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Abstract

In a batched identity-based encryption (IBE) scheme, ciphertexts are associated with a batch label tg∗ and an

identity id∗ while secret keys are associated with a batch label tg and a set of identities 𝑆 . Decryption is possible

whenever tg = tg∗ and id∗ ∈ 𝑆 . The primary efficiency property in a batched IBE scheme is that the size of the de-

cryption key for a set 𝑆 should be independent of the size of 𝑆 . Batched IBE schemes provide an elegant cryptographic

mechanism to support encrypted memory pools in blockchain applications.

In this work, we introduce a new algebraic framework for building pairing-based batched IBE. Our framework

gives the following:

• First, we obtain a selectively-secure batched IBE scheme under a 𝑞-type assumption in the plain model. Both

the ciphertext and the secret key consist of a constant number of group elements. This is the first pairing-based

batched IBE scheme in the plain model. Previous pairing-based schemes relied on the generic group model

and the random oracle model.

• Next, we show how to extend our base scheme to a threshold batched IBE schemewith silent setup. In this setting,
users independently choose their own public and private keys, and there is a non-interactive procedure to derive
the master public key (for a threshold batched IBE scheme) for a group of users from their individual public keys.

We obtain a statically-secure threshold batched IBE scheme with silent setup from a 𝑞-type assumption in the

plain model. As before, ciphertexts and secret keys in this scheme contain a constant number of group elements.

Previous pairing-based constructions of threshold batched IBE with silent setup relied on the generic group

model, could only support a polynomial number of identities (where the size of the public parameters scaled lin-

early with this bound), and ciphertexts contained𝑂 (𝜆/log 𝜆) group elements, where 𝜆 is the security parameter.

• Finally, we show that if we work in the generic group model, then we obtain a (threshold) batched IBE scheme

with shorter ciphertexts (by 1 group element) than all previous pairing-based constructions (and without

impacting the size of the secret key).

Our constructions rely on classic algebraic techniques underlying pairing-based IBE and do not rely on the signature-

based witness encryption viewpoint taken in previous works.

1 Introduction
Suppose we have a set of 𝐵 ciphertexts 𝑆 = {ct1, . . . , ct𝐵} encrypted under a public key pk. The batch decryption

problem is to derive a decryption key sk𝑆 that can be used to decrypt the ciphertexts in 𝑆 while still ensuring semantic

security for all ciphertexts outside the set 𝑆 . A trivial solution to this problem is to use hybrid encryption. Namely, to

encrypt a message𝑚, the encrypter samples a random symmetric key 𝑘 and encrypts the message𝑚 using 𝑘 and then

encrypts the key 𝑘 using the public key pk. A batch decryption key for the set 𝑆 = {ct1, . . . , ct𝐵} is the list of symmetric

keys 𝑘1, . . . , 𝑘𝐵 associated with ct1, . . . , ct𝐵 . Though simple, this trivial solution is inefficient because the size of the

decryption key scales linearly with the number of ciphertexts. The goal in batch decryption is to support decryption

keys for arbitrary sets of ciphertexts with size that is sublinear (and ideally, polylogarithmic) in the size of the set.
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An application to mempool privacy. Batch decryption and its generalizations have received extensive study in

the last two years [CGPP24, SAA24, BFOQ25, AFP25, CGPW25, BLT25, BCF
+
25]. A key motivation for studying batch

decryption is it provides an elegant cryptographic solution for defending against market manipulation in blockchain

and decentralized finance applications. Specifically, when users wish to post a transaction to a blockchain, they first

submit the transaction to a public memory pool (“mempool”). Subsequently, miners select a subset of transactions

in the mempool to include as part of the next block on the blockchain. Since miners have a lot of freedom to choose

which transactions from the mempool to include in the next block, if the transaction details are public, then miners

may re-order or selectively include or omit certain transactions to their own financial benefit and to the detriment

of the transaction issuer. The additional value that a miner can derive through such front-running or back-running

attacks is referred to as the miner extractable value or MEV [DGK
+
20].

A natural technique to defend againstMEV attacks is for users to encrypt their transactionswhen they are submitted

to themempool [BO22, KLJD23, CGPP24]. Specifically, the blockchain specifies a public key pk and the associated secret
key is secret shared across a decryption committee of nodes that operate the blockchain. When a user wants to perform

a transaction, they encrypt it under pk before submitting it to the encrypted mempool. After the miners select a set of en-

crypted transactions to commit to the blockchain, the decryption committee publish shares of the batch decryption key
that can be used to decrypt the transactions in the block. This way, transactions become public only after they have been
committed to the blockchain; this is critical for defending against MEV attacks. Because the decryption shares for each

batch of transactions must be published on the blockchain, it is important for the batch decryption key to be succinct.

Batched identity-based encryption. In this work, we focus on the notion of batched identity-based encryption

(batched IBE) introduced in the recent work of Agarwal, Fernando, and Pinkas [AFP25]. The work of [AFP25] show

that batched IBE directly implies a batch decryption scheme; analogously, threshold batched IBE implies the notion

of threshold batch decryption considered in other works [CGPP24, SAA24, BFOQ25, CGPW25, BCF
+
25].

In a vanilla IBE scheme [Sha84, BF01, Coc01], one can encrypt a message𝑚 with respect to the (master) public key

mpk and an identity id. The holder of the master secret keymsk can in turn issue decryption keys skid for an identity.

The decryption key skid can decrypt all ciphertexts encrypted to the associated identity id. In batched IBE, the holder

of the master secret keymsk can issue a decryption key sk𝑆 associated with a set of identities. The key sk𝑆 can decrypt

ciphertexts encrypted to any identity id ∈ 𝑆 , and moreover, the size of sk𝑆 should be sublinear in the size of the set 𝑆 .

It is easy to see that batched IBE implies batch decryption. To encrypt a message𝑚, the encrypter would sample

a random identity id r← {0, 1}𝜆 and encrypt 𝑚 with respect to id. The batch decryption key for a collection of

ciphertexts is simply a batch key for the set of identities 𝑆 associated with the ciphertexts in the batch. Since the

honest encryption algorithm samples the identity uniformly at random from {0, 1}𝜆 , the probability that the id
associated with an honestly-generated ciphertext (outside the decryption batch) is contained in 𝑆 is negligible. Thus,

sk𝑆 does not compromise the semantic security of (honestly-generated) ciphertexts outside the batch.

Recent constructions of batched IBE and batch decryption impose an additional restriction on the functional-

ity [CGPP24, SAA24, AFP25, CGPW25]. Namely, they assume that each ciphertext is additionally associated with

a batch label tg (also called an “epoch” [CGPP24, SAA24, CGPW25]). Similarly, decryption keys are also associated

with a batch label tg together with a set of identities (or ciphertexts). A decryption key with batch label tg can only

decrypt ciphertexts with the same label. The main compromise is that semantic security holds only in the setting

where the adversary sees a single decryption key associated with each batch label.
1
In the setting of MEV prevention

for blockchain applications, the batch label could be the current block number. Since block numbers are unique,

decrypters would only publish a single decryption key (or single set of decryption key shares) for each block number.

The disadvantage of this is users would have to predict the block number for their transaction when they send their

ciphertext to the encrypted mempool (or they need to prepare multiple independent ciphertexts).

1.1 Our Results
In this work, we introduce a new algebraic framework for constructing batched IBE from pairing groups. Our

framework enables the following instantiations:

1
The schemes we develop in this work can allow giving out𝐾 decryption keys for each batch label, at the cost of increasing the size of the decryption

keys and the ciphertexts by an additive factor of 𝐾 group elements or field elements. We refer to Section 2.1 and Appendix C for more details.
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Scheme |mpk| |ct| |sk| Assumption

[AFP25] 2|G1 | + 𝐵 |G2 | 3|G1 | + |GT | |G2 | GGM + ROM

Corollary 4.5 5|G1 | + 𝐵 |G2 | + |GT | 3|G1 | + |GT | 2|G2 | + |Z𝑝 | 𝑞-type

Corollary D.6 4|G1 | + 𝐵 |G2 | 2|G1 | + |GT | |G2 | GGM + ROM

Table 1: Comparison of our batched IBE schemes with the [AFP25] scheme. For each scheme, we report the sizes of

the master public key mpk, ciphertext ct, and decryption key sk as well as the underlying assumption. We write 𝐵 to

denote the batch size. We write |G1 |, |G2 |, |GT |, |Z𝑝 | to refer to the sizes of an element fromG1,G2,GT,Z𝑝 , respectively.
We write “GGM” to denote the generic bilinear group model and “ROM” to denote the random oracle model.

• A selectively-secure scheme in the plain model. Our first construction is a selectively-secure scheme
2

based on a 𝑞-type assumption in the plain model (Construction 4.2), where 𝑞 = 𝑂 (𝐵) and 𝐵 is the batch size.

Ciphertexts in this scheme consist of 4 group elements while the secret key consists of 2 group elements and 1

field element. This is the first pairing-based batched IBE scheme with security in the plain model. Previous

batched IBE schemes (and batch decryption schemes) [SAA24, AFP25, CGPW25] all relied on the generic

group model (together with the random oracle model). In Appendix C, we also describe ways to extend the

construction to support adaptive security in the plain model, albeit with a longer common reference string (but

without affecting the secret key size or the ciphertext size).

• An adaptively-secure scheme in the generic group model. If we work in the generic group (and random

oracle) models, then we can obtain an adaptively-secure scheme with shorter ciphertexts (3 group elements) and

secret keys (1 group element). Compared to the prior schemes for batched IBE and batch decryption [SAA24,

AFP25, CGPW25], we save one group element in the ciphertext, one exponentiation during encryption and one

pairing operation during decryption. Our master public key contains two extra group elements.

We provide a concrete comparison of the parameter sizes with the previous batched IBE scheme of [AFP25] in Table 1.

We also compare the running times of encryption and decryption in Table 2.

Threshold batched IBE. Our techniques translate readily to the threshold setting where the secret key is shared

across a decryption committee. In this work, we focus on two different threshold settings (though other combinations

are also possible):

• Threshold batched IBE with silent setup in the plain model. First, we show how to extend our batched

IBE in the plain model to a threshold batched IBE scheme with silent setup (Construction 5.5). In this context,

silent setup [GKPW24, BCF
+
25] means that users in the decryption committee can derive their decryption

shares non-interactively and without relying on a trusted dealer. Our work gives the first threshold batched

IBE scheme with silent setup in the plain model. Ciphertexts in our scheme consists of 5 group elements and

decryption key shares consist of 3 group/field elements. The public parameters contain 𝑂 (𝐿𝐵) group elements

where 𝐿 is the size of the decryption committee the scheme supports and 𝐵 is a bound on the batch size.

The best prior construction is the work of [BCF
+
25], which is a pairing-based scheme in the generic group model

and only supports a polynomial-size identity space (albeit without needing to assume batch labels). Ciphertexts

in their scheme contain 𝑂 (ℓ + log𝐵) group elements (where 𝐵 in their setting is also the bound on the size

of the identity space), decryption shares consist of 3 group/field elements, and the public parameters contain

(ℓ𝐿 + 𝐵) group elements, where ℓ = Ω(𝜆/log 𝜆). In particular, the number of group elements in their scheme

scales with the security parameter, whereas it is constant in our scheme. In the context of encrypted mempools,

2
In a selectively-secure scheme, the adversary has to declare the challenge batch label tg∗ and challenge identity id∗ at the beginning of the

game. This can be lifted to the standard adaptive security notion via complexity leveraging and assuming sub-exponential hardness (Remark 3.4)

as well as via other techniques that do not need sub-exponential hardness (see Appendix C and Remark C.16).
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it is important to support an exponential-size identity space, as otherwise, users would have to coordinate and

associate distinct identities with their transactions when submitting transactions to an encrypted mempool;

with an exponential-size identity space, users could simple associate a random identity with each transaction.

• Threshold batched IBE in the generic group model. We also present a threshold version of our scheme

in the generic group model (Construction E.2). The size of the scheme parameters are the same as for the

centralized scheme in the generic group model described above. Like [AFP25], this scheme satisfies adaptive

security with static corruptions. Following the same transformation from [AFP25] (i.e., taking the identity to

be a random string), we also obtain a threshold batch decryption scheme [CGPP24, CGPW25].

As was the case in our centralized scheme, this scheme reduces the size of the ciphertext from 4 group elements

to 3 group elements compared to the current state-of-the-art [CGPW25, AFP25] while increasing the size of

the master public key by 2 group elements (𝐵 + 4 group elements vs. 𝐵 + 2 group elements from prior work).

Compared to many previous works on batch decryption [CGPP24, SAA24, AFP25, CGPW25, BCF
+
25], we take a

conceptually-different approach in this work. These previous works typically start by setting the secret keys for their

scheme to be signatures under some pairing-based signature scheme (e.g., [BLS01]) and then design a “compatible”

ciphertext structure around it (i.e., a witness encryption scheme for for the verification relation of the signature

scheme). In contrast, we design the ciphertext and secret key structure in tandem in our scheme. Specifically, we

start with a simple base scheme satisfying a weak notion of security (e.g., security without key-generation queries)

and gradually build up to a fully secure scheme. Along the way, we leverage techniques and insights from the

pairing-based IBE literature [BF01, BB04] to derive our final constructions.

2 Technical Overview
We now provide an overview of our construction. We start by recalling the syntax of a batched IBE scheme, as

formulated in [AFP25]. As mentioned before, we work in the model where secret keys and ciphertexts are both

associated with a batch label tg and a secret key with batch label tg can only decrypt ciphertexts encrypted with

respect to the same batch label. We now give the full syntax:

• Setup: The setup algorithm samples a master secret keymsk (used to issue keys) and a master public key (used

for encryption).

• Encryption: The encryption algorithm takes the master public key mpk, a batch label tg, an identity id, and a

message𝑚, and outputs a ciphertext ctid,tg.

• Key-generation: The key-generation algorithm takes the master secret key msk, a batch label tg, and a set of

identities 𝑆 = {id1, . . . , id𝐵}, and outputs a decryption key sk𝑆,tg associated with the batch label tg and the set 𝑆 .
The succinctness requirement is that sk𝑆 should be sublinear (ideally, polylogarithmic) in the size of 𝑆 .

• Decryption: Finally, the decryption algorithm takes as input a decryption key sk𝑆,tg and a ciphertext ctid∗,tg∗ .
If tg = tg∗ (i.e., the batch label associated with the key matches that associated with the ciphertext), and id∗ ∈ 𝑆 ,
then the decryption algorithm outputs the message. Otherwise, it outputs ⊥.

The main security requirement for a batched IBE scheme is that a ciphertext ctid∗,tg∗ should computationally hide

the underlying message against an adversary who only has decryption keys sk𝑆,tg where either tg ≠ tg∗ or id∗ ∉ 𝑆 .
Following [AFP25], we also impose an additional restriction that the adversary is only allowed to ask for a single

decryption key for each batch label.

Notation. We leverage asymmetric prime-order pairing groups to build our batched IBE scheme. An asymmetric

prime-order pairing group consists of a tuple (G1,G2,GT), whereG1,G2,GT are groups of prime order 𝑝 and there is an

efficiently-computable non-degenerate bilinear map 𝑒 : G1×G2 → GT. Throughout this work, wewrite group elements

using implicit notation [EHK
+
13]. Specifically, if 𝑔1 and 𝑔2 are generators of G1 and G2, respectively, we write [𝑥]1,

[𝑥]2, and [𝑥]T to denote 𝑔𝑥
1
, 𝑔𝑥

2
, and 𝑒 (𝑔1, 𝑔2)𝑥 , respectively. Similarly, we write [𝑥]1 · [𝑦]2 := 𝑒 ( [𝑥]1, [𝑦]2) = [𝑥𝑦]T.
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Starting point: a correct but insecure scheme. We begin by describing a simple template for building batched

IBE. Our base construction will satisfy correctness and succinctness, but only provides security for adversaries that

make no key-generation queries. We then show how to systematically introduce additional components to obtain

a secure construction.

Following [AFP25], we assume identities are elements of Z𝑝 and we take 𝐵 to be a bound on the batch size (i.e., the

size of the set 𝑆 associated with each decryption key has size at most 𝐵). We allow the size of the master public key to

grow with the batch size 𝐵. Similar to previous constructions [KZG10, CGPP24, SAA24, AFP25, CGPW25], we encode

a set of identities 𝑆 ⊂ Z𝑝 using a polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Our base construction then proceeds as follows:

• Setup: The setup algorithm samples two exponents 𝜏
r← Z𝑝 and 𝛼

r← Z𝑝 . Then the master public key and

master secret key are as follows:

mpk = ( [𝜏]1, [𝜏]2, . . . , [𝜏𝐵]2, [𝛼]T) and msk = 𝛼.

As in [CGPP24, SAA24, AFP25, CGPW25], the “powers-of-𝜏” in the public parameters are used to encode the

set 𝑆 (specifically, the polynomial 𝐹𝑆 ) while 𝛼 is used for encrypting the message.

• Encryption: To encrypt a message [𝑚]T ∈ GT with respect to an identity id ∈ Z𝑝 , the encrypter samples

𝑠
r← Z𝑝 and outputs the ciphertext

ctid = ( [𝑠]1, [𝑠 (𝜏 − id)]1, [𝑠𝛼]T + [𝑚]T).

Throughout this work, we take the target group element [𝑚]T to be the message and decryption only needs

to recover the group element [𝑚]T rather than the exponent𝑚 ∈ Z𝑝 . If we are using hybrid encryption, the

encryption algorithm would sample a random [𝑚]T r← GT and use [𝑚]T to derive a symmetric key that is then

used to encrypt the payload.

• Key-generation: The secret key for a set 𝑆 ⊂ Z𝑝 of size at most 𝐵 is sk𝑆 = [𝛼 + 𝐹𝑆 (𝜏)]2, where 𝐹𝑆 (𝜏) =∏
id∈𝑆 (𝜏 − id) is the polynomial associated with the set 𝑆 . Note that [𝐹𝑆 (𝜏)]2 can be computed using the

powers-of-𝜏 in the CRS as long as |𝑆 | ≤ 𝐵.
Since the secret key is independent of the size of the set 𝑆 , succinctness is immediate. Moreover, when id ∈ 𝑆 , we
can write 𝐹𝑆 (𝜏) = (𝜏 − id) · 𝐹𝑆\{id} (𝜏). Correctness then follows from the following observation:

[𝑠𝛼]T =

ctid︷︸︸︷
[𝑠]1 ·

sk𝑆︷         ︸︸         ︷
[𝛼 + 𝐹𝑆 (𝜏)]2 −

ctid︷        ︸︸        ︷
[𝑠 (𝜏 − id)]1 ·

mpk︷         ︸︸         ︷
[𝐹𝑆\{id} (𝜏)]2 .

This scheme is insecure as soon as the adversary makes a single key query. This is because the ciphertext is malleable.

Specifically, the adversary can convert a ciphertext with respect to an identity id into one with respect to any identity

id′ by computing [𝑠 (𝜏 − id)]1 + (id − id′) · [𝑠]1 = [𝑠 (𝜏 − id′)]1.

A one-key secure scheme. We can defend against this mauling strategy by introducing an additional scalar

𝑤
r← Z𝑝 and replace [𝑠 (𝜏 − id)]1 in the ciphertext with [𝑠𝑤 (𝜏 − id)]1.3 To preserve correctness, we also include

[𝑤]1 and [𝑤𝜏]1 as part of the public key and update the secret key to be sk𝑆 = [𝛼 +𝑤 · 𝐹𝑆 (𝜏)]2. Observe that these
modifications are sufficient to recover correctness:

[𝑠𝛼]T =

ctid︷︸︸︷
[𝑠]1 ·

sk𝑆︷              ︸︸              ︷
[𝛼 +𝑤 · 𝐹𝑆 (𝜏)]2 −

ctid︷           ︸︸           ︷
[𝑠𝑤 (𝜏 − id)]1 ·

mpk︷         ︸︸         ︷
[𝐹𝑆\{id} (𝜏)]2 .

With this modification, it is possible to prove security of this scheme from a 𝑞-type assumption as long as the adversary

is restricted to making at most one key-generation query.
4
On the other hand, this scheme becomes insecure if the

3
A similar idea is used in the design of the Boneh-Boyen IBE scheme [BB04]. There, the corresponding ciphertext term is [𝑠 (𝜏 −𝑤 · id) ]1, with [𝑤 ]1
instead of [𝑤𝜏 ]1 in the public key. The prior schemes [SAA24, AFP25, CGPW25] implicitly defend against this mauling strategy by adding an

additional group element to the ciphertext. We refer to Appendix A for a more direct comparison between our construction and the previous ones.

4
Specifically, by adapting the techniques used to analyze our main constructions, we could show that this basic scheme satisfies static security
where the adversary has to commit to the challenge identity as well as its key-generation query ahead of time. We elide the details since we

view this scheme as a stepping stone to our main constructions.
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adversary can make two key-generation queries. For instance, suppose the adversary requested secret keys sk1 and

sk2 for the singleton sets 𝑆1 = {1} and 𝑆2 = {2}, respectively. In this case, 𝐹𝑆1
(𝑥) = (𝑥 − 1) and 𝐹𝑆2

(𝑥) := (𝑥 − 2).
Correspondingly, the associated secret keys are

sk1 = [𝛼 +𝑤 · (𝜏 − 1)]2
sk2 = [𝛼 +𝑤 · (𝜏 − 2)]2.

The adversary can now take a linear combination of sk1 and sk2 to obtain

sk′ = 2 ·

sk2︷                ︸︸                ︷
[𝛼 +𝑤 · (𝜏 − 2)]2 −

sk1︷                ︸︸                ︷
[𝛼 +𝑤 · (𝜏 − 1)]2 = [𝛼 +𝑤 · (𝜏 − 3)]2,

which is a secret key for the set 𝑆 ′ = {3}.

From one-key security to batched IBE. To go from a one-key scheme to a batched IBE scheme, previous

works [CGPP24, SAA24, AFP25, CGPW25] introduced the concept of a batch label tg and associated the batch label

with each decryption key. Similarly, these works also associate a batch label with each ciphertext and decryption

is only possible when the batch label associated with the decryption key matches that associated with the ciphertext.

In turn, the one-key restriction applies per batch label. Namely, the adversary is restricted to requesting at most one

key for each batch label. In some sense, using the master public key and a batch label tg, one can implicitly derive

a public key for a one-key scheme specific to tg.
This problem is reminiscent of the task of constructing vanilla identity-based encryption: the objective in IBE is to

derive identity-specific public keys and secret keys from a single master public key and master secret key, respectively.

Indeed, the previous work of [AFP25, CGPW25] can be viewed as taking a one-key-secure scheme and implicitly

composing it with the Boneh-Franklin IBE scheme [BF01]. We take a similar approach here, except for our first

construction, we integrate our one-key scheme with ideas from the Boneh-Boyen IBE scheme [BB04]. In conjunction

with several additional ideas, this will ultimately allow us to prove security in the plain model.

Recall first that in the Boneh-Boyen IBE scheme, the master secret key is 𝛼, 𝑣, ℎ
r← Z𝑝 , the master public key

is ( [𝛼]T, [𝑣]1, [ℎ]1), an encryption of message [𝑚]T for identity tg is ( [𝑠]1, [𝑠 (𝑣 + ℎ · tg)]1, [𝑠𝛼]T + [𝑚]T), and the

secret key is a pair ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ℎ · tg)]2), where 𝑠 r← Z𝑝 is the encryption randomness and 𝑟
r← Z𝑝 is the

key-generation randomness. If we integrate this structure to embed batch labels in our one-key secure scheme, we

obtain the following scheme (where the additional Boneh-Boyen elements are highlighted in green):

mpk = ( [𝑤]1, [𝑤𝜏]1, [𝑣]1, [ℎ]1, [𝜏]2, . . . , [𝜏𝐵]2, [𝛼]T)
ctid,tg = ( [𝑠]1, [𝑠𝑤 (𝜏 − id)]1, [𝑠 (𝑣 + ℎ · tg)]1, [𝑠𝛼]T + [𝑚]T)
sk𝑆,tg = ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ℎ · tg) +𝑤 · 𝐹𝑆 (𝜏)]2).

Correctness follows via the composition of correctness for our one-key scheme together with correctness of the

Boneh-Boyen IBE scheme:

[𝑠𝛼]T =

ctid,tg︷︸︸︷
[𝑠]1 ·

sk𝑆,tg︷                                  ︸︸                                  ︷
[𝛼 + 𝑟 (𝑣 + ℎ · tg) +𝑤 · 𝐹𝑆 (𝜏)]2 −

ctid,tg︷            ︸︸            ︷
[𝑠 (𝑣 + ℎ · tg)]1 ·

sk𝑆,tg︷︸︸︷
[𝑟 ]2 −

ctid,tg︷           ︸︸           ︷
[𝑠𝑤 (𝜏 − id)]1 ·

mpk︷         ︸︸         ︷
[𝐹𝑆\{id} (𝜏)]2 . (2.1)

Proving security in the plain model. We now describe our approach to proving security in the plain model. We

prove selective security (where the adversary declares the batch label tg∗ and the identity id∗ associated with the

challenge ciphertext) from the following 𝑞-type assumption:

given

(
[𝑏]1, [𝑠]1, [𝜏]1, [𝑎𝑏]1, [𝑎𝑏𝜏]1, [𝑎𝑏𝑠𝜏]1,

[𝑎]2, [𝑏]2, [𝜏]2, . . . , [𝜏𝐵]2, [𝑎𝑏𝜏]2, . . . , [𝑎𝑏𝜏𝐵]2,

)
distinguish [𝑎𝑏𝑠]T from [𝑧]T (2.2)

where 𝑎, 𝑏, 𝜏, 𝑠, 𝑧
r← Z𝑝 are random exponents. In Appendix B, we show that this assumption holds unconditionally in

the generic bilinear group model [Sho97, BBG05]. A key challenge in proving security in the plain model is designing
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a reduction strategy that has the ability to generate keys for all batch labels tg and sets 𝑆 where tg ≠ tg∗ or (tg = tg∗

and id ∉ 𝑆). To do so, our proof combines the classic Boneh-Boyen puncturing strategy (which allows the reduction to

simulate keys when tg ≠ tg∗) with a new puncturing strategy (to allow the reduction to simulate keys where tg = tg∗

but id ∉ 𝑆). We now describe our overall proof strategy:

• Consider a selective adversary A for the batched IBE security game. Algorithm A starts by committing to

the challenge batch label tg∗ and the challenge identity id∗.

• The reduction algorithm takes the challenge from Eq. (2.2) and programs tg∗ into the Boneh-Boyen parameters

(𝑣, ℎ) and id∗ into the powers-of-𝜏 . Specifically, it sets the components of the public parameters as follow:

– The reduction implicitly sets 𝑣 = 𝑣 + 𝑏 · tg∗ and ℎ = ˜ℎ − 𝑏 where 𝑣, ˜ℎ
r← Z𝑝 are random scalars chosen by

the reduction. This is the same strategy used to prove selective security of the Boneh-Boyen IBE scheme.

– The reduction implicitly sets 𝜏 = 𝜏 + id∗.
– Finally, the reduction implicitly sets𝑤 = 𝑦 · 𝑎𝑏 and 𝛼 = 𝛼 − 𝑎𝑏 where 𝛼

r← Z𝑝 and 𝑦 ∈ Z𝑝 will be specified
later.

Observe that the components given out in Eq. (2.2) allows the reduction to simulate each of these components,

and moreover, they are distributed according to the real scheme.

• To answer the key-generation queries on a batch label tg and a set 𝑆 ⊂ Z𝑝 , the reduction needs to simulate

the secret key sk𝑆,tg = ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 +ℎ · tg) +𝑤 · 𝐹𝑆 (𝜏)]2). With the implicit setting of the variables described

above, the secret key sk𝑆,tg must satisfy

sk𝑆,tg = ( [𝑟 ]2, [𝛼 − 𝑎𝑏 + 𝑟 (𝑣 + 𝑏 · tg∗ + ˜ℎ · tg − 𝑏 · tg) + 𝑦𝑎𝑏 · 𝐹𝑆 (𝜏)]2)
= ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg∗ − tg) + 𝑎𝑏 (𝑦 · 𝐹𝑆 (𝜏) − 1)]2).

(2.3)

Our first observation is to rewrite 𝐹𝑆 (𝜏) as

𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) + (𝐹𝑆 (𝜏) − 𝐹𝑆 (id∗)).

For a set 𝑆 ⊂ Z𝑝 , define the polynomial 𝐺𝑆 (𝑥) = 𝐹𝑆 (𝑥 + id∗) − 𝐹𝑆 (id∗). Since 𝜏 = 𝜏 + id∗,

𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) + (𝐹𝑆 (𝜏) − 𝐹𝑆 (id∗)) = 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏 − id∗) = 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏).

Moreover, by construction, 𝐺𝑆 (0) = 𝐹𝑆 (id∗) − 𝐹𝑆 (id∗) = 0, which means the constant term of 𝐺𝑆 is 0. This

means [𝑎𝑏 ·𝐺𝑆 (𝜏)]2 can be written as a linear combination of [𝑎𝑏𝜏]2, . . . , [𝑎𝑏𝜏𝐵]2, which are all terms given

out in the assumption. Substituting back into Eq. (2.3), we can now write

sk𝑆,tg = ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg∗ − tg) + 𝑎𝑏 (𝑦 · 𝐹𝑆 (𝜏) − 1)]2)
= ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg∗ − tg) + 𝑎𝑏 (𝑦 · 𝐹𝑆 (id∗) − 1) + 𝑎𝑏𝑦 ·𝐺𝑆 (𝜏)]2).

(2.4)

The challenge in simulating sk𝑆,tg is the fact that the reduction algorithm does not know [𝑎𝑏]2, and indeed, the as-
sumptionwould be false if the reduction could compute this term. Thus, simulating the secret keys requires a can-

cellation of the highlighted term. As argued above, simulating [𝑎𝑏𝑦 ·𝐺𝑆 (𝜏)]2 is possible using [𝑎𝑏𝜏]2, . . . , [𝑎𝑏𝜏𝐵]2
from the assumption (the reduction chooses the exponent 𝑦 itself). We now consider two cases:

– Suppose tg ≠ tg∗. In this case, we use the classic Boneh-Boyen cancellation strategy to simulate the secret

key. Namely, the reduction algorithm can sample 𝑟
r← Z𝑝 and then implicitly set

𝑟 = 𝑟 − 𝑎(tg∗ − tg)−1 (𝑦 · 𝐹𝑆 (id∗) − 1).

Observe that with setting of 𝑟 , the term 𝑟𝑏 (tg∗ − tg) will cancel out the 𝑎𝑏 (𝑦 · 𝐹𝑆 (𝜏) − 1) term in Eq. (2.4).

One can check that the remaining elements can be built from terms in the assumption (see the proof of

Theorem 4.4 for the details).
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– Suppose tg = tg∗ but id∗ ∉ 𝑆 . In this case, we cannot rely on the Boneh-Boyen cancellation anymore

because 𝑟𝑏 (tg∗ − tg) = 0. Thus, we need a new strategy to simulate 𝑎𝑏 (𝑦 · 𝐹𝑆 (id∗) − 1).

One approach is to consider a static adversary that commits to the set 𝑆 (associated with its key-generation

query on the challenge batch label tg∗) at the beginning of the security game. In this case, the reduction

algorithm can set 𝑦 = 1/𝐹𝑆 (id∗) so that 𝑎𝑏 (𝑦 · 𝐹𝑆 (id∗) − 1) = 0. Note that 𝐹𝑆 (id∗) ≠ 0 since id∗ ∉ 𝑆 .
Effectively, this approach programs the set 𝑆 associated with the key-generation query into the pub-

lic parameters. However, this approach comes at the cost of requiring the adversary to commit to its

key-generation query in advance. Ideally, we would like to avoid this.
5

To prove security against an adversary that can make make an adaptive key-generation query, we in-

troduce one more randomization term to the secret keys. Namely, when constructing a secret key for

a batch label tg and a set 𝑆 ⊂ Z𝑝 , the key-generation algorithm samples a randomization factor 𝑦
r← Z𝑝 .

The secret key sk𝑆,tg is then

sk𝑆,tg = (𝑦, [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ℎ · tg) + 𝑦𝑤 · 𝐹𝑆 (𝜏)]2).

Since 𝑦 ∈ Z𝑝 is given out in the clear, decryption is mostly unchanged from Eq. (2.1):

[𝑠𝛼]T = [𝑠]1 · [𝛼 + 𝑟 (𝑣 + ℎ · tg) + 𝑦𝑤 · 𝐹𝑆 (𝜏)]2 − [𝑠 (𝑣 + ℎ · tg)]1 · [𝑟 ]2 − 𝑦 · [𝑠𝑤 (𝜏 − id)]1 · [𝐹𝑆\{id} (𝜏)]2.

The extra scalar 𝑦 gives the reduction one additional degree of freedom. Namely, Eq. (2.4) now becomes

sk𝑆,tg = ( [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg∗ − tg) + 𝑎𝑏 (𝑦𝑦 · 𝐹𝑆 (id∗) − 1) + 𝑎𝑏𝑦𝑦 ·𝐺𝑆 (𝜏)]2).

Observe that for the challenge key, the reduction can simply set 𝑦 = 1/(𝑦 · 𝐹𝑆 (id∗)). In this case, the term

𝑎𝑏 (𝑦𝑦 · 𝐹𝑆 (𝜏) − 1) = 0. The reduction can simulate the remaining components using the terms given out

in the assumption. It remains to argue that 𝑦 has the correct distribution. This is the case because we

can show that the value of 𝑦 chosen by the reduction is information-theoretically hidden from the view

of the adversary. Thus, over the choice of 𝑦
r← Z𝑝 , the distribution of 𝑦 is correctly distributed. Observe

that this strategy only works if the adversary makes a single key-generation query for the batch label

tg∗. The reduction algorithm only has a single degree of freedom (i.e., the value 𝑦).

• To complete the reduction, the reduction algorithm needs to simulate the components of the challenge ciphertext.

With the implicit setting of the variables described above, a real ciphertext would have the following form:

ctid∗,tg∗ = ( [𝑠]1, [𝑠𝑤 (𝜏 − id∗)]1, [𝑠 (𝑣 + ℎ · tg∗)]1, [𝑠𝛼]T + [𝑚]T)
= ( [𝑠]1, [𝑦𝑎𝑏𝑠𝜏]1, [𝑠 (𝑣 + ˜ℎ · tg∗)]1, [𝛼𝑠 − 𝑎𝑏𝑠]T + [𝑚]T).

The reduction takes 𝑠 to be the corresponding elements from the assumption (see Eq. (2.2)). The first three

components of ctid∗,tg∗ can thus be constructed using the components from Eq. (2.2). The reduction algorithm

simulates the final component [𝛼𝑠 − 𝑎𝑏𝑠]T + [𝑚]T as 𝛼 · [𝑠]1 · [1]2 − [𝑧]T + [𝑚]T, where [𝑧]T is the challenge
component. When 𝑧 = 𝑎𝑏𝑠 , this perfectly simulates the real ciphertext whereas if 𝑧

r← Z𝑝 , then the ciphertexts

perfectly hide the message. This completes the security reduction.

Taken together, this construction yields a batched IBE scheme in the plain model where the ciphertexts contain 4

group elements and the secret keys contain 2 group elements and 1 field element. Compared to the previous batched

IBE and batch decryption schemes [SAA24, AFP25, CGPW25], this construction has the same ciphertext size but

slightly longer keys. However, the prior work all relied on the generic group model and the random oracle model

for the security analysis we can prove security in the plain model. We refer to Section 4 for the full description.

5
We note that requiring the adversary to have to commit to its key-generation query is technically very different from asking it to commit to

the challenge identity and batch label. Standard complexity leveraging allows us to go from a scheme that is selective in the challenge identity

and batch label to one that is adaptively secure (see Remark 3.4). However, we cannot use complexity leveraging to lift a scheme that is selective

in the set 𝑆 to one that allows the adversary to pick 𝑆 adaptively. This is because guessing the set 𝑆 would blow up the ciphertext size and

the size of the decryption keys by a factor of 𝐵, which breaks succinctness.
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Better efficiency in the generic group model. Alternatively, we can also build a scheme with better efficiency by

relying on the generic group and random oracle models. For example, take again our one-key scheme, but now, instead

of integrating batch labels via the Boneh-Boyen approach, we did so with the Boneh-Franklin approach (similar to

prior works [SAA24, AFP25, CGPW25]). Recall that in the Boneh-Franklin IBE scheme [BF01], the master secret key

is 𝛼
r← Z𝑝 , the master public key is [𝛼]1, an encryption of message [𝑚]T for identity tg is [𝑠𝛼 · 𝐻 (tg)]T + [𝑚]T, and

the secret key for tg is [𝛼 · 𝐻 (tg)]2. Here, 𝑠 r← Z𝑝 is the encryption randomness and 𝐻 is a hash function that takes

a label tg and outputs the element [𝐻 (tg)]2 in G2. If we apply this strategy to our one-key secure scheme, we arrive

at the following scheme (where the additional Boneh-Franklin elements are highlighted in green):

mpk = ( [𝑤]1, [𝑤𝜏]1, [𝛼]1, [𝜏]2, . . . , [𝜏𝐵]2)
ctid,tg = ( [𝑠]1, [𝑠𝑤 (𝜏 − id)]1, [𝑠𝛼 · 𝐻 (tg)]T + [𝑚]T)
sk𝑆,tg = [𝛼 · 𝐻 (tg) +𝑤 · 𝐹𝑆 (𝜏)]2.

Correctness follows via the composition of correctness for our one-key scheme together with correctness of the

Boneh-Franklin IBE scheme:

[𝑠𝛼 · 𝐻 (tg)]T =

ctid,tg︷︸︸︷
[𝑠]1 ·

sk𝑆,tg︷                         ︸︸                         ︷
[𝛼 · 𝐻 (tg) +𝑤 · 𝐹𝑆 (𝜏)]2 −

ctid,tg︷           ︸︸           ︷
[𝑠𝑤 (𝜏 − id)]1 ·

mpk︷         ︸︸         ︷
[𝐹𝑆\{id} (𝜏)]2 .

This immediately gives a scheme with shorter ciphertexts (3 group elements instead of 4). Following a similar recipe

as before (but using the Boneh-Franklin cancellation strategy to handle key-generation queries on tags tg ≠ tg∗),
we believe one could prove static security of this version from a 𝑞-type assumption and modeling 𝐻 as a random

oracle. Note that this would still not rely on the generic group model. If we introduce the randomizing scalar 𝑦 into

the secret key, then the same proof strategy should allow the adversary to make an adaptive key-generation query

on the challenge batch label.

On the other hand, if we want to show full adaptive security for the scheme without the additional randomizing

scalar in the secret key, then we can do so in the generic bilinear group model [Sho97, BBG05]. This yields a batched

IBE scheme where the ciphertext consists of three group elements and the secret key consists of a single group element.

Compared to the prior schemes, we save one group element in the ciphertext, one exponentiation during encryption

and one pairing during decryption (see Table 1 for details). We describe this construction and its analysis in Appendix D.

Concurrent work. In a concurrent and independent work, Fernando, Policharla, Tonkikh, and Xiang [FPTX25]

showed how to construct a (threshold) batched IBE scheme in the generic group model and the random oracle model

where the ciphertext size consists of three group elements. This is the same level of efficiency achieved by our batched

IBE scheme in the generic group and random oracle model (Corollary E.6). In addition, they show how to build a

𝐾-key threshold batched IBE scheme without batch labels (i.e., security holds as long as the adversary gets at most

𝐾 secret keys on arbitrary sets of identities). In their scheme, the CRS size scales multiplicatively with 𝐾 while the

size of the ciphertext and the secret keys remain unchanged. Their construction can be viewed as taking a one-key

scheme and compiling it to a 𝐾-key scheme. In addition, the key-generation algorithm in their construction is stateful

(i.e., secret keys are associated with an index 𝑖 ∈ [𝐾] and security assumes that the 𝐾 keys are generated with respect

to distinct indices). At a high-level, we can view their construction as including 𝐾 copies of the CRS for a one-key

secure scheme, and the 𝑖th key-generation query is generated with respect to the 𝑖th copy of the CRS for the one-key

scheme. Moreover, by relying on linearity of decryption for the underlying one-key scheme, they can retain the same

ciphertext structure as the underlying one-key scheme. The same approach is also applicable to the basic constructions

we described above to obtain schemes with 𝐾-key security (without batch labels) and stateful key-generation.

The focus of this work is on schemes that do not impose any restriction on the total number of keys the adversary

can request; instead, as in prior work [CGPP24, AFP25, CGPW25], we restrict the adversary to a single key (or up

to 𝐾 keys; see Section 2.1) per batch label. In addition, our primary goal in this work is to give constructions with

security in the plain model, and our work gives the first pairing-based constructions of (threshold) batched IBE with

security in the plain model. The work of [FPTX25] relies on both the generic group model and the random oracle

model. In addition, we show how to construct a threshold scheme with silent setup (also in the plain model). The

threshold scheme from [FPTX25] relies on a central setup to generate the individual decryption key shares.
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2.1 Extensions to the Base Scheme
The algebraic structure of our batched IBE scheme is directly amenable to a number of extensions. We survey some

of the main results here.

Giving out multiple keys with the same batch label. Like previous constructions [CGPP24, AFP25, CGPW25],

our basic scheme only guarantees security against adversaries that can request a single key for each batch label.

A stronger security notion would allow an adversary to request an arbitrary number of keys for each batch label.

In this case, there is no longer a need for batch labels. Currently, the only constructions that support this capa-

bility either rely on lattice-based attribute-based encryption [BLT25] or are limited to a polynomial-size identity

space [BFOQ25, BCF
+
25].

While it is unclear how to modify our scheme to support an arbitrary number of keys per batch label, it is

straightforward to support giving out an a priori bounded number of keys for each batch label. Specifically, if 𝐾 is the

collusion bound (i.e., the number of keys we need to give out for each batch label), then we can obtain a scheme that

allows the adversary to make up to 𝐾 key-generation queries on the challenge batch label at the cost of increasing

the secret keys by 𝐾 field elements, the ciphertext by 𝐾 group elements, and the public key by 2𝐾 group elements.

The basic idea in our construction is to replace the single scalar 𝑤 in the previous construction with a vector

w ∈ Z𝐾𝑝 . Then, the secret key and the ciphertexts are defined as follows:

sk𝑆,tg := (y, [𝑟 ]2, [𝛼 + 𝑟 (𝑣 + ℎ · tg) + yTw · 𝐹𝑆 (𝜏)]2)
ctid,tg := ( [𝑠]1, [𝑠w(𝜏 − id)]1, [𝑠 (𝑣 + ℎ · tg)]1, [𝑠𝛼]T + [𝑚]T),

where y r← Z𝐾𝑝 in the secret key. The main property we require in the security analysis is that if y1, . . . , y𝐾 ∈ Z𝐾𝑝
are linearly-independent vectors, then the values of wTy1, . . . ,wTy𝐾 are uniform and independent over Z𝑝 when

w r← Z𝐾𝑝 . This 𝐾-wise independence property enables security against 𝐾-collusions (i.e., an adversary that has 𝐾

keys for a particular batch label). We describe this construction in Appendix C.

Thresholdizing the scheme. In a threshold batched IBE scheme [AFP25], the master secret key msk is instead
secret shared across 𝐿 different authorities. Each authority holds a share msk𝑖 of the master secret key. Using msk𝑖 ,
the authority can give out a share of the decryption key sk𝑆,tg,𝑖 for any batch label tg and set 𝑆 . Finally, given the

decryption key shares {sk𝑆,tg,𝑖 }𝑖∈𝑆 ′ for a sufficiently-large set 𝑆 ′ ⊆ 𝑆 , one can decrypt the ciphertext and recover the

underlying message.

Similar to [AFP25], it is straightforward to obtain a threshold version of the scheme. For simplicity, we first

describe the approach for the basic one-key secure scheme (without batch labels). Recall in that scheme that the

master secret key is (𝛼,𝑤). To obtain a threshold version, we simply secret share 𝛼 and𝑤 . Concretely, for a threshold

𝑇 , let (𝛼1, . . . , 𝛼𝐿) be a 𝑇 -out-of-𝐿 Shamir secret sharing of 𝛼 and (𝑤1, . . . ,𝑤𝐿) be a 𝑇 -out-of-𝐿 Shamir secret sharing

of𝑤 . We now enumerate the scheme components (using the same syntax as before):

msk = (𝛼,𝑤)
mpk = ( [𝑤]1, [𝑤𝜏]1, [𝜏]1, [𝜏]2, . . . , [𝜏𝐵]2, [𝛼]T)

sk𝑆,ℓ = [𝛼𝑖 +𝑤𝑖 · 𝐹𝑆 (𝜏)]2
ctid = ( [𝑠]1, [𝑠𝑤 (𝜏 − id)]1, [𝑠𝛼]T + [𝑚]T).

Given a collection of secret keys {sk𝑆,ℓ }ℓ∈𝑈 for a set 𝑆 where |𝑈 | ≥ 𝑇 and a ciphertext encrypted to an identity

id ∈ 𝑆 , the decryption algorithm first computing the reconstruction coefficients 𝜔ℓ ∈ Z𝑝 where
∑
ℓ∈𝑈 𝜔ℓ𝛼ℓ = 𝛼 and∑

ℓ∈𝑈 𝜔ℓ𝑤ℓ = 𝑤 . Then, the decryption algorithm computes

[𝑠𝛼]T =

©­­­«
∑︁
ℓ∈𝑈

𝜔ℓ ·

ctid︷︸︸︷
[𝑠]1 ·

sk𝑆,ℓ︷                ︸︸                ︷
[𝛼ℓ +𝑤ℓ · 𝐹𝑆 (𝜏)]2

ª®®®¬ −
ctid︷           ︸︸           ︷

[𝑠𝑤 (𝜏 − id)]1 ·

mpk︷         ︸︸         ︷
[𝐹𝑆\{id} (𝜏)]2 .

We can now extend to a threshold batched IBE by introducing the batch label as we described previously. Note that

this basic approach for thresholding is not compatible with the randomizing scalar 𝑦 we introduced to handle adaptive
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key-generation queries on the challenge batch label in the security proof (for correctness, the different decrypters

would need to choose the same 𝑦 when generating key). Thus, we can only apply this technique to our batched IBE

scheme in the generic group model (Construction D.1) that does not need randomization scalars or the variant of our

first scheme (Construction 4.2) without the randomizing scalars. In the latter case, we would work in a static security

model where the adversary has to declare its key-generation query for the challenge batch label in advance. We refer to

Appendix E for the formal description for getting a batched threshold encryption scheme in the generic group model.

A caveat of this thresholding approach is that we only achieve security in a model where the adversary needs

to specify the same set of identities 𝑆 to every decryption authority for a given batch label tg. A stronger requirement

would allow the adversary to ask 𝐾 decryption authorities to issue a key share for different sets 𝑆1, . . . , 𝑆𝐿 on batch

label tg. Note that each decryption authority still only gives out a single key with batch label tg. The more restricted

notion (considered in [AFP25]) would require decrypters to coordinate so as to never inadvertently release decryption

key shares for different sets with respect to the same batch label. The stronger definition is more natural for threshold

settings in that decryption authorities can operate independently. As we discuss more in Section 5 and Remark 5.3, our

techniques for construction threshold batched IBE with silent setup (discussed in more detail below) simultaneously

achieves this stronger security notion.

Supporting silent thresholds. In the basic threshold batched IBE scheme, we would need to either assume

a trusted dealer generates the shares of the master secret key mskℓ for each authority, or alternatively, that the

authorities engage in an interactive (and oftentimes, computationally expensive [TCZ
+
20]) distributed key-generation

protocol to jointly sample their keys. A line of recent works [RSY21, GKPW24, ADM
+
24, DJWW25, WW25a] have

introduced an appealing alternative model of threshold cryptography with a full non-interactive setup phase. In this

model, users can independently choose a public key pk and secret key sk. Then, there is a public and deterministic

aggregation algorithm that takes any set of public keys {pkℓ }ℓ∈[𝐿] and aggregates them into a short public key mpk.
The aggregated public key mpk now functions as the public key for a threshold batch decryption scheme where the

individual user secret keys sk1, . . . , sk𝐿 play the role of key shares. Threshold encryption with silent setup is part of an

extensive line of recent works focused on realizing advanced encryption capabilities without a trusted authority. Simi-

lar notions in this line of work include registration-based encryption [GHMR18, GHM
+
19, DKL

+
23, GKMR23, FKdP23],

registered attribute-based encryption [HLWW23, ZZGQ23, FWW23, CHW25, WW25b], registered functional en-

cryption [FFM
+
23, DPY24], and distributed broadcast encryption [WQZD10, BZ14, KMW23, CW24].

Very recently, the work of [BCF
+
25] show how to construct a threshold batch decryption scheme from pairings

by integrating the batch decryption scheme from [BFOQ25] with the threshold encryption scheme with silent setup

from [GKPW24]. This construction essentially gives a threshold batched IBE scheme where (1) the identity space has

polynomial size; (2) the ciphertexts contain𝑂 (𝜆/log 𝜆) group elements; and (3) security relies on the generic group (and

random oracle model). In this work, we show how to integrate our batched IBE scheme with the recent silent threshold

IBE scheme from [WW25a] to obtain a threshold batched IBE schemewith silent setup that improves upon each of these

axis. Namely, (1) our scheme supports arbitrary identities (but with batch labels); ciphertexts contain a constant number

of group elements; and (3) security is based on a 𝑞-type assumption in the plain model. On the other hand, the public

parameters in our scheme contain𝑂 (𝐿𝐵) group elements where 𝐿 is themaximumnumber of users in a decryption com-

mittee, and 𝐵 is the batch size. The work of [BCF
+
25] requires public parameters with𝑂 (𝜆𝐿/log 𝜆+𝐵) group elements.

One way to view our construction is to again start with our one-key scheme, but now we integrate it with the

threshold IBE scheme with silent setup from [WW25a] (which shares a similar structure with pairing-based broadcast

encryption [BGW05]). For simplicity, we show how the main ideas apply to the one-key scheme. We refer to Section 5

for the full construction and analysis:

• Public parameters: Let 𝐵 be the batch size, 𝐿 be the size of a decryption committee, and 𝑇 be the desired

threshold.
6
The public parameters now contain an additional set of group elements [𝑐]1, [𝑐2]1, . . . , [𝑐2𝐿]1 that

will be used to aggregate individual user public keys. In addition, it will also contain cross terms [𝑐𝑖𝜏 𝑗 ]1 and
[𝑐𝑖𝜏 𝑗 ]2 for all 𝑖 ∈ [2𝐿] and 𝑗 ∈ [0, 𝐵]. In addition, let 𝑡

r← Z𝑝 be a target value and let 𝑡1, . . . , 𝑡𝐿 ∈ Z𝑝 be a

6
We believe we can extend our scheme to support dynamic thresholds (where the threshold is declared at encryption time) via the powers-of-two

strategy from [WW25a] (see Remark 5.10). This incurs logarithmic overhead in the size of the public parameters. For ease of exposition in

this work, we just focus on the setting of a fixed threshold, which captures the main technical challenge of supporting silent setup.
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𝑇 -out-of-𝑁 Shamir secret sharing of 𝑡 . Following [WW25a], let 𝑧0 =
∑
ℓ∈[𝐿] 𝑐

ℓ𝑡ℓ be the aggregated shares. The
public parameters now contain

pp = ({[𝑐ℓ𝜏 𝑗 ]1, [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[0,2𝐿],𝜏∈[0,𝐵 ], [𝑐𝐿+1𝑡]T, [𝑧0]2, {[𝑐𝐿+1−ℓ+𝑖𝑡𝑖 ]2}𝑖∈[𝐿],ℓ≠𝑖 ).

In the full construction (Construction 5.5), we pre-aggregate the cross terms [𝑐𝐿+1−ℓ+𝑖𝑡𝑖 ]2 to obtain shorter

public parameters (of size 𝑂 (𝐿𝐵) rather than 𝑂 (𝐿2 + 𝐿𝐵)). For ease of exposition, we elide this step here.

• User key generation: Each user samples their own secret key 𝛼ℓ ,𝑤ℓ
r← Z𝑝 for the underlying one-key scheme.

Their public key is ( [𝑐𝐿+1𝛼ℓ ]T, [𝑤ℓ ]1). In addition, they also publish a collection of cross terms [𝑐𝑖𝛼ℓ ]2, [𝑐𝑖𝑤ℓ𝜏 𝑗 ]2
for all 𝑖 ∈ [2𝐿] \ {𝐿 + 1} and 𝑗 ∈ [0, 𝐵] that will be used to aggregate public keys.

• Key aggregation: Take any collection of public keys {([𝛼ℓ𝑐𝐿+1]T, [𝑤ℓ ]1)}ℓ∈[𝐿] together with their aggregation

hints. We define the aggregated key components to be

[𝑧]2 =
∑︁
ℓ∈[𝐿]
[𝑐ℓ (𝑡ℓ + 𝛼ℓ )]2 and [𝑤]2 =

∑︁
ℓ∈[𝐿]
[𝑐ℓ𝑤ℓ ]2 and [𝑤𝜏]2 =

∑︁
ℓ∈[𝐿]
[𝑐ℓ𝑤ℓ𝜏]2 .

All of these components can be computed using the public parameters [𝑧0]2 and each user’s public aggregation

components [𝑐ℓ𝛼ℓ ]2, [𝑐ℓ𝑤ℓ ]2, and [𝑐ℓ𝑤ℓ𝜏]2.

• Decryption share computation: Each user issues decryption shares in a similar manner as in the underlying

one-key scheme. Namely, if the user’s secret key is (𝛼ℓ ,𝑤ℓ ), then the decryption share for a set 𝑆 ⊂ Z𝑝 is

sk𝑆,ℓ = [𝑐𝐿+1 (𝛼ℓ +𝑤ℓ · 𝐹𝑆 (𝜏))]2.

• Encryption: To encrypt [𝑚]T with respect to identity id ∈ Z𝑝 , the encrypter samples 𝑠
r← Z𝑝 and then

constructs

ctid = ( [𝑠]1, [𝑠𝑤 (𝜏 − id)]2, [𝑠𝑧]2, [𝑠𝑐𝐿+1𝑡]T + [𝑚]T).

• Decryption: Take any collection of decryption shares for sk𝑆,ℓ for ℓ ∈ 𝑈 ⊆ [𝐿] where |𝑈 | > 𝑇 . The decrypter
computes for each ℓ ∈ 𝑈 :

ctid︷︸︸︷
[𝑠]1 ·

sk𝑆,ℓ︷                         ︸︸                         ︷
[𝑐𝐿+1 (𝛼ℓ +𝑤ℓ · 𝐹𝑆 (𝜏))]2 −

pp︷                  ︸︸                  ︷
[𝑐𝐿+1−ℓ𝐹𝑆\{id} (𝜏)]1 ·

ctid︷           ︸︸           ︷
[𝑠𝑤 (𝜏 − id)]2 .

Since𝑤 =
∑
𝑖∈[𝐿] 𝑐

𝑖𝑤𝑖 , this means

𝑐𝐿+1−ℓ𝐹𝑆\id (𝜏) · 𝑠𝑤 (𝜏 − id) = 𝑐𝐿+1𝑠𝑤ℓ𝐹𝑆 (𝜏) +
∑︁
𝑖≠ℓ

𝑐𝐿+1−ℓ+𝑖𝑠𝑤𝑖𝐹𝑆 (𝜏).

The decrypter now computes

[𝑐𝐿+1−ℓ+𝑖𝑠𝑤𝑖𝐹𝑆 (𝜏)]T =

ctid︷︸︸︷
[𝑠]1 ·

pk𝑖︷             ︸︸             ︷
[𝑐𝐿+1−ℓ+𝑖𝑤𝑖𝜏 𝑗 ]2 .

Taken together, the decrypter is able to obtain [𝑐𝐿+1𝑠𝛼ℓ ]T for all ℓ ∈ 𝑈 . Next, using the fact that 𝑧 =
∑
𝑖∈[𝐿] 𝑐

𝑖 (𝑡𝑖 +
𝛼𝑖 ), the decrypter can compute for each ℓ ∈ 𝑈

pp︷    ︸︸    ︷
[𝑐𝐿+1−ℓ ]1 ·

ctid︷︸︸︷
[𝑠𝑧]2 = [𝑐𝐿+1𝑠 (𝑡ℓ + 𝛼ℓ )]T +

∑︁
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖𝑠 (𝑡𝑖 + 𝛼𝑖 )]T .

Again, using the cross terms, the decrypter can compute for all 𝑖 ≠ ℓ ,

[𝑐𝐿+1−ℓ+𝑖𝑠 (𝑡𝑖 + 𝛼𝑖 )]T =

ctid︷︸︸︷
[𝑠]1 ·

pp︷         ︸︸         ︷
[𝑐𝐿+1−ℓ+𝑖𝑡𝑖 ]2 +

ctid︷︸︸︷
[𝑠]1 ·

pk𝑖︷          ︸︸          ︷
[𝑐𝐿+1−ℓ+𝑖𝛼𝑖 ]2
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Taken together, the decrypter now obtains [𝑐𝐿+1𝑠 (𝑡ℓ +𝛼ℓ )]T for all ℓ ∈ 𝑈 . From above, the decrypter has already

computed [𝑐𝐿+1𝑠𝛼ℓ ]T for all ℓ ∈ 𝑈 , so in total, the decrypter obtains [𝑠𝑐𝐿+1𝑡ℓ ]T for each ℓ ∈ 𝑈 . Since 𝑡1, . . . , 𝑡𝑁 is

a𝑇 -out-of-𝑁 secret sharing of 𝑡 , as long as |𝑈 | ≥ 𝑇 , the decrypter can now recover [𝑠𝑐𝐿+1𝑡]T, which is sufficient

to recover the message.

The basic approach here illustrates howwe can incorporate the aggregation and silent setupmechanism from [WW25a]

into our batched IBE scheme to support a silent setup functionality. We refer to Section 5 for the description of the full

scheme (which includes both the batch labels as well as the per-key randomization term needed to prove security).

3 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write

[𝑛] := {1, . . . , 𝑛}. For a set 𝑆 , we write {𝑥𝑖 }𝑖∈𝑆 to denote the set of pairs {(𝑖, 𝑥𝑖 )}𝑖∈𝑆 . For a finite set 𝑆 , we write 𝑥 r← 𝑆

to denote that 𝑥 is sampled uniformly at random from 𝑆 . We write poly(𝜆) to denote a function that is bounded

by a fixed polynomial in 𝜆. We write negl(𝜆) to denote a function that is 𝑜 (𝜆−𝑐 ) for all constants 𝑐 ∈ N. We say

an event E𝜆 (indexed by a security parameter) happens with overwhelming probability if it occurs with probability

1 − negl(𝜆). We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We

say two distributions are computationally indistinguishable if no efficient adversary can distinguish them except

with negligible probability. We say they are statistically indistinguishable if their statistical distance is bounded by a

negligible function. Throughout, we use boldface lowercase letters (e.g., u, v) to denote vectors and boldface uppercase
letters (e.g., A,B) to denote matrices. We use non-boldface letters to denote their components (e.g., v = [𝑣1, . . . , 𝑣𝑛]).

Prime-order pairing groups. Throughout this work, we use prime-order asymmetric pairing groups, which we

define formally below:

Definition 3.1 (Prime-Order Pairing Group). An asymmetric prime-order pairing group consists of an efficient

algorithm GroupGen that takes as input the security parameter 1
𝜆
and outputs the description of a pairing group

G := (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) where G1,G2,GT are cyclic groups of prime order 𝑝 > 2
𝜆
, 𝑒 : G1 × G2 → GT is a non-

degenerate bilinear map, and 𝑔1 ∈ G1 and 𝑔2 ∈ G2 are generators of G1 and G2, respectively. The group operation

in G1,G2,GT as well as the pairing 𝑒 are all efficiently-computable. For convenience, we will sometimes assume that

there is a fixed function 𝑝 = 𝑝 (𝜆) such that GroupGen(1𝜆) always outputs a group with order 𝑝 (𝜆).

Implicit notation. We describe group elements using implicit notation [EHK
+
13]. Specifically, for a pairing group

G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) and amatrixM ∈ Z𝑛×𝑚𝑝 , wewrite [M]1 := 𝑔M
1
∈ GM

1
to denote thematrix of group elements

where exponentiation is applied component-wise to the elements of the matrix. We define [M]2 := 𝑔M
2
and [M]T :=

𝑒 (𝑔1, 𝑔2)M. For matricesA,B and 𝑠 ∈ {1, 2, T}, we write [A]𝑠± [B]𝑠 := [A±B]𝑠 andA · [B]𝑠 := [A]𝑠 ·B = [AB]𝑠 . Finally,
we write [A]1 · [B]2 = [AB]T, where the individual components of the product [AB]T are computed using the pairing.

Linear secret sharing for threshold policies. A linear secret sharing scheme for 𝑇 -out-of-𝑁 threshold policy

over Z𝑝 can be described by a share-generation matrix M ∈ Z𝑁×𝑇𝑝 with the following properties:

• For every set𝑈 ⊆ [𝑁 ] of size ≥ 𝑇 , there exists a vector 𝝎 ∈ Z𝑁𝑝 where 𝝎TM = eT𝑖 and 𝜔𝑖 = 0 for 𝑖 ∉ 𝑈 .

• For every set 𝑈 ⊆ [𝑁 ] of size < 𝑇 , there exists a vector w ∈ Z𝑇𝑝 such that 𝑤1 = 1 and mT
𝑖w = 0 for all 𝑖 ∈ 𝑈

where mT
𝑖 is the 𝑖

th
row ofM.

To share a secret 𝛼 ∈ Z𝑝 , we sample 𝑣2, . . . , 𝑣𝑇 ← Z𝑝 and set v = (𝛼, 𝑣2, . . . , 𝑣𝑇 )T. Then mT
𝑖v is the share belonging

to 𝑖th party. The classic Shamir secret sharing scheme [Sha79] satisfies this property whenever 𝑁 < 𝑝 . Concretely,

we would take the matrix M to be a Vandermonde matrix associated with the interpolation points [𝑁 ].
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Batched identity-based encryption. Next, we recall the formal definition of batched identity-based encryption

(IBE) from [AFP25].

Definition 3.2 (Batched Identity-Based Encryption [AFP25]). A batched identity-based encryption schemeΠBatchIBE is

a tuple of efficient algorithms ΠBatchIBE = (Setup,KeyGen, Encrypt,Digest,ComputeKey,Decrypt) with the following
syntax:

• Setup(1𝜆) → pp: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a set of public parameters

pp. We assume that the public parameters (implicitly) specifies the message spaceM, identity space I, and
batch label space T for the encryption scheme.

• KeyGen(pp, 1𝐵) → (mpk,msk): On input the public parameters pp and an upper bound on the batch size 𝐵,

the key-generation algorithm outputs a master public key mpk and a master secret key msk. We assume that

mpk and msk also include an implicit description of the message spaceM, identity space I, and batch label

space T (from pp).

• Encrypt(mpk,𝑚, id, tg) → ct: On input the master public key mpk, a message𝑚 ∈ M, an identity id ∈ I, and
a batch label tg ∈ T , the encryption algorithm outputs a ciphertext ct.

• Digest(mpk, 𝑆) → dig: On input the master public key mpk and a set of identities 𝑆 , the digest algorithm

outputs a digest dig. This algorithm is deterministic.

• ComputeKey(msk, dig, tg) → sk: On input the master secret key msk, a digest dig, and a batch label tg, the
key-computation algorithm outputs a secret key sk associated with dig and tg.

• Decrypt(mpk, sk, 𝑆, (id, tg), ct) →𝑚: On input the master public key mpk, a secret key sk, a set of identities
𝑆 , an identity-label pair (id, tg), and a ciphertext ct, the decryption algorithm outputs a message𝑚 ∈ M (or

possibly a special symbol ⊥ to indicate decryption failed). This algorithm is deterministic.

We require ΠBatchIBE satisfy the following properties:

• Correctness: For all 𝜆, 𝐵 ∈ N, all public parameters pp in the support of Setup(1𝜆), all messages𝑚 ∈ M,

identities id ∈ I, and batch labels tg ∈ T (whereM,I,T are the message, identity, and batch label spaces

associated with pp, respectively), all sets 𝑆 ⊆ I of size 𝐵 where id∗ ∈ 𝑆 , we have

Pr

Decrypt(mpk, sk, 𝑆, (id, tg), ct) =𝑚 :

(mpk,msk) ← KeyGen(pp, 1𝐵)
ct← Encrypt(mpk,𝑚, id, tg)

dig = Digest(mpk, 𝑆)
sk← ComputeKey(msk, dig, tg)

 = 1.

• Adaptive security: For a security parameter 𝜆, a batch size 𝐵, a bit 𝛽 ∈ {0, 1}, and an adversary A, we define

the batched IBE security game as follows:

– The challenger starts by computing pp ← Setup(1𝜆) and (mpk,msk) ← KeyGen(pp, 1𝐵). It gives

(1𝜆, 1𝐵, pp,mpk) toA. LetM,I,T be the message space, identity space, and batch label space associated

with pp.

– Algorithm A can now make key-computation queries. On each query, algorithm A specifies a set

𝑆 ⊆ I where |𝑆 | ≤ 𝐵 and a batch label tg ∈ T . The challenger replies with the secret key sk ←
ComputeKey(msk,Digest(mpk, 𝑆), tg).

– After A is finished making key-computation queries, it outputs two messages 𝑚0,𝑚1 ∈ M and a

challenge identity-label pair (id∗, tg∗). The challenger responds with a challenge ciphertext ct ←
Encrypt(mpk,𝑚𝛽 , id∗, tg∗).

– Algorithm A can continue to make key-computation queries. The challenger answers the queries exactly

as before.
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– At the end of the game, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible if the following two conditions hold:

– Algorithm A makes at most one key-computation query on the challenge batch label tg∗.

– Algorithm A does not make a key-computation query on a pair (𝑆, tg) where tg = tg∗ and id∗ ∈ 𝑆 .

We say ΠBatchIBE is secure if for all polynomials 𝐵 = 𝐵(𝜆) and all efficient and admissible adversaries A, there

exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝛽 ′ = 1 : 𝛽 = 0] − Pr[𝛽 ′ = 1 : 𝛽 = 1] | = negl(𝜆) (3.1)

in the above security game. We say ΠBatchIBE is secure for a specific batch size 𝐵 = 𝐵(𝜆) if the above holds for
the specific function 𝐵.

• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝐵 ∈ N, all public parameters pp
in the support of Setup(1𝜆), all (mpk,msk) in the support of KeyGen(pp, 1𝐵), all digests dig in the support of

Digest(mpk, ·), and all batch labels tg ∈ T (where T is the batch label space associated with pp), the running
time of ComputeKey(msk, dig, tg) and the size of the digest dig is poly(𝜆) and in particular, independent of 𝐵.

Definition 3.3 (Selective Security). For a batched IBE scheme ΠBatchIBE, we define the selective security game exactly

as we defined the adaptive security game in Definition 3.2, except we require that the adversary declare the challenge

identity id∗ and the challenge batch label tg∗ at the beginning of the security game (i.e., after seeing the public

parameters pp output by Setup, but before seeing the master public key output by KeyGen). Then, we say that

ΠBatchIBE is selectively secure if for all polynomials 𝐵 = 𝐵(𝜆) and all efficient and admissible adversaries A, the

adversary’s advantage in the selective security game (i.e., the analog of Eq. (3.1)) is negligible. We say that ΠBatchIBE
is selectively secure for a specific batch size 𝐵 = 𝐵(𝜆) if this holds for the specific function 𝐵.

Remark 3.4 (Adaptive Security via Complexity Leveraging). Our notion of selective security essentially coincides

with the usual notion of selective security for vanilla identity-based encryption [CHK03, BB04] (where the adversary

has to declare its challenge identity at the beginning of the security game). As in the standard case of IBE, we can

achieve full adaptive security by complexity leveraging and relying on sub-exponential hardness of the underlying

computational assumption. With complexity leveraging, the reduction algorithm would guess the challenge identity

id∗ and the challenge batch label tg∗ at the beginning of the security game.

4 Batched Identity-Based Encryption
In this section, we give our construction of batched identity-based encryption scheme [AFP25] from bilinear maps.

We prove security from a 𝑞-type assumption over prime-order asymmetric pairing groups. Our assumption is a

variant of the bilinear Diffie-Hellman exponent assumption from [BBG05, BGW05]. In Appendix B, we show this

assumption holds in the standard generic bilinear group model [Sho97, BBG05]. We now state the assumption we

use and then give our construction and security analysis.

Assumption 4.1 (𝑁 -Bilinear Diffie-Hellman Exponent Variant). LetGroupGen be a prime-order bilinear group gener-

ator. For a security parameter 𝜆, a parameter 𝑁 ∈ N, and a bit 𝛽 ∈ {0, 1}, we define the distribution D𝜆,𝑁 ,𝛽 as follows:

• Sample G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆). Sample exponents 𝑎, 𝑏, 𝑠, 𝜏
r← Z𝑝 . Define

params =
(

1
𝜆,G, [𝑏]1, [𝑠]1, [𝜏]1, [𝑎𝑏]1, [𝑎𝑏𝜏]1, [𝑎𝑏𝑠𝜏]1,

[𝑎]2, [𝑏]2, [𝜏]2, . . . , [𝜏𝑁 ]2, [𝑎𝑏𝜏]2, . . . , [𝑎𝑏𝜏𝑁 ]2,

)
. (4.1)

• If 𝛽 = 0, let 𝑧 = 𝑎𝑏𝑠 ∈ Z𝑝 and if 𝛽 = 1, sample 𝑧
r← Z𝑝 . Output (params, [𝑧]T).

We say Assumption 4.1 holds with respect to GroupGen and parameter 𝑁 = 𝑁 (𝜆) if the distributions D0 =

{D𝜆,𝑁 (𝜆),0}𝜆∈N and D1 = {D𝜆,𝑁 (𝜆),1}𝜆∈N are computationally indistinguishable.
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Construction 4.2 (Batched Identity-Based Encryption). Let GroupGen be a prime-order bilinear group generator.

We construct a batched IBE scheme ΠBatchIBE = (Setup,KeyGen, Encrypt,Digest,ComputeKey,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ←
GroupGen(1𝜆) and outputs the public parameters pp = G. The message space associated with pp is GT, the

identity space is Z𝑝 , and the batch label space is Z𝑝 .

• KeyGen(pp, 1𝐵): On input the public parameters pp = G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) and a bound on the batch

size 𝐵, the key-generation algorithm samples exponents 𝜏,𝑤, 𝑣, ℎ, 𝛼
r← Z𝑝 and outputs the master public key

mpk =
(
G , [𝜏]1 , [𝜏]2 , [𝜏2]2 , . . . , [𝜏𝐵]2 , [𝑤]1 , [𝑤𝜏]1 , [𝑣]1 , [ℎ]1 , [𝛼]T

)
(4.2)

and the master secret key msk = (𝑤, 𝑣, ℎ, 𝛼).

• Encrypt(mpk, [𝑚]T, id, tg): On input the master public key mpk (parsed according to Eq. (4.2)), a message

[𝑚]T ∈ GT, an identity id ∈ Z𝑝 , and a batch label tg ∈ Z𝑝 , the encryption algorithm samples 𝑠
r← Z𝑝 . It then

outputs the ciphertext

ct =
(
[𝑠]1 , 𝑠 [𝑤𝜏]1 − (𝑠 · id) [𝑤]1 , 𝑠 ( [𝑣]1 + tg · [ℎ]1) , 𝑠 [𝛼]T + [𝑚]T

)
=
(
[𝑠]1 , [𝑠𝑤 (𝜏 − id)]1 , [𝑠 (𝑣 + ℎ · tg)]1 , [𝑠𝛼]T + [𝑚]T

)
.

• Digest(mpk, 𝑆): On input the master public key mpk (parsed according to Eq. (4.2)) and a set of identities

𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵, the digest algorithm defines the polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id) whose roots are the
identities id ∈ 𝑆 . Write 𝐹𝑆 (𝑥) =

∑
𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥

𝑖
. Output the digest

dig =
∑︁

𝑖∈[0, |𝑆 | ]
𝑓𝑖 · [𝜏𝑖 ]2 = [𝐹𝑆 (𝜏)]2 .

• ComputeKey(msk, dig, tg): On input the master secret key msk = (𝑤, 𝑣, ℎ, 𝛼), a digest dig = [𝑑]2, and a batch

label tg ∈ Z𝑝 , the key-computation algorithm samples random 𝑟
r← Z𝑝 and 𝑦

r← Z∗𝑝 and outputs the secret key

sk =
(
𝑦 , [𝑟 ]2 , [𝛼 + 𝑟 (𝑣 + ℎ · tg)]2 + 𝑦𝑤 · [𝑑]2

)
.

• Decrypt(mpk, sk, 𝑆, (id, tg), ct): On input the master public keympk (parsed according to Eq. (4.2)), a secret key
sk = (𝑦, [𝑢1]2, [𝑢2]2), the set of identities 𝑆 ⊆ Z𝑝 , an identity id ∈ 𝑆 , a batch label tg ∈ Z𝑝 , and the ciphertext

ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T), the decryption algorithm proceeds as follows:

– First, it defines the polynomial

𝐹𝑆\{id} (𝑥) =
∏

id′∈𝑆\{id}
(𝑥 − id′).

Compute [𝐹𝑆\{id} (𝜏)]2 =
∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖 [𝜏𝑖 ]2, where 𝐹𝑆\{id} (𝑥) =

∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖𝑥

𝑖
.

– Then it computes and outputs

[ct4]T −
(
( [ct1]1 · [𝑢2]2) − (𝑦 · [ct2]1 · [𝐹𝑆\{id} (𝜏)]2) − ([ct3]1 · [𝑢1]2)

)
. (4.3)

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Proof. Take any 𝜆, 𝐵 ∈ N and any G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) in the support of GroupGen(1𝜆). Take any [𝑚]T ∈ GT,

any id∗ ∈ Z𝑝 , batch label tg∗ ∈ Z𝑝 , set 𝑆 ⊆ Z𝑝 of size at most 𝐵 where id∗ ∈ 𝑆 . Sample (mpk,msk) ← KeyGen(pp, 1𝐵)
and ct ← Encrypt(mpk, [𝑚]T, id∗, tg∗). Compute dig = Digest(mpk, 𝑆) and sk = ComputeKey(msk, dig, tg∗). By
construction, this means

mpk =
(
G, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [𝑤]1, [𝑤𝜏]1, [𝑣]1, [ℎ]1, [𝛼]T

)
ct =

(
[𝑠]1, [𝑠𝑤 (𝜏 − id∗)]1, [𝑠 (𝑣 + ℎ · tg∗)]1, [𝑠𝛼]T + [𝑚]T

)
sk =

(
𝑦, [𝑟 ]2, [𝛼 + 𝑦𝑤 · 𝐹𝑆 (𝜏) + (𝑣 + ℎ · tg∗)𝑟 ]2

)
,
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where 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Consider now Decrypt(mpk, sk, 𝑆, (id∗, tg∗), ct). If we write sk = (𝑦, [𝑢1]2, [𝑢2]) and
ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T), then the decryption algorithm computes

ct1 · 𝑢2 = 𝛼𝑠 + 𝑠𝑦𝑤 · 𝐹𝑆 (𝜏) + 𝑟𝑠 (𝑣 + ℎ · tg∗)

𝑦 · ct2 · 𝐹𝑆\{id∗ } (𝜏) = 𝑠𝑦𝑤 (𝜏 − id∗) ·
∏

id∈𝑆\{id∗ }
(𝜏 − id) = 𝑠𝑦𝑤 ·

∏
id∈𝑆
(𝜏 − id) = 𝑠𝑦𝑤 · 𝐹𝑆 (𝜏)

ct3 · 𝑢1 = 𝑟𝑠 (𝑣 + ℎ · tg∗).

This means

ct1 · 𝑢2 − 𝑦 · ct2 · 𝐹𝑆\{id∗ } (𝜏) − ct3 · 𝑢1 = 𝛼𝑠 + 𝑠𝑦𝑤 · 𝐹𝑆 (𝜏) + 𝑟𝑠 (𝑣 + ℎ · tg∗) − 𝑠𝑦𝑤 · 𝐹𝑆 (𝜏) − 𝑟𝑠 (𝑣 + ℎ · tg∗) = 𝛼𝑠.

The decryption relation (Eq. (4.3)) now yields:

[ct4 − (ct1 · 𝑢2 − 𝑦 · ct2 · 𝐹𝑆\{id∗ } (𝜏) − ct3 · 𝑢1)]T = [𝑠𝛼 +𝑚 − 𝛼𝑠]T = [𝑚]T

and correctness holds. □

Theorem 4.4 (Selective Security). Take any polynomial 𝐵 = 𝐵(𝜆) and suppose Assumption 4.1 with parameter 𝐵 holds
with respect to GroupGen. Then, Construction 4.2 is selectively secure for batch size 𝐵.

Proof. Let A be an efficient and admissible adversary for the selective security experiment for Construction 4.2 with

batch size 𝐵. We define a simple sequence of hybrid experiments, each indexed by a bit 𝛽 ∈ {0, 1}:

• Hyb(𝛽 )
0

: This is the selective batched IBE security game with bit 𝛽 .

• Hyb(𝛽 )
1

: Same as Hyb(𝛽 )
0

, except when constructing the challenge ciphertext ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T),
the challenger samples ct4

r← Z𝑝 . In this experiment, the adversary’s view is independent of the message.

Let Hyb(0)
1
(A) and Hyb(1)

1
(A) denote the output distribution of an execution of experiment Hyb(0)

1
and Hyb(1)

1
with

adversary A, respectively. By construction, experiments Hyb(0)
1

and Hyb(1)
1

are identical so it suffices to show that

the outputs of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

are computationally indistinguishable for each 𝛽 ∈ {0, 1}. Suppose there exists
a 𝛽 ∈ {0, 1} and a non-negligible 𝜀 such that���Pr[Hyb(𝛽 )

0
(A) = 1] − Pr[Hyb(𝛽 )

1
(A) = 1]

��� ≥ 𝜀.
Then, we useA to construct an adversary B that breaks Assumption 4.1 with parameter 𝐵 and the same advantage 𝜀:

1. At the beginning of the game, algorithm B receives a challenge (params, [𝑧]T) where

params =
(

1
𝜆,G, [𝑏]1, [𝑠]1, [𝜏]1, [𝑎𝑏]1, [𝑎𝑏𝜏]1, [𝑎𝑏𝑠𝜏]1,
[𝑎]2, [𝑏]2, [𝜏]2, . . . , [𝜏𝐵]2, [𝑎𝑏𝜏]2, . . . , [𝑎𝑏𝜏𝐵]2,

)
.

and either 𝑧 = 𝑎𝑏𝑠 or 𝑧
r← Z𝑝 . We use 𝜏 to denote the powers-of-𝜏 that appear in the assumption since the

reduction algorithm below will program the challenge identity id∗ into the simulated powers-of-𝜏 .

2. Algorithm B checks if [𝑏]1 = [0]1. If so, it outputs 1 if [𝑧]T = [0]T and 0 otherwise.

3. Algorithm B sets pp = G and gives pp to A. Algorithm A now commits to a challenge identity id∗ ∈ Z𝑝 and
label tg∗ ∈ Z𝑝 . Algorithm B now constructs the public key as follows. In the following description, we will use

a “tilde” (e.g., 𝛼, 𝑣) to denote an exponent that is chosen by (or otherwise known to) the reduction algorithm.

• Algorithm B implicitly sets 𝜏 = 𝜏 + id∗. For each 𝑖 ∈ [𝐵], algorithm B computes

[𝜏𝑖 ]2 =
∑︁
𝑗∈[0,𝑖 ]

(
𝑖

𝑗

)
· (id∗)𝑖− 𝑗 · [𝜏 𝑗 ]2 = [(𝜏 + id∗)𝑖 ]2 .

Similarly, it sets [𝜏]1 = [𝜏]1 + [id∗]1 = [𝜏 + id∗]1.
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• Algorithm B samples 𝛼
r← Z𝑝 and implicitly sets 𝛼 = 𝛼 − 𝑎𝑏:

[𝛼]T = [𝛼]T − [𝑎𝑏]1 · [1]2 = [𝛼 − 𝑎𝑏]T .

• Algorithm B samples 𝑦∗ r← Z∗𝑝 and implicitly sets𝑤 = 𝑦∗𝑎𝑏:

[𝑤]1 = 𝑦∗ · [𝑎𝑏]1 = [𝑦∗𝑎𝑏]1
[𝑤𝜏]1 = 𝑦∗ · ( [𝑎𝑏𝜏]1 + id∗ · [𝑎𝑏]1).

• Algorithm B samples 𝑣, ˜ℎ
r← Z𝑝 and implicitly sets 𝑣 = 𝑣 − 𝑏 · tg∗ and ℎ = ˜ℎ + 𝑏. Concretely, algorithm

B defines

[𝑣]1 = [𝑣]1 − tg∗ · [𝑏]1 = [𝑣 − 𝑏 · tg∗]1
[ℎ]1 = [ ˜ℎ]1 + [𝑏]1 = [ ˜ℎ + 𝑏]1 .

Algorithm B replies to A with the master public key

mpk =
(
G, [𝜏]1, [𝜏]2, . . . , [𝜏𝐵]2, [𝑤]1, [𝑤𝜏]1, [𝑣]1, [ℎ]1, [𝛼]T).

4. When algorithm A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ Z𝑝 , algorithm B defines the following two polynomials over Z𝑝 :

𝐹𝑆 (𝑥) =
∏
id∈𝑆
(𝑥 − id)

𝐺𝑆 (𝑥) = 𝐹𝑆 (𝑥 + id∗) − 𝐹𝑆 (id∗).
(4.4)

Write 𝐹𝑆 (𝑥) =
∑
𝑖=[0, |𝑆 | ] ˜𝑓𝑖𝑥

𝑖
. Next, observe that the constant term of 𝐺𝑆 (𝑥) is 𝐺𝑆 (0) = 𝐹𝑆 (id∗) − 𝐹𝑆 (id∗) = 0.

This means 𝐺𝑆 (𝑥) =
∑
𝑖∈[ |𝑆 | ] 𝑔𝑖𝑥

𝑖
. Algorithm B now proceeds as follows:

• If tg ≠ tg∗, algorithm B samples 𝑦
r← Z∗𝑝 and 𝑟

r← Z𝑝 . Then, algorithm B computes the following

[𝑢1]2 = [𝑟 ]2 + (tg − tg∗)−1 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗)) · [𝑎]2
[𝑢2]2 = [𝛼]2 + 𝑟 · (tg − tg∗) · [𝑏]2 + (𝑣 + ˜ℎ · tg) · [𝑢1]2 +

∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖𝑦𝑦
∗ · [𝑎𝑏𝜏𝑖 ]2.

• If tg = tg∗, algorithm B first sets 𝑦 = 1/(𝑦∗𝐹𝑆 (id∗)). Note that this is well-defined since 𝑦∗ ∈ Z∗𝑝 and when
tg = tg∗, it must be the case that id∗ ∉ 𝑆 , so 𝐹𝑆 (id∗) ≠ 0 by definition of 𝐹𝑆 . Next, algorithm B samples

𝑟
r← Z𝑝 and sets

[𝑢1]2 = [𝑟 ]2
[𝑢2]2 = [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗)]2 +

∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖𝑦𝑦
∗ · [𝑎𝑏𝜏𝑖 ]2.

In both cases, algorithm B responds to A with the secret key sk = (𝑦, [𝑢1]2, [𝑢2]2).

5. In the challenge phase, algorithm A outputs two messages [𝑚0]T and [𝑚1]T. Algorithm B computes the

following:

[ct1]1 = [𝑠]1
[ct2]1 = 𝑦∗ · [𝑎𝑏𝑠𝜏]1
[ct3]1 = (𝑣 + ˜ℎ · tg∗) · [𝑠]1
[ct4]T = 𝛼 · [𝑠]1 · [1]2 − [𝑧]T + [𝑚𝛽 ]T

Algorithm B responds with the ciphertext ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T).
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6. Algorithm A can continue to make key-computation queries. Algorithm B responds as described above.

7. At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which algorithm B also outputs.

If the challenger samples 𝑏
r← Z𝑝 and 𝑏 = 0 (which happens with probability 1/𝑝), then algorithm B outputs 1 with

probability 1 when 𝑧 = 𝑎𝑏𝑠 and with probability 1/𝑝 when 𝑧
r← Z𝑝 . It suffices to show that algorithm B achieve

non-negligible distinguishing advantage when 𝑏 ≠ 0. We show in this case that depending on the distribution of the

challenge element 𝑧, algorithmA either perfectly simulates an execution ofHyb(𝛽 )
0

orHyb(𝛽 )
1

. We first consider the dis-

tribution of the public parameters. By construction, algorithm B constructs the public parameters by implicitly setting

𝜏 = 𝜏 + id∗ 𝛼 = 𝛼 − 𝑎𝑏
𝑤 = 𝑦∗𝑎𝑏

𝑣 = 𝑣 − 𝑏 · tg∗

ℎ = ˜ℎ + 𝑏
(4.5)

Since the challenger samples 𝜏, 𝑎
r← Z𝑝 and 𝑏 ≠ 0 and algorithm B samples 𝛼, 𝑣, ˜ℎ

r← Z𝑝 , 𝑦∗
r← Z∗𝑝 , the distribution of

𝜏,𝑤, 𝑣, ℎ, 𝛼 are all independent and uniform over Z𝑝 , exactly as in the real scheme. Moreover, the public parameters

perfectly hide the value of 𝑦∗. Next, consider the components of the challenge ciphertext. We claim that algorithm

B generates the challenge ciphertext according to the specification of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

where the encryption ran-

domness 𝑠
r← Z𝑝 is the corresponding exponent sampled by the challenger. We consider each component separately:

• By construction, algorithm B sets ct1 = 𝑠 which matches the distribution in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

• Consider ct2. In the reduction, algorithm B implicitly sets 𝜏 = 𝜏 + id∗ and 𝑤 = 𝑦∗𝑎𝑏. Now, in Hyb(𝛽 )
0

and

Hyb(𝛽 )
1

, the experiment would set ct2 = 𝑠𝑤 (𝜏 − id∗). Substituting in algorithm B’s choice of𝑤 and 𝜏 , we have

ct2 = 𝑠𝑤 (𝜏 − id∗) = 𝑠 (𝑦∗𝑎𝑏) (𝜏 + id∗ − id∗) = 𝑦∗ · 𝑎𝑏𝑠𝜏,

which coincides with how B constructs ct2 in the reduction.

• Consider ct3. In Hyb(𝛽 )
0

and Hyb(𝛽 )
1

, the experiment would set ct3 = 𝑠 (𝑣 + ℎ · tg∗). Substituting in algorithm

B’s choice of 𝑣 and ℎ, we have

ct3 = 𝑠 (𝑣 + ℎ · tg∗) = 𝑠 (𝑣 − 𝑏 · tg∗) + 𝑠 ( ˜ℎ + 𝑏) · tg∗ = 𝑠 (𝑣 + ˜ℎ · tg∗),

which is precisely how algorithm B constructs ct3 in the reduction.

• Finally, consider the distribution of ct4. We consider two possibilities depending on the distribution of 𝑧:

– Suppose 𝑧 = 𝑎𝑏𝑠 . In the reduction, algorithm B implicitly sets 𝛼 = 𝛼 − 𝑎𝑏 so

ct4 = 𝛼𝑠 − 𝑧 +𝑚𝛽 = 𝛼𝑠 − 𝑎𝑏𝑠 +𝑚𝛽 = 𝑠𝛼 +𝑚𝛽 ,

which is precisely the distribution of ct4 in Hyb(𝛽 )
0

.

– Suppose 𝑧
r← Z𝑝 . In this case, the distribution of ct4 is uniform over Z𝑝 . This is the distribution of ct4

in Hyb(𝛽 )
1

.

We conclude that depending on the distribution of 𝑧, the challenge ciphertext in the reduction is distributed either

according to the specification of Hyb(𝛽 )
0

or the specification of Hyb(𝛽 )
1

. To complete the proof, it thus suffices to

consider the key-computation queries. Suppose A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 and
a batch label tg ∈ Z𝑝 . As in the reduction, we consider two cases:

• Suppose tg ≠ tg∗. In this case, algorithm B samples 𝑦
r← Z∗𝑝 and implicitly sets the randomness 𝑟 to be

𝑟 = 𝑢1 = 𝑟 + (tg − tg∗)−1 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗)) · 𝑎,
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where 𝑟
r← Z𝑝 . Since 𝑟

r← Z𝑝 , the distribution of 𝑟 coincides with the distribution in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

. Thus,

it suffices to argue that the component 𝑢2 is correctly constructed (with respect to algorithm B’s choice of 𝑟 and
𝑦). In Hyb(𝛽 )

0
and Hyb(𝛽 )

1
, the experiment would first compute the digest dig = [𝑑]2 = [𝐹𝑆 (𝜏)]2 and then set

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg) + 𝑦𝑤 · 𝐹𝑆 (𝜏). (4.6)

In the reduction, algorithm B implicitly sets 𝜏 = 𝜏 + id∗. Thus, we can write

𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏 + id∗) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏),

where 𝐺𝑆 is the polynomial from Eq. (4.4). By definition of the coefficients 𝑔𝑖 and using the fact that algorithm

B implicitly defines𝑤 = 𝑦∗𝑎𝑏, we can write∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖𝑦𝑦
∗ (𝑎𝑏𝜏𝑖 ) = 𝑦𝑦∗𝑎𝑏𝐺𝑆 (𝜏) = 𝑦𝑤 ·𝐺𝑆 (𝜏).

Now, in the reduction, algorithm B sets

𝑢2 = 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑦𝑤 ·𝐺𝑆 (𝜏). (4.7)

Suppose now that we substitute the values of 𝛼, 𝑟, 𝑣, ℎ,𝑤 from the reduction (see Eq. (4.5)) into Eq. (4.6). Then

we have the following:

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg) + 𝑦𝑤 · 𝐹𝑆 (𝜏)
= 𝛼 − 𝑎𝑏 + 𝑢1 (𝑣 + ℎ · tg) + 𝑦𝑤 (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))
= 𝛼 + 𝑢1 (𝑣 + ℎ · tg) + 𝑦𝑤 ·𝐺𝑆 (𝜏) − 𝑎𝑏 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗)) .

(4.8)

Consider now the value of 𝑢1 (𝑣 + ℎ · tg):

𝑢1 (𝑣 + ℎ · tg) = 𝑢1 (𝑣 − 𝑏 · tg∗ + ( ˜ℎ + 𝑏) · tg)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑢1𝑏 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + (𝑟 + (tg − tg∗)−1 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗)) · 𝑎)𝑏 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg − tg∗) + 𝑎𝑏 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗)).

Observe that the highlighted term in green precisely cancels out the corresponding term in Eq. (4.8). Thus,

substituting back in Eq. (4.8), we now have

𝑢2 = 𝛼 + 𝑢1 (𝑣 + ℎ · tg) + 𝑦𝑤𝐺𝑆 (𝜏) − 𝑎𝑏 (1 − 𝑦𝑦∗ · 𝐹𝑆 (id∗))
= 𝛼 + 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg − tg∗) + 𝑦𝑤 ·𝐺𝑆 (𝜏)

This is precisely the expression in Eq. (4.7) so we conclude that algorithm B answers the key-computation

query according to the specification of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

• Suppose tg = tg∗. In this case, algorithm B sets 𝑦 = 1/(𝑦∗𝐹𝑆 (id∗)) and samples 𝑟
r← Z𝑝 . By assumption,

algorithmA makes at most one key-computation query on tg = tg∗. As shown above, the adversary’s view can

be described entirely as a function of the exponents (𝜏, 𝛼,𝑤, 𝑣, ℎ) from the public parameters and the exponent

𝑠 from the challenge ciphertext. As argued above, the exponents in the public key perfectly hide 𝑦∗ and since

𝑠 is independent of 𝑦∗, we conclude that that the view of adversary A before this point is independent of 𝑦∗.
Since algorithm B samples 𝑦∗ r← Z∗𝑝 , the distribution of 𝑦 = 1/(𝑦∗𝐹𝑆 (id∗)) is thus uniform over Z∗𝑝 . Thus, the
distribution of (𝑟,𝑦) is correctly distributed.
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As in the previous case, it suffices now to show that the component 𝑢2 is correctly computed (with respect

to algorithm B’s choice of 𝑟 and 𝑦). As in the previous case, in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

, the experiment would set

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg∗) + 𝑦𝑤 · 𝐹𝑆 (𝜏). (4.9)

Suppose now that we substitute the values of 𝛼, 𝑣, ℎ,𝑤,𝑦 from the reduction (see Eq. (4.5)) into Eq. (4.9). Then

we have the following:

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg∗) + 𝑦𝑤 · 𝐹𝑆 (𝜏)
= 𝛼 − 𝑎𝑏 + 𝑟 (𝑣 − 𝑏 · tg∗ + ( ˜ℎ + 𝑏) · tg∗) + 𝑦𝑦∗𝑎𝑏 (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))
= 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑦𝑦∗𝑎𝑏 ·𝐺𝑆 (𝜏) − 𝑎𝑏 (1 − 𝑦𝑦∗𝐹𝑆 (id∗))
= 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑦𝑦∗𝑎𝑏 ·𝐺𝑆 (𝜏),

(4.10)

where the final equality uses the critical cancellation that 𝑦 = 1/(𝑦∗𝐹𝑆 (id∗)) so 𝑦𝑦∗𝐹𝑆 (id∗) = 1. Now, in the

reduction, algorithm B sets

𝑢2 = 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) +
∑︁

𝑖∈[ |𝑆 | ]
𝑔𝑖𝑦𝑦

∗𝑎𝑏𝜏𝑖 = 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑦𝑦∗𝑎𝑏 ·𝐺𝑆 (𝜏),

which precisely coincides with Eq. (4.10). We conclude that algorithm B answers the key-computation query

according to the specification of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

We conclude that algorithm B responds to the key-generation queries with the same procedure as in Hyb(𝛽 )
0

and

Hyb(𝛽 )
1

. Thus, as argued above, if 𝑧 = 𝑎𝑏𝑠 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )
0

, whereas

if 𝑧
r← Z𝑝 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )

1
. Thus, when 𝑏 ≠ 0, algorithm B breaks

Assumption 4.1 with the same advantage 𝜀. The claim follows. □

Corollary 4.5 (Batched Identity-Based Encryption). Let 𝜆 be a security parameter. Suppose Assumption 4.1 holds
with respect to GroupGen for all polynomials 𝐵 = 𝐵(𝜆). Then, for every polynomial 𝐵 = 𝐵(𝜆), Construction 4.2 is a
selectively-secure batched IBE scheme with the following efficiency properties:

• Public key size: For a batch size 𝐵, the public key contains 5 G1 elements, 𝐵 G2 elements, and 1 GT element.

• Ciphertext size: Each ciphertext contains 3 G1 elements and 1 GT element.

• Digest size: A digest contains 1 G2 element.

• Decryption key size: A decryption key contains 2 G2 elements and 1 Z𝑝 element.

Adaptive security. As noted in Remark 3.4, we can lift the selectively-secure batched IBE scheme from Corol-

lary 4.5 to an adaptively-secure scheme using complexity leveraging and relying on sub-exponential hardness of

Assumption 4.1. In Appendix C, we describe how to extend Corollary 4.5 to obtain a variant that allows the adversary

to adaptively choose the challenge identity id∗ in the security game (see Construction C.3 and Remark C.15), but

which is still selective in the challenge batch label tg∗. Security here only relies on polynomial-hardness of a 𝑞-type

assumption in the plain model. In Remark C.16, we describe a plausible approach to achieve full adaptive security

(essentially, by using Waters’ technique [Wat05] to embed the batch label).

Supporting multiple key-generation queries. Like many previous batched IBE and batched decryption schemes

that use a batch label [CGPP24, SAA24, CGPW25, AFP25], Construction 4.2 only ensures security against adversaries

that make a single key-computation query on the challenge batch label. In Appendix C, we describe a simple technique

that allows the adversary to request up to 𝐾 decryption keys for each batch label for any a priori bounded 𝐾 . The

modification requires adding 2(𝐾 − 1) group elements to the public key, 𝐾 − 1 group elements to the ciphertext, and

𝐾 − 1 field elements to the decryption key. In particular, we essentially replace the scalar𝑤 ∈ Z𝑝 in the public key

and the scalar 𝑦 ∈ Z𝑝 in the secret key with vectors w ∈ Z𝐾𝑝 and y ∈ Z𝐾𝑝 .
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5 Threshold Batched IBE with Silent Setup
In this section, we show how to integrate our batched IBE scheme from Section 4 (Construction 4.2) with the approach

from [WW25a] for building threshold (non-batched) IBE with silent setup to obtain a threshold batched IBE scheme

with silent setup. The recent work of [BCF
+
25] give a construction (obtained by integrating ideas from [BFOQ25] with

the threshold encryption scheme with silent setup from [GKPW24]) that supports a polynomial-size identity space in

the generic bilinear group model; ciphertexts in their scheme contain 𝑂 (𝜆/log 𝜆) group elements. Our construction

preserves many of the features of our vanilla batched IBE scheme: it supports an exponential-size identity space, cipher-

texts are just a constant number of group elements, and security can be based on a𝑞-type assumption in the plain model.

Threshold batched IBE with silent setup. We start with the definition of threshold batched IBE with silent setup.

Our definition is an adaptation of the concept of threshold batched encryption with silent setup from [BCF
+
25]. To sim-

plify the exposition, we follow [WW25a] and work in the registered key model [RY07] where we only consider correct-

ness and security for keys in the support of the honest key-generation algorithm (and moreover, in the case of security,

the adversary must provide the randomness used to generate its keys). Previous works [RY07, WW25a] show that us-

ing simulation-sound non-interactive zero-knowledge (NIZK) proof of knowledge, we can generically lift any scheme

with security in the registered-key model into one with security in the plain model. We now give the formal definition:

Definition 5.1 (Threshold Batched IBE with Silent Setup). A threshold batched IBE scheme with silent setup

ΠBatchSTIBE is a tuple of efficient algorithmsΠBatchSTIBE = (Setup,KeyGen, Preprocess, Encrypt,Digest,CompKeyShare,
VerifyKeyShare,Decrypt) with the following syntax:

• Setup(1𝜆, 1𝐵, 1𝑁 ) → pp: On input the security parameter 𝜆, a bound on the batch size 𝐵, and a bound on the

size of the decryption committee 𝑁 , the setup algorithm outputs a set of public parameters pp. We assume

that the public parameters (implicitly) specify the message spaceM, identity space I, and batch label space

T for the encryption scheme.

• KeyGen(pp) → (pk, sk, ht): On input the public parameters pp, the key-generation algorithm outputs a public

key pk, a secret key sk, and an aggregation hint ht.

• Preprocess(pp, (ht1, . . . , ht𝐿)) → (ek, ak): On input the public parameters pp and 𝐿 ≤ 𝑁 aggregation hints

ht1, . . . , ht𝐿 , the preprocessing algorithm outputs an encryption key ek and an aggregation key ak. This

algorithm is deterministic.

• Encrypt(ek,𝑚, id, tg,𝑇 ) → ct: On input the encryption key ek, a message𝑚 ∈ M, an identity id ∈ I, a batch
label tg ∈ T , and a threshold 𝑇 ≤ 𝐿, the encryption algorithm outputs a ciphertext ct.

• Digest(pp, 𝑆) → dig: On input the public parameters pp and a set of identities 𝑆 ⊆ I, the digest algorithm
outputs a digest. This algorithm is deterministic.

• CompKeyShare(sk, dig, tg) → 𝜎 : On input a secret key sk, a digest dig, and a batch label tg ∈ T , the key-share
computation algorithm outputs a decryption key share 𝜎 .

• VerifyKeyShare(pk, dig, tg, 𝜎) → 0/1: On input a public key pk, a digest dig, a batch label tg ∈ T , and a

decryption key share 𝜎 , the key-share verification algorithm outputs a bit indicating whether the decryption

key share 𝜎 is valid under pk for dig and tg. This algorithm is deterministic.

• Decrypt(ak, {𝜎ℓ }ℓ∈𝑈 , 𝑆, (id, tg), ct) →𝑚: On input the aggregation key ak, a collection of decryption key shares

𝜎ℓ for a set of users ℓ ∈ 𝑈 ⊆ [𝐿] where |𝑈 | = 𝑇 , a set of identities 𝑆 ⊆ I, an identity id ∈ 𝑆 , a batch label tg ∈ T ,
and a ciphertext ct, the decryption algorithm outputs a message𝑚 ∈ M. This algorithm is deterministic.

We require ΠBatchSTIBE satisfy the following properties:
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• Completeness: For all 𝜆, 𝐵 ∈ N, all 𝑁 ≤ 2
𝜆
, all public parameters pp in the support of Setup(1𝜆, 1𝐵, 1𝑁 ), all

batch labels tg ∈ T , all sets 𝑆 ⊆ I of size at most 𝐵 (whereM,I,T are the message, identity, and batch label

spaces associated with pp, respectively), we have

Pr

VerifyKeyShare(pk, dig, tg, 𝜎) = 1 :

(pk, sk, ht) ← KeyGen(pp)
dig = Digest(pp, 𝑆)

𝜎 ← CompKeyShare(sk, dig, tg)

 = 1.

• Correctness: For all 𝜆, 𝐵 ∈ N, all 𝐿 ≤ 𝑁 ≤ 2
𝜆
, all public parameters pp in the support of Setup(1𝜆, 1𝐵, 1𝑁 ), all

messages𝑚 ∈ M, all identities id ∈ I, all batch labels tg ∈ T (whereM,I,T are the message, identity, and

batch label spaces associated with pp, respectively), all collections of (pk
1
, ht1), . . . , (pk𝐿, ht𝐿) where (pk𝑖 , ht𝑖 )

is in the support of KeyGen(pp) for all 𝑖 ∈ [𝐿], and setting (ek, ak) = Preprocess(pp, (ht1, . . . , ht𝐿)), all thresh-
olds 𝑇 ≤ 𝐿, all ciphertexts ct in the support of Encrypt(ek,𝑚, id, tg,𝑇 ), all sets 𝑆 ⊆ I of size at most 𝐵 where

id ∈ 𝑆 , and setting dig = Digest(pp, 𝑆), all sets 𝑈 ⊆ [𝐿] of size |𝑈 | = 𝑇 and all partial decryptions {𝜎ℓ }ℓ∈𝑈
where VerifyKeyShare(pkℓ , dig, tg, 𝜎ℓ ) = 1, we have

Decrypt(ak, {𝜎ℓ }ℓ∈𝑈 , 𝑆, (id, tg), ct) = 1.

• Static security: For a security parameter 𝜆, a batch size 𝐵, a bound on the size of the decryption committee

𝑁 , a bit 𝛽 ∈ {0, 1}, and an adversary A, we define the threshold batched IBE with silent setup security game

as follows:

– Algorithm A commits to the challenge identity id∗ ∈ I, the challenge batch label tg∗ ∈ T , the size of the
committee 𝐿 ≤ 𝑁 , the threshold 𝑇 ≤ 𝐿, and the indices of the corrupted users C ⊆ [𝐿] where |C| < 𝑇 .

– The challenger starts by computing pp← Setup(1𝜆, 1𝐵, 1𝑁 ) and (pkℓ , skℓ , htℓ ) ← KeyGen(pp) for each
ℓ ∈ [𝐿] \ C. It gives (pp, {pkℓ , htℓ }ℓ∈[𝐿]\C) to A.

– Algorithm A can now make any number of key-share-computation queries. On each query, algorithm

A specifies an index ℓ ∈ [𝐿] \ C, a set of identities 𝑆 ⊆ I where |𝑆 | ≤ 𝐵, and a batch label tg ∈ T . The
challenger replies with the decryption key share 𝜎ℓ ← ComputeKey(skℓ ,Digest(pp, 𝑆), tg).

– After A finishes making key-share computation queries, it specifies the key-generation randomness

𝜌ℓ ∈ {0, 1}∗ for each of the corrupted users ℓ ∈ C. In addition, it outputs two messages𝑚0,𝑚1 ∈ M.

– For each ℓ ∈ C, the challenger computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Next, it computes (ek, ak) ←
Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]). Finally, the challenger replies to A with the challenge ciphertext

ct← Encrypt(ek,𝑚𝛽 , id∗, tg∗,𝑇 ). Note that the challenger does not need to provide (ek, ak) toA because

the Preprocess algorithm is deterministic so algorithm A can compute (ek, ak) itself.
– Algorithm A can continue to make key-share-computation queries (subject to the same restrictions as

described above). The challenger responds in the same manner.

– At the end of the game, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible if the following two conditions hold:

– For each index ℓ ∈ [𝐿] \C, algorithmA makes at most one key-share-computation query on the challenge

batch label tg∗.

– AlgorithmA does not make a key-share-computation query on a pair (𝑆, tg) where tg = tg∗ and id∗ ∈ 𝑆 .7

We say ΠBatchSTIBE is statically secure in the registered key model if for all polynomials 𝐵 = 𝐵(𝜆), 𝑁 = 𝑁 (𝜆)
and all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝛽 ′ = 1 : 𝛽 = 0] − Pr[𝛽 ′ = 1 : 𝛽 = 1] | = negl(𝜆) (5.1)

in the above security game. We say ΠBatchSTIBE is statically secure in the registered key model for a specific

batch size 𝐵 = 𝐵(𝜆) and committee size 𝑁 = 𝑁 (𝜆) if Eq. (5.1) holds for the specific functions 𝐵 and 𝑁 .

7
An adversary that would like to make such a query to a user ℓ ∈ [𝐿] \ C should instead corrupt user ℓ instead.
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• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝐵 ∈ N, all 𝑁 ≤ 2
𝜆
, all public

parameters pp in the support of Setup(1𝜆), all (pkℓ , skℓ , htℓ ) in the support of KeyGen(pp), all digests dig in
the support of Digest(pp, ·), and all batch labels tg ∈ T (where T is the batch label space associated with pp),
the following properties must hold:

– The encryption key ek output by Preprocess(pp, (ht1, . . . , htℓ )) has size poly(𝜆).
– The size of the digest dig is poly(𝜆) and the running time of the key-share-computation algorithm

CompKeyShare(sk, dig, ·) is poly(𝜆).

Fixed-threshold batched IBE. To simplify our exposition, we define a relaxed version of threshold batched IBE

with silent setup where the size of the decryption committee as well as the size of the threshold are fixed at Setup
(rather than determined dynamically at aggregation and encryption time). While this may seem like a significant

relaxation of the functionality, we can apply the simple padding and powers-of-two trick from [WW25a] to obtain

a scheme that supports dynamic thresholds (see Remark 5.10). The [WW25a] transformation increases the size of the

public parameters by a log𝑁 factor and does not affect the ciphertext size or the secret key size. Thus, for the main

construction, we just focus on the comparably simpler fixed threshold setting. We define this more precisely below:

Definition 5.2 (Fixed-Threshold Batched IBE with Silent Setup). A fixed-threshold batched IBE with silent setup

is defined as in Definition 5.1 except with two simplifying assumptions:

• First, the threshold 𝑇 is fixed during Setup rather than provided as a parameter to Encrypt.

• The size of the decryption committee is always set to 𝐿 = 𝑁 . In this case, we simply provide 1
𝐿
to Setup as

the exact size of the decryption committee.

Remark 5.3 (Querying Decrypters on Different Sets for a Batch Label). Our security definition for threshold batched

IBE with silent setup (Definition 5.1) allows the adversary to request a decryption share for a different set 𝑆ℓ from each

decryption authority ℓ ∈ [𝐿] \ C for the same batch label tg. The only restriction is that each decryption authority

issue one key share for each batch label. In contrast, the security definition of threshold batched IBE from [AFP25]

(see also Definition E.1) only ensures security against adversaries that specify the same set 𝑆 to all of the decryption

authorities when requesting a decryption key share for a particular batch label tg.
There is an important distinction between these two definitions. Under our definition, each decryption authority

only needs to keep track of whether they individually have issued a decryption key share for each batch label. For

instance, if the batch labels were a counter (or block number), the authority only needs to remember the current

count. For threshold cryptography, it is natural to assume that decryption authorities do not have to coordinate or

even be aware of each other.

On the other hand, with the [AFP25] definition, all of the decryption authorities in the system must coordinate

and affirm that they are generating decryption key shares for the same set for each batch label tg. Otherwise, if one
authority releases a key for a set 𝑆 with respect to tg while another release a key for set 𝑆 ′ ≠ 𝑆 on the same batch

label, then all bets are off. In fact, the [AFP25] scheme no longer provides semantic security if the adversary could

request decryption key shares for two different sets 𝑆, 𝑆 ′ under the same batch label tg to two different decryption

authorities. The issue stems from the fact that all of the decryption authorities hold shares of a single master secret

key for a (centralized) batched IBE that only ensures security if exactly one key is given out for each batch label.

In this section, we focus on the stronger notion of security where the only restriction we impose on the decryption

authorities is they give out at most one decryption key share for each batch label (just as in the centralized scheme).

As we show in Construction 5.5, we achieve this stronger security notion by having each decryption authority sample

an independent share, and the share aggregation is done using the approach from [WW25a]. In fact, even without

considering the silent setup property, the [WW25a] approach already provides a way to build a threshold batched

IBE satisfying the stronger notion of security.

5.1 Constructing Fixed-Threshold Batched IBE with Silent Setup
In this section, we show how to construct a fixed-threshold batched IBE with silent setup from pairings. As mentioned

before, this construction integrates our batched IBE scheme from Construction 4.2 with the threshold IBE scheme
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with silent setup from [WW25a]. As in Section 4, we first introduce the 𝑞-type assumption we use in the security

analysis and then give our construction. In Appendix B, we show this assumption holds in the standard generic

bilinear group model [Sho97, BBG05].

Assumption 5.4 ((𝐵, 𝐿)-Bilinear Diffie-Hellman Exponent Variant). Let GroupGen be a prime-order bilinear group

generator. For a security parameter 𝜆 and parameters 𝐵, 𝐿 ∈ N, and a bit 𝛽 ∈ {0, 1}, we define the distributionD𝜆,𝐵,𝐿,𝛽
as follows:

• Sample G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆). Sample exponents 𝑎, 𝑏, 𝑐, 𝑠, 𝜏
r← Z𝑝 . Define

params =
©­­­«

1
𝜆,G, [𝑎]2, [𝑏]2, [𝑏𝑐𝐿+1]1, [𝑏𝑐𝐿+1]2, [𝑎𝑏]1, [𝑎𝑏]2, [𝑠]1,
[𝜏]1, {[𝜏 𝑗 ]2} 𝑗∈[0,𝐵 ], {[𝑐ℓ𝜏 𝑗 ]1, [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ],
{[𝑎𝑏𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ], {[𝑎𝑏𝑐𝐿+1𝜏 𝑗 ]2} 𝑗∈[𝐵 ],

{[𝑐ℓ𝑠]2, [𝑐ℓ𝑠𝜏]2, [𝑎𝑏𝑐ℓ𝑠𝜏]2}ℓ∈[𝐿]

ª®®®¬ ,
• If 𝛽 = 0, let 𝜉 = 𝑎𝑏𝑐𝐿+1𝑠 and if 𝛽 = 1, sample 𝜉

r← Z𝑝 . Output (params, [𝜉]T).

We say Assumption 5.4 holds with respect to GroupGen and parameters 𝐵 = 𝐵(𝜆), 𝐿 = 𝐿(𝜆) if the distributions
D0 = {D𝜆,𝐵 (𝜆),𝐿 (𝜆),0}𝜆∈N and D1 = {D𝜆,𝐵 (𝜆),𝐿 (𝜆),1}𝜆∈N are computationally indistinguishable.

Construction 5.5 (Fixed-Threshold Batched IBE with Silent Setup). Let GroupGen be a prime-order bilinear group

generator. We construct a fixed-threshold batched IBE scheme with silent setup ΠBatchSTIBE = (Setup,KeyGen,
Preprocess, Encrypt,Digest,CompKeyShare,VerifyKeyShare,Decrypt) as follows:

• Setup(1𝜆, 1𝐵, 1𝐿,𝑇 ): On input the security parameter 𝜆, a bound on the batch size 𝐵, the size of the decryption

committee 𝐿, and the threshold 𝑇 ≤ 𝐿, the setup algorithm proceeds as follows:

– Sample G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆) and exponents 𝑐, 𝜏, 𝑣, ℎ, 𝑡
r← Z𝑝 .

– Let M ∈ Z𝐿×𝑇𝑝 be the share-generation matrix for a 𝑇 -out-of-𝐿 threshold policy over Z𝑝 (e.g., the Vander-
monde matrix over [𝐿]; see Section 3). Sample t r← Z𝑇𝑝 where 𝑡1 = 𝑡 . For ℓ ∈ [𝐿], let mT

ℓ be the ℓ
th
row

of M. Then compute

[𝑧0]2 =
∑︁
ℓ∈[𝐿]
[𝑐ℓmT

ℓ t]2

∀ℓ ∈ [𝐿] : [𝑣ℓ,0]2 =
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖mT
𝑖 t]2

Then output the the public parameters

pp =

(
G , [𝜏]1 , {[𝜏 𝑗 ]2} 𝑗∈[𝐵 ] , [𝑣]1 , [𝑣]2 , [ℎ]1 , [ℎ]2 , [𝑐𝐿+1𝑡]T ,
[𝑧0]2 , {[𝑣ℓ,0]2}ℓ∈[𝐿] , {[𝑐ℓ𝜏 𝑗 ]1 , [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ]

)
(5.2)

The message space associated with pp is GT, the identity space is Z𝑝 , and the tag space is Z𝑝 .

• KeyGen(pp): On input the public parameters pp (parsed according to Eq. (5.2)), the key-generation algorithm

samples exponents 𝛼,𝑤 ′ r← Z𝑝 and sets [𝑐𝐿+1𝛼]T = [𝛼]1 · [𝑐𝐿+1]2. Next, it computes

pk =
(
G, [𝑣]1, [ℎ]1, [𝑤 ′]1, [𝑐𝐿+1𝛼]T

)
ht = {𝛼 · [𝑐𝑖 ]2,𝑤 ′ · [𝑐𝑖𝜏 𝑗 ]2}𝑖∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ] .

Finally, it outputs the public key pk, the aggregation hint ht, and the secret key sk = (G, 𝛼,𝑤 ′, 𝛼 ·[𝑐𝐿+1]2, [𝑣]2, [ℎ]2).
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• Preprocess(pp, (ht1, . . . , ht𝐿)): On input the public parameters pp (parsed according to Eq. (5.2)) and 𝐿 aggre-

gation hints htℓ =
{
[𝑐𝑖𝛼ℓ ]2, [𝑐𝑖𝑤 ′ℓ𝜏 𝑗 ]2

}
𝑖∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ], the preprocessing algorithm computes the aggregated

public key components

[𝑧]2 = [𝑧0]2 +
∑︁
ℓ∈[𝐿]
[𝑐ℓ𝛼ℓ ]2 and [𝑤]2 =

∑︁
ℓ∈[𝐿]
[𝑐ℓ𝑤 ′ℓ ]2 and [𝑤𝜏]2 =

∑︁
ℓ∈[𝐿]
[𝑐ℓ𝑤 ′ℓ𝜏]2.

Then, for each ℓ ∈ [𝐿] and 𝑗 ∈ [0, 𝐵], it computes the aggregated cross terms

[𝑣ℓ ]2 = [𝑣ℓ,0]2 +
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖𝛼𝑖 ]2 and [𝑑ℓ𝜏 𝑗 ]2 =
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖𝑤 ′𝑖𝜏 𝑗 ]2 .

Then it sets

ek = (G, [𝑣]1, [ℎ]1, [𝑤]2, [𝑤𝜏]2, [𝑧]2, [𝑐𝐿+1𝑡]T)
ak = (G, {[𝑐ℓ ]1, [𝑣ℓ ]2, [𝑐ℓ𝜏 𝑗 ]1, [𝑑ℓ𝜏 𝑗 ]2}ℓ∈[𝐿], 𝑗∈[0,𝐵 ]).

(5.3)

The preprocessing algorithm outputs the encryption key ek and the aggregation key ak.

• Encrypt(ek, [𝑚]T, id, tg): On input the encryption key ek = (G, [𝑣]1, [ℎ]1, [𝑤]2, [𝑤𝜏]2, [𝑧]2, [𝑐𝐿+1𝑡]T), a mes-

sage [𝑚]T ∈ GT, an identity id ∈ Z𝑝 , and a batch label tg ∈ Z𝑝 , the encryption algorithm samples a random

exponent 𝑠
r← Z𝑝 . It then outputs the ciphertext

ct =
(
[𝑠]1 , 𝑠 [𝑤𝜏]2 − (𝑠 · id) [𝑤]2 , 𝑠 ( [𝑣]1 + tg · [ℎ]1) , 𝑠 [𝑧]2 , 𝑠 [𝑐𝐿+1𝑡]T + [𝑚]T

)
.

• Digest(pp, 𝑆): On input the public parameters pp (parsed according to Eq. (5.2)) and a set of identities 𝑆 ⊆ Z𝑝
where |𝑆 | ≤ 𝐵, the digest algorithm defines the polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities

id ∈ 𝑆 . Write 𝐹 (𝑥) = ∑
𝑗∈[0, |𝑆 | ] 𝑓𝑗𝑥

𝑗
. Output the digest

dig =
∑︁

𝑗∈[0, |𝑆 | ]
𝑓𝑗 · [𝑐𝐿+1𝜏 𝑗 ]2 = [𝑐𝐿+1 · 𝐹𝑆 (𝜏)]2 .

• CompKeyShare(sk, dig, tg): On input a secret key sk = (G, 𝛼,𝑤 ′, [𝑐𝐿+1𝛼]2, [𝑣]2, [ℎ]2), a digest dig = [𝑑]2, and
a batch label tg ∈ Z𝑝 , the key-share-computation algorithm samples a random 𝑟

r← Z𝑝 and 𝑦
r← Z∗𝑝 and outputs

the decryption key share

𝜎 =
(
𝑦 , [𝑟 ]2 , [𝑐𝐿+1𝛼]2 + 𝑟 ( [𝑣]2 + tg · [ℎ]2) + 𝑦𝑤 ′ · [𝑑]2

)
.

• VerifyKeyShare(pk, dig, tg, 𝜎): On input a public key pk = (G, [𝑣]1, [ℎ]1, [𝑤 ′]1, [𝑐𝐿+1𝛼]T), a digest dig = [𝑑]2,
a batch label tg ∈ Z𝑝 , and a decryption key share 𝜎 =

(
𝑦, [𝜎1]2, [𝜎2]2), the key-share verification algorithm

outputs 1 if the following relation holds (and 0 otherwise):

[𝑐𝐿+1𝛼]T = [1]1 · [𝜎2]2 − ([𝑣]1 + tg · [ℎ]1) · [𝜎1]2 − 𝑦 · [𝑤 ′]1 · [𝑑]2 .

• Decrypt(ak, {𝜎ℓ }ℓ∈𝑈 , 𝑆, (id, tg), ct): On input the aggregation key ak (parsed according to Eq. (5.3)), a collection
of decryption key shares 𝜎ℓ = (𝑦ℓ , [𝜎ℓ,1]2, [𝜎ℓ,2]2) for a set of users ℓ ∈ 𝑈 ⊆ [𝐿] where |𝑈 | = 𝑇 , a set of identities
𝑆 ⊆ Z𝑝 , an identity id ∈ 𝑆 , a batch label tg ∈ Z𝑝 , and a ciphertext ct = ( [ct1]1, [ct2]2, [ct3]1, [ct4]2, [ct5]T), the
decryption algorithm proceeds as follows:

– Let M ∈ Z𝑇×𝐿𝑝 be the share-generating matrix for the 𝑇 -out-of-𝐿 threshold policy. Let 𝝎 ∈ Z𝐿𝑝 be the

interpolation vector where 𝝎TM = eT
1
and 𝜔ℓ = 0 for all ℓ ∉ 𝑈 .
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– Let 𝐾 = |𝑆 |. The decryption algorithm defines polynomials 𝐹𝑆 (𝑥) =
∏

id′∈𝑆 (𝑥 − id′) =
∑
𝑗∈[0,𝐾 ] 𝑓𝑗𝑥

𝑗
and

𝐹𝑆\{id} (𝑥) =
∏

id′∈𝑆\{id} (𝑥 − id′) =
∑
𝑗∈[0,𝐾−1] 𝑓

′
𝑗 𝑥

𝑗
. Then, for each ℓ ∈ 𝑈 , it computes the following:

[𝑐𝐿+1−ℓ · 𝐹𝑆\{id} (𝜏)]1 :=
∑︁

𝑗∈[0,𝐾−1]
𝑓 ′𝑗 [𝑐𝐿+1−ℓ𝜏 𝑗 ]1

[𝑑ℓ · 𝐹𝑆 (𝜏)]2 :=
∑︁

𝑗∈[0,𝐾 ]
𝑓𝑗 [𝑑ℓ𝜏 𝑗 ]2.

For each ℓ ∈ 𝑈 , it computes

[𝛿ℓ ]T = ( [ct1]1 · [𝜎ℓ,2]2) −𝑦ℓ ·
(
( [𝑐𝐿+1−ℓ · 𝐹𝑆\{id∗ } (𝜏)]1 · [ct2]2) − ([ct1]1 · [𝑑ℓ · 𝐹𝑆 (𝜏)]2)

)
− ([ct3]1 · [𝜎ℓ,1]2) .

– Finally, the decryption algorithm outputs

[ct5]T −
∑︁
ℓ∈𝑈

(
𝜔ℓ · [𝑐𝐿+1−ℓ ]1 · [ct4]2

)
+
∑︁
ℓ∈𝑈

𝜔ℓ · [𝛿ℓ ]T + [ct1]1 ·
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑣ℓ ]2 . (5.4)

Theorem 5.6 (Completeness). Construction 5.5 is complete.

Proof. Take any 𝜆, 𝐵 ∈ N and 𝑇 ≤ 𝐿 ≤ 2
𝜆
and take pp← Setup(1𝜆, 1𝐵, 1𝐿, 1𝑇 ), where

pp =

(
G , [𝜏]1 , {[𝜏 𝑗 ]2} 𝑗∈[𝐵 ] , [𝑣]1 , [𝑣]2 , [ℎ]1 , [ℎ]2 , [𝑐𝐿+1𝑡]T ,
[𝑧0]2 , {[𝑣ℓ,0]2}ℓ∈[𝐿] , {[𝑐ℓ𝜏 𝑗 ]1 , [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ]

)
Take any batch label tg ∈ Z𝑝 and set 𝑆 ⊆ Z𝑝 of size at most 𝐵. Let

(pk, sk, ht) ← KeyGen(pp)
dig = Digest(pp, 𝑆)
𝜎 ← CompKeyShare(sk, dig, tg).

Let 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Then we can write

pk =
(
G, [𝑣]1, [ℎ]1, [𝑤 ′]1, [𝑐𝐿+1𝛼]T

)
sk = (G, 𝛼,𝑤 ′, 𝛼 · [𝑐𝐿+1]2, [𝑣]2, [ℎ]2)
dig = [𝑐𝐿+1 · 𝐹𝑆 (𝜏)]2
𝜎 = (𝑦ℓ , [𝑟 ]2, [𝑐𝐿+1𝛼 + 𝑟 (𝑣 + ℎ · tg∗) + 𝑦𝑐𝐿+1𝑤 ′ · 𝐹𝑆 (𝜏)]2).

Write dig = [𝑑]2 and 𝜎 =
(
𝑦, [𝜎1]2, [𝜎2]2). Completeness holds if the following holds

[𝑐𝐿+1𝛼]T = [1]1 · [𝜎2]2 − ([𝑣]1 + tg∗ · [ℎ]1) · [𝜎1]2 − 𝑦 · [𝑤 ′]1 · [𝑑]2

It is sufficient to check the exponents of both sides:

𝑐𝐿+1𝛼 = 𝜎2 − (𝑣 + tg∗ · ℎ) · 𝜎1 − 𝑦 ·𝑤 ′ · 𝑑 (5.5)

By construction, the three terms on the right-hand side are as follows:

𝜎2 = 𝑐
𝐿+1𝛼 + 𝑟 (𝑣 + ℎ · tg∗) + 𝑦𝑐𝐿+1𝑤 ′ · 𝐹𝑆 (𝜏)

(𝑣 + tg∗ · ℎ) · 𝜎1 = (𝑣 + tg∗ · ℎ) · 𝑟
𝑦 ·𝑤 ′ · 𝑑 = 𝑦 ·𝑤 ′ · 𝑐𝐿+1 · 𝐹𝑆 (𝜏)

where terms in the same color can be canceled out when we substitute them back to Eq. (5.5). This proves that Eq. (5.5)

holds by construction and completeness follows. □
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Theorem 5.7 (Correctness). Construction 5.5 is correct.

Proof. Take any 𝜆, 𝐵 ∈ N where 𝑇 ≤ 𝐿 ≤ 2
𝜆
and take pp← Setup(1𝜆, 1𝐵, 1𝐿, 1𝑇 ), where

pp =

(
G , [𝜏]1 , {[𝜏 𝑗 ]2} 𝑗∈[𝐵 ] , [𝑣]1 , [𝑣]2 , [ℎ]1 , [ℎ]2 , [𝑐𝐿+1𝑡]T ,
[𝑧0]2 , {[𝑣ℓ,0]2}ℓ∈[𝐿] , {[𝑐ℓ𝜏 𝑗 ]1 , [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ]

)
Take any message [𝑚]T ∈ GT, identity id∗ ∈ Z𝑝 , batch label tg∗ ∈ Z𝑝 , set 𝑆∗ ⊆ Z𝑝 of size at most 𝐵 where id∗ ∈ 𝑆∗.
Take any 𝑇 ≤ 𝐿 and any collection of (pk

1
, ht1), . . . , (pk𝐿, ht𝐿) where (pk𝑖 , ht𝑖 ) is in the support of KeyGen(pp) for

all 𝑖 ∈ [𝐿]. Let 𝛼𝑖 ,𝑤 ′𝑖 ∈ Z𝑝 be the secret exponents associated with pk𝑖 . Let

(ek, ak) = Preprocess(pp, (ht1, . . . , ht𝐿))
ct← Encrypt(ek, [𝑚]T, id∗, tg∗)

dig = Digest(pp, 𝑆∗)

Take any set𝑈 ⊆ [𝐿] of size |𝑈 | = 𝑇 and a set of decryption shares {𝜎ℓ }ℓ∈𝑈 where VerifyKeyShare(pkℓ , dig, tg, 𝜎ℓ ) = 1.

For a set 𝑆 ⊆ Z𝑝 , let 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Then we can write

ek = (G, [𝑣]1, [ℎ]1, [𝑤]2, [𝑤𝜏]2, [𝑧]2, [𝑐𝐿+1𝑡]T)
ak = (G, {[𝑐ℓ ]1, [𝑣ℓ ]2, [𝑐ℓ𝜏 𝑗 ]1, [𝑑ℓ𝜏 𝑗 ]2}ℓ∈[𝐿], 𝑗∈[0,𝐵 ])
ct = ( [𝑠]1, [𝑠𝑤 (𝜏 − id∗)]2, [𝑠 (𝑣 + ℎ · tg∗)]1, [𝑠𝑧]2, [𝑐𝐿+1𝑠𝑡]T + [𝑚]T)

dig = [𝑐𝐿+1 · 𝐹𝑆∗ (𝜏)]2.

Moreover, since the decryption shares 𝜎ℓ = (𝑦ℓ , [𝜎ℓ,1]2, [𝜎ℓ,2]2) are valid, we have

[𝑐𝐿+1𝛼ℓ ]T = [1]1 · [𝜎ℓ,2]2 − ([𝑣]1 + tg∗ · [ℎ]1) · [𝜎ℓ,1]2 − 𝑦ℓ · [𝑤 ′ℓ ]1 · [𝑐𝐿+1 · 𝐹𝑆∗ (𝜏)]2. (5.6)

By construction of Preprocess, we have that

𝑤 =
∑︁
𝑖∈[𝐿]

𝑐𝑖𝑤 ′𝑖 and 𝑑ℓ𝜏
𝑗 =

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝑐𝐿+1−ℓ+𝑖𝑤 ′𝑖𝜏
𝑗 .

Consider the value of Decrypt(ak, {𝜎ℓ }ℓ∈𝑈 , 𝑆∗, (id∗, tg∗), ct). Let M be the share-generating matrix for the 𝑇 -out-of-𝐿

threshold policy and let 𝝎 ∈ Z𝐿𝑝 be the interpolation vector where 𝝎TM = eT
1
and 𝜔ℓ = 0 for all ℓ ∉ 𝑈 . Let 𝐾 = |𝑆∗ |

and let 𝐹𝑆∗ (𝑥) =
∑
𝑗∈[0,𝐾 ] 𝑓𝑗𝑥

𝑗
and 𝐹𝑆∗\{id∗ } (𝑥) =

∑
𝑗∈[0,𝐾−1] 𝑓

′
𝑗 𝑥

𝑗
. For each ℓ ∈ 𝑈 , we have

[𝑐𝐿+1−ℓ · 𝐹𝑆∗\{id∗ } (𝜏)]1 =
∑︁

𝑗∈[0,𝐾−1]
𝑓 ′𝑗 [𝑐𝐿+1−ℓ𝜏 𝑗 ]1

[𝑑ℓ · 𝐹𝑆∗ (𝜏)]2 =
∑︁

𝑗∈[0,𝐾 ]
𝑓𝑗 [𝑑ℓ𝜏 𝑗 ]2.

This means

[𝑐𝐿+1−ℓ · 𝐹𝑆∗\{id∗ } (𝜏)]1 · [𝑠𝑤 (𝜏 − id∗)]2 =
∑︁
𝑖∈[𝐿]
[𝑠𝑐𝐿+1−ℓ+𝑖𝑤 ′𝑖 𝐹𝑆∗ (𝜏)]T

= [𝑠𝑐𝐿+1𝑤 ′ℓ𝐹𝑆∗ (𝜏)]T + [𝑠]1 ·
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖𝑤 ′𝑖 𝐹𝑆∗ (𝜏)]2

= [𝑠𝑐𝐿+1𝑤 ′ℓ𝐹𝑆∗ (𝜏)]T + [𝑠]1 · [𝑑ℓ · 𝐹𝑆∗ (𝜏)]2 .

This means that (
[𝑐𝐿+1−ℓ · 𝐹𝑆∗\{id∗ } (𝜏)]1 · [ct2]2

)
− ([ct1]1 · [𝑑ℓ · 𝐹𝑆∗ (𝜏)]2)

= [𝑐𝐿+1−ℓ · 𝐹𝑆∗\{id∗ } (𝜏)]1 · [𝑠𝑤 (𝜏 − id∗)]2 − [𝑠]1 · [𝑑ℓ · 𝐹𝑆∗ (𝜏)]2
= [𝑠𝑐𝐿+1𝑤 ′ℓ𝐹𝑆∗ (𝜏)]T .

(5.7)
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Next, the decryption algorithm computes for each ℓ ∈ 𝑈 :

[𝛿ℓ ]T = ( [ct1]1 · [𝜎ℓ,2]2) − 𝑦ℓ ·
(
( [𝑐𝐿+1−ℓ · 𝐹𝑆∗\{id∗ } (𝜏)]1 · [ct2]2) − ([ct1]1 · [𝑑ℓ · 𝐹𝑆∗ (𝜏)]2)

)
− ([ct3]1 · [𝜎ℓ,1]2)

= ( [𝑠]1 · [𝜎ℓ,2]2) − 𝑦ℓ · [𝑠𝑐𝐿+1𝑤 ′ℓ𝐹𝑆∗ (𝜏)]T − ([𝑠 (𝑣 + ℎ · tg∗)]1 · [𝜎ℓ,1]2)
= 𝑠 ·

(
[1]1 · [𝜎ℓ,2]2 − ([𝑣]1 + tg∗ · [ℎ]1) · [𝜎ℓ,1]2 − 𝑦ℓ · [𝑤 ′ℓ ]1 · [𝑐𝐿+1 · 𝐹𝑆∗ (𝜏)]2)

= 𝑠 · [𝑐𝐿+1𝛼ℓ ]T = [𝑠𝑐𝐿+1𝛼ℓ ]T,

where the second step uses Eq. (5.7) and the fourth step uses Eq. (5.6). We now consider the components in Eq. (5.4).

First, by construction of Preprocess, we have

𝑧 = 𝑧0 +
∑︁
ℓ∈[𝐿]

𝑐ℓ𝛼ℓ =
∑︁
ℓ∈[𝐿]

𝑐ℓ (mT
ℓ t + 𝛼ℓ ),

𝑣ℓ = 𝑣ℓ,0 +
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝑐𝐿+1−ℓ+𝑖𝛼𝑖 =
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝑐𝐿+1−ℓ+𝑖 (mT
𝑖 t + 𝛼𝑖 ).

This means ∑︁
ℓ∈𝑈

𝜔ℓ · [𝑐𝐿+1−ℓ ]1 · [ct4]2 =
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑐𝐿+1−ℓ ]1 · [𝑠𝑧]2

=
∑︁
ℓ∈𝑈

∑︁
𝑖∈[𝐿]
[𝜔ℓ𝑠𝑐𝐿+1−ℓ+𝑖 (mT

𝑖 t + 𝛼𝑖 )]T

=
∑︁
ℓ∈𝑈
[𝑠𝑐𝐿+1𝜔ℓmT

ℓ t]T +
∑︁
ℓ∈𝑈

𝜔ℓ [𝑠𝑐𝐿+1𝛼ℓ ]T +
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑠]1 · [𝑣ℓ ]2

= [𝑠𝑡𝑐𝐿+1]T +
∑︁
ℓ∈𝑈
[𝜔ℓ (𝛿ℓ + 𝑠𝑣ℓ )]T,

using the fact that

∑
ℓ∈[𝐿] 𝜔ℓmT

ℓ t = 𝑡 . Eq. (5.4) now becomes

[ct5]T −
∑︁
ℓ∈𝑈

(
𝜔ℓ · [𝑐𝑁+1−ℓ ]1 · [ct4]2

)
+
∑︁
ℓ∈𝑈

𝜔ℓ · [𝛿ℓ ]T + [ct1]1 ·
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑣ℓ ]2

= [𝑚]T + [𝑠𝑡𝑐𝐿+1]T − [𝑠𝑡𝑐𝐿+1]T −
∑︁
ℓ∈𝑈
[𝜔ℓ (𝛿ℓ + 𝑠𝑣ℓ )]T +

∑︁
ℓ∈𝑈
[𝜔ℓ (𝛿ℓ + 𝑠𝑣ℓ )]T

= [𝑚]T,

and correctness holds. □

Theorem 5.8 (Static Security). Take any polynomial 𝐵 = 𝐵(𝜆) and 𝐿 = 𝐿(𝜆). Suppose Assumption 5.4 holds with
parameters 𝐵 and 𝐿. Then, Construction 5.5 is statically secure in the registered key model with batch size 𝐵 and supporting
committees of size 𝐿.

Proof. Let A be an efficient adversary for the static security experiment for Construction 5.5 with batch size 𝐵 and

committees of size 𝐿. We define a simple sequence of hybrid experiments, each indexed by a bit 𝛽 ∈ {0, 1}:

• Hyb(𝛽 )
0

: This is the static security game with bit 𝛽 .

• Hyb(𝛽 )
1

: Same as Hyb(𝛽 )
0

, except when constructing the challenge ciphertext

ct = ( [ct1]1, [ct2]2, [ct3]1, [ct4]2, [ct5]T),

the challenger samples ct5
r← Z𝑝 . In this experiment, the challenge ciphertext is independent of the bit 𝛽 .
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Let Hyb(0)
1
(A) and Hyb(1)

1
(A) denote the output distribution of an execution of experiment Hyb(0)

1
and Hyb(1)

1
with

adversary A, respectively. By construction, experiments Hyb(0)
1

and Hyb(1)
1

are identical so it suffices to show that

the outputs of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

are computationally indistinguishable for each 𝛽 ∈ {0, 1}. Suppose there exists
𝛽 ∈ {0, 1} and a non-negligible 𝜀 such that���Pr[Hyb(𝛽 )

0
(A) = 1] − Pr[Hyb(𝛽 )

1
(A) = 1]

��� ≥ 𝜀.
We use A to construct an adversary B that breaks Assumption 5.4 with parameters (𝐵, 𝐿) and the same advantage 𝜀:

1. At the beginning of the game, algorithm B receives a challenge (params, [𝜉]T) where

params =
©­­­«

1
𝜆,G, [𝑎]2, [𝑏]2, [𝑏𝑐𝐿+1]1, [𝑏𝑐𝐿+1]2, [𝑎𝑏]1, [𝑎𝑏]2, [𝑠]1,
[𝜏]1, {[𝜏 𝑗 ]2} 𝑗∈[0,𝐵 ], {[𝑐ℓ𝜏 𝑗 ]1, [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ],
{[𝑎𝑏𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ], {[𝑎𝑏𝑐𝐿+1𝜏 𝑗 ]2} 𝑗∈[𝐵 ],

{[𝑐ℓ𝑠]2, [𝑐ℓ𝑠𝜏]2, [𝑎𝑏𝑐ℓ𝑠𝜏]2}ℓ∈[𝐿]

ª®®®¬ ,
and 𝜉 = 𝑎𝑏𝑐𝐿+1𝑠 or 𝜉 r← Z𝑝 .

2. Algorithm B runsA on input 1
𝜆
. AlgorithmA commits to the challenge identity id∗ ∈ Z𝑝 , the challenge batch

label tg∗ ∈ Z𝑝 , and the indices of the corrupted users C ⊆ [𝐿].

3. LetM be the share-generating matrix for a𝑇 -out-of-𝐿 threshold policy. Since |C| < 𝑇 , the set C does not satisfy

the threshold policy. Thus, there exists a vector w̃ ∈ Z𝐿𝑝 such that for all indices 𝑖 ∈ C, mT
𝑖 w̃ = 0, where mT

𝑖

is the 𝑖th row of M and moreover, 𝑤̃1 = 1.

4. Algorithm B now constructs the public parameters pp as follows. As in the proof of Theorem 4.4, we will use

a “tilde” (e.g., 𝛼, 𝑣) to denote an exponent that is chosen by (or otherwise known to) the reduction algorithm.

• Algorithm B implicit sets 𝜏 = 𝜏 + id∗. Specifically, for each 𝑗 ∈ [0, 𝐵] and ℓ ∈ [2𝐿], algorithm B computes

[𝜏 𝑗 ]2 =
∑︁

𝑘∈[0, 𝑗 ]

(
𝑗

𝑘

)
· (id∗) 𝑗−𝑘 · [𝜏𝑘 ]2 = [(𝜏 + id∗) 𝑗 ]2

[𝑐ℓ𝜏 𝑗 ]1 =
∑︁

𝑘∈[0, 𝑗 ]

(
𝑗

𝑘

)
· (id∗) 𝑗−𝑘 · [𝑐ℓ𝜏𝑘 ]1 = [𝑐ℓ (𝜏 + id∗) 𝑗 ]1

[𝑐ℓ𝜏 𝑗 ]2 =
∑︁

𝑘∈[0, 𝑗 ]

(
𝑗

𝑘

)
· (id∗) 𝑗−𝑘 · [𝑐ℓ𝜏𝑘 ]2 = [𝑐ℓ (𝜏 + id∗) 𝑗 ]2

(5.8)

Algorithm B sets [𝜏]1 = [𝜏]1 + [id∗]1.
• Algorithm B samples a vector t̃ r← Z𝑁𝑝 and implicitly sets t = t̃ + 𝑎𝑏 · w̃. In this case, 𝑡 = 𝑡1 = 𝑡1 + 𝑎𝑏.
Algorithm B now computes

[𝑐𝐿+1𝑡]T = [𝑐𝐿+1]1 · [𝑡1]2 + [𝑐𝐿+1]1 · [𝑎𝑏]2 .

Next, algorithm B sets [𝑧0]2 and [𝑣ℓ,0]2 for ℓ ∈ [𝐿] as

[𝑧0]2 =
∑︁
ℓ∈[𝐿]

(
mT
ℓ t̃ · [𝑐ℓ ]2 +mT

ℓw̃ · [𝑎𝑏𝑐ℓ ]2
)
=

∑︁
ℓ∈[𝐿]
[𝑐ℓmT

ℓ t]2

[𝑣ℓ,0]2 =
∑︁
𝑖∈[𝐿]
𝑖≠ℓ

(
mT
𝑖 t̃ · [𝑐𝐿+1−ℓ+𝑖 ]2 +mT

𝑖 w̃ · [𝑎𝑏𝑐𝐿+1−ℓ+𝑖 ]2
)
=

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

[𝑐𝐿+1−ℓ+𝑖mT
𝑖 t]2 .
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• Algorithm B samples 𝑣, ˜ℎ
r← Z𝑝 and sets

[𝑣]1 = [𝑣]1 − tg∗ · [𝑏𝑐𝐿+1]1 = [𝑣 − 𝑏𝑐𝐿+1 · tg∗]1
[𝑣]2 = [𝑣]2 − tg∗ · [𝑏𝑐𝐿+1]2 = [𝑣 − 𝑏𝑐𝐿+1 · tg∗]2
[ℎ]1 = [ ˜ℎ]1 + [𝑏𝑐𝐿+1]1 = [ ˜ℎ + 𝑏𝑐𝐿+1]1
[ℎ]2 = [ ˜ℎ]2 + [𝑏𝑐𝐿+1]2 = [ ˜ℎ + 𝑏𝑐𝐿+1]2 .

Algorithm B now constructs the public parameters as

pp =

(
G , [𝜏]1 , {[𝜏 𝑗 ]2} 𝑗∈[𝐵 ] , [𝑣]1 , [𝑣]2 , [ℎ]1 , [ℎ]2 , [𝑐𝐿+1𝑡]T ,
[𝑧0]2 , {[𝑣ℓ,0]2}ℓ∈[𝐿] , {[𝑐ℓ𝜏 𝑗 ]1 , [𝑐ℓ𝜏 𝑗 ]2}ℓ∈[2𝐿], 𝑗∈[0,𝐵 ]

)
5. Next, to simulate the public keys for the honest users, algorithm B starts by sampling 𝛼ℓ , 𝑤̃

′
ℓ

r← Z𝑝 for each
ℓ ∈ [𝐿] \ C. Next, for each ℓ ∈ [𝐿] \ C, if mT

ℓw̃ = 0, algorithm B sets 𝑦∗ℓ = 0. Otherwise, it samples 𝑦∗ℓ
r← Z∗𝑝 .

Then, algorithm B implicitly sets the exponents

𝛼ℓ = 𝛼ℓ − 𝑎𝑏mT
ℓw̃

𝑤 ′ℓ = 𝑤̃
′
ℓ + 𝑎𝑏𝑦∗ℓ .

Algorithm B then sets

[𝑐𝐿+1𝛼ℓ ]T = [𝑐𝐿+1]1 · [𝛼ℓ ]2 −mT
ℓw̃ · [𝑐𝐿+1]1 · [𝑎𝑏]2

[𝑤 ′ℓ ]1 = [𝑤̃ ′ℓ ]1 + 𝑦∗ℓ · [𝑎𝑏]1 .

Finally, it defines the public key to be

pkℓ =
(
G, [𝑣]1, [ℎ]1, [𝑤 ′]1, [𝑐𝐿+1𝛼]T).

To construct the aggregation hints, algorithm B first computes for each 𝑖 ∈ [2𝐿] \ {𝐿 + 1} and 𝑗 ∈ [0, 𝐵],

[𝑎𝑏𝑐𝑖𝜏 𝑗 ]2 =
∑︁

𝑘∈[0, 𝑗 ]

(
𝑗

𝑘

)
· (id∗) 𝑗−𝑘 · [𝑎𝑏𝑐𝑖𝜏𝑘 ]2 = [𝑎𝑏𝑐𝑖 (𝜏 + id∗) 𝑗 ]2 .

Then, for each 𝑖 ∈ [2𝐿] \ {𝐿 + 1} and 𝑗 ∈ [0, 𝐵], algorithm B computes the cross-terms

[𝑐𝑖𝛼ℓ ]2 = 𝛼ℓ · [𝑐𝑖 ]2 −mT
ℓw̃ · [𝑎𝑏𝑐𝑖 ]2

[𝑐𝑖𝑤 ′ℓ𝜏 𝑗 ]2 = 𝑤̃ ′ℓ · [𝑐𝑖𝜏 𝑗 ]2 + 𝑦∗ℓ · [𝑎𝑏𝑐𝑖𝜏 𝑗 ]2,

where [𝑐𝑖𝜏 𝑗 ]2 was computed in Eq. (5.8). It then sets htℓ = {[𝑐𝑖𝛼ℓ ]2, [𝑐𝑖𝑤 ′ℓ𝜏 𝑗 ]2}𝑖∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ] . Algorithm B
gives pp and (pkℓ , htℓ ) for each ℓ ∈ [𝐿] \ C to A.

6. WheneverA makes a key-computation query on an index ℓ ∈ [𝐿] \ C, a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵,
and a batch label tg ∈ Z𝑝 , algorithm B defines the following two polynomials over Z𝑝 :

𝐹𝑆 (𝑥) =
∏
id∈𝑆
(𝑥 − id)

𝐺𝑆 (𝑥) = 𝐹𝑆 (𝑥 + id∗) − 𝐹𝑆 (id∗).
(5.9)

Write 𝐹𝑆 (𝑥) =
∑
𝑖=[0, |𝑆 | ] ˜𝑓𝑖𝑥

𝑖
and 𝐺𝑆 (𝑥) =

∑
𝑖∈[ |𝑆 | ] 𝑔𝑖𝑥

𝑖
. (By the same argument as in the proof of Theorem 4.4,

the constant term of 𝐺𝑆 is 0.) Algorithm B now proceeds as follows:
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• If tg ≠ tg∗, algorithm B samples 𝑦
r← Z∗𝑝 and 𝑟

r← Z𝑝 . Then, algorithm B computes the following:

[𝑢1]2 = [𝑟 ]2 + (tg − tg∗)−1 (mT
ℓw̃ − 𝑦𝑦∗ℓ · 𝐹𝑆 (id∗)) · [𝑎]2

[𝑢2]2 = 𝛼ℓ · [𝑐𝐿+1]2 + 𝑟 · (tg − tg∗) · [𝑏𝑐𝐿+1]2 + (𝑣 + ˜ℎ · tg) · [𝑢1]2
+ 𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) · [𝑐𝐿+1]2 +

∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖 · (𝑦𝑤̃ ′ℓ · [𝑐𝐿+1𝜏𝑖 ]2 + 𝑦𝑦∗ℓ · [𝑎𝑏𝑐𝐿+1𝜏𝑖 ]2).

• If tg = tg∗, algorithm B first sets 𝑦 = mT
ℓw̃/(𝑦∗ℓ 𝐹𝑆 (id

∗)) if mT
ℓw̃ ≠ 0 and 𝑦

r← Z∗𝑝 if mT
ℓw̃ = 0. Note that 𝑦

in the former case is well defined since 𝑦∗ℓ ∈ Z∗𝑝 , and when tg = tg∗, it must be the case that id∗ ∉ 𝑆 so

𝐹𝑆 (id∗) ≠ 0 by definition of 𝐹𝑆 . Next, algorithm B samples 𝑟
r← Z𝑝 and sets

[𝑢1]2 = [𝑟 ]2
[𝑢2]2 = 𝛼ℓ · [𝑐𝐿+1]2 + [𝑟 (𝑣 + ˜ℎ · tg∗)]2

+ 𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) · [𝑐𝐿+1]2 +
∑︁

𝑖∈[ |𝑆 | ]
𝑔𝑖 · (𝑦𝑤̃ ′ℓ · [𝑐𝐿+1𝜏𝑖 ]2 + 𝑦𝑦∗ℓ [𝑎𝑏𝑐𝐿+1𝜏𝑖 ]2).

In both cases, algorithm B responds to A with the secret key sk = (𝑦, [𝑢1]2, [𝑢2]2).

7. After A finished making key-computation queries, it specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗
for the corrupted users ℓ ∈ C along with two messages [𝑚0]T, [𝑚1]T ∈ GT.

8. For each ℓ ∈ C, algorithm B computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Let 𝛼ℓ , 𝑤̃ ′ℓ ∈ Z𝑝 be the exponents

associated with skℓ . Then, algorithm B constructs the challenge ciphertext as follows:

[ct1]1 = [𝑠]1
[ct2]2 =

∑︁
ℓ∈[𝐿]

𝑤̃ ′ℓ · [𝑐ℓ𝑠𝜏]2 +
∑︁

ℓ∈[𝐿]\C
𝑦∗ℓ · [𝑎𝑏𝑐ℓ𝑠𝜏]2

[ct3]1 = (𝑣 + ˜ℎ · tg∗) · [𝑠]1
[ct4]2 =

∑︁
ℓ∈[𝐿]
(mT

ℓ t̃ + 𝛼ℓ ) · [𝑐ℓ𝑠]2

[ct5]T = 𝑡1 · [𝑠]1 · [𝑐𝐿+1]2 + [𝜉]T + [𝑚𝛽 ]T .

Algorithm B responds with the ciphertext ct = ( [ct1]1, [ct2]2, [ct3]1, [ct4]2, [ct5]T).

9. Algorithm A can continue to make key-computation queries. Algorithm B answers them using the same

procedure as above.

10. At the end of the game, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which algorithm B also outputs.

To complete the proof, we show that depending on the distribution of the challenge element 𝜉 , algorithm A perfectly

simulates either an execution of Hyb(𝛽 )
0

or Hyb(𝛽 )
1

. We first consider the distribution of the public parameters:

• As described above, algorithm B constructs the public parameters by implicitly setting

𝜏 = 𝜏 + id∗

𝑣 = 𝑣 − 𝑏𝑐𝐿+1 · tg∗

ℎ = ˜ℎ + 𝑏𝑐𝐿+1

𝑡 = 𝑡1 + 𝑎𝑏.

and taking 𝑐 ∈ Z𝑝 to be the same value from the challenge. In addition, algorithm B samples 𝑣, ˜ℎ, 𝑡1
r← Z𝑝 .

Since the challenger samples 𝜏, 𝑐
r← Z𝑝 , the exponents 𝜏, 𝑣, ℎ, 𝑡, 𝑐 match the distribution in Hyb(𝛽 )

0
and Hyb(𝛽 )

1
.
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• Next, the reduction implicitly sets t = t̃ +𝑎𝑏 · w̃ where t̃ r← Z𝑝 and 𝑡1 = 𝑡 . Since it samples t̃ r← Z𝐿𝑝 , this matches

the distribution in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

. For this choice of t, algorithm B constructs 𝑧0 and 𝑣ℓ,0 exactly as in

Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

We conclude that the public parameters pp constructed by B are distributed identically to the public parameters in

Hyb(𝛽 )
0

and Hyb(𝛽 )
1

. Next, consider the distribution of the public keys and the aggregation hints for the honest users

ℓ ∈ [𝐿] \ C.

• As described, algorithm B simulates an execution of KeyGen(pp) where the underlying exponents 𝛼ℓ ,𝑤 ′ℓ are
sampled as

𝛼ℓ = 𝛼ℓ − 𝑎𝑏mT
ℓw̃

𝑤 ′ℓ = 𝑤̃
′
ℓ + 𝑎𝑏𝑦∗ℓ ,

where 𝛼ℓ , 𝑤̃
′
ℓ

r← Z𝑝 . Thus, the distribution of 𝛼 and𝑤 ′ℓ are also uniform random over Z𝑝 , exactly as in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

. Moreover, we also note that𝑤 ′ℓ information-theoretically hides the value of 𝑦∗ℓ . This property will

become important when we analyze the key-generation queries.

• By construction, the components of the public key pkℓ and the aggregation hint htℓ are constructed according

to the exact same relations as in the real scheme (with respect to the above choice of 𝛼ℓ ,𝑤
′
ℓ ).

We conclude that all of the honest users’ public keys and aggregation hints are distributed exactly as in the real

scheme. Next, consider the distribution of the challenge ciphertext. We claim that algorithm B generates the challenge

ciphertext according to the specification of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

where the encryption randomness 𝑠
r← Z𝑝 is the

corresponding exponent sampled by the challenger. We consider each component individually:

• By construction, algorithm B sets ct1 = 𝑠 , which matches the distribution in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

• Consider ct2. Recall first that for the honest users ℓ ∈ [𝐿] \ C, algorithm B sets𝑤 ′ℓ = 𝑤̃
′
ℓ + 𝑦∗ℓ𝑎𝑏. For the keys

for users ℓ ∈ C chosen adversarially, algorithm B defines 𝑤̃ ′ℓ = 𝑤
′
ℓ . In the reduction, algorithm B computes

ct2 =
∑︁
ℓ∈[𝐿]

𝑐ℓ𝑠𝜏𝑤̃ ′ℓ +
∑︁

ℓ∈[𝐿]\C
𝑦∗ℓ𝑎𝑏𝑐

ℓ𝑠𝜏

=
∑︁

ℓ∈[𝐿]\C
𝑐ℓ𝑠𝜏 (𝑤̃ ′ℓ + 𝑦∗ℓ𝑎𝑏) +

∑︁
ℓ∈C

𝑐ℓ𝑠𝜏𝑤̃ ′ℓ

=
∑︁

ℓ∈[𝐿]\C
𝑐ℓ𝑠𝜏𝑤 ′ℓ +

∑︁
ℓ∈C

𝑐ℓ𝑠𝜏𝑤 ′ℓ = 𝑠𝜏
∑︁
ℓ∈[𝐿]

𝑐ℓ𝑤 ′ℓ .

In the reduction, algorithm B implicitly defines 𝜏 = 𝜏 + id∗. This means

ct2 = 𝑠𝜏
∑︁
ℓ∈[𝐿]

𝑐ℓ𝑤 ′ℓ = 𝑠 (𝜏 − id∗)
∑︁
ℓ∈[𝐿]

𝑐ℓ𝑤 ′ℓ ,

whichmatches the distribution inHyb(𝛽 )
0

andHyb(𝛽 )
1

. Recall that in these experiments, the Preprocess algorithm
would compute [𝑤]2 =

∑
ℓ∈[𝐿] [𝑐ℓ𝑤 ′ℓ ]2.

• Consider ct3. In Hyb(𝛽 )
0

and Hyb(𝛽 )
1

, this component is set to ct3 = 𝑠 (𝑣 + ℎ · tg∗). Substituting in algorithm B’s
choice of 𝑣 and ℎ, we have

ct3 = 𝑠 (𝑣 + ℎ · tg∗) = 𝑠 (𝑣 − 𝑏𝑐𝐿+1 · tg∗ + ( ˜ℎ + 𝑏𝑐𝐿+1) · tg∗) = 𝑠 (𝑣 + ˜ℎ · tg∗),

which is exactly how B constructs ct3 in the reduction.
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• Consider ct4. In Hyb(𝛽 )
0

and Hyb(𝛽 )
1

, the experiment would set ct4 = 𝑠𝑧 where

𝑧 = 𝑧0 +
∑︁
ℓ∈[𝐿]

𝑐ℓ𝛼ℓ =
∑︁
ℓ∈[𝐿]

𝑐ℓ (mT
ℓ t + 𝛼ℓ ).

In the reduction, we have that t = t̃ + 𝑎𝑏w̃. By construction mT
ℓw̃ = 0 for all ℓ ∈ C. In addition, the reduction

algorithm defines 𝛼ℓ = 𝛼ℓ − 𝑎𝑏mT
ℓw̃ for all ℓ ∈ [𝐿] \ C and sets 𝛼ℓ = 𝛼ℓ for all ℓ ∈ C. For this choice of variables,

we can write

𝑧 =
∑︁
ℓ∈[𝐿]

𝑐ℓ (mT
ℓ t + 𝛼ℓ )

=
∑︁
ℓ∈C

𝑐ℓ (mT
ℓ (t̃ + 𝑎𝑏w̃) + 𝛼ℓ ) +

∑︁
ℓ∈[𝐿]\C

𝑐ℓ (mT
ℓ (t̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT

ℓw̃)

=
∑︁
ℓ∈[𝐿]

𝑐ℓ (mT
ℓ t̃ + 𝛼ℓ ).

In this case,

ct4 = 𝑠𝑧 =
∑︁
ℓ∈[𝐿]

𝑠𝑐ℓ (mT
ℓ t̃ + 𝛼ℓ ),

which is precisely how algorithm B constructs ct4.

• Finally, consider the distribution of ct5. We consider two possibilities depending on the distribution of 𝜉 :

– Suppose 𝜉 = 𝑎𝑏𝑐𝐿+1𝑠 . In the reduction, algorithm B implicitly sets 𝑡 = 𝑡1 + 𝑎𝑏. In this case,

ct5 = 𝑠𝑡1𝑐𝐿+1 + 𝜉 +𝑚𝛽 = 𝑠𝑐𝐿+1 (𝑡1 + 𝑎𝑏) +𝑚𝛽 = 𝑠𝑐𝐿+1𝑡 +𝑚𝛽 ,

which is precisely the distribution of ct5 in Hyb(𝛽 )
0

.

– If 𝜉
r← Z𝑝 , then the distribution of ct5 is also uniform over Z𝑝 . This coincides with the distribution in

Hyb(𝛽 )
1

.

Finally, consider the key-computation queries on an index ℓ ∈ [𝐿] \ C, a set of identities 𝑆 ⊆ Z𝑝 and a batch label

tg ∈ Z𝑝 . As in the reduction, we consider two cases:

• Suppose tg ≠ tg∗. In this case, algorithm B samples 𝑦
r← Z∗𝑝 and implicitly sets the randomness 𝑟 to be

𝑟 = 𝑢1 = 𝑟 + (tg − tg∗)−1 (mT
ℓw̃ − 𝑦𝑦∗ℓ · 𝐹𝑆 (id∗)) · 𝑎,

where 𝑟
r← Z𝑝 . This matches the distribution of 𝑟 in the real scheme. Thus, it suffices to argue that the

component 𝑢2 is correctly constructed (with respect to algorithm B’s choice of 𝑟 and 𝑦). In Hyb(𝛽 )
0

and Hyb(𝛽 )
1

,

the experiment would compute the digest dig = [𝑑]2 = [𝑐𝐿+1 · 𝐹𝑆 (𝜏)]2 and then set the variable

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦𝑤 ′ℓ · 𝐹𝑆 (𝜏). (5.10)

In the reduction, algorithm B implicitly sets 𝜏 = 𝜏 + id∗. Thus, we can write

𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏 + id∗) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏),

where 𝐺𝑆 is the polynomial from Eq. (5.9). By definition of the coefficients 𝑔𝑖 ,∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖 · (𝑐𝐿+1𝑦𝑤̃ ′ℓ𝜏𝑖 + 𝑎𝑏𝑐𝐿+1𝑦𝑦∗ℓ 𝜏𝑖 ) = 𝑐𝐿+1𝑦 · (𝑤̃ ′ℓ + 𝑎𝑏𝑦∗ℓ ) ·𝐺𝑆 (𝜏) = 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏) .
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Now, in the reduction, algorithm B sets

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (tg − tg∗)𝑏𝑐𝐿+1 + (𝑣 + ˜ℎ · tg)𝑢1 + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗)

+
∑︁

𝑖∈[ |𝑆 | ]
𝑔𝑖 · (𝑐𝐿+1𝑦𝑤̃ ′ℓ𝜏𝑖 + 𝑎𝑏𝑐𝐿+1𝑦𝑦∗ℓ 𝜏𝑖 )

= 𝑐𝐿+1𝛼ℓ + 𝑟 (tg − tg∗)𝑏𝑐𝐿+1 + (𝑣 + ˜ℎ · tg)𝑢1 + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏).

(5.11)

Suppose now that we substitute the values of 𝛼ℓ , 𝑟 , 𝑣, ℎ,𝑤
′
ℓ into Eq. (5.10). Then we have the following:

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦𝑤 ′ℓ · 𝐹𝑆 (𝜏)

= 𝑐𝐿+1𝛼ℓ + 𝑢1 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦𝑤 ′ℓ · (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))
= 𝑐𝐿+1 (𝛼ℓ − 𝑎𝑏mT

ℓw̃) + 𝑢1 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦 (𝑤̃ ′ℓ + 𝑎𝑏𝑦∗ℓ ) · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏) .
(5.12)

We have highlighted the terms that depend on𝑎𝑏𝑐𝐿+1 in green since these termswill be cancelled out. Specifically,

consider now the value of 𝑢1 (𝑣 + ℎ · tg):

𝑢1 (𝑣 + ℎ · tg) = 𝑢1 (𝑣 − 𝑏𝑐𝐿+1 · tg∗ + ( ˜ℎ + 𝑏𝑐𝐿+1) · tg)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑢1 · 𝑏𝑐𝐿+1 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + (𝑟 + (tg − tg∗)−1 (mT

ℓw̃ − 𝑦𝑦∗ℓ · 𝐹𝑆 (id∗)) · 𝑎) · 𝑏𝑐𝐿+1 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑟𝑏𝑐𝐿+1 (tg − tg∗) + 𝑎𝑏𝑐𝐿+1 (mT

ℓw̃ − 𝑦𝑦∗ℓ · 𝐹𝑆 (id∗)) .

Observe that the highlighted terms in green precisely cancels out the corresponding terms that depend on

𝑎𝑏𝑐𝐿+1 in Eq. (5.12). Thus, substituting back into Eq. (5.12), we now have

𝑢2 = 𝑐
𝐿+1 (𝛼ℓ − 𝑎𝑏mT

ℓw̃) + 𝑢1 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦 (𝑤̃ ′ℓ + 𝑎𝑏𝑦∗ℓ ) · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏)
= 𝑐𝐿+1𝛼ℓ + 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑟𝑏𝑐𝐿+1 (tg − tg∗) + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏).

This is precisely the expression in Eq. (5.11), so we conclude that algorithm B correctly answers the key-

computation query according to the specification of Hyb(𝛽 )
0

and Hyb(𝛽 )
1

.

• Suppose tg = tg∗. In this case, algorithm B sets 𝑦 = mT
ℓw̃/(𝑦∗ℓ 𝐹𝑆 (id

∗)) if mT
ℓw̃ ≠ 0 and 𝑦

r← Z∗𝑝 if mT
ℓw̃ = 0.

It also samples 𝑟
r← Z𝑝 . By assumption, algorithm A makes at most one key-computation query to user ℓ

on batch label tg∗. Moreover, as argued previously, the adversary’s view in the reduction can be described

as a function of 𝑤 ′ℓ , which perfectly hides 𝑦∗ℓ . In the case where B samples 𝑦∗ℓ
r← Z∗𝑝 , the distribution of 𝑦 is

uniform over Z∗𝑝 (and independent of all other quantities in the adversary’s view) in both cases. In the other

case, algorithm B simply sample 𝑦
r← Z∗𝑝 .

As in the previous case, it suffices now to show that the component 𝑢2 is correctly computed (with respect

to algorithm B’s choice of 𝑟 and 𝑦). As in the previous case, in Hyb(𝛽 )
0

and Hyb(𝛽 )
1

, the experiment would set

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (𝑣 + ℎ · tg∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ · (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏)) . (5.13)

Now, in the reduction, algorithm B sets

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) +

∑︁
𝑖∈[ |𝑆 | ]

𝑔𝑖 · (𝑦𝑤̃ ′ℓ · 𝑐𝐿+1𝜏𝑖 + 𝑦𝑦∗ℓ𝑎𝑏𝑐𝐿+1𝜏𝑖 )

= 𝑐𝐿+1𝛼ℓ + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦 (𝑤̃ ′ℓ + 𝑦∗ℓ𝑎𝑏) ·𝐺𝑆 (𝜏)
= 𝑐𝐿+1𝛼ℓ + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏).

(5.14)
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Suppose now that we substitute the values of 𝛼ℓ , 𝑟 , 𝑣, ℎ,𝑤
′
ℓ into Eq. (5.13). Then we have the following:

𝑢2 = 𝑐
𝐿+1𝛼ℓ + 𝑟 (𝑣 + ℎ · tg) + 𝑐𝐿+1𝑦𝑤 ′ℓ · (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))

= 𝑐𝐿+1𝛼ℓ + 𝑟 (𝑣 − 𝑏𝑐𝐿+1 · tg∗ + ( ˜ℎ + 𝑏𝑐𝐿+1) · tg∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ · (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))
= 𝑐𝐿+1 (𝛼ℓ − 𝑎𝑏mT

ℓw̃) + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦 (𝑤̃ ′ℓ + 𝑎𝑏𝑦∗ℓ ) · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏),
(5.15)

where we have again highlighted the terms that depend on 𝑎𝑏𝑐𝐿+1. When mT
ℓw̃ = 0, then algorithm B also sets

𝑦∗ℓ = 0. In this case

−𝑎𝑏𝑐𝐿+1mT
ℓw̃ + 𝑎𝑏𝑐𝐿+1𝑦𝑦∗ℓ 𝐹𝑆 (id∗) = 0.

If mT
ℓw̃ ≠ 0, then algorithm B sets 𝑦 = mT

ℓw̃/(𝑦∗ℓ 𝐹𝑆 (id
∗)). We can then write

−𝑎𝑏𝑐𝐿+1mT
ℓw̃ + 𝑎𝑏𝑐𝐿+1𝑦𝑦∗ℓ 𝐹𝑆 (id∗) = −𝑎𝑏𝑐𝐿+1mT

ℓw̃ + 𝑎𝑏𝑐𝐿+1mT
ℓw̃ = 0.

Substituting back in Eq. (5.15), we have

𝑢2 = 𝑐
𝐿+1 (𝛼ℓ − 𝑎𝑏mT

ℓw̃) + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦 (𝑤̃ ′ℓ + 𝑎𝑏𝑦∗ℓ ) · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏)
= 𝑐𝐿+1𝛼ℓ + 𝑟 (𝑣 + ˜ℎ · tg∗) + 𝑐𝐿+1𝑦𝑤̃ ′ℓ · 𝐹𝑆 (id∗) + 𝑐𝐿+1𝑦𝑤 ′ℓ ·𝐺𝑆 (𝜏),

which precisely coincides with how algorithm B constructs 𝑢2 in Eq. (5.14).

We conclude that algorithm B responds to the key-generation queries with the same procedure as in Hyb(𝛽 )
0

and

Hyb(𝛽 )
1

. Thus, as argued above, if 𝜉 = 𝑎𝑏𝑐𝐿+1𝑠 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )
0

, whereas

if 𝜉
r← Z𝑝 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )

1
. Thus, algorithm B breaks Assumption 5.4

with the same advantage 𝜀 and the claim follows. □

Corollary 5.9 (Threshold Batched Identity-Based Encryption with Silent Setup). Let 𝜆 be a security parameter. Suppose
Assumption 5.4 holds with respect to GroupGen for all polynomials 𝐵 = 𝐵(𝜆) and 𝑁 = 𝑁 (𝜆). Then, for every polynomial
𝐵 = 𝐵(𝜆) and 𝐿 = 𝐿(𝜆), Construction 5.5 is a statically-secure fixed-threshold batched IBE scheme with silent setup and
the following efficiency properties:

• Public parameter size: For a batch size 𝐵 and a decryption committee size 𝐿, the public parameters contain
𝑂 (𝐿𝐵) group elements.

• Ciphertext size: Each ciphertext contains 2 G1 elements, 2 G2 elements and 1 GT element.

• Aggregated encryption key size: The aggregated encryption key for a group of 𝐿 users contains 2 G1 elements,
3 G2 elements, and 1 GT element.

• Digest size: A digest contains 1 G2 element.

• Decryption key size: A decryption key share contains 2 G2 elements and 1 Z𝑝 element.

Remark 5.10 (Supporting Dynamic Thresholds). Construction 5.5 gives a scheme that supports a fixed threshold
where the threshold is determined at setup time. We could also consider a more general setting where the threshold

can be determined dynamically at encryption time. The work of [WW25a] provide a general template for building

a scheme that supports dynamic thresholds from one that supports fixed thresholds. We sketch this approach here.

Let 𝑁 be a bound on the size of the decryption committee. The [WW25a] approach instantiates the fixed threshold

scheme with 2𝑁 − 1 users and a fixed threshold of 𝑁 . The first 𝑁 users (or slots) are associated with potential

decryption committee keys while the remaining 𝑁 − 1 users are dummy users. The public parameters include a

random public key for each dummy user while the associated secret key is discarded.

Suppose we want to support a decryption committee with 𝐿 users. Let pk
1
, . . . , pk𝐿 denote their public keys. In

Construction 5.5, the Preprocess algorithm now needs to compute the aggregated components ( [𝑧]2, [𝑤]2, [𝑤𝜏]2).
The idea is that the Preprocess algorithm will only aggregate in the keys for the first 𝑁 users, defined as follows:
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• The public keys for the first 𝐿 slots are pk
1
, . . . , pk𝐿 .

• The public keys for the remaining 𝑁 − 𝐿 slots are set to the all-zero key (e.g., 𝛼ℓ = 𝑤
′
ℓ = 0). By construction,

anyone can compute decryption key shares with respect to these keys.

Thus far, ( [𝑧]2, [𝑤]2, [𝑤𝜏]2) only contain information for the first 𝑁 slots (for a scheme that supports 2𝑁 − 1 users).

The public keys for the remaining 𝑁 − 1 slots are now determined at encryption time based on the threshold.

Specifically, suppose we want to encrypt to a threshold 𝑇 ≤ 𝐿 ≤ 𝑁 . Since we have a fixed threshold scheme, any

decrypter needs to accumulate 𝑁 decryption shares in order to decrypt. A decrypter that has 𝑇 decryption shares

from the decryption committee could obtain an additional 𝑁 − 𝐿 decryption shares (from the users with the zero

keys) for a grand total of 𝑁 +𝑇 − 𝐿 shares. At this point, they are still short by 𝐿 −𝑇 decryption shares. The idea in

the [WW25a] approach is the encrypter will associate a set of 𝐿 −𝑇 users in slots 𝑁 + 1, . . . , 2𝑁 − 1 with the all-zeroes

key and the remaining users with their dummy keys. Essentially then, any decrypter can get an additional 𝐿 −𝑇
decryption shares for free. This brings their total share count to 𝑇 + (𝑁 − 𝐿) + (𝐿 −𝑇 ) = 𝑁 , thus allowing them to

decrypt. In other words, the encryption algorithm will determine how many additional shares to give out for free

based on the encryption threshold, and then encrypt to the associated collection of public keys.

Implementing this step naïvely will lead to long encryption keys (since we have to include dummy keys for up

to 𝑁 − 1 users in order to support arbitrary thresholds). The final idea in [WW25b] is to “pre-aggregate” the dummy

keys together in blocks, where each block contains a different power-of-two pre-aggregated users. This allows us

to support dynamic thresholds with only log𝑁 overhead in the size of the CRS and the size of the encryption key.

The ciphertext size and the secret key size are unaffected. Static security of this adaptation would follow under

Assumption 5.4 with parameters 𝐵 and 2𝑁 − 1.
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A The Batched IBE Scheme from [AFP25]
To facilitate a comparison with our approach, we provide a brief description of the batched IBE scheme from [AFP25]

scheme using our notation. For ease of comparison, we also interchange the roles ofG1 andG2 from their construction.

Then, the master public key mpk, the ciphertext ctid,tg (for identity id and batch label tg), and the secret key sk𝑆,tg
(for set 𝑆 ⊂ Z𝑝 and batch label tg) have the following structure:

mpk = ( [𝜏]2, . . . , [𝜏𝐵]2, [𝛼]T)
ctid,tg = ( [𝑠]1, [𝑠0 + 𝑠𝛼]1, [𝑠0 (𝜏 − id)]1, [𝑠𝛼 · 𝐻 (tg)]T + [𝑚]T) where 𝑠, 𝑠0

r← Z𝑝

sk𝑆,tg = [𝛼 · (𝐻 (tg) + 𝐹𝑆 (𝜏))]2 where 𝐹𝑆 (𝑥) =
∏
id∈𝑆
(𝑥 − id)

Observe that if id ∈ 𝑆 , then

[𝑠𝛼 · 𝐻 (tg)]T =

ct︷︸︸︷
[𝑠]1 ·(

sk︷                       ︸︸                       ︷
[𝛼 · (𝐻 (tg) + 𝐹𝑆 (𝜏))]2) −

ct︷     ︸︸     ︷
[𝑠0 + 𝑠𝛼]1 ·

pp︷︸︸︷
𝐹𝑆 (𝜏) +

ct︷         ︸︸         ︷
[𝑠0 (𝜏 − id)]1 ·

pp︷     ︸︸     ︷
𝐹𝑆\{id} (𝜏)

Running times. Table 2 compares the computational cost between our batched IBE schemes and that of [AFP25].

We refer to Table 1 for a comparison of the parameter sizes.

Scheme Encrypt Decrypt

[AFP25] 5𝑇𝐸 +𝑇𝑃 +𝑇𝐻 𝐵𝑇𝐸 + 3𝑇𝑃
Corollary 4.5 6𝑇𝐸 𝐵𝑇𝐸 + 3𝑇𝑃
Corollary D.6 4𝑇𝐸 +𝑇𝑃 +𝑇𝐻 𝐵𝑇𝐸 + 2𝑇𝑃

Table 2: Comparison of our batched IBE schemes with the [AFP25] scheme in terms of the computational costs

for encryption and decryption. We use 𝑇𝐸,𝑇𝐻 ,𝑇𝑃 to refer to the cost of an exponentiation, a hash operation, and

a pairing operation, respectively. In all cases, we report the numbers of exponentiations, hash operations, and pairing

operations, and do not consider any optimization.

B Generic Hardness of Bilinear Diffie-Hellman Variants
In this section, we show that the 𝑞-type assumptions we use in this work (Assumptions 4.1 and 5.4) hold uncondi-

tionally in the generic bilinear group model [Sho97, BBG05]. In the generic bilinear group model, we model a generic

asymmetric bilinear group of prime order 𝑝 with label spaceL as three random injective functions 𝜑1, 𝜑2, 𝜑T : Z𝑝 → L.
An algorithm in the generic asymmetric bilinear group model has access to the following two oracles:
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• Evaluation oracle: On input two labels ℓ1, ℓ2 ∈ L and a group index 𝑖 ∈ {1, 2, T}, the evaluation oracle

first checks that ℓ1, ℓ2 are in the image of 𝜑𝑖 . If not, the evaluation oracle outputs ⊥. Otherwise, it returns
𝜑𝑖 (𝜑−1

𝑖 (ℓ1) + 𝜑−1

𝑖 (ℓ2)).

• Pairing oracle: On input two labels ℓ1, ℓ2 ∈ L, the pairing oracle first checks that ℓ1 is in the image of 𝜑1 and

ℓ2 is in the image of 𝜑2. If not, the pairing oracle outputs ⊥. Otherwise, it returns 𝜑T (𝜑−1

1
(ℓ1) · 𝜑−1

2
(ℓ2)).

Boneh, Boyen, and Goh [BBG05] described a set of sufficient conditions for a cryptographic assumption to hold

unconditionally in the generic bilinear group model. Below, we present a specialized version (that only involves

elements in the base groups) that suffices for analyzing the assumptions we use in this work. Our presentation below

is adapted from that of [WW25a, Appendix A].

Definition B.1 (Independence of Polynomials). Let P = {𝑃𝑖 }𝑖∈[𝑘 ] be a collection of 𝑛-variate polynomials 𝑃𝑖 ∈
Z𝑝 [𝑋1, . . . , 𝑋𝑛]. We say a polynomial 𝑓 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] is dependent with respect to P if there exists coefficients

𝛼0, . . . , 𝛼𝑘 such that

𝑓 (𝑋1, . . . , 𝑥𝑛) = 𝛼0 +
∑︁
𝑖∈[𝑘 ]

𝛼𝑘𝑃𝑘 (𝑋1, . . . , 𝑋𝑛).

Conversely, we say that 𝑓 is independent with respect to P if 𝑓 is not dependent with respect to P.

Theorem B.2 (Generic Hardness in Prime-Order Groups [BBG05, Theorem A.2, adapted]). Let 𝑝 be a prime and
P = {𝑃𝑖 }𝑖∈[𝑘 ] and Q = {𝑄 𝑗 } 𝑗∈[𝑚] be two collections of 𝑛-variate polynomials 𝑃𝑖 , 𝑄 𝑗 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] and where
𝑃1 = 𝑄1 = 1. Let 𝑇 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] be a polynomial. For an adversary A and a bit 𝑏 ∈ {0, 1}, we define the following
distinguishing experiment in the generic asymmetric bilinear group of order 𝑝 :

• At the beginning of the game, the challenger samples 𝑥1, . . . , 𝑥𝑛
r← Z𝑝 . For each 𝑖 ∈ [𝑘], it computes ℓ𝑖 =

𝜑1 (𝑃𝑖 (𝑥1, . . . , 𝑥𝑛)) and for each 𝑗 ∈ [𝑚], it computes ℓ ′𝑗 = 𝜑2 (𝑄 𝑗 (𝑥1, . . . , 𝑥𝑛)).

• If 𝑏 = 0, the challenger computes 𝜏 = 𝜑T (𝑇 (𝑥1, . . . , 𝑥𝑛)). If 𝑏 = 1, the challenger samples 𝑟 r← Z𝑝 and sets 𝜏 = 𝜑T (𝑟 ).

The challenger gives (ℓ1, . . . , ℓ𝑘 , ℓ ′1, . . . , ℓ ′𝑚, 𝜏) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the
experiment. Let PQ = {𝑃𝑖𝑄 𝑗 : 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑚]}. Let 𝑑 be a bound on the total degree of the polynomials in PQ ∪ {𝑇 }.
If 𝑇 is independent of PQ, then for all adversaries A making at most 𝑞 queries to the generic asymmetric bilinear group
oracle, it holds that

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ (𝑞 + 𝑘 +𝑚 + 1)2𝑑
𝑝

.

Generic hardness of Assumption 4.1. First, we use Theorem B.2 to prove that Assumption 4.1 holds in the

generic asymmetric bilinear group model.

Theorem B.3 (Generic Hardness of Assumption 4.1). Let 𝑁 ∈ N and let A be any adversary for Assumption 4.1 with
parameter 𝑁 . If A makes at most 𝑞 generic group oracle queries, then the advantage of A is at most 𝑂 (𝑞2𝑁 3)/𝑝 in the
generic asymmetric bilinear group model. In particular, whenever 𝑝 > 𝜆𝜔 (1) , the advantage of A is negligible for all
polynomials 𝑁,𝑞 = poly(𝜆).

Proof. We start by defining the sets of polynomials P,Q and the challenge polynomial𝑇 associated with the challenge

terms in Assumption 4.1. By construction, each polynomial is over the formal variables 𝑎, 𝑏, 𝑠, 𝜏 . Then, the polynomials

are defined as follows:

P = {1, 𝑏, 𝑠, 𝜏, 𝑎𝑏, 𝑎𝑏𝜏, 𝑎𝑏𝑠𝜏}
Q = {1, 𝑎, 𝑏, 𝜏, . . . , 𝜏𝑁 , 𝑎𝑏𝜏, . . . , 𝑎𝑏𝜏𝑁 }
𝑇 = 𝑎𝑏𝑠.

To appeal to Theorem B.2, we need to show that 𝑇 is independent with respect to the product PQ. Since P and Q
consist of monomials and 𝑇 is also a monomial, it suffices to argue that 𝑇 ∉ PQ. This follows by inspection. Namely,

suppose we write 𝑇 = 𝑃𝑄 where 𝑃 ∈ P. Then, the following holds:
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• If 𝑃 ∈ {1, 𝑏, 𝑠, 𝑎𝑏} and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑠 , then 𝑄 ∈ {𝑎𝑏𝑠, 𝑠𝑎, 𝑎𝑏, 𝑠}. By definition of Q, this means 𝑄 ∉ Q.

• If 𝑃 ∈ {𝜏, 𝑎𝑏𝜏, 𝑎𝑏𝑠𝜏} and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑠 , then 𝑄 must be a multiple of 𝜏−1
, which means 𝑄 ∉ Q.

We conclude that 𝑇 is independent with respect to PQ. Finally, to invoke Theorem B.2, we compute the maximum

degree 𝑑 among polynomials in PQ ∪ {𝑇 }. By inspection, the maximum degree 𝑑P of polynomials in P is 𝑑P = 4 and

the maximum degree 𝑑Q of polynomials in Q is 𝑑Q = 𝑂 (𝑁 ). The degree of𝑇 is 3. Thus 𝑑 = 𝑂 (𝑁 ). Finally, |P | = 𝑂 (1)
and |Q| = 𝑂 (𝑁 ). The claim now follows by Theorem B.2. □

Generic hardness of Assumption 5.4. Similarly, we can also use Theorem B.2 to prove that Assumption 5.4 holds

in the generic asymmetric bilinear group model.

Theorem B.4 (Generic Hardness of Assumption 5.4). Let 𝐿, 𝐵 ∈ N and letA be any adversary for Assumption 5.4 with
parameter 𝐿 and 𝐵. If A makes at most 𝑞 generic group oracle queries, then the advantage of A is at most 𝑂 (𝑞2𝐿3𝐵3)/𝑝
in the generic asymmetric bilinear group model. In particular, whenever 𝑝 > 𝜆𝜔 (1) , the advantage of A is negligible for
all polynomials 𝐿, 𝐵, 𝑞 = poly(𝜆).

Proof. We start by defining the sets of polynomials P,Q and the challenge polynomial 𝑇 associated with the chal-

lenge terms in Assumption 5.4. By construction, each polynomial is over the formal variables 𝑎, 𝑏, 𝑐, 𝑠, 𝜏 . Then, the

polynomials are defined as follows:

P =
{
1, 𝑏𝑐𝐿+1, 𝑎𝑏, 𝑠, 𝜏, {𝑐ℓ𝜏 𝑗 }ℓ∈[2𝐿], 𝑗∈[0,𝐵 ]

}
Q =

{
1, 𝑎, 𝑏, 𝑏𝑐𝐿+1, 𝑎𝑏, {𝑐ℓ𝜏 𝑗 }ℓ∈[0,2𝐿], 𝑗∈[0,𝐵 ], {𝑎𝑏𝑐ℓ𝜏 𝑗 }ℓ∈[2𝐿]\{𝐿+1}, 𝑗∈[0,𝐵 ], {𝑎𝑏𝑐𝐿+1𝜏 𝑗 } 𝑗∈[𝐵 ], {𝑐ℓ𝑠, 𝑐ℓ𝑠𝜏, 𝑎𝑏𝑐ℓ𝑠𝜏}ℓ∈[𝐿]

}
𝑇 = 𝑎𝑏𝑐𝐿+1𝑠 .

To appeal to Theorem B.2, we need to show that 𝑇 is independent with respect to the product PQ. Since P and Q
consist of monomials and 𝑇 is also a monomial, it suffices to argue that 𝑇 ∉ PQ. This follows by inspection. Namely,

suppose we write 𝑇 = 𝑃𝑄 where 𝑃 ∈ P. Then, the following holds:

• If 𝑃 ∈ {1, 𝑏𝑐𝐿+1, 𝑎𝑏, 𝑠} and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑐𝐿+1𝑠 , then 𝑄 ∈ {𝑎𝑏𝑐𝐿+1𝑠, 𝑎𝑠, 𝑐𝐿+1𝑠, 𝑎𝑏𝑐𝐿+1}. By definition of Q, this
means 𝑄 ∉ Q.

• If 𝑃 ∈ {𝑐ℓ }ℓ∈[2𝐿] and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑐𝐿+1𝑠 , then 𝑄 must be a multiple of 𝑎𝑏𝑠 . This rules out all monomials in Q
except those in {𝑎𝑏𝑐ℓ𝑠𝜏}ℓ∈[𝐿] . However, all of these monomials introduce 𝜏 and this means 𝑄 ∉ Q.

• If 𝑃 ∈ {𝜏} ∪ {𝑐ℓ𝜏 𝑗 }ℓ∈[2𝐿], 𝑗∈[𝐵 ] and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑐𝐿+1𝑠 , then 𝑄 must be a multiple of 𝜏− 𝑗 for some 𝑗 ∈ [𝐵]. This
means 𝑄 ∉ Q.

We conclude that𝑇 is independent with respect to PQ. Finally, to invoke Theorem B.2, we compute the maximum de-

gree 𝑑 among polynomials in PQ∪{𝑇 }. By inspection, the maximum degree 𝑑P of polynomials in P is 𝑑P = 𝑂 (𝐿+𝐵)
and the maximum degree 𝑑Q of polynomials in Q is 𝑑Q = 𝑂 (𝐿 + 𝐵). The degree of 𝑇 is 𝐿 + 4. Thus 𝑑 = 𝑂 (𝐿 + 𝐵).
Finally, |P | = 𝑂 (𝐿𝐵) and |Q| = 𝑂 (𝐿𝐵). The claim now follows by Theorem B.2. □

C Adaptively-Secure Batched IBE in the Plain Model
Two of the limitations of our batched IBE scheme from Section 4 (Construction 4.2) are (1) the scheme is only proven

to be selectively secure; and (2) the security game restricts the adversary to making a single key query for the

challenge batch label. In this section, we show a straightforward generalization of Construction 4.2 that addresses

these limitations:

• Adaptive choice of identity. Theorem 4.4 proves selective security of Construction 4.2 where the adversary

has to commit to both the challenge identity id∗ as well as the challenge batch label tg∗ at the beginning of the

security game. Here, we show a generalization that allows the adversary to adaptively choose the identity, but

remains selective in the choice of batch label. As we discuss in Remark C.16, supporting an adaptive choice of
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batch label is plausible using Waters’ bit-by-bit approach of embedding the batch label [Wat05] in place of the

Boneh-Boyen embedding [BB04] used in Construction 4.2. For ease of exposition, we just focus on handling

the adaptive choice of identity rather than the batch label as the latter can plausibly be handled via standard

techniques. We refer to this notion as “identity-adaptive” security.

• Multiple key-generation queries. Second, we show a simple approach that allows the adversary to request

up to 𝐾 keys for the challenge batch label tg∗ for some a priori bounded 𝐾 . Our approach adds 𝐾 field elements

to the secret keys and 𝐾 group elements to the ciphertexts.

To achieve identity-adaptive security, we first introduce a more general functionality where users are associated

with a set 𝐼 ⊂ Z𝑝 of identities (instead of a single identity id ∈ Z𝑝 ). Secret keys are still associated with a set 𝑆 ⊂ Z𝑝
as before. Decryption is possible whenever the user’s set of identities 𝐼 is a subset of 𝑆 . We refer to this notion as

a tag-based attribute-based encryption (ABE) scheme for subset policies. The key property is that when the sets

of identities 𝐼 are drawn from a polynomial-size universe, then we can prove adaptive security just by having the

reduction guess an element id ∈ 𝐼 . Then, in Remark C.15, we describe how to combine the tag-based ABE scheme for

subset policies with a cover-free set system [KS64, EFF85]. This yields a batched IBE scheme with identity-adaptive

security. We start by introducing the formal notion of a tag-based attribute-based encryption scheme. As mentioned

above, we also consider an extension where the adversary is allowed to request up to 𝐾 keys for the challenge tag

(the analog of the batch label in the batched IBE scheme).

Definition C.1 (Tag-Based Attribute-Based Encryption for Subset Policies). A tag-based attribute-based encryption

(ABE) scheme for subset policies ΠTagABE is a tuple of efficient algorithms ΠTagABE = (Setup,KeyGen, Encrypt,Digest,
ComputeKey,Decrypt) with the following syntax:

• Setup(1𝜆) → pp: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a set of public parameters

pp. We assume that the public parameters (implicitly) specifies the message spaceM, the identity space I,
and the tag space T for the encryption scheme.

• KeyGen(pp, 1𝑁 , 1𝐵, 1𝐾 ) → (mpk,msk): On input the public parameters pp, a bound on the number of identities

𝑁 associated with each user, a bound on the maximum set size 𝐵, and a collusion bound 𝐾 , the key-generation

algorithm outputs a master public key mpk and a master secret key msk. We assume that mpk and msk also
include an implicit description of the message spaceM, the tag space T , the identity space I, the bound on

the number of identities 𝑁 associated with each user, the maximum set size 𝐵, and the collusion bound 𝐾 .

• Encrypt(mpk,𝑚, 𝐼, tg) → ct: On input the master public key mpk, a message𝑚 ∈ M, a set of identities 𝐼 ⊆ I,
and a tag tg ∈ T , the encryption algorithm outputs a ciphertext ct.

• Digest(mpk, 𝑆) → dig: On input the master public key mpk and a set of identities 𝑆 ⊆ I, the digest algorithm
outputs a digest dig. This algorithm is deterministic.

• ComputeKey(msk, dig, tg) → sk: On input the master secret key msk, a digest dig, and a tag tg, the key-

computation algorithm outputs a secret key sk associated with dig and tg.

• Decrypt(mpk, sk, 𝑆, (𝐼 , tg), ct) → 𝑚: On input the master public key mpk, a secret key sk, a set of identities
𝑆 ⊆ I, a pair (𝐼 , tg), and a ciphertext ct, the decryption algorithm outputs a message𝑚 ∈ M (or possibly a

special symbol ⊥ to indicate decryption failed). This algorithm is deterministic.

We require ΠTagABE satisfy the following properties:

• Correctness: For all 𝜆, 𝐵, 𝐾 ∈ N, all 𝑁 ≤ 𝐵, all public parameters pp in the support of Setup(1𝜆), all messages

𝑚 ∈ M, sets of identities 𝐼 ⊂ I of size at most 𝑁 , and tags tg ∈ T (whereM,I,T are the message, identity,

and tag spaces associated with pp, respectively), all sets 𝑆 ⊆ I of size at most 𝐵 where 𝐼 ⊆ 𝑆 , we have

Pr

Decrypt(mpk, sk, 𝑆, (𝐼 , tg), ct) =𝑚 :

(mpk,msk) ← KeyGen(pp, 1𝑁 , 1𝐵, 1𝐾 )
ct← Encrypt(mpk,𝑚, 𝐼, tg)

dig = Digest(mpk, 𝑆)
sk← ComputeKey(msk, dig, tg)

 = 1.
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• Adaptive security: For a security parameter 𝜆, a bound 𝑁 on the number of identities associated with each

user, a bound 𝐵 on the maximum set size, a collusion bound 𝐾 , a bit 𝛽 ∈ {0, 1}, and an adversary A, we define

the adaptive security game as follows:

– The challenger starts by computing pp← Setup(1𝜆) and (mpk,msk) ← KeyGen(pp, 1𝑁 , 1𝐵, 1𝐾 ). It gives
(1𝜆, 1𝑁 , 1𝐵, 1𝐾 , pp,mpk) to A. LetM,I,T be the message space, identity space, and tag space associated

with pp, respectively.

– Algorithm A can now make key-computation queries. On each query, algorithm A specifies a set

𝑆 ⊆ I of size at most |𝑆 | ≤ 𝐵, and a tag tg ∈ T . The challenger replies with a secret key sk ←
ComputeKey(msk,Digest(mpk, 𝑆), tg).

– After A is finished making key-computation queries, it outputs two messages𝑚0,𝑚1 ∈ M and a chal-

lenge pair (𝐼 ∗, tg∗) where ∅ ≠ 𝐼 ∗ ⊆ I and |𝐼 ∗ | ≤ 𝑁 . The challenger responds with a challenge ciphertext

ct← Encrypt(mpk,𝑚𝛽 , 𝐼
∗, tg∗).

– Algorithm A can continue to make key-computation queries. The challenger answers the queries exactly

as before.

– At the end of the game, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible if the following two conditions hold:

– Algorithm A makes at most 𝐾 key-computation queries on the challenge tag tg∗.

– Let 𝑆1, . . . , 𝑆𝐾 ⊆ I be the sets associated with A’s 𝐾 key-computation queries on tg∗. It holds that
𝐼 ∗ ⊈

⋃
𝑗∈[𝐾 ] 𝑆 𝑗 . Note that this is a stronger admissibility requirement than standard ABE for subset

policies. We refer to Remark C.2 for additional discussion.

We say ΠTagABE is secure if for all polynomials 𝑁 = 𝑁 (𝜆), 𝐵 = 𝐵(𝜆), and 𝐾 = 𝐾 (𝜆), where 𝑁 ≤ 𝐵, and all

efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝛽 ′ = 1 : 𝛽 = 0] − Pr[𝛽 ′ = 1 : 𝛽 = 1] | = negl(𝜆) (C.1)

in the above security game. We say ΠTagABE is secure for parameters (𝑁, 𝐵, 𝐾) = (𝑁 (𝜆), 𝐵(𝜆), 𝐾 (𝜆)), if the
above holds for the specific functions 𝑁, 𝐵, 𝐾 . We say ΠTagABE satisfies tag-selective security if Eq. (C.1) holds

against all efficient adversaries that must declare the challenge tag tg∗ at the beginning of security game (but

is allowed to choose the challenge set 𝐼 ∗ adaptively).

• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝐵, 𝐾 ∈ N, all 𝑁 ≤ 𝐵, all public
parameters pp in the support of Setup(1𝜆), all (mpk,msk) in the support of KeyGen(pp, 1𝑁 , 1𝐵, 1𝐾 ), all digests
dig in the support of Digest(mpk, ·), all tags tg ∈ T (where T is the tag space associated with pp), and all

ciphertexts ct in the support of Encrypt(mpk, ·, ·, ·), the running time of ComputeKey(msk, dig, tg), the size of
the ciphertext ct, and the size of the digest dig is poly(𝜆, 𝐾), and in particular, independent of 𝐵 and 𝑁 .

Remark C.2 (Comparison to ABE). Definition C.1 can be viewed as a special case of key-policy ABE [SW05, GPSW06]

for the family of “tagged subset” policies. Specifically, we can associate each policy with a pair (𝑆, tg) where 𝑆 ⊆ I
is a set of identities and tg is a tag. Similarly, the attribute associated with each ciphertext is a pair (𝐼 , tgct). We say

the policy is satisfied if

tgct = tg and 𝐼 ⊆ 𝑆.

Note that we can equivalently view the scheme as a ciphertext-policy ABE scheme for “tagged superset” policies. The

additional requirement Definition C.1 imposes is that the secret key associated with the policy (𝑆, tg) and the ciphertext
associated with the attribute (𝐼 , tgct) are both short. Standard key-policy ABE typically allows the size of the secret

key to grow with the size of the policy description and the ciphertext to grow with the length of the attribute. For our

applications to batched IBE and batch decryption, it will be important to support succinct ciphertexts and secret keys.
On the flip side, the security requirement in Definition C.1 is significantly more restrictive than that for standard

ABE. Namely, we only require security against adversaries whose challenge set 𝐼 ∗ is not contained in the union of the
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sets 𝑆1, . . . , 𝑆𝐾 appearing in the key-generation queries associated with tag tg∗. In normal ABE, the restriction would

be that 𝐼 ∗ ⊈ 𝑆𝑖 for all 𝑖 ∈ [𝐾] (i.e., the challenge attribute does not satisfy the policy associated with any individual
key). As we discuss in Remark C.15, this weaker notion is already sufficient to construct a batched IBE scheme with

security against an adversary that can adaptively choose the challenge identity.

Tag-based ABE construction for subset policies. We now describe how to extend Construction 4.2 to obtain

a tag-based ABE scheme for subset policies. Simultaneously, we also incorporate the generalization to support giving

out 𝐾 decryption keys for each tag. The idea here is to replace the component 𝑤 ∈ Z𝑝 in Construction 4.2 with a

vector w ∈ Z𝐾𝑝 . We refer to Section 2.1 for a high-level description of our approach.

Construction C.3 (Tag-Based Attribute-Based Encryption for Subset Policies). Take any polynomial 𝑀 = 𝑀 (𝜆)
where𝑀 (𝜆) ≤ 2

𝜆
for all 𝜆 ∈ N. Let GroupGen be a prime-order bilinear group generator. We construct a tag-based

ABE scheme for subset policies ΠTagABE = (Setup,KeyGen, Encrypt,Digest,ComputeKey,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ←
GroupGen(1𝜆) and outputs the public parameters pp = G. The message space associated with pp isM = GT,

the identity space is I = [𝑀 (𝜆)], and the tag space is T = Z𝑝 .

• KeyGen(pp, 1𝑁 , 1𝐵, 1𝐾 ): On input the public parameters pp = G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒), a bound on the

number of identities 𝑁 associated with each user, a bound on the maximum set size 𝐵, and a collusion bound 𝐾 ,

the key-generation algorithm samples exponents 𝜏, 𝑣, ℎ, 𝛼
r← Z𝑝 and w r← Z𝐾𝑝 . It outputs the master public key

mpk =
(
G, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [w]1, [w𝜏]1, . . . , [w𝜏𝑁 ]1, [𝑣]1, [ℎ]1, [𝛼]T

)
(C.2)

and the master secret key msk = (w, 𝑣, ℎ, 𝛼).

• Encrypt(mpk, [𝑚]T, 𝐼 , tg): On input the master public key mpk (parsed according to Eq. (C.2)), a message

[𝑚]T ∈ GT, a set 𝐼 ⊆ [𝑀] of size at most 𝑁 , and a tag tg ∈ Z𝑝 , the encryption algorithm samples 𝑠
r← Z𝑝 . It then

constructs the polynomial 𝐹𝐼 (𝑥) =
∏

id∈𝐼 (𝑥−id) whose roots are the elements id ∈ 𝐼 . Write 𝐹𝐼 (𝑥) =
∑
𝑖∈[0, |𝐼 | ] 𝑓𝑖𝑥

𝑖
.

Then, compute

[ct2]1 =
∑︁

𝑖∈[0, |𝐼 | ]
𝑓𝑖𝑠 [w𝜏𝑖 ]1 = [𝑠w · 𝐹𝐼 (𝜏)]1 .

Then output the ciphertext

ct =
(
[𝑠]1 , [ct2]1 , 𝑠 ( [𝑣]1 + tg · [ℎ]1) , 𝑠 [𝛼]T + [𝑚]T

)
=
(
[𝑠]1 , [𝑠w · 𝐹𝐼 (𝜏)]1 , [𝑠 (𝑣 + ℎ · tg)]1 , [𝑠𝛼]T + [𝑚]T

)
.

• Digest(mpk, 𝑆): On input the master public key mpk (parsed according to Eq. (C.2)) and a set of identities

𝑆 ⊆ [𝑀] where |𝑆 | ≤ 𝐵, the digest algorithm defines the polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id) whose roots are
the elements id ∈ 𝑆 . Write 𝐹𝑆 (𝑥) =

∑
𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥

𝑖
. Output the digest

dig =
∑︁

𝑖∈[0, |𝑆 | ]
𝑓𝑖 · [𝜏𝑖 ]2 = [𝐹𝑆 (𝜏)]2 .

• ComputeKey(msk, dig, tg): On input the master secret key msk = (w, 𝑣, ℎ, 𝛼), a digest dig = [𝑑]2, and a tag

tg ∈ Z𝑝 , the key-computation algorithm samples random 𝑟
r← Z𝑝 and y r← Z𝐾𝑝 . Then, it outputs the secret key

sk =
(
y , [𝑟 ]2 , [𝛼 + 𝑟 (𝑣 + ℎ · tg)]2 + yTw · [𝑑]2

)
.

• Decrypt(mpk, sk, 𝑆, (𝐼 , tg), ct): On input the master public key mpk (parsed according to Eq. (C.2)), a se-

cret key sk = (y, [𝑢1]2, [𝑢2]2), two sets of identities 𝑆, 𝐼 ⊆ [𝑀], a tag tg ∈ Z𝑝 , and the ciphertext ct =

( [ct1]1, [ct2]1, [ct3]1, [ct4]T), the decryption algorithm proceeds as follows:
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– If 𝐼 ⊈ 𝑆 , output ⊥. Otherwise, define the polynomial

𝐹𝑆\𝐼 (𝑥) =
∏

id∈𝑆\𝐼
(𝑥 − id) .

Compute [𝐹𝑆\𝐼 (𝜏)]2 =
∑
𝑖∈[0, |𝑆\𝐼 | ] 𝑓𝑖 [𝜏𝑖 ]2, where 𝐹𝑆\𝐼 (𝑥) =

∑
𝑖∈[0, |𝑆\𝐼 | ] 𝑓𝑖𝑥

𝑖
.

– Then it computes and outputs

[ct4]T −
(
( [ct1]1 · [𝑢2]2) − (yT · [ct2]1 · [𝐹𝑆\𝐼 (𝜏)]2) − ([ct3]1 · [𝑢1]2)

)
. (C.3)

Theorem C.4 (Correctness). Construction C.3 is correct.

Proof. Take any 𝜆, 𝐵, 𝐾 ∈ N, 𝑁 ≤ 𝐵 and any G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) in the support of GroupGen(1𝜆). Take any
[𝑚]T ∈ GT, any tag tg ∈ Z𝑝 , any set 𝐼 , 𝑆 ⊆ [𝑀] where |𝐼 | ≤ 𝑁 and |𝑆 | ≤ 𝐵 and 𝐼 ⊆ 𝑆 . Sample

(mpk,msk) ← KeyGen(pp, 1𝐵, 1𝑁 , 1𝐾 )
ct← Encrypt(mpk, [𝑚]T, 𝐼 , tg)

dig = Digest(mpk, 𝑆)
sk← ComputeKey(msk, dig, tg)

By construction, this means

mpk =
(
G, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [w]1, [w𝜏]1, . . . , [w𝜏𝑁 ]1, [𝑣]1, [ℎ]1, [𝛼]T

)
ct =

(
[𝑠]1, [𝑠w · 𝐹𝐼 (𝜏)]1, [𝑠 (𝑣 + ℎ · tg)]1, [𝑠𝛼]T + [𝑚]T

)
sk =

(
y, [𝑟 ]2 , [𝛼 + 𝑟 (𝑣 + ℎ · tg) + yTw · 𝐹𝑆 (𝜏)]2

)
,

where 𝐹𝐼 (𝑥) =
∏

id∈𝐼 (𝑥 − id) and 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Consider now Decrypt(mpk, sk, 𝑆, (𝐼 , tg), ct). If we write
sk = (y, [𝑢1]2, [𝑢2]2), ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T) and 𝐹𝑆\𝐼 (𝑥) =

∏
id∈𝑆\𝐼 (𝑥 − id), then the decryption algorithm

computes

ct1 · 𝑢2 = 𝛼𝑠 + 𝑠yTw · 𝐹𝑆 (𝜏) + 𝑟𝑠 (𝑣 + ℎ · tg)

yT · ct2 · 𝐹𝑆\𝐼 (𝜏) = 𝑠yTw ·
∏
id∈𝐼
(𝜏 − id) ·

∏
id∈𝑆\𝐼

(𝜏 − id)

= 𝑠yTw ·
∏
id∈𝑆
(𝜏 − id) = 𝑠yTw · 𝐹𝑆 (𝜏)

ct3 · 𝑢1 = 𝑟𝑠 (𝑣 + ℎ · tg).

Here the second expression uses the fact that 𝐼 ⊆ 𝑆 which means that 𝐼 ∩ (𝑆 \ 𝐼 ) = ∅ and 𝐼 ∪ (𝑆 \ 𝐼 ) = 𝑆 . This means

ct1 · 𝑢2 − yT · ct2 · 𝐹𝑆\𝐼 (𝜏) − ct3 · 𝑢1 = 𝛼𝑠 + 𝑠yTw · 𝐹𝑆 (𝜏) + 𝑟𝑠 (𝑣 + ℎ · tg) − 𝑠yTw · 𝐹𝑆 (𝜏) − 𝑟𝑠 (𝑣 + ℎ · tg)
= 𝛼𝑠.

The decryption relation (Eq. (4.3)) now yields:

[ct4 − (ct1 · 𝑢2 − yT · ct2 · 𝐹𝑆\𝐼 (𝜏) − ct3 · 𝑢1)]T = [𝑠𝛼 +𝑚 − 𝛼𝑠]T = [𝑚]T

and correctness holds. □

Security of Construction C.3. Security of Construction C.3 relies on a variant of Assumption 4.1 which we state

below. We show this assumption holds in the generic asymmetric bilinear group model in Theorem C.17.

Assumption C.5 (𝑁 -Bilinear Diffie-Hellman Exponent Variant). Let GroupGen be a prime-order bilinear group gen-

erator. For a security parameter 𝜆, a parameter 𝑁 ∈ N, and a bit 𝛽 ∈ {0, 1}, we define the distributionD𝜆,𝑁 ,𝛽 as follows:
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• Sample G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆). Sample exponents 𝑎, 𝑏, 𝑠, 𝜏
r← Z𝑝 . Define

params =
(

1
𝜆,G, [𝑏]1, [𝑠]1, [𝑎𝑏]1, {[𝜏𝑖 ]1, [𝑎𝑏𝜏𝑖 ]1, [𝑠𝜏𝑖 ]1, [𝑎𝑏𝑠𝜏𝑖 ]1}𝑖∈[𝑁 ]

[𝑎]2, [𝑏]2, {[𝜏𝑖 ]2, [𝑎𝑏𝜏𝑖 ]2}𝑖∈[𝑁 ]

)
.

• If 𝛽 = 0, let 𝑧 = 𝑎𝑏𝑠 ∈ Z𝑝 and if 𝛽 = 1, sample 𝑧
r← Z𝑝 . Output (params, [𝑧]T).

We say Assumption C.5 holds with respect to GroupGen and parameter 𝑁 = 𝑁 (𝜆) if the distributions D0 =

{D𝜆,𝑁 (𝜆),0}𝜆∈N and D1 = {D𝜆,𝑁 (𝜆),1}𝜆∈N are computationally indistinguishable.

Theorem C.6 (Tag-Selective Security). Take any polynomial 𝐵 = 𝐵(𝜆) and suppose Assumption C.5 with parameter 𝐵
holds with respect to GroupGen. Then, for all polynomials 𝑁 = 𝑁 (𝜆) and 𝐾 = 𝐾 (𝜆) where 𝑁 ≤ 𝐵, Construction C.3
satisfies tag-selective security with respect to parameters (𝑁, 𝐵, 𝐾).

Proof. The proof follows a very similar structure as the proof of Theorem 4.4. Specifically, let A be an efficient and

admissible adversary for the selective security experiment for Construction C.3 with parameters (𝑁, 𝐵, 𝐾). For ease
of notation, we assume without loss of generality that A always makes 𝐾 key-computation queries on the challenge

tag tg∗. We define a sequence of hybrid experiments, each indexed by a bit 𝛽 ∈ {0, 1}:

• Hyb(𝛽 )
0

: This is the tag-selective security game with bit 𝛽 . Specifically, in this experiment, the adversary starts

by committing to the challenge tag tg∗.

• Hyb(𝛽 )
1

: Same as Hyb(𝛽 )
0

, except at the beginning of the experiment, the challenger samples an identity

id∗ r← [𝑀]. At the end of the experiment, the challenger defines the following quantities:

– Let 𝑆1, . . . , 𝑆𝐾 ⊆ [𝑀] be the sets associated with the adversary’s key-computation queries on tag tg∗.

– Let ∅ ≠ 𝐼 ∗ ⊆ [𝑀] be the adversary’s challenge set.

Since the adversary is admissible, it must be the case that 𝐼 ∗ \⋃𝑗∈[𝐾 ] 𝑆 𝑗 ≠ ∅. Now, the challenger outputs 0 if id∗

is not the minimum element in the set 𝐼 ∗ \⋃𝑗∈[𝐾 ] 𝑆 𝑗 . Otherwise, the output is computed exactly as in Hyb(𝛽 )
0

.

• Hyb(𝛽 )
2

: Same asHyb(𝛽 )
1

, except at the end of the experiment, the the challenger defines the following quantities:

– Let y1, . . . , y𝐾 ∈ Z𝐾𝑝 be the vectors the challenger samples when responding to key-computation queries

with tag tg∗. For each 𝑖 ∈ [𝐾], write y𝑖 = [𝑦𝑖,1, . . . , 𝑦𝑖,𝐾 ].
– For each 𝑖 ∈ [𝐾], let ȳT

𝑖 = [𝑦𝑖,1, . . . , 𝑦𝑖,𝐾−1] ∈ Z𝐾−1

𝑝 .

At the end of the experiment, the challenger outputs 0 if the vectors ȳ1, . . . , ȳ𝐾−1 ∈ Z𝐾−1

𝑝 are not linearly

independent.

• Hyb(𝛽 )
3

: Same as Hyb(𝛽 )
2

, except when responding to the 𝐾 th
key-computation queries with tag tg∗, the chal-

lenger now samples 𝑦𝐾,𝐾
r← Z∗𝑝 .

• Hyb(𝛽 )
4

: Same as Hyb(𝛽 )
3

except the challenger changes how it samples y𝑖 = (𝑦𝑖,1, . . . , 𝑦𝑖,𝐾 ) when responding to

key-computation queries on the challenge tag tg∗. At the beginning of the experiment, the challenger samples

c r← Z𝐾𝑝 where c = [𝑐1, . . . , 𝑐𝐾 ]. The challenger halts with output 0 if 𝑐𝐾 = 0. Then, for each 𝑖 ∈ [𝐾], let
𝑆𝑖 ⊆ [𝑁 ] be the 𝑖th key-computation query on tag tg∗. The challenger now changes how it computes the final

component 𝑦𝑖,𝐾 for each y𝑖 :

– At the beginning of the experiment, the challenger samples 𝑢1, . . . , 𝑢𝐾−1

r← Z𝑝 .

– When responding to the 𝑖th key-computation query on tag tg∗ and set 𝑆𝑖 , the challenger sets 𝑦𝑖,𝐾 =

−𝑐−1

𝐾
(𝑢𝑖 − 1/𝐹𝑆𝑖 (id∗)), where 𝐹𝑆𝑖 (𝑥) =

∏
id∈𝑆𝑖 (𝑥 − id). If id

∗ ∈ 𝑆𝑖 , then the challenger halts with output

0 exactly as in Hyb(𝛽 )
3

. If id∗ ∉ 𝑆𝑖 , then 𝐹𝑆𝑖 (id∗) ≠ 0 by construction.
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– When responding to the 𝐾 th
key-computation query on tag tg∗ and set 𝑆𝐾 , the challenger samples

𝛾1, . . . , 𝛾𝐾−1

r← Z𝑝 and sets ȳ𝑘 =
∑
𝑗∈[𝐾−1] 𝛾 𝑗 ȳ𝑗 . Next, it computes𝑢𝐾 =

∑
𝑗∈[𝐾−1] 𝛾 𝑗𝑢 𝑗 . If𝑢𝐾 = 1/𝐹𝑆𝐾 (id∗),

then the challenger halts with output 0. Otherwise, it sets 𝑦𝐾,𝐾 = −𝑐−1

𝐾
(𝑢𝐾 − 1/𝐹𝑆𝐾 (id∗)).

• Hyb(𝛽 )
5

: Same as Hyb(𝛽 )
4

, except the challenger sets 𝑢𝑖 = ȳT
𝑖 c̄ for all 𝑖 ∈ [𝐾 − 1], where c̄ = (𝑐1, . . . , 𝑐𝐾−1) ∈ Z𝐾−1

𝑝 .

• Hyb(𝛽 )
6

: Same as Hyb(𝛽 )
5

, except for all 𝑖 ∈ [𝐾], the challenger samples y𝑖
r← Z𝐾𝑝 such that yT

𝑖 c = 1/𝐹𝑆𝑖 (id∗).
Note that the challenger in this experiment still halts with output 0 if 𝑦𝐾,𝐾 = 0.

• Hyb(𝛽 )
7

: Same as Hyb(𝛽 )
6

, except when constructing the challenge ciphertext ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T),
the challenger samples ct4

r← Z𝑝 . In this experiment, the adversary’s view is independent of the message.

Let Hyb(𝛽 )
𝑖
(A) denote the output of an execution of Hyb(𝛽 )

𝑖
with adversary A. We now analyze each adjacent pair

of distributions.

Lemma C.7. For all 𝛽 ∈ {0, 1}, Pr

[
Hyb(𝛽 )

0
(A) = 1

]
= 𝑀 · Pr

[
Hyb(𝛽 )

1
(A) = 1

]
.

Proof. By construction, the output in Hyb(𝛽 )
1

is 1 if and only if the output in Hyb(𝛽 )
0

is 1, and moreover, id∗ is the
smallest element in the set 𝐼 ∗ \⋃𝑗∈[𝐾 ] 𝑆 𝑗 ⊆ [𝑀]. Since the challenger samples id∗ r← [𝑀] and id∗ is independent
of the view of the adversary, the probability that id∗ is the smallest element of the set 𝐼 ∗ \⋃𝑗∈[𝐾 ] 𝑆 𝑗 ⊆ [𝑀] is exactly
1/𝑀 . The claim follows. □

Lemma C.8. For all 𝛽 ∈ {0, 1},
��
Pr

[
Hyb(𝛽 )

1
(A) = 1

]
− Pr

[
Hyb(𝛽 )

2
(A) = 1

] �� ≤ (𝐾 − 1)/𝑝 .

Proof. The only difference between these two experiments is Hyb(𝛽 )
2

always outputs 0 if ȳ1, . . . , ȳ𝐾−1 are not linearly

independent when ȳ1, . . . , ȳ𝐾−1

r← Z𝐾−1

𝑝 . This happens with probability (𝐾 − 1)/𝑝 . This is because the determinant

of the matrix [ȳ1 | · · · | ȳ𝐾−1] is a multivariate polynomial of degree 𝐾 − 1, so it is zero with probability (𝐾 − 1)/𝑝
over the random choice of ŷ1, . . . , ŷ𝐾−1 by the Schwartz-Zippel lemma [Sch80, Zip79]. □

Lemma C.9. For 𝛽 ∈ {0, 1},
��
Pr

[
Hyb(𝛽 )

2
(A) = 1

]
− Pr

[
Hyb(𝛽 )

3
(A) = 1

] �� ≤ 1/𝑝 .

Proof. The only difference between these two distributions is the distribution of 𝑦𝐾,𝐾 In Hyb(𝛽 )
2

, the challenger

samples 𝑦𝐾,𝐾
r← Z𝑝 whereas in Hyb(𝛽 )

3
, the challenger samples 𝑦𝐾,𝐾

r← Z∗𝑝 . The statistical distance between the

uniform distribution over Z𝑝 and Z∗𝑝 is 1/𝑝 . □

Lemma C.10. For 𝛽 ∈ {0, 1},
��
Pr

[
Hyb(𝛽 )

3
(A) = 1

]
− Pr

[
Hyb(𝛽 )

4
(A) = 1

] �� ≤ 3/𝑝 .

Proof. It suffices to consider the case where ȳ1, . . . , ȳ𝐾−1 are linearly independent. Otherwise, the challenger outputs

0 in both distributions. First, consider the distribution of ȳ𝐾 ∈ Z𝐾−1

𝑝 in Hyb(𝛽 )
4

. Since ȳ1, . . . , ȳ𝐾−1 are linearly

independent over Z𝐾−1

𝑝 , they form a basis for Z𝐾−1

𝑝 . Since the challenger samples 𝛾1, . . . , 𝛾𝐾−1

r← Z𝑝 , the distribution

of ȳ𝐾 is uniform over Z𝐾−1

𝑝 . Next, consider the distribution of 𝑦𝑖,𝐾 in Hyb(𝛽 )
4

when 𝑐𝐾 ≠ 0 and 𝑢1 ≠ 0.

• Consider 𝑖 ∈ [𝐾 − 1]. In this case, the challenger samples 𝑢𝑖
r← Z𝑝 so the distribution of 𝑢𝑖 − 1/𝐹𝑆𝑖 (id∗) is also

uniform over Z𝑝 . Since 𝑐𝐾 ≠ 0, scaling by −𝑐−1

𝐾
does not affect the distribution. Thus, the distribution of 𝑦𝑖,𝐾

is uniform over Z𝑝 and moreover, independent of the value of 𝑐𝐾 .

• Consider 𝑦𝐾,𝐾 . If 𝑢1 ≠ 0, then the probability that 𝑢𝐾 =
∑
𝑗∈[𝐾−1] 𝛾 𝑗𝑢 𝑗 = 1/𝐹𝑆𝐾 (id∗) is precisely 1/𝑝 (over the

random choice of 𝛾1

r← Z𝑝 ). If 𝑢𝐾 ≠ 1/𝐹𝑆𝐾 (id∗), then the distribution of −𝑐−1

𝐾
(𝑢𝐾 − 1/𝐹𝑆𝐾 (id∗)) is uniform over

Z∗𝑝 over the randomness of 𝑐𝐾
r← Z∗𝑝 .

We conclude that the distribution of (𝑦1,𝐾 , . . . , 𝑦𝐾,𝐾 ) inHyb(𝛽 )
4

is distributed exactly as inHyb(𝛽 )
3

unless 𝑐𝐾 = 0, 𝑢1 = 0,

or 𝑢𝐾 = 1/𝐹𝑆𝐾 (id∗). Over the randomness of 𝑐𝐾 , 𝑢1, 𝛾1 and taking a union bound, these events happen with probability

at most 3/𝑝 , and the claim follows. □
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Lemma C.11. For 𝛽 ∈ {0, 1}, Pr

[
Hyb(𝛽 )

4
(A) = 1

]
= Pr

[
Hyb(𝛽 )

5
(A) = 1

]
.

Proof. It suffices to consider the case where ȳ1, . . . , ȳ𝐾 are linearly independent. Otherwise, the challenger outputs

0 in both distributions. However, if ȳ1, . . . , ȳ𝐾−1 are linearly independent, then the distribution of [ȳ1 | · · · | ȳ𝐾−1]Tc̄
with c̄ r← Z𝐾−1

𝑝 is uniform over Z𝐾−1

𝑝 (since the matrix [ȳ1 | · · · | ȳ𝐾−1]T is invertible). Thus, these distributions are
identical. □

Lemma C.12. For 𝛽 ∈ {0, 1}, Pr

[
Hyb(𝛽 )

5
(A) = 1

]
= Pr

[
Hyb(𝛽 )

6
(A) = 1

]
.

Proof. It suffices to consider the case where 𝑐𝐾 ≠ 0 and ȳ1, . . . , ȳ𝐾−1 are linearly independent. Otherwise, both experi-

ments output 0. By definition, the distribution of each y𝑖 in Hyb(𝛽 )
6

is equivalent to the following sampling procedure:

• Sample ȳ𝑖
r← Z𝐾−1

𝑝 . Output yT
𝑖 = [ȳT

𝑖 | 𝑦𝑖,𝐾 ] where 𝑦𝑖,𝐾 ∈ Z𝑝 is chosen so that yTc = 1/𝐹𝑆𝑖 (id∗).

By construction, this means 𝑦𝑖,𝐾 = −𝑐−1

𝐾
(ȳT
𝑖 c̄ − 1/𝐹𝑆𝑖 (id∗)). This is precisely how the challenger constructs y𝑖 for

𝑖 ∈ [𝐾 − 1] in Hyb(𝛽 )
5

. It suffices to consider the distribution of y𝐾 in Hyb(𝛽 )
5

:

• In Hyb(𝛽 )
5

, the challenger sets ȳ𝐾 =
∑
𝑗∈[𝐾−1] 𝛾 𝑗 ȳ𝑗 , where 𝛾1, . . . , 𝛾𝐾−1

r← Z𝑝 . Since ȳ1, . . . , ȳ𝐾−1 are linearly

independent, this means ȳ𝐾 is uniform over Z𝐾−1

𝑝 .

• Consider now the value of 𝑦𝐾,𝐾 . The challenger in Hyb(𝛽 )
5

sets 𝑦𝐾,𝐾 = −𝑐−1

𝐾
(𝑢𝐾 − 1/𝐹𝑆𝐾 (id∗)) where

𝑢𝐾 =
∑︁

𝑗∈[𝐾−1]
𝛾 𝑗𝑢 𝑗 =

∑︁
𝑗∈[𝐾−1]

𝛾 𝑗 ȳT
𝑗 c̄ =

©­«
∑︁

𝑗∈[𝐾−1]
𝛾 𝑗 ȳT

𝑗

ª®¬ c̄ = ȳT
𝐾 c̄.

• We conclude that in Hyb(𝛽 )
5

, the distribution of ȳ𝐾 is uniform over Z𝐾−1

𝑝 and 𝑦𝐾,𝐾 = −𝑐−1

𝐾
(ȳT
𝐾
c̄ − 1/𝐹𝑆𝐾 (id∗)),

which is precisely the distribution in Hyb(𝛽 )
6

. Note that both experiments output 0 if 𝑦𝐾,𝐾 = 0. □

Lemma C.13. Suppose Assumption C.5 with parameter 𝐵 holds with respect to GroupGen. Then, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N,

��
Pr[Hyb(𝛽 )

6
(A) = 1] − Pr[Hyb(𝛽 )

7
(A) = 1]

�� = negl(𝜆).

Proof. Suppose there exists a non-negligible 𝜀 such that���Pr[Hyb(𝛽 )
6
(A) = 1] − Pr[Hyb(𝛽 )

7
(A) = 1]

��� ≥ 𝜀.
We use A to construct an adversary B that breaks Assumption C.5 with parameter 𝐵 and the same advantage 𝜀:

1. At the beginning of the game, algorithm B receives a challenge (params, [𝑧]T) where

params =
(

1
𝜆,G, [𝑏]1, [𝑠]1, [𝑎𝑏]1, {[𝜏𝑖 ]1, [𝑎𝑏𝜏𝑖 ]1, [𝑠𝜏𝑖 ]1, [𝑎𝑏𝑠𝜏𝑖 ]1}𝑖∈[𝐵 ]

[𝑎]2, [𝑏]2, {[𝜏𝑖 ]2, [𝑎𝑏𝜏𝑖 ]2}𝑖∈[𝐵 ]

)
.

and either 𝑧 = 𝑎𝑏𝑠 or 𝑧
r← Z𝑝 . We use 𝜏 to denote the powers-of-𝜏 that appear in the assumption since the

reduction algorithm below will program id∗ into the simulated powers-of-𝜏 .

2. Algorithm B sets pp = G and gives G to A. Algorithm A now commits to a tag tg∗ ∈ Z𝑝 .

3. Algorithm B samples an identity id∗ r← [𝑀] and constructs the public key as follows. In the following de-

scription, we will use a “tilde” (e.g., 𝛼, 𝑣) to denote an exponent that is chosen by (or otherwise known to) the

reduction algorithm.
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• Algorithm B implicitly sets 𝜏 = 𝜏 + id∗. For each 𝑖 ∈ [𝐵], algorithm B computes

[𝜏𝑖 ]2 =
∑︁
𝑗∈[0,𝑖 ]

(
𝑖

𝑗

)
· (id∗)𝑖− 𝑗 · [𝜏 𝑗 ]2 = [(𝜏 + id∗)𝑖 ]2 .

Similarly, it sets [𝜏]1 = [𝜏]1 + [id∗]1 = [𝜏 + id∗]1.
• Algorithm B samples 𝛼

r← Z𝑝 and implicitly sets 𝛼 = 𝛼 − 𝑎𝑏:

[𝛼]T = [𝛼]T − [𝑎𝑏]1 · [1]2 = [𝛼 − 𝑎𝑏]T .

• Algorithm B samples w̃ r← Z𝐾𝑝 and c̃ r← Z𝐾𝑝 . If 𝑐𝐾 = 0, then algorithm B outputs 0. Otherwise, it implicitly

sets w = w̃ + 𝑎𝑏c̃ and computes

[w]1 = [w̃]1 + c̃ · [𝑎𝑏]1 = [w̃ + 𝑎𝑏c̃]1.

Then, for each 𝑖 ∈ [𝑁 ], algorithm B computes

[w𝜏𝑖 ]1 =
∑︁

𝑘∈[0,𝑖 ]

(
𝑖

𝑘

)
· (id∗)𝑖−𝑘 · (w̃ · [𝜏𝑘 ]1 + c̃ · [𝑎𝑏𝜏𝑘 ]1) = [w(𝜏 + id∗)𝑖 ]1.

Recall here that 𝑁 ≤ 𝐵, so the terms [𝜏𝑘 ]1 and [𝑎𝑏𝜏𝑖 ]1 are all available in params.
• Algorithm B samples 𝑣, ˜ℎ

r← Z𝑝 and implicitly sets 𝑣 = 𝑣 − 𝑏 · tg∗ and ℎ = ˜ℎ + 𝑏. Concretely, algorithm
B defines

[𝑣]1 = [𝑣]1 − tg∗ · [𝑏]1 = [𝑣 − 𝑏 · tg∗]1
[ℎ]1 = [ ˜ℎ]1 + [𝑏]1 = [ ˜ℎ + 𝑏]1 .

Algorithm B replies to A with the master public key

mpk =
(
G, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [w]1, [w𝜏]1, . . . , [w𝜏𝑁 ]1, [𝑣]1, [ℎ]1, [𝛼]T

)
.

4. When algorithm A makes a key-computation query on a set of identities 𝑆 ⊆ [𝑀] where |𝑆 | ≤ 𝐵 and a tag

tg ∈ Z𝑝 , algorithm B defines the following two polynomials over Z𝑝 :

𝐹𝑆 (𝑥) =
∏
id∈𝑆
(𝑥 − id)

𝐺𝑆 (𝑥) = 𝐹𝑆 (𝑥 + id∗) − 𝐹𝑆 (id∗).
(C.4)

Write 𝐹𝑆 (𝑥) =
∑
𝑖=[0, |𝑆 | ] ˜𝑓𝑖𝑥

𝑖
. Next, observe that the constant term of 𝐺𝑆 (𝑥) is 𝐺𝑆 (0) = 𝐹𝑆 (id∗) − 𝐹𝑆 (id∗) = 0.

This means 𝐺𝑆 (𝑥) =
∑
𝑖∈[ |𝑆 | ] 𝑔𝑖𝑥

𝑖
. Algorithm B now proceeds as follows:

• If tg ≠ tg∗, algorithm B samples ỹ r← Z𝐾𝑝 and 𝑟
r← Z𝑝 . Then, algorithm B sets

[𝑢1]2 = [𝑟 ]2 + (tg − tg∗)−1
(
1 − ỹTc̃ · 𝐹𝑆 (id∗)

)
· [𝑎]2

[𝑢2]2 = [𝛼]2 + 𝑟 · (tg − tg∗) · [𝑏]2 + (𝑣 + ˜ℎ · tg) · [𝑢1]2
+

∑︁
𝑖∈[ |𝑆 | ]

ỹTw̃ · 𝑔𝑖 · [𝜏𝑖 ]2 +
∑︁

𝑖∈[ |𝑆 | ]
ỹTc̃ · 𝑔𝑖 · [𝑎𝑏𝜏𝑖 ]2 + [ỹTw̃ · 𝐹𝑆 (id∗)]2.

• If tg = tg∗, algorithmB first checks if id∗ ∈ 𝑆 . If so, it outputs 0. Otherwise, it samples ỹ r← Z𝐾𝑝 conditioned

on ỹTc = 1/𝐹𝑆 (id∗). Next, algorithm B samples 𝑟
r← Z𝑝 and sets It then computes

[𝑢1]2 = [𝑟 ]2
[𝑢2]2 = [𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗)]2 +

∑︁
𝑖∈[ |𝑆 | ]

ỹTw̃ · 𝑔𝑖 · [𝜏𝑖 ]2 +
∑︁

𝑖∈[ |𝑆 | ]
ỹTc̃ · 𝑔𝑖 · [𝑎𝑏𝜏𝑖 ]2 + [ỹTw̃ · 𝐹𝑆 (id∗)]2

If this is the 𝐾 th
query that algorithm A makes with tag tg∗, algorithm B also checks that 𝑦𝐾 ≠ 0.

Otherwise, it halts with outputs 0.
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In both cases, algorithm B responds to A with the secret key sk = (ỹ, [𝑢1]2, [𝑢2]2).

5. In the challenge phase, algorithm A outputs two messages [𝑚0]T and [𝑚1]T and a challenge set 𝐼 ∗ ⊆ [𝑀]. If
id∗ ∉ 𝐼 ∗, then algorithm B halts with output 0. Algorithm B defines the following two polynomials over Z𝑝 :

𝐹𝐼 ∗ (𝑥) =
∏
id∈𝐼 ∗
(𝑥 − id)

𝐺𝐼 ∗ (𝑥) = 𝐹𝐼 ∗ (𝑥 + id∗) − 𝐹𝐼 ∗ (id∗).
(C.5)

Observe that the constant term of𝐺𝐼 ∗ is𝐺𝐼 ∗ (0) = 𝐹𝐼 ∗ (id∗)−𝐹𝐼 ∗ (id∗) = 0. Write𝐺𝐼 ∗ (𝑥) =
∑
𝑖∈[ |𝐼 ∗ | ] 𝑔𝑖𝑥

𝑖
. Algorithm

B computes the following:

[ct1]1 = [𝑠]1
[ct2]1 =

∑︁
𝑖∈[ |𝐼 ∗ | ]

(w̃ · 𝑔𝑖 · [𝑠𝜏𝑖 ]1 + c̃ · 𝑔𝑖 · [𝑎𝑏𝑠𝜏𝑖 ]1) = [𝑠 (w̃ + 𝑎𝑏c̃) ·𝐺𝐼 ∗ (𝜏)]1

[ct3]1 = (𝑣 + ˜ℎ · tg∗) · [𝑠]1
[ct4]T = 𝛼 · [𝑠]1 · [1]2 − [𝑧]T + [𝑚𝛽 ]T

Algorithm B responds with the ciphertext ct = ( [ct1]1, [ct2]1, [ct3]1, [ct4]T).

6. Algorithm A can continue to make key-computation queries. Algorithm B responds as described above.

7. At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}. Algorithm B then checks that id∗ is the
minimum element in the set 𝐼 ∗ \⋃𝑗∈[𝐾 ] 𝑆 𝑗 and outputs 0 if not. Otherwise, algorithm B outputs 𝛽 ′.

We show that depending on the distribution of the challenge element 𝑧, algorithm A either perfectly simulates an

execution of Hyb(𝛽 )
6

or Hyb(𝛽 )
7

. We first consider the distribution of the public parameters. By construction, algorithm

B constructs the public parameters by implicitly setting

𝜏 = 𝜏 + id∗ 𝛼 = 𝛼 − 𝑎𝑏
w = w̃ + 𝑎𝑏c̃

𝑣 = 𝑣 − 𝑏 · tg∗

ℎ = ˜ℎ + 𝑏
(C.6)

Since the challenger samples 𝜏
r← Z𝑝 and algorithm B samples 𝛼, 𝑣, ˜ℎ

r← Z𝑝 and w̃ r← Z𝐾𝑝 , the distribution of

𝜏, 𝑣, ℎ,w, 𝛼 are all distributed according to the distribution in Hyb(𝛽 )
6

and Hyb(𝛽 )
7

. Moreover, the public parameters

perfectly hides c̃. Next, consider the components of the challenge ciphertext. We claim that algorithm B generates the

challenge ciphertext according to the specification of Hyb(𝛽 )
6

or Hyb(𝛽 )
7

where the encryption randomness 𝑠
r← Z𝑝

is the corresponding exponent sampled by the challenger. We consider each component separately:

• By construction, algorithm B sets ct1 = 𝑠 which matches the distribution in Hyb(𝛽 )
6

and Hyb(𝛽 )
7

.

• Consider ct2. In the reduction, algorithm B implicitly sets 𝜏 = 𝜏 + id∗ and w = w̃ + 𝑎𝑏c̃. Now, in Hyb(𝛽 )
6

and

Hyb(𝛽 )
7

, the challenger would set ct2 = 𝑠w · 𝐹𝐼 ∗ (𝜏) where we can write

𝐹𝐼 ∗ (𝜏) = 𝐹𝐼 ∗ (id∗) + 𝐹𝐼 ∗ (𝜏) − 𝐹𝐼 ∗ (id∗)
= 𝐹𝐼 ∗ (id∗) + 𝐹𝐼 ∗ (𝜏 + id∗) − 𝐹𝐼 ∗ (id∗)
= 𝐹𝐼 ∗ (id∗) +𝐺𝐼 ∗ (𝜏),

where 𝐺𝐼 ∗ is the polynomial from Eq. (C.5). If id∗ ∉ 𝐼 ∗, then algorithm B outputs 0, exactly as in Hyb(𝛽 )
6

and

Hyb(𝛽 )
7

. Otherwise, if id∗ ∈ 𝐼 ∗, then 𝐹𝐼 ∗ (id∗) = 0 and so 𝐹𝐼 ∗ (𝜏) = 𝐺𝐼 ∗ (𝜏). Substituting in algorithm B’s choice
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of w and the fact that 𝐹𝐼 ∗ (𝜏) = 𝐺𝐼 ∗ (𝜏) =
∑
𝑖∈[ |𝐼 ∗ | ] 𝑔𝑖𝜏

𝑖
, we have

ct2 = 𝑠w · 𝐹𝐼 ∗ (𝜏)
= 𝑠 (w̃ + c̃𝑎𝑏) ·𝐺𝐼 ∗ (𝜏)

=
∑︁

𝑖∈[ |𝐼 ∗ | ]
(w̃ · 𝑔𝑖 · 𝑠𝜏𝑖 + c̃ · 𝑔𝑖 · 𝑎𝑏𝑠𝜏𝑖 ).

This coincides with how B constructs ct2 in the reduction.

• Consider ct3. In Hyb(𝛽 )
6

and Hyb(𝛽 )
7

, the challenger would set ct3 = 𝑠 (𝑣 + ℎ · tg∗). Substituting in algorithm

B’s choice of 𝑣 and ℎ, we have

ct3 = 𝑠 (𝑣 + ℎ · tg∗) = 𝑠 (𝑣 − 𝑏 · tg∗) + 𝑠 ( ˜ℎ + 𝑏) · tg∗ = 𝑠 (𝑣 + ˜ℎ · tg∗),

which is precisely how algorithm B constructs ct3 in the reduction.

• Finally, consider the distribution of ct4. We consider two possibilities depending on the distribution of 𝑧:

– Suppose 𝑧 = 𝑎𝑏𝑠 . In the reduction, algorithm B implicitly sets 𝛼 = 𝛼 − 𝑎𝑏 so

ct4 = 𝛼𝑠 − 𝑧 +𝑚𝛽 = 𝛼𝑠 − 𝑎𝑏𝑠 +𝑚𝛽 = 𝑠𝛼 +𝑚𝛽 ,

which is precisely the distribution of ct4 in Hyb(𝛽 )
6

.

– Suppose 𝑧
r← Z𝑝 . In this case, the distribution of ct4 is uniform over Z𝑝 . This is the distribution of ct4

in Hyb(𝛽 )
7

.

We conclude that depending on the distribution of 𝑧, the challenge ciphertext in the reduction is distributed either

according to the specification of Hyb(𝛽 )
6

or the specification of Hyb(𝛽 )
7

. To complete the proof, it thus suffices to

consider the key-computation queries. Suppose A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 and
a tag tg ∈ Z𝑝 . As in the reduction, we consider two cases:

• Suppose tg ≠ tg∗. In this case, algorithm B samples ỹ r← Z𝐾𝑝 . Algorithm B then sets the key-generation

randomness 𝑟 to be

𝑟 = 𝑢1 = 𝑟 + (tg − tg∗)−1 (1 − ỹTc̃ · 𝐹𝑆 (id∗)) · 𝑎,

where 𝑟
r← Z𝑝 . Since 𝑟

r← Z𝑝 , the distribution of 𝑟 coincides with the distribution in Hyb(𝛽 )
6

and Hyb(𝛽 )
7

. Thus,

it suffices to argue that the component 𝑢2 is correctly constructed (with respect to algorithm B’s choice of 𝑟
and ỹ). In Hyb(𝛽 )

6
and Hyb(𝛽 )

7
, the challenger would first compute the digest dig = [𝑑]2 = [𝐹𝑆 (𝜏)]2 and then set

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏) = 𝛼 + 𝑢1 (𝑣 + ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏). (C.7)

In the reduction, algorithm B implicitly sets 𝜏 = 𝜏 + id∗. Thus, we can write

𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) + 𝐹𝑆 (𝜏 + id∗) − 𝐹𝑆 (id∗)
= 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏),

where 𝐺𝑆 is the polynomial from Eq. (C.4). By definition of the coefficients 𝑔𝑖 and using the fact that algorithm

B implicitly defines w = w̃ + 𝑎𝑏c̃, we can write

ỹTw · 𝐹𝑆 (𝜏) = ỹT (w̃ + 𝑎𝑏c̃) · (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))

= ỹTw̃ · 𝐹𝑆 (id∗) + ỹTc̃ · 𝑎𝑏 · 𝐹𝑆 (id∗) +
∑︁

𝑖∈[ |𝑆 | ]
ỹTw̃ · (𝑔𝑖 · 𝜏𝑖 ) +

∑︁
𝑖∈[ |𝑆 | ]

ỹTc̃ · (𝑔𝑖 · 𝑎𝑏𝜏𝑖 ).

52



In the reduction, algorithm B implicitly constructs 𝑢2 as follows:

𝑢2 = 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) +
∑︁

𝑖∈[ |𝑆 | ]
ỹTw̃ · 𝑔𝑖 · 𝜏𝑖 +

∑︁
𝑖∈[ |𝑆 | ]

ỹTc̃ · 𝑔𝑖 · 𝑎𝑏𝜏𝑖 + ỹTw̃ · 𝐹𝑆 (id∗)

= 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹTw̃ ·𝐺𝑆 (𝜏) + ỹTc̃ · 𝑎𝑏 ·𝐺𝑆 (𝜏) + ỹTw̃ · 𝐹𝑆 (id∗)
= 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹTw̃ · 𝐹𝑆 (𝜏) + ỹTc̃ · 𝑎𝑏 ·𝐺𝑆 (𝜏)

Using the relations 𝛼 = 𝛼 − 𝑎𝑏 and w = w̃ + 𝑎𝑏c̃ as well as the fact that 𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏), we have that
𝑢2 as computed by the reduction satisfies

𝑢2 = 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹTw̃ · 𝐹𝑆 (𝜏) + ỹTc̃ · 𝑎𝑏 ·𝐺𝑆 (𝜏)
= 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹT (w − 𝑎𝑏c̃) · 𝐹𝑆 (𝜏) + ỹTc̃ · 𝑎𝑏 ·𝐺𝑆 (𝜏)
= 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏) + ỹTc̃ · 𝑎𝑏 · (𝐺𝑆 (𝜏) − 𝐹𝑆 (𝜏))
= 𝛼 + 𝑟𝑏 (tg − tg∗) + 𝑢1 (𝑣 + ˜ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏) + 𝑎𝑏 (1 − ỹTc̃ · 𝐹𝑆 (id∗)).

(C.8)

Consider now the value of 𝑢1 (𝑣 + ℎ · tg) from Eq. (C.7) instantiated with the reduction’s setting of the variables:

𝑢1 (𝑣 + ℎ · tg) = 𝑢1 (𝑣 − 𝑏 · tg∗ + ( ˜ℎ + 𝑏) · tg)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑢1𝑏 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + (𝑟 + (tg − tg∗)−1 (1 − ỹTc̃ · 𝐹𝑆 (id∗)) · 𝑎)𝑏 (tg − tg∗)
= 𝑢1 (𝑣 + ˜ℎ · tg) + 𝑟𝑏 (tg − tg∗) + 𝑎𝑏 (1 − ỹTc̃ · 𝐹𝑆 (id∗)) .

Replacing the terms in green in Eq. (C.8) with 𝑢1 (𝑣 + ℎ · tg), we have

𝑢2 = 𝛼 + 𝑢1 (𝑣 + ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏).

This is precisely the expression in Eq. (C.7) so we conclude that algorithm B answers the key-computation

query exactly according to the specification of Hyb(𝛽 )
6

and Hyb(𝛽 )
7

.

• Suppose tg = tg∗. In this case, algorithm B first samples ỹ r← Z𝐾𝑝 subject to ỹTc̃ = 1/𝐹𝑆 (id∗). If this is the 𝐾 th

key-computation query on tg = tg∗ and 𝑦𝐾 = 0, algorithm B outputs 0 exactly as in Hyb(𝛽 )
6

and Hyb(𝛽 )
7

.

Otherwise, algorithm B samples 𝑟
r← Z𝑝 and sets 𝑢1 = 𝑟 . As in the previous case, it now suffices now to show

that the component 𝑢2 is correctly computed (with respect to algorithm B’s choice of 𝑢1 and ỹ). As in the

previous case, in Hyb(𝛽 )
6

and Hyb(𝛽 )
7

, the challenger would set

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg) + ỹTw · 𝐹𝑆 (𝜏). (C.9)

Suppose now that we substitute the values of 𝛼, 𝑣, ℎ,w, ỹ from the reduction (see Eq. (C.6)) into Eq. (C.9). Using

again the fact that 𝐹𝑆 (𝜏) = 𝐹𝑆 (id∗) +𝐺𝑆 (𝜏), we now have the following:

𝑢2 = 𝛼 + 𝑟 (𝑣 + ℎ · tg∗) + ỹTw · 𝐹𝑆 (𝜏)
= 𝛼 − 𝑎𝑏 + 𝑟 (𝑣 − 𝑏 · tg∗ + ( ˜ℎ + 𝑏) · tg∗) + ỹT (w̃ + 𝑎𝑏c̃) (𝐹𝑆 (id∗) +𝐺𝑆 (𝜏))

= 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) +
∑︁

𝑖∈[ |𝑆 | ]
(ỹTw̃ · 𝑔𝑖 · 𝜏𝑖 ) +

∑︁
𝑖∈[ |𝑆 | ]

(ỹTc̃ · 𝑔𝑖 · 𝑎𝑏𝜏𝑖 ) + ỹTw̃ · 𝐹𝑆 (id∗) − 𝑎𝑏 (1 − ỹTc̃ · 𝐹𝑆 (id∗))

= 𝛼 + 𝑟 (𝑣 + ˜ℎ · tg∗) +
∑︁

𝑖∈[ |𝑆 | ]
(ỹTw̃ · 𝑔𝑖 · 𝜏𝑖 ) +

∑︁
𝑖∈[ |𝑆 | ]

(ỹTc̃ · 𝑔𝑖 · 𝑎𝑏𝜏𝑖 ) + ỹTw̃ · 𝐹𝑆 (id∗)

where the final cancellation relies on the fact that the reduction chose ỹ such that ỹTc̃ = 1/𝐹𝑆 (id∗). This precisely
coincides with how algorithm B constructs 𝑢2. We conclude that algorithm B answers the key-computation

query according to the specification of Hyb(𝛽 )
6

and Hyb(𝛽 )
7

.
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We conclude that algorithm B responds to the key-generation queries with the same procedure as in Hyb(𝛽 )
6

and

Hyb(𝛽 )
7

. Thus, as argued above, if 𝑧 = 𝑎𝑏𝑠 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )
6

, whereas

if 𝑧
r← Z𝑝 , then algorithm B perfectly simulates an execution of Hyb(𝛽 )

7
. Thus, algorithm B breaks Assumption C.5

with the same advantage 𝜀. The lemma follows. □

Lemma C.14. It holds that Pr

[
Hyb(0)

7
(A) = 1

]
= Pr

[
Hyb(1)

7
(A) = 1

]
.

Proof. These experiments are identical by construction (i.e., the view of the adversary in hybridHyb(𝛽 )
3

is independent

of the bit 𝛽 ∈ {0, 1}). □

Since𝑀 = poly(𝜆), Theorem C.6 now follows by combining Lemmas C.7 to C.14 and a standard hybrid argument. □

Remark C.15 (From Tag-Based ABE for Subsets to Batched IBE). It is straightforward to derive a batched IBE scheme

from any tag-based ABE scheme for subset policies. Let I be the identity space for the batched IBE scheme and I′ be
the identity space for the tag-based ABE scheme for subset policies. All we need is a way to map an identity id ∈ I
onto a set of identities 𝐼 ⊂ I′. We denote this mapping by 𝐻 : I → 2

I′
, where 2

I′
denotes the power set of I′ (i.e.,

the set of all subsets of I′). Then, we proceed as follows:

• Public parameters: The public parameters for the batched IBE scheme are the public parameters for the

tag-based ABE scheme. The message space and the batch label space of the batched IBE scheme correspond

to the message spaceM and tag space T of the tag-based ABE scheme, respectively.

• Encryption: A batched IBE encryption of a message𝑚 to an identity id ∈ I and tag tg ∈ T is a tag-based

ABE encryption of the message with respect to the set 𝐻 (id) and the tag tg.

• Key-generation: The secret key for a set of identities 𝑆 ⊆ I and batch label tg for the batched IBE scheme

is a secret key for the set

⋃
id∈𝑆 𝐻 (id) and tag tg.

Correctness for the batched IBE scheme now follows immediately from correctness of the tag-based ABE scheme.

Moreover, if the mapping 𝐻 is 𝐵-cover-free, where 𝐵 is the batch size, then security of the batched IBE scheme

follows immediately from security of the tag-based ABE scheme. More precisely, we say that 𝐻 is 𝐵-cover free [KS64]

if for all id∗ ∈ I and all sets 𝑆 ⊆ I of size at most 𝐵 where id∗ ∉ 𝑆 , we have that 𝐻 (id∗) ⊈ ⋃
id∈𝑆 𝐻 (id). Recall

that in the batched IBE security game, the adversary is not allowed to query for a key on the challenge batch label

tg∗ and a set 𝑆 (of size at most 𝐵) that contains the challenge identity id∗. If the hash function 𝐻 is 𝐵-cover-free,

this means 𝐻 (id∗) ⊈ ⋃
id∈𝑆 𝐻 (id). This is precisely our admissibility requirement for a tag-based ABE scheme for

subset functionalities (see Definition C.1). Moreover, if the underlying tag-based ABE scheme allows the adversary

to adaptively choose the challenge set, then that corresponds to a batched IBE scheme where the adversary can

adaptively choose the challenge identity.

There are many standard instantiations of cover-free set systems. For instance, using the formalization from

[LWW25, Fact 6.2], the work of [EFF85] give a cover-free set system with the following parameters:

• Let 𝑞 be any prime power and take any integer 𝑡 < 𝑞. Let 𝐾 = ⌊𝑞/(𝑡 − 1)⌋. Then there is an explicit and

efficiently-computable 𝐾-cover-free hash function 𝐻 : [𝑞𝑡 ] → 2
𝑋
where |𝑋 | = 𝑞2

.

Thus, if we want a batched IBE scheme with an exponential-size identity space |I | ≥ 2
𝜆
and batch size 𝐵, then we

can instantiate the cover-free hash family with the smallest prime power 𝑞 where 𝑞 ≥ (𝜆 + 1) · 𝐵 and 𝑡 = 𝜆. Then,

the [EFF85] construction gives a 𝐵-cover-free hash function with domain I = [𝑞𝑡 ] and range 2
𝑋
where I′ = 𝑋 is

a set of size |I′ | = |𝑋 | = 𝑞2 = 𝑂 (𝜆2𝐵2).
The key observation is that to build a batched IBE scheme with an exponential-size identity spaceI, we only need a

tag-based ABE scheme for subset policies with a𝑂 (𝜆2𝐵2)-size identity space I′. We can now instantiate this tag-based

ABE scheme for subset functionalities using Construction C.3. As we showed in Theorem C.6, Construction C.3 is

secure against adversaries that can adaptively choose the challenge set, and thus, we obtain a batched IBE scheme

where the adversary can adaptively choose the challenge identity. Security relies on the same 𝑞-type assumption

(Assumption C.5).

54



Finally, the use of cover-free sets only affects the size of the master public key. It does not affect the size of the

ciphertext or the secret key since neither of these depends on the maximum batch size or the size of the identity space.

The size of the public key in Construction C.3 contains𝑂 (𝐾𝐵′) group elements, where 𝐵′ is a bound on the size of the

maximum set associated with a decryption key and𝐾 is the collusion bound. Using the above cover-free hash function,

we can bound 𝐵′ ≤ 𝐵 · |𝑋 | = 𝑂 (𝜆2𝐵3). This means the resulting batched IBE scheme will have size 𝑂 (𝜆2𝐾𝐵3). While

this is significantly worse than the selectively-secure scheme (Construction 4.2) or the adaptively-secure scheme

in the generic group model (Construction D.1), we believe this construction is still interesting in that it demonstrates

the fact that adaptive security is achievable in the plain model.

RemarkC.16 (Supporting an Adaptive Choice of Batch Label). Remark C.15 (and Construction C.3) shows howwe can

construct a batched IBE scheme (or tag-based ABE scheme for subset functionalities) that allows an adversary to adap-

tively choose the challenge identity (or challenge set). However, these schemes are still selectively-secure in the choice

of batch label (or tag). This is because we embed the batch label or the tag using the Boneh-Boyen mechanism. Specifi-

cally, recall from Section 2 that we can view our batched IBE constructions (and its generalization to tag-based ABE for

subset functionalities) as a composition of a one-key scheme (without batch labels or tags) together with a pairing-based

IBE scheme (where we treat the batch label or tag as the identity). Our limitation to selective security in the choice of

the batch label or tag is due to the fact that the Boneh-Boyen IBE scheme is only selectively secure in the choice of the

identity. A natural approach then to achieve adaptive security is to substitute the Boneh-Boyen IBE scheme with the

Waters’ IBE [Wat05] scheme which is adaptively secure. In conjunction with Construction C.3 and Remark C.15, we

believe this yields a plausible route to an batched IBE scheme in the plain model that satisfies full adaptive security.

Generic hardness of Assumption C.5. As in Appendix B, we can use Theorem B.2 to prove that Assumption C.5

holds in the generic asymmetric bilinear group model.

Theorem C.17 (Generic Hardness of Assumption C.5). Let 𝑁 ∈ N and let A be any adversary for Assumption C.5
with parameter 𝑁 . If A makes at most 𝑞 generic group oracle queries, then the advantage of A is at most 𝑂 (𝑞2𝑁 3)/𝑝
in the generic asymmetric bilinear group model. In particular, whenever 𝑝 > 𝜆𝜔 (1) , the advantage of A is negligible for
all polynomials 𝑁,𝑞 = poly(𝜆).

Proof. We start by defining the sets of polynomials P,Q and the challenge polynomial𝑇 associated with the challenge

terms in Assumption C.5. By construction, each polynomial is over the formal variables 𝑎, 𝑏, 𝑠, 𝜏 . Then, the polynomials

are defined as follows:

P = {1, 𝑏, 𝑠, 𝑎𝑏, {𝜏𝑖 , 𝑎𝑏𝜏𝑖 , 𝑠𝜏𝑖 , 𝑎𝑏𝑠𝜏𝑖 }𝑖∈[𝑁 ]}
Q = {1, 𝑎, 𝑏, {𝜏𝑖 , 𝑎𝑏𝜏𝑖 }𝑖∈[𝑁 ]}
𝑇 = 𝑎𝑏𝑠.

To appeal to Theorem B.2, we need to show that 𝑇 is independent with respect to the product PQ. Since P and Q
consist of monomials and 𝑇 is also a monomial, it suffices to argue that 𝑇 ∉ PQ. This follows by inspection. Namely,

suppose we write 𝑇 = 𝑃𝑄 where 𝑃 ∈ P. Then, the following holds:

• If 𝑃 ∈ {1, 𝑏, 𝑠, 𝑎𝑏} and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑠 , then 𝑄 ∈ {𝑎𝑏𝑠, 𝑎𝑠, 𝑎𝑏, 𝑠}. By definition of Q, this means 𝑄 ∉ Q.

• If 𝑃 ∈ {𝜏𝑖 , 𝑎𝑏𝜏𝑖 , 𝑠𝜏𝑖 , 𝑎𝑏𝑠𝜏𝑖 }𝑖∈[𝑁 ] and 𝑃𝑄 = 𝑇 = 𝑎𝑏𝑠 , then 𝑄 must be a multiple of 𝜏−𝑖 , for some 𝑖 ∈ [𝑁 ]. This
means 𝑄 ∉ Q.

We conclude that 𝑇 is independent with respect to PQ. Finally, to invoke Theorem B.2, we compute the maximum

degree 𝑑 among polynomials in PQ ∪ {𝑇 }. By inspection, the maximum degree 𝑑P of polynomials in P is 𝑑P = 𝑂 (𝑁 )
and the maximum degree 𝑑Q of polynomials in Q is 𝑑Q = 𝑂 (𝑁 ). The degree of 𝑇 is 3. Thus 𝑑 = 𝑂 (𝑁 ). Finally,
|P | = 𝑂 (𝑁 ) and |Q| = 𝑂 (𝑁 ). The claim now follows by Theorem B.2. □
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D Adaptively-Secure Batched IBE in the Generic Group Model
In this section, we show a variant of Construction 4.2 where we integrate our basic approach with ideas from the

Boneh-Franklin [BF01] IBE scheme. As discussed in Section 2, we work in the generic bilinear group model (and the

random oracle model) and prove adaptive security of our resulting construction. Compared to the previous scheme

of [AFP25], we save one group element in our ciphertext, one exponentiation during encryption, and one pairing

operation during decryption (see Tables 1 and 2).

Construction D.1 (Batched Identity-Based Encryption). Let GroupGen be a prime-order bilinear group generator.

We construct a batched IBE scheme ΠBatchIBE = (Setup,KeyGen, Encrypt,Digest,ComputeKey,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ←
GroupGen(1𝜆). Next, let H : {0, 1}𝜆 → G2 be a hash function (which we model as a random oracle in the se-

curity analysis). The setup algorithm outputs the public parameters pp = (G,H). The message space associated

with pp is GT, the identity space is {0, 1}∗, and the tag space is {0, 1}𝜆 .

• KeyGen(pp, 1𝐵): On input the public parameters pp = G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) and a bound on the batch

size 𝐵, the key-generation algorithm samples exponents 𝜏,𝑤, 𝛼
r← Z𝑝 and outputs the master public key

mpk =
(
G , H , [𝜏]1 , [𝜏]2 , [𝜏2]2 , . . . , [𝜏𝐵]2 , [𝑤]1 , [𝑤𝜏]1 , [𝛼]1

)
(D.1)

and the master secret key msk = (𝑤, 𝛼).

• Encrypt(mpk, [𝑚]T, id, tg): On input the master public key mpk (parsed according to Eq. (D.1)), a message

[𝑚]T ∈ GT, an identity id ∈ Z𝑝 , and a batch label tg ∈ {0, 1}𝜆 , the encryption algorithm computes [ℎtg]2 = H(tg)
and samples 𝑠

r← Z𝑝 . It then outputs the ciphertext

ct =
(
[𝑠]1 , 𝑠 · [𝑤𝜏]1 − 𝑠 · id · [𝑤]1, 𝑠 · [𝛼]1 · [ℎtg]2 + [𝑚]T

)
=
(
[𝑠]1 , [𝑠𝑤 (𝜏 − id)]1 , [𝑠𝛼ℎtg +𝑚]T

)
• Digest(mpk, 𝑆): On input the master public key mpk (parsed according to Eq. (D.1)) and a set of identities

𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵, the digest algorithm defines the polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id) whose roots are the
identities id ∈ 𝑆 . Write 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
. Output the digest

dig =
∑︁

𝑖∈[0, |𝑆 | ]
𝑓𝑖 · [𝜏𝑖 ]2 = [𝐹𝑆 (𝜏)]2 .

• ComputeKey(msk, dig, tg): On input the master secret key msk = (𝑤, 𝛼), a digest dig = [𝑑]2, and a batch label

tg ∈ {0, 1}𝜆 , the key-computation algorithm computes ℎtg = H(tg) and outputs the secret key

sk = 𝛼 · [ℎtg]2 +𝑤 · [𝑑]2 = [𝛼ℎtg +𝑤𝑑]2.

• Decrypt(mpk, sk, 𝑆, (id, tg), ct): On input the master public key mpk (parsed according to Eq. (D.1)), a secret

key sk = [𝑢]2, the set of identities 𝑆 ⊆ Z𝑝 , a target identity id ∈ 𝑆 , a batch label tg ∈ {0, 1}𝜆 , and the ciphertext

ct = ( [ct1]1, [ct2]1, [ct3]T), the decryption algorithm proceeds as follows:

– First, it defines the polynomial

𝐹𝑆\{id} (𝑥) =
∏

id′∈𝑆\{id}
(𝑥 − id′).

Compute [𝐹𝑆\{id} (𝜏)]2 =
∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖 [𝜏𝑖 ]2, where 𝐹𝑆\{id} (𝑥) =

∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖𝑥

𝑖
.

– Then it computes and outputs

[ct3]T − [ct1]1 · [𝑢]2 + [ct2]1 · [𝐹𝑆\{id} (𝜏)]2. (D.2)
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Theorem D.2 (Correctness). Construction D.1 is correct.

Proof. Take any 𝜆, 𝐵 ∈ N and any (G,H) in the support of Setup(1𝜆), where G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒). Take
any [𝑚]T ∈ GT, any id∗ ∈ Z𝑝 , batch label tg∗ ∈ {0, 1}𝜆 , and set 𝑆 ⊆ Z𝑝 of size at most 𝐵 where id∗ ∈ 𝑆 . Sample

(mpk,msk) ← KeyGen(pp, 1𝐵) and ct← Encrypt(mpk,𝑚, id∗, tg∗). Compute

dig = Digest(mpk, 𝑆)
sk← ComputeKey(msk, dig, tg∗).

Let [ℎtg∗ ]2 = H(tg∗). By construction, this means

mpk =
(
G,H, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [𝑤]1, [𝑤𝜏]1, [𝛼]1

)
ct =

(
[𝑠]1, [𝑠𝑤 (𝜏 − id∗)]1, [𝑠𝛼ℎtg∗ +𝑚]T

)
sk = [𝛼ℎtg∗ +𝑤𝐹𝑆 (𝜏)]2

where 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id). Consider now Decrypt(mpk, sk, 𝑆, (id∗, tg∗), ct). If we write sk = [𝑢]2 and ct =

( [ct1]1, [ct2]1, [ct3]T), then the decryption algorithm computes

ct1 · 𝑢 = 𝑠𝛼ℎtg∗ + 𝑠𝑤𝐹𝑆 (𝜏)

ct2 · 𝐹𝑆\{id∗ } (𝜏) = 𝑠𝑤 (𝜏 − id∗) ·
∏

id∈𝑆\{id∗ }
(𝜏 − id) = 𝑠𝑤 ·

∏
id∈𝑆
(𝜏 − id) = 𝑠𝑤𝐹𝑆 (𝜏).

This means

ct1𝑢 − ct2 · 𝐹𝑆\{id∗ } (𝜏) = (𝑠𝛼ℎtg∗ + 𝑠𝑤𝐹𝑆 (𝜏)) − 𝑠𝑤𝐹𝑆 (𝜏) = 𝑠𝛼ℎtg∗ .

The decryption relation (Eq. (D.2)) now yields:

[ct3 − (ct1𝑢 − ct2 · 𝐹𝑆\{id∗ } (𝜏))]T = [𝑠𝛼ℎtg∗ +𝑚 − 𝑠𝛼ℎtg∗ ]T = [𝑚]T

and correctness holds. □

Theorem D.3 (Adaptive Security). Take any polynomial 𝐵 = 𝐵(𝜆). Then, Construction D.1 is adaptively secure with
batch size 𝐵 if we model GroupGen as a generic group and the hash function H as a random oracle.

Proof. Take any polynomial 𝐵 = 𝐵(𝜆) and let A be an adversary for the adaptive security experiment. Let 𝑄 = 𝑄 (𝜆)
be a bound on the number of oracle queries (to the generic group oracle and the random oracle) that algorithm A
makes. We assume here that𝑄 is polynomially-bounded, but otherwise, impose no further restrictions on the running

time of the adversary (as is typical when analyzing security in idealized models). To prove adaptive security, we

define two experiments, each indexed by a bit 𝛽 ∈ {0, 1}:

• Hyb(𝛽 )
0

: This is the adaptive batched IBE security experiment with bit 𝛽 ∈ {0, 1} in the generic group model and

random oracle model. Let 𝑛 ≥ log𝑝 . The challenger maintains random injective functions 𝜑1, 𝜑2, 𝜑T : Z𝑝 → L
and a hash function map 𝜑H : {0, 1}𝜆 → Z𝑝 . The adversary has access to the group operation oracle and the

pairing oracle as described in Appendix B. The challenger implements oracle queries to H as follows:

– Hash oracle: On input a batch label 𝑟 ∈ {0, 1}𝜆 , the hash oracle returns 𝜑2 (𝜑H (𝑟 )).

The experiment proceeds as follows:

– The challenger sets pp = (𝜑1 (1), 𝜑2 (1), 𝜑T (1)). The challenger samples exponents 𝜏,𝑤, 𝛼
r← Z∗𝑝 and

constructs the master public key as follows

mpk = (𝜑1 (𝜏), 𝜑2 (𝜏), 𝜑2 (𝜏2), . . . , 𝜑2 (𝜏𝐵), 𝜑1 (𝑤), 𝜑1 (𝛼), 𝜑1 (𝑤𝜏)) .

The challenger gives pp and mpk to A.

57



– When algorithmA makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ {0, 1}𝜆 , the challenger returns ⊥ ifA has made a query on the same tg. Otherwise, it defines the
polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities id ∈ 𝑆 and write 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
.

It then returns the secret key

sk = 𝜑2 (𝛼𝜑H (tg) +𝑤𝐹𝑆 (𝜏)).

– When algorithm A outputs a challenge identity id∗ ∈ Z𝑝 , batch label tg∗ ∈ {0, 1}𝜆 , and two messages

𝑚0,𝑚1 in the image of 𝜑T, the challenger returns ⊥ if A made a key-computation query (tg, 𝑆) ∈ Q such

that tg = tg∗ and id∗ ∈ 𝑆 . Otherwise, the challenger samples 𝑠
r← Z∗𝑝 . It then returns the challenge

ciphertext

ct = (𝜑1 (𝑠), 𝜑1 (𝑠𝑤 (𝜏 − id∗)), 𝜑T (𝑠𝛼𝜑H (tg∗) + 𝜑−1

T (𝑚𝛽 ))).

– AlgorithmA can continue to make key-computation queries. The challenger responds as described above

except that it returns ⊥ if tg = tg∗ and id∗ ∈ 𝑆 .
– At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which the challenger also outputs.

• Hyb(𝛽 )
1

: This is the symbolic version of the adaptive batched IBE security experiment with bit 𝛽 , which is the

same as Hyb(𝛽 )
0

except that the domain of 𝜑1, 𝜑2, 𝜑T and the range of 𝜑H are now treated as formal polynomials

over Z𝑝 (with variables defined implicitly below). In the following, we write Z𝑝 [★] to denote the set of formal

polynomials over Z𝑝 . The challenger in this experiment lazily initializes the labeling functions 𝜑𝑖 : Z𝑝 [★] → L
for each 𝑖 ∈ {1, 2, T} and the hash function map 𝜑H : {0, 1}𝜆 → Z𝑝 [★]. Namely, whenever the challenger needs

to compute 𝜑𝑖 (𝑓 ), where 𝑓 ∈ Z𝑝 [★] and 𝜑𝑖 (𝑓 ) has not yet been defined, then the challenger samples a random

label ℓ
r← L (that is not already in the image of 𝜑𝑖 ) and associates the label ℓ with 𝜑𝑖 (𝑓 ). If no such label exists,

then the challenger halts the experiment with output ⊥. With this procedure, the evaluation oracle and pairing

oracle behave exactly as before. Next, to implement the hash oracle, the challenger now proceeds as follows:

– Hash oracle: On input 𝑟 ∈ {0, 1}𝜆 , if 𝜑H (𝑟 ) has not yet been initialized, then set 𝜑H (𝑟 ) = 𝑅 where 𝑅 is

a fresh formal variable. Return 𝜑2 (𝜑H (𝑟 )).

The experiment proceeds as follows:

– The challenger sets pp = (𝜑1 (1), 𝜑2 (1), 𝜑T (1)). The challenger defines formal variables 𝑋𝜏 , 𝑋𝑤, 𝑋𝛼 corre-

sponding to 𝜏,𝑤, 𝛼 and constructs the master public key as follows

mpk = (𝜑1 (𝑋𝜏 ), 𝜑2 (𝑋𝜏 ), 𝜑2 (𝑋 2

𝜏 ), . . . , 𝜑2 (𝑋𝐵𝜏 ), 𝜑1 (𝑋𝑤), 𝜑1 (𝑋𝛼 ), 𝜑1 (𝑋𝑤𝑋𝜏 )).

The challenger gives pp and mpk to A.

– When algorithmA makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ {0, 1}𝜆 , the challenger returns ⊥ ifA has made a query on the same tg. Otherwise, it defines the
polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities id ∈ 𝑆 and writes 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
.

It then makes a hash oracle query on tg so that 𝜑H (tg) is defined internally and returns the secret key

sk = 𝜑2 (𝑋𝛼𝜑H (tg) + 𝑋𝑤𝐹𝑆 (𝑋𝜏 )).

– When algorithms A outputs a challenge identity id∗ ∈ Z𝑝 , batch label tg∗ ∈ {0, 1}𝜆 , and two messages

𝑚0,𝑚1 in the image of 𝜑T, the challenger returns ⊥ if A made a key-computation query (tg, 𝑆) ∈ Q such

that tg = tg∗ and id∗ ∈ 𝑆 . Otherwise, the challenger defines a formal variable 𝑋𝑠 . It then makes a hashing

oracle query on tg so that the value 𝜑H (tg) is defined. Then, it returns the challenge ciphertext

ct = (𝜑1 (𝑋𝑠 ), 𝜑1 (𝑋𝑠𝑋𝑤 (𝑋𝜏 − id∗)), 𝜑T (𝑋𝑠𝑋𝛼𝜑H (tg∗) + 𝜑−1

T (𝑚𝛽 ))).

– AlgorithmA can continue to make key-computation queries. The challenger responds as described above

except that it returns ⊥ if tg = tg∗ and id∗ ∈ 𝑆 .
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– At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which the challenger also outputs.

We write Hyb(𝛽 )
𝑖
(A) to denote the output distribution of Hyb(𝛽 )

𝑖
with adversary A. We now analyze each pair of

adjacent hybrid experiments.

Lemma D.4. For all 𝛽 ∈ {0, 1}, we have���Pr[Hyb(𝛽 )
0

= 1] − Pr[Hyb(𝛽 )
1

= 1

��� ≤ (
𝑄 + 𝐵 + 7

2

)
𝐵 + 1

𝑝
=
poly(𝑄, 𝐵)

𝑝
.

Proof. Consider an extended version of Hyb(𝛽 )
1

where at the end of the experiment, we sample uniform random

values from Z𝑝 for all formal variables, and replace all formal polynomials with their evaluations on these values. This

yields a perfect simulation of Hyb(𝛽 )
0

unless there exist two distinct polynomials which share the same evaluation.

We use Bad to denote this event. Then,���Pr[Hyb(𝛽 )
0

= 1] − Pr[Hyb(𝛽 )
1

= 1]
��� ≤ Pr[Bad] .

We bound the probability of Bad by the following observations:

• There are 𝐵 + 4 polynomials from pp and mpk, 3 polynomials from ct, and (at most) 𝑄 polynomials from the

adversary’s queries. All 𝑄 + 𝐵 + 7 polynomials have degree at most 𝐵 + 1.

• By the Schwartz-Zippel lemma [Sch80, Zip79], the probability that a pair of these polynomials share the same

evaluation (at a randomly-selected evaluation point) is at most
𝐵+1
𝑝
.

Taking now a union bound over the adversary’s queries, we have

Pr[Bad] ≤
(
𝑄 + 𝐵 + 7

2

)
𝐵 + 1

𝑝
.

This proves the lemma. □

Lemma D.5. It holds that Pr[Hyb(0)
1

= 1] = Pr[Hyb(1)
1

= 1].

Proof. It suffices to prove that the target polynomial 𝑋𝑠 · 𝑋𝛼 · 𝜑H (tg∗) in Hyb(𝛽 )
1

is linearly independent of all

polynomials in the view of the adversary. To do so, we define the following quantities:

• Let id∗ ∈ Z𝑝 and tg∗ ∈ {0, 1}𝜆 be the target identity and target batch label, respective, chosen by A.

• Suppose algorithm A makes a total of 𝑛 key-computation queries with batch labels tg
1
, . . . , tg𝑛 ∈ {0, 1}𝜆 . Let

𝑆1, . . . , 𝑆𝑛 ⊆ Z𝑝 be the identities associated with these queries. Let 𝐹1, . . . , 𝐹𝑛 be the polynomials (of degree

at most 𝐵) associated with these sets. Furthermore, we require that all of the batch labels tg𝑖 are distinct and
that tg∗ = tg𝑖∗ for some 𝑖∗ ∈ [𝑛]. The last condition corresponds to the assumption that the adversary always

makes a key-computation query on the challenge batch label tg∗; this is without loss of generality as we can

always have the adversary A make a dummy key-computation query on the challenge batch label.

• Finally, we assume that algorithm A queries the hash oracle on all of the batch labels tg
1
, . . . , tg𝑛 . This is

without loss of generality since any adversary that does not do this can be generically converted into one that

does with only 𝑛 additional queries and no change to the advantage. We write 𝐻𝑖 = 𝜑H (tg𝑖 ) for all 𝑖 ∈ [𝑛].

The view of adversary then consists of the following two sets of polynomials over G1 and G2, respectively:

𝐿1 =

𝐿1,1︷                      ︸︸                      ︷
{1, 𝑋𝜏 , 𝑋𝑤, 𝑋𝛼 , 𝑋𝑤𝑋𝜏 } ∪

𝐿1,2︷︸︸︷
{𝑋𝑠 } ∪

𝐿1,3︷                 ︸︸                 ︷
{𝑋𝑠𝑋𝑤 (𝑋𝜏 − id∗)}

𝐿2 = {𝐻𝑖 }𝑖∈[𝑛]︸     ︷︷     ︸
𝐿2,1

∪ {𝑋 𝑖𝜏 }𝑖∈[0,𝐵 ]︸       ︷︷       ︸
𝐿2,2

∪ {𝑋𝛼𝐻𝑖 + 𝑋𝑤𝐹𝑖 (𝑋𝜏 )}𝑖∈[𝑛]︸                          ︷︷                          ︸
𝐿2,3
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In the following, we write 𝐿1𝐿2 to denote the set of product polynomials {𝑓 𝑔 : 𝑓 ∈ 𝐿1, 𝑔 ∈ 𝐿2}. By contradiction, we

assume that the target polynomial satisfies 𝑋𝑠𝑋𝛼𝐻𝑖∗ ∈ span(𝐿1𝐿2). Namely, suppose that 𝑋𝑠𝑋𝛼𝐻𝑖∗ can be expressed

as a non-trivial linear combination of terms in

𝐿1𝐿2 = 𝐿1,1𝐿2 ∪
(
(𝐿1,2𝐿2,1) ∪ (𝐿1,3𝐿2,1)

)
∪
(
(𝐿1,2𝐿2,2) ∪ (𝐿1,3𝐿2,3)

)
∪
(
(𝐿1,2𝐿2,3) ∪ (𝐿1,3𝐿2,2)

)
Then the following properties hold:

• The coefficients of the polynomials in 𝐿1,1𝐿2 must be zero due to the lack of the formal variable 𝑋𝑠 .

• The coefficients of the polynomials in (𝐿1,2𝐿2,1) ∪ (𝐿1,3𝐿2,1) will be zero due to the lack of the formal variable 𝑋𝛼 .

• The coefficients of the polynomials in (𝐿1,2𝐿2,2) ∪ (𝐿1,3𝐿2,3) will be zero due to the presence of the monomial

𝑋𝑠𝑋
𝑖
𝜏 or 𝑋𝑠𝑋

2

𝑤 .

It remains to consider the following terms in (𝐿1,2𝐿2,3) ∪ (𝐿1,3𝐿2,2):

{𝑋𝑠𝑋𝑤𝑋 𝑖𝜏 (𝑋𝜏 − id∗)}𝑖∈[0,𝐵 ] ∪ {𝑋𝑠𝑋𝛼𝐻𝑖 + 𝑋𝑠𝑋𝑤𝐹𝑖 (𝑋𝜏 )}𝑖∈[𝑛]

Observe that

• For all 𝑖 ≠ 𝑖∗, the coefficients of {𝑋𝑠𝑋𝛼𝐻𝑖 + 𝑋𝑠𝑋𝑤𝐹𝑖 (𝑋𝜏 )}𝑖≠𝑖∗ must be zero since they involve 𝑋𝑠𝑋𝛼𝐻𝑖 which

appears neither in the target polynomials nor other polynomials in the set. Here we use the fact that 𝐻𝑖 are

all distinct.

• For the remaining polynomials {𝑋𝑠𝑋𝑤𝑋 𝑖𝜏 (𝑋𝜏 − id∗)}𝑖∈[0,𝐵 ] ∪{𝑋𝑠𝑋𝛼𝐻𝑖∗ +𝑋𝑠𝑋𝑤𝐹𝑖∗ (𝑋𝜏 )}, we must have {𝑐𝑖 }𝑖∈[0,𝐵 ]
and 𝑑 such that

𝑋𝑠𝑋𝛼𝐻𝑖∗ =
∑︁

𝑖∈[0,𝐵 ]
𝑐𝑖 · 𝑋𝑠𝑋𝑤𝑋 𝑖𝜏 (𝑋𝜏 − id∗) + 𝑑 · (𝑋𝑠𝑋𝛼𝐻𝑖∗ + 𝑋𝑠𝑋𝑤𝐹𝑖∗ (𝑋𝜏 )) .

Clearly, we must set 𝑑 = 1 and this means

0 =
∑︁

𝑖∈[0,𝐵 ]
𝑐𝑖 · 𝑋𝑠𝑋𝑤𝑋 𝑖𝜏 (𝑋𝜏 − id∗) + 𝑋𝑠𝑋𝑤𝐹𝑖∗ (𝑋𝜏 ).

This means ∑︁
𝑖∈[0,𝐵 ]

𝑐𝑖𝑋
𝑖
𝜏 (𝑋𝜏 − id∗) = −𝐹𝑖∗ (𝑋𝜏 ).

The left-hand-side is a polynomial with a root at 𝑋𝜏 = id∗, so this means 𝐹𝑖∗ must also have a root at id∗. Thus
𝐹𝑖∗ (id∗) = 0. By construction of 𝐹𝑖∗ , this means id∗ ∈ 𝑆𝑖∗ . This contradicts the requirements of the security

game (i.e., the adversary cannot request a key that is able to decrypt the challenge ciphertext).

We conclude that the monomial 𝑋𝑠𝑋𝛼𝐻𝑖∗ = 𝑋𝑠𝑋𝛼𝜑H (tg∗) is linearly independent of the other components in the

adversary’s view. Since the message in Hyb(0)
1

and Hyb(1)
1

is blinded by 𝜑T (𝑋𝑠𝑋𝛼𝐻𝑖∗ ), we conclude that the message

is perfectly hidden from the view of the adversary. This proves the lemma. □

Theorem D.3 now follows from Lemmas D.4 and D.5 by a hybrid argument. □

Corollary D.6 (Batched Identity-Based Encryption). Let 𝜆 be a security parameter. If we model GroupGen as a generic
bilinear group, and H as a random oracle, then Construction D.1 is an adaptively-secure batched IBE scheme with the
following efficiency properties:

• Public key size: For a batch size 𝐵, the public key contains 4 G1 elements and 𝐵 G2 elements.

• Ciphertext size: A ciphertext contains 2 G1 elements and 1 GT element.

• Digest size: A digest contains 1 G2 element.

• Decryption key size: A decryption key contains 1 G2 element.
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E Threshold Batched IBE in the Generic Group Model
In this section, we give a threshold version of Construction D.1. Note that this scheme is in the centralized model

where a trusted dealer generates the decryption shares for each user. We start by recalling the formal definition

of a threshold batched IBE scheme from [AFP25]. Note here that we work under the weaker notion of security

from [AFP25] where the attacker in the security game can only query for the same set 𝑆 to all decryption authorities

for any particular batch label tg. Because we derive our construction by directly thresholding the scheme from

Appendix D, we can only argue security under this weaker definition. To achieve the stronger notion of security

where the adversary can request shares for different sets to different decryption authorities, we need an alternative

approach to secret share the master secret key (see Remark 5.3 and Section 5 for one such approach). In addition,

following [AFP25], we consider the setting of static corruptions where the adversary declares upfront the set of

corrupted users (but is allowed to make adaptive key-generation queries).

Definition E.1 (Threshold Batched Identity-Based Encryption [AFP25, adapted]). A threshold batched identity-based

encryption scheme ΠThBatchIBE consists of a tuple of efficient algorithms ΠThBatchIBE = (Setup,KeyGen, Encrypt,
Digest,CompKeyShare,CompKeyAggregate,Decrypt) with the following syntax:

• Setup(1𝜆) → pp: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a set of public parameters

pp. We assume that the public parameters (implicitly) specifies the message spaceM, identity space I, and
batch label space T for the encryption scheme.

• KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ) → ({pkℓ , skℓ }ℓ∈[𝐿],mpk): On input the public parameters pp, an upper bound on the

batch size 𝐵, the size of the decryption committee 𝐿, and the threshold𝑇 , the key-generation algorithm outputs

a set of user public keys pk𝑖 and user secret keys sk𝑖 along with a master public key mpk. We assume that

mpk, pkℓ , and skℓ also include an implicit description of the message spaceM, identity space I, and batch

label space T (from pp).

• Encrypt(mpk,𝑚, id, tg) → ct: On input the global master public key mpk, a message 𝑚 ∈ M, an identity

id ∈ I, and a batch label tg ∈ T , the encryption algorithm outputs a ciphertext ct.

• Digest(mpk, 𝑆) → dig: On input the global master public keympk and a set of identities 𝑆 , the digest algorithm
output a digest dig. This algorithm is deterministic.

• CompKeyShare(sk, dig, tg) → 𝜎 : On input a user secret key sk, a digest dig, and a batch label tg, the key-share-
computation algorithm outputs a decryption key share 𝜎 associated with dig and tg.

• VerifyKeyShare(pk, dig, tg, 𝜎) → 𝑏: On input a user public key pk, a digest dig, a batch label tg and a decryption
key share 𝜎 , the key-share verification algorithm outputs a bit 𝑏 ∈ {0, 1} indicating whether the decryption
key share 𝜎 is valid under pk for dig and tg. This algorithm is deterministic.

• CompKeyAggregate({𝜎ℓ }ℓ∈𝑈 , dig, tg) → 𝜎 : On input a collection of decryption key shares 𝜎ℓ for a set of users

ℓ ∈ 𝑈 , a digest dig, and a batch label tg, the key-share-aggregation algorithm outputs an aggregated decryption

key 𝜎 . This algorithm is deterministic.

• Decrypt(mpk, 𝜎, dig, 𝑆, (id, tg), ct) → 𝑚: On input the global master public key, a decryption key 𝜎 , a digest

dig, a set of identities 𝑆 , an identity-label pair (id, tg), and a ciphertext ct, the decryption algorithm outputs a

message𝑚 ∈ M (or possibly a special symbol ⊥ to indicate decryption failed). This algorithm is deterministic.

We require ΠThBatchIBE satisfy the following properties:

• Completeness: For all 𝜆, 𝐵, 𝐿,𝑇 ∈ N where 𝑇 ≤ 𝐿, all public parameters pp in the support of Setup(1𝜆), batch
labels tg∗ ∈ T , all sets 𝑆 ⊆ I of size at most 𝐵, all ℓ∗ ∈ [𝐿], where T and I are the batch label and the identity

spaces associated with pp, we have

Pr

VerifyKeyShare(pkℓ∗ , dig, tg∗, 𝜎ℓ∗ ) = 1 :

({pkℓ , skℓ }ℓ∈[𝐿],mpk) ← KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 )
dig = Digest(mpk, 𝑆)

𝜎ℓ∗ ← CompKeyShare(skℓ∗ , dig, tg∗)

 = 1.
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• Correctness: For all 𝜆, 𝐵, 𝐿,𝑇 ∈ N where 𝑇 ≤ 𝐿, all public parameters pp in the support of Setup(1𝜆), all
({pkℓ , skℓ }ℓ∈[𝐿],mpk) in the support of KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ), all messages𝑚 ∈ M, batch labels tg∗ ∈ T , and
identities id∗ ∈ I (whereM,I,T are the message, identity, and batch label spaces associated with pp, respec-
tively), all sets 𝑆 ⊆ I of size at most 𝐵 where id∗ ∈ 𝑆 , all sets𝑈 ⊆ [𝐿] where |𝑈 | = 𝑇 , all ciphertexts ct in the sup-
port of Encrypt(mpk,𝑚, id∗, tg∗), all decryption key shares {𝜎ℓ }ℓ∈𝑈 where VerifyKeyShare(pkℓ , dig, tg∗, 𝜎ℓ ) = 1

for all ℓ ∈ 𝑈 and dig = Digest(mpk, 𝑆), it holds that

Decrypt(mpk,CompKeyAggregate({𝜎ℓ }ℓ∈𝑈 , dig, tg∗), dig, 𝑆, (id∗, tg∗), ct) =𝑚.

• Adaptive security with static corruptions: For a security parameter 𝜆, a batch size 𝐵, the size of committee

𝐿, the threshold 𝑇 , a set of corrupted authorities C ⊂ [𝐿] such that |C| < 𝑇 , a bit 𝛽 ∈ {0, 1}, and an adversary

A, we define the threshold batched IBE security game as follows:

– The challenger starts by computing pp← Setup(1𝜆) and ({pkℓ , skℓ }ℓ∈[𝐿],mpk) ← KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ).
It gives (1𝜆, 1𝐵, 1𝐿, 1𝑇 , pp, {pkℓ }ℓ∈[𝐿], {skℓ }ℓ∈C,mpk) to A. LetM,I,T be the message space, identity

space, and batch label space associated with pp.

– Algorithm A can now make any number of key-share-computation queries. On each query, algorithm A
specifies a set 𝑆 ⊆ I where |𝑆 | = 𝐵 and a batch label tg ∈ T . The challenger replies with the decryption

key shares 𝜎ℓ ← ComputeKey(skℓ ,Digest(mpk, 𝑆), tg) for all ℓ ∉ C.
– After A is finished making key-share-computation queries, it outputs two messages 𝑚0,𝑚1 ∈ M, a

challenge identity id∗ ∈ I and a challenge batch label tg∗ ∈ T . The challenger responds with a challenge

ciphertext ct← Encrypt(mpk,𝑚𝛽 , id∗, tg∗).
– Algorithm A can continue to make key-share-computation queries. The challenger answers the queries

exactly as before.

– At the end of the game, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible if the following two conditions hold:

– The batch labels tg in the key-share-computation queries are all distinct (i.e., the adversary sees at most

one set of decryption key shares for each batch label tg ∈ T ).
– Algorithm A does not make a key-share-computation query on a pair (𝑆, tg) where tg = tg∗ and id∗ ∈ 𝑆 .

We say ΠThBatchIBE is secure if for all polynomials 𝐵 = 𝐵(𝜆), 𝐿 = 𝐿(𝜆),𝑇 = 𝑇 (𝜆) and all efficient and admissible

adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝛽 ′ = 1 : 𝛽 = 0] − Pr[𝛽 ′ = 1 : 𝛽 = 1] | = negl(𝜆) (E.1)

in the above security game. We say ΠThBatchIBE is secure for a specific batch size 𝐵 = 𝐵(𝜆), committee size

𝐿 = 𝐿(𝜆), and threshold 𝑇 = 𝑇 (𝜆) if the above holds for the specific functions 𝐵, 𝐿,𝑇 .

Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝐵, 𝐿,𝑇 ∈ N, all public parameters pp
in the support of Setup(1𝜆), all (mpk,msk) in the support of KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ), all digests dig in the support of

Digest(mpk, ·), and all batch labels tg ∈ T (where T is the batch label space associated with pp), the running time of

CompKeyShare(msk, dig, tg) and the size of the digest dig is poly(𝜆) and in particular, independent of 𝐵. Similarly,

for all 𝑈 ⊆ [𝐿] and all user decryption shares 𝜎𝑖 where 𝑖 ∈ 𝑈 , the size of the aggregated decryption key 𝜎 output

by CompKeyAggregate({𝜎ℓ }ℓ∈𝑈 , dig, tg) is independent of |𝑈 |.

Construction E.2 (Threshold Batched Identity-Based Encryption). LetGroupGen be a prime-order bilinear group gen-

erator. We construct a threshold batched IBE scheme ΠThBatchIBE = (Setup,KeyGen, Encrypt,Digest,CompKeyShare,
CompKeyAggregate,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒) ←
GroupGen(1𝜆). Next, let H : {0, 1}𝜆 → G2 be a hash function (which we model as a random oracle in the

security analysis), and outputs the public parameters pp = (G,H). The message space associated with pp is

GT, the identity space is Z𝑝 , and the tag space is {0, 1}𝜆 .
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• KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ): On input the public parameters pp = G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒), a bound on the batch

size 𝐵, the size of the decryption committee 𝐿, and the threshold 𝑇 ≤ 𝐿, the key-generation algorithm proceeds

as follows:

– Sample exponents 𝜏,𝑤, 𝛼
r← Z𝑝 .

– LetM ∈ Z𝐿×𝑇𝑝 be the share-generationmatrix for a𝑇 -out-of-𝐿 threshold policy over Z𝑝 . Sample𝜶 ,w r← Z𝐿𝑝
where 𝛼1 = 𝛼 and𝑤1 = 𝑤 .

For ℓ ∈ [𝐿], let mT
ℓ be the ℓ

th
row of M. It then outputs the user public keys pkℓ = ( [mT

ℓ𝜶 ]1, [mT
ℓw]1) and user

secret keys skℓ = (mT
ℓ𝜶 ,m

T
ℓw) for all ℓ ∈ [𝐿] as well as the global master public key

mpk =
(
G , H , [𝜏]1 , [𝜏]2 , [𝜏2]2 , . . . , [𝜏𝐵]2 , [𝑤]1 , [𝑤𝜏]1 , [𝛼]1

)
. (E.2)

• Encrypt(mpk, [𝑚]T, id, tg): On input the master public key mpk (parsed according to Eq. (E.2)), a message

[𝑚]T ∈ GT, an identity id ∈ Z𝑝 , and a batch label tg ∈ {0, 1}𝜆 , the encryption algorithm computes [ℎtg]2 = H(tg)
and samples 𝑠

r← Z𝑝 . It then outputs the ciphertext

ct =
(
[𝑠]1 , 𝑠 · [𝑤𝜏]1 − 𝑠 · id · [𝑤]1, 𝑠 · [𝛼]1 · [ℎtg]2 + [𝑚]T

)
=
(
[𝑠]1 , [𝑠𝑤 (𝜏 − id)]1 , [𝑠𝛼ℎtg +𝑚]T

)
• Digest(mpk, 𝑆): On input the master public key mpk (parsed according to Eq. (E.2)) and a set of identities

𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵, the digest algorithm defines the polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id) whose roots are the
identities id ∈ 𝑆 . Write 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
. Output the digest

dig =
∑︁

𝑖∈[0, |𝑆 | ]
𝑓𝑖 · [𝜏𝑖 ]2 = [𝐹𝑆 (𝜏)]2 .

• CompKeyShare(sk, dig, tg): On input a user secret key sk = (𝑢1, 𝑢2), a digest dig = [𝑑]2, and a batch label tg ∈
{0, 1}𝜆 , the key-share-computation algorithm computes [ℎtg]2 = H(tg) and outputs the decryption key share

𝜎 = 𝑢1 · [ℎtg]2 + 𝑢2 · [𝑑]2 = [𝑢1ℎtg + 𝑢2𝑑]2.

• VerifyKeyShare(pk, dig, tg, 𝜎): On input a user public key pk𝑖 = ( [𝑢1]1, [𝑢2]1), a digest dig = [𝑑]2, a batch label

tg ∈ {0, 1}𝜆 , and a decryption key share 𝜎 = [𝑣]2, the key-share verification algorithm computes [ℎtg]2 = H(tg)
and outputs 1 if the following relation holds (and 0 otherwise):

[𝑢1]1 · [ℎtg]2 + [𝑢2]1 · [𝑑]2 = [1]1 · [𝑣]2.

• CompKeyAggregate({𝜎𝑖 }𝑖∈𝑈 , dig, tg): On input a collection of decryption key shares 𝜎ℓ = [𝑣ℓ ]2 for a set of
users ℓ ∈ 𝑈 ⊆ [𝐿] where |𝑈 | = 𝑇 , a digest dig = [𝑑]2, and a batch label tg ∈ {0, 1}𝜆 , the key-share-aggregation
computes the interpolation vector 𝝎 ∈ Z𝐿𝑝 such that 𝝎TM = eT

1
and 𝜔ℓ = 0 for all ℓ ∉ 𝑈 where M ∈ Z𝑇×𝐿𝑝 is the

share-generating matrix for the 𝑇 -out-of-𝐿 threshold policy. It then outputs the aggregated decryption key:

𝜎 =
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑣ℓ ]2.

• Decrypt(mpk, 𝜎, 𝑆, (id, tg), ct): On input the master public key mpk (parsed according to Eq. (E.2)), an aggre-

gated decryption key 𝜎 = [𝑣]2, the set of identities 𝑆 ⊆ Z𝑝 , an identity id ∈ 𝑆 , a batch label tg ∈ {0, 1}𝜆 , and
the ciphertext ct = ( [𝑐1]1, [𝑐2]1, [𝑐3]T), the decryption algorithm proceeds as follows:

– First, it defines the polynomial

𝐹𝑆\{id} (𝑥) =
∏

id′∈𝑆\{id}
(𝑥 − id′).

Compute [𝐹𝑆\{id} (𝜏)]2 =
∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖 [𝜏𝑖 ]2, where 𝐹𝑆\{id} (𝑥) =

∑
𝑖∈[0, |𝑆 |−1] 𝑓𝑖𝑥

𝑖
.
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– Then it computes and outputs

[𝑐3]T − [𝑐1]1 · [𝑣]2 + [𝑐2]1 · [𝐹𝑆\{id} (𝜏)]2. (E.3)

Theorem E.3 (Completeness). Construction E.2 is complete.

Proof. Take any 𝜆, 𝐵, 𝐿,𝑇 ∈ N satisfying 𝑇 ≤ 𝐿 and any choice of public parameters pp = (G,H) in the support of

Setup(1𝜆), where G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒). Take any batch label tg∗ ∈ {0, 1}𝜆 , any set 𝑆 ⊆ Z𝑝 of size 𝐵, and any

index ℓ∗ ∈ [𝐿]. Sample ({pkℓ , skℓ }ℓ∈[𝐿],mpk) ← KeyGen(pp, 1𝐵, 1𝐿, 1𝑇 ). By construction, skℓ∗ and pkℓ∗ have the
following form:

skℓ∗ = (𝑢1, 𝑢2) and pkℓ∗ = ( [𝑢1]1, [𝑢2]1)
where 𝑢1, 𝑢2 ∈ Z𝑝 . Let dig = [𝑑]2 = Digest(mpk, 𝑆) and 𝜎ℓ∗ ← CompKeyShare(skℓ∗ , dig, tg∗). Let [ℎtg]2 = H(tg∗).
By construction of CompKeyShare, this means

𝜎ℓ∗ = [𝑣]2 = [𝑢1ℎtg + 𝑢2𝑑]2

By definition, the key-share-verification algorithm VerifyKeyShare(pkℓ∗ , dig, tg∗, 𝜎ℓ∗ ) now checks that

[𝑢1]1 · [ℎtg]2 + [𝑢2]1 · [𝑑]2 = [1]1 · [𝑣]2,

which holds by construction. □

Theorem E.4 (Correctness). Construction E.2 is correct.

Proof. Let 𝜆, 𝐵, 𝐿,𝑇 ∈ N where 𝑇 ≤ 𝐿. Take any public parameters pp = (G,H) in the support of Setup(1𝜆),
where G = (G1,G2,GT, 𝑝, 𝑔1, 𝑔2, 𝑒). Take any message [𝑚]T ∈ M, any batch label tg∗ ∈ {0, 1}𝜆 , any identity

id∗ ∈ Z𝑝 , any set 𝑆 ⊆ Z𝑝 of size at most 𝐵 where id∗ ∈ Z𝑝 , and any set 𝑈 ⊆ [𝐿] where |𝑈 | = 𝑇 . Let dig =

Digest(mpk, 𝑆) and sample ct← Encrypt(mpk, [𝑚]T, id∗, tg∗). Take any collection of decryption key shares {𝜎ℓ }ℓ∈𝑈
where VerifyKeyShare(pkℓ , dig, tg∗, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑈 . Let 𝜎 = CompKeyAggregate({𝜎ℓ }ℓ∈𝑈 , dig, tg∗). Consider
now Decrypt(mpk, 𝜎, dig, 𝑆, (id∗, tg∗), ct):

• First, letM ∈ Z𝐿×𝑇𝑝 be the share-generating matrix for the 𝑇 -out-of-𝐿 threshold policy and let 𝝎 ∈ Z𝐿𝑝 be the
interpolation vector where 𝝎TM = eT

1
and 𝜔ℓ = 0 for all ℓ ∉ 𝑈 . Let mT

ℓ be the ℓ
th
row of M,

• Let [ℎtg∗ ]2 = H(tg∗) and define the polynomial 𝐹𝑆 (𝑥) =
∏

id∈𝑆 (𝑥 − id).

• By construction of the above algorithms, the above components can now be expressed as follows:

mpk =
(
G,H, [𝜏]1, [𝜏]2, [𝜏2]2, . . . , [𝜏𝐵]2, [𝑤]1, [𝑤𝜏]1, [𝛼]1

)
pkℓ = ( [mT

ℓ𝜶 ]1, [mT
ℓw]1)

dig = [𝐹𝑆 (𝜏)]2
ct = ( [𝑠]1, [𝑠𝑤 (𝜏 − id∗)]1, [𝑠𝛼ℎtg∗ +𝑚]T)

• Write each 𝜎ℓ = [𝑣ℓ ]2. Since VerifyKeyShare(pkℓ , dig, tg∗, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑈 , this means

𝑣ℓ = mT
ℓ𝜶 · ℎtg∗ +mT

ℓw · 𝐹𝑆 (𝜏).

• By construction of CompKeyAggregate, we have

𝜎 =
∑︁
ℓ∈𝑈

𝜔ℓ · [𝑣ℓ ]2 =
∑︁
ℓ∈𝑈
[𝜔ℓ (mT

ℓ𝜶 · ℎtg∗ +mT
ℓw · 𝐹𝑆 (𝜏))] .

Since 𝝎TM = eT
1
, eT

1
𝜶 = 𝛼 , and eT

1
w = 𝑤 , this means

𝜎 =
∑︁
ℓ∈𝑈
[𝜔ℓ (mT

ℓ𝜶 · ℎtg∗ +mT
ℓw · 𝐹𝑆 (𝜏))]2 = [𝛼ℎtg∗ +𝑤𝐹𝑆 (𝜏)]2 .

For ease of notation, define 𝑣 = 𝛼ℎtg∗ +𝑤𝐹𝑆 (𝜏). Then, 𝜎 = [𝑣]2.
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• The decryption algorithm now computes

[𝑠𝛼ℎtg∗ +𝑚]T − [𝑠]1 · [𝑣]2 + [𝑠𝑤 (𝜏 − id∗)]1 · [𝐹𝑆\{id} (𝜏)]2 = [𝑠𝛼ℎtg∗ +𝑚 − 𝑠𝛼ℎtg∗ − 𝑠𝑤𝐹𝑆 (𝜏) + 𝑠𝑤𝐹𝑆 (𝜏)]T
= [𝑚]T,

and correctness holds. □

Theorem E.5 (Adaptive Security with Static Corruptions). Take any polynomials 𝐵 = 𝐵(𝜆), 𝐿 = 𝐿(𝜆) and any 𝑇 ≤ 𝐿.
Then, Construction E.2 satisfies adaptive security with static corruptions with batch size 𝐵, committee size 𝐿, threshold
𝑇 if we model GroupGen as a generic group and the hash function H as a random oracle.

Proof. Similar to [AFP25], we will show that security (with static corruptions) of Construction E.2 follows via adaptive

security of the centralized batched IBE scheme from Construction D.1. Then, Theorem D.3 immediately implies The-

orem E.5. To start, we review the security experiments Expt(𝛽 )BatchIBE and Expt
(𝛽 )
BatchTIBE associated with the batched IBE

scheme (Definition 3.2) and the threshold batched IBE scheme (Definition E.1), respectively, in the generic group

model and random oracle model. As in the proof of Theorem D.3, the challenger maintains random injective functions

𝜑1, 𝜑2, 𝜑T : Z𝑝 → L and a hash function mapping 𝜑H : {0, 1}𝜆 → Z𝑝 . The adversary has access to the evaluation

oracle and pairing oracle described in Appendix B and the hash oracle behaves as follows:

• Hash oracle: On input a batch label 𝑟 ∈ {0, 1}𝜆 , the hash oracle returns 𝜑2 (𝜑H (𝑟 )).

For any adversary A, a batch size parameter 𝐵 ∈ N, and a bit 𝛽 ∈ {0, 1}, we define Expt(𝛽 )BatchIBE (A, 𝐵) as follows:

• The challenger sets pp = (𝜑1 (1), 𝜑2 (1), 𝜑T (1)). The challenger samples exponents 𝜏,𝑤, 𝛼
r← Z∗𝑝 and constructs

the master public key as follows

mpk = (𝜑1 (𝜏), 𝜑2 (𝜏), 𝜑2 (𝜏2), . . . , 𝜑2 (𝜏𝐵), 𝜑1 (𝑤), 𝜑1 (𝛼), 𝜑1 (𝑤𝜏)) .

The challenger gives pp and mpk to A.

• When algorithm A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ {0, 1}𝜆 , the challenger returns ⊥ if A has made a query on the same tg. Otherwise, it defines the
polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities id ∈ 𝑆 and writes 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
. It

then responds with the secret key

sk = 𝜑2 (𝛼𝜑H (tg) +𝑤𝐹𝑆 (𝜏)).

• When algorithms A outputs a challenge identity id∗, the associated batch label tg∗, and two messages

[𝑚0]T, [𝑚1]T in the image of𝜑T, the challenger responds with⊥ ifA made a key-computation query (tg, 𝑆) such
that tg = tg∗ and id∗ ∈ 𝑆 . Otherwise, the challenger samples 𝑠

r← Z𝑝 and responds with the challenge ciphertext

ct = (𝜑1 (𝑠), 𝜑1 (𝑠𝑤 (𝜏 − id∗)), 𝜑T (𝑠𝛼𝜑H (tg∗) + 𝜑−1

T (𝑚𝛽 ))) .

• Algorithm A can continue to make key-computation queries. The challenger responds as described above

except that it returns ⊥ if tg = tg∗ and id∗ ∈ 𝑆 .

• At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which the challenger also outputs.

Next, for any adversary A, parameters 𝐵, 𝐿,𝑇 ∈ N, a corruption set C ⊆ [𝐿], and a bit 𝛽 ∈ {0, 1}, we define

Expt(𝛽 )BatchTIBE (A, C, 𝐵, 𝐿,𝑇 ) as follows.

• The challenger sets pp = (𝜑1 (1), 𝜑2 (1), 𝜑T (1)). The challenger samples exponents 𝜏,𝑤, 𝛼
r← Z∗𝑝 and constructs

the master public key as follows

mpk = (𝜑1 (𝜏), 𝜑2 (𝜏), 𝜑2 (𝜏2), . . . , 𝜑2 (𝜏𝐵), 𝜑1 (𝑤), 𝜑1 (𝛼), 𝜑1 (𝑤𝜏)) .
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Let M ∈ Z𝐿×𝑇𝑝 be the share-generation matrix for a 𝑇 -out-of-𝐿 threshold policy over Z𝑝 . For ℓ ∈ [𝐿], let mT
ℓ

be the ℓ th
row of M. The challenger samples 𝜶 ,w r← Z𝐿𝑝 where 𝛼1 = 𝛼 and 𝑤1 = 𝑤 , and constructs the user

public keys and user secret keys for all ℓ ∈ [𝐿] as follows:

pkℓ = (𝜑1 (mT
ℓ𝜶 ), 𝜑1 (mT

ℓw))
skℓ = (mT

ℓ𝜶 ,m
T
ℓw).

The challenger gives the public parameters pp, the master public key mpk, the users’ public keys {pkℓ }ℓ∈[𝐿]
and the corrupted users’ secret keys {skℓ }ℓ∈C to algorithm A.

• When algorithm A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ {0, 1}𝜆 , the challenger returns ⊥ if A has made a query on the same tg. Otherwise, it defines the
polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities id ∈ 𝑆 and write 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
. It then

makes a hash oracle query on tg so that 𝜑H (tg) is defined internally and returns decryption key shares

𝜎ℓ = 𝜑2 (mT
ℓ𝜶𝜑H (tg) +mT

ℓw𝐹𝑆 (𝜏)) ∀ℓ ∉ C

• When algorithms A outputs a challenge identity id∗, the associated batch label tg∗, and two messages

[𝑚0]T, [𝑚1]T in the image of 𝜑T, the challenger returns ⊥ if A made a key-computation query (tg, 𝑆) such that

tg = tg∗ and id∗ ∈ 𝑆 . Otherwise, the challenger samples 𝑠
r← Z𝑝 and returns the challenge ciphertext

ct = (𝜑1 (𝑠), 𝜑1 (𝑠𝑤 (𝜏 − id∗)), 𝜑T (𝑠𝛼𝜑H (tg∗) + 𝜑−1

T (𝑚𝛽 ))) .

• Algorithm A can continue to make key-computation queries. The challenger responds as described above

except that it returns ⊥ if tg = tg∗ and id∗ ∈ 𝑆 .

• At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which the challenger also outputs.

Suppose now that there exists an adversary A such that

| Pr[Expt(0)BatchTIBE (A, C, 𝐵, 𝐿,𝑇 ) = 1] − Pr[Expt(1)BatchTIBE (A, C, 𝐵, 𝐿,𝑇 ) = 1] | ≥ 𝜀.

We use A to construct an adversary B where

| Pr[Expt(0)BatchIBE (A, 𝐵) = 1] − Pr[Expt(1)BatchIBE (A, 𝐵) = 1] | ≥ 𝜀.

To do so, we show that for all 𝐵, 𝐿,𝑇 ∈ N, all C ⊆ [𝐿], all 𝛽 ∈ {0, 1}, and all adversaries A, there exists an adversary

B such that

Pr[Expt(𝛽 )BatchTIBE (A, C, 𝐵, 𝐿,𝑇 ) = 1] = Pr[Expt(𝛽 )BatchIBE (B, 𝐵) = 1] (E.4)

Algorithm B works as follows:

• Algorithm B obtains pp = (𝜑1 (1), 𝜑2 (1), 𝜑T (1)) and the master public key

mpk = (𝜑1 (𝜏), 𝜑2 (𝜏), 𝜑2 (𝜏2), . . . , 𝜑2 (𝜏𝐵), 𝜑1 (𝑤), 𝜑1 (𝛼), 𝜑1 (𝑤𝜏))

from the challenger. LetM ∈ Z𝐿×𝑇𝑝 be the share-generation matrix for a𝑇 -out-of-𝐿 threshold policy over Z𝑝 . For
ℓ ∈ [𝐿], letmT

ℓ be the ℓ
th
row ofM. Algorithm B computes a vector w⊥ ∈ Z𝐿𝑝 such thatmT

ℓw
⊥ = 0 for all indices

ℓ ∈ C and 𝑤1 = 1. It samples 𝜶̃ , w̃ r← Z𝑝 with 𝛼1 = 0, 𝑤̃1 = 0. For all ℓ ∈ C, it computes skℓ = (mT
ℓ 𝜶̃ ,m

T
ℓw̃).

Algorithm B constructs the user public keys {pkℓ }ℓ∈[𝐿] as follows:

– For all ℓ ∈ C, algorithm B uses the generic group oracle and 𝜑1 (1) to compute 𝜑1 (mT
ℓ 𝜶̃ ) and 𝜑1 (mT

ℓw̃).
It sets pkℓ = (𝜑1 (mT

ℓ 𝜶̃ ), 𝜑1 (mT
ℓw̃)) and skℓ = (mT

ℓ 𝜶̃ ,m
T
ℓw̃).

– For each ℓ ∉ C, algorithmB uses the generic group oracle in conjunction with𝜑1 (𝛼) and𝜑1 (𝑤) to compute

𝜑1 (mT
ℓ 𝜶̃ +mT

ℓw
⊥ · 𝛼) and 𝜑1 (mT

ℓw̃ +mT
ℓw
⊥ ·𝑤). It sets pkℓ = (𝜑1 (mT

ℓ 𝜶̃ +mT
ℓw
⊥ · 𝛼), 𝜑1 (mT

ℓw̃ +mT
ℓw
⊥ ·𝑤)).
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Algorithm B forwards the public parameters pp, the master public key mpk, the users’ public keys {pkℓ }ℓ∈[𝐿]
and the corrupted users’ secret keys {skℓ }ℓ∈C to algorithm A.

• When algorithm A makes a key-computation query on a set of identities 𝑆 ⊆ Z𝑝 where |𝑆 | ≤ 𝐵 and a batch

label tg ∈ {0, 1}𝜆 , the challenger returns ⊥ if A has already made a query on the same tg. Otherwise, it defines
the polynomial 𝐹𝑆 (𝑥) =

∏
id∈𝑆 (𝑥 − id) whose roots are the identities id ∈ 𝑆 . Write 𝐹 (𝑥) = ∑

𝑖∈[0, |𝑆 | ] 𝑓𝑖𝑥
𝑖
. Then,

algorithm B proceeds as follows:

1. Algorithm B uses the generic group oracle in conjunction with 𝜑2 (1), 𝜑2 (𝜏), . . . , 𝜑2 (𝜏𝐵) to compute

𝑓𝑆 = 𝜑2 (𝐹𝑆 (𝜏)).
2. Algorithm B makes a key-computation query (𝑆, tg) to the batched IBE challenger and receives a secret

key sk𝑆,tg = 𝜑2 (𝛼𝜑H (tg) +𝑤𝐹𝑆 (𝜏)).
3. Then, for each ℓ ∉ C, algorithm B queries the hash oracle on tg to obtain ℎtg = 𝜑2 (𝜑H (tg)). Using the

generic group oracle, algorithm B now computes

𝜎ℓ = 𝜑2

(
mT
ℓ 𝜶̃ · 𝜑H (tg)︸ ︷︷ ︸

ℎtg

+ mT
ℓw̃ · 𝐹𝑆 (𝜏)︸︷︷︸

𝑓𝑆

+ mT
ℓw
⊥ · (𝛼𝜑H (tg) +𝑤𝐹𝑆 (𝜏))︸                    ︷︷                    ︸

sk𝑆,tg

)
.

Algorithm B replies to A with {𝜎ℓ }ℓ∉C .

• When A makes a challenge query on an identity id∗, batch label tg∗, and two messages𝑚0,𝑚1 in the image

of 𝜑T, the challenger returns ⊥ if A made a key-computation query (tg, 𝑆) such that tg = tg∗ and id∗ ∈ 𝑆 .
Otherwise, algorithm B forwards (id∗, tg∗,𝑚0,𝑚1) as its challenge to the challenger and receives the challenge

ciphertext ct. It replies to A with ct.

• AlgorithmA can continue to make key-computation queries. Algorithm B responds as described above except

that it returns ⊥ if tg = tg∗ and id∗ ∈ 𝑆 .

• At the end of the experiment, algorithm A outputs a bit 𝛽 ′ ∈ {0, 1}, which algorithm B also outputs.

We now argue that algorithm B correctly simulates an execution of Expt(𝛽 )BatchTIBE for algorithm A. First, observe that

algorithm B implicitly sets

𝜶 = 𝜶̃ +w⊥𝛼 and w = w̃ +w⊥𝑤
where 𝛼,𝑤

r← Z𝑝 are the exponents chosen by the batched IBE challenger and the blinding factors 𝜶̃ , w̃ r← Z𝑇𝑝 are

sampled with the restriction that 𝛼1 = 0 and w̃1 = 0. Therefore, the distributions of 𝜶 and w are uniform over Z𝑇𝑝
subject to the restriction that 𝛼1 = 𝛼 and𝑤1 = 𝑤 . This is precisely the distribution expected by A. With this choice

of variables, we have

mT
ℓ𝜶 = mT

ℓ (𝜶̃ +w⊥𝛼) =
{
mT
ℓ 𝜶̃ +mT

ℓw
⊥ · 𝛼 ℓ ∉ C

mT
ℓ 𝜶̃ ℓ ∈ C

mT
ℓw = mT

ℓ (w̃ +w⊥𝑤) =
{
mT
ℓw̃ +mT

ℓw
⊥ ·𝑤 ℓ ∉ C

mT
ℓw̃ ℓ ∈ C

By construction, this coincides with the distribution that B uses to simulate the public keys as well as the distribution

of the secret keys skℓ for the corrupted users ℓ ∈ C. Consider now the response of the key-computation queries from

B. For a set 𝑆 ⊂ Z𝑝 where |𝑆 | ≤ 𝐵, a batch label tg ∈ Z𝑝 , and an index ℓ ∉ C, we have

mT
ℓ𝜶 · 𝜑H (tg) +mT

ℓw · 𝐹𝑆 (𝜏) = mT
ℓ 𝜶̃ · 𝜑H (tg) +mT

ℓw̃ · 𝐹𝑆 (𝜏) +mT
ℓw
⊥ · 𝛼𝜑H (tg) +mT

ℓw
⊥ ·𝑤𝐹𝑆 (𝜏)

= mT
ℓ 𝜶̃ · 𝜑H (tg) +mT

ℓw̃ · 𝐹𝑆 (𝜏) +mT
ℓw
⊥ · (𝛼𝜑H (tg) +𝑤𝐹𝑆 (𝜏))

This is exactly how algorithm B answers the key-generation queries in the simulation. Finally, the challenge cipher-

text in the two experiments are distributed identically. This means that algorithm B wins in Expt(𝛽 )BatchIBE as long as

algorithm A wins in Expt(𝛽 )BatchTIBE. This shows Eq. (E.4). □
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Corollary E.6 (Threshold Batched Identity-Based Encryption). Let 𝜆 be a security parameter. If we model GroupGen
as a generic bilinear group, and H as a random oracle, then Construction E.2 there is a threshold batched IBE scheme
satisfying adaptive security with static corruptions together with the following efficiency properties:

• Public key size: For a batch size 𝐵, the public key contains 4 G1 elements and 𝐵 G2 elements.

• Ciphertext size: A ciphertext contains 2 G1 elements and 1 GT element.

• Digest size: A digest contains 1 G2 element.

• Decryption key share size: A decryption key share contains 1G2 element (as does the aggregated decryption key).
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