sets 7 = 7 + id".

— Finally, the reduction implicitly sets w = § - ab and & = @ — ab where @ ¢~ Z,, and § € Z,, will be specified

later.

Observe that the components given out in Eq. (2.2) allows the reduction to simulate each of these components,
and moreover, they are distributed according to the real scheme.

« To answer the key-generation queries on a batch label tg and a set S € Z,, the reduction needs to simulate
the secret key sks g = ([r]2, [@ +7(v+h - tg) + w - Fs(7)]2). With the implicit setting of the variables described
above, the secret key sk must satisfy

sksig = ([r]a [@—ab+r(G+b-tg" +h-tg—b - tg) +jab - Fs(1)]2) 23
2

= (1], (@ +7(3 +h - tg) +rb(tg" — tg) +ab(§ - Fs(z) = 1)]2).
Our first observation is to rewrite Fs(7) as
Fs(r) = Fs(id") + (Fs(7) — Fs(id")).
For a set S C Z,, define the polynomial Gs(x) = Fs(x +id") — Fs(id"). Since 7 = 7 +id",
Fs(r) = Fs(id") + (Fs(t) — Fs(id")) = Fs(id*) + Gs(r — id*) = Fs(id*) + Gs(7).

Moreover, by construction, Gs(0) = Fs(id*) — Fs(id*) = 0, which means the constant term of Gs is 0. This
means [ab - Gs(%)], can be written as a linear combination of [ab?]s, ..., [ab?B],, which are all terms given
out in the assumption. Substituting back into Eq. (2.3), we can now write

sksig = ([r]2, [@+7(3+ h- tg) + ro(tg" —tg) + ab(§ - Fs(r) — 1)]2)

. (2.4)
=([r]2 [@+7r(@+h-tg) +rb(tg" —tg) + ab(y - Fs(id") — 1) + abyj - Gs(7)]2).

The challenge in simulating sks i, is the fact that the reduction algorithm does notknow [ab]., and indeed, the as-
sumption would be false if the reduction could compute this term. Thus, simulating the secret keys requires a can-
cellation of the highlighted term. As argued above, simulating [ab{j-Gs(%)]. is possible using [ab?],, . . ., [ab?B],
from the assumption (the reduction chooses the exponent 7 itself). We now consider two cases:

- Suppose tg # tg*. In this case, we use the classic Boneh-Boyen cancellation strategy to simulate the secret
key. Namely, the reduction algorithm can sample 7 ¢- Z,, and then implicitly set

r=7—a(tg" —tg) 1 (§ - Fs(id*) - 1).

Observe that with setting of r, the term rb(tg" — tg) will cancel out the ab(7 - Fs(r) — 1) term in Eq. (2.4).
One can check that the remaining elements can be built from terms in the assumption (see the proof of
Theorem 4.4 for the details).



— Suppose tg = tg* but id* ¢ S. In this case, we cannot rely on the Boneh-Boyen cancellation anymore
because rb(tg* — tg) = 0. Thus, we need a new strategy to simulate ab(7 - Fs(id*) — 1).

One approach is to consider a static adversary that commits to the set S (associated with its key-generation
query on the challenge batch label tg*) at the beginning of the security game. In this case, the reduction
algorithm can set §j = 1/Fs(id*) so that ab(3 - Fs(id*) — 1) = 0. Note that Fs(id*) # 0 since id* ¢ S.
Effectively, this approach programs the set S associated with the key-generation query into the pub-
lic parameters. However, this approach comes at the cost of requiring the adversary to commit to its
key-generation query in advance. Ideally, we would like to avoid this.’

To prove security against an adversary that can make make an adaptive key-generation query, we in-
troduce one more randomization term to the secret keys. Namely, when constructing a secret key for
a batch label tg and a set S C Z,, the key-generation algorithm samples a randomization factor y < Z,,.
The secret key sks,i; is then

sksitg = (v, [r]o, [a + (v +h - tg) + yw - Fs(7)]2).
Since y € Z,, is given out in the clear, decryption is mostly unchanged from Eq. (2.1):
[salr = [sli-[a+r(o+h-tg) +yw - Fs(D)]2 — [s(w+h-tg)li - [rla —y - [sw(z —id)]1 - [Fs\(ia} (D)]2.
The extra scalar y gives the reduction one additional degree of freedom. Namely, Eq. (2.4) now becomes
sksig = ([rl2 [@+7(0+ h- tg) + rb(tg” — tg) + ab(yy - Fs(id*) — 1) + abyg - Gs(7)]2).

Observe that for the challenge key, the reduction can simply set y = 1/(7 - Fs(id")). In this case, the term
ab(yy - Fs(r) — 1) = 0. The reduction can simulate the remaining components using the terms given out
in the assumption. It remains to argue that y has the correct distribution. This is the case because we
can show that the value of §j chosen by the reduction is information-theoretically hidden from the view
of the adversary. Thus, over the choice of §j ¢~ Z,, the distribution of y is correctly distributed. Observe
that this strategy only works if the adversary makes a single key-generation query for the batch label
tg*. The reduction algorithm only has a single degree of freedom (i.e., the value 7).

« To complete the reduction, the reduction algorithm needs to simulate the components of the challenge ciphertext.
With the implicit setting of the variables described above, a real ciphertext would have the following form:

ctigigr = ([s]1, [sw(z —id")]1, [s(v + h - tg")]y, [salt + [m]1)
= ([s]1, [gabst]1, [s(0 + h- tg*)]1, [@s — abs]t + [m]T).

The reduction takes s to be the corresponding elements from the assumption (see Eq. (2.2)). The first three
components of ctig o+ can thus be constructed using the components from Eq. (2.2). The reduction algorithm
simulates the final component [@s — abs]t + [m]r as & - [s]1 - [1]2 — [2]1 + [m]1, where [z]7 is the challenge
component. When z = abs, this perfectly simulates the real ciphertext whereas if z ¢~ Z,, then the ciphertexts
perfectly hide the message. This completes the security reduction.

Taken together, this construction yields a batched IBE scheme in the plain model where the ciphertexts contain 4
group elements and the secret keys contain 2 group elements and 1 field element. Compared to the previous batched
IBE and batch decryption schemes [SAA24, AFP25, CGPW25], this construction has the same ciphertext size but
slightly longer keys. However, the prior work all relied on the generic group model and the random oracle model
for the security analysis we can prove security in the plain model. We refer to Section 4 for the full description.

SWe note that requiring the adversary to have to commit to its key-generation query is technically very different from asking it to commit to
the challenge identity and batch label. Standard complexity leveraging allows us to go from a scheme that is selective in the challenge identity
and batch label to one that is adaptively secure (see Remark 3.4). However, we cannot use complexity leveraging to lift a scheme that is selective
in the set S to one that allows the adversary to pick S adaptively. This is because guessing the set S would blow up the ciphertext size and
the size of the decryption keys by a factor of B, which breaks succinctness.



Better efficiency in the generic group model. Alternatively, we can also build a scheme with better efficiency by
relying on the generic group and random oracle models. For example, take again our one-key scheme, but now, instead
of integrating batch labels via the Boneh-Boyen approach, we did so with the Boneh-Franklin approach (similar to
prior works [SAA24, AFP25, CGPW25]). Recall that in the Boneh-Franklin IBE scheme [BF01], the master secret key
is & € Z,, the master public key is [a];, an encryption of message [m] for identity tg is [ser - H(tg)]t + [m]r, and
the secret key for tg is [« - H(tg)]2. Here, s €~ Z, is the encryption randomness and H is a hash function that takes
a label tg and outputs the element [H(tg)], in G,. If we apply this strategy to our one-key secure scheme, we arrive
at the following scheme (where the additional Boneh-Franklin elements are highlighted in green):

mpk = ([W]ls [WT]I’ [0{]1, [T]Z’ e [TB]Z)
ctigtg = ([s]1. [sw(r —id)]y, [sa - H(tg)]r + [m]r)
sksig = [a - H(tg) +w - Fs(1)]a.

Correctness follows via the composition of correctness for our one-key scheme together with correctness of the
Boneh-Franklin IBE scheme:

Ctid,tg sks.tg ctid,tg mpk
—

[sa-H(tg)lr = [sly -[a- H(tg) +w - Fs(0)]2 = [sw(r —id)]1 - [Fs\(iay (D)]2 -

This immediately gives a scheme with shorter ciphertexts (3 group elements instead of 4). Following a similar recipe
as before (but using the Boneh-Franklin cancellation strategy to handle key-generation queries on tags tg # tg*),
we believe one could prove static security of this version from a g-type assumption and modeling H as a random
oracle. Note that this would still not rely on the generic group model. If we introduce the randomizing scalar y into
the secret key, then the same proof strategy should allow the adversary to make an adaptive key-generation query
on the challenge batch label.

On the other hand, if we want to show full adaptive security for the scheme without the additional randomizing
scalar in the secret key, then we can do so in the generic bilinear group model [Sho97, BBGO05]. This yields a batched
IBE scheme where the ciphertext consists of three group elements and the secret key consists of a single group element.
Compared to the prior schemes, we save one group element in the ciphertext, one exponentiation during encryption
and one pairing during decryption (see Table 1 for details). We describe this construction and its analysis in Appendix D.

Concurrent work. In a concurrent and independent work, Fernando, Policharla, Tonkikh, and Xiang [FPTX25]
showed how to construct a (threshold) batched IBE scheme in the generic group model and the random oracle model
where the ciphertext size consists of three group elements. This is the same level of efficiency achieved by our batched
IBE scheme in the generic group and random oracle model (Corollary E.6). In addition, they show how to build a
K-key threshold batched IBE scheme without batch labels (i.e., security holds as long as the adversary gets at most
K secret keys on arbitrary sets of identities). In their scheme, the CRS size scales multiplicatively with K while the
size of the ciphertext and the secret keys remain unchanged. Their construction can be viewed as taking a one-key
scheme and compiling it to a K-key scheme. In addition, the key-generation algorithm in their construction is stateful
(i-e., secret keys are associated with an index i € [K] and security assumes that the K keys are generated with respect
to distinct indices). At a high-level, we can view their construction as including K copies of the CRS for a one-key
secure scheme, and the i™ key-generation query is generated with respect to the i copy of the CRS for the one-key
scheme. Moreover, by relying on linearity of decryption for the underlying one-key scheme, they can retain the same
ciphertext structure as the underlying one-key scheme. The same approach is also applicable to the basic constructions
we described above to obtain schemes with K-key security (without batch labels) and stateful key-generation.

The focus of this work is on schemes that do not impose any restriction on the total number of keys the adversary
can request; instead, as in prior work [CGPP24, AFP25, CGPW25], we restrict the adversary to a single key (or up
to K keys; see Section 2.1) per batch label. In addition, our primary goal in this work is to give constructions with
security in the plain model, and our work gives the first pairing-based constructions of (threshold) batched IBE with
security in the plain model. The work of [FPTX25] relies on both the generic group model and the random oracle
model. In addition, we show how to construct a threshold scheme with silent setup (also in the plain model). The
threshold scheme from [FPTX25] relies on a central setup to generate the individual decryption key shares.



2.1 Extensions to the Base Scheme

The algebraic structure of our batched IBE scheme is directly amenable to a number of extensions. We survey some
of the main results here.

Giving out multiple keys with the same batch label. Like previous constructions [CGPP24, AFP25, CGPW25],
our basic scheme only guarantees security against adversaries that can request a single key for each batch label.
A stronger security notion would allow an adversary to request an arbitrary number of keys for each batch label.
In this case, there is no longer a need for batch labels. Currently, the only constructions that support this capa-
bility either rely on lattice-based attribute-based encryption [BLT25] or are limited to a polynomial-size identity
space [BFOQ25, BCF*25].

While it is unclear how to modify our scheme to support an arbitrary number of keys per batch label, it is
straightforward to support giving out an a priori bounded number of keys for each batch label. Specifically, if K is the
collusion bound (i.e., the number of keys we need to give out for each batch label), then we can obtain a scheme that
allows the adversary to make up to K key-generation queries on the challenge batch label at the cost of increasing
the secret keys by K field elements, the ciphertext by K group elements, and the public key by 2K group elements.

The basic idea in our construction is to replace the single scalar w in the previous construction with a vector
w € Zjlf . Then, the secret key and the ciphertexts are defined as follows:

skstg = (v, [rla, [a+r(v+h-tg) +y'w - Fs(1)]2)
ctigrg == ([s]1, [sw(r —id) ]y, [s(v +h - tg)]y, [salt + [m]1),

where y < Zf in the secret key. The main property we require in the security analysis is that if yy,...,yx € ng
are linearly-independent vectors, then the values of w'y;, ..., w'yk are uniform and independent over Z, when
w & Zg . This K-wise independence property enables security against K-collusions (i.e., an adversary that has K
keys for a particular batch label). We describe this construction in Appendix C.

Thresholdizing the scheme. In a threshold batched IBE scheme [AFP25], the master secret key msk is instead
secret shared across L different authorities. Each authority holds a share msk; of the master secret key. Using msk;,
the authority can give out a share of the decryption key sks iy ; for any batch label tg and set S. Finally, given the
decryption key shares {sks s ;}ics for a sufficiently-large set S" C S, one can decrypt the ciphertext and recover the
underlying message.

Similar to [AFP25], it is straightforward to obtain a threshold version of the scheme. For simplicity, we first
describe the approach for the basic one-key secure scheme (without batch labels). Recall in that scheme that the
master secret key is (&, w). To obtain a threshold version, we simply secret share & and w. Concretely, for a threshold
T, let (a1, ..., ar) be a T-out-of-L Shamir secret sharing of @ and (w, ..., wr) be a T-out-of-L Shamir secret sharing
of w. We now enumerate the scheme components (using the same syntax as before):

msk = (0{, W) SkS’[ = [0{,' +w; - FS(T)]Z
mpk = ([W]h [WT]I’ [T]la [T]Za e [TB]Za [(X]T) Ctid = ([3]1, [SW(T - Id)]l’ [Sa]T + [m]T)
Given a collection of secret keys {sks,},cu for a set S where |U| > T and a ciphertext encrypted to an identity

id € S, the decryption algorithm first computing the reconstruction coefficients w, € Z, where 3.,y wea; = a and
Direu Wewe = w. Then, the decryption algorithm computes

ctig sks,¢ ctig mpk
[salr=| > @+ [sh -[ae+we - Fs(0)]z | = [sw(z=id)]1 - [Fo\jay (D]

teU

We can now extend to a threshold batched IBE by introducing the batch label as we described previously. Note that
this basic approach for thresholding is not compatible with the randomizing scalar y we introduced to handle adaptive
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key-generation queries on the challenge batch label in the security proof (for correctness, the different decrypters
would need to choose the same y when generating key). Thus, we can only apply this technique to our batched IBE
scheme in the generic group model (Construction D.1) that does not need randomization scalars or the variant of our
first scheme (Construction 4.2) without the randomizing scalars. In the latter case, we would work in a static security
model where the adversary has to declare its key-generation query for the challenge batch label in advance. We refer to
Appendix E for the formal description for getting a batched threshold encryption scheme in the generic group model.

A caveat of this thresholding approach is that we only achieve security in a model where the adversary needs
to specify the same set of identities S to every decryption authority for a given batch label tg. A stronger requirement
would allow the adversary to ask K decryption authorities to issue a key share for different sets Sy, ..., St on batch
label tg. Note that each decryption authority still only gives out a single key with batch label tg. The more restricted
notion (considered in [AFP25]) would require decrypters to coordinate so as to never inadvertently release decryption
key shares for different sets with respect to the same batch label. The stronger definition is more natural for threshold
settings in that decryption authorities can operate independently. As we discuss more in Section 5 and Remark 5.3, our
techniques for construction threshold batched IBE with silent setup (discussed in more detail below) simultaneously
achieves this stronger security notion.

Supporting silent thresholds. In the basic threshold batched IBE scheme, we would need to either assume
a trusted dealer generates the shares of the master secret key msk, for each authority, or alternatively, that the
authorities engage in an interactive (and oftentimes, computationally expensive [TCZ"20]) distributed key-generation
protocol to jointly sample their keys. A line of recent works [RSY21, GKPW24, ADM*24, DJWW25, WW25a] have
introduced an appealing alternative model of threshold cryptography with a full non-interactive setup phase. In this
model, users can independently choose a public key pk and secret key sk. Then, there is a public and deterministic
aggregation algorithm that takes any set of public keys {pk,}¢c[1] and aggregates them into a short public key mpk.
The aggregated public key mpk now functions as the public key for a threshold batch decryption scheme where the
individual user secret keys sky, . . ., skp play the role of key shares. Threshold encryption with silent setup is part of an
extensive line of recent works focused on realizing advanced encryption capabilities without a trusted authority. Simi-
lar notions in this line of work include registration-based encryption [GHMR18, GHM*19, DKL*23, GKMR23, FKdP23],
registered attribute-based encryption [HLWW23, ZZGQ23, FWW23, CHW25, WW25b], registered functional en-
cryption [FFM*23, DPY24], and distributed broadcast encryption [WQZD10, BZ14, KMW23, CW24].

Very recently, the work of [BCF*25] show how to construct a threshold batch decryption scheme from pairings
by integrating the batch decryption scheme from [BFOQ25] with the threshold encryption scheme with silent setup
from [GKPW24]. This construction essentially gives a threshold batched IBE scheme where (1) the identity space has
polynomial size; (2) the ciphertexts contain O(A/log 1) group elements; and (3) security relies on the generic group (and
random oracle model). In this work, we show how to integrate our batched IBE scheme with the recent silent threshold
IBE scheme from [WW25a] to obtain a threshold batched IBE scheme with silent setup that improves upon each of these
axis. Namely, (1) our scheme supports arbitrary identities (but with batch labels); ciphertexts contain a constant number
of group elements; and (3) security is based on a g-type assumption in the plain model. On the other hand, the public
parameters in our scheme contain O(LB) group elements where L is the maximum number of users in a decryption com-
mittee, and B is the batch size. The work of [BCF*25] requires public parameters with O(AL/log A+ B) group elements.

One way to view our construction is to again start with our one-key scheme, but now we integrate it with the
threshold IBE scheme with silent setup from [WW25a] (which shares a similar structure with pairing-based broadcast
encryption [BGWO05]). For simplicity, we show how the main ideas apply to the one-key scheme. We refer to Section 5
for the full construction and analysis:

« Public parameters: Let B be the batch size, L be the size of a decryption committee, and T be the desired
threshold.® The public parameters now contain an additional set of group elements [c]y, [c?]1, ..., [¢*/]; that
will be used to aggregate individual user public keys. In addition, it will also contain cross terms [c'z/]; and
[cit/], for all i € [2L] and j € [0, B]. In addition, let t & Z, be a target value and let t,...,1; € Z, be a

®We believe we can extend our scheme to support dynamic thresholds (where the threshold is declared at encryption time) via the powers-of-two
strategy from [WW25a] (see Remark 5.10). This incurs logarithmic overhead in the size of the public parameters. For ease of exposition in
this work, we just focus on the setting of a fixed threshold, which captures the main technical challenge of supporting silent setup.
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T-out-of-N Shamir secret sharing of ¢. Following [WW25a], let zg = Xpc 1) c’t, be the aggregated shares. The
public parameters now contain

cL+1—(+lti]

pp = ({[C[Tj]l, [c[Tj]Z}t’e[0,2L],r€[0,B]s [CLHt]T, [zo]2, {[ z}ie[L],f¢i)-

In the full construction (Construction 5.5), we pre-aggregate the cross terms [c/*1=¢*it;], to obtain shorter

public parameters (of size O(LB) rather than O(L? + LB)). For ease of exposition, we elide this step here.

User key generation: Each user samples their own secret key a, wy <~ Z, for the underlying one-key scheme.
Their public key is ([¢!*'a;]7, [w¢]1). In addition, they also publish a collection of cross terms [cia;]2, [cw, /],

foralli € [2L] \ {L + 1} and j € [0, B] that will be used to aggregate public keys.
Key aggregation: Take any collection of public keys {([a,c/*!]

hints. We define the aggregated key components to be

[2:= D ['(te+an]l; and [wlo= > [c‘wlz and [wrly= ) [c'werle.

te[L] te[L] te[L]

T, [Wel1) Yee[r] together with their aggregation

All of these components can be computed using the public parameters [zy], and each user’s public aggregation
components [c‘a;]2, [c“we]2, and [cfw,T],.

Decryption share computation: Each user issues decryption shares in a similar manner as in the underlying
one-key scheme. Namely, if the user’s secret key is (@, w;), then the decryption share for a set S C Z,, is
sks,e = [ (@ +we - Fs(1))]2.

Encryption: To encrypt [m]r with respect to identity id € Z,, the encrypter samples s ¢~ Z, and then
constructs

ctia = ([sly, [sw(z —id) 5, [s2]z, [s¢"'t]7 + [m]7).

Decryption: Take any collection of decryption shares for sks, for £ € U C [L] where |U| > T. The decrypter
computes for each £ € U:

’-C/tid\ sks,¢ pp ctig
[s]s - [ (ar +we - Fs(2)]2 = [ Foyiay (D)1 - [sw(r = id)]2.

Since w = ;¢ ¢’ wi, this means

cL+17{’FS\id(T) . SW(T _ Id) — CL+1SW[FS(T) + Z cL+17{’+iswiFS(T).
i+t

The decrypter now computes

ctig pk;
— ———

[M* 5w Fs(D)]r = [s]1 - [e" " wirl],.

Taken together, the decrypter is able to obtain [¢/*!sa, ] for all £ € U. Next, using the fact that z = 2ie[L] c(t+
@;), the decrypter can compute for each £ € U

pp ctig
—_——

[ [szl = [™'s(tr +an)]r+ Y [ s (t + ).
i#t
Again, using the cross terms, the decrypter can compute for all i # ¢,
ctig pp ctig pk;

—_———T—— = ———
[ s+ a))r= [sh - [ nla+ [s - [ e,
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Taken together, the decrypter now obtains [c¢*'s(t, + a;) ] for all £ € U. From above, the decrypter has already
computed [c*1sa; ]t for all £ € U, so in total, the decrypter obtains [sc*'t,]1 for each £ € U. Since t, . . ., ty is
a T-out-of-N secret sharing of ¢, as long as |U| > T, the decrypter can now recover [sc/*!t], which is sufficient
to recover the message.

The basic approach here illustrates how we can incorporate the aggregation and silent setup mechanism from [WW25a]
into our batched IBE scheme to support a silent setup functionality. We refer to Section 5 for the description of the full
scheme (which includes both the batch labels as well as the per-key randomization term needed to prove security).

3 Preliminaries

Throughout this work, we write A to denote the security parameter. For a positive integer n € N, we write
[n] := {1,...,n}. For a set S, we write {x;};cs to denote the set of pairs {(i, x;) }ics. For a finite set S, we write x < S
to denote that x is sampled uniformly at random from S. We write poly(1) to denote a function that is bounded
by a fixed polynomial in A. We write negl(A) to denote a function that is 0(A7°) for all constants ¢ € N. We say
an event E, (indexed by a security parameter) happens with overwhelming probability if it occurs with probability
1 — negl(1). We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We
say two distributions are computationally indistinguishable if no efficient adversary can distinguish them except
with negligible probability. We say they are statistically indistinguishable if their statistical distance is bounded by a
negligible function. Throughout, we use boldface lowercase letters (e.g., u, v) to denote vectors and boldface uppercase
letters (e.g., A, B) to denote matrices. We use non-boldface letters to denote their components (e.g., v = [v1,...,04]).

Prime-order pairing groups. Throughout this work, we use prime-order asymmetric pairing groups, which we
define formally below:

Definition 3.1 (Prime-Order Pairing Group). An asymmetric prime-order pairing group consists of an efficient
algorithm GroupGen that takes as input the security parameter 1% and outputs the description of a pairing group
G = (G, Gy, G, p, g1, g2, €) Where Gy, G, Gt are cyclic groups of prime order p > 24, e: G; X G, — Gr is a non-
degenerate bilinear map, and ¢g; € G; and g, € G; are generators of G; and Gy, respectively. The group operation
in Gy, G, Gt as well as the pairing e are all efficiently-computable. For convenience, we will sometimes assume that
there is a fixed function p = p(2) such that GroupGen(1*) always outputs a group with order p(A).

Implicit notation. We describe group elements using implicit notation [EHK"13]. Specifically, for a pairing group
G = (Gy, Gy, Gr, p, g1, g2, €) and amatrix M € szm, we write [M]; = gll\’i € (G'rll\’1 to denote the matrix of group elements

where exponentiation is applied component-wise to the elements of the matrix. We define [M]; := gg’l and [M]t =
e(g1, g2)M. For matrices A,Band s € {1,2, T}, we write [A]s+ [B], := [A+B]; and A- [B]; := [A]s-B = [AB];. Finally,
we write [A]; - [B]2 = [AB]r, where the individual components of the product [AB]t are computed using the pairing.

Linear secret sharing for threshold policies. A linear secret sharing scheme for T-out-of-N threshold policy
over Z, can be described by a share-generation matrix M € Zg *T with the following properties:

« For every set U C [N] of size > T, there exists a vector @ € Zg where oM =e] and w; =0 fori ¢ U.

« For every set U C [N] of size < T, there exists a vector w € ZIT, such that w; = 1and mjw = 0 for alli € U
where m! is the i row of M.

To share a secret a € Z,,, we sample v, ...,07 « Z, and set v = (@, vs,...,07)". Then m|v is the share belonging
to i party. The classic Shamir secret sharing scheme [Sha79] satisfies this property whenever N < p. Concretely,
we would take the matrix M to be a Vandermonde matrix associated with the interpolation points [N].
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Batched identity-based encryption. Next, we recall the formal definition of batched identity-based encryption
(IBE) from [AFP25].

Definition 3.2 (Batched Identity-Based Encryption [AFP25]). A batched identity-based encryption scheme ITg,¢chisE is
a tuple of efficient algorithms Ig,ichise = (Setup, KeyGen, Encrypt, Digest, ComputeKey, Decrypt) with the following
syntax:

Setup(1*) — pp: On input the security parameter A € N, the setup algorithm outputs a set of public parameters
pp. We assume that the public parameters (implicitly) specifies the message space M, identity space 7, and
batch label space 7~ for the encryption scheme.

KeyGen(pp, 1%) — (mpk, msk): On input the public parameters pp and an upper bound on the batch size B,
the key-generation algorithm outputs a master public key mpk and a master secret key msk. We assume that
mpk and msk also include an implicit description of the message space M, identity space 7, and batch label
space 7 (from pp).

Encrypt(mpk, m, id, tg) — ct: On input the master public key mpk, a message m € M, an identity id € 7, and
a batch label tg € 77, the encryption algorithm outputs a ciphertext ct.

Digest(mpk,S) — dig: On input the master public key mpk and a set of identities S, the digest algorithm
outputs a digest dig. This algorithm is deterministic.

ComputeKey(msk, dig, tg) — sk: On input the master secret key msk, a digest dig, and a batch label tg, the
key-computation algorithm outputs a secret key sk associated with dig and tg.

Decrypt(mpk, sk, S, (id, tg), ct) — m: On input the master public key mpk, a secret key sk, a set of identities
S, an identity-label pair (id, tg), and a ciphertext ct, the decryption algorithm outputs a message m € M (or
possibly a special symbol L to indicate decryption failed). This algorithm is deterministic.

We require Ilg,chise satisfy the following properties:

Correctness: For all A, B € N, all public parameters pp in the support of Setup(1%), all messages m € M,
identities id € 7, and batch labels tg € 7 (where M, 7,7 are the message, identity, and batch label spaces
associated with pp, respectively), all sets S C I of size B where id* € S, we have

(mpk, msk) « KeyGen(pp, 1)
ct « Encrypt(mpk, m, id, tg)
dig = Digest(mpk, S)
sk « ComputeKey(msk, dig, tg)

Pr | Decrypt(mpk, sk, S, (id, tg), ct) = m : =1.

Adaptive security: For a security parameter A, a batch size B, a bit § € {0, 1}, and an adversary A, we define
the batched IBE security game as follows:

— The challenger starts by computing pp « Setup(1*) and (mpk, msk) « KeyGen(pp,18). It gives
(14,18, pp, mpk) to A. Let M, I, T be the message space, identity space, and batch label space associated
with pp.

— Algorithm A can now make key-computation queries. On each query, algorithm A specifies a set
S C I where |S| < B and a batch label tg € 7. The challenger replies with the secret key sk «
ComputeKey(msk, Digest(mpk, S), tg).

- After A is finished making key-computation queries, it outputs two messages mo,m; € M and a
challenge identity-label pair (id*,tg"). The challenger responds with a challenge ciphertext ct «
Encrypt(mpk, mg, id", tg*).

— Algorithm A can continue to make key-computation queries. The challenger answers the queries exactly
as before.
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— At the end of the game, algorithm A outputs a bit §* € {0, 1}, which is the output of the experiment.
We say an adversary A is admissible if the following two conditions hold:

- Algorithm A makes at most one key-computation query on the challenge batch label tg*.
- Algorithm A does not make a key-computation query on a pair (S, tg) where tg = tg* and id* € S.

We say Ipatchie is secure if for all polynomials B = B(A) and all efficient and admissible adversaries A, there
exists a negligible function negl(-) such that for all A € N,

|Pr[f' =1:=0] —Pr[f =1:p=1]| = negl(A) (3.1)

in the above security game. We say IIp,chige is secure for a specific batch size B = B(A) if the above holds for
the specific function B.

« Succinctness: There exists a universal polynomial poly(-) such that for all A, B € N; all public parameters pp
in the support of Setup(1%), all (mpk, msk) in the support of KeyGen(pp, 15), all digests dig in the support of
Digest(mpk, -), and all batch labels tg € 7 (where 7 is the batch label space associated with pp), the running
time of ComputeKey(msk, dig, tg) and the size of the digest dig is poly(1) and in particular, independent of B.

Definition 3.3 (Selective Security). For a batched IBE scheme IIg,chipe, we define the selective security game exactly
as we defined the adaptive security game in Definition 3.2, except we require that the adversary declare the challenge
identity id* and the challenge batch label tg* at the beginning of the security game (i.e., after seeing the public
parameters pp output by Setup, but before seeing the master public key output by KeyGen). Then, we say that
Ipatchiae is selectively secure if for all polynomials B = B(4) and all efficient and admissible adversaries A, the
adversary’s advantage in the selective security game (i.e., the analog of Eq. (3.1)) is negligible. We say that IIg,tchiae
is selectively secure for a specific batch size B = B(A) if this holds for the specific function B.

Remark 3.4 (Adaptive Security via Complexity Leveraging). Our notion of selective security essentially coincides
with the usual notion of selective security for vanilla identity-based encryption [CHK03, BB04] (where the adversary
has to declare its challenge identity at the beginning of the security game). As in the standard case of IBE, we can
achieve full adaptive security by complexity leveraging and relying on sub-exponential hardness of the underlying
computational assumption. With complexity leveraging, the reduction algorithm would guess the challenge identity
id* and the challenge batch label tg* at the beginning of the security game.

4 Batched Identity-Based Encryption

In this section, we give our construction of batched identity-based encryption scheme [AFP25] from bilinear maps.
We prove security from a g-type assumption over prime-order asymmetric pairing groups. Our assumption is a
variant of the bilinear Diffie-Hellman exponent assumption from [BBG05, BGW05]. In Appendix B, we show this
assumption holds in the standard generic bilinear group model [Sho97, BBG05]. We now state the assumption we
use and then give our construction and security analysis.

Assumption 4.1 (N-Bilinear Diffie-Hellman Exponent Variant). Let GroupGen be a prime-order bilinear group gener-
ator. For a security parameter A, a parameter N € N, and a bit € {0, 1}, we define the distribution D, y s as follows:

« Sample G = (Gy, Gy, G, p, g1, g2, €) < GroupGen(1%). Sample exponents a, b, s, 7 & Zyp. Define

1/1» g’ [b]ls [3]1, [T]l’ [ab]ls [abr]l’ [absz’]l,
la]z, [b]2, [7]2 -, [TN]Z, labr]s, ..., [abTN]z,

params = (4.1)

« If f=0,letz = abs € Z, and if § = 1, sample z <~ Z,. Output (params, [z]7).
We say Assumption 4.1 holds with respect to GroupGen and parameter N = N(A) if the distributions D, =

{Danyotren and Dy = {D;) n(a),1}1en are computationally indistinguishable.
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Construction 4.2 (Batched Identity-Based Encryption). Let GroupGen be a prime-order bilinear group generator.
We construct a batched IBE scheme Ilgachise = (Setup, KeyGen, Encrypt, Digest, ComputeKey, Decrypt) as follows:

Setup(1%): On input the security parameter A, the setup algorithm samples G = (Gy, G, Gt, p, g1, g2, €)
GroupGen(1%) and outputs the public parameters pp = G. The message space associated with pp is Gr, the
identity space is Z,,, and the batch label space is Z,,.

KeyGen(pp, 1%): On input the public parameters pp = G = (Gy, Gy, G1, p, 91, g2, ¢) and a bound on the batch
size B, the key-generation algorithm samples exponents 7, w, v, h, @ ¢~ Z,, and outputs the master public key

mpk = (G, [rl1, [t]2, [*]2, ..., []2, (Wi, [wrls, (o)1, [R]1, [a]T) (4.2)
and the master secret key msk = (w, v, h, @).

Encrypt(mpk, [m]r,id, tg): On input the master public key mpk (parsed according to Eq. (4.2)), a message
[m]t € Gr, an identity id € Z,, and a batch label tg € Z,, the encryption algorithm samples s < Z,. It then
outputs the ciphertext

ct = ([s]i, slwely = (s -id)[wli, s([o]1 +tg - [R]1), s[alr + [m]7)
= ([shi, [sw(z —id)]1, [s(o+h-tg)li, [salr+ [m]7).
Digest(mpk, S): On input the master public key mpk (parsed according to Eq. (4.2)) and a set of identities

S € Z, where |S| < B, the digest algorithm defines the polynomial Fs(x) = [];4es(x — id) whose roots are the
identities id € S. Write Fs(x) = X;co,s]] fix'. Output the digest

dig= > fi-[e'l: = [Fs(D]..

i€[0,]S]]

ComputeKey(msk, dig, tg): On input the master secret key msk = (w, v, h, @), a digest dig = [d]2, and a batch
label tg € Z,, the key-computation algorithm samples random r - Z,, and y < Zj, and outputs the secret key

sk = (y, [rlz, [a+r(v+h-tg)]2+yw- [d]z).

Decrypt(mpk, sk, S, (id, tg), ct): On input the master public key mpk (parsed according to Eq. (4.2)), a secret key
sk = (y, [u1]2, [uz2]2), the set of identities S C Z,, an identity id € S, a batch label tg € Z,, and the ciphertext
ct = ([ct1]1, [cta]1, [cts]1, [cta]T), the decryption algorithm proceeds as follows:

— First, it defines the polynomial

Fs\ (iay (x) = 1_[ (x —id).

id’ €5\ {id}
Compute [Fs\(iay (7)]2 = Zicqo,s|-1] fil7 ]2, where Fs\ iay (x) = Xjcqo,s]-1] fix"

— Then it computes and outputs

[ctalt — (([cti]q - [u2]2) = (y - [ctals - [Foygiay ()]2) — ([cts]s - [u1]2))- (4.3)

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Proof. Take any A, B € N and any G = (G4, Gy, Gr, p, g1, g2, €) in the support of GroupGen(1*). Take any [m]1 € Gr,
any id* € Z,, batch label tg"* € Z,, set S C Z, of size at most B where id* € S. Sample (mpk, msk) « KeyGen(pp, 18)
and ct « Encrypt(mpk, [m]r,id", tg*). Compute dig = Digest(mpk, S) and sk = ComputeKey(msk, dig, tg*). By
construction, this means

mpk = (Q (711, [7]2. [7%]2. - .. [2P)2s [W], [wrl 0], [R] 4, [Of]T)
ct = ([s]y, [sw(z —id")]1, [s(v + h - tg")]1, [salr + [m]+)
sk=(y, [rl2 [a+yw - Fs(7) + (0 + h - tg")r]2),
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where Fs(x) = [[iges(x — id). Consider now Decrypt(mpk, sk, S, (id*, tg*), ct). If we write sk = (y, [u1]2, [u2]) and
ct = ([cty]1, [ct2]1, [cts]1, [cta]T), then the decryption algorithm computes

cty - up = as + syw - Fs(r) +rs(v + h - tg")

y-cty - Fsy gy (1) =syw(r—id) - [ (r=id)=syw- [ [(r=id) = syw - Fs(2)
ideS\{id*} ideS

cty-up =rs(o+h-tgh).
This means
cty - up —y - cty - Fo\(igry (1) — ¢tz - uy = as +syw - Fs(1) +rs(o+ h-tg") — syw - Fs(7) —rs(v + h - tg") = as.
The decryption relation (Eq. (4.3)) now yields:
[cty — (cty - uz —y - cta - Fs\(ig7y (7) — ct3 - us) |7 = [sa + m — as]t = [m]1
and correctness holds. O

Theorem 4.4 (Selective Security). Take any polynomial B = B(A) and suppose Assumption 4.1 with parameter B holds
with respect to GroupGen. Then, Construction 4.2 is selectively secure for batch size B.

Proof. Let A be an efficient and admissible adversary for the selective security experiment for Construction 4.2 with
batch size B. We define a simple sequence of hybrid experiments, each indexed by a bit § € {0, 1}:

. Hyb(()ﬁ ). This is the selective batched IBE security game with bit f.

. Hybiﬁ): Same as Hyb(()ﬁ), except when constructing the challenge ciphertext ct = ([ct1]1, [ct2]1, [ct3]1, [cta]T),
the challenger samples ct; <~ Z,. In this experiment, the adversary’s view is independent of the message.

Let Hybgo) (A) and Hybil) (A) denote the output distribution of an execution of experiment Hybio) and Hybil) with
adversary A, respectively. By construction, experiments Hybio) and Hybgl) are identical so it suffices to show that

the outputs of Hybéﬁ ) and Hybgﬁ ) are computationally indistinguishable for each f € {0, 1}. Suppose there exists
a f € {0,1} and a non-negligible ¢ such that

Pr[Hybéﬁ) (A)=1] - Pr[Hybiﬁ) (A) = 1]’ > e

Then, we use A to construct an adversary 8 that breaks Assumption 4.1 with parameter B and the same advantage &:

1. At the beginning of the game, algorithm 8B receives a challenge (params, [z]1) where

_( 146 (b1, 5], [£], [ably, [ab?]y, [absi]y,
params = ( (al (5], Ef]z, -1. 3 [;B]Z, [;bf]z, . 1 [abel]z, )

and either z = abs or z ¢ Z,. We use 7 to denote the powers-of- that appear in the assumption since the
reduction algorithm below will program the challenge identity id* into the simulated powers-of-z.

2. Algorithm 8B checks if [b]; = [0];. If so, it outputs 1 if [z]T = [0]1 and 0 otherwise.

3. Algorithm B sets pp = G and gives pp to A. Algorithm A now commits to a challenge identity id" € Z, and
label tg* € Z,. Algorithm 8 now constructs the public key as follows. In the following description, we will use
a “tilde” (e.g., @, 0) to denote an exponent that is chosen by (or otherwise known to) the reduction algorithm.

« Algorithm 8B implicitly sets 7 = 7 + id". For each i € [B], algorithm B computes

(= ) () A (8] = [+ id) ..

Jjelo.i]

Similarly, it sets [7]; = [£]; + [id*]; = [ +id"];.
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« Algorithm B samples @ <~ Z, and implicitly sets a = & — ab:
[alr = [alr - [ab]y - [1]2 = [& — ab]r.
« Algorithm B samples j* < Z, and implicitly sets w = y*ab:

[wli =3 - [ab]y = [§"ab]y
[wr]y =g - ([abf], +id" - [ab]y).

« Algorithm 8 samples o, h & Z, and implicitly setso =0 — b - tg* and h = h+b. Concretely, algorithm
B defines

[ols=[o]i—tg" - [bli=[0-b-tg']y
Al = [A] + [b): = [A+b..
Algorithm 8 replies to A with the master public key

mpk = (Q [7]1 [7]2 s [TB]z, [wli, [wrly, [0]4, [A]L [a]T).

. When algorithm A makes a key-computation query on a set of identities S C Z, where |S| < B and a batch
label tg € Z,,, algorithm 8 defines the following two polynomials over Z,:

Fs(x) = [ [(x~id)
ideS (4.4)

Gs(x) = Fs(x +id") — Fs(id").

Write Fs(x) = Xizjo,s]] ﬁxi. Next, observe that the constant term of Gs(x) is Gs(0) = Fs(id*) — Fs(id*) = 0.
This means Gs(x) = Xic[is|] Gix'. Algorithm B now proceeds as follows:

. Iftg # tg*, algorithm B samples j < Zyandr & Zp. Then, algorithm B computes the following

[urlz = [F12 + (tg — tg") ™ (1 = 45" - Fs(id")) - [l

o)y = (@l +7 - (tg—tg") - [blo+ G +h-tg) - [wla+ Y G:gy" - [abi']e.
ie[|S]]

- Iftg = tg", algorithm B first sets § = 1/(§"Fs(id")). Note that this is well-defined since " € Z}, and when
tg = tg*, it must be the case that id” ¢ S, so Fs(id*) # 0 by definition of Fs. Next, algorithm B samples
F & Z, and sets

[u1]z = [F]2

[wly = [@+F@+h-tg")]o+ D iy - [ab#'].
ie[|s]]

In both cases, algorithm B responds to A with the secret key sk = (7, [u1]2, [uz]2)-

. In the challenge phase, algorithm A outputs two messages [mg]t and [m;]r. Algorithm B computes the
following:

Algorithm 8 responds with the ciphertext ct = ([ct]y, [cta]1, [cts]1, [cta]T)-
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6. Algorithm A can continue to make key-computation queries. Algorithm 8 responds as described above.
7. At the end of the experiment, algorithm A outputs a bit §” € {0, 1}, which algorithm 8 also outputs.

If the challenger samples b ¢~ Z,, and b = 0 (which happens with probability 1/p), then algorithm B outputs 1 with
probability 1 when z = abs and with probability 1/p when z & Z,. It suffices to show that algorithm 8 achieve
non-negligible distinguishing advantage when b # 0. We show in this case that depending on the distribution of the

challenge element z, algorithm A either perfectly simulates an execution of Hyb(()ﬁ ) or Hybiﬁ ). We first consider the dis-
tribution of the public parameters. By construction, algorithm $ constructs the public parameters by implicitly setting

r=7+id" a=a-ab v=0-b-tg"

~% v (45)
w=1y"ab h=h+b

Since the challenger samples 7, a & Zp, and b # 0 and algorithm B samples @, 5,}; & Zy, §* & 7* . the distribution of
7,w, 0, h, « are all independent and uniform over Z,,, exactly as in the real scheme. Moreover, the public parameters
perfectly hide the value of §*. Next, consider the components of the challenge ciphertext. We claim that algorithm

8 generates the challenge ciphertext according to the specification of Hybéﬂ ) and Hybiﬁ ) where the encryption ran-
domness s ¢~ Z, is the corresponding exponent sampled by the challenger. We consider each component separately:

« By construction, algorithm 8B sets ct; = s which matches the distribution in Hyb(()ﬁ ) and Hybiﬁ ),

« Consider cty. In the reduction, algorithm B implicitly sets 7 = 7 + id* and w = §*ab. Now, in Hybéﬂ ) and

Hybiﬁ ) , the experiment would set ct; = sw(r — id*). Substituting in algorithm $’s choice of w and z, we have
cty = sw(r —id*) = s(§"ab) (¢ +id* —id*) = §* - abst,
which coincides with how B constructs ct, in the reduction.

« Consider cts. In Hyb(()ﬁ) and Hybiﬁ)
B’s choice of v and h, we have

, the experiment would set ct; = s(v + h - tg*). Substituting in algorithm

cty=s(o+h-tg") =s(G—b-tg*) +s(h+b)-tg* =s(G+h-tg"),
which is precisely how algorithm $ constructs cts; in the reduction.
« Finally, consider the distribution of cty,. We consider two possibilities depending on the distribution of z:
— Suppose z = abs. In the reduction, algorithm 8 implicitly sets « = & — ab so
cty =as—z+mg =5{s—abs+m/; = sa +mg,
which is precisely the distribution of cty in Hybéﬁ ),

— Suppose z & Zyp. In this case, the distribution of ct, is uniform over Z,. This is the distribution of ct,
in Hyb#).

We conclude that depending on the distribution of z, the challenge ciphertext in the reduction is distributed either

according to the specification of Hyb(()ﬁ ) or the specification of Hybi'g ). To complete the proof, it thus suffices to
consider the key-computation queries. Suppose A makes a key-computation query on a set of identities S C Z,, and
a batch label tg € Zp. As in the reduction, we consider two cases:

« Suppose tg # tg*. In this case, algorithm B samples § <~ Z,, and implicitly sets the randomness r to be

r=u; =7+ (tg — tg*)_l(l — 44" - Fs(id")) - a,
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where 7 & Z,,. Since 7 ¢ Z,,, the distribution of r coincides with the distribution in Hybéﬁ ) and Hybgﬁ ). Thus,
it suffices to argue that the component u; is correctly constructed (with respect to algorithm B’s choice of r and

7). In Hybéﬁ) and Hybiﬁ), the experiment would first compute the digest dig = [d]; = [Fs(7)], and then set
up=a+r(v+h-tg) +yw- Fs(1). (4.6)
In the reduction, algorithm 8B implicitly sets 7 = 7 + id*. Thus, we can write

Fs(7) = Fs(id*) + Fs(r) — Fs(id")
= Fo(id") + Fs(# +id*) — Fs(id")
= Fs(id") + Gs(7),

where Gg is the polynomial from Eq. (4.4). By definition of the coefficients g; and using the fact that algorithm
8 implicitly defines w = j*ab, we can write

Z Giijij* (ab#') = §j*abGs(%) = fjw - Gs(#).
ie[|S]]
Now, in the reduction, algorithm 8B sets
uy = @ + Fb(tg — tg*) + uy (3 + h - tg) + jw - Gs(). (4.7)

Suppose now that we substitute the values of a,r, v, b, w from the reduction (see Eq. (4.5)) into Eq. (4.6). Then
we have the following:

up=a+r(v+h-tg) +jw - Fs(r)
=a—ab+u(v+h-tg) +jw(Fs(id") + Gs(%)) (4.8)
=a+u(v+h-tg)+gw- Gs(f) —ab(1 —gy" - Fs(id")).

Consider now the value of u; (v + h - tg):

ui(v+h-tg) =u(6—b-tg"+(h+b) - tg)

=u(G+h- tg) +uib(tg — tg")
wi(d+h-tg) + (F+ (tg —tg") (1 - §j" - Fs(id")) - a)b(tg — tg")
= u (3 +h-tg) +7b(tg — tg") +ab(1 - §i" - Fs(id")).

Observe that the highlighted term in green precisely cancels out the corresponding term in Eq. (4.8). Thus,
substituting back in Eq. (4.8), we now have

uy = +ui(o+h-tg) + gwGs(f) — ab(1 — 47" - Fs(id"))
=G +u (5+h-tg) +Fb(tg — tg") + gw - Gs (%)

This is precisely the expression in Eq. (4.7) so we conclude that algorithm B answers the key-computation
query according to the specification of Hybéﬁ ) and Hybgﬁ ),

Suppose tg = tg*. In this case, algorithm B sets § = 1/(7*Fs(id*)) and samples 7 < Z,. By assumption,
algorithm A makes at most one key-computation query on tg = tg*. As shown above, the adversary’s view can
be described entirely as a function of the exponents (7, a, w, v, h) from the public parameters and the exponent
s from the challenge ciphertext. As argued above, the exponents in the public key perfectly hide §* and since
s is independent of §j*, we conclude that that the view of adversary A before this point is independent of §*.
Since algorithm B samples §* <~ Z, the distribution of § = 1/(§*Fs(id*)) is thus uniform over Zy,. Thus, the
distribution of (7, 3) is correctly distributed.
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As in the previous case, it suffices now to show that the component u; is correctly computed (with respect

to algorithm B’s choice of r and 7). As in the previous case, in Hybéﬂ ) biﬂ )

and Hyb,"”, the experiment would set

uy=a+7(v+h-tg") +jw- Fs(). (4.9)

Suppose now that we substitute the values of @, v, h, w, § from the reduction (see Eq. (4.5)) into Eq. (4.9). Then
we have the following:

w=a+7(v+h-tg") +gw- Fs(r)
=G —ab+7(G—b-tg"+ (h+b) - tg*) + jj*ab(Fs(id*) + Gs(%))

. , (4.10)
a+7F(@+h-tg")+ gy ab - Gs(f) — ab(1 — 47" Fs(id™))

a@+F(G+h-tg*) + iy ab - Gs(%),

where the final equality uses the critical cancellation that § = 1/(§*Fs(id*)) so §*Fs(id*) = 1. Now, in the
reduction, algorithm 8B sets

w=G+FE+htg)+ ) G abi' = &+ F(G+h-tg") +§j"ab - Gs(d),
i€lsl]

which precisely coincides with Eq. (4.10). We conclude that algorithm 8 answers the key-computation query

according to the specification of Hybéﬂ) and Hybiﬁ).

We conclude that algorithm $ responds to the key-generation queries with the same procedure as in Hyb(()ﬁ ) and
Hybiﬂ ) . Thus, as argued above, if z = abs, then algorithm B perfectly simulates an execution of Hyb((]ﬂ ) , whereas

ifz & Zy, then algorithm B perfectly simulates an execution of Hybiﬁ ) . Thus, when b # 0, algorithm 8 breaks
Assumption 4.1 with the same advantage ¢. The claim follows. O

Corollary 4.5 (Batched Identity-Based Encryption). Let A be a security parameter. Suppose Assumption 4.1 holds
with respect to GroupGen for all polynomials B = B(A). Then, for every polynomial B = B(A), Construction 4.2 is a
selectively-secure batched IBE scheme with the following efficiency properties:

« Public key size: For a batch size B, the public key contains 5 G, elements, B G, elements, and 1 Gt element.
+ Ciphertext size: Each ciphertext contains 3 G, elements and 1 Gt element.
« Digest size: A digest contains 1 G, element.

+ Decryption key size: A decryption key contains 2 G, elements and 1Z,, element.

Adaptive security. As noted in Remark 3.4, we can lift the selectively-secure batched IBE scheme from Corol-
lary 4.5 to an adaptively-secure scheme using complexity leveraging and relying on sub-exponential hardness of
Assumption 4.1. In Appendix C, we describe how to extend Corollary 4.5 to obtain a variant that allows the adversary
to adaptively choose the challenge identity id" in the security game (see Construction C.3 and Remark C.15), but
which is still selective in the challenge batch label tg*. Security here only relies on polynomial-hardness of a g-type
assumption in the plain model. In Remark C.16, we describe a plausible approach to achieve full adaptive security
(essentially, by using Waters’ technique [Wat05] to embed the batch label).

Supporting multiple key-generation queries. Like many previous batched IBE and batched decryption schemes
that use a batch label [CGPP24, SAA24, CGPW25, AFP25], Construction 4.2 only ensures security against adversaries
that make a single key-computation query on the challenge batch label. In Appendix C, we describe a simple technique
that allows the adversary to request up to K decryption keys for each batch label for any a priori bounded K. The
modification requires adding 2(K — 1) group elements to the public key, K — 1 group elements to the ciphertext, and
K -1 field elements to the decryption key. In particular, we essentially replace the scalar w € Z, in the public key
and the scalar y € Z, in the secret key with vectors w € Zg andy € Zg .
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5 Threshold Batched IBE with Silent Setup

In this section, we show how to integrate our batched IBE scheme from Section 4 (Construction 4.2) with the approach
from [WW25a] for building threshold (non-batched) IBE with silent setup to obtain a threshold batched IBE scheme
with silent setup. The recent work of [BCF*25] give a construction (obtained by integrating ideas from [BFOQ25] with
the threshold encryption scheme with silent setup from [GKPW24]) that supports a polynomial-size identity space in
the generic bilinear group model; ciphertexts in their scheme contain O(1/log 1) group elements. Our construction
preserves many of the features of our vanilla batched IBE scheme: it supports an exponential-size identity space, cipher-
texts are just a constant number of group elements, and security can be based on a g-type assumption in the plain model.

Threshold batched IBE with silent setup. We start with the definition of threshold batched IBE with silent setup.
Our definition is an adaptation of the concept of threshold batched encryption with silent setup from [BCF*25]. To sim-
plify the exposition, we follow [WW25a] and work in the registered key model [RY07] where we only consider correct-
ness and security for keys in the support of the honest key-generation algorithm (and moreover, in the case of security,
the adversary must provide the randomness used to generate its keys). Previous works [RY07, WW25a] show that us-
ing simulation-sound non-interactive zero-knowledge (NIZK) proof of knowledge, we can generically lift any scheme
with security in the registered-key model into one with security in the plain model. We now give the formal definition:

Definition 5.1 (Threshold Batched IBE with Silent Setup). A threshold batched IBE scheme with silent setup
IpatchsTiae is a tuple of efficient algorithms ITpachsTiae = (Setup, KeyGen, Preprocess, Encrypt, Digest, CompKeyShare,
VerifyKeyShare, Decrypt) with the following syntax:

« Setup(1%4,15,1V) — pp: On input the security parameter A, a bound on the batch size B, and a bound on the
size of the decryption committee N, the setup algorithm outputs a set of public parameters pp. We assume
that the public parameters (implicitly) specify the message space M, identity space 1, and batch label space
7 for the encryption scheme.

« KeyGen(pp) — (pk, sk, ht): On input the public parameters pp, the key-generation algorithm outputs a public
key pk, a secret key sk, and an aggregation hint ht.

« Preprocess(pp, (hty, ..., hty)) — (ek, ak): On input the public parameters pp and L < N aggregation hints
hty, ..., hty, the preprocessing algorithm outputs an encryption key ek and an aggregation key ak. This
algorithm is deterministic.

« Encrypt(ek, m,id, tg, T) — ct: On input the encryption key ek, a message m € M, an identity id € 7, a batch
label tg € 77, and a threshold T < L, the encryption algorithm outputs a ciphertext ct.

+ Digest(pp,S) — dig: On input the public parameters pp and a set of identities S C 7, the digest algorithm
outputs a digest. This algorithm is deterministic.

« CompKeyShare(sk, dig, tg) — o: On input a secret key sk, a digest dig, and a batch label tg € 77, the key-share
computation algorithm outputs a decryption key share o.

« VerifyKeyShare(pk, dig,tg,0) — 0/1: On input a public key pk, a digest dig, a batch label tg € 7, and a
decryption key share o, the key-share verification algorithm outputs a bit indicating whether the decryption
key share o is valid under pk for dig and tg. This algorithm is deterministic.

« Decrypt(ak, {o¢}sev, S, (id, tg), ct) — m: On input the aggregation key ak, a collection of decryption key shares
oy for aset of users £ € U C [L] where |U| = T, a set of identities S C 7, an identity id € S, a batch label tg € 7T,
and a ciphertext ct, the decryption algorithm outputs a message m € M. This algorithm is deterministic.

We require IpatchsTiae satisfy the following properties:
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« Completeness: For all A, B € N, all N < 2%, all public parameters pp in the support of Setup (14, 15, 1V), all
batch labels tg € 7, all sets S € I of size at most B (where M, I, 7 are the message, identity, and batch label
spaces associated with pp, respectively), we have

(pk, sk, ht) « KeyGen(pp)
Pr | VerifyKeyShare(pk, dig, tg, o) = 1: dig = Digest(pp,S) =1
o « CompKeyShare(sk, dig, tg)

« Correctness: Forall 4, B € N, all L < N < 2%, all public parameters pp in the support of Setup(1%, 18, 1V), all
messages m € M, all identities id € 7, all batch labels tg € 7 (where M, 7,7 are the message, identity, and
batch label spaces associated with pp, respectively), all collections of (pk,, hty), ..., (pk;, hty) where (pk;, ht;)
is in the support of KeyGen(pp) for all i € [L], and setting (ek, ak) = Preprocess(pp, (hty, ..., htr)), all thresh-
olds T < L, all ciphertexts ct in the support of Encrypt(ek, m, id, tg, T), all sets S C I of size at most B where
id € S, and setting dig = Digest(pp,S), all sets U C [L] of size |U| = T and all partial decryptions {o;}scv
where VerifyKeyShare(pk,, dig, tg, o;) = 1, we have

Decrypt(ak, {or}sev, S, (id, tg), ct) = 1.

« Static security: For a security parameter A, a batch size B, a bound on the size of the decryption committee
N, abit § € {0,1}, and an adversary A, we define the threshold batched IBE with silent setup security game
as follows:

- Algorithm A commits to the challenge identity id* € 7, the challenge batch label tg* € 7, the size of the
committee L < N, the threshold T < L, and the indices of the corrupted users C C [L] where |C| < T.

— The challenger starts by computing pp « Setup(1%, 15, 1V) and (pk,, sk, ht;) < KeyGen(pp) for each
¢ € [L]\ C. It gives (pp, {pk,, hte}ee(rp\c) to A.

— Algorithm A can now make any number of key-share-computation queries. On each query, algorithm
A specifies an index ¢ € [L] \ C, a set of identities S C 7 where |S| < B, and a batch label tg € 7. The
challenger replies with the decryption key share o, «<— ComputeKey(sk,, Digest(pp, S), tg).

- After A finishes making key-share computation queries, it specifies the key-generation randomness
pr € {0,1}" for each of the corrupted users ¢ € C. In addition, it outputs two messages mo, m; € M.

— For each ¢ € C, the challenger computes (vky, ht,, sk,) < KeyGen(crs; p,). Next, it computes (ek, ak) «
Preprocess(crs, {(pk,, hte) }ee(z]). Finally, the challenger replies to A with the challenge ciphertext
ct « Encrypt(ek, mg, id*, tg*, T). Note that the challenger does not need to provide (ek, ak) to A because
the Preprocess algorithm is deterministic so algorithm A can compute (ek, ak) itself.

— Algorithm A can continue to make key-share-computation queries (subject to the same restrictions as
described above). The challenger responds in the same manner.

At the end of the game, algorithm A outputs a bit f’ € {0, 1}, which is the output of the experiment.
We say an adversary A is admissible if the following two conditions hold:

— For eachindex ¢ € [L]\ C, algorithm ‘A makes at most one key-share-computation query on the challenge
batch label tg*.

- Algorithm A does not make a key-share-computation query on a pair (S, tg) where tg = tg* and id* € S

We say IpatchsTiae is statically secure in the registered key model if for all polynomials B = B(4), N = N(1)
and all efficient and admissible adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[f/ =1:8=0] —=Pr[f =1:f=1]| = negl(1) (5.1)

in the above security game. We say Ilg,tchsTige is statically secure in the registered key model for a specific
batch size B = B(1) and committee size N = N(A) if Eq. (5.1) holds for the specific functions B and N.

7 An adversary that would like to make such a query to a user £ € [L] \ C should instead corrupt user ¢ instead.
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« Succinctness: There exists a universal polynomial poly(+) such that for all ,, B € N, all N < 2%, all public
parameters pp in the support of Setup(1%), all (pk,, sky, ht,) in the support of KeyGen(pp), all digests dig in
the support of Digest(pp, -), and all batch labels tg € 7 (where 7™ is the batch label space associated with pp),
the following properties must hold:

— The encryption key ek output by Preprocess(pp, (hty, ..., hty)) has size poly(A).

— The size of the digest dig is poly(4) and the running time of the key-share-computation algorithm
CompKeyShare(sk, dig, -) is poly(2).

Fixed-threshold batched IBE. To simplify our exposition, we define a relaxed version of threshold batched IBE
with silent setup where the size of the decryption committee as well as the size of the threshold are fixed at Setup
(rather than determined dynamically at aggregation and encryption time). While this may seem like a significant
relaxation of the functionality, we can apply the simple padding and powers-of-two trick from [WW25a] to obtain
a scheme that supports dynamic thresholds (see Remark 5.10). The [WW25a] transformation increases the size of the
public parameters by a log N factor and does not affect the ciphertext size or the secret key size. Thus, for the main
construction, we just focus on the comparably simpler fixed threshold setting. We define this more precisely below:

Definition 5.2 (Fixed-Threshold Batched IBE with Silent Setup). A fixed-threshold batched IBE with silent setup
is defined as in Definition 5.1 except with two simplifying assumptions:

« First, the threshold T is fixed during Setup rather than provided as a parameter to Encrypt.

« The size of the decryption committee is always set to L = N. In this case, we simply provide 17 to Setup as
the exact size of the decryption committee.

Remark 5.3 (Querying Decrypters on Different Sets for a Batch Label). Our security definition for threshold batched
IBE with silent setup (Definition 5.1) allows the adversary to request a decryption share for a different set S, from each
decryption authority £ € [L] \ C for the same batch label tg. The only restriction is that each decryption authority
issue one key share for each batch label. In contrast, the security definition of threshold batched IBE from [AFP25]
(see also Definition E.1) only ensures security against adversaries that specify the same set S to all of the decryption
authorities when requesting a decryption key share for a particular batch label tg.

There is an important distinction between these two definitions. Under our definition, each decryption authority
only needs to keep track of whether they individually have issued a decryption key share for each batch label. For
instance, if the batch labels were a counter (or block number), the authority only needs to remember the current
count. For threshold cryptography, it is natural to assume that decryption authorities do not have to coordinate or
even be aware of each other.

On the other hand, with the [AFP25] definition, all of the decryption authorities in the system must coordinate
and affirm that they are generating decryption key shares for the same set for each batch label tg. Otherwise, if one
authority releases a key for a set S with respect to tg while another release a key for set S” # S on the same batch
label, then all bets are off. In fact, the [AFP25] scheme no longer provides semantic security if the adversary could
request decryption key shares for two different sets S, S” under the same batch label tg to two different decryption
authorities. The issue stems from the fact that all of the decryption authorities hold shares of a single master secret
key for a (centralized) batched IBE that only ensures security if exactly one key is given out for each batch label.

In this section, we focus on the stronger notion of security where the only restriction we impose on the decryption
authorities is they give out at most one decryption key share for each batch label (just as in the centralized scheme).
As we show in Construction 5.5, we achieve this stronger security notion by having each decryption authority sample
an independent share, and the share aggregation is done using the approach from [WW25a]. In fact, even without
considering the silent setup property, the [WW25a] approach already provides a way to build a threshold batched
IBE satisfying the stronger notion of security.

5.1 Constructing Fixed-Threshold Batched IBE with Silent Setup

In this section, we show how to construct a fixed-threshold batched IBE with silent setup from pairings. As mentioned
before, this construction integrates our batched IBE scheme from Construction 4.2 with the threshold IBE scheme
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with silent setup from [WW25a]. As in Section 4, we first introduce the g-type assumption we use in the security
analysis and then give our construction. In Appendix B, we show this assumption holds in the standard generic
bilinear group model [Sho97, BBGO5].

Assumption 5.4 ((B, L)-Bilinear Diffie-Hellman Exponent Variant). Let GroupGen be a prime-order bilinear group

generator. For a security parameter A and parameters B, L € N, and a bit € {0, 1}, we define the distribution D, 51 5
as follows:

« Sample G = (G1, G2, Gr, p, g1, g2, €) Groquen(lA). Sample exponents a, b, ¢, s, T & Zp. Define

1%, G, [ala, [b)2, [bc"*]1, [be" ]y, [ab]y, [ab]a, [s]1,
[]1 {[Tj]z}je[O,B]s {[C{Tj]l» [C[Tj]z}le[zL],je[O,B]»
{[abC(Tj]z}fe[2L]\{L+1},je[o,B], {[abCL+1Tj]2}je[B],

{[C{)S]z, [C{)ST]Z, [abC[ST]z}(e[L]

params =

« If f=0,let £ = abct*'s and if § = 1, sample & & Z,,. Output (params, [£]7).
We say Assumption 5.4 holds with respect to GroupGen and parameters B = B(4), L = L(A) if the distributions
Do ={D3 1)) 0t ren and Dy = {Dy p(1),L(1)1 }1en are computationally indistinguishable.

Construction 5.5 (Fixed-Threshold Batched IBE with Silent Setup). Let GroupGen be a prime-order bilinear group
generator. We construct a fixed-threshold batched IBE scheme with silent setup Ip,ichstise = (Setup, KeyGen,
Preprocess, Encrypt, Digest, CompKeyShare, VerifyKeyShare, Decrypt) as follows:

« Setup(1%,18, 1L, T): On input the security parameter 1, a bound on the batch size B, the size of the decryption
committee L, and the threshold T < L, the setup algorithm proceeds as follows:

- Sample G = (G4, Gy, Gr, p, g1, g2, €) < GroupGen(1%) and exponents c, 7,0, h, t & Zp.
- LetM e ZﬁXT be the share-generation matrix for a T-out-of-L threshold policy over Z, (e.g., the Vander-

monde matrix over [L]; see Section 3). Sample t < ZZT, where t; = t. For £ € [L], let m; be the ™ row
of M. Then compute

[20] = ) [c'mytl,

te[L)]

Ve € [L] : [vgolz = E ["1* m]t],
ie[L]
i

Then output the the public parameters

_[ G I, {[7/12}jepy» [0]1, [0]2, [h]1, [h]2, [cE*t]T, (5.2)
PP [z0]2, {[U[,O]Z}ZE[L]a {[Cffj]l, [C[T]]z}(e[zL],je[o,B] '

The message space associated with pp is Gr, the identity space is Z,,, and the tag space is Z,.

« KeyGen(pp): On input the public parameters pp (parsed according to Eq. (5.2)), the key-generation algorithm
samples exponents o, w’ <= Z,, and sets [c"*'a]t = [a]; - [c"*!],. Next, it computes

pk = (g’ [U]l’ [h]l, [Wl]l, [CL+16{]T)

ht = {a- [c¢']2,w - [T ]2}ican)\ (141}, )¢ 0.B]-

Finally, it outputs the public key pk, the aggregation hint ht, and the secret key sk = (G, &, w’, a-[¢[*!]3, [v]2, [h]2).
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Preprocess(pp, (hty, ..., hty)): On input the public parameters pp (parsed according to Eq. (5.2)) and L aggre-
gation hints ht, = {[cia[]g, [ciW;Tj]Z}ie[ZL]\{L+1} e[0.B) the preprocessing algorithm computes the aggregated
public key components

[z]2 = [20]2 + Z [‘ar]; and [w], = Z [c[w§]2 and [wr]y = Z [ wyT]2

te[L] te[L] te[L]

Then, for each ¢ € [L] and j € [0, B], it computes the aggregated cross terms

[oc]2 = [ogolo+ ) [ ay], and [der] = ) [eH170¥w]e] ],

ie[L] ie[L]
it i+t

Then it sets
= (G, [v]1, [A]1, [wla. [wrla, [2]2, ["'E]T)

= (G, {[c"11, [oel2 [" /11, [det/ 12} eeqr),jefo.])-
The preprocessing algorithm outputs the encryption key ek and the aggregation key ak.

(5.3)

Encrypt(ek, [m]T,id, tg): On input the encryption key ek = (G, [v]1, [A]1, [W]2, [WT]2, [2]2, [cF1E] 1), a mes-
sage [m]r € Gr, an identity id € Z, and a batch label tg € Z,, the encryption algorithm samples a random
exponent s <~ Z,. It then outputs the ciphertext

ct= ([s]l, s[wrlz = (s - id) [wlz, s([o]y + tg - [A]1), slzlz, s[cFe)T + [m]T).

Digest(pp, S): On input the public parameters pp (parsed according to Eq. (5.2)) and a set of identities S C Z,
where |S| < B, the digest algorithm defines the polynomial Fs(x) = [];qes(x —id) whose roots are the identities
id € S. Write F(x) = X je[o,/s]] fix/. Output the digest

dig= > fi- "]y = [ Fs(0)]a.

Jjelo,|s]]

CompKeyShare(sk, dig, tg): On input a secret key sk = (G, a, w’, [c/™ a],, [0]2, [R]2), a digest dig = [d],, and
a batch label tg € Z,, the key-share-computation algorithm samples a random r ¢ Z, and y <~ Zj, and outputs
the decryption key share

L+1

o=y, [rl2, [ alz +r([o]: +tg - [h]2) +yw’ - [d]2).

VerifyKeyShare(pk, dig, tg, o): On input a public key pk = (G, [v]1, [h]1, [W']1, [t a]T), a digest dig = [d],,
a batch label tg € Z,, and a decryption key share ¢ = (y, [01]2, [02]2), the key-share verification algorithm
outputs 1 if the following relation holds (and 0 otherwise):

[c"alr = [1]1 - [o2]z = ([0)1 +tg - [A]1) - [o4] =y - [w']1 - [d].

Decrypt(ak, {o¢}reu, S, (id, tg), ct): On input the aggregation key ak (parsed according to Eq. (5.3)), a collection
of decryption key shares o, = (yy, [04,1]2, [072]2) for a set of users £ € U C [L] where |U| = T, a set of identities
S C Zp, an identity id € S, a batch label tg € Z,, and a ciphertext ct = ([ct1], [cta]2, [cts]q, [cta]2, [cts]T), the
decryption algorithm proceeds as follows:

- LetM € Z;XL be the share-generating matrix for the T-out-of-L threshold policy. Let w € Zﬁ be the
interpolation vector where @M =e] and w, =0 forall £ ¢ U.
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- Let K = |S|. The decryption algorithm defines polynomials Fs(x) = [Tiges(x —id") = X jcqok) fix/ and
Fs\(idy (X) = [Tigres\ (iay (x = id") = X je[0k-1] fi x7. Then, for each ¢ € U, it computes the followmg:

[" 7 Fs\giay (D] = Z Gt

je[o,K-1]

[de-Fs(D]z:= Y fildir']2.

Jje[0.K]
For each ¢ € U, it computes
[Oc]T = ([ct1]1 - [or2]2) —ye - (([CLH_['FS\{id*}(T)]l -[etz]2) = ([cti] - [de - Fs(7)]2)) — ([cts]q - [oea]2).

— Finally, the decryption algorithm outputs

[cts]T — Z (we - [" T4 - [ctal Z wg - [Oe]7 + [ctq]y - Z we - [v¢]2. (5.4)

teU teU teU

Theorem 5.6 (Completeness). Construction 5.5 is complete.
Proof. Takeany A, Be NandT <L < 24 and take pp < Setup(ll, 18,1, 17), where
pp:( G. [t {[7]2}jerm [U]lf, [0]2, [ 11, [Al2, [T, )
[zol2. {[veola}teerny> {[c“?/ 11, [c"T/12}eean) jet0.B]
Take any batch label tg € Z,, and set S C Z,, of size at most B. Let
(pk, sk, ht) <« KeyGen(pp)

dig = Digest(pp, S)
o < CompKeyShare(sk, dig, tg).

Let Fs(x) = [[iges(x — id). Then we can write

Pk = (G, [o]1, [h]1, [W']1, [" )
= (gs (X,W , - [CL+1]Zs [0]25 [h]z)
dig = [¢"*! - Fs(7)],

[ L+1

o= (yp [l [E P a+r(+h-tg*) + ycFw - Fs(1)],).

Write dig = [d], and o = (y, [01]2, [02]2). Completeness holds if the following holds
["alr = [1]1 - [02]2 = ([0]1 +tg" - [A]1) - [o1)2 —y - [w']1 - [d]2
It is sufficient to check the exponents of both sides:
da=0y,—(v+tg"-h)-oy—y-w -d (5.5)

By construction, the three terms on the right-hand side are as follows:

oy = g+ r(v+h- tg*) +ycLHw' - Fs(1)
(v+tg"-h)-o1=(v+tg -h)-r
y-w -d=y-w - Fs(r)

where terms in the same color can be canceled out when we substitute them back to Eq. (5.5). This proves that Eq. (5.5)
holds by construction and completeness follows.
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Theorem 5.7 (Correctness). Construction 5.5 is correct.
Proof. Take any A,B € Nwhere T <L < 2% and take pp < Setup(lA, 18,1, 17), where

oo = [ G [l (1D ety [0, [0, [ [z, [l
[z0]2, {[veol2}eerrys {[c" T/ 11, [c" T/ 12} eelar) jef0.B]

Take any message [m]r € Gr, identity id* € Zp, batch label tg* € Z,,, set S* C Z,, of size at most B where id* € §*.
Take any T < L and any collection of (pk;, ht1), ..., (pk;, hty) where (pk;, ht;) is in the support of KeyGen(pp) for
alli € [L]. Let a;, w; € Z, be the secret exponents associated with pk;. Let

(ek, ak) = Preprocess(pp, (hty, ..., htr))
ct « Encrypt(ek, [m]r,id", tg")
dig = Digest(pp, S™)
Take any set U C [L] of size |[U| = T and a set of decryption shares {o;},cy where VerifyKeyShare(pk,, dig, tg, or) = 1.
For a set S C Z,, let Fs(x) = [[;4es(x — id). Then we can write
ek = (ga [v]la [h]la [W]Z, [WT]2> [Z]2> [CL+1t]T)
ak = (ga {[C[]l’ [Uf]25 [c[Tj]la [df’Tj]Z}t’E[L],jE[O,B])
ct= ([s]ls [SW(T - ld*)]2> [S(U +h- tg*)]la [SZ]Z, [CL+1St]T + [m]T)
dig = [¢"*! - Fs-(1)]2.

Moreover, since the decryption shares o, = (yy, [071]2, [0¢2]2) are valid, we have

["*ae]r = [1]1 - [or2]2 = ([o]1 +tg" - [R]1) - [o1]2 — ye - [wili - [¥*! - Fse ()] (5.6)

By construction of Preprocess, we have that

w= E c'w; and d,r/ = ZCLH_[HWI{T].

i€[L] ie[L]
[£24

Consider the value of Decrypt(ak, {o;}sey, S*, (id", tg*), ct). Let M be the share-generating matrix for the T-out-of-L
threshold policy and let w € Zﬁ be the interpolation vector where @M = e] and w, = 0 for all # ¢ U. Let K = |5”|

and let Fs(x) = Xjeqok] fix/ and Fs\(ig*y (%) = 2jeqok-1] j;.'xj. For each ¢ € U, we have
[e"170 Fooyfigy (D1 = Z flet=),
je[0,K—-1]

[de - Fo (D)= ). fldee'],

JjeloK]

This means

[clHi-¢ - Fgogiay (D11 - [sw(z —id")]z = Z [SCL+1_€+iw{F5*(T)]T

i€[L]
= [scL+lw Fso(D)]1+ [ Z [cEH1=tryy iFs+ ()12
ie[L]
it

= [sc" ' wiFs- (1)1 + [s]1 - [de - Fs- (1)
This means that

([CL+1—£’ - Fo iy (D11 - [ctz]z) — ([cty]1 - [de - Fs«(7)]2)
= [0 Fou gy (D1 - [sw(t —id*)]2 = [s]1 - [de - Fs (7)]2 7

= [scL“w{’,Fs»« (D]
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Next, the decryption algorithm computes for each ¢ € U:

[6e]7 = ([eti] - [or2]2) = ye - (([HH17F- Fon\ iy (D11 - [cta]2) — ([cti]y - [de - Fs+ (7)]2)) — ([ets]y - [o2.1]2)
[s]1 - [oe2)2) — ye - [se" 'wiFs: (0)]1 = ([s(o+h-tg")]1 - [001]2)
s ([1]1 - [o22]2 — ([0]y +tg" - [A]1) - [o01]2 — ye - [wyli - [ - Fs+()]2)

[CL+1 a{]

(
(

=s: T= [SCLHOQ’]T,

where the second step uses Eq. (5.7) and the fourth step uses Eq. (5.6). We now consider the components in Eq. (5.4).
First, by construction of Preprocess, we have

z=2zp+ Z fap = Z ! (mjt + ap),
te[L]

te[L]
Ve = v + Z CL+1—[+zai - Z CL+1_[+l(mth+0(i).
ie[L] ie[L]
i+t i#t

This means

Do [ etalo = ) o [0y - [szl

teU teU
— Z Z [w SCL+1 t’+l(mTt+a1)]T
teU ie[L]
= Z [sc" ! wpmit]T + Z we[sc" et + Z we - [s]1 - [ve]2
teU teU teU
= [stc" M+ D [we(8; +s00) 1,

teU

using the fact that ;[ @,mjt = t. Eq. (5.4) now becomes

[cts]T — Z (we - [N - [ctal Z wp - [Se]7 + [cti ]y Z we - [v¢]2

teU teU teU
= [m]r + [ste"™* 1 = [stc" ! = )" [0e(8¢ + s00) 7+ D [w0e (S +s00) |1
teU teU
= [m]r,
and correctness holds. m]

Theorem 5.8 (Static Security). Take any polynomial B = B(A) and L = L(A). Suppose Assumption 5.4 holds with
parameters B and L. Then, Construction 5.5 is statically secure in the registered key model with batch size B and supporting
committees of size L.

Proof. Let A be an efficient adversary for the static security experiment for Construction 5.5 with batch size B and
commiittees of size L. We define a simple sequence of hybrid experiments, each indexed by a bit € {0, 1}:

. Hyb(()ﬁ ). This is the static security game with bit .
. Hybiﬁ ): Same as Hybéﬁ ), except when constructing the challenge ciphertext

ct = ([cty]y, [ctz]a, [cts]y, [ctala, [cts]T),

the challenger samples ct; <~ Z,. In this experiment, the challenge ciphertext is independent of the bit .
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Let Hybio) (A) and Hybil) (A) denote the output distribution of an execution of experiment Hybi0> and Hybil) with
adversary A, respectively. By construction, experiments Hybio) and Hybil) are identical so it suffices to show that

the outputs of Hyb(()ﬁ ) and Hybgﬁ ) are computationally indistinguishable for each f € {0, 1}. Suppose there exists
B € {0,1} and a non-negligible ¢ such that

Pr[Hyb” (A) = 1] - Pr[Hyb? (A) = 1]| > &.

We use A to construct an adversary B that breaks Assumption 5.4 with parameters (B, L) and the same advantage ¢:

1. At the beginning of the game, algorithm B receives a challenge (params, [£]7) where

1%, G, [ala, [b)2, [bc"*]1, [be" )y, [ab]y, [ab]a, [s]1,
[7]1 {[ffj]z}je[o,B]s {[C[f’j]b [C[fj]z}te[z;],je[o,B],
{[abc(f]]z}t’e[2L]\{L+1},je[O,B], {[abCLHfj]z}je[B],

{[Cfs]za [Cfo']z, [abC[Sf’]z}(e[L]

params =

and £ = abc!*'s or £ & Z,,.

2. Algorithm B runs A on input 1*. Algorithm A commits to the challenge identity id* € Z,, the challenge batch
label tg* € Z,, and the indices of the corrupted users C C [L].

3. Let M be the share-generating matrix for a T-out-of-L threshold policy. Since |C| < T, the set C does not satisfy
the threshold policy. Thus, there exists a vector w € Zﬁ such that for all indices i € C, m{vNV = 0, where mlT

is the i™ row of M and moreover, w; = 1.

4. Algorithm B now constructs the public parameters pp as follows. As in the proof of Theorem 4.4, we will use
a “tilde” (e.g., @, 7) to denote an exponent that is chosen by (or otherwise known to) the reduction algorithm.

« Algorithm B implicit sets 7 = 7 + id*. Specifically, for each j € [0, B] and ¢ € [2L], algorithm B computes

Y (i) Cd) [, = [( +id7) ]
]

kefo,j

[l= ) (i) (Y e ] = [ id ) (53)
]

ke[0.j

e = ) (ijc) H(idTY T [ ]y = [ (F+id)
]

ke[o.j

Algorithm B sets [r]; = [£]1 + [id*];.

« Algorithm 8B samples a vector t & Zg and implicitly sets t = t + ab - W. In this case, t = t; = f; + ab.
Algorithm B now computes

["*'t]r = ["*']y - [Bi]2 + ["']1 - [ab]..

Next, algorithm B sets [zo]2 and [v,], for £ € [L] as

[zole = . (mfE- 'L+ mpvi - [abel2) = ) [e‘mitls

te[L] te[L]

[0[10]2 = Z (mI{ [CL+1—t’+i]2 +IIIIV~V' [abcL+1—€+i]2) — Z [CLH_Himth]Z.
ie[L] i€[L]
i+t i+t
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« Algorithm B samples o h & Zp and sets

[0]1 = [3]1 —tg" - [bc I =16 - bt - tg']s
[o]2 = [3]2 — tg" - [be"]o = [6 — be™*" - tg"];
[Al1 = [A]1 + [be™*']y = [+ b,
[Al2 = [Al2 + [bc"]y = [A+bc™*],.

Algorithm B now constructs the public parameters as

_( G, [zl {[7]2} jerm)s [0]1, [0l2s [R]1, [Bl2, ("'t
PP [z0]2., {[Uz,o]z}fe[L], {[Cffj]l, [C T]] }t’e [2L],j€[0,B]

. Next, to simulate the public keys for the honest users, algorithm B starts by sampling d, w, < Z, for each
€ [L] \ C. Next, for each ¢ € [L] \ C, if mjw = 0, algorithm B sets §; = 0. Otherwise, it samples ; < Zy,.
Then, algorithm 8 implicitly sets the exponents

ap = & — abm;w
w; = W, + abij;.
Algorithm 8 then sets
[" ]t = [¢"*']1 - (]2 — mpw - [y - [ab],
[wely = [wela + 3 - [ab].
Finally, it defines the public key to be
pk[ = (g’ [U]la [h]l’ [Wl]l’ [CL+1a]T)'
To construct the aggregation hints, algorithm B first computes for each i € [2L] \ {L + 1} and j € [0, B],
[ab'c/], = (/i) - (id")7 % - [abc'#F], = [abe' (£ +id™) .
kefo,j]
Then, for each i € [2L] \ {L + 1} and j € [0, B], algorithm B computes the cross-terms
[c'ar)z = @ - [c']o — mjw - [abc'],
[c'w;t/)y = w) - [¢'t/]2 + G - [abe't! ],

where [¢'7/], was computed in Eq. (5.8). It then sets ht, = {[c’a¢]2, [¢'W) 7/ ]2} ic[ar]\ (L+1}.je[0,5]- Algorithm B
gives pp and (pk,, hty) for each ¢ € [L] \ C to A.

. Whenever A makes a key-computation query on an index £ € [L] \ C, a set of identities S C Z, where |S| < B,
and a batch label tg € Z,, algorithm 8 defines the following two polynomials over Z,:

Fs(x) = [ [(x~id)
ideS (5.9)
Gs(x) = Fs(x + ld*) - Fs(id*).

Write Fs(x) = Xi=j0,s]] ﬁxi and Gs(x) = Yieqis)] Gix'. (By the same argument as in the proof of Theorem 4.4,
the constant term of Gs is 0.) Algorithm B now proceeds as follows:
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. Iftg # tg*, algorithm B samples j < Zyandr & Zp. Then, algorithm B computes the following:

[ua]z = [F]2 + (tg — tg") ™' (mpW — §g; - Fs(id")) - [al.
[uglz = @ - [ ]o+ 7 (tg —tg") - [be"* ]2+ (5 + - tg) - [wl
+ gy - Fs(id) - [" o+ > Gi- () - [H1 8], + g7 - [abe ' #'],).

ie[lsl]

. If tg = tg*, algorithm B first sets § = m;w/(7j;Fs(id*)) if mjw # 0 and § & Zj, if m;w = 0. Note that g
in the former case is well defined since 7; € Zj, and when tg = tg", it must be the case that id" ¢ S so
Fs(id*) # 0 by definition of Fs. Next, algorithm B samples 7 < Z, and sets

[Ul]z = [f]z
[uz)s = @ - [FM) + [F(5+ R - tg")]s

+ng Fs(ld) L+1 Z 91 ny L+1 l]2+yy[ [abCL+1 l] )
i€[|S]]

In both cases, algorithm B responds to A with the secret key sk = (7, [u1]2, [u2]2)-

7. After A finished making key-computation queries, it specifies the key-generation randomness p, € {0, 1}
for the corrupted users £ € C along with two messages [my]T, [m;]1 € Gr.

8. For each ¢ € C, algorithm B computes (vk,, hty, sk;) < KeyGen(crs; p¢). Let &, w, € Z, be the exponents
associated with sk,. Then, algorithm 8 constructs the challenge ciphertext as follows:

[cti]1 = [s]i

[Ctz]z=zw[ [c“st], + Z iy - [abc'st],

te[LI\C
[cts]4 =(v+h'tg)'[]
[cty]s = Z (m{,t+ag) [c s]s

te[L]
[cts]t =1 - [s]1 - [¢"*']2 + [E]T + [mg]7.
Algorithm B responds with the ciphertext ct = ([ct1]1, [ct2]2, [cts]1, [cta]2 [cts]T).

9. Algorithm A can continue to make key-computation queries. Algorithm 8 answers them using the same
procedure as above.

10. At the end of the game, algorithm A outputs a bit §” € {0, 1}, which algorithm 8 also outputs.

To complete the proof, we show that depending on the distribution of the challenge element ¢, algorithm A perfectly
simulates either an execution of Hybéﬁ ) or Hybgﬁ ). We first consider the distribution of the public parameters:

« As described above, algorithm B constructs the public parameters by implicitly setting

=7+id"
0=10-bc* - tg*
h=h+bcl*!
t =t +ab.

and taking ¢ € Z, to be the same value from the challenge. In addition, algorithm $ samples g, hi & Zy.
Since the challenger samples 7, ¢ & Zp, the exponents 7, v, h, t, ¢ match the distribution in Hyb(()ﬂ ) and Hybiﬁ ).
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« Next, the reduction implicitly sets t = t+ab - W where t € Z,, and f; = t. Since it samples t <~ ZL, this matches

the distribution in Hyb(()ﬁ ) and Hybiﬂ ). For this choice of t, algorithm B constructs zy and v, exactly as in
Hybéﬁ) and Hybiﬂ).

We conclude that the public parameters pp constructed by 8B are distributed identically to the public parameters in
Hyb(()ﬂ ) and Hybgﬂ ), Next, consider the distribution of the public keys and the aggregation hints for the honest users
te[L]\C.

+ As described, algorithm B simulates an execution of KeyGen(pp) where the underlying exponents o, w, are
sampled as

ap = & — abm;w

’ o~ ~s%
w;, = w; + abyj,,

where &, W, < Z,. Thus, the distribution of & and w}, are also uniform random over Z,, exactly as in Hybéﬁ )

and Hybiﬁ ). Moreover, we also note that w; information-theoretically hides the value of §j;. This property will
become important when we analyze the key-generation queries.

+ By construction, the components of the public key pk, and the aggregation hint ht, are constructed according
to the exact same relations as in the real scheme (with respect to the above choice of a;, w;).

We conclude that all of the honest users’ public keys and aggregation hints are distributed exactly as in the real
scheme. Next, consider the distribution of the challenge ciphertext. We claim that algorithm $ generates the challenge

ciphertext according to the specification of Hyb(()ﬁ ) and Hybiﬁ ) where the encryption randomness s <~ Z, is the
corresponding exponent sampled by the challenger. We consider each component individually:

+ By construction, algorithm 8 sets ct; = s, which matches the distribution in Hyb(()'g ) and Hybiﬁ ),

« Consider cty. Recall first that for the honest users £ € [L] \ C, algorithm 8 sets w, = w; + ij;ab. For the keys
for users ¢ € C chosen adversarially, algorithm 8 defines w; = w;. In the reduction, algorithm 8 computes

cty = Z c'stw) + Z irabc'st
te[L] te[L]\C

c'st(w, + §rab) + ) c'stw;
te[L]\C teC

Z c'stw) + Z c'stw) = st Z c'wy.

te[L]\C teC te[L]

In the reduction, algorithm 8 implicitly defines 7 = 7 + id*. This means

cty = st Z cf'wy = s(r —id*) Z c'w),

re[L] te[L]

which matches the distribution in Hyb(()ﬁ ) and Hybiﬁ ). Recall that in these experiments, the Preprocess algorithm
would compute [w]z = X,z [c"W}]2.
« Consider cts. In Hybéﬁ) and Hybiﬁ)
choice of v and h, we have

, this component is set to ct; = s(v + h - tg*). Substituting in algorithm B’s

cty =s(o+h-tg*) = s(5 — be"* - tg* + (h+ bt - tg*) = s(5 +h - tg"),

which is exactly how 8B constructs cts in the reduction.
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NG

+ Consider cty. In Hyb, b(ﬁ)

and Hyb,"", the experiment would set cty = sz where

z=2zy+ Z cap = Z ! (mjt + ay).

te[L] te[L]

In the reduction, we have that t = t + abWw. By construction m}vNV =0 for all £ € C. In addition, the reduction
algorithm defines &y = &, — abm;Ww for all £ € [L] \ C and sets &, = a, for all £ € C. For this choice of variables,
we can write

z= Z c! (mjt + ay)

te[L]

= Z ¢! (m} (T + abWw) + @) + Z ¢! (m}(t + abw) + @ — abm}w)
teC te[L]\C

= Z ! (mjt + ).
te[L]

In this case,

cty=sz= Z scf (mpt + a),
te[L]

which is precisely how algorithm 8 constructs cty.

« Finally, consider the distribution of cts. We consider two possibilities depending on the distribution of ¢:

L+1

- Suppose & = abc!*s. In the reduction, algorithm B implicitly sets t = #; + ab. In this case,

L+1 L+1

cts = st + £+ mpg = s (F; + ab) + mp = sctt + my,

which is precisely the distribution of cts in Hybéﬁ ).

- Ife&& Z,, then the distribution of cts is also uniform over Z,,. This coincides with the distribution in
)
Hyb ™.

Finally, consider the key-computation queries on an index ¢ € [L] \ C, a set of identities S C Z, and a batch label
tg € Zp. As in the reduction, we consider two cases:

« Suppose tg # tg*. In this case, algorithm B samples § <~ Z,, and implicitly sets the randomness r to be
r=u =7+ (tg - tg") " (myw - §7; - Fs(id")) - a,

where 7 & Z,. This matches the distribution of r in the real scheme. Thus, it suffices to argue that the

component u; is correctly constructed (with respect to algorithm $B’s choice of r and 7). In Hybéﬁ ) and Hybgﬂ ) ,
the experiment would compute the digest dig = [d]; = [¢}*! - Fs(1)], and then set the variable

uy = "oy +r(v+h-tg) + clgw) - Fs(1). (5.10)
In the reduction, algorithm B implicitly sets r = 7 + id*. Thus, we can write

Fs(7) = Fs(id") + Fs(z) = Fs(id")
= Fs(id*) + Fs(‘f + Id*) - Fs(id*)
= Fs(id") + Gs(1),

where Gg is the polynomial from Eq. (5.9). By definition of the coefficients g;,

D Gi- (gt + abe gty = M- () + abii) - Gs(2) = M gw; - G (7).
ie[]S]]
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Now, in the reduction, algorithm B sets

uy = @y + Ftg — tg")be ™ + (6 + h - tg)uy + 1 gw) - Fs(id)
+ 0 Gie (et + abet g ) (5.11)
ie[|s]]

L+1 1~ 7

= "G, + Ftg — tg")be" + (6 + h - tg)uy + ' gw) - Fs(id*) + c“'gw) - Gs (7).

Suppose now that we substitute the values of a,, r, v, h, w; into Eq. (5.10). Then we have the following:

uy = "oy +r(v+ h-tg) + cgw) - Fs(1)
=y +u(v+h-tg) + cL“ng - (Fs(id*) + Gs(7)) (5.12)

= (G — abm)W) + uy (0 + h - tg) + (W) + abiy) - Fs(id™) + " gw) - Gs(7).

We have highlighted the terms that depend on abc!*! in green since these terms will be cancelled out. Specifically,
consider now the value of u; (v + h - tg):

u(o+h-tg) = uy (5 — be"*! - tg* + (h + bet*) - tg)
=u (3 +h - tg) +uy - be(tg — tg*)

~ o~

= uy (5 +h-tg) + (F + (tg — tg*) " (mpw — §ij; - Fs(id")) - @) - be!* (tg — tg")
= u; (6 + h - tg) + Fbcl ! (tg — tg*) + abc!*! (m)w — i} - Fs(id*)).

Observe that the highlighted terms in green precisely cancels out the corresponding terms that depend on
abc™*! in Eq. (5.12). Thus, substituting back into Eq. (5.12), we now have

uy = (@ — abm)W) + uy (v + h - tg) + (W) + abiy) - Fs(id”) + cF 1w, - Gs(7)
= "y +uy (6 + h - tg) + Fbe (tg — tg") + Fgw) - Fs(id®) + M gw) - Gs (7).
This is precisely the expression in Eq. (5.11), so we conclude that algorithm B correctly answers the key-

computation query according to the specification of Hyb(()ﬁ ) and Hybiﬁ ),

Suppose tg = tg*. In this case, algorithm B sets § = m)w/(§;Fs(id"*)) if mjw # 0 and §j & Zy, if myw = 0.
It also samples 7 < Z,. By assumption, algorithm A makes at most one key-computation query to user ¢
on batch label tg*. Moreover, as argued previously, the adversary’s view in the reduction can be described
as a function of wj, which perfectly hides 7;. In the case where B samples §; < Zy,, the distribution of g is
uniform over Z;, (and independent of all other quantities in the adversary’s view) in both cases. In the other
case, algorithm B simply sample § - Z;,

As in the previous case, it suffices now to show that the component u; is correctly computed (with respect
to algorithm B’s choice of r and 7). As in the previous case, in Hyb(()ﬁ ) and Hybiﬁ ), the experiment would set

uy = "oy +r(o + h-tg*) + M gw) - (Fs(id*) + Gs(7)). (5.13)

Now, in the reduction, algorithm B sets
uy = "y + 70 + h - tg") + cHgw) - Fe(id*) + Z Gi - (Gw) - M2+ G abcl )
ie[Il]
= + G + - tg") + g, - Fs(id®) + (W) + g ab) - Gs(7)

=M@ + 7 (0 + h-tg”) + MW, - Fs(id®) + cHgw) - Gs(£).

(5.14)
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Suppose now that we substitute the values of a,, r, v, h, w; into Eq. (5.13). Then we have the following:

uy = cFlay +r(o + h-tg) + cEFgw) - (Fs(id*) + Gs(7))
=My +7(6 — be™ - tg” + (h+ beh*Y) - tg”) + cFgw) - (Fs(id*) + Gs(2)) (5.15)

IG5 (W) + abiy) - Fs(id”) + " gw) - Gs(4),

= (@ — abm)Ww) + 7(3 + h-tg") +c
where we have again highlighted the terms that depend on abc!*!
7 = 0. In this case

. When mjw = 0, then algorithm 3 also sets

—abc" ' m)W + abc i Fs (id*) = 0.

If mjw # 0, then algorithm B sets §j = mjWw/(fj; Fs(id")). We can then write

L+1 L+1

—abc" ' m)W + abc! i) Fs (id*) = —abc" ' m)W + abc! ' mw = 0.

Substituting back in Eq. (5.15), we have
uy = (@ — abm]W) + F(6 + h - tg") + (W) + abi)) - Fs(id”) + cHgw) - Gs(#)
=M@ + 76+ k- tg") + cMgw - Fs(id”) + M gw) - Gs(#),
which precisely coincides with how algorithm $ constructs u; in Eq. (5.14).

We conclude that algorithm B responds to the key-generation queries with the same procedure as in Hyb(()ﬁ ) and
Hybiﬁ ), Thus, as argued above, if £ = abc!*!s, then algorithm B perfectly simulates an execution of Hybéﬁ ), whereas

if £ & Z,, then algorithm B perfectly simulates an execution of Hybiﬁ ), Thus, algorithm B breaks Assumption 5.4
with the same advantage ¢ and the claim follows. O

Corollary 5.9 (Threshold Batched Identity-Based Encryption with Silent Setup). Let A be a security parameter. Suppose
Assumption 5.4 holds with respect to GroupGen for all polynomials B = B(A) and N = N(A). Then, for every polynomial
B = B(A) and L = L(A), Construction 5.5 is a statically-secure fixed-threshold batched IBE scheme with silent setup and
the following efficiency properties:

« Public parameter size: For a batch size B and a decryption committee size L, the public parameters contain
O(LB) group elements.

« Ciphertext size: Each ciphertext contains 2 G; elements, 2 G, elements and 1 Gt element.

« Aggregated encryption key size: The aggregated encryption key for a group of L users contains 2 G, elements,
3 G, elements, and 1 Gt element.

- Digest size: A digest contains 1 G, element.
+ Decryption key size: A decryption key share contains 2 G, elements and 1Z, element.

Remark 5.10 (Supporting Dynamic Thresholds). Construction 5.5 gives a scheme that supports a fixed threshold
where the threshold is determined at setup time. We could also consider a more general setting where the threshold
can be determined dynamically at encryption time. The work of [WW25a] provide a general template for building
a scheme that supports dynamic thresholds from one that supports fixed thresholds. We sketch this approach here.

Let N be a bound on the size of the decryption committee. The [WW25a] approach instantiates the fixed threshold
scheme with 2N — 1 users and a fixed threshold of N. The first N users (or slots) are associated with potential
decryption committee keys while the remaining N — 1 users are dummy users. The public parameters include a
random public key for each dummy user while the associated secret key is discarded.

Suppose we want to support a decryption committee with L users. Let pky, ..., pk; denote their public keys. In
Construction 5.5, the Preprocess algorithm now needs to compute the aggregated components ([z]2, [w]2, [wT]2).
The idea is that the Preprocess algorithm will only aggregate in the keys for the first N users, defined as follows:
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« The public keys for the first L slots are pk, ..., pk;.

+ The public keys for the remaining N — L slots are set to the all-zero key (e.g., @, = w; = 0). By construction,
anyone can compute decryption key shares with respect to these keys.

Thus far, ([z]2, [W]2, [wr],) only contain information for the first N slots (for a scheme that supports 2N — 1 users).
The public keys for the remaining N — 1 slots are now determined at encryption time based on the threshold.

Specifically, suppose we want to encrypt to a threshold T < L < N. Since we have a fixed threshold scheme, any
decrypter needs to accumulate N decryption shares in order to decrypt. A decrypter that has T decryption shares
from the decryption committee could obtain an additional N — L decryption shares (from the users with the zero
keys) for a grand total of N + T — L shares. At this point, they are still short by L — T decryption shares. The idea in
the [WW25a] approach is the encrypter will associate a set of L — T users in slots N + 1, ..., 2N — 1 with the all-zeroes
key and the remaining users with their dummy keys. Essentially then, any decrypter can get an additional L — T
decryption shares for free. This brings their total share count to T + (N — L) + (L — T) = N, thus allowing them to
decrypt. In other words, the encryption algorithm will determine how many additional shares to give out for free
based on the encryption threshold, and then encrypt to the associated collection of public keys.

Implementing this step naively will lead to long encryption keys (since we have to include dummy keys for up
to N — 1 users in order to support arbitrary thresholds). The final idea in [WW25b] is to “pre-aggregate” the dummy
keys together in blocks, where each block contains a different power-of-two pre-aggregated users. This allows us
to support dynamic thresholds with only log N overhead in the size of the CRS and the size of the encryption key.
The ciphertext size and the secret key size are unaffected. Static security of this adaptation would follow under
Assumption 5.4 with parameters B and 2N — 1.
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A The Batched IBE Scheme from [AFP25]

To facilitate a comparison with our approach, we provide a brief description of the batched IBE scheme from [AFP25]
scheme using our notation. For ease of comparison, we also interchange the roles of G; and G, from their construction.
Then, the master public key mpk, the ciphertext ct;q, (for identity id and batch label tg), and the secret key sks g
(for set S C Z,, and batch label tg) have the following structure:

mpk = ([T]Zs e [TB]Zs [a]T)
ctigrg = ([s]1, [0 + saly, [so(r = id)]y, [sa - H(tg)]r + [m]7) where s,5 & Z,
sksig = [ - (H(tg) + Fs(r))]2 where Fs(x) = l_[(x —id)
ideS
Observe that if id € S, then

ct sk ct pp ct PP
— —_— = ——— ——/—

[sa-H(tg)lr = [sl -([er- (H(tg) + Fs(r))]2) — [s0 +sali - Fs(7) + [so(z = id)]1 - Fs\(iay (1)

Running times. Table 2 compares the computational cost between our batched IBE schemes and that of [AFP25].
We refer to Table 1 for a comparison of the parameter sizes.

Scheme Encrypt Decrypt
[AFP25] 5Tg+Tp+Ty Blg+3Tp
Corollary 4.5 6Tg BTg + 3Tp

Corollary D.6  4Tg+Tp+ Ty BIg+2Tp

Table 2: Comparison of our batched IBE schemes with the [AFP25] scheme in terms of the computational costs
for encryption and decryption. We use Tg, Ty, Tp to refer to the cost of an exponentiation, a hash operation, and
a pairing operation, respectively. In all cases, we report the numbers of exponentiations, hash operations, and pairing
operations, and do not consider any optimization.

B Generic Hardness of Bilinear Diffie-Hellman Variants

In this section, we show that the g-type assumptions we use in this work (Assumptions 4.1 and 5.4) hold uncondi-
tionally in the generic bilinear group model [Sho97, BBG05]. In the generic bilinear group model, we model a generic
asymmetric bilinear group of prime order p with label space £ as three random injective functions ¢4, 92, ¢1: Z;, — L.
An algorithm in the generic asymmetric bilinear group model has access to the following two oracles:
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- Evaluation oracle: On input two labels ¢, € £ and a group index i € {1,2, T}, the evaluation oracle
first checks that ¢, £, are in the image of ¢;. If not, the evaluation oracle outputs L. Otherwise, it returns

pi(e 1 (0) + 971 ().

« Pairing oracle: On input two labels #;, £, € L, the pairing oracle first checks that ¢ is in the image of ¢; and
¢, is in the image of ¢,. If not, the pairing oracle outputs L. Otherwise, it returns ¢7(¢;' (1) - ¢, ' (£2)).

Boneh, Boyen, and Goh [BBGO05] described a set of sufficient conditions for a cryptographic assumption to hold
unconditionally in the generic bilinear group model. Below, we present a specialized version (that only involves
elements in the base groups) that suffices for analyzing the assumptions we use in this work. Our presentation below
is adapted from that of [WW25a, Appendix A].

Definition B.1 (Independence of Polynomials). Let = {P;};c[x] be a collection of n-variate polynomials P; €
Zp[Xi, ..., X,]. We say a polynomial f € Z,[X;, ..., X,] is dependent with respect to P if there exists coefficients
ap, . . ., ax such that
F(Xy.. . xn) = ao + Z Ak Pe(X1, .., Xn).
ie[k]

Conversely, we say that f is independent with respect to P if f is not dependent with respect to .

Theorem B.2 (Generic Hardness in Prime-Order Groups [BBG05, Theorem A.2, adapted]). Let p be a prime and
P = {Pi}icik] and Q = {Q;}jec[m| be two collections of n-variate polynomials P;,Q; € Z,[Xi,...,X,] and where
Py =Q1 =1 LetT € Z,[ X, ..., Xy] be a polynomial. For an adversary A and a bit b € {0, 1}, we define the following
distinguishing experiment in the generic asymmetric bilinear group of order p:

« At the beginning of the game, the challenger samples x1,...,x, < Z,. For each i € [k], it computes € =
¢1(Pi(x1,...,x,)) and for each j € [m], it computes t’J'. = 02(Qj (1, ..., Xp)).

« Ifb =0, the challenger computes T = @7(T(x1, ..., xp)). Ifb = 1, the challenger samplesr < Z, and setst = ¢ (r).

The challenger gives (1, ..., t, 4], ..., 4, 7) to A. Algorithm A outputs a bit b’ € {0,1} which is the output of the
experiment. Let PQ = {P;Q; : i € [k], j € [m]}. Let d be a bound on the total degree of the polynomials in PQ U {T}.
IfT is independent of PQ, then for all adversaries A making at most q queries to the generic asymmetric bilinear group
oracle, it holds that

(g+k+m+1)%d

|Pr[) =1:b=0]-Pr[l =1:b=1]| < .

Generic hardness of Assumption 4.1. First, we use Theorem B.2 to prove that Assumption 4.1 holds in the
generic asymmetric bilinear group model.

Theorem B.3 (Generic Hardness of Assumption 4.1). Let N € N and let A be any adversary for Assumption 4.1 with
parameter N. If AA makes at most q generic group oracle queries, then the advantage of A is at most O(q*N*®)/p in the
generic asymmetric bilinear group model. In particular, whenever p > 1°(V | the advantage of A is negligible for all
polynomials N, q = poly(A).

Proof. We start by defining the sets of polynomials P, Q and the challenge polynomial T associated with the challenge
terms in Assumption 4.1. By construction, each polynomial is over the formal variables g, b, s, 7. Then, the polynomials
are defined as follows:

P ={1,b,s,1,ab,abt, abst}

Q={labr,... " abr,... abt"}

T = abs.
To appeal to Theorem B.2, we need to show that T is independent with respect to the product Q. Since $ and Q

consist of monomials and T is also a monomial, it suffices to argue that T ¢ Q. This follows by inspection. Namely,
suppose we write T = PQ where P € P. Then, the following holds:
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o If P € {1,b,s,ab} and PQ = T = abs, then Q € {abs, sa, ab, s}. By definition of @, this means Q ¢ Q.
« If P € {r,abr,abst} and PQ = T = abs, then Q must be a multiple of 77!, which means Q ¢ Q.

We conclude that T is independent with respect to P Q. Finally, to invoke Theorem B.2, we compute the maximum
degree d among polynomials in PQ U {T}. By inspection, the maximum degree dp of polynomials in P is dp = 4 and
the maximum degree dg of polynomials in Q is dq = O(N). The degree of T is 3. Thus d = O(N). Finally, |P| = O(1)
and |@Q| = O(N). The claim now follows by Theorem B.2. O

Generic hardness of Assumption 5.4. Similarly, we can also use Theorem B.2 to prove that Assumption 5.4 holds
in the generic asymmetric bilinear group model.

Theorem B.4 (Generic Hardness of Assumption 5.4). Let L, B € N and let A be any adversary for Assumption 5.4 with
parameter L and B. If A makes at most q generic group oracle queries, then the advantage of A is at most O(q*L*B®) /p
in the generic asymmetric bilinear group model. In particular, whenever p > 2°(V, the advantage of A is negligible for
all polynomials L, B, q = poly(A).

Proof. We start by defining the sets of polynomials $, Q and the challenge polynomial T associated with the chal-
lenge terms in Assumption 5.4. By construction, each polynomial is over the formal variables a, b, ¢, s, . Then, the
polynomials are defined as follows:

P ={1, bt ab, s, T, {c"t/}eear),je 0,81}
Q= {1, a,b, bCL+1, ab, {C[Tj}fe[O,ZL],je[O,B]a {abc{)fj}t’e[2L]\{L+l},je[0,B]s {abcLHTj}je[B]’ {C[S, C[ST, abC[ST}(e[L]}

T = abc™*ls.

To appeal to Theorem B.2, we need to show that T is independent with respect to the product Q. Since $ and Q
consist of monomials and T is also a monomial, it suffices to argue that T ¢ Q. This follows by inspection. Namely,
suppose we write T = PQ where P € P. Then, the following holds:

« If P € {1,bc"*, ab,s} and PQ = T = abcl*'s, then Q € {abc'*'s, as, c*'s, abct*'}. By definition of @, this
means Q ¢ Q.

« If P € {c"}sef2r) and PQ = T = abc™*s, then Q must be a multiple of abs. This rules out all monomials in Q
except those in {abc[sr}fe[ 1]- However, all of these monomials introduce 7 and this means Q ¢ Q.

« IfP e {t} U{c"t/}se[ar,je(p] @and PQ = T = abct*1s, then Q must be a multiple of 7~/ for some j € [B]. This
means Q ¢ Q.

We conclude that T is independent with respect to Q. Finally, to invoke Theorem B.2, we compute the maximum de-
gree d among polynomials in PQ U {T}. By inspection, the maximum degree dp of polynomials in  is dp = O(L +B)
and the maximum degree dq of polynomials in Q is dq = O(L + B). The degree of T is L + 4. Thus d = O(L + B).
Finally, || = O(LB) and |Q| = O(LB). The claim now follows by Theorem B.2. O

C Adaptively-Secure Batched IBE in the Plain Model

Two of the limitations of our batched IBE scheme from Section 4 (Construction 4.2) are (1) the scheme is only proven
to be selectively secure; and (2) the security game restricts the adversary to making a single key query for the
challenge batch label. In this section, we show a straightforward generalization of Construction 4.2 that addresses
these limitations:

+ Adaptive choice of identity. Theorem 4.4 proves selective security of Construction 4.2 where the adversary
has to commit to both the challenge identity id* as well as the challenge batch label tg* at the beginning of the
security game. Here, we show a generalization that allows the adversary to adaptively choose the identity, but
remains selective in the choice of batch label. As we discuss in Remark C.16, supporting an adaptive choice of
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batch label is plausible using Waters’ bit-by-bit approach of embedding the batch label [Wat05] in place of the
Boneh-Boyen embedding [BB04] used in Construction 4.2. For ease of exposition, we just focus on handling
the adaptive choice of identity rather than the batch label as the latter can plausibly be handled via standard
techniques. We refer to this notion as “identity-adaptive” security.

« Multiple key-generation queries. Second, we show a simple approach that allows the adversary to request
up to K keys for the challenge batch label tg* for some a priori bounded K. Our approach adds K field elements
to the secret keys and K group elements to the ciphertexts.

To achieve identity-adaptive security, we first introduce a more general functionality where users are associated
with a set I C Z,, of identities (instead of a single identity id € Z,). Secret keys are still associated with a set S C Z,
as before. Decryption is possible whenever the user’s set of identities I is a subset of S. We refer to this notion as
a tag-based attribute-based encryption (ABE) scheme for subset policies. The key property is that when the sets
of identities I are drawn from a polynomial-size universe, then we can prove adaptive security just by having the
reduction guess an element id € I. Then, in Remark C.15, we describe how to combine the tag-based ABE scheme for
subset policies with a cover-free set system [KS64, EFF85]. This yields a batched IBE scheme with identity-adaptive
security. We start by introducing the formal notion of a tag-based attribute-based encryption scheme. As mentioned
above, we also consider an extension where the adversary is allowed to request up to K keys for the challenge tag
(the analog of the batch label in the batched IBE scheme).

Definition C.1 (Tag-Based Attribute-Based Encryption for Subset Policies). A tag-based attribute-based encryption
(ABE) scheme for subset policies ITt,gape is a tuple of efficient algorithms IIt.gage = (Setup, KeyGen, Encrypt, Digest,
ComputeKey, Decrypt) with the following syntax:

« Setup(1*) — pp: On input the security parameter A € N, the setup algorithm outputs a set of public parameters
pp. We assume that the public parameters (implicitly) specifies the message space M, the identity space 7,
and the tag space 7 for the encryption scheme.

« KeyGen(pp, 1V, 18,1%) — (mpk, msk): On input the public parameters pp, a bound on the number of identities
N associated with each user, a bound on the maximum set size B, and a collusion bound K, the key-generation
algorithm outputs a master public key mpk and a master secret key msk. We assume that mpk and msk also
include an implicit description of the message space M, the tag space 7, the identity space 7, the bound on
the number of identities N associated with each user, the maximum set size B, and the collusion bound K.

« Encrypt(mpk, m, I, tg) — ct: On input the master public key mpk, a message m € M, a set of identities I C 7,
and a tag tg € 7, the encryption algorithm outputs a ciphertext ct.

« Digest(mpk,S) — dig: On input the master public key mpk and a set of identities S C 7, the digest algorithm
outputs a digest dig. This algorithm is deterministic.

« ComputeKey(msk, dig,tg) — sk: On input the master secret key msk, a digest dig, and a tag tg, the key-
computation algorithm outputs a secret key sk associated with dig and tg.

« Decrypt(mpk, sk, S, (I, tg), ct) — m: On input the master public key mpk, a secret key sk, a set of identities
S C I, apair (I,tg), and a ciphertext ct, the decryption algorithm outputs a message m € M (or possibly a
special symbol L to indicate decryption failed). This algorithm is deterministic.

We require ITr,gape satisfy the following properties:

. Correctness: For all 4, B,K € N, all N < B, all public parameters pp in the support of Setup(1%), all messages
m € M, sets of identities I C I of size at most N, and tags tg € 7 (where M, 7,7 are the message, identity,
and tag spaces associated with pp, respectively), all sets S C I of size at most B where I C S, we have

(mpk, msk) < KeyGen(pp, 1V, 18, 1K)
ct « Encrypt(mpk, m, I, tg)
dig = Digest(mpk, S)
sk « ComputeKey(msk, dig, tg)

Pr | Decrypt(mpk, sk, S, (I, tg),ct) = m :
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- Adaptive security: For a security parameter 4, a bound N on the number of identities associated with each
user, a bound B on the maximum set size, a collusion bound K, a bit § € {0, 1}, and an adversary A, we define
the adaptive security game as follows:

— The challenger starts by computing pp « Setup(1%) and (mpk, msk) < KeyGen(pp, 1V, 15, 15). It gives
(1A, 1N 1B 1K, pp, mpk) to A. Let M, I, T be the message space, identity space, and tag space associated
with pp, respectively.

— Algorithm A can now make key-computation queries. On each query, algorithm A specifies a set
S C I of size at most |S| < B, and a tag tg € 7. The challenger replies with a secret key sk «
ComputeKey(msk, Digest(mpk, S), tg).

— After A is finished making key-computation queries, it outputs two messages mg, m; € M and a chal-
lenge pair (I*,tg*) where @ # I* C 1 and |I*| < N. The challenger responds with a challenge ciphertext
ct < Encrypt(mpk, mg, I", tg").

— Algorithm A can continue to make key-computation queries. The challenger answers the queries exactly
as before.

At the end of the game, algorithm A outputs a bit f’ € {0, 1}, which is the output of the experiment.
We say an adversary A is admissible if the following two conditions hold:

- Algorithm A makes at most K key-computation queries on the challenge tag tg*.

- Let Si,...,Sk € I be the sets associated with A’s K key-computation queries on tg*. It holds that
I" ¢ Ujerk) Sj- Note that this is a stronger admissibility requirement than standard ABE for subset
policies. We refer to Remark C.2 for additional discussion.

We say Iltagage is secure if for all polynomials N = N(4), B = B(1), and K = K(A), where N < B, and all
efficient and admissible adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[f’ =1:8=0]-Pr[f =1:8=1]| = negl(}) (C.1)

in the above security game. We say Iltgage is secure for parameters (N, B,K) = (N(4), B(4),K(A)), if the
above holds for the specific functions N, B, K. We say Il1,gagE satisfies tag-selective security if Eq. (C.1) holds
against all efficient adversaries that must declare the challenge tag tg* at the beginning of security game (but
is allowed to choose the challenge set I" adaptively).

« Succinctness: There exists a universal polynomial poly(-) such that for all A, B,K € N, all N < B, all public
parameters pp in the support of Setup (1), all (mpk, msk) in the support of KeyGen(pp, 1V, 15, 1X), all digests
dig in the support of Digest(mpk, -), all tags tg € 7 (where 7 is the tag space associated with pp), and all
ciphertexts ct in the support of Encrypt(mpk, -, -, -), the running time of ComputeKey(msk, dig, tg), the size of
the ciphertext ct, and the size of the digest dig is poly(4, K), and in particular, independent of B and N.

Remark C.2 (Comparison to ABE). Definition C.1 can be viewed as a special case of key-policy ABE [SW05, GPSW06]
for the family of “tagged subset” policies. Specifically, we can associate each policy with a pair (S, tg) where S C 1
is a set of identities and tg is a tag. Similarly, the attribute associated with each ciphertext is a pair (I, tg.). We say
the policy is satisfied if

tg,=tg and ICS.

Note that we can equivalently view the scheme as a ciphertext-policy ABE scheme for “tagged superset” policies. The
additional requirement Definition C.1 imposes is that the secret key associated with the policy (S, tg) and the ciphertext
associated with the attribute (I, tg ) are both short. Standard key-policy ABE typically allows the size of the secret
key to grow with the size of the policy description and the ciphertext to grow with the length of the attribute. For our
applications to batched IBE and batch decryption, it will be important to support succinct ciphertexts and secret keys.

On the flip side, the security requirement in Definition C.1 is significantly more restrictive than that for standard
ABE. Namely, we only require security against adversaries whose challenge set I* is not contained in the union of the
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sets Sy, . .., Sk appearing in the key-generation queries associated with tag tg*. In normal ABE, the restriction would
be that I* ¢ S; for all i € [K] (i.e., the challenge attribute does not satisfy the policy associated with any individual
key). As we discuss in Remark C.15, this weaker notion is already sufficient to construct a batched IBE scheme with
security against an adversary that can adaptively choose the challenge identity.

Tag-based ABE construction for subset policies. We now describe how to extend Construction 4.2 to obtain
a tag-based ABE scheme for subset policies. Simultaneously, we also incorporate the generalization to support giving
out K decryption keys for each tag. The idea here is to replace the component w € Z, in Construction 4.2 with a
vector w € Z;f . We refer to Section 2.1 for a high-level description of our approach.

Construction C.3 (Tag-Based Attribute-Based Encryption for Subset Policies). Take any polynomial M = M(1)
where M(1) < 2% for all A € N. Let GroupGen be a prime-order bilinear group generator. We construct a tag-based
ABE scheme for subset policies II,gase = (Setup, KeyGen, Encrypt, Digest, ComputeKey, Decrypt) as follows:

« Setup(1%): On input the security parameter A, the setup algorithm samples G = (G, Gy, G, p, g1, g2, €) —
GroupGen(1%) and outputs the public parameters pp = G. The message space associated with pp is M = Gr,
the identity space is 7 = [M(A)], and the tag space is 7~ = Z,.

« KeyGen(pp, 1V, 1B, 1K): On input the public parameters pp = G = (Gy, Gy, Gr, p, 91, g2, €), a bound on the
number of identities N associated with each user, a bound on the maximum set size B, and a collusion bound K,

the key-generation algorithm samples exponents 7,0, h,a < Z, and w < Zg . It outputs the master public key

mpk = (g’ [T]l’ [T]Z’ [Tz]z, R [TB]Z’ [W]l’ [WT]I [WTN] [ ]l’ [h]l> [ ] ) (C2)

and the master secret key msk = (w, v, h, ).

« Encrypt(mpk, [m]r, I, tg): On input the master public key mpk (parsed according to Eq. (C.2)), a message
[m]t € Gr,aset] C [M] of size at most N, and a tag tg € Z,, the encryption algorithm samples s <~ Z,. It then
constructs the polynomial F;(x) = []jqe;(x—id) whose roots are the elements id € I. Write Fi(x) = X;c(o,1] fix'"-
Then, compute

[cto]; Z fis[wt']y = [sw - Fr ()]

iefo,|1]]
Then output the ciphertext

ct = ([sl1, [ctz]1, s([o]1 +tg - [R]1), s[alr + [m]7)
= ([s]1, [sw-Fr(D)]1, [s(o+h-tg)]y, [salr + [m]r).

Digest(mpk, S): On input the master public key mpk (parsed according to Eq. (C.2)) and a set of identities
S C [M] where |S| < B, the digest algorithm defines the polynomial Fs(x) = []iqes(x — id) whose roots are
the elements id € S. Write Fs(x) = X;eqo,s)] fix'. Output the digest

dig= > fi-[e']: = [Fs(D]..

i€[0,]S]]

« ComputeKey(msk, dig, tg): On input the master secret key msk = (w, v, h, @), a digest dig = [d];, and a tag
tg € Z,, the key-computation algorithm samples random r ¢~ Z,, and y - Zf . Then, it outputs the secret key

sk=(y, [rlz, [a+r(v+h-tg)l, +y'w- [d]2).

Decrypt(mpk, sk, S, (I, tg), ct): On input the master public key mpk (parsed according to Eq. (C.2)), a se-
cret key sk = (y, [u1]2, [uz]2), two sets of identities S,I C [M], a tag tg € Z,, and the ciphertext ct =
([ct1]1, [ctz]y, [cts]s, [cta]T), the decryption algorithm proceeds as follows:
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- IfI ¢ S, output L. Otherwise, define the polynomial

Fou(x) = | | e-id).

ideS\I

Compute [Fs\1(1)]2 = Dic[os\1] fil7']2, where Fs\;(x) = Xieqo, 51117 fix"
— Then it computes and outputs

[ctalr = (([et1]1 - [uz]2) = (v - [eta]s - [Fs\i(D)]2) — ([cts]y - [u1]2)). (C3)
Theorem C.4 (Correctness). Construction C.3 is correct.
Proof. Take any A, B,K € N, N < Band any G = (G4, Gy, G, p, 91, g2, €) in the support of Groquen(lA). Take any
[m]1 € Gr, any tag tg € Z,, any set I, S C [M] where |[I| < N and [S| < Band I C S. Sample

(mpk, msk) « KeyGen(pp, 18 1N, 1K)
ct « Encrypt(mpk, [m]r, I, tg)
dig = Digest(mpk, S)
sk « ComputeKey(msk, dig, tg)

By construction, this means

mpk = (g> [T]l’ [T]Z, [TZ]Z’ R [TB]Z’ [w]l’ [WT]I’ R [WTN]l’ [U]l’ [h]l’ [a]T)
ct = ([sly, [sw - Fr(D)]1, [s(v + b - tg)]1, [salr + [m]r)
sk=(y, [rlz, [a+r(v+h-tg) +y'w- Fs(1)]2),
where Fi(x) = [[iger(x — id) and Fs(x) = []iges(x — id). Consider now Decrypt(mpk, sk, S, (I, tg), ct). If we write

sk = (y, [u1]2 [uz]2), ct = ([ct1]1, [ctz]4, [cts]1, [cta]T) and Fs\1(x) = [Tiges\s(x — id), then the decryption algorithm
computes

cty-up =as+sy'w- Fs(r) +rs(v+h - tg)

y' - cty - Fs\i(7) = sy'w - I_I(T —id) - I—[ (r—id)

idel ideS\I
=sy'w- H(T —id) = sy'w - Fs(1)
ideS

cts-up =rs(o+h-tg).
Here the second expression uses the fact that I C S which means that IN (S\I) = @ and I U (S \ I) = S. This means

cty - up —y' -ty - F\((7) —cts - uy = as+sy'w - Fs(7) +rs(o+h - tg) —sy'w - Fs(t) —rs(v+h - tg)

= as.
The decryption relation (Eq. (4.3)) now yields:
[cty — (cty - up —y" - ety - F\1(7) — cts - ug) |1 = [sa + m — as]y = [m]r

and correctness holds. O

Security of Construction C.3. Security of Construction C.3 relies on a variant of Assumption 4.1 which we state
below. We show this assumption holds in the generic asymmetric bilinear group model in Theorem C.17.

Assumption C.5 (N-Bilinear Diffie-Hellman Exponent Variant). Let GroupGen be a prime-order bilinear group gen-
erator. For a security parameter A, a parameter N € N, and a bit § € {0, 1}, we define the distribution D, x g as follows:
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« Sample G = (G, Gy, Gr, p, g1, go, €) — Groquen(l’l). Sample exponents a, b, s, T < Zyp. Define

14, G. [bly, [s]1, [ab]1, {[Ti]p [abri]l., [STi]l, [abSTi]l}ie[N]
[a]2, [b]a, {[7']2, [abfl]z}ie[N]

params =

« If f=0,letz = abs € Z, and if § = 1, sample z <~ Z,. Output (params, [z]7).

We say Assumption C.5 holds with respect to GroupGen and parameter N = N(A) if the distributions Dy =
{DiN)0tren and Dy = {D) n(1),1}1en are computationally indistinguishable.

Theorem C.6 (Tag-Selective Security). Take any polynomial B = B(A) and suppose Assumption C.5 with parameter B
holds with respect to GroupGen. Then, for all polynomials N = N(A) and K = K(A) where N < B, Construction C.3
satisfies tag-selective security with respect to parameters (N, B, K).

Proof. The proof follows a very similar structure as the proof of Theorem 4.4. Specifically, let A be an efficient and
admissible adversary for the selective security experiment for Construction C.3 with parameters (N, B, K). For ease
of notation, we assume without loss of generality that A always makes K key-computation queries on the challenge
tag tg*. We define a sequence of hybrid experiments, each indexed by a bit g € {0, 1}:

. Hybéﬁ ). This is the tag-selective security game with bit . Specifically, in this experiment, the adversary starts
by committing to the challenge tag tg*.

. Hybiﬁ ). Same as Hybéﬁ ), except at the beginning of the experiment, the challenger samples an identity
id* €~ [M]. At the end of the experiment, the challenger defines the following quantities:

— Let Sy,...,Sk € [M] be the sets associated with the adversary’s key-computation queries on tag tg*.
— Let @ # I" C [M] be the adversary’s challenge set.

Since the adversary is admissible, it must be the case that I*\ ¢k S; # @. Now, the challenger outputs 0 if id"

is not the minimum element in the set I" \ [ (g S;. Otherwise, the output is computed exactly as in Hyb(()ﬁ ),

. Hybgﬁ ). Same as Hybiﬁ ), except at the end of the experiment, the the challenger defines the following quantities:

- Letyy,...,yx € Z‘f be the vectors the challenger samples when responding to key-computation queries
with tag tg*. For each i € [K], writey; = [yi1,...,Yik]-

- Foreachie [K],lety! = [yi1,....yik-1] € Zf’l.

At the end of the experiment, the challenger outputs 0 if the vectors yi,...,yx-1 € Zg’l are not linearly
independent.

. Hybgﬁ ). Same as Hybgﬁ ), except when responding to the K™ key-computation queries with tag tg*, the chal-
lenger now samples yx - < ZP

. Hybiﬁ ): Same as Hybéﬂ ) except the challenger changes how it samples y; = (yi1, - . ., yi.x) when responding to
key-computation queries on the challenge tag tg*. At the beginning of the experiment, the challenger samples
c & Z;f where ¢ = [cy,...,ck]. The challenger halts with output 0 if cx = 0. Then, for each i € [K], let
S; C [N] be the i" key-computation query on tag tg*. The challenger now changes how it computes the final
component y; g for each y;:

- At the beginning of the experiment, the challenger samples uy, ..., ux—1 ¢ Z,.

— When responding to the i key-computation query on tag tg* and set S;, the challenger sets y;x =

—c,}l(ui - 1/Fs,(id")), where Fs,(x) = [[iqes, (x —id). If id" € S;, then the challenger halts with output
0 exactly as in Hybgﬁ)‘ If id* ¢ S;, then Fs, (id") # 0 by construction.
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~ When responding to the K™ key-computation query on tag tg* and set Sk, the challenger samples
Vis-os Yk-1 < Z, and sets yj = Y je[k-1] ¥j¥j- Next, it computes ug = ¥ jc[x_1] Yjuj- fug = 1/Fs, (id"),
then the challenger halts with output 0. Otherwise, it sets yx x = —c;(l(uK — 1/Fs, (id¥)).

. Hybéﬁ): Same as Hybiﬁ), except the challenger sets u; = yic foralli € [K—1], where € = (cy,...,cx-1) € Zg‘l.

. Hybéﬁ): Same as Hybéﬁ), except for all i € [K], the challenger samples y; <- Z},‘ such that yjc = 1/Fs, (id").
Note that the challenger in this experiment still halts with output 0 if yx x = 0.

. Hybgﬁ): Same as Hybéﬁ), except when constructing the challenge ciphertext ct = ([ct;]y, [ctz]1, [cts]1, [cta]T),
the challenger samples ct, <~ Z,. In this experiment, the adversary’s view is independent of the message.

Let Hybgﬂ ) (A) denote the output of an execution of Hybfﬁ ) with adversary ‘A. We now analyze each adjacent pair
of distributions.

Lemma C.7. Forall § € {0,1}, Pr [Hyb\" (A) = 1] = M - Pr [Hyb" (A1) = 1].

Proof. By construction, the output in Hybiﬁ ) is 1if and only if the output in Hybéﬁ ) is 1, and moreover, id" is the
smallest element in the set I" \ ¢k S; S [M]. Since the challenger samples id* & [M] and id* is independent
of the view of the adversary, the probability that id" is the smallest element of the set I" \ (J;e[x) S; S [M] is exactly
1/M. The claim follows. O

Lemma C.8. Forall f € {0, 1}, |Pr [Hyb (A1) = 1] - Pr [Hyb{" (A) = 1]| < (K = 1) /p.

Proof. The only difference between these two experiments is Hybéﬂ ) always outputs 0 if 1, ..., ¥x—1 are not linearly
independent when ¥, ..., k-1 < Zf ~1. This happens with probability (K — 1)/p. This is because the determinant
of the matrix [y | - - - | §x-1] is a multivariate polynomial of degree K — 1, so it is zero with probability (K — 1)/p
over the random choice of ¥4, ..., yx—1 by the Schwartz-Zippel lemma [Sch80, Zip79]. O

Lemma C.9. For ff € {0,1}, | Pr [Hyb;ﬁ) (A) = 1] —Pr [Hybgﬁ) (A) = 1]| <1/p.

Proof. The only difference between these two distributions is the distribution of yx x In Hybéﬁ ), the challenger

samples yx x < Z, whereas in Hybgﬁ ), the challenger samples yx x < Zy,. The statistical distance between the
uniform distribution over Z,, and Z;, is 1/p. O

Lemma C.10. For f € {0,1}, |Pr [Hybéﬁ) (A) = 1] - Pr [Hybiﬁ) (A) = l]l <3/p.

Proof. It suffices to consider the case where ¥, ..., yx—1 are linearly independent. Otherwise, the challenger outputs
0 in both distributions. First, consider the distribution of yx € Zf_l in Hybi’g ) Since V1, .., YK-1 are linearly
independent over Z§ ~1, they form a basis for Z§ 1. Since the challenger samples y;, ..., yk—1 <~ Z,, the distribution

of yx is uniform over Zf_l. Next, consider the distribution of y; x in Hybiﬂ) when cx # 0 and u; # 0.

« Consider i € [K — 1]. In this case, the challenger samples u; <~ Z, so the distribution of u; — 1/Fs, (id") is also
uniform over Z,. Since cx # 0, scaling by —c1‘<1 does not affect the distribution. Thus, the distribution of y;
is uniform over Z,, and moreover, independent of the value of ck.

« Consider yx k. If u; # 0, then the probability that ux = ¥ ;c[x—_1] ¥juj = 1/Fs, (id") is precisely 1/p (over the
random choice of y; < Zp). f ug # 1/Fs, (id"), then the distribution of —c;(l (uk — 1/Fs, (id*)) is uniform over
Zj, over the randomness of cx & Zy,.

We conclude that the distribution of (y; k, . .., Yk x) in Hybi’g ) is distributed exactly as in Hybgﬂ ) unless ck =0,u; =0,

or ug = 1/Fg, (id"). Over the randomness of ck, u1, y1 and taking a union bound, these events happen with probability
at most 3/p, and the claim follows. m|
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Lemma C.11. For § € {0,1}, Pr [Hyb\" (A) = 1] = Pr [Hyb{" (A1) = 1].

Proof. It suffices to consider the case where ¥y, ...,k are linearly independent. Otherwise, the challenger outputs
0 in both distributions. However, if y1, ..., yx—1 are linearly independent, then the distribution of [y; | --- | ¥x-1]"¢C
with ¢ & Zg ~1 is uniform over Zg_l (since the matrix [y | - -+ | yx-1]" is invertible). Thus, these distributions are
identical. O

Lemma C.12. For ff € {0,1}, Pr [Hybéﬂ) (A) = 1] =Pr [Hybéﬁ) (A) = 1].

Proof. It suffices to consider the case where cx # 0 and ¥y, ..., yx—; are linearly independent. Otherwise, both experi-
ments output 0. By definition, the distribution of each y; in Hybéﬁ ) is equivalent to the following sampling procedure:

« Sample y; < Z}I;_l. Output y] = [¥] | yix] where y;x € Z, is chosen so that y'c = 1/Fj, (id").

By construction, this means y;x = —cg'(yi¢ — 1/Fs, (id")). This is precisely how the challenger constructs y; for
ie[K-1]in Hybgﬁ). It suffices to consider the distribution of yx in Hybéﬁ):

« In Hybgﬁ), the challenger sets yx = ZJG[K_” YiVj, where y1,...,yk-1 & Zy. Since ¥, ..., k-1 are linearly
independent, this means yx is uniform over Zg -1

« Consider now the value of yk k. The challenger in Hybéﬁ )

uk = Z Yitj = Z viyie = Z vi¥; |€= ke
]

JjeE[K-1 je[K-1] je[K-1]

sets yx xk = —cx' (ug — 1/Fs,(id")) where

« We conclude that in Hybéﬁ), the distribution of yx is uniform over Zg” and yx x = —cl,‘<1 (¥ € — 1/Fs, (id")),

which is precisely the distribution in Hybéﬁ ). Note that both experiments output 0 if yx x = 0. O

Lemma C.13. Suppose Assumption C.5 with parameter B holds with respect to GroupGen. Then, there exists a negligible
function negl(-) such that forall A € N, |Pr[Hybéﬁ) (A)=1] - Pr[Hyb;ﬂ) (A) = 1]| = negl(}).

Proof. Suppose there exists a non-negligible ¢ such that

Pr[Hyb® (A) = 1] - Pr[Hyb'" (A) = 1]] > .

We use A to construct an adversary B that breaks Assumption C.5 with parameter B and the same advantage ¢:

1. At the beginning of the game, algorithm B receives a challenge (params, [z]1) where

14, G, [b1, [s]1, [ab], {[f'i]l, [abf'i]l, [Sf'i]l, [abei]l}ie[B]

params = ( [alz, [b]2, {[#]2, [ab?']2}ic1m)

and either z = abs or z < Z,. We use 7 to denote the powers-of- that appear in the assumption since the
reduction algorithm below will program id* into the simulated powers-of-7.
2. Algorithm 8 sets pp = G and gives G to A. Algorithm A now commits to a tag tg"* € Z,.

3. Algorithm B samples an identity id* ¢~ [M] and constructs the public key as follows. In the following de-
scription, we will use a “tilde” (e.g., &, 0) to denote an exponent that is chosen by (or otherwise known to) the
reduction algorithm.
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« Algorithm B implicitly sets T = 7 + id*. For each i € [B], algorithm 8 computes
. i\l o e
[fe= ). () (i) [#] = [( +id") ]
Jjeloi]
Similarly, it sets [7]; = [£]; + [id*]; = [ +id"];.
« Algorithm B samples @ - Z, and implicitly sets a = & — ab:
lalr = [a]r — [ab]; - [1]2 = [@ — ab]y.

+ Algorithm B samples w <- Zf and ¢ & Zg .If ¢ = 0, then algorithm B outputs 0. Otherwise, it implicitly
sets w = W + abc¢ and computes

[W]l = [“~/]1 +é . [ab]1 = [v~v+abé]1.
Then, for each i € [N], algorithm 8 computes
el = 3 (o] G e [ & b)) = Lt
kel0,i]

Recall here that N < B, so the terms [#¥]; and [ab7']; are all available in params.

« Algorithm B samples o, h & Z, and implicitly setsv =0 — b - tg" and h = h+b. Concretely, algorithm
B defines

[ols =[0]1 —tg" - [bli=[0-b-tg']y
[R]s = [A]y + [bs = [A+b]..
Algorithm 8 replies to A with the master public key
mpk = (G, []1, []2, [ ..., [2P]a, (W], [wely, .. [weN ] o]y, (Al [alt).

4. When algorithm A makes a key-computation query on a set of identities S € [M] where |S| < B and a tag
tg € Z,, algorithm B defines the following two polynomials over Z,:

Fs(x) = [ [(x~id)
ideS (C.g)
Gs(x) = Fs(x +id*) — Fs(id*).

Write Fs(x) = Xi=[o,s]] ﬁ-xi. Next, observe that the constant term of Gs(x) is Gs(0) = Fs(id*) — Fs(id*) = 0.
This means Gs(x) = Xieqis)] gix'. Algorithm B now proceeds as follows:

- If tg # tg*, algorithm B samples § ¢~ Z§ and 7 < Z,. Then, algorithm B sets
[ti]z = [Fl2 + (tg — tg") ' (1 = §'¢ - Fs(id")) - [al,
[ua)o = @)z + 7+ (tg —tg") - [blo + (G + h-tg) - [m].

£ TG [Fla+ D) §'E-Gi- [abt]s + [§W - Fs(id")]e.
ie[|S]] ie[|s]]

. Iftg = tg*, algorithm B first checks if id* € S. If so, it outputs 0. Otherwise, it samples y - Z§ conditioned
ony'c=1/Fs(id*). Next, algorithm B samples 7 <~ Z, and sets It then computes

[ui]2 = [F]2

o]y = [@+F@+h-tg)]a+ Y W -G [#lo+ D §'¢-Gi- [ab#']s+ [§'% - Fs(id")],
i€[]S]] ie[|s|]

If this is the K™ query that algorithm A makes with tag tg*, algorithm B also checks that jx # 0.
Otherwise, it halts with outputs 0.
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In both cases, algorithm B responds to A with the secret key sk = (¥, [u1]2, [uz2]2).

5. In the challenge phase, algorithm A outputs two messages [mg]t and [m;]1 and a challenge set I* € [M]. If
id* ¢ I", then algorithm $ halts with output 0. Algorithm B defines the following two polynomials over Z,:

Fr() =[] G-id)
idel* (C.5)

Gr (x) = Fp- (x + Id*) - F]*(id*).

Observe that the constant term of G+ is Gy« (0) = Fy- (id*) —F-(id*) = 0. Write Gr-(x) = Xe[ 1+ gix'. Algorithm
B computes the following:

[ct1]1 = [s]h
[ctz]; = Z (W- g - [st']1 +€- Gi - [abst']1) = [s(W + abe) - G- ()]
ie[|1*]]

[ct3]; = (5"‘;1"[%*) - [s]h
[ctalr =@~ [s]1 - [1]2 = [=z]1 + [mg]T

Algorithm B responds with the ciphertext ct = ([ctq]q, [ctz]1, [cts], [cta]T)-
6. Algorithm A can continue to make key-computation queries. Algorithm 8 responds as described above.

7. At the end of the experiment, algorithm A outputs a bit §’ € {0, 1}. Algorithm B then checks that id” is the
minimum element in the set I* \ (J;¢x S; and outputs 0 if not. Otherwise, algorithm B outputs f’.

We show that depending on the distribution of the challenge element z, algorithm A either perfectly simulates an

execution of Hybéﬁ ) or Hybgﬁ ). We first consider the distribution of the public parameters. By construction, algorithm
B constructs the public parameters by implicitly setting

r=%+id* a=a—ab v=0-b-tg"

- . - (C.6)
W =W + ab¢ h=h+b

Since the challenger samples 7 ¢ Z, and algorithm B samples @, o, h & Zp and W - Zg , the distribution of

7,0, h, w, o are all distributed according to the distribution in Hybéﬂ ) and Hybgﬁ ). Moreover, the public parameters
perfectly hides ¢. Next, consider the components of the challenge ciphertext. We claim that algorithm 8 generates the

challenge ciphertext according to the specification of Hybéﬁ ) or Hybgﬁ ) where the encryption randomness s - Z,
is the corresponding exponent sampled by the challenger. We consider each component separately:

« By construction, algorithm 8 sets ct; = s which matches the distribution in Hybéﬁ ) and Hybgﬁ ).

« Consider ct;. In the reduction, algorithm $ implicitly sets 7 = 7 + id* and w = W + ab¢. Now, in Hybéﬁ) and

Hybgﬁ ), the challenger would set ct; = sw - F+(7) where we can write

Fp-(7) = Fp-(id") + Fr- (1) = Fr- (id")
= F[*(id*) + F[*(f’+ Id*) - F[*(id*)
= Fp-(id") + Gr(9),

where Gr- is the polynomial from Eq. (C.5). If id* ¢ I, then algorithm B outputs 0, exactly as in Hybéﬁ ) and
Hyb§ﬁ). Otherwise, if id* € I*, then Ff-(id*) = 0 and so Fj«(7) = Gy+(7). Substituting in algorithm B’s choice
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of w and the fact that Fi-(7) = G+ (%) = Ye(1+|] §it', we have
cty = sw - Fi« (1)
s(W + ¢ab) - G (7)

D (- giestl 4 gi - absth).
i€l 1]

This coincides with how B constructs ct, in the reduction.

« Consider cts. In Hybéﬁ) and Hyb;ﬂ)
B’s choice of v and h, we have

, the challenger would set ct; = s(v + h - tg*). Substituting in algorithm

cty=s(o+h-tg") =s(@—b-tg*) +s(h+b)-tg* =s(G+h-tg"),
which is precisely how algorithm $ constructs cts in the reduction.
« Finally, consider the distribution of cty,. We consider two possibilities depending on the distribution of z:
— Suppose z = abs. In the reduction, algorithm B implicitly sets « = & — ab so
cty = as —z+mg = a@s — abs + mg = sa + mg,
which is precisely the distribution of cty in Hybéﬁ ),

- Suppose z ¢~ Z,. In this case, the distribution of ct, is uniform over Z,. This is the distribution of cty
in Hyb'”
yb; "

We conclude that depending on the distribution of z, the challenge ciphertext in the reduction is distributed either

according to the specification of Hybéﬁ ) or the specification of Hyb;ﬂ ). To complete the proof, it thus suffices to
consider the key-computation queries. Suppose A makes a key-computation query on a set of identities S C Z, and
a tag tg € Z,. As in the reduction, we consider two cases:

« Suppose tg # tg*. In this case, algorithm B samples y < Zg . Algorithm B then sets the key-generation
randomness r to be
r=u =7+ (tg—tg")'(1-y'¢- Fs(id*)) - a,

where 7 & Zp. Since ¥ & Zy, the distribution of r coincides with the distribution in Hybéﬁ ) and Hybgﬁ ). Thus,

it suffices to argue that the component u; is correctly constructed (with respect to algorithm B’s choice of r

and y). In Hybéﬁ) and Hybgﬂ), the challenger would first compute the digest dig = [d]2 = [Fs(7)], and then set

uw=a+r(v+h-tg) +y'w-Fs(r) =a+u(v+h-tg) +y'w- Fs(r). (C.7)
In the reduction, algorithm B implicitly sets 7 = 7 + id*. Thus, we can write

Fs(7) = Fs(id*) + Fs(t) — Fs(id")
= Fs(id*) + Fs(‘f + Id*) - Fs(id*)
= Fs(id") + Gs(7),

where Gg is the polynomial from Eq. (C.4). By definition of the coefficients g; and using the fact that algorithm
8B implicitly defines w = W + ab¢, we can write

y'w - Fs(r) = y' (W + abe) - (Fs(id") + Gs(£))
='W Fs(id") +§¢ - ab- Fs(id") + > §W- (Gi-#)+ Y §'¢- (i~ abt).

i€[|S] i€[]s]]
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In the reduction, algorithm 8B implicitly constructs u, as follows:
= a+ib(tg—tg) +m(B+h-tg)+ D WGt 4 D §E-Giabt' +§W - Fs(id")
i€[|S|] SN
=@ +7b(tg—tg") +u (5 +h-tg) +§'W - Gs(#) +§'¢ - ab - Gs(#) +§'W - Fs(id")
=G +7b(tg —tg*) +ui (o +h-tg) +¥'W - Fs(1) +y'¢ - ab - Gs(?)

Using the relations @ = @ — ab and w = W + ab¢ as well as the fact that Fs(7) = Fs(id") + Gs(%), we have that
uy as computed by the reduction satisfies

uy = @ +7b(tg —tg") +u1 (6 +h-tg) +y'W - Fs(r) +§'¢ - ab - Gs(7)
=G +7b(tg—tg*) +u (5 +h-tg) + ¥ (w— abé) - Fs(r) +§'¢ - ab - Gs(#)
=G +7b(tg —tg*) +u (6 +h-tg) +§'w- Fs(1) + ¢ - ab - (Gs(#) — Fs(r))
= a+7b(tg —tg") +u (0 + h-tg) +§'W- Fs(r) +ab(1 - y'¢ - Fs(id").

Consider now the value of u; (v + h - tg) from Eq. (C.7) instantiated with the reduction’s setting of the variables:

u(o+h-tg) =u (5 —b-tg" + (h+b) - tg)

=u(5+h- tg) + uib(tg —tg")

=w (G+h-tg)+ (F+ (tg—tg") ' (1-§'&- Fs(id")) - a)b(tg - tg")

= uy(6+h - tg) + 7b(tg — tg") + ab(1 - §'¢- Fs(id")).
Replacing the terms in green in Eq. (C.8) with u; (v + h - tg), we have

w=a+u(v+h-tg) +y'w-Fs(r).

This is precisely the expression in Eq. (C.7) so we ((:g)nclude tha(lz )algorithm 8B answers the key-computation
b b,

query exactly according to the specification of Hy and Hy

« Suppose tg = tg*. In this case, algorithm B first samples § <~ Zg subject to §'¢ = 1/Fs(id*). If this is the K
key-computation query on tg = tg* and yx = 0, algorithm B outputs 0 exactly as in Hybéﬂ ) and Hybgﬁ ),

Otherwise, algorithm B samples 7 ¢ Z,, and sets u; = 7. As in the previous case, it now suffices now to show

that the component u; is correctly computed (with respect to algorithm 8’s choice of u; and §). As in the

b and Hyb!"

previous case, in Hy , the challenger would set

u=a+r(v+h-tg) +y'w-Fs(r). (C.9)

Suppose now that we substitute the values of @, v, h, w, y from the reduction (see Eq. (C.6)) into Eq. (C.9). Using
again the fact that Fs(7) = Fs(id*) + Gs(7), we now have the following:

uy=a+r(v+h-tg’) +y'w- Fs(r)
=a@—ab+F(0—-b-tg" + (h+b)- tg") + ' (W + abe) (Fs(id*) + Gs(£))
PP +hotg)+ DL WG )+ D) (€ gi- abt) +§W - Fs(id") - ab(1- 7€ - Fs(id"))

ie[|S]] ie[|S1]
=G+FE+hotg)+ D W G- )+ > (e gi- abt!) +§W - Fo(id")
ie[|S]] ie[lS1]

where the final cancellation relies on the fact that the reduction chose y such that §'¢ = 1/Fs(id*). This precisely
coincides with how algorithm 8B constructs u,. We conclude that algorithm B answers the key-computation

query according to the specification of Hybéﬁ ) and Hybgﬁ ),
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We conclude that algorithm B responds to the key-generation queries with the same procedure as in Hybéﬁ ) and
Hyb;ﬂ ). Thus, as argued above, if z = abs, then algorithm B perfectly simulates an execution of Hybéﬂ ), whereas

if z & Z,,, then algorithm B perfectly simulates an execution of Hyb§ﬁ ). Thus, algorithm B breaks Assumption C.5
with the same advantage ¢. The lemma follows. O

Lemma C.14. It holds that Pr [Hyb!” (A1) = 1] = Pr [Hyb\" (A1) = 1].

Proof. These experiments are identical by construction (i.e., the view of the adversary in hybrid Hybgﬁ ) is independent
of the bit § € {0, 1}). O

Since M = poly(4), Theorem C.6 now follows by combining Lemmas C.7 to C.14 and a standard hybrid argument. O

Remark C.15 (From Tag-Based ABE for Subsets to Batched IBE). It is straightforward to derive a batched IBE scheme
from any tag-based ABE scheme for subset policies. Let J be the identity space for the batched IBE scheme and 7’ be
the identity space for the tag-based ABE scheme for subset policies. All we need is a way to map an identity id € 7
onto a set of identities I C 7. We denote this mapping by H: 7 — 2', where 2" denotes the power set of 7 (i.e.,
the set of all subsets of 7). Then, we proceed as follows:

« Public parameters: The public parameters for the batched IBE scheme are the public parameters for the
tag-based ABE scheme. The message space and the batch label space of the batched IBE scheme correspond
to the message space M and tag space 7 of the tag-based ABE scheme, respectively.

« Encryption: A batched IBE encryption of a message m to an identity id € 7 and tag tg € 7 is a tag-based
ABE encryption of the message with respect to the set H(id) and the tag tg.

« Key-generation: The secret key for a set of identities S C 7 and batch label tg for the batched IBE scheme
is a secret key for the set | J;qes H(id) and tag tg.

Correctness for the batched IBE scheme now follows immediately from correctness of the tag-based ABE scheme.

Moreover, if the mapping H is B-cover-free, where B is the batch size, then security of the batched IBE scheme
follows immediately from security of the tag-based ABE scheme. More precisely, we say that H is B-cover free [KS64]
if for all id* € 7 and all sets S C I of size at most B where id* ¢ S, we have that H(id*) ¢ J;qes H(id). Recall
that in the batched IBE security game, the adversary is not allowed to query for a key on the challenge batch label
tg* and a set S (of size at most B) that contains the challenge identity id*. If the hash function H is B-cover-free,
this means H(id") ¢ Uiqes H(id). This is precisely our admissibility requirement for a tag-based ABE scheme for
subset functionalities (see Definition C.1). Moreover, if the underlying tag-based ABE scheme allows the adversary
to adaptively choose the challenge set, then that corresponds to a batched IBE scheme where the adversary can
adaptively choose the challenge identity.

There are many standard instantiations of cover-free set systems. For instance, using the formalization from
[LWW25, Fact 6.2], the work of [EFF85] give a cover-free set system with the following parameters:

« Let g be any prime power and take any integer ¢t < ¢. Let K = |q/(t — 1)]. Then there is an explicit and
efficiently-computable K-cover-free hash function H: [¢'] — 2% where |X| = ¢°.

Thus, if we want a batched IBE scheme with an exponential-size identity space |7| > 2% and batch size B, then we
can instantiate the cover-free hash family with the smallest prime power ¢ where ¢ > (A1 + 1) - Band t = A. Then,
the [EFF85] construction gives a B-cover-free hash function with domain I = [¢’] and range 2% where I’ = X is
a set of size | 7’| = |X| = g% = O(A2B?).

The key observation is that to build a batched IBE scheme with an exponential-size identity space 7, we only need a
tag-based ABE scheme for subset policies with a O(A?B?)-size identity space 7. We can now instantiate this tag-based
ABE scheme for subset functionalities using Construction C.3. As we showed in Theorem C.6, Construction C.3 is
secure against adversaries that can adaptively choose the challenge set, and thus, we obtain a batched IBE scheme
where the adversary can adaptively choose the challenge identity. Security relies on the same g-type assumption
(Assumption C.5).
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Finally, the use of cover-free sets only affects the size of the master public key. It does not affect the size of the
ciphertext or the secret key since neither of these depends on the maximum batch size or the size of the identity space.
The size of the public key in Construction C.3 contains O(KB’) group elements, where B is a bound on the size of the
maximum set associated with a decryption key and K is the collusion bound. Using the above cover-free hash function,
we can bound B’ < B - |X| = O(A?B®). This means the resulting batched IBE scheme will have size O(A1?KB?). While
this is significantly worse than the selectively-secure scheme (Construction 4.2) or the adaptively-secure scheme
in the generic group model (Construction D.1), we believe this construction is still interesting in that it demonstrates
the fact that adaptive security is achievable in the plain model.

Remark C.16 (Supporting an Adaptive Choice of Batch Label). Remark C.15 (and Construction C.3) shows how we can
construct a batched IBE scheme (or tag-based ABE scheme for subset functionalities) that allows an adversary to adap-
tively choose the challenge identity (or challenge set). However, these schemes are still selectively-secure in the choice
of batch label (or tag). This is because we embed the batch label or the tag using the Boneh-Boyen mechanism. Specifi-
cally, recall from Section 2 that we can view our batched IBE constructions (and its generalization to tag-based ABE for
subset functionalities) as a composition of a one-key scheme (without batch labels or tags) together with a pairing-based
IBE scheme (where we treat the batch label or tag as the identity). Our limitation to selective security in the choice of
the batch label or tag is due to the fact that the Boneh-Boyen IBE scheme is only selectively secure in the choice of the
identity. A natural approach then to achieve adaptive security is to substitute the Boneh-Boyen IBE scheme with the
Waters’ IBE [Wat05] scheme which is adaptively secure. In conjunction with Construction C.3 and Remark C.15, we
believe this yields a plausible route to an batched IBE scheme in the plain model that satisfies full adaptive security.

Generic hardness of Assumption C.5. As in Appendix B, we can use Theorem B.2 to prove that Assumption C.5
holds in the generic asymmetric bilinear group model.

Theorem C.17 (Generic Hardness of Assumption C.5). Let N € N and let A be any adversary for Assumption C.5
with parameter N. If AA makes at most q generic group oracle queries, then the advantage of A is at most O(¢*N®) /p
in the generic asymmetric bilinear group model. In particular, whenever p > 2°(V | the advantage of A is negligible for
all polynomials N, q = poly(1).

Proof. We start by defining the sets of polynomials P, Q and the challenge polynomial T associated with the challenge
terms in Assumption C.5. By construction, each polynomial is over the formal variables a, b, s, 7. Then, the polynomials
are defined as follows:

P ={1,b,s,ab, {r', abt’, s7’, absri}ie[NJ}
Q= {1,a,b,{r",abt'}ic[n7}
T = abs.
To appeal to Theorem B.2, we need to show that T is independent with respect to the product Q. Since $ and Q

consist of monomials and T is also a monomial, it suffices to argue that T ¢ Q. This follows by inspection. Namely,
suppose we write T = PQ where P € P. Then, the following holds:

« If P € {1,b,s,ab} and PQ = T = abs, then Q € {abs, as, ab, s}. By definition of @, this means Q ¢ Q.

« IfP € {7}, ab7’, sT’, absri}ie[N] and PQ = T = abs, then Q must be a multiple of 77!, for some i € [N]. This
means Q ¢ Q.

We conclude that T is independent with respect to P Q. Finally, to invoke Theorem B.2, we compute the maximum
degree d among polynomials in PQ U {T}. By inspection, the maximum degree dp of polynomials in P is dp = O(N)
and the maximum degree dg of polynomials in Q is dg = O(N). The degree of T is 3. Thus d = O(N). Finally,
|P| = O(N) and |Q| = O(N). The claim now follows by Theorem B.2. O
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D

Adaptively-Secure Batched IBE in the Generic Group Model

In this section, we show a variant of Construction 4.2 where we integrate our basic approach with ideas from the
Boneh-Franklin [BF01] IBE scheme. As discussed in Section 2, we work in the generic bilinear group model (and the
random oracle model) and prove adaptive security of our resulting construction. Compared to the previous scheme
of [AFP25], we save one group element in our ciphertext, one exponentiation during encryption, and one pairing
operation during decryption (see Tables 1 and 2).

Construction D.1 (Batched Identity-Based Encryption). Let GroupGen be a prime-order bilinear group generator.

We construct a batched IBE scheme Ig,ichise = (Setup, KeyGen, Encrypt, Digest, ComputeKey, Decrypt) as follows:

Setup(1%): On input the security parameter A, the setup algorithm samples G = (Gy, Gy, Gr, p, g1, go, €)
GroupGen(1%). Next, let H: {0, 1}* — G be a hash function (which we model as a random oracle in the se-
curity analysis). The setup algorithm outputs the public parameters pp = (G, H). The message space associated
with pp is G, the identity space is {0, 1}*, and the tag space is {0, 1}*.

KeyGen(pp, 1%): On input the public parameters pp = G = (G, Gy, G1, p, g1, 92, ) and a bound on the batch
size B, the key-generation algorithm samples exponents 7, w, & <~ Z, and outputs the master public key

mpk: (g’ H’ [T]l’ [T]Z’ [T2]2> B [TB]Z’ [W]ls [WT]I’ [a]l) (Dl)
and the master secret key msk = (w, @).

Encrypt(mpk, [m]r,id, tg): On input the master public key mpk (parsed according to Eq. (D.1)), a message
[m]t € Gr, anidentity id € Z,, and a batch label tg € {0, 1}*, the encryption algorithm computes [y ], = H(tg)
and samples s €~ Z,,. It then outputs the ciphertext

ct=([s]i, s [wrly —s-id- [wly,s- [a]i - [hgla + [m]7)
= ([s]1, [sw(z —id)]1, [sahyg +m]t)

Digest(mpk, S): On input the master public key mpk (parsed according to Eq. (D.1)) and a set of identities
S € Z, where |S| < B, the digest algorithm defines the polynomial Fs(x) = []4es(x — id) whose roots are the
identities id € S. Write F(x) = X;cqo,s]] fix'. Output the digest

dig = Z fi- [7']2 = [Fs(D)]2.

i€[o,]S]]

ComputeKey(msk, dig, tg): On input the master secret key msk = (w, @), a digest dig = [d], and a batch label
tg € {0, 1}*, the key-computation algorithm computes htg = H(tg) and outputs the secret key

sk=a- [hglz +w- [d]z = [ahyg + wd],.

Decrypt(mpk, sk, S, (id, tg), ct): On input the master public key mpk (parsed according to Eq. (D.1)), a secret
key sk = [u]s, the set of identities S C Z,, a target identity id € S, a batch label tg € {0, 1}, and the ciphertext
ct = ([ct1]1, [cta]1, [ct3]T), the decryption algorithm proceeds as follows:

— First, it defines the polynomial

Fg\ (idy (x) = 1_[ (x —id").

id’es\{id}

Compute [Fs\(iay (T)]2 = Xiefo,s)-1] fil']2, where Fs\ i) (x) = Yic(os)-1] fix'-

— Then it computes and outputs

[cts]t = [cti]y - [u]a + [cta]s - [Fo\(iay (7)]2- (D.2)

56



Theorem D.2 (Correctness). Construction D.1 is correct.

Proof. Take any A,B € N and any (G, H) in the support of Setup(l’l), where G = (Gy, Gy, Gr, p, g1, g2, €). Take
any [m]r € Gr, any id* € Z,, batch label tg* € {0, 1}’1, and set S C Z, of size at most B where id* € S. Sample
(mpk, msk) « KeyGen(pp, 1%) and ct « Encrypt(mpk, m, id*, tg*). Compute

dig = Digest(mpk, S)
sk « ComputeKey(msk, dig, tg"*).
Let [hig+ ]2 = H(tg"). By construction, this means
mpk = (gs Ha [T]la [T]Za [T2]2> RN [TB]Z’ [W]l’ [WT]1> [a]l)

ct = ([3]1, [sw(r —id")];, [sahtg* + m]T)
sk= [ahg +wFs(0)]:

where Fs(x) = [[iges(x — id). Consider now Decrypt(mpk, sk, S, (id*, tg*), ct). If we write sk = [u], and ct =
([ct1]s, [ctz]1, [cts]T), then the decryption algorithm computes

cty - u = sahy + swFs(7)

cty - Fg\ (igry (7) = sw(z —id”) - n (r—id) =sw- l—l(r —id) = swFs(7).
ideS\{id"} ideS

This means
ctyu — cty - Fo\(id*} (1) = (sahig + swFs(1)) — swFs(1) = sathyg.

The decryption relation (Eq. (D.2)) now yields:
[ct3 — (ctyu — cty - Fg\(ig*) (7)1 = [sahig: + m — sah]7 = [m]7
and correctness holds. m]

Theorem D.3 (Adaptive Security). Take any polynomial B = B(A). Then, Construction D.1 is adaptively secure with
batch size B if we model GroupGen as a generic group and the hash function H as a random oracle.

Proof. Take any polynomial B = B(4) and let A be an adversary for the adaptive security experiment. Let Q = Q(4)
be a bound on the number of oracle queries (to the generic group oracle and the random oracle) that algorithm A
makes. We assume here that Q is polynomially-bounded, but otherwise, impose no further restrictions on the running
time of the adversary (as is typical when analyzing security in idealized models). To prove adaptive security, we
define two experiments, each indexed by a bit § € {0, 1}:

. Hyb(()ﬁ ). This is the adaptive batched IBE security experiment with bit § € {0, 1} in the generic group model and
random oracle model. Let n > log p. The challenger maintains random injective functions ¢y, @z, ¢1: Z, — L
and a hash function map ¢y : {0,1}* — Z,. The adversary has access to the group operation oracle and the
pairing oracle as described in Appendix B. The challenger implements oracle queries to H as follows:

~ Hash oracle: On input a batch label r € {0, 1}*, the hash oracle returns ¢, (¢ (r)).
The experiment proceeds as follows:

— The challenger sets pp = (¢1(1), 92(1), ¢1(1)). The challenger samples exponents 7, w, @ <~ Zj, and
constructs the master public key as follows

mpk = (¢1(2), 92(2), 92(7%), ... @2 (7%), 91 (W), 91 (@), @1 (wD)).

The challenger gives pp and mpk to A.
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— When algorithm A makes a key-computation query on a set of identities S C Z,, where |S| < B and a batch
label tg € {0, 1}, the challenger returns L if A has made a query on the same tg. Otherwise, it defines the
polynomial Fs(x) = [Tiges(x — id) whose roots are the identities id € S and write F(x) = X;c1q,s(] fix'.
It then returns the secret key

sk = @a(apn(tg) + wFs(7)).

- When algorithm A outputs a challenge identity id* € Z,, batch label tg* € {0, 1}4, and two messages
my, m in the image of ¢r, the challenger returns L if A made a key-computation query (tg, S) € Q such
that tg = tg* and id* € S. Otherwise, the challenger samples s < Zj,. It then returns the challenge
ciphertext

ct = (¢1(s), o1 (sw(z = id")), pr(sagn(tg”) + o' (mp))).

— Algorithm A can continue to make key-computation queries. The challenger responds as described above
except that it returns L if tg = tg* and id* € S.

— At the end of the experiment, algorithm A outputs a bit f* € {0, 1}, which the challenger also outputs.

. Hybiﬁ ). This is the symbolic version of the adaptive batched IBE security experiment with bit , which is the

same as Hybéﬁ ) except that the domain of ¢4, s, @7 and the range of ¢ are now treated as formal polynomials
over Z, (with variables defined implicitly below). In the following, we write Z,[x] to denote the set of formal
polynomials over Z,. The challenger in this experiment lazily initializes the labeling functions ¢;: Z,[*x] — £
for each i € {1,2, T} and the hash function map ¢ : {0, 1}* — Z,[*]. Namely, whenever the challenger needs
to compute ¢;(f), where f € Z,[*] and ¢;(f) has not yet been defined, then the challenger samples a random
label £ & £ (that is not already in the image of ¢;) and associates the label £ with ¢;(f). If no such label exists,
then the challenger halts the experiment with output L. With this procedure, the evaluation oracle and pairing
oracle behave exactly as before. Next, to implement the hash oracle, the challenger now proceeds as follows:

- Hash oracle: On input r € {0, 1}, if ¢y;(r) has not yet been initialized, then set ¢y;(r) = R where R is
a fresh formal variable. Return ¢, (g (r)).

The experiment proceeds as follows:

— The challenger sets pp = (¢1(1), 2(1), ¢7(1)). The challenger defines formal variables X, X,,, X,, corre-
sponding to 7, w, @ and constructs the master public key as follows

mpk = (01 (Xe), 02(Xe), 02(X2), ..., 02(XE), 01(Xo), 01(Xe), 01 (X0 X))

The challenger gives pp and mpk to A.

— When algorithm A makes a key-computation query on a set of identities S C Z,, where |S| < B and a batch
label tg € {0, 1}, the challenger returns L if A has made a query on the same tg. Otherwise, it defines the
polynomial Fs(x) = [[iges(x — id) whose roots are the identities id € S and writes F(x) = X;cqq,s)] fixt.
It then makes a hash oracle query on tg so that ¢ (tg) is defined internally and returns the secret key

sk = (pZ(XanH(tg) +XWFS(XT))'

- When algorithms A outputs a challenge identity id" € Z,, batch label tg* € {0, 1}4, and two messages
my, m; in the image of ¢r, the challenger returns L if A made a key-computation query (tg,S) € Q such
that tg = tg* and id* € S. Otherwise, the challenger defines a formal variable Xj. It then makes a hashing
oracle query on tg so that the value ¢ (tg) is defined. Then, it returns the challenge ciphertext

ct = (01(Xs), @1 (XX (Xr — id), or(XsXaon (tg¥) + 07" (mp))).

- Algorithm A can continue to make key-computation queries. The challenger responds as described above
except that it returns L if tg = tg* and id* € S.
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— At the end of the experiment, algorithm A outputs a bit §’ € {0, 1}, which the challenger also outputs.

We write Hybgﬁ ) (A) to denote the output distribution of Hybgﬁ ) with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma D.4. Forall § € {0, 1}, we have

PrHyby”) = 1] - PrlHyb”) = 1| < (Q+B+7)B“ _ Poly(@.B)

2 p p

Proof. Consider an extended version of Hybiﬂ ) where at the end of the experiment, we sample uniform random
values from Z,, for all formal variables, and replace all formal polynomials with their evaluations on these values. This

yields a perfect simulation of Hyb(()ﬁ ) unless there exist two distinct polynomials which share the same evaluation.
We use Bad to denote this event. Then,

Pr[Hyb” = 1] = Pr[Hyb'" = 1]| < Pr[Bad].

We bound the probability of Bad by the following observations:

« There are B + 4 polynomials from pp and mpk, 3 polynomials from ct, and (at most) Q polynomials from the
adversary’s queries. All Q + B + 7 polynomials have degree at most B + 1.

« By the Schwartz-Zippel lemma [Sch80, Zip79], the probability that a pair of these polynomials share the same
evaluation (at a randomly-selected evaluation point) is at most %.

Taking now a union bound over the adversary’s queries, we have

Pr[Bad] < (Q *B+ 7)2.

2 p

This proves the lemma. O
Lemma D.5. It holds that Pr[HybEO) =1] = Pr[Hybgl) =1].

Proof. 1t suffices to prove that the target polynomial X; - X, - ¢n(tg*) in Hybiﬁ ) is linearly independent of all
polynomials in the view of the adversary. To do so, we define the following quantities:

+ Letid" € Z, and tg" € {0, 1}* be the target identity and target batch label, respective, chosen by A.

« Suppose algorithm A makes a total of n key-computation queries with batch labels tg,, ..., tg, € {0, 1}%. Let
St,...,Sx C Z, be the identities associated with these queries. Let Fi, ..., F, be the polynomials (of degree
at most B) associated with these sets. Furthermore, we require that all of the batch labels tg; are distinct and
that tg” = tg,. for some i* € [n]. The last condition corresponds to the assumption that the adversary always
makes a key-computation query on the challenge batch label tg*; this is without loss of generality as we can
always have the adversary A make a dummy key-computation query on the challenge batch label.

+ Finally, we assume that algorithm A queries the hash oracle on all of the batch labels tg,, ..., tg,. This is
without loss of generality since any adversary that does not do this can be generically converted into one that
does with only n additional queries and no change to the advantage. We write H; = ¢y (tg;) for alli € [n].

The view of adversary then consists of the following two sets of polynomials over G; and Gy, respectively:

L L2 Lis
—_— ——
Ll = {1, Xr,Xw,Xa, XWXT} U {Xs} U {XSXW(XT - ‘d*)}

Ly = {Hi}icpn) Y {XL} iego.8] Y {AXeHi + X0 Fi(Xo) Yieln]
—_—— ——— ——
Ly, Ly, L3
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In the following, we write L;L, to denote the set of product polynomials {fg : f € Ly,g € L,}. By contradiction, we
assume that the target polynomial satisfies X; X, H;» € span(L;L;). Namely, suppose that X;X,H;- can be expressed
as a non-trivial linear combination of terms in

LiLy = L11Ly U ((L12L21) U (L13L21)) U ((L12L22) U (L13L23)) U ((L12L3) U (L13L22))
Then the following properties hold:
« The coefficients of the polynomials in L; 1 L, must be zero due to the lack of the formal variable Xj.
+ The coefficients of the polynomials in (L; 2L21) U (L1,3L21) will be zero due to the lack of the formal variable X,,.

« The coefficients of the polynomials in (L;2L;2) U (L1 3Ly 3) will be zero due to the presence of the monomial
X X! or X, X2,

It remains to consider the following terms in (L 2L23) U (L13L2):
{XSXWX'L{(XT - id*)}iE[O,B] U {XsXaHi + XszFi(XT)}ie[n]
Observe that

« For all i # i*, the coefficients of {X;X,H; + X;X,,Fi(X;)}iz~ must be zero since they involve X;X,H; which
appears neither in the target polynomials nor other polynomials in the set. Here we use the fact that H; are
all distinct.

« For the remaining polynomials {X;X,, X! (X; —id*)};e [0,8] Y {XsXoH;+ + X X\ Fi+ (X7) }, we must have {c;}ie[0,5]
and d such that

XX Hy = Z ¢i - Xe XX (X — id") + d - (X XoHi + X, X3 Fie (X,)).
i€[0,B]

Clearly, we must set d = 1 and this means
0= Z Ci - Xe X X2 (X, — id") + XX Fie (Xy).
i€[0,B]

This means

Z eiX (X, —id*) = —Fp (X).
i€[0,B]

The left-hand-side is a polynomial with a root at X, = id*, so this means F;- must also have a root at id*. Thus
F;=(id*) = 0. By construction of F;, this means id* € S;-. This contradicts the requirements of the security
game (i.e., the adversary cannot request a key that is able to decrypt the challenge ciphertext).

We conclude that the monomial X, X,H;» = X;Xo@n(tg*) is linearly independent of the other components in the

adversary’s view. Since the message in Hybio) and Hybil) is blinded by ¢7(X;X,H;), we conclude that the message
is perfectly hidden from the view of the adversary. This proves the lemma. O

Theorem D.3 now follows from Lemmas D.4 and D.5 by a hybrid argument. O

Corollary D.6 (Batched Identity-Based Encryption). Let A be a security parameter. If we model GroupGen as a generic
bilinear group, and H as a random oracle, then Construction D.1 is an adaptively-secure batched IBE scheme with the
following efficiency properties:

« Public key size: For a batch size B, the public key contains 4 G, elements and B G, elements.
« Ciphertext size: A ciphertext contains 2 G, elements and 1 Gt element.
« Digest size: A digest contains 1 G, element.

- Decryption key size: A decryption key contains 1 G, element.
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E Threshold Batched IBE in the Generic Group Model

In this section, we give a threshold version of Construction D.1. Note that this scheme is in the centralized model
where a trusted dealer generates the decryption shares for each user. We start by recalling the formal definition
of a threshold batched IBE scheme from [AFP25]. Note here that we work under the weaker notion of security
from [AFP25] where the attacker in the security game can only query for the same set S to all decryption authorities
for any particular batch label tg. Because we derive our construction by directly thresholding the scheme from
Appendix D, we can only argue security under this weaker definition. To achieve the stronger notion of security
where the adversary can request shares for different sets to different decryption authorities, we need an alternative
approach to secret share the master secret key (see Remark 5.3 and Section 5 for one such approach). In addition,
following [AFP25], we consider the setting of static corruptions where the adversary declares upfront the set of
corrupted users (but is allowed to make adaptive key-generation queries).

Definition E.1 (Threshold Batched Identity-Based Encryption [AFP25, adapted]). A threshold batched identity-based
encryption scheme Ilthpatchipe consists of a tuple of efficient algorithms Ithpatchise = (Setup, KeyGen, Encrypt,
Digest, CompKeyShare, CompKeyAggregate, Decrypt) with the following syntax:

« Setup(1%) — pp: On input the security parameter A € N, the setup algorithm outputs a set of public parameters
pp. We assume that the public parameters (implicitly) specifies the message space M, identity space 7, and
batch label space 7 for the encryption scheme.

« KeyGen(pp, 12,15,17) — ({pk,, sk¢}¢e[1], mpk): On input the public parameters pp, an upper bound on the
batch size B, the size of the decryption committee L, and the threshold T, the key-generation algorithm outputs
a set of user public keys pk; and user secret keys sk; along with a master public key mpk. We assume that
mpk, pk,, and sk, also include an implicit description of the message space M, identity space 7, and batch
label space 7~ (from pp).

« Encrypt(mpk, m,id,tg) — ct: On input the global master public key mpk, a message m € M, an identity
id € 7, and a batch label tg € 77, the encryption algorithm outputs a ciphertext ct.

« Digest(mpk,S) — dig: On input the global master public key mpk and a set of identities S, the digest algorithm
output a digest dig. This algorithm is deterministic.

« CompKeyShare(sk, dig, tg) — o: On input a user secret key sk, a digest dig, and a batch label tg, the key-share-
computation algorithm outputs a decryption key share o associated with dig and tg.

« VerifyKeyShare(pk, dig, tg, 0) — b: On input a user public key pk, a digest dig, a batch label tg and a decryption
key share o, the key-share verification algorithm outputs a bit b € {0, 1} indicating whether the decryption
key share o is valid under pk for dig and tg. This algorithm is deterministic.

« CompKeyAggregate({o;}seu, dig, tg) — &: On input a collection of decryption key shares o, for a set of users
¢ € U, a digest dig, and a batch label tg, the key-share-aggregation algorithm outputs an aggregated decryption
key 6. This algorithm is deterministic.

« Decrypt(mpk, 5, dig, S, (id, tg), ct) — m: On input the global master public key, a decryption key &, a digest
dig, a set of identities S, an identity-label pair (id, tg), and a ciphertext ct, the decryption algorithm outputs a
message m € M (or possibly a special symbol L to indicate decryption failed). This algorithm is deterministic.

We require Ithpatchise satisfy the following properties:

« Completeness: For all ,, B, L, T € N where T < L, all public parameters pp in the support of Setup(1%), batch
labels tg* € 77, all sets S C I of size at most B, all £* € [L], where 7 and I are the batch label and the identity
spaces associated with pp, we have

({pky sketeerr), mpk) < KeyGen(pp, 17,15, 17)
Pr | VerifyKeyShare(pk,., dig, tg", op+) = 1: dig = Digest(mpk, S) =1.
op- «— CompKeyShare(sk;-, dig, tg*)
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« Correctness: For all 4, B,L,T € N where T < L, all public parameters pp in the support of Setup(1%), all
({pk,» ske} ez, mpk) in the support of KeyGen(pp, 15, 15, 17), all messages m € M, batch labels tg* € 7", and
identities id* € I (where M, I, 7 are the message, identity, and batch label spaces associated with pp, respec-
tively), all sets S C I of size at most B where id* € S, all sets U C [L] where |U| = T, all ciphertexts ct in the sup-
port of Encrypt(mpk, m, id*, tg*), all decryption key shares {o;},cy where VerifyKeyShare(pk,, dig, tg*, o) = 1
for all £ € U and dig = Digest(mpk, S), it holds that

Decrypt(mpk, CompKeyAggregate({o; }scu, dig, tg*), dig, S, (id*, tg"), ct) = m.

« Adaptive security with static corruptions: For a security parameter A, a batch size B, the size of committee
L, the threshold T, a set of corrupted authorities C ¢ [L] such that |C| < T, a bit § € {0, 1}, and an adversary
A, we define the threshold batched IBE security game as follows:

The challenger starts by computing pp < Setup(1%) and ({pk,, ske}tee(r], mpk) < KeyGen(pp, 15,15, 17).
It gives (1%, 18,15, 17, pp, {pk,}eeir)s {ske}eec, mpk) to A. Let M, I, T be the message space, identity
space, and batch label space associated with pp.

— Algorithm A can now make any number of key-share-computation queries. On each query, algorithm A
specifies a set S € 7 where |S| = B and a batch label tg € 7. The challenger replies with the decryption
key shares o, «<— ComputeKey(sk,, Digest(mpk, S), tg) for all £ ¢ C.

— After A is finished making key-share-computation queries, it outputs two messages mo,m; € M, a
challenge identity id* € 7 and a challenge batch label tg* € 7. The challenger responds with a challenge
ciphertext ct < Encrypt(mpk, mg, id", tg*).

— Algorithm A can continue to make key-share-computation queries. The challenger answers the queries

exactly as before.

— At the end of the game, algorithm A outputs a bit f” € {0, 1}, which is the output of the experiment.
We say an adversary A is admissible if the following two conditions hold:

— The batch labels tg in the key-share-computation queries are all distinct (i.e., the adversary sees at most
one set of decryption key shares for each batch label tg € 7).

- Algorithm A does not make a key-share-computation query on a pair (S, tg) where tg = tg* and id* € S.

We say IIthpatchise is secure if for all polynomials B = B(A), L = L(A), T = T(A) and all efficient and admissible
adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[f' =1:=0] —Pr[f =1:p=1]| = negl(A) (E.1)

in the above security game. We say Ithpatchie i secure for a specific batch size B = B(1), committee size
L = L(A), and threshold T = T(A) if the above holds for the specific functions B, L, T.

Succinctness: There exists a universal polynomial poly(-) such that for all A, B,L, T € N, all public parameters pp
in the support of Setup(1*), all (mpk, msk) in the support of KeyGen(pp, 18, 1X,17), all digests dig in the support of
Digest(mpk, -), and all batch labels tg € 7 (where 7 is the batch label space associated with pp), the running time of
CompKeyShare(msk, dig, tg) and the size of the digest dig is poly(4) and in particular, independent of B. Similarly,
forall U C [L] and all user decryption shares o; where i € U, the size of the aggregated decryption key & output
by CompKeyAggregate({o¢}scu, dig, tg) is independent of |U]|.

Construction E.2 (Threshold Batched Identity-Based Encryption). Let GroupGen be a prime-order bilinear group gen-
erator. We construct a threshold batched IBE scheme ITtpgatchise = (Setup, KeyGen, Encrypt, Digest, CompKeyShare,
CompKeyAggregate, Decrypt) as follows:

« Setup(1%): On input the security parameter A, the setup algorithm samples G = (G, Gy, Gr,p, g1, g2, €)
GroupGen(1%). Next, let H: {0,1}* — G, be a hash function (which we model as a random oracle in the
security analysis), and outputs the public parameters pp = (G, H). The message space associated with pp is
Gr, the identity space is Z,, and the tag space is {0, 14
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KeyGen(pp, 18,1, 17): On input the public parameters pp = G = (G4, Gy, G, p, g1, g2, €), a bound on the batch

size B, the size of the decryption committee L, and the threshold T < L, the key-generation algorithm proceeds
as follows:

— Sample exponents 7, w, o ¢~ Z,.
- LetM € ZIL)XT be the share-generation matrix for a T-out-of-L threshold policy over Z,,. Sample o, w - Z’%

where a; = « and w; = w.

For ¢ € [L], let m] be the ™ row of M. It then outputs the user public keys pk, = ([mjer]y, [mjw];) and user
secret keys sk, = (mja, myw) for all £ € [L] as well as the global master public key

mpk = (G, H, [7]1, [t]2, []2, ..., [Z°]2, Wi, [wely, [a]h). (E.2)

Encrypt(mpk, [m]r, id, tg): On input the master public key mpk (parsed according to Eq. (E.2)), a message
[m]t € G, anidentity id € Z,, and a batch label tg € {0, 1}, the encryption algorithm computes [hig]2 = H(tg)
and samples s < Z,. It then outputs the ciphertext

ct=([s]1, s~ [wrly —s-id- [wly,s- [als - [hgla + [m]T)
= ([3]1, [sw(z —id)]1, [sahtg+m]T)

Digest(mpk, S): On input the master public key mpk (parsed according to Eq. (E.2)) and a set of identities
S € Z, where |S| < B, the digest algorithm defines the polynomial Fs(x) = []4es(x — id) whose roots are the
identities id € S. Write F(x) = X;cqo,s]] fix'. Output the digest

dig = Z fi- [7']2 = [Fs(D)]2.

i€[o,]S]]

CompKeyShare(sk, dig, tg): On input a user secret key sk = (uy, up), a digest dig = [d],, and a batch label tg €
{0,1}*, the key-share-computation algorithm computes [h]» = H(tg) and outputs the decryption key share

o =uy - [hgla+uy - [d]z = [urthig + uzd]>.

VerifyKeyShare(pk, dig, tg, 0): On input a user public key pk; = ([u1]1, [u2]1), a digest dig = [d],, a batch label
tg € {0, 1}, and a decryption key share o = [v]5, the key-share verification algorithm computes [hig]2 = H(tg)
and outputs 1 if the following relation holds (and 0 otherwise):

[uily - [higla + (w2l - [d]2 = [1]1 - [0]2.

CompKeyAggregate({o; }iev, dig, tg): On input a collection of decryption key shares o, = [v;], for a set of
users £ € U C [L] where |U| = T, a digest dig = [d], and a batch label tg € {0, 1}*, the key-share-aggregation
computes the interpolation vector w € ZILJ such that ™M = e] and w, = 0 for all £ ¢ U where M € Z};XL is the
share-generating matrix for the T-out-of-L threshold policy. It then outputs the aggregated decryption key:

0= Z wg - [ve]2.

teU

Decrypt(mpk, 3, S, (id, tg), ct): On input the master public key mpk (parsed according to Eq. (E.2)), an aggre-
gated decryption key & = [7];, the set of identities S C Z,, an identity id € S, a batch label tg € {0, 1}1, and
the ciphertext ct = ([¢1]1, [c2]1, [e3]T), the decryption algorithm proceeds as follows:

— First, it defines the polynomial

Fs\ (idy (x) = 1_[ (x —id").

id’eS\{id}

Compute [Fs\(idy (T)]2 = Zie[o,s-1] fil 712, Where Fs\ (iay (x) = Xjefo,s)-17 fix'-
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— Then it computes and outputs
[eslt = [e1] - [8]2 + [e2]1 - [Fsv\qiay (7)]2. (E.3)
Theorem E.3 (Completeness). Construction E.2 is complete.

Proof. Take any A, B,L, T € N satisfying T < L and any choice of public parameters pp = (G, H) in the support of
Setup(l’l), where G = (Gy, Gy, Gr, p, 91, g2, €). Take any batch label tg* € {0, I}A, any set S C Z,, of size B, and any
index ¢* € [L]. Sample ({pk,, ske¢}se[z], mpk) < KeyGen(pp, 15,1, 17). By construction, sk, and pk,. have the
following form:

ske = (ur,uz) and  pk, = ([ur]y, [u2]1)
where uy,u; € Z,. Let dig = [d], = Digest(mpk, S) and o, < CompKeyShare(sk, dig, tg*). Let [hy]2 = H(tg").
By construction of CompKeyShare, this means

op = [0]2 = [urhig + uzd]>

By definition, the key-share-verification algorithm VerifyKeyShare(pk,., dig, tg*, op+) now checks that

[ui]1 - [hgle + [uz]1 - [d]2 = [1]1 - [0]2,
which holds by construction. O

Theorem E.4 (Correctness). Construction E.2 is correct.

Proof. Let A,B,L,T € N where T < L. Take any public parameters pp = (G, H) in the support of Setup(1%),
where G = (Gy, Gy, Gr, p, g1, g2, €). Take any message [m]t € M, any batch label tg* € {0, 1}’1, any identity
id* € Z,, any set S C Z, of size at most B where id* € Z,, and any set U C [L] where |[U| = T. Let dig =
Digest(mpk, S) and sample ct « Encrypt(mpk, [m]T,id", tg*). Take any collection of decryption key shares {o;},cv/
where VerifyKeyShare(pk,, dig, tg*,0,) = 1 for all £ € U. Let & = CompKeyAggregate({o,},cv, dig, tg"). Consider
now Decrypt(mpk, g, dig, S, (id*, tg*), ct):

« First,let M € ZﬁXT be the share-generating matrix for the T-out-of-L threshold policy and let w € ZIL, be the
interpolation vector where "M = e] and w, = 0 for all # ¢ U. Let mj be the £ row of M,

+ Let [hyg:]2 = H(tg") and define the polynomial Fs(x) = [];ges(x —id).
« By construction of the above algorithms, the above components can now be expressed as follows:
mpk = (gs H7 [T]b [T]25 [72]2, ] [TB]Zs [W]la [WT] 1> [a]l)
pk, = ([mye]y, [myw]y)
dig = [Fs(7)]2
ct = ([s]y, [sw(r —id")]1, [sahig + m]7)
« Write each o; = [0v,],. Since VerifyKeyShare(pk,, dig, tg*, ;) = 1 for all ¢ € U, this means

vp = mya - hygr + myw - Fs(7).
« By construction of CompKeyAggregate, we have

5= o [olz= ) lo(mja - hg +mjw - Fs(1))].

teU teU

Since @™ = e, ] @ = «, and e]w = w, this means

5= ) [ormya - hg +mpw - Fs(1)]s = [ahig: + WFs(7)],.
teU

For ease of notation, define & = ahig+ + wFs(7). Then, & = [],.
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« The decryption algorithm now computes

[sahg: +mlr = [s]1 - [0]2 + [sw(z —id)]1 - [Fs\(iay (D)]2 = [sahig: + m — sahg: — swFs(7) + swFs ()]

= [m]q,
and correctness holds. O

Theorem E.5 (Adaptive Security with Static Corruptions). Take any polynomials B = B(A), L = L(A) and anyT < L.
Then, Construction E.2 satisfies adaptive security with static corruptions with batch size B, committee size L, threshold
T if we model GroupGen as a generic group and the hash function H as a random oracle.

Proof. Similar to [AFP25], we will show that security (with static corruptions) of Construction E.2 follows via adaptive

security of the centralized batched IBE scheme from Construction D.1. Then, Theorem D.3 immediately implies The-
orem E.5. To start, we review the security experiments Exptéi ichIBE and Exptéﬁ t)chTIBE associated with the batched IBE
scheme (Definition 3.2) and the threshold batched IBE scheme (Definition E.1), respectively, in the generic group
model and random oracle model. As in the proof of Theorem D.3, the challenger maintains random injective functions
@1, 92, ¢1: Z, — L and a hash function mapping ¢n: {0, M- Zp. The adversary has access to the evaluation

oracle and pairing oracle described in Appendix B and the hash oracle behaves as follows:

« Hash oracle: On input a batch label r € {0, 1}*, the hash oracle returns @, (¢ (r)).

For any adversary (A, a batch size parameter B € N, and a bit § € {0, 1}, we define ExptgjzchlBE(?{, B) as follows:

« The challenger sets pp = (¢1(1), ¢2(1), ¢1(1)). The challenger samples exponents 7, w, @ - Zj, and constructs
the master public key as follows

mpk = (91(2), 92(2), @2(7), ..., 2 (z%), 91 (W), 91 (@), @1 (w1)).
The challenger gives pp and mpk to A.

+ When algorithm A makes a key-computation query on a set of identities S C Z, where |S| < B and a batch
label tg € {0, 1}*, the challenger returns L if A has made a query on the same tg. Otherwise, it defines the
polynomial Fs(x) = [[iges(x — id) whose roots are the identities id € S and writes F(x) = X;c[os/] fixt. Tt
then responds with the secret key

sk = @ (apn (tg) + wFs(7)).

« When algorithms A outputs a challenge identity id*, the associated batch label tg*, and two messages
[mo]1, [m1]7 in the image of ¢r, the challenger responds with L if A made a key-computation query (tg, S) such
that tg = tg* and id* € S. Otherwise, the challenger samples s ¢~ Z,, and responds with the challenge ciphertext

ct = (p1(s), o1 (sw(r — id")), o1 (sapn(tg") + o1 (mp))).

« Algorithm A can continue to make key-computation queries. The challenger responds as described above
except that it returns L if tg = tg* and id* € S.

+ At the end of the experiment, algorithm A outputs a bit f’ € {0, 1}, which the challenger also outputs.

Next, for any adversary A, parameters B,L,T € N, a corruption set C C [L], and a bit § € {0,1}, we define
Expté/zzcthBE(ﬂ, C,B,L,T) as follows.

« The challenger sets pp = (¢1(1), ¢2(1), 7(1)). The challenger samples exponents 7, w, & < Zj, and constructs
the master public key as follows

mpk = (¢1(7), 92(7), 2(7%), . . .. 02(°), 01 (W), 1 (), 1 (w1)).
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Let M € Z’%XT be the share-generation matrix for a T-out-of-L threshold policy over Z,. For ¢ € [L], let m;

be the £™ row of M. The challenger samples &, w < Zﬁ where a; = a and w; = w, and constructs the user
public keys and user secret keys for all £ € [L] as follows:

pk, = (¢1(m@), g1 (m;w))
ske = (mjpar, mjw).

The challenger gives the public parameters pp, the master public key mpk, the users’ public keys {pk,} e[z
and the corrupted users’ secret keys {sk,}scc to algorithm A.

+ When algorithm A makes a key-computation query on a set of identities S C Z,, where |S| < B and a batch
label tg € {0,1}*, the challenger returns L if A has made a query on the same tg. Otherwise, it defines the
polynomial Fs(x) = [T;ges(x — id) whose roots are the identities id € S and write F(x) = Y;c[o,s/] fix". It then
makes a hash oracle query on tg so that ¢,(tg) is defined internally and returns decryption key shares

or = g2 (myargn (tg) + mywFs(z)) Ve ¢C

« When algorithms A outputs a challenge identity id*, the associated batch label tg*, and two messages
[mo]t, [m1]7 in the image of ¢r, the challenger returns L if A made a key-computation query (tg, S) such that
tg = tg* and id" € S. Otherwise, the challenger samples s <~ Z, and returns the challenge ciphertext

ct = (p1(s), o1 (sw(r — id")), pr(sapn(tg") + o5 ' (mp))).

Algorithm A can continue to make key-computation queries. The challenger responds as described above
except that it returns L if tg = tg* and id* € S.

« At the end of the experiment, algorithm A outputs a bit * € {0, 1}, which the challenger also outputs.

Suppose now that there exists an adversary A such that

(A,C,B,LT) = 1] - Pr[Expt\) _ (ACBLT)=1]| > e

(0)
| Pr[Expty atchTIBE

atchTIBE

We use A to construct an adversary 8 where

| Pr{Expt{) e (A B) = 1] = Pr[Expt( o (A, B) = 1]| > e,

To do so, we show that for all B,L, T € N, all C C [L], all § € {0, 1}, and all adversaries A, there exists an adversary
B such that " "
Pr(Expty) 1 pe (A C,B,LT) = 1] = Pr[Expt) . (B,B) = 1] (E-4)

Algorithm B works as follows:

« Algorithm 8 obtains pp = (¢1(1), 92(1), ¢7(1)) and the master public key

mpk = (91(7), 92(2), @2(7), . .., 02 (%), 01 (W), 91 (), @1 (w1))

from the challenger. Let M € ZIL,XT be the share-generation matrix for a T-out-of-L threshold policy over Z,. For
¢ € [L], let mj be the ™ row of M. Algorithm B computes a vector w* € Z’% such that mjyw~ = 0 for all indices
¢ € C and wy = 1. It samples &, W & Z, with @; = 0,w; = 0. For all £ € C, it computes sk, = (mj&, m;Ww).
Algorithm 8B constructs the user public keys {pk,},c[r] as follows:

- For all ¢ € C, algorithm B uses the generic group oracle and ¢;(1) to compute ¢;(mjé) and ¢; (m;w).
It sets pk, = (¢1(m; @), ;(m;w)) and sk, = (mj e, m;W).

— Foreach ¢ ¢ C, algorithm B uses the generic group oracle in conjunction with ¢; («) and ¢; (w) to compute
@1(my& + myw~ - a) and @1 (myWw + myw - w). It sets pk, = (@1 (m;& + myw* - @), 1 (My% + myw" - w)).
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Algorithm 8 forwards the public parameters pp, the master public key mpk, the users’ public keys {pk,} e[z
and the corrupted users’ secret keys {sk;}se¢ to algorithm A.

+ When algorithm A makes a key-computation query on a set of identities S C Z,, where |S| < B and a batch
label tg € {0, 1}*, the challenger returns L if A has already made a query on the same tg. Otherwise, it defines
the polynomial Fs(x) = [[jges(x — id) whose roots are the identities id € S. Write F(x) = X;c[o)s|] fix'. Then,
algorithm B proceeds as follows:

1. Algorithm B uses the generic group oracle in conjunction with ¢;(1), p2(7), ..., @2(z8) to compute
fs = @2(Fs(1)).

2. Algorithm 8B makes a key-computation query (S, tg) to the batched IBE challenger and receives a secret
key skstg = @2(agu(tg) + wFs(7)).

3. Then, for each ¢ ¢ C, algorithm 8 queries the hash oracle on tg to obtain hi = @2(@n(tg)). Using the
generic group oracle, algorithm B now computes

or = @2 (my@ - pn(tg) + myw - Fs(7) + myw™ - (apn(tg) + wFs(1)) ).
[ — ——
htg fs SkS,tg

Algorithm 8B replies to A with {o;}rec.

« When A makes a challenge query on an identity id*, batch label tg*, and two messages mg, m; in the image
of ¢r, the challenger returns L if A made a key-computation query (tg,S) such that tg = tg* and id* € S.
Otherwise, algorithm 8 forwards (id*, tg*, mg, m;) as its challenge to the challenger and receives the challenge
ciphertext ct. It replies to A with ct.

« Algorithm A can continue to make key-computation queries. Algorithm 8 responds as described above except
that it returns L if tg = tg* and id” € S.

« At the end of the experiment, algorithm A outputs a bit * € {0, 1}, which algorithm 8 also outputs.

£

We now argue that algorithm 8 correctly simulates an execution of Expty\ \ 1ne

algorithm B implicitly sets

for algorithm A. First, observe that

a=a+w'a and w=w+w'w
where a, w €~ Z, are the exponents chosen by the batched IBE challenger and the blinding factors &, w <~ ZIT, are

sampled with the restriction that &; = 0 and w; = 0. Therefore, the distributions of & and w are uniform over ZIT,
subject to the restriction that a; = @ and w; = w. This is precisely the distribution expected by A. With this choice
of variables, we have

T Teg, L
. ma+mw -a {¢C
mye =my(&+wra)=q L
m;& teC
mw+mw'-w £¢C

T T/ 1

m,w =m,(W+w w) =

¢ ¢ .
{m}w teC

By construction, this coincides with the distribution that 8 uses to simulate the public keys as well as the distribution
of the secret keys sk, for the corrupted users ¢ € C. Consider now the response of the key-computation queries from
B. For a set S C Z, where |S| < B, a batch label tg € Z,,, and an index ¢ ¢ C, we have

mya - gy(tg) + myw - Fs(r) = my& - gy (tg) + myw - Fs(7) + myw™ - app(tg) + myw" - wFs(r)

=m;& - o (tg) + myw - Fs(7) + myw" - (agp(tg) + wFs(1))

This is exactly how algorithm B answers the key-generation queries in the simulation. Finally, the challenge cipher-

text in the two experiments are distributed identically. This means that algorithm 8B wins in Expté’i LHBE as long as
algorithm A wins in Exptélz zchﬂBE' This shows Eq. (E.4). O
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Corollary E.6 (Threshold Batched Identity-Based Encryption). Let A be a security parameter. If we model GroupGen
as a generic bilinear group, and H as a random oracle, then Construction E.2 there is a threshold batched IBE scheme
satisfying adaptive security with static corruptions together with the following efficiency properties:

« Public key size: For a batch size B, the public key contains 4 G, elements and B G, elements.
« Ciphertext size: A ciphertext contains 2 Gy elements and 1 Gt element.
- Digest size: A digest contains 1 G, element.

« Decryption key share size: A decryption key share contains 1 G, element (as does the aggregated decryption key).
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