
Dot-Product Proofs and Their Applications∗

Nir Bitansky† Prahladh Harsha‡ Yuval Ishai§ Ron D. Rothblum¶

David J. Wu‖

Abstract

A dot-product proof (DPP) is a simple probabilistic proof system in which the input statement
x and the proof π are vectors over a finite field F, and the proof is verified by making a single
dot-product query ⟨q, (x∥π)⟩ jointly to x and π. A DPP can be viewed as a 1-query fully linear
PCP. We study the feasibility and efficiency of DPPs, obtaining the following results:

• Small-field DPP. For any finite field F and Boolean circuit C of size S, there is a DPP
for proving that there exists w such that C(x,w) = 1 with a proof π of length S ·poly(|F|)
and soundness error ε = O(1/

√
|F|). We show this error to be asymptotically optimal.

In particular, and in contrast to the best known PCPs, there exist strictly linear-length
DPPs over constant-size fields.

• Large-field DPP. If |F| ≥ poly(S/ε), there is a similar DPP with soundness error ε and
proof length O(S) (in field elements).

The above results do not rely on the PCP theorem and their proofs are considerably simpler.
We apply our DPP constructions toward two kinds of applications.

• Hardness of approximation. We obtain a simple proof for the NP-hardness of approx-
imating MAXLIN (with dense instances) over any finite field F up to some constant factor
c > 1, independent of F. Unlike previous PCP-based proofs, our proof yields exponential-
time hardness under the exponential time hypothesis (ETH).

• Succinct arguments. We improve the concrete efficiency of succinct interactive argu-
ments in the generic group model using input-independent preprocessing. In particular,
the communication is comparable to sending two group elements and the verifier’s com-
putation is dominated by a single group exponentiation. We also show how to use DPPs
together with linear-only encryption to construct succinct commit-and-prove arguments.

∗A conference version of this paper appeared in Proc. 65th FOCS, 2024 [BHIRW24].
†New York University and Tel Aviv University, nbitansky@gmail.com
‡Tata Institute of Fundamental Research, prahladh@tifr.res.in
§Technion, yuvali@cs.technion.ac.il
¶Technion, rothblum@cs.technion.ac.il
‖University of Texas at Austin, dwu4@cs.utexas.edu

1

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Related Works . 8

2 Technical Overview 9
2.1 DPPs over Small Fields . 9
2.2 DPPs over Large Fields . 12

3 Preliminaries 13
3.1 Fully Linear PCP . 13
3.2 Codes . 14
3.3 Exponential Time Hypothesis . 15
3.4 MAXLIN and Its Variants . 16

4 DPPs over Small Fields 16
4.1 FLPCP for dR1CS . 17
4.2 DPP Composition . 21
4.3 DPP Gadgets . 22
4.4 Lower Bound on the Soundness Error . 28

5 From FLPCP to DPP Over Large Fields 30
5.1 Bounded Embedding (Proof of Theorem 5.4) . 33
5.2 Query Packing (Proof of Theorem 5.5) . 37
5.3 Strong Soundness . 39

6 From DPP to Hardness of Approximation 41

7 From DPP to Succinct Arguments 42
7.1 From DPP to Single-Ciphertext SNARGs . 43
7.2 From DPP to Laconic Arguments with Preprocessing 44
7.3 From DPP to Succinct Commit-and-Prove Arguments 52

A Impossibility Results for DPPs with Perfect Completeness 66

B 2-Query FLPCP for Boolean Circuits with Squaring Verification 67
B.1 2-Query FLPCP for Booleanity . 67
B.2 From Booleanity to Boolean Circuits . 69

C Proof of Theorem 4.4 for Non-Squares 70

D SNARGs from Linear-Only Encryption 70

E The Generic Group Model 73

2

1 Introduction

A probabilistically checkable proof (PCP) is a proof that can be verified by a randomized algorithm
that only reads a small part of the proof. The celebrated PCP theorem [AS98, ALMSS98] establishes
the remarkable fact that every standard NP proof, say a satisfying assignment for a Boolean circuit,
can be efficiently converted into a PCP that can be verified, with a small soundness error, by
querying a constant number of proof bits. In fact, 3 queries suffice for constant soundness error.

The PCP theorem and its subsequent refinements have found numerous applications in dif-
ferent areas of computer science. In the theory of algorithms, PCPs can be used to establish
hardness of approximation results for many natural optimization problems under the (minimal) as-
sumption that P ̸= NP [FGLSS96]. In cryptography, PCPs serve as a building block for succinct
arguments: low-communication proof systems whose soundness holds against a computationally
bounded prover [Kil92, Mic00].

Despite decades of research, the best known PCP constructions still suffer from three limitations:

• First, there are no known “constant-rate” PCPs, whose length grows linearly with the natural
NP witness. In particular, the shortest known (constant-query) PCP for the satisfiability of a
circuit of size S is of length S · polylog(S) [BS08, BGHSV05, Din07].1 Consequently, known
PCP-based hardness of approximation results do not scale to the exponential-time regime.

• Second, even the simplest known proofs of the PCP theorem, including the elegant proof
of Dinur [Din07], are still quite involved. This may partially explain the poor concrete ef-
ficiency of existing PCP constructions, which have so far resisted considerable optimization
efforts [BCGT13, BBCG+17].

• Finally, an inherent limitation of query-efficient PCPs is that a badly-formed proof may create
a noticeable correlation between the verifier’s queries and the event of accepting the proof,
which is problematic when the same secret queries need to be reused [IKNOS25].

Relaxing the PCP model. Driven by cryptographic applications, the above limitations of clas-
sical PCPs have motivated two natural relaxations of the classical PCP model. The first, known
as an interactive oracle proof (IOP) [KR08, BCS16, RRR21], enables multiple rounds of interaction
between the prover and the verifier (see Section 1.2 for discussion). The present work is concerned
with a different relaxation of the PCP model, known as a linear PCP (LPCP) [IKO07, BCIOP22].
Whereas in a classical PCP each query returns one bit (or symbol) from the proof, in an LPCP,
each query returns a linear combination of the proof entries. More precisely, the proof π is viewed
as a vector over a finite field F, and a query q returns the inner product ⟨q, π⟩ over F. LPCPs
do not suffer from the above limitations of classical PCPs. In particular, over a sufficiently-large
field F, the satisfiability of an arithmetic circuit of size S can be proved by a simple LPCP with
a proof vector π of length O(S) and which can be verified using 3 queries with soundness error of
O(S/|F|) [GGPR13, BCIOP22]. (An even simpler LPCP with O(S2) proof length, based on the
Hadamard code, is implicit in the PCP construction of [ALMSS98].) Similar to classical PCPs,
LPCPs can also be used for constructing succinct arguments [IKO07, Gro10, BCIOP22], and in
fact, have served as a basis for practical and widely-deployed succinct proof systems [BCGG+14,
PHGR16, Gro16]. Here it is often crucial to avoid the third limitation of classical PCPs discussed
above, which is possible for LPCPs over large fields F.
1Allowing for Sγ queries, a non-uniform construction of PCPs of length 2O(1/γ) · S was given in [BKKMS16].

1

Single-query LPCP? In contrast to classical PCPs, which require at least 3 queries (or 2 queries
over a non-binary alphabet), an LPCP can potentially have only one query. Beyond the intrinsic
interest in simplifying proof systems to the extent possible, 1-query LPCPs are motivated by two
kinds of applications. First, they can be used to minimize the communication of succinct arguments
to just a single ciphertext of a suitable public-key encryption scheme (under strong but plausible as-
sumptions) [BCIOP22]. Second, a restricted kind of 1-query LPCP for NP, in which only one answer
is accepted by the verifier, implies the NP-hardness of approximating MAXLIN, the maximal num-
ber of equations that can be simultaneously satisfied in a linear system Ax = b. Known hardness
results for this well-studied problem were obtained using heavy PCP machinery [H̊as01, HKLT19].
There are three known approaches for constructing 1-query LPCPs:

• The first uses a general compiler to transform any classical PCP into a 1-query LPCP by
packing the answers to all PCP queries into a single field element [BCIOP22]. This approach
inherits the disadvantages of classical PCPs.

• A second approach uses a more specialized compiler to transform a specific multi-query linear
PCP into a 1-query LPCP [BIOW20]. While relatively simple, the 1-query LPCPs obtained
via this approach are limited in several important ways: Their proof length grows quadrati-
cally (rather than linearly) with the circuit size; the field size must grow polynomially with
the circuit size; and the resulting LPCP cannot satisfy the “single accepted answer” feature
required for the application to hardness of approximation.

• The third approach relies on known hardness of approximation results. Concretely, Barta,
Ishai, Ostrovsky and Wu [BIOW20] constructed a 1-query LPCP from the NP-hardness of
approximating the nearest codeword problem [KPV14]. Alternatively, one could use the NP-
hardness of approximating MAXLIN.2 However, the 1-query LPCP obtained via this ap-
proach has a non-negligible completeness error and, similar to the first approach, does not
enjoy the efficiency and simplicity benefits of known multi-query LPCP constructions.

To conclude, all known constructions of 1-query LPCPs over constant-size fields build on the PCP
theorem and suffer from the associated costs. Moreover, even over large fields, the only known
1-query LPCPs for circuit satisfiability that avoids the PCP theorem incur a quadratic overhead.

1.1 Our Contributions

Motivated by the above limitations of known 1-query LPCPs, we initiate a more systematic study of
this simple kind of proof system. In fact, we take simplicity one step further by considering a fully-
linear variant in which the verifier does not have direct access to the input statement x; instead,
the inner-product query is applied jointly to (x∥π), the string obtained by concatenating the input
x and the proof vector π. This full linearity requirement, first explicitly considered in [BBCGI19],
is motivated by cryptographic applications and will be satisfied by our constructions at no extra
cost; see Section 1.2 for additional discussion. We refer to such a 1-query fully linear PCP as a
dot-product proof (DPP),3 which we formalize below.
2There is in fact a duality relation between these two problems. In both cases, the goal is to find the minimal
Hamming weight w of a vector in a given affine subspace of Fn. While in the former case the value of the solution
is w, in the latter MAXLIN case it is n− w.

3We used “dot product” instead of “inner product” to avoid an acronym collision with “Interactive Proofs of Proximity”
(IPP) [RVW13].

2

Definition 1.1 (Dot-Product Proof). A dot-product proof (DPP), parameterized by a field F,
input length n, and proof length m, consists of a probabilistic algorithm V that outputs a query
vector q ∈ Fn+m and an accepting set A ⊆ F. We say that Π is a DPP for L ⊆ Fn if the following
properties hold:

• (Completeness:) for every x ∈ L there exists a proof vector π ∈ Fm such that

Pr
(q,A)←V

[
⟨q, (x∥π)⟩ ∈ A

]
≥ c,

where c ∈ [0, 1] is called the completeness parameter. By default we assume perfect complete-
ness, that is, c = 1.

• (Soundness:) for every x /∈ L and all π∗ ∈ Fm,

Pr
(q,A)←V

[
⟨q, (x∥π∗)⟩ ∈ A

]
≤ s,

where s ∈ [0, 1] is called the soundness error.

Note that the above definition does not refer at all to the computational complexity of the
prover, who generates the proof π from the input x, or the verifier who generates q and A. Indeed,
unlike classical PCPs (and similar to PCPs of proximity [DR06, BGHSV06]), the notion of DPP is
meaningful even when all of the algorithms involved are computationally unbounded. In fact, DPPs
are nontrivial even for languages with inputs of length 2 over a constant-size field!

Our DPP constructions will all be computationally efficient in the sense that the running time
of both the prover and the verifier is polynomial in the proof length. This includes an implicit
representation of the accepting set A when the field size is super-polynomial. Moreover, the existence
of efficient DPPs for all languages L ∈ P generically implies efficient DPPs for all L ∈ NP, where
the proof π is generated by a polynomial-time prover given the input x and a witness w, and the
query q is generated by a polynomial-time verifier. Indeed, given the witness w, the proof π can
include w along with a DPP π′ for a corresponding (polynomial-time verifiable) NP-relation.

We also consider promise DPPs where soundness only holds for instances x taken from a promise
subset L ⊆ P ⊆ Fn (whereas there is no promise on the proof π∗ ∈ Fm). When P is efficiently
testable, such DPPs still imply 1-query LPCPs (forgoing full linearity, the verifier is given the input
x and can check the promise). Throughout the introduction, when referring to a promise DPP we
focus on the Boolean case P = {0, 1}n.

We now give a detailed account of our results.

1.1.1 DPP Constructions

Our main contribution is the construction of two kinds of DPPs for Boolean circuits of size S: DPPs
over small (constant-size) fields F, achieving constant soundness error that scales optimally with
the field size, and promise DPPs over large fields F, of size |F| ≫ S. The latter are suitable for
cryptographic applications that require super-polynomial field size or negligible soundness. Both
kinds of DPP constructions avoid the use of the PCP theorem, and their proof length (in field
elements) is O(S). Recall that prior to our work, even when relaxing (promise) DPP to a 1-query
LPCP, this asymptotic proof length could not be achieved. Moreover, all known constructions over
constant-size fields (regardless of proof length) relied on the full power of the PCP theorem.

3

A motivating example. It is instructive to give a sense of why the PCP theorem is useful for
constructing DPPs over small fields. Consider the following simple construction of a 1-query LPCP
over F3 based on a gap version of the 3-coloring problem: decide whether (1) G is 3-colorable; or
(2) every purported 3-coloring of G violates at least a δ-fraction of the edges. The NP-hardness of
this problem (for some δ > 0) follows from the PCP theorem [Pet94]. Given a 3-colorable graph G,
a 1-query LPCP can proceed as follows. The proof vector π consists of the vector of colors. The
query algorithm picks a random edge in the graph, and checks that the difference between the two
colors is not 0. If π contains a valid 3-coloring, the verifier will always accept. On the other hand,
if G is δ-far from 3-colorable, every π will be rejected with ≥ δ probability.

It is not difficult to modify this construction to satisfy the full linearity requirement of DPP.
However, we actually get more than we bargained for: the answer depends only on a constant
number of proof entries. Since any such DPP for an NP-hard problem implies the PCP theorem,
the DPP queries in our (simpler) constructions will need to use dense linear combinations of the
proof entries.

Small-field DPP. For the case of constant-size fields, we prove the following theorem.

Theorem 1.2 (Optimal-Soundness DPP over Small Fields). There exists εq ∈ O(1/
√
q) such that

the following holds. For every finite field F of order q > 2 and Boolean circuit C of size S, there
is a DPP over F for the language

{
x ∈ {0, 1}n | ∃w ∈ {0, 1}m : C(x,w) = 1

}
with proof length

S · poly(q), perfect completeness, soundness error εq, and randomness complexity log(S) + poly(q).

For F2, where perfect completeness is impossible (see Appendix A), we get a constant gap
between completeness and soundness. Theorem 1.2 implies that, in contrast to the best known
PCPs, there exist strictly linear-length DPPs over constant-size fields. In particular, we improve
the proof length of the 3-coloring based DPP construction described above (instantiated with the
best known PCPs) by a polylog(S) factor.

We further prove that there are languages for which any DPP must have soundness error
Ω(1/

√
q), thus establishing the optimality of the soundness we achieve.

If we settle for constant soundness error ε < 1, independent of the field size, then the analysis of
the construction becomes simpler and has the additional feature of using a constant-size accepting
set A. This variant of the construction will be used for the application to hardness of approximation
discussed below.

The proof of Theorem 1.2 does rely on highly nontrivial constructions of asymptotically-good
families of algebraic-geometric (AG) codes. However, it only uses standard properties of AG codes
in a black-box way. If we allow proofs of length poly(S), we can replace AG codes by a simple
“tensoring” approach. This yields a simple self-contained proof for the feasibility of DPPs over
constant-size fields, which prior to our work could only be derived from the full PCP theorem.

Large-field DPP. The above construction is only attractive for small fields, since the proof length
grows polynomially with |F|, and it cannot be efficiently applied to obtain negligible soundness error
ε. For the case of large fields F where |F| ≥ poly(S/ε), we obtain a promise DPP (and in particular
a 1-query LPCP) with soundness error ε and proof length O(S) (in field elements). Unlike the
PCP-based 1-query LPCP from [BCIOP22], this DPP can achieve the strong notion of soundness
needed for reusing the query.

Theorem 1.3 (DPP over Large Fields). Let C : {0, 1}n → {0, 1} be a Boolean circuit with S fan-
in-2 NAND gates, and let ε be a soundness parameter. Let p > (4S+n)18

32ε15
be a prime. Then, the

4

language
{
x ∈ {0, 1}n | ∃w ∈ {0, 1}m : C(x,w) = 1

}
has a promise DPP of length 2S over Fp with

soundness error ε.

Theorem 1.3 is obtained by designing a new general compiler from fully linear PCP to DPP,
and applying it to a 2-query fully linear PCP implicit in [DFGK14] (for which we present a self-
contained derivation in Appendix B). We believe that the analysis of our compiler is quite far from
being tight, and leave open the question of improving the bound on p given by Theorem 1.3.

The above promise DPP, and in fact the corresponding 1-query LPCP, are sufficient for our
applications. The theorem also extends to plain (non-promise) DPP at the cost of increasing the
proof length from O(S) to O(S + n2) and worse polynomial dependence of the field size p on S/ε.

We apply the above DPP constructions toward two kinds of applications.

1.1.2 Application to Hardness of Approximation

In Section 6, we apply our results for DPP over small fields towards obtaining a simple proof for
the NP-hardness of approximating MAXLIN up to some constant factor.

Theorem 1.4 (Hardness of Approximating MAXLIN). There is a universal constant c > 1
such that for every field F the following holds. Assuming the exponential time hypothesis (ETH)
(Hypothesis 3.6), there does not exist any 2o(n)-time algorithm that can approximate MAXLIN(F),
with n variables and O(n) equations, to a factor better than c.

Here, MAXLIN(F) refers to the constraint satisfaction problem (CSP) where the input is a
set of linear equations over the field F and the goal is to find an assignment to the variables that
satisfies the largest number of equations. MAX-kLIN is the variant of this problem in which each
linear equation involves at most k variables.

The inapproximability factor c we obtain is not the best one could hope for, unlike the optimal
inapproximability results of H̊astad [H̊as01] for MAX-kLIN for any k ≥ 3. In contrast, the
2o(n) time bound in Theorem 1.4 is optimal. Indeed, similar to SAT, there is a trivial 2O(n)-time
algorithm for (exactly) solving MAXLIN instances with n variables and O(n) equations using
Gaussian elimination. A similar exponential hardness result for MAX-kLIN would imply a gap
version of ETH, whose reduction to standard ETH is a well-known open problem.

Theorem 1.4 is a simple corollary of the constant-soundness variant of Theorem 1.2 (see The-
orem 4.3) in which the accepting set is of size 2. Indeed, by guessing one of the two answers at
random we get an accepting set of size 1 at the cost of reducing the completeness-soundness gap by
a factor of 2.

On dense vs. local CSPs. Theorem 1.4 differs from typical hardness results for CSPs in that it
involves dense (non-local) constraints. In contrast, most related results refer to CSPs in which each
constraint is local (e.g., MAX-kLIN or MAX-kCNFSAT for constant k). While there are CSPs,
such as MAXCircuitSAT (see, e.g., [App17]) or MAXQUAD (see [Gol08, Ex. 10.6]) for which
inapproximability results for dense instances are trivial, there are natural classes of dense CSPs, such
as MAXLIN or MAXCNFSAT, for which the corresponding questions still seem challenging. In
particular, to the best of our knowledge, all existing inapproximability proofs for MAXLIN involve
the use of the PCP Theorem [HKLT19]. It is conceivable that the inapproximability of these dense
CSPs is indeed easier to prove than the PCP Theorem, and our proof of Theorem 1.4 adds credence
to this fact in the case of MAXLIN. Whether the same holds for MAXCNFSAT is left open.

5

On exponential-time inapproximability. Theorem 1.4 gives a rare example for a non-trivial
fully exponential time hardness result for a natural approximation problem obtained under (stan-
dard) ETH.4 Previous exponential hardness results from the literature required an assumption at
least as strong as gap-ETH. This is due to the use of the PCP theorem which incurs at least a
multiplicative logarithmic overhead (c.f., discussion in [Din16, Sec. 1, Page 4]). Previous reductions
used the stronger gap-ETH instead to obtain exponential time hardness. We get around this loga-
rithmic multiplicative overhead by constructing a simpler PCP (more precisely, a DPP or 1-query
linear PCP) which avoids the use of the PCP theorem. As noted above, obtaining a similar result
for the local variant MAX-kLIN would have proved that “ETH implies gap-ETH,” thus settling a
longstanding open problem.

1.1.3 Application to Succinct Arguments

In Section 7, we show how to leverage DPPs to obtain arguments for NP (i.e., computationally sound
proof systems) with a very low communication complexity. First, we observe that using a previous
compiler of Bitansky, Chiesa, Ishai, Ostrovsky and Paneth [BCIOP22], we can combine a DPP
for the language of Boolean circuit satisfiability with a so-called “linear-only” encryption scheme to
obtain a designated-verifier succinct non-interactive argument (SNARG) for NP in the preprocessing
model. Notably, the length of the proof in this construction consists of a single ciphertext of the
underlying linear-only encryption scheme. Previous approaches capable of offering the same level
of succinctness (single-ciphertext proofs) were either non-reusable [BCIOP22] (i.e., the scheme is
insecure if the prover is able to query the verification oracle) or needed a common reference string
(CRS) whose size scales quadratically with the size of the circuit being verified [BIOW20]. By
instantiating the [BCIOP22] compiler with a DPP for Boolean circuit satisfiability with linear-
size proofs and reusable soundness with a linear-only encryption scheme, we obtain a designated-
verifier preprocessing SNARG with reusable soundness and linear-size CRS. In addition, since our
construction does not rely on classical PCPs (unlike [BCIOP22]), it also leads to concretely-efficient
instantiations.

Laconic arguments with shorter proofs. We then show how to further reduce the communi-
cation cost as well as the verification cost by relying on interaction. Specifically, we construct an
interactive laconic argument in the preprocessing model. In this model, the verifier starts by sending
a long, but statement-independent, message. Then, in the statement-dependent online phase, we
require that the total communication be small. Our approach is to encode a DPP “in the exponent”
of a pairing-free group (similar to [BIOW20]). If we instantiate using a DPP with linear-size proofs,
then we obtain a laconic argument for Boolean circuit satisfiability with the following properties:

• The verifier’s initial (statement-independent) message consists of O(|C|) group elements,
where |C| is the size of the Boolean circuit being checked. The same message can be reused
for simultaneously proving a batch of NP statements of the form: there exist wi such that
C(xi, wi) = 1.

• In the online phase, the prover-to-verifier communication is essentially two group elements
(more precisely, it is a group element and a field element) per proof. The verifier-to-prover

4Recently and independent of our work, Guruswami et al. [GLRSW24] proved the parameterized inapproximability
hypothesis (PIH), the PCP hypothesis for parameterized complexity, under ETH.

6

communication consists of a short key for a symmetric encryption scheme. Only one key is
needed for all proof instances in the batch setting.

• The verification procedure consists of a single group exponentiation together with the DPP
verification procedure.

• The soundness holds unconditionally in the generic group model [Nec94, Sho97].

To our knowledge, previous laconic arguments offering a similar (or better) level of succinctness ei-
ther rely on heavy tools such as indistinguishability obfuscation [SW21, JJ22, WW24a, WZ24,
MPV24] or witness encryption [BISW18, MPV24], or require a quadratic-size CRS [BIOW20].
Like the construction from [BIOW20] with a quadratic-size CRS, our DPP-based construction is
concretely-efficient. For instance, over a standard 256-bit group, we can support statements with
around 210 gates and providing a few bits of soundness (which is suitable in settings where there
are high out-of-band costs associated with cheating). The low communication (640 bits, or 512
bits per proof in a batch setting) and the fast verification (essentially a single exponentiation) make
this scheme appealing for applications that demand ultra-fast or ultra-low-energy verification. Com-
pared to [BIOW20] (which was also limited to a small number of bits of soundness), our construction
reduces the CRS size from quadratic in the circuit size to linear. For even circuits of modest size
with a thousand gates, this already represents a significant reduction in CRS size.

On concrete efficiency. Our current analysis can only yield concrete efficiency advantages for
small circuits and with a high soundness error. However, we believe that this analysis is far from
being tight. In particular, we conjecture that the linear dependence on S (i.e., the circuit size) in
our current soundness bound (see Eq. (7.1)) can be improved to scale with

√
S. This was shown

in the simpler case of the Hadamard-based LPCP using a random walk argument [BIOW20], and
while it seems to heuristically hold also in our setting, the formal analysis is much more challenging.
The potential usefulness of DPPs to practical efficient arguments motivates a tighter analysis of our
large-field DPP construction. More ambitiously, it further motivates the question of closing the big
polynomial gap between the soundness error we achieve and the optimal O(1/

√
|F|) soundness that

we can achieve over small fields. This might call for an entirely different approach than the one we
take here.

Succinct commit-and-prove arguments. The structure of a DPP (and more generally, any
fully-linear PCP) also lends itself naturally to give succinct commit-and-prove arguments [Kil92,
CLOS02, EG14, CFHK+15]. Here, a prover can commit to an input x ∈ {0, 1}ℓ with a short digest
σ and later on, provide succinct openings π1, . . . , πℓ to different functions f1, . . . , fℓ of the committed
input (i.e., that fi(x) = yi for each i ∈ [ℓ]). Both the size of the commitment σ and the size of the
proof πi should be sublinear in both the input length |x| and the size of the Boolean (or arithmetic)
circuit computing f .

We show that by applying a simple adaptation of the [BCIOP22] compiler to a DPP, we obtain
a succinct commit-and-prove argument system where the size of the commitment and the size
of the opening consist of a single ciphertext for a linear-only encryption scheme. The approach
exploits the fully-linear property of the DPP: namely, DPP verification corresponds to checking
that ⟨q,x∥π⟩ ∈ A for some accepting set A, where q is the DPP query, x is the statement, and π
is the proof. By linearity, we can write this as

⟨q,x∥π⟩ = ⟨qx,x⟩+ ⟨qπ∥π⟩ ,

7

where q = qx∥qπ. To obtain a commit-and-prove argument, we follow the [BCIOP22] approach
of encrypting the components of the query vector q using a linear-only encryption scheme. The
commitment to an input x is a ciphertext encrypting ⟨qx,x⟩, and an opening to y = f(x) is the
ciphertext encrypting ⟨qπ,π⟩, where π is a DPP proof that y = f(x). Both of these are linear
functions of the components of the encrypted query vector. To verify the proof, the verifier decrypts
the commitment and the opening to learn z = ⟨qx,x⟩ + ⟨qπ∥π⟩ and then checks if z ∈ A. By a
similar approach as that used to obtain our laconic argument, we can also obtain an interactive
commit-and-prove argument where the size of the commitment and the size of the opening each
consists of just a single group element.

1.2 Related Works

Interactive oracle proofs. Another relaxation of the classical PCP model, orthogonal to the linear
variant considered in this work, is an interactive oracle proof (IOP) [KR08, BCS16, RRR21]. An
IOP is an interactive form of a PCP that allows for multiple rounds of interaction between the prover
and the verifier. The IOP model enables simpler and more efficient constructions, which enable even
shorter proof length than those known for DPP; see [NR22] and references therein. In the context of
cryptographic applications, IOPs can be compiled into succinct arguments without the use of public-
key cryptography; on the downside, the communication complexity of the resulting arguments is
significantly higher than in LPCP-based constructions because of the higher query complexity.
Arnon, Chiesa, and Yogev [ACY22] recently used IOPs to prove hardness of approximation results
for stochastic constraint satisfaction problems.

Fully linear proof systems. Fully linear PCPs were formally introduced by Boneh, Boyle,
Corrigan-Gibbs, Gilboa, and Ishai [BBCGI19]. As described previously, in a fully linear PCP,
the verifier only has linear access to both the statement and the proof (whereas in a linear PCP,
the verifier has full access to the statement itself). The fully linear property is useful for con-
structing succinct (and possibly, zero-knowledge) arguments on statements that are secret shared
across multiple parties or when the statement is encoded using a linearly-homomorphic encryption
or commitment scheme. This has been a useful building block in a number of privacy-preserving
systems that rely on proofs on distributed data [CB17, ECZB21, BBCGI21]. Fully linear PCPs
are also useful for constructing succinct “commit-and-prove” style arguments, where the query part
corresponding to the input is used for committing; see Section 7.3. While the communication cost
of the former application is typically dominated by the proof length of the fully linear PCP, the cost
of the commit-and-prove arguments is dominated by the number of queries, which we minimize in
this work.

Constant-rate PCPs. Settling for a super-constant (but sublinear) number of queries, Ben-
Sasson, Kaplan, Kopparty, Meir, and Stichtenoth [BKKMS16] construct a PCP of length O(S) for
proving the satisfiability of a Boolean circuit of size S. Concretely, with Sγ queries the proof length
is 2O(1/γ) · S. This construction is not fully uniform, and it is not known to imply exponential-time
hardness of approximation results for natural optimization problems. Similarly to our small-field
DPP construction, the PCP construction from [BKKMS16] also relies on AG codes. However, it
relies on additional structural properties of (certain) families of AG codes beyond the standard
properties on which we rely.

On DPP vs. 1-query linear PCP. Recall that a DPP (or 1-query fully linear PCP) is stronger
than a 1-query linear PCP in that the verifier’s decision depends on a single linear query that applies

8

jointly to the input and the proof. This has two advantages. First, as discussed above, it is useful
for supporting cryptographic applications, such as proofs on distributed data or succinct commit-
and-prove arguments. Second, it makes the DPP notion meaningful even for finite languages and
even if P = NP. Our results show that this has an inherent price: the soundness error of DPP over F
must be Ω(1/

√
|F|), whereas in a 1-query LPCP based on optimal hardness of MAXLIN [H̊as01],5

the soundness can be O(1/|F|). On the other hand, the latter 1-query LPCP construction has
several disadvantages compared to our DPP construction: (1) it has a non-negligible completeness
error, (2) since it relies on the PCP theorem, it cannot achieve linear proof size nor good concrete
efficiency, and (3) it cannot offer the strong notion of soundness required for reusing the queries
in the context of succinct non-interactive arguments. An alternative PCP-based 1-query LPCP
construction from [BCIOP22] (which can be turned into a DPP) avoids disadvantage (1), but still
has disadvantages (2), (3), and moreover has worse soundness than our DPP construction. Finally,
a 1-query LPCP from [BIOW20] (which again can be turned into a DPP) requires the field size to
be bigger than the circuit size and the CRS size to grow quadratically with the circuit size.

2 Technical Overview

In this section we give a more detailed overview of our results and the underlying techniques.

2.1 DPPs over Small Fields

We start by describing our constant-rate DPP over small fields. There are two variants of the
construction. One works over arbitrarily small fields6 and achieves a constant soundness error
s < 1, independent of the field size. The other considers the soundness error as a function of the
field size and gets soundness error O(1/

√
|F|), which we also show is optimal for any DPP.

The high-level approach for both constructions takes three main steps:

1. Outer FLPCP. We construct a 3-query “constant-rate” fully-linear PCP (FLPCP) over small
fields with accepting set A ⊆ F3 for our target langage L.7 Recall that an FLPCP [BBCGI19]
is a generalization of a DPP where the verifier is allowed more than a single linear query.

2. Inner DPP. We construct a direct DPP “gadget” for membership of a given input x ∈ F3 in
any set A. In fact, this gadget can be applied directly to any language, but with proof size
that scales with the cardinality of the language.

3. Composition. We show how to compose any FLPCP for language L in which the accepting
set is A, with a DPP for checking membership in A. The result is the desired DPP for L.

We elaborate on each of these steps next.

A constant-rate FLPCP over small fields. As noted above, the starting point for our construc-
tion is an FLPCP for the target language L, which we consider by default to be circuit satisfiability.
5The constructions based on [H̊as01] has the additional disadvantage of requiring the query to depend on the in-
put, which limits its usefulness for cryptographic applications. However, a similar 1-query LPCP with an input-
independent query can be constructed using recent results on universal factor graphs [FJ12, ABH21].

6Including F2, though in this case perfect completeness cannot be achieved and one must settle for a constant
completeness-soundness gap (see Appendix A).

7In the conference version of this paper [BHIRW24], we relied on the fact that A ⊆ F3 is simple. Here we replace this
by a more generic approach.

9

There are existing constructions of FLPCPs that have constant rate in the sense of having lin-
ear proof length in the witness size [GGPR13, DFGK14], but these require the field size to grow
(at least) linearly with the circuit size. Our approach follows their basic template but allows for
replacing the underlying Reed-Solomon code with algebraic-geometric (AG) codes.

Actually, we give a simple general framework for constructing FLPCPs using any multiplication
code, of which the Reed-Solomon code and AG codes are special cases. Loosely speaking, a multi-
plication code is a linear code E for which the pointwise product of any two codewords lies in some
related linear code E⋆. The canonical example for such a code is the Reed-Solomon code (as the
product of low degree polynomials is also a low degree polynomial), but AG codes also have this
remarkably useful feature, over small (constant-size) fields.

Thus, we give a generic construction of a 3-query FLPCP from any multiplication code. This
construction can be viewed as an abstraction of an FLPCP construction from [BBCGI19], which in
turn simplifies a construction based on quadratic span programs implicit in [GGPR13]. In this con-
struction, the verifier’s decision algorithm is a quadratic polynomial in the 3 answers, which suffices
for hardness of approximating the maximal number of satisfiable quadratic equations. Obtaining
a similar result for linear equations, namely for the standard MAXLIN problem, will rely on the
DPP construction we describe next.

Composing an FLPCP with a DPP. At this point we have a 3-query FLPCP and our goal is to
reduce the number of queries to 1.

Inspired by PCP constructions [AS98, BGHSV06], our approach is based on composition. In a
nutshell, rather than having our verifier actually perform the 3 queries, we would like the prover to
append an auxiliary proof, proving that had the verifier made these queries it would accept.

In more detail, for any random string ρ of the original FLPCP verifier, which we refer to
as the outer verifier, consider the corresponding query matrix Qρ ∈ F3×(n+m) (where the rows
correspond to the query vectors of the verifier) and accepting set Aρ ⊆ F3. Then, given an instance
x and FLPCP proof π for the outer system, for every string ρ we append a DPP proof πρ that
Qρ · (x∥π) ∈ Aρ. Now in order to verify that x ∈ L we simply need to select ρ at random and
run the “inner” DPP verifier on input Qρ · (x∥π) using the proof πρ. The crucial observation is
that linear access to Qρ · (x∥π) can be emulated by linear access to (x∥π), since the composition
of linear functions is itself a linear function.

Thus, to construct a DPP for circuit satifiability over large inputs, it suffices to devise a DPP
gadget for the specific accepting set arising from the 3-query FLPCP construction above.

The inner DPP gadget. The accepting set in the FLPCP described above turns out to be a
simple one. Specifically, it is A = {(α, β, γ) ∈ F3 : γ = α · β}.

In order to get a DPP with imperfect completeness, even over F2, we can guess a particular
input a ∈ A and check that ⟨r, (α, β, γ)− a⟩ = 0. This trivial DPP already achieves some positive
gap between the completeness and soundness errors.

Still, we would like a DPP for A with perfect completeness, and where the soundness error
vanishes with the field size. Our main approach for achieving this is via a “brute-force” DPP
construction that can be applied to every language A ⊆ Fn with asymptotically optimal soundness.
The “only” drawback of this DPP is that the proof size scales linearly with |A| (in particular,
exponentially with n). However, this is good enough for the crude asymptotic goals of our small-
field construction, which allow a poly(|F|) multiplicative overhead in the proof size. We also present
an alternative route that reduces this overhead by designing a better inner DPP that exploits the
simple algebraic structure of A.

10

We construct the brute-force inner DPP in two steps:

1. We start with a direct construction of a DPP for a seemingly unrelated problem—checking
whether a given input is a unit vector (i.e., zero in all but one coordinate which is a 1). The
DPP for this “unit-vector” language UV does not use a proof and is very natural: sample a
random set Λ ⊆ F of size t and a query vector λ ∈ Λn, and accept if ⟨λ,x⟩ ∈ Λ. Completeness
is immediate: if x = ei ∈ UV (where ei denotes the ith standard basis vector), then ⟨λ,x⟩ =
λi ∈ Λ. Soundness is somewhat more tricky, where the key step is showing for any non-
unit vector x, it holds that ⟨λ,x⟩ ∈ Λ with at most O

(
t
|F|−t +

1
t

)
probability. Choosing

t = O(
√
|F|) we get the desired soundness error O(1/

√
|F|). We also show that the soundness

error obtained for this problem is optimal, up to constant factors. The rough idea is that for
each possible query vector and accepting set of size t, a random input and proof are accepted
with Ω(t/|F|) probability, and a suitable linear combination of two random unit vectors and
their associated proofs is accepted with Ω(1/t) probability.

2. Using the DPP for UV, we construct a DPP for an arbitrary A ⊆ Fn. For simplicity, we
assume here that the vectors x ∈ A span the vector space Fn, which is indeed the case for the
specific A ⊆ F3 induced by our outer FLPCP. The general case is only slightly more involved.
Let M be the matrix whose rows are the vectors xT ∈ A. Consider first the case where M
is a square matrix (and thus, invertible). Then, x ∈ A if and only if xTM−1 ∈ UV, which
implies a proofless reduction to UV. In the more general case where the vectors x ∈ A spans
Fn and |A| = m > n, the DPP requires a proof. The (honest) proofs are formed by adding
m − n columns to M that make the resulting matrix M̂ invertible. Parsing each row of M̂
as (xT∥πT), the proof for input x is π. On an implicit input (xT∥(π∗)T), the DPP verifier
checks that (xT∥(π∗)T)M̂−1 is in UV using the DPP for UV. Indeed, x ∈ A if and only if
there is π such that (xT | πT) is a row of M̂ (namely, (xT∥πT) = eT

i M̂ for some unit vector
ei ∈ UV).

We summarize the ingredients of our small-field DPP construction in Fig. 1.

Corollaries 4.9 and 4.10:
Outer 3-query FLPCP

Lemma 4.24:
Inner DPP

Lemma 4.12:
DPP Composition

Theorems 4.3 and 4.4:
DPP over Small Fields

Figure 1: Roadmap to DPPs over small fields.

11

2.2 DPPs over Large Fields

In this section, we describe our DPPs over large fields. For this purpose, we provide transformations
that transform any FLPCP to a promise DPP. Then plugging-in efficient LPCPs from the literature,
which we adapt to the fully linear setting, we obtain our DPPs.

Our overall approach builds upon and extends previous transformations from [BCIOP22, BIOW20]:

1. Construct a bounded FLPCP. First, we construct an FLPCP where the magnitude of the
answers is substantially smaller than the field size.

2. Packing FLPCP queries into a single query. Then, we randomly encode the bounded
FLPCP queries into a single query.

In [BCIOP22], a classical (Boolean) PCP is used as the underlying bounded LPCP and packing
of queries Q ∈ Fk×m

p is done by evaluating the linear function EQ(w) = wTQ at a random point
w ∈ Zk from some appropriate rectangle. In [BIOW20], a bounded variant of the Hadamard FLPCP
is given, and packing is done similarly, but using a certain multilinear polynomial EQ(w) and a
random point w over an appropriate rectangle. Compared to the [BCIOP22] transformation, the
[BIOW20] transformation has certain concrete efficiency benefits and satisfies a notion known as
strong soundness. However, it suffers from a quadratic loss in proof length, stemming from the
reliance on the Hadamard FLPCP. The special feature of the Hadamard FLPCP on which the
packing approach of [BIOW20] crucially relies is that the queries are generated by a quadratic
polynomial in the randomness. In contrast, in known linear-sized FLPCPs, this query-generation
degree is linear in the circuit size.

From FLPCP to bounded FLPCP, generically. We prove that any FLPCP over Fp can be
embedded in a larger field Fp′ to yield a bounded FLPCP by adding a single random test query
from Fγ , where γ ≈ p2 is chosen to optimize the soundness error.

While this embedding transformation is simple, proving soundness is challenging. The challenge
stems from the fact that a malicious proof π∗ may have “unbounded” entries over Fp′ rather than
Fp entries. We prove that there are essentially two options for such a malicious proof:

• π∗ is close to a proof over Fp up to relatively small p′ fractions. That is π∗i = dp′+e
r , where

r ∈ Fγ and e is relatively small. In this case, we show that an answer either exceeds the
specified bound or behaves as an answer corresponding to some fixed proof π over Fp, where
the soundness of the underlying FLPCP kicks in.

• It can be far from any proof over Fp (more generally, far from fractions as above), in which
case we prove that it will be caught by the added random bound test with high probability.

Fulfilling this high-level approach turns out to require a non-trivial analysis and characterization of
closeness to p′-fractions. We believe that our analysis is not tight, and improving it would directly
yield an improvement in the DPP’s concrete efficiency.

We note that the above description implicitly assumes that unlike the proof π∗ ∈ Fm
p′ , the input

x is promised to be in Fn
p , where the original language resides. Hence, we only get a promise

DPP. By increasing the proof by an additive factor of n2 and adding two queries, we can turn the
corresponding bounded FLPCP to a plain (non-promise) one. This is done using a tensor test akin
to the one in the Hadamard FLPCP [BIOW20].

For more details on the above embedding transformation, see Section 5.1.

12

Generalized packing. We also generalize the packing transformation of [BCIOP22], from the
Boolean setting to the general bounded setting. A transformation for the general bounded setting
is also presented [BIOW20], but our transformation generally yields better parameters. We refer
the reader to Section 5.2 for details.

3 Preliminaries

Throughout this section we use bold uppercase letters to denote matrices (e.g., M , Q) and bold
lowercase letters to denote vectors (e.g., x, w). For vectors x,y, we write (x∥y) to denote the
vector obtained from their concatenation.

3.1 Fully Linear PCP

Definition 3.1 (Fully Linear PCP). A fully linear PCP (FLPCP), parameterized by a field F, input
length n, query complexity q and proof length m, consists of a probabilistic algorithm V that outputs
a query matrix Q ∈ Fq×(n+m) and a set A ⊆ Fq. We say that Π is an FLPCP for L ⊆ Fn if the
following properties hold:

• (Completeness:) for every x ∈ L there exists π ∈ Fm:

Pr
(Q,A)←V

[
Q · (x∥π) ∈ A

]
≥ c,

where c ∈ [0, 1] is called the completeness parameter.

• (Soundness:) for every x /∈ L and all π∗ ∈ Fm

Pr
(Q,A)←V

[
Q · (x∥π∗) ∈ A

]
≤ s,

where s ∈ [0, 1] is called the soundness error.

Thus, a DPP corresponds to a single-query (i.e., q = 1) FLPCP. As usual, by default we assume
perfect completeness (i.e., c = 1). We define the randomness complexity of an FLPCP as the (base
2) logarithm of the support size of the verifier’s randomness.

From deterministic to non-deterministic. As already observed in [BBCGI19], for FLPCPs
(and in particular DPPs), constructions for deterministic languages automatically yield a corre-
sponding construction for their non-deterministic counterpart.

Proposition 3.2 (FLPCP for Non-Deterministic Languages). Let L ⊆ Fn×Fm be a pair language
(i.e., a language consisting of pairs (x,w) ∈ Fn+m. Suppose L has an FLPCP with query complexity
q = q(n,m), proof length m′ = m′(n,m) soundness error δ = δ(n,m) and randomness complexity
r = r(n,m). Then, the language L′ = {x ∈ Fn | ∃w ∈ Fm : (x,w) ∈ L} has a FLPCP with query
complexity q, proof length m+m′, soundness error δ and randomness complexity r.

Proof. Given an input x ∈ L′, let w be such that (x,w) ∈ L and let π be the FLPCP proof. The
FLPCP proof that x ∈ L′ is simply (w∥π) and the proof is verified by running the underlying
FLPCP verifier using (x∥w) as the input and π as the proof. Completeness and soundness follow
immediately from the completeness and soundness of the underlying FLPCP.

13

Composition with linear transformation. The following simple proposition shows how to
transform an FLPCP for a given language to any linear transformation of that language.

Proposition 3.3 (FLPCP Composition with Linear Transformations). Let F be a field, n′ = n′(n),
and M ∈ Fn′×n be a matrix. Suppose the language L ⊆ Fn′ has an FLPCP with query complexity
d = d(n′), proof length m = m(n′), soundness error δ = δ(n′), and randomness complexity r = r(n′).
Then, the language {x ∈ Fn : M · x ∈ L} has an FLPCP with query complexity d(n′), proof length
m(n′), soundness error δ(n′), and randomness complexity r(n′).

Proof. Let x ∈ Fn be an input. We construct a proof showing that y = Mx ∈ L, where M ∈ Fn′×n

is the designated matrix. The FLPCP proof π is the FLPCP proof that y ∈ L. To verify the proof,
the verifier generates the query Q = (Qinp,Qprf) ∈ Fd×n′ × Fd×m and corresponding accepting set
A ⊆ Fd. Given access to x and π, it now accepts if:(

QinpM∥Qprf

)
(x∥π) ∈ A,

which is indeed a linear query to x∥π. Completeness and soundness follow from the fact that(
QinpM∥Qprf

)
(x∥π) = QinpMx+Qprfπ

= Qinpy +Qprfπ

= (Qinp∥Qprf)(y∥π).

3.2 Codes

An error-correcting code, over an alphabet Σ is an injective mapping C : Σk → Σn. The rate of
the code is defined as k/n and the minimal distance is defined as the minimal relative Hamming
distance of any two distinct codewords. The parameter n, viewed as a function of k, is called the
block length.

We say that a code E : Fk → Fn, where the alphabet F is a finite field, is linear if E is a linear
map over F. We say that E is systematic if for every m ∈ Fk, the first k entries of E(m) are equal
to m.

Uniform code families. Let n = n(k) ∈ N and let F = (Fk)k∈N be an ensemble of finite fields.
We will sometimes consider code families

(
Ek : (Fk)

k → (Fk)
n(k)
)
k∈N. We say that a code family

has rate r = r(k) (resp., minimal distance δ = δ(k)) if Ek has rate ≥ r(k) (resp., minimal distance
≥ δ(k)), for every k ∈ N.

We say that the code family is efficiently computable if there exists a polynomial-time algorithm
that given m ∈ (Fk)

k outputs Ek(m). We say that the code has an efficient implicit encoder if there
exists a polynomial-time algorithm that given m ∈ (Fk)

k and an index i ∈ [n], outputs the ith entry
of Ek(m)

Finite field representation and operations. For every finite field F, the elements of F have a
canonical representation of size O(log(|F|) and there are polylog(|F|) size Boolean circuits that com-
pute the field operations (addition, subtraction, multiplication, inversion, generating the additive
and multiplicative identity elements and sampling of random elements).

14

3.2.1 Multiplication codes

If x,y ∈ Fn are vectors, we use x ⋆ y to denote their pointwise product. Namely, the vector z ∈ Fn

such that zi = xi · yi, for every i ∈ [n].

Definition 3.4 (Multiplication Code). Let E : Fk → Fn and E⋆ : Fk∗ → Fn be linear codes (with
the same block length). We say that E : Fk → Fn is a multiplication code with respect to the square
code E⋆ if for every x,x′ ∈ E it holds that x⋆x′ ∈ E⋆. In such a case, we say that E⋆ is the square
code (of E).

As the multiplication property only refers to the behaviour of the image of the code, and the
codes are linear, we can assume without loss of generality that they are also systematic (by choosing
the encoding function appropriately).

The canonical example for a multiplication code is the ubiquitous Reed-Solomon code. Here the
codewords correspond to degree k−1 polynomials and their product is a degree 2(k−1) polynomial.
However, the Reed-Solomon code requires a large alphabet. Fortunately, using the machinery of
AG codes, multiplication codes (with constant rate and distance) are known over any field.

The following theorem builds on a construction of asymptotically-efficient algebraic-geometric
codes due to Garcia and Stichtenoth [GS95] and Bassa, Beelen, Garcia, and Stichtenoth [BBGS14],
which applies to infinitely many fields. See [VH97, GS01] and in particular [Ran13, Theorem 17]
for the furthermore part of the following theorem.

Theorem 3.5 (AG Codes). There exists a fixed constant δ⋆ > 0 such for every finite field F of
order q > 9 where q is square, there exists ρq ∈ (0, 1) such that the following holds. There is a
polynomial-time constructible family of linear codes Cn ⊆ Fn such that for all sufficiently large n,
the rate of Cn is least ρq and the relative distance of the square code C⋆

n (spanned by pointwise
products of pairs of codewords from Cn) is at least δ∗.

Furthermore, there is an infinite sequence {ni}i∈N, where ni+1

ni
∈ O(

√
q), and a polynomial-time

constructible family of linear codes {Cni}i∈N ⊆ Fni such that for all i ∈ N, the rate of Cni is at least
ρq ∈ Ω(1/

√
q) and the relative distance of the square code C⋆

ni
is at least δ⋆q ∈ 1−O(1/

√
q).

The limitations on the choice of q and the density of the sequence ni in the “furthermore”
part will be dealt with using concatenation and padding, which are good enough for meeting our
efficiency goals. Similar limitations were also encountered in applications of AG codes to arithmetic
secret sharing [CXY20].

3.3 Exponential Time Hypothesis

The exponential time hypothesis (ETH), first formulated by Impagliazzo and Paturi [IP01], states
that satisfiability of 3CNF Boolean formulas on n variables requires at least 2εn time for some ε > 0.
The sparsification lemma of Impagliazzo, Paturi, and Zane [IPZ01] shows that to prove the ETH,
it suffices to consider 3CNF formula where each variable occurs in at most a constant number of
clauses. More precisely, we have the following form of the ETH.

Hypothesis 3.6 (Exponential Time Hypothesis (ETH) [IP01, IPZ01]). There exist constants C > 1
and ε ∈ (0, 1) such that any algorithm that decides the satisfiability of 3CNF Boolean formulas on
n variables with at most Cn clauses requires at least 2εn time.

15

A related and stronger hypothesis (which we will not use) is the gap-exponential time hypothesis
(gap-ETH), formulated by Dinur [Din16] and Manurangsi and Raghavendra [MR17], which states
that there exist constants C > 1 and ε ∈ (0, 1) such that then no 2εn-time algorithm can distinguish
if a given 3CNF Boolean formulas on n variables with at most Cn clauses is satisfiable or every
assignment violates at least 0.01 fraction of clauses.

3.4 MAXLIN and Its Variants

The DPPs, described in this paper, are closely related to two classical NP-hard approximation
problems MAXLIN [H̊as01, HKLT19] and the nearest codeword problem (NCP) [KPV14]. In
both these problems, the instances are of the form (A, b) where A ∈ Fm×n is an m×n matrix with
entries from a finite field F and b ∈ Fm is a vector. The goal is to find the “best” vector x ∈ Fm that
“satisfies” the set of m linear equations Ax = b. MAXLIN refers to the approximation problem of
finding a vector x ∈ Fn that satisfies as many linear equations as possible, while NCP refers to the
dual approximation problem of finding a vector x ∈ Fn that minimizes the number of linear equa-
tions violated. It will be convenient to work with the related promise problem gapc,s-MAXLIN(F)
for 1/|F| < s < c < 1 defined as follows: the YES instances are the set of (A, b) pairs such that
there exists an x ∈ Fn that satisfies at least cm linear equations while the NO instances are the set
of (A, b) pairs such that every x ∈ Fn satisfies at most sm linear equations.

4 DPPs over Small Fields

In this section we construct general-purpose DPPs for verifying that there exists w such that
C(x,w) = 0. Throughout this section, the field should be thought of as relatively small, since
the proof length grows polynomially with the field size.

It will be convenient for us to work with a specific NP-complete language called R1CS.

Definition 4.1 (R1CS). The R1CSFA,B,C problem, parameterized by a finite field F and matrices
A,B,C ∈ Fk×(n+m), consists of all vectors x ∈ Fn, for which there exists z ∈ Fm such that
(Az′) ⋆ (Bz′) = Cz′, where z′ = (x∥z).8

When the field F is clear from the context, we omit it from the notation.
The language R1CS is closely related to satisfiability for a given arithmetic circuit C. Loosely

speaking, one can consider the witness z as being the values of all the multiplication gates and
the R1CS relation allows one to check that they were computed correctly. For details, see Thaler’s
survey [Tha22, Section 8.4].

As a matter of fact, rather than working directly with R1CS, we can work with a deterministic
version of the latter. Indeed, recall that DPPs for deterministic languages imply DPPs for their
non-deterministic counterparts (see Proposition 3.2). Thus, throughout this section, we work with
the deterministic variant of R1CS. For matrices A,B,C ∈ Fk×n define dR1CSA,B,C =

{
x ∈ Fn :

(Ax) ⋆ (Bx) = Cx
}
. While we phrase our results as DPPs (and FLPCPs) for dR1CS, these

immediately yield corresponding DPPs for R1CS via Proposition 3.2. When translating back to the
language of arithmetic circuits, the parameter k corresponds to the number of multiplication gates
(and is upper bounded by the circuit size).
8Recall that we use a ⋆ b to denote the pointwise product of two vectors a, b ∈ Fk.

16

We proceed to describe the main theorems proved in this section, which are DPPs in different
settings.

Constant-rate DPP over F2. The first construction is a specific construction for the field F2

(i.e., the two element field). This DPP has imperfect completeness, which is inherent over this field
(see Appendix A).

Theorem 4.2 (Constant-Rate DPP over F2). There exists ε > 0 such that for every A,B,C ∈
Fk×n
2 , the language dR1CSA,B,C has a DPP over F2 with O(k) proof length, completeness 5/8,

soundness error 5/8− ε, and randomness complexity log k +O(1).

Constant-rate DPP with small accepting set. The next construction works over any field of
odd characteristic achieving a constant soundness error, and with a linear length proof for constant
size fields. In addition, the accepting set is of size 2, which is optimal for DPPs with perfect
completeness (see Appendix A).

Theorem 4.3 (Constant-Rate DPP with Constant Soundness). There is a constant 2
3 < ε < 1 such

that for every finite field F of odd characteristic and A,B,C ∈ Fk×n, the language dR1CSA,B,C

has a DPP over F with proof length k · poly(|F|), soundness error ε, and randomness complexity
log(k)+poly(|F|). Furthermore, the verifier’s accepting set is A ⊆ {0, 1}. For F2k where k > 1, the
same holds, except that A ⊆ {0, 1, c} for some c ∈ F \ {0, 1}.

Constant-rate DPP with optimal soundness. The next result optimizes the soundness error,
obtaining O(1/

√
|F|) soundness error.

Theorem 4.4 (Optimal-Soundness DPP). There exists ε∗q ∈ O(1/
√
q) such that the following holds.

For every finite field F of order q > 2, all sufficiently large n, and matrices A,B,C ∈ Fk×n, the
language dR1CSA,B,C has a DPP over F with k · poly(q) proof length, soundness error ε∗q and
randomness complexity log(k) + poly(q).

In Section 4.4 we will show that the O(1/
√
q) soundness error obtained by Theorem 4.4 is

optimal (up to a constant factor).

Section outline. We start, in Section 4.1, by giving a construction of a 3-query FLPCP for
dR1CS. Then, in Section 4.2 we show a general composition theorem, allowing us to reduce the
number of queries in an FLPCP to 1 (thereby making it a DPP), by composing it with an inner
DPP gadget. Then, in Section 4.3 we describe constructions of inner gadgets which, in combination
with the prior steps, imply Theorems 4.2 to 4.4. Lastly, in Section 4.4 we show an asymptotically
tight lower bound on the soundness error of DPPs as a function of the field size.

4.1 FLPCP for dR1CS

We start by constructing efficient FLPCPs for dR1CS. The first result is a 4-query FLPCP.

Theorem 4.5 (4-Query FLPCP). Let F be a finite field and A,B,C ∈ Fk×n. Suppose that E : Fk →
Fℓ is a multiplication code with respect to the square code E⋆ : Fk⋆ → Fℓ, where E⋆ has minimal
distance δ⋆. Then, dR1CSA,B,C has an FLPCP over F with 4 queries, proof length k⋆, soundness

17

error 1− δ⋆ and randomness complexity log2(ℓ). Furthermore, the verifier’s accepting set is always
{(a, b, c, d) : a · b = c and d = 0}.

Proof. Let A,B,C ∈ Fk×n and x ∈ dR1CSA,B,C . Let E : Fk → Fℓ be a multiplication code
with respect to the square code E⋆ : Fk⋆ → Fℓ and let δ⋆ denote the distance of E⋆. Recall that
both E and E⋆ are linear and systematic codes. Since E is a multiplication code with respect
to E⋆, it holds that E(Ax) ⋆ E(Bx) ∈ E⋆, and in particular there exists w ∈ Fk⋆ such that
E⋆(w) = E(Ax) ⋆ E(Bx). The FLPCP proof string is simply w.

At a high level, the verification consists of two tests. The first test checks that w was computed
correctly from x. Since E⋆(w) should be equal to E(Ax)⋆E(Bx), and E⋆ is a multiplication code,
we can test this by checking that E⋆(w)i = E(Ax)i ·E(Bx)i, for a random index i ∈ [ℓ]. Once we
know that w was computed correctly, we just need to check that its first k entries, denoted by w1 are
equal to Cx. The latter can be done by taking an inner product with a random vector. However,
this is wasteful in terms of randomness (indeed, that test requires Ω(k · log(|F|)) randomness).
Instead, we check that the encoding of Cx−w1 (padded with a sufficient number of zeros) under
E⋆, is equal to 0 at a random coordinate i. The distance of E⋆ guarantees that if the Cx ̸= w1

then a random coordinate of this codeword is non-zero with high probability. Also, to further save
on randomness, we use the same coordinate i for both tests.

Thus, given linear access to the concatenation of the input x and the alleged proof string w,
the verifier performs the following tests:

1. Sample a random index i ∈ [ℓ] and check that E⋆(w)i = E(Ax)i ·E(Bx)i. The value E⋆(w)i
is computed as a single linear query to w and each of the values E(Ax)i and E(Bx)i are
computed by a linear query to x.

2. E∗(Cx−w1∥0k
⋆−k)i = 0 (recall that w1 denotes the first k entries of w ∈ Fk∗). This consists

of a single linear query to (x∥w).

Completeness. Suppose x ∈ dR1CSA,B,C , that is, (Ax) ⋆ (Bx) = Cx. Let w be the proof
vector as described above.

By construction E⋆(w) = E(Ax) ⋆ E(Bx). Thus, for every i ∈ [ℓ] it holds that E⋆(w)i =
E(Ax)i · E(Bx)i and so the verifier’s first test passes with probability 1.

Since E⋆ is a multiplication code (and systematic), w1 (the k-length prefix of w) is equal to
(Ax) ⋆ (Bx), which in turn is equal to Cx. Thus, we have that w1 = Cx and so the verifier’s
second test always passes.

Soundness. Suppose x /∈ dR1CSA,B,C , that is, (Ax)⋆(Bx) ̸= Cx and fix an alleged proof string
w. We show that the verifier rejects with probability at least δ⋆.

Suppose first that E⋆(w) ̸= E(Ax) ⋆ E(Bx). Since E is a multiplication code with respect to
E⋆, there exists c⋆ ∈ E⋆ such that c⋆ = E(Ax) ⋆E(Bx). Since c⋆ ̸= E⋆(w), by the distance of E⋆,
with probability at least δ⋆ over i ∈ [ℓ], it holds that:

E⋆(w)i ̸= c⋆i =
(
E(Ax) ⋆ E(Bx)

)
i
= E(Ax)i · E(Bx)i,

and so the verifier’s first test rejects with probability at least δ⋆.
Thus, we may assume that E⋆(w) = E(Ax) ⋆ E(Bx). As the codes are systematic, this means

that w1 = (Ax) ⋆ (Bx), where w1 is the k-length prefix of w. Since (Ax) ⋆ (Bx) ̸= Cx, we

18

conclude that w1 ̸= Cx and so, by the distance of E∗, the verifier rejects in its second test with
probability δ⋆.

The FLPCP of Theorem 4.5 has 4 queries. This is good enough for our main small-field DPP
theorem, since the inner DPP we present next can efficiently accommodate any language with
constant input length. However, for other applications it will be useful to eliminate one of the
queries. This can be done at a very mild cost in soundness error and randomness complexity as
follows.

Theorem 4.6 (3-Query FLPCP). Let F be a finite field and A,B,C ∈ Fk×n. Suppose that E : Fk →
Fℓ is a multiplication code with respect to the square code E⋆ : Fk⋆ → Fℓ, where E⋆ has minimal
distance δ⋆. Then, for every parameter ε ≥ 1/|F|, the language dR1CSA,B,C has an FLPCP over
F with 3 queries, proof length k⋆, soundness error 1− δ⋆ + ε and randomness complexity log2(ℓ) +
log(1/ε). Furthermore, the verifier’s accepting set is always {(α, β, γ) : α · β = γ}.

Proof. The verifier generates the four queries q1, q2, q3, q4 of the verifier of Theorem 4.5 and also
chooses a random field element λ from a fixed subset of F of size 1/ε. Given an input x and proof
π, it accepts if ⟨q1, (x∥π)⟩ · ⟨q2, (x∥π)⟩ = ⟨q3 + λ · q4, (x∥π)⟩.

Completeness. Let x ∈ L and let π be the proof guaranteed by Theorem 4.5 with respect to
input x. Since the original FLPCP verifier checks that the answer to the 4th query is 0, by perfect
completeness we have that ⟨q4, (x∥π)⟩ = 0. Since it checks that the product of the first and second
answers is equal to the third, we also have that ⟨q1, (x∥π)⟩ · ⟨q2, (x∥π)⟩ = ⟨q3, (x∥π)⟩, and so the
verifier always accepts.

Soundness. Let x /∈ L and fix a proof vector π. By the soundness of the FLPCP, with probability
δ⋆ we have that either (1) ⟨q1, (x∥π)⟩ · ⟨q2, (x∥π)⟩ ̸= ⟨q3, (x∥π)⟩ or (2) ⟨q4, (x∥π)⟩ ̸= 0. Suppose
first that ⟨q4, (x∥π)⟩ = 0. In such a case:

⟨q1, (x∥π)⟩ · ⟨q2, (x∥π)⟩ ≠ ⟨q3, (x∥π)⟩ = ⟨q3 + λ · q4, (x∥π)⟩ ,

and so the verifier rejects. On the other hand, if ⟨q4,x∥π⟩ ≠ 0 then ⟨q3 + λ · q4,x∥π⟩ = ⟨q3,x∥π⟩+
λ · ⟨q4,x∥π⟩ is a uniformly random value (independent of q1, q2) in a set of size 1/ε, and so the
probability that it is equal to ⟨q1,x∥π⟩ · ⟨q2,x∥π⟩ is at most ε.

Remark 4.7 (Efficiency and Uniformity). We remark that the prover and verifier in Theorems 4.5
and 4.6 can be implemented as size poly(n,m, k) arithmetic circuits over F that use oracle gates to
an implicit encoding function of E.

We now derive several FLPCPs in various settings, based on different multiplication codes. First,
recall that for every parameter ℓ ∈ [k, |F|], there is a Reed-Solomon code, which is a multiplication
code with rate k/ℓ (resp., 2k/ℓ) and distance 1 − k+1

ℓ (resp., 1 − 2k+1
ℓ) for the base code (resp.,

square code). Using this code with Theorem 4.6 (and ε = 1/ℓ) we get the following corollary.

Corollary 4.8 (Reed-Solomon-Based FLPCP). Let F be a finite field and A,B,C ∈ Fk×n. Then,
for every parameter ℓ ∈ [k, |F|], the language dR1CSA,B,C has an FLPCP over F with 3 queries,
proof length 2k, soundness error (2k + 2)/ℓ, and randomness complexity 2 log(ℓ). Furthermore, the
verifier’s accepting set is always {(α, β, γ) : α · β = γ}.

19

The main drawback of the Reed-Solomon based FLPCP is that it requires a large alphabet,
namely |F| > k. Using AG codes (see Theorem 3.5) we can obtain a FLPCP over general fields. We
consider here two settings. In the first setting we optimize the proof length but settle for constant
soundness error. We use here the AG code of Theorem 3.5 with constant rate and distance.

Corollary 4.9 (Constant-Rate FLPCP over Small Fields). There exists a fixed δ > 0 such that the
following holds. Let F be a finite field and A,B,C ∈ Fk×n. Then, the language dR1CSA,B,C has
an FLPCP over F with 3 queries, O(k) proof length, soundness error δ, and randomness complexity
log2(k) +O(1). Furthermore, the verifier’s accepting set is always {(α, β, γ) : α · β = γ}.

Next, we use AG codes to derive an FLPCP in which we optimize the soundness error. This
uses the furthermore part of Theorem 3.5.

Corollary 4.10 (Soundness-Optimized FLPCP over Small Fields). There exists δ∗q ∈ 1−O(1/
√
q)

such that the following holds. For every finite field F of order q > 9 such that q is a square,
all sufficiently large n and matrices A,B,C ∈ Fk×n, the language dR1CSA,B,C has an FLPCP
over F with 3 queries, k · poly(q) proof length, soundness error 1 − δ∗q and randomness complexity
log(k)+log(1−δ∗q)+O(log(q)). Furthermore, the verifier’s accepting set is always {(α, β, γ) : α ·β =
γ}.

Note that Corollary 4.10 is restricted to cases in which the field order is a square. This is due to
our use of the multiplication code stated in the “furthermore” part of Theorem 3.5. Jumping ahead,
we remark that when establishing Theorem 4.4 (which is not restricted to square order) we will still
use Corollary 4.10 over the field of order q2, which can be viewed as a 6-query FLPCP over Fq.
This can be composed with our inner DPP gadget to yield a DPP over Fq (see Appendix C). We
also remark that while the furthermore part of Theorem 3.5 is restricted to infinite input lengths
(rather than all sufficiently long inputs), this restriction does not carry over to Corollary 4.10 since
we can pad the input to the next valid input length, while using the fact that the valid sequence of
inputs is not too far apart (see the furthermore part of Theorem 3.5 for details).

Remark 4.11 (Alternative Approach for Soundness-Optimized FLPCP). As an alternative to the
use of the furthermore part of Theorem 3.5, one can start off with Corollary 4.9 (which only relied
on the main part of Theorem 3.5) and amplify the soundness to 1/poly(q) by repeating the basic
procedure O(log(q)) times. Using a randomness efficient procedure (e.g., via a random walk on an
expander graph, see [Vad12, Section 4.2]) this can be done using only O(log(q)) random bits.

This results in an FLPCP with O(log(q)) queries and randomness complexity, and soundness
error 1/poly(q). While the number of queries is larger than that in Corollary 4.10, jumping ahead,
we remark that this construction can be used instead of Corollary 4.10 to obtain our high soundness
DPP (though with a bigger poly(q) overhead to the proof size).

Additional FLPCP constructions. By generalizing the multiplication code framework to en-
able a multiplication of two different codes, one can capture the “Hadamard FLPCP” from [ALMSS98,
IKO07] as an instance of our general construction. This yields a 3-query FLPCP with near-optimal
soundness error O(1/|F|) and randomness complexity O(log(|F|)), but at the cost of a quadratic
proof length. For F of an odd characteristic, the query complexity of the Hadamard FLPCP can be
improved to 2 [BIOW20]. Finally, if we replace dR1CS by the satisfiability of Boolean circuits, a 2-
query FLPCP with linear proof length can be obtained from multiplication codes via the technique
from [DFGK14]. See Appendix B for details.

20

4.2 DPP Composition

Our second main step is a generic composition lemma, which compiles an outer FLPCP for a
language L with an inner DPP gadget, to produce a DPP for L. This is similar to and simpler
than the robust PCP + PCPP composition of Ben-Sasson, Goldreich, Harsha, Sudan, and Vad-
han [BGHSV06], with DPPs playing a role similar to that of PCPPs.

Lemma 4.12 (FLPCP Composition with DPP). Suppose that L has an FLPCP verifier V, over the
field F, with query complexity q, proof length m, completeness c, soundness error s, and randomness
complexity r. Suppose furthermore that for every choice of randomness ρ ∈ {0, 1}r the verification
predicate A(ρ) ⊆ Fq of V has a DPP with completeness c′, soundness error s′, proof length m′, and
randomness complexity r′. Then, L has a DPP with completeness c · c′, soundness error 1 − (1 −
s) · (1− s′), proof length m+ 2r ·m′, and randomness complexity r + r′.

Proof. Let Vouter be the FLPCP verifier and for every choice of randomness ρ ∈ {0, 1}ℓ for Vouter,
let V(ρ)inner be the DPP verifier for the predicate A(ρ) as in the lemma’s statement (the nomenclature
is chosen based on the usage of these verifiers below). We construct a DPP verifier for L, which we
refer to as the “composed” verifier.

We start by describing the proof string. Fix an input x ∈ L and let π be the corresponding
FLPCP proof-string for Vouter. For every choice of randomness ρ ∈ {0, 1}r for Vouter, let Q(ρ) ∈
Fq×(n+m) denote the linear queries that Vouter performs when using randomness ρ. Denote by
A(ρ) ⊆ Fq the decision predicate of Vouter for that choice of ρ and let α(ρ) = Q(ρ) · (x∥π) denote the
answers to the queries.

To check the proof string, the composed DPP verifier first generates randomness ρ for Vouter. It
also generates a query z ∈ Fq+m′ for V(ρ)inner and a corresponding decision predicate A ⊆ F. We parse
the query vector as z = zinp∥zprf , where zinp ∈ Fq and zprf ∈ Fm′ . The verifier accepts if〈

(Q(ρ))T · zinp,x∥π
〉
+
〈
zprf ,π

(ρ)
〉
∈ A,

which is indeed a (single) linear query to
(
(x∥π)∥(π(ρ))ρ∈{0,1}r

)
.

Our analysis of the composed DPP will rely on the following claim.

Claim 4.13. For every x ∈ Fn, π ∈ Fm, ρ ∈ {0, 1}r, π(ρ) ∈ Fm′, z = (zinp, zprf) ∈ Fq × Fm′ and
α(ρ) = Q(ρ) · (x∥π), it holds that:〈

(Q(ρ))T · zinp, (x∥π)
〉
+
〈
zprf ,π

(ρ)
〉
=
〈
z,
(
α(ρ)∥π(ρ)

)〉
.

Proof. This follows by linearity:〈
(Q(ρ))T · zinp,x∥π

〉
+
〈
zprf ,π

(ρ)
〉
=
〈
zinp,Q

(ρ) · (x∥π)
〉
+
〈
zprf ,π

(ρ)
〉

=
〈
zinp,α

(ρ)
〉
+
〈
zprf ,π

(ρ)
〉

=
〈
z,
(
α(ρ)∥π(ρ)

)〉
.

21

Completeness. Fix x ∈ L and the proof string
(
π, (π(ρ))ρ

)
as defined above. By the completeness

of Vouter, with probability c over the choice of ρ, it holds that α(ρ) ∈ A(ρ), where α(ρ) = Q(ρ) ·(x∥π).
Assume that ρ is selected as above.

Since α(ρ) ∈ A(ρ), by the completeness of Vinner, with probablity c′, we have that
〈
z,
(
α(ρ)∥π(ρ)

)〉
∈

A, where z is the query vector of Vinner and A is its decision predicate. Parsing z as z = zinp∥zprf ,
with zinp ∈ Fq and zprf ∈ Fm′ , by Claim 4.13 we have that:〈

(Q(ρ))T · zinp, (x∥π)
〉
+
〈
zprf ,π

(ρ)
〉
=
〈
z,
(
α(ρ)∥π(ρ)

)〉
∈ A,

and so the composed verifier accepts in this case.

Soundness. Fix x /∈ L and an alleged proof string
(
π, (π(ρ))ρ

)
. By the soundness of Vouter with

probability 1− s over the choice of ρ, it holds that α(ρ) ̸∈ A(ρ), where α(ρ) = Q(ρ) · (x∥π). Assume
that a ρ as above is indeed chosen.

Observe that in this case α(ρ) is a NO instance and by the soundness of Vinner, for every π′,
with probability 1 − s′ it holds that

〈
z,
(
α(ρ)∥π′

)〉
/∈ A, where z is Vinner’s query vector and A

is its decision predicate. In particular, this is true if we set π′ = π(ρ), and so we have that〈
z,
(
α(ρ)∥π(ρ)

)〉
/∈ A with probability s′.

Thus, by Claim 4.13, in this case〈
(Q(ρ))T · zinp, (x∥π)

〉
+
〈
zprf ,π

(ρ)
〉
=
〈
z,
(
α(ρ)∥π(ρ)

)〉
̸∈ A,

and so the composed verifier rejects. Overall, the composed verifier rejects with probability at least
(1− s) · (1− s′).

4.3 DPP Gadgets

In order to transform the FLPCP of Theorem 4.6 into a DPP, via the Composition Lemma 4.12, we
need to construct an inner “DPP gadget” for the multiplicative relation {(α, β, γ) ∈ F3 : γ = α · β}.
In this section we present two generic constructions that apply to any language.

The first (and simpler) construction, presented in Section 4.3.1, has imperfect completeness, and
in fact a poor completeness-soundness gap that degrades with the language size. Our second and
main construction has perfect completeness and asymptotically optimal soundness, and takes two
steps:

1. We consider the language UV = {e1, . . . , en} consisting of all n unit vectors. In other words,
UV is the set of all vectors that are 0 in all coordinates except for a single coordinate, which
is a 1. Our first step (Section 4.3.2) is a direct (proof-less) DPP for this problem.

2. Using the DPP for UV, the second step (Section 4.3.3) constructs a “brute-force DPP” for
any L where proof length scales linearly with |L|. This can be used to obtain a poly(|F|)-size
DPP for the multiplicative relation (in fact, for any L ⊆ FO(1)).

4.3.1 “Simplest DPP” with Imperfect Completeness

Most of our DPP constructions achieve perfect completeness. However, perfect completeness can-
not be generally achieved over F2 (see Lemma A.1). Settling for imperfect completeness, and for

22

a completeness-soundness gap that vanishes with |L|, we have the following simple DPP construc-
tion. The construction can be viewed as applying a special case of the randomization technique of
Razborov and Smolensky [Raz87, Smo87] to the truth-table representation of L. Additional features
of this construction are that it does not require a proof π (i.e., m = 0) and that it has an accepting
set of size 1.

Proposition 4.14 (Truth-Table DPP). For every L ⊆ Fn, there exists a proof-less DPP for L over
F with soundness error s = 1/|F|, completeness c = s+ 1

2|L| , and an accepting set A of size 1.

Proof. The DPP verifier proceeds as follows: Pick uniformly random r ← L and q ← Fn, and check
that ⟨q,x− r⟩ = 0. Note that the latter condition can be written in the form ⟨q,x⟩ = a for a which
is determined by q and r. Hence, this is a “proof-less” DPP with an accepting set A of size 1.

Soundness follows from the fact that if x ̸∈ L, then conditioned on every choice of r ∈ L we
have x− r ̸= 0, and hence the inner product ⟨q,x− r⟩ is uniformly distributed over F.

Completeness follows from the fact that when x ∈ L, there is exactly one choice of r ∈ L,
occurring with 1/|L| probability, conditioned on which ⟨q,x− r⟩ is identically 0. Conditioned on
other choices of r, the answer ⟨q,x− r⟩ is uniformly distributed. Hence, for x ∈ L we have:

Pr
[
⟨q,x− r⟩ = 0

]
=

1

|L|
· 1 +

(
1− 1

|L|

)
· 1

|F|
≥ 1

|F|
+

1

2|L|
.

Applying this result over the binary field F2 and the multiplicative relation over this field, we
get that:

Corollary 4.15. There exists a proof-less DPP for {(α, β, γ) ∈ (F2)
3 : γ = α · β} with soundness

error s = 1/2, completeness c = 5/8, and an accepting set A of size 1.

Proof of Theorem 4.2. To prove Theorem 4.2 we combine Corollary 4.9 with Corollary 4.15, by
following the composition lemma Lemma 4.12, with the following adjustment.

Denote the soundness error of the outer FLPCP (i.e., of Corollary 4.9) by s. Then, the prob-
ability that the composed verifier accepts a false statement is if either (1) the outer verifier ac-
cepts a false statement and the inner verifier accepts the true statement, or (2) if the outer veri-
fier rejects and the inner verifier accepts a false statement. Overall, the probability to accept is:
s · 58 + (1− s) · 12 = 1

2 + s
8 < 5

8 .

4.3.2 Unit Vectors

We turn to our main inner DPP construction. Our first step is an optimal DPP for a simple
“universal” language. Let UV ⊆ Fn be the language of all unit vectors. In other words, UV
contains all vectors that are zero, except for one coordinate which is equal to 1.

We start with a simpler DPP for UV that has constant soundness error and a minimal ac-
cepting set A. We then present a construction with a more complicated analysis that achieves
(asymptotically optimal) soundness error of O(1/

√
|F|).

Proposition 4.16 (DPP for UV). Let F be a field of odd characteristic. Then, the language UV
has a proof-less DPP with soundness error 4/5, randomness complexity O(n), and accepting set of
size at most two.

Proof of Proposition 4.16. The verifier, given access to an input x ∈ Fn, with probability 4/5
samples a random vector q ∈ {0, 1}n and accepts if ⟨x, q⟩ ∈ {0, 1}, and with probability 1/5 sets
q = 1n, and accepts if ⟨x, q⟩ = 1.

23

Completeness. If x ∈ UV, ⟨x, q⟩ = qi and the verifier accepts with probability 1.

Soundness. Let x /∈ UV. Suppose first that x has at least two non-zero coordinates and assume
without loss of generality that x1, x2 ̸= 0. Fix q3, . . . , qn and denote α =

∑n
i=3 xi · qi. Notice that

for q1, q2 ∈ {0, 1} we get four possible values for q1 · x1 + q2 · x2, namely: 0, x1, x2, x1 + x2. Since
x1, x2 ̸= 0 and the field is of odd characteristic, at least three of these four values are distinct. It
follows that for at least one value of (q1, q2) ∈ {0, 1}2 it holds that ⟨x, q⟩ = q1 ·x1+q2 ·x2+α /∈ {0, 1}.
Thus, in this case, the verifier rejects with probability at least 4

5 ·
1
4 = 1

5 .
Assume that x /∈ UV has at most one non-zero coordinate. Assume without loss of generality

that x1 ̸= 1, x2 = · · · = xn = 0 (note that it may be the case that x1 = 0). Then, when q = 1n,
⟨x, q⟩ = x1. Hence, the verifier rejects with probability at least 1/5.

We note that an accepting set of size |A| = 2 is the best possible for a DPP with perfect
completeness (see Appendix A). For fields of characteristic 2, we prove a similar result with |A| = 3.

Proposition 4.17 (DPP for UV over Fields of Characteristic 2). Let F = F2k for k ≥ 2. Then,
the language UV ⊆ Fn has a proof-less DPP with soundness error (at most) 9/10, randomness
complexity O(n), and accepting set A of size 3.

Proof of Proposition 4.17. Let c ∈ F \ {0, 1}. The verifier, given access to an input x ∈ Fn, with
probability 9/10 samples a random vector q ∈ {0, 1, c}n and accepts if ⟨x, q⟩ ∈ {0, 1, c}, and
with probability 1/10 sets q = 1n, and accepts if ⟨x, q⟩ = 1. The proof is similar to the proof
of Proposition 4.16. Completeness is identical, we focus on soundness.

Soundness. Let x /∈ UV. As before, suppose first that x has at least two non-zero coordinates
and assume without loss of generality that x1, x2 ̸= 0. Fix q3, . . . , qn and denote α =

∑n
i=3 xi · qi.

Now consider two sub-cases. If x1 = x2, then for q1, q2 ∈ {0, 1, c} we get a multiset of 9
possible values for q1 · x1 + q2 · x2, which includes (in particular) 0, x1, x1 · c, x1 · (c + 1). Since
c /∈ {0, 1}, all 4 field elements are distinct. In particular, for at least one value of q1, q2 it holds
that ⟨x, q⟩ = q1 · x1 + q2 · x2 + α /∈ {0, 1, c}. In this case, the verifier rejects with probability at
least 9

10 ·
1
9 = 1

10 . If x1 ̸= x2, then the multiset of 9 possible values for q1 · x1 + q2 · x2 includes
0, x1, x2, x1+x2. Since x1, x2 are distinct nonzero elements, the above 4 elements are distinct. Thus,
as in the previous sub-case, the verifier rejects with probability at least 1/10.

We are left with the case that x /∈ UV has a single non-zero coordinate, where similarly to the
previous proof, the verifier rejects with probability at least 1/10 (when q = 1n).

Now we show a more general result in which the error can be as small as O(1/
√
|F|). While the

construction is simple, the analysis is somewhat more involved.

Proposition 4.18 (DPP for UV with Soundness O(1/
√
|F|)). The language UV has a proof-less

DPP over the field of order q with soundness error O(1/
√
q) and randomness complexity √q ·log(q)+

n · log(q).

Proof. Let F be a field of order q and t ∈ [q] a parameter to be determined below. The verifier,
given access to an input x ∈ Fn, samples a random subset Λ ⊆ F of size |Λ| = t uniformly at random
and further samples λ = (λ1, . . . , λn) ∈ Λn. The verifier accepts if ⟨λ,x⟩ ∈ Λ.

24

Completeness. Let x ∈ UV and let i ∈ [n] be such that x = ei is the ith unit vector. Then
⟨λ,x⟩ = λi ∈ Λ and so the verifier always accepts.

Soundness. The soundness of the DPP is implied directly by the following lemma.

Lemma 4.19. If x ∈ Fn and x /∈ UV, then

Pr[⟨λ,x⟩ ∈ Λ] ≤ O

(
1

t
+

t

|F| − t

)
,

where Λ ⊆ F is a random set of size t and λ is random in Λn.

Proof. First note that the distribution of (Λ,λ) can be sampled as follows, first sample a random
function π : [n] → [t], namely a partition of [n] to t buckets. Then sample a random injective
function γ : [t] → F, and set Λ = γ([t]) and λi = γ(π(i)) for all i ∈ [n]. Throughout, for any
partition π and j ∈ [t], we denote the sum of xi in each bucket j by απ

j :=
∑

i∈π−1(j) xi.

Claim 4.20. Fix any partition π such that there exist 1 ≤ i < j ≤ t where απ
i ̸= 0, απ

j ̸= 0. Then,

Pr
γ
[⟨λ,x⟩ ∈ Λ] ≤ t+ 1

|F| − t+ 1
.

Proof. Assume without loss of generality that απ
t−1 ̸= 0, απ

t ̸= 0. Now fix any (distinct) γ(1), . . . , γ(t−
2). First, sampling γ(t− 1)← F \ γ([t− 2]), and denoting cj :=

∑
i∈[j] γ(i)α

π
i , it holds that

Pr
γ(t−1)

[ct−1 = 0] = Pr
γ(t−1)

[απ
t−1γ(t− 1) + ct−2 = 0] ≤ 1

|F| − (t− 2)
≤ 1

|F| − t+ 1
.

Next, fix γ(t− 1) such that ct−1 ̸= 0. Then, sampling γ(t)← F \ γ([t− 1]), it holds that

Pr
γ(t)

[⟨λ,x⟩ ∈ Λ | ct−1 ̸= 0]

= Pr
γ(t)

[απ
t γ(t) + ct−1 ∈ Λ]

=
∑

i∈[t−1]

Pr
γ(t)

[απ
t γ(t) + ct−1 = γ(i)] + Pr

γ(t)
[(απ

t − 1)γ(t) + ct−1 = 0]

≤ (t− 1) · 1

|F| − (t− 1)
+

1

|F| − (t− 1)

≤ t

|F| − t+ 1
.

Overall,

Pr
γ
[⟨λ,x⟩ ∈ Λ] ≤ Pr

γ(t−1)
[ct−1 = 0] + Pr

γ(t)
[⟨λ,x⟩ ∈ Λ | ct−1 ̸= 0] ≤ t+ 1

|F| − t+ 1
.

Claim 4.21. Assume x has Hamming weight h ≥ 2. Then,

Pr
π

[
∃i ̸= j : απ

i ̸= 0, απ
j ̸= 0

]
≥ 1− 4

t
.

25

Proof. Assume without loss of generality that x1, . . . , xh ̸= 0 and that xh+1 = · · · = xn = 0. Fix
any π(1), . . . , π(h− 2) ∈ [t], and consider the sum of xi in each bucket j so far:

α
πh−2

j :=
∑

i∈π−1(j)∩[h−2]

xi .

Let S =
{
j : α

πh−2

j ̸= 0
}

. We consider two cases:

• Assume |S| ≥ 2, and fix some i ̸= j in S. Then

Pr
π(h−1),π(h)

[
απ
i = 0 ∨ απ

j = 0
]
≤ Pr

π(h−1),π(h)
[π(h− 1) ∈ {i, j} ∨ π(h) ∈ {i, j}] ≤ 2

t
+

2

t
≤ 4

t
.

• Assume |S| ≤ 1. Then,

Pr
π(h−1),π(h)

[
απ
π(h−1) = 0 ∨ απ

π(h) = 0 ∨ π(h− 1) = π(h)
]
≤

Pr
π(h−1),π(h)

[π(h− 1) ∈ S ∨ π(h) ∈ S ∨ π(h− 1) = π(h)] ≤ |S|
t

+
|S|
t

+
1

t
≤ 3

t
.

Indeed, if π(h− 1), π(h) /∈ S and π(h− 1) ̸= π(h), then

απ
π(h−1) = α

πh−2

π(h−1) + xh−1 = xh−1 ̸= 0 ,

απ
π(h) = α

πh−2

π(h) + xh = xh ̸= 0 .

This completes the proof of the claim.

Claim 4.22. Assume x has Hamming weight h = 1, but is not a unit vector. Then,

Pr [⟨λ,x⟩ ∈ Λ] ≤ t+ 1

|F| − t+ 1
.

Proof. Assume without loss of generality x1 /∈ {0, 1} and x2 = · · · = xn = 0. Fix any π, let i = π(1),
and fix any distinct γ(1), . . . , γ(i− 1), γ(i+ 1), . . . , γ(t). Then sampling γ(i)← F \ ∪j ̸=iγ(j),

Pr
γ(i)

[⟨λ,x⟩ ∈ Λ] = Pr
γ(i)

[x1γ(i) ∈ Λ]

=
∑
j ̸=i

Pr
γ(i)

[x1γ(i) = γ(j)] + Pr
γ(i)

[(x1 − 1)γ(i) = 0]

≤ t

|F| − t+ 1
.

Claim 4.23. Assume x = 0. Then,

Pr [⟨λ,x⟩ ∈ Λ] =
t

|F|
.

Proof. In this case ⟨λ,x⟩ = 0. The probability that a random set Λ ⊆ F of size t includes any
specific element (in particular 0) is t/|F|.

26

Putting the claims together, we consider the following cases:

• If x has Hamming weight h ≥ 2, then by Claim 4.20 and Claim 4.21,

Pr
π,γ

[⟨λ,x⟩ ∈ Λ] ≤ Pr
π

[
∄i ̸= j : απ

i ̸= 0, απ
j ̸= 0

]
+ Pr

π,γ

[
⟨λ,x⟩ ∈ Λ | ∃i ̸= j : απ

i ̸= 0, απ
j ̸= 0

]
≤ O

(
1

t

)
+O

(
t

|F| − t

)
.

• If x has Hamming weight h = 1 but is not a unit vector, then by Claim 4.22,

Pr
π,γ

[⟨λ,x⟩ ∈ Λ] ≤ O

(
t

|F| − t

)
.

• If x = 0, then by Claim 4.23,

Pr
π,γ

[⟨λ,x⟩ ∈ Λ] =
t

|F|
.

Overall, it follows that unless x is a unit vector Prπ,γ [⟨λ,x⟩ ∈ Λ] ≤ O
(
1
t +

t
|F|−t

)
.

This completes the proof of soundness (Lemma 4.19).

Proposition 4.18 follows.

4.3.3 A Brute-Force DPP

In this section we use the DPP for UV to construct a DPP for any language L, where the proof
size scales with |L|.

Lemma 4.24 (Simple DPP Constructions). Let F be of size q > 2 and L ⊆ Fn of size ℓ. Then L
has perfectly-complete DPPs with proof length O(ℓ) and the following additional parameters:

• Small Accepting Set DPP: If q is odd, soundness error at most 4
5 and accepting set of size

at most 2. If q = 2k, k > 1, soundness error at most 9
10 and accepting set of size at most 3.

In either one, the randomness complexity is O(ℓ).

• Small Soundness Error DPP: Soundness error O(1/
√
q) and randomness complexity

O((
√
q + ℓ) log q).

Proof. Let X ∈ Fn×ℓ be a matrix whose columns x1, . . . ,xℓ are all such that xi ∈ L, and consider
the matrix

M =

[
X In×n
Iℓ×ℓ 0ℓ×n

]
∈ F(ℓ+n)×(ℓ+n) .

Then M is invertible and for any (column) vector (x∥w) ∈ Fn+ℓ and unit (column) vector ei ∈
{0, 1}ℓ, M−1(x∥w) = (ei∥0n) if and only if (x∥w) = (xi∥ei). In the following, we write M−T to
denote the matrix M−T := (M−1)T.

Accordingly, in the DPP for L, a proof for xi is the corresponding vector ei. Given linear query
access to (x∥w), the DPP verifier samples a query q ∈ Fℓ along with accepting set A for the UV
DPP, samples a uniformly random vector λ ∈ Fn, and outputs the query M−T(q||λ) with accepting
set A.

27

Completeness. If (x∥w) = (xi∥ei), then〈
M−T(q||λ), (x∥w)

〉
=
〈
(q||λ),M−1(x∥w)

〉
= ⟨(q||λ), (ei∥0n)⟩ = ⟨q, ei⟩ ∈ A ,

where the membership in A follows from the completeness of the DPP for UV.

Soundness. Assume x /∈ L, and let M−1(x∥w) = (e∗∥z∗) ∈ Fℓ × Fn. We consider two cases:

• If z∗ ̸= 0, then ⟨M−T(q||λ), (x∥w)⟩ = ⟨(q||λ), (e∗∥z∗)⟩ is uniformly random and falls in A
with probability at most |A|/q.

• If z∗ = 0, but e∗ /∈ UV, then ⟨M−T(q||λ), (x∥w)⟩ = ⟨q, e∗⟩ and we reject whenever the UV
verifier rejects.

The concrete parameters now follow from the guaranteed soundness and upper bound on the size
of accepting sets given by Propositions 4.16 to 4.18.

Remark 4.25 (Faster Proving Time). In the DPP of Lemma 4.24 the verifier needs to compute the
matrix-vector product M−1q, which in general takes (ℓ+n)2 time. However, for specific languages,
it may be possible to do this computation faster. For example, when applying the lemma to the
relation {(1, α, α2, αq−1) : α ∈ F} the corresponding multiplication corresponds to an FFT, which
can be done in quasi-linear time. The latter DPP can be used to derive a DPP for the squaring
relation {(1, α, α2) : α ∈ F} in which the verifier runs in quasi-linear time.

We are now ready to prove the main small-field DPP theorems, obtaining constant soundness
(with constant-size accepting set) and optimal soundness, respectively.

Proof of Theorems 4.3 and 4.4. To prove the theorems we combine Corollaries 4.9 and 4.10
(respectively) with the two parts of Lemma 4.24 (providing constant soundness and optimal sound-
ness, respectively) via Composition Lemma 4.12. We note that Corollary 4.10 assumes square q.
However, viewing a 3-query FLPCP over Fq2 as a 6-query FLPCP over Fq, we can still use the
brute-force DPP of Lemma 4.24. See Appendix C for details.

4.4 Lower Bound on the Soundness Error

In this section we show that the O(1/
√
|F|) soundness error of our DPP construction is asymptoti-

cally tight. In fact, we show this for the language UV of unit vectors in Fn. We start by assuming
our default notion of DPP with perfect completeness, and then discuss the extension to the general
case.

Consider a (perfectly complete) DPP and a query q that has an accepting set A ⊂ F of size
t. We will describe two kinds of attacks. The first attack picks a uniformly random (x∥π), which
leads to ≈ t/|F| soundness error. The second attack uses input vectors of weight 2, leading to ≈ 1/t
soundness error. Randomly choosing one of the two attacks will give us the desired Ω(1/

√
|F|) lower

bound. We proceed with the formal analysis.

Lemma 4.26 (Random Attack). For any input length n ≥ 1, proof length m ≥ 0, nonzero query
vector q ∈ Fn+m, and accepting set A ⊂ F of size t, a uniformly random choice of x ∈ Fn \UV
and π ∈ Fm satisfies Pr[⟨q, (x∥π)⟩ ∈ A] ≥ (t− 1)/|F|.

28

Proof. Since q is nonzero, if both x and π are chosen uniformly at random, the answer ⟨q, (x∥π)⟩ is
uniformly random in F, and hence is accepted (i.e., in A) with t/|F| probability. Since |UV|/|Fn| ≤
1/|F|, conditioning on the event that x ∈ Fn \UV reduces this acceptance probability by at most
1/|F|. Hence, random x ∈ Fn \UV and π ∈ Fm are accepted with at least t/|F|−1/|F| = (t−1)/|F|
probability, as required.

For the next attack, consider any DPP for UV, and let π1, . . . ,πn ∈ Fm be valid DPP proof
vectors for the inputs e1, . . . , en ∈ UV, respectively, such that vi = (ei∥πi) is always accepted.
We show a distribution over weight-2 vectors and proofs which is accepted with at least ≈ 1/t
probability.

Lemma 4.27 (Weight-2 Attack). Let |F| > 2 and n ≥ 2. Let α ∈ F \ {0, 1} and let β = 1− α. Let
vi be as defined above. Then, for any nonzero q ∈ Fm and A ⊆ F of size t generated by the DPP
verifier, a uniformly random choice of distinct i, j ∈ [n] satisfies Pr[⟨q, αvi + βvj⟩ ∈ A] ≥ 1/t−1/n.

Proof. By completeness, we have ai = ⟨q,vi⟩ ∈ A for every i ∈ [n]. If ai = aj , we have
⟨q, αvi + βvj⟩ = αai + βaj = (α + β)ai = ai ∈ A. It thus suffices to lower bound the proba-
bility that for a random choice of distinct i, j, we have ai = aj . This is the same as the probability
of drawing two distinct balls of the same color from an urn containing n balls of t colors. Letting
nc be the number of balls of color c, 1 ≤ c ≤ t, and conditioning on the color of the first ball, this
probability can be written as:

pn1,...,nt =
t∑

c=1

nc

n
· nc − 1

n

=

∑
c∈[t] n

2
c

n2
− 1

n2

∑
c∈[t]

nc

=

∑
c∈[t] n

2
c

(
∑

c∈[t] nc)2
− 1

n

≥ 1

t
− 1

n
,

where the inequality follows from the Cauchy-Shwartz inequality.

Combining the above two lemmas, we get an asymptotically tight lower bound on the soundness
error that can be obtained by general DPPs over F.

Theorem 4.28 (DPP Soundness Lower Bound). For every finite field F, there is n and a language
L ⊆ Fn such that every DPP for L has soundness error ε ≥ Ω(1/

√
|F|).

Proof. Let L = UV where n ≥ 2
√
|F|. Consider a DPP for L over F with proof length m. We may

assume without loss of generality that the query q = 0 never occurs (eliminating such a query does
not increase the soundness error).

Consider the following randomized prover strategy: pick a random bit b, and then sample
v = (x∥π) as follows:

• If b = 0, pick x at random from Fn \UV and π at random from Fm, as in Lemma 4.26.

• If b = 1, let v = αvi + βvj for random distinct i, j ∈ [n], as in Lemma 4.27.

29

We argue that, conditioned on every possible q and A picked by the DPP verifier, the above attack
strategy makes the verifier accept an input x ̸∈ UV with Ω(1/

√
|F|) probability. Indeed, letting

t = |A|, if t ≥
√
|F| then Lemma 4.26 guarantees that conditioned on b = 0, the attack succeeds

with at least (t−1)/|F| ≥ Ω(1/
√
|F|) probability. On the other hand, if t <

√
|F|, then Lemma 4.27

guarantees that conditioned on b = 1, the attack succeeds with at least 1/t − 1/n ≥ 1/2t ≥
Ω(1/

√
|F|) probability. This implies that conditioned on any choice of (q, A), the attack succeeds

with ε ≥ Ω(1/
√
|F|) probability.

Remark 4.29 (DPP with Imperfect Completeness). While the above analysis assumes perfect com-
pleteness, it can be easily extended to DPP with a small completeness error. Indeed, the success
probability of the random attack is insensitive to the completeness error, whereas the weight-2 attack
applies to all “good” choices of (q, A) for which at least (say) n/2 of the vi satisfy ⟨q,vi⟩ ∈ A. By
Markov inequality, the probability that (q, A) is good tends to 1 when the completeness error tends
to 0. It follows that the soundness error must be Ω(1/

√
|F|) even with a sufficiently small constant

completeness error.

5 From FLPCP to DPP Over Large Fields

The FLPCP to DPP transformation from the previous sections leads to proofs of polynomial length
in the field size (and hence inverse polynomial in the soundness error). In this section, we provide
transformations that preserve the number of field elements in the original FLPCP proof, while
enlarging the field size polynomially. Using FLPCPs from the literature (or from Section 4.1), for
field size p > poly(S/ε), and any arithmetic circuit of size S, we get a DPP for proving that there
exists w such that C(x,w) = 1, where the proof has O(S) field elements and soundness error ε.

The most efficient version of our transformation results in a promise DPP, where soundness only
holds for instances taken from a promise subset P ⊇ L (whereas there is no promise on the proof
π∗).

Definition 5.1 (Promise FLPCP). Let F be a field and let L ⊆ P ⊆ Fn. An FLPCP for L is a
promise FLPCP with respect to P if it only satisfies the following relaxed soundness requirement:

• (Soundness in P) for every x ∈ P \ L and all π∗ ∈ Fm

Pr
(Q,A)←V

[
Q · (x∥π∗) ∈ A

]
≤ s,

where s is the soundness error.

Looking ahead, we will start with an FLPCP for a language L ⊆ Fn
p and transform it to a

promise DPP (namely, a 1-query promise FLPCP) for L over a larger field Fp′ ⊇ Fp where the
promise is P = Fn

p . We note that since membership in Fp is efficiently testable, our promise DPPs
imply 1-query LPCPs, where the verifier, given the input x can check the promise.

We also obtain a plain (non-promise) DPP for Boolean circuits at the cost of increasing the
proof length from O(S) to O(S + n2) as well as the dependence of p′ on S/ε.

Overall approach. Our overall approach builds upon and extends previous transformations from
[BCIOP22, BIOW20]:

30

1. Construct a bounded FLPCP. First, we construct a promise FLPCP where the magnitude
of the answers is substantially smaller than the field size.

2. Packing FLPCP queries into a single query. Then, we randomly encode the bounded
FLPCP queries into a single query.

In [BCIOP22], a classical (Boolean) PCP is used as the underlying bounded LPCP and packing
of queries Q ∈ Fk×m

p is done by evaluating the linear function EQ(w) = wTQ at a random point
w ∈ Zk from some appropriate rectangle. In [BIOW20], a bounded variant of the Hadamard
FLPCP is given, and packing is done similarly, but using a certain multilinear polynomial EQ(w)
and a random point w over an appropriate rectangle. Compared to the [BCIOP22] transformation,
the [BIOW20] transformation has certain concrete efficiency benefits and satisfies a notion known
as strong soundness. However, the proof length suffers from a quadratic loss in the circuit size,
stemming from the reliance on the Hadamard FLPCP.

We start by showing that any FLPCP over Fp can be embedded in a larger field Fp′ to yield
a bounded promise FLPCP by adding a single random test query. We then generalize the pack-
ing transformation from [BCIOP22], which generally yields better parameters than the variant in
[BIOW20]. We note that all of our transformations apply equally well to LPCPs that are not fully
linear (namely, we can start with a multi-query LPCP, transform it to a bounded multi-query LPCP,
and then to a 1-query LPCP).

Notation and conventions. Throughout this section we rely on the following:

• For a ∈ Q and p, p′ ∈ N, we denote by [a]p, the representative of a mod p in [−p/2, p/2). We
denote by [a]p′,p = [[a]p′]p (note that the order counts).

• We identify the field Fp of prime characteristic p > 2 with the integers
{
−p−1

2 , . . . , p−12

}
=

{[1]p, . . . , [p− 1]p}. Accordingly for any prime p′ ≥ p, Fp ⊆ Fp′ .

• For a matrix Q and vector a of appropriate dimensions, we denote by [Qa]Z their product
over the integers.

• For vectors u = (u1, . . . , uk) and b = (b1, . . . , bk), we write |u| ≤ b if |ui| ≤ bi for every i ≤ k.

• For matrices Q ∈ Fn×m
p ,Q′ ∈ Fn′×m

p , we write (Q∥Q′) :=
(

Q
Q′

)
to denote their (vertical)

concatenation. This is in particular the case when m = 1, where both Q,Q′ are vectors, or
when n′ = 1, where Q′ is a row vector.

• For a vector b = (b1, . . . , bk), and i ≤ k we denote bi := b1 × b2 × · · · × bi.

• We consider FLPCPs (resp., DPPs) for relations where there is an explicit prover P that
takes as input a statement x and a witness w, and outputs a FLPCP (resp., a DPP) proof π.
We write ⟨P,V⟩ to denote such a FLPCP (resp., DPP), where P denotes the prover and V
denotes the verifier.

Definition 5.2 (Bounded FLPCP). Let R ⊆ Fn
p × Fh

p be a relation over Fp, and let b ∈ Zk
+ be

a bound. A k-query FLPCP ⟨P,V⟩ for R over Fp with proof length m is b-bounded, if for any
(x,w) ∈ R, proof π in the support of P(x,w), and every verifier query Q ∈ Fk×(n+m)

p , it holds that

31

|[Q(x∥π)]Z| ≤ b (namely, their product over the integers is strictly smaller in absolute value than
b, coordinate-wise).

Remark 5.3 (Trivial Bound). Every FLPCP is without loss of generality b-bounded for

b =

(
(n+m)

(
p− 1

2

)2

, . . . , (n+m)

(
p− 1

2

)2
)

.

We prove that we can take any FLPCP over any prime order Fp (in particular, one that only satisfies
the trivial bound) and turn it into a b-bounded promise FLPCP over Fp′ where ∥b∥∞ ≪ p′.

Theorem 5.4 (Bounded Embedding). Let R ⊆ Fn
p × Fh

p be a relation over Fp and let b ∈ Nk be a
bound. Also let p, β, γ, µ,Λ,∆, ρ ∈ N be such that p and γ are primes, µ = n+m ≤ p ≤ ∆/µ, and
β = µγ

2
p−1
2 . Then, for any prime

p′ > µγ∆max {Λρ, γ/µ, p} ,

any k-query, b-bounded FLPCP over Fp for R with soundness error ε and proof length m, can
be transformed into a (k + 1)-query, (b∥β)-bounded promise FLPCP over Fp′ for R with promise
P = Fn

p and soundness error

ε′ = max

{
ε,

2µp

∆
,
1

ρ
+

1

γ
,
µρ

γ
+

1

Λ

}
.

The proof length and prover complexity are preserved and the verifier complexity is preserved up to
a poly(log p′, k) additive term.

The gap between the bound and field size allows us to pack the FLPCP queries into one query.
The following theorem is a generalization of a Boolean packing theorem from [BCIOP22] and a
variant of a non-Boolean packing theorem from [BIOW20].

Theorem 5.5 (Packing). Let b ∈ Nk and let p > ((2b)k)2/ε be a prime. Any k-query (b − 1)-
bounded (promise) FLPCP over Fp with soundness error ε can be transformed into a (promise)
DPP over Fp with soundness error 2ε. The proof length and prover complexity are preserved and
the verifier complexity is also preserved up to an additive term of poly(log p, k).

Remark 5.6 (Embedding and Packing for LPCPs). Theorems 5.4 and 5.5 also hold for the case of
LPCPs (that are not fully linear). In this case, the parameter µ from Theorem 5.4 can be replaced
with the proof length m.

The following corollary gives a concrete setting of parameters from Theorems 5.4 and 5.5. These
parameters are motivated by the concrete efficiency of cryptographic instantiations based on existing
FLPCPs and LPCPs (see Section 7 for the cryptographic applications).

Corollary 5.7 (DPP from FLPCP). Assume there exists a k-query FLPCP for a relation R ⊆
Fn
p ×Fh

p over Fp with proof length m and soundness error cµ
p , where µ = n+m and c is a constant.

Then there exists a promise DPP over Fp′ with soundness error 2cµ
p for p′ > µ2k−1p4k+7

22k−2c5
, and promise

P = Fn
p . The proof length and prover complexity are preserved and the verifier complexity is preserved

up to a poly(log p′, k) additive term.
The same statement also holds for LPCP and yields a single-query LPCP rather than a DPP.

Here µ = n+m can be replaced with m.

32

Proof. Set ρ = Λ = 2p/cµ, γ = 4p2/µc2, and ∆ = 2p2/c. Then the (k + 1)-query FLPCP resulting
from Theorem 5.4 has soundness error cµ/p and is bounded by

(
µ(p−1)2

4 , µ(p−1)
2

4 , . . . , µ(p−1)
2

4 , p
2(p−1)
c2

)
.

In particular, assuming p is reasonably large (say p > max{c, 3}), it is (b − 1)-bounded for
b =

(
µp2

4 , µp
2

4 , . . . , µp
2

4 , p
3

c2

)
. Applying Theorem 5.5, we obtain a DPP with soundness error 2cµ/p

over any field of size

p′ >

(
µkp2k+3

2k−1c2

)2

· p

cµ
=

µ2k−1p4k+7

22k−2c5
.

Plugging in the 2-query FLPCP from Corollary B.6 (implicit in [DFGK14]), we obtain the
following corollary.

Corollary 5.8 (DPP for Boolean Circuit Satisfiability). Let C : {0, 1}n × {0, 1}m → {0, 1} be a
Boolean circuit of size s which consists of fan-in 2 NAND gates, and let ε be a soundness parameter.
Let p > (4s+n)18

32ε15
be a prime. Then, the language

{
x ∈ {0, 1}n : ∃w ∈ {0, 1}m : C(x,w) = 1

}
has a

promise DPP of length 2s over Fp with soundness error ε, and promise P = {0, 1}n.

5.1 Bounded Embedding (Proof of Theorem 5.4)

In this section we prove Theorem 5.4. We start by describing the construction, which is essentially
identical to the original construction, except that the verifier adds a random bound test query and
checks appropriate boundedness of the answers.

Construction 5.9 (FLPCP Embedding). Given a b-bounded FLPCP ⟨P,V⟩ for R over Fp, we
construct a new FLPCP ⟨P ′,V ′⟩ for R over Fp′ .

• Each proof π ∈ Fm
p for x ∈ Fn

p is interpreted as a proof over Fp′ ⊇ Fp.

• The verifier V ′ samples queries Q ∈ Fk×µ
p according to the original verifier V, as well as a

random query vector u ← Fm
γ , and sets u′ = (0∥u)T ∈ F1×µ

p′ . The query matrix is then

Q′ = (Q∥u′) ∈ F(k+1)×µ
p′ .

• The verifier V ′ accepts answer a′ = (a∥α) ∈ Fk+1
p′ if |a′| ≤ (b∥β) and V accepts a.

5.1.1 Analysis

We prove that Construction 5.9 satisfies the requirements of Theorem 5.4. The completeness of the
construction follows directly from the completeness and boundedness of the underlying FLPCP.

The challenging part is proving soundness of the transformation. The challenge stems from the
fact that a malicious proof may have “unbounded” entries over Fp′ rather than Fp entries (the input,
in contrast, is promised to be in Fn

p). We prove that there are essentially two options for such a
malicious proof:

1. It can be close to a proof over Fp up to relatively small p′ fractions. In this case, we show
that an answer either exceeds the specified bound or behaves as an answer according to some
fixed proof over Fp.

2. It can be far from any proof over Fp, in which case we prove that it will be caught by the
added random bound test.

33

Following this high-level approach requires a careful analysis and characterization of closeness to
p′-fractions. We proceed to the proof.

Definition 5.10 (∆-Closeness). We say that a ∈ Z is ∆-close to a (p′, γ)-fraction if there exists
r ∈ F∗γ, such that |[ar]p′ | ≤ ∆. We refer to r as the denominator of the fraction. We say that a
vector π∗ ∈ Fµ

p′ is ∆-close to a (p′, γ)-fraction if each of its entries is ∆-close to a (p′, γ)-fraction.

We next show that if a (malicious) proof vector π∗ is ∆-close to a (p′, γ)-fraction and satisfies a
certain “small-lcm” condition, then it is equivalent to an “honest" proof whose entries reside in Fp.
We then show that any other case is discovered with overwhelming probability by the random bound
test.

Proofs close to (p′, γ)-fractions with a small lowest common multiple (lcm). We prove
the following claim:

Claim 5.11. Assume π∗ is ∆-close to a (p′, γ)-fraction, with denominators r1, . . . , rm, and further
assume that L := lcm(r1, . . . , rm) ≤ Λ. Then there exists a vector π ∈ Fm

p , such that for any q ∈ Fµ
p

and x ∈ Fn
p :

|[⟨q, (x∥π∗)⟩]p′ | ≤ ∥b∥∞ ⇒ [⟨q, (x∥π∗)⟩]p′,p = [⟨q, (x∥π)⟩]p .

Proof. Throughout, let π∗i = dip
′+ei
ri

, where ri ∈ F∗γ and |ei| ≤ ∆ and for any q = (qx∥qπ) ∈ Fn+m
p

and x ∈ Fn
p write:

⟨q,x∥π∗⟩ = ⟨qx,x⟩+ α(qπ)

L
p′ +

∑
i∈[m]

qπi ·
ei
ri

,

where α(qπ) is an integer and L = lcm(r1, . . . , rm).

Define πi := eir
−1
i mod p. We consider two cases:

• If α(qπ)/L ∈ Z, then ⟨q, (x∥π∗)⟩ = ⟨qx,x⟩+
∑

i∈[m] q
π
i ·

ei
ri

mod p′.

Moreover,
∣∣∣⟨qx,x⟩+∑i∈[m] q

π
i ·

ei
ri

∣∣∣ ≤ µp
2∆ < p′/2. Thus,

[⟨q, (x∥π∗)⟩]p′,p =

⟨qx,x⟩+ ∑
i∈[m]

qπi ·
ei
ri

p′,p

=

⟨qx,x⟩+ ∑
i∈[m]

qπi ·
ei
ri

p

=

⟨qx,x⟩+ ∑
i∈[m]

qπi πi

p

= [⟨q, (x∥π)⟩]p .

• If α(qπ)/L /∈ Z, then

| [⟨q, (x∥π∗)⟩]p′ | ≥ p′/L− µ
p

2
∆ ≥ p′/Λ− µ

p

2
∆ > µ

(p
2

)2
≥ ∥b∥∞ .

34

Catching proofs that are far from (p′, γ)-fractions. We show that if π∗ is not close to a
(p′, γ)-fraction, then the corresponding answers fall almost always outside the threshold bounds.

Claim 5.12. If π∗ is not ∆-close to a (p′, γ)-fraction, then:

Pr
u←Fγ

[
| [⟨u,π∗⟩]p′ | ≤ β

]
≤ 2β

∆γ
=

2µp

∆
.

Proof. Assume π∗ has an entry that is not ∆-close to a (p′, γ)-fraction, and assume without loss of
generality it is π∗1. Then the p′-modular distance between π∗1u and π∗1u

′, for any u ̸= u′ ∈ Fγ , is
at least ∆; i.e., | [π∗1(u− u′)]p′ | > ∆. This implies that, considering u = (u1, . . . , um) ← Fm

γ , and
conditioning on any v =

∑m
i=2 uiπ

∗
i , there exist at most 2β/∆ values for u1 such that | [⟨u,π∗⟩]p′ | =

| [v + u1π
∗
1]p′ | ≤ β. Since u1 is uniform on Fγ independently of v, the above occurs with probability

at most 2β/∆γ as required.

From hereon, we assume that π∗ is ∆-close to a (p′, γ)-fraction with denominators r1, . . . , rm.

Catching proofs with large denominators. We show that if the denominators r1, . . . , rm are
large, this will be discovered by the bound test.

Claim 5.13. Let r = maxi{ri}, then:

Pr
u←Fγ

[
| [⟨u,π∗⟩]p′ | ≤ β

]
≤ 1

r
+

1

γ
.

Proof. Assume without loss of generality r1 = r, and recall that π∗1 = d1p′+e1
r1

, where r1 ≤ γ,
|e1| ≤ ∆, and also assume without loss of generality that gcd(d1, r1) = 1. First, note that the
p′-modular distance between any two multiples α p′

r1
and α′ p

′

r1
, such that α ̸= α′ mod r1, is at least

p′/r1. Now, recalling that |u1 e1r1 | ≤
γ
2
∆
r1

for any u1 ∈ Fγ , and that 2β < (p′− γ∆
2)/γ ≤ (p′− γ∆

2)/r1, it
follows that, conditioned on any v =

∑m
i=2 uiπ

∗
i , there exists at most one value for α := u1d1 mod r1

such that
∣∣[⟨u,π∗⟩]p′∣∣ = ∣∣∣∣[v + u1

d1q+e1
r1

]
p′

∣∣∣∣ ≤ β. However, recalling that d1 is invertible mod r1,

we have:

Pr
u1←Fγ

[
u1 = αd−11 mod r1

]
≤
⌊ γr1 ⌋+ 1

γ
≤ 1

r1
+

1

γ
.

Catching proofs with small denominators and large lcm. Next, we show that if maxi{ri}
is small, but the lcm is large, then this will be caught by the bound test with high probability.

Claim 5.14. Assume that maxi{ri} ≤ ρ, and L := lcm(r1, . . . , rm) ≥ Λ then:

Pr
u←Fγ

[∣∣[⟨u,π∗⟩]p′∣∣ ≤ β
]
≤ mρ

γ
+

1

Λ
.

Proof. First, since maxi{ri} ≤ ρ and L ≥ Λ, we can choose a subset S ⊆ {r1, . . . , rm} with
ℓ = lcm(S), such that Λ ≤ ℓ ≤ Λρ. Let us assume without loss of generality that S = {r1, . . . , rs}
for some s ≤ m, and that gcd(ri, di) = 1, where di is such that π∗i = dip

′+ei
ri

, and |ei| ≤ ∆. Now,

35

note that the p′-modular distance between any two multiples αp′

ℓ and α′ p
′

ℓ , such that α ̸= α′ mod ℓ,
is at least p′/ℓ ≥ p′/Λρ. In addition, for any u ∈ Fm

γ ,∣∣∣∣∣∣
∑
ri∈S

ui ·
ei
ri

∣∣∣∣∣∣ ≤ s
γ

2
∆ ≤ m

γ

2
∆ .

Thus, since 2β < p′/Λρ−mγ
2∆, it follows that, conditioned on any v =

∑
ri /∈S uiπ

∗
i , there exists at

most one value for α(u) := ℓ
∑

ri∈S
uidi
ri

mod ℓ such that

∣∣⟨u,π∗⟩]p′∣∣ =
∣∣∣∣∣∣
∑
ri∈S

ui ·
dip
′ + ei
ri

+ v

p′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
α(u)

ℓ
p′ +

∑
ri∈S

ui ·
ei
ri

+ v

p′

∣∣∣∣∣∣ ≤ β .

We will now show that, for u ← Fm
γ , the distribution of α(u) is mρ

γ -statistically close to being
uniform modℓ, which will conclude the proof, since ℓ ≥ Λ.

Let us write

α(u) := ℓ
∑
ri∈S

uidi
ri

,

and consider the factorization ℓ = f1 · · · · · fs, such that:

1. f1, . . . , fs are pairwise co-prime,

2. gcd
(
fi,

ℓdi
ri

)
= 1,

3. fi ≤ ri.

To find such a factorization, just factor ℓ to primes pas1 , . . . , pass , and take fi to be all the prime
powers that are maximal in ri, and were not already taken for j < i (we assume without loss of
generality that each ri has such maximal power, or we can drop it without changing the lcm). The
fact that gcd

(
fi,

ℓdi
ri

)
= 1 then follows from maximality, as well as the fact that gcd(ri, di) = 1.

We will now show that (α(u) mod f1, . . . , α(u) mod fs) is sρ
γ -statistically close to uniform, from

which the result will follow by the Chinese Remainder Theorem. Indeed, α(u) mod fi = v+ui · ℓdiri
,

where ui is independent of v and ℓdi
ri

is invertible modfi. Thus, it suffices to show that ui mod fi is
ρ
γ -statistically close to being uniform modfi, and since u1, . . . , us are independent, we will get an
overall bound of sρ

γ as required. Indeed, for any φ mod fi:

Pr
ui←Fγ

[ui mod fi = φ] ∈

(
⌊ γfi ⌋
γ

,
⌊ γfi ⌋+ 1

γ

)
⊆
(
1

fi
− 1

γ
,
1

fi
+

1

γ

)
.

Thus, ui mod fi is at most fi
γ ≤

ri
γ ≤

ρ
γ far from uniform. This concludes the proof.

36

Summary. The above covers all cases, allowing us to complete the proof of Theorem 5.4:

• If π∗ is ∆-far from any (p′, γ)-fraction, then by Claim 5.12, the soundness error is at most
2µp/∆.

• If π∗ is ∆-close to a (p′, γ)-fraction, with denominators r1, . . . , rm and L := lcm(r1, . . . , rm) ≤
Λ, then by Claim 5.11, the soundness error is at most ε, as in the underlying FLPCP.

• If π∗ is ∆-close to a (p′, γ)-fraction, with denominators r1, . . . , rm and max {ri} ≥ ρ, then by
Claim 5.13, the soundness error is at most 1/ρ+ 1/γ.

• Otherwise π∗ is ∆-close to a (p′, γ)-fraction, with denominators r1, . . . , rm, max {ri} < ρ, and
L := lcm(r1, . . . , rm) > Λ. Then by Claim 5.14, the soundness error is at most mρ/γ + 1/Λ.

Remark 5.15 (Non-promise FLPCP). The above transformation results in a bounded promise
FLPCP. In particular for instances x ∈ Fn

p′ \ Fn
p there is no soundness guarantee. For Boolean

(rather than arithmetic) circuits, we can turn the construction to a non-promise one, where any
input x /∈ {0, 1}n is rejected with probability 1 − O(1/p), at the cost of increasing the proof size
additively by n2 and adding two queries. This is done using a Hadamard tensor test.

Specifically we append the vector x⊗x to the proof. Then, using two additional queries we obtain
⟨x, r⟩ and ⟨x⊗ x, r ⊗ r⟩ for a random r ← Fn

p , which allows testing the tensor structure. We can
then use another random linear test to check that xi = x2i to verify Booleanity. The result of this test
in the honest case is always meant to be 0 and hence can be folded into the other queries (similarly
to the proof of Theorem 4.6). Note that the additional (honest) answers are all n2p-bounded. A
more detailed analysis of this Hadamard test can be found in [BIOW20].

5.2 Query Packing (Proof of Theorem 5.5)

In this section we prove Theorem 5.5. We start by describing the construction, which is a gen-
eralization of the packing construction from [BCIOP22]. In particular, we pack the queries Q by
evaluating the linear function EQ(w) = wTQ. The only adaptation is in the choice of the rectangle
from which w is chosen at random, which is derived from the bound vector b. At the end of the
section, we explain how the construction differs from that of [BIOW20].

Fact 5.16. There is an efficient algorithm for the following problem:
• Input: Vectors w, b ∈ Zk

+ and integer a ∈ Z such that each wi > 2
∑

j<i(bj − 1)wj.
• Output: A vector a ∈ Zk such that |ai| ≤ bi − 1 and a = [⟨a,w⟩]Z if such a exists.

Construction 5.17 (Query Packing for FLPCPs). Let (P,V) be a k-query (b−1)-bounded FLPCP
over Fp with proof length m and let ℓ ≤ p/(2b)k. Define (P ′,V ′) over Fp as follows.

• The verifier V ′ runs the FLPCP verifier V to obtain queries Q ∈ Fk×(n+m)
p , picks a sequence of

k random field elements w = (w1, . . . , wk) where

wi ← [wi, wi] := [((2b)i−1 − 1)ℓ+ 1, (2b)i−1ℓ] .

The query vector is [QTw]Z.

• The prover’s P ′ proof is the proof π generated the underlying P.

• The verifier V ′ obtains an answer a ∈ Fp, applies the subset sum algorithm of Fact 5.16 to find
a such that a = [⟨a,w⟩]Z (if none exists it rejects) and accepts if the verifier V accepts a.

37

5.2.1 Analysis of Construction 5.17

We start by proving completeness and then prove soundness.

Claim 5.18 (Completeness). For p > 2 ⟨b− 1,w⟩, the verifier V ′ accepts any honest (x∥π). Fur-
thermore, (2b)kℓ ≥ 2 ⟨b− 1,w⟩.

Proof. First, our choice of w satisfies wi > 2
∑

j<i(bj − 1)wj . For this, we prove by induction that
wi > 2

∑
j<i(bj − 1)wj . The base of the induction is that w1 > 0. As for the induction step,

2
∑

j<i+1

(bj − 1)wj =

2
∑
j<i

(bj − 1)wj

+ 2(bi − 1)wi

< wi + 2(bi − 1)wi

= ((2b)i−1 − 1)ℓ+ 1 + 2(bi − 1)(2b)i−1ℓ

= (2b)i−1ℓ− ℓ+ 1 + (2b)iℓ− 2(2b)i−1ℓ

< ((2b)i − 1)ℓ+ 1

= wi+1

By the boundedness of the underlying FLPCP, it follows that for any honest proof (x∥π), and w
chosen by the verifier V ′,

[⟨QTw, (x∥π)⟩]p = [⟨Q(x∥π),w⟩]p = [⟨Q(x∥π),w⟩]Z, ,

which follows from the fact that |Q(x∥π)| ≤ b− 1, |w| ≤ w, and p > 2 ⟨b− 1,w⟩.
Accordingly, the verifier V ′ applies the subset sum algorithm and obtains [Q(x∥π)]Z.

Claim 5.19 (Soundness). The construction has soundness error at most ε+ bkℓ−1, where ε is the
soundness error of the underlying FLPCP.

Proof. Fix any x and prover strategy π∗ ∈ Fm
p . We say that Q is invalid if it does not hold that

|[Q(x∥π∗)]p| ≤ b − 1. We first show that conditioned on any choice of invalid queries Q, the
probability, over the choice of w that V ′ accepts is bounded by bk/ℓ. Fix any candidate answers a
such that |a| ≤ b− 1. Then,

Pr
w

[⟨QTw, (x∥π∗)⟩ = ⟨a,w⟩] = Pr
w

[⟨Q(x∥π∗),w⟩ = ⟨a,w⟩] = Pr
w

[⟨Q(x∥π∗)− a,w⟩ = 0] ≤ ℓ−1 .

Indeed, since Q is invalid ⟨Q(x∥π∗)− a,w⟩ is a non-trivial degree-one polynomial in w = (w1, . . . , wk)
and each wi is picked uniformly at random from a set of size ℓ.

By a union bound, the probability that there exists a such that |a| ≤ b−1 and ⟨QTw, (x∥π∗)⟩ =
⟨a,w⟩ is at most (2b)k/ℓ. Accordingly, for invalid queries, the subset sum algorithm will fail to find
a solution and V ′ will reject except with probability (2b)k/ℓ.

It is left to note that conditioned on valid queries Q the corresponding answers Q(x∥π∗) are
correctly decoded by the subsetsum algorithm, in which case the soundness of (P,V) kicks in. (In
the case that (P,V) is a promise FLPCP, then this holds within the promise and the resulting DPP
is a promise DPP).

Overall, choosing ℓ = (2b)k/ε, concludes the proof of Theorem 5.5.

38

Remark 5.20 (Packing in [BIOW20]). The packing transformation in [BIOW20] also deals with
general bounded FLPCPs, but is different. First, rather than using the liner function EQ(w) = wTQ,
it uses the multi-linear function EQ(w) = (w0,w1, . . . ,wk−1)Q, where w is sampled from an
appropriate rectangle. The corresponding lower bound on the field size p is ≈ min{b1, . . . , bk} ·
((2b)k/ε)k−1, compared to our ((2b)k)2/ε. In particular, for k ≤ 2, their transformation is superior
by a factor of ≈ max{b1, . . . , bk}. In contrast, for any k ≥ 3, which is the setting relevant to this
work, our transformation is superior by a factor of ((2b)k)k−3/εk−2.

5.3 Strong Soundness

The notion of strong soundness [BCIOP22] essentially says that any proof is either very close to ac-
cepting or very far from accepting. This feature intuitively guarantees that the verifier’s acceptance
is almost uncorrelated to its specific queries, which is in turn important for establishing reusability
of verifier queries in the setting of privately verifiable succinct arguments.

In the context of bounded FLPCPs, we follow [BIOW20] and require that strong soundness
holds for verifiers that enforce the bound. In particular, whether or not the bound is satisfied is
almost uncorrelated to the specific verifier queries and almost only depends on the proof itself. This
guarantees that strong soundness is preserved by the packing transformation.

Definition 5.21 (Strong Soundness). A b-bounded FLPCP has strong soundness error ε if its
verifier only accepts answers within the bound b, and any input-proof pair (x∥π) is either accepted
with probability at least 1− ε or at most ε.

Claim 5.22. The packing transformation of bounded FLPCPs into DPPs given by Theorem 5.5
preserves strong soundness up to a factor of 2.

An analogous claim is proven in [BIOW20] for the packing transformation there. The proof in
our setting is essentially identical, we give it here for completeness.

Proof of Claim 5.22. Fix any instance-proof pair (x∥π∗). We consider two cases:

• The underlying FLPCP verifier V accepts with probability at least 1− ε: Then, with
probability at least 1 − ε it both accepts and the answers are b-bounded. In this case, the
DPP verifier V ′ also accepts the corresponding packed answer.

• The underlying FLPCP verifier V accepts with probability at most ε: This means
that except with probability ε, either the answer exceeds the bound b or V rejects. However,
whenever the answer exceeds the bound b, the corresponding query is invalid (as termed in
the proof of Claim 5.19) and the DPP verifier V ′ accepts with probability at most ε, so overall
in this case V ′ accepts with probability at most 2ε.

Does Theorem 5.4 imply strong soundness? The only question left is whether the bounded
(promise) FLPCP from Theorem 5.4 has strong soundness. As is, it is in fact not strongly sound.
For instance, if the prover takes an honest proof π and resets π∗1 = ⌈p

′+π1

2 ⌉, then an answer to query
q will fall outside/inside the bound according the the parity of q1. Nevertheless, we prove that by
having k′ = O(log ε−1) bound tests u1, . . . ,uk′ , rather than a single one, (and slightly relaxing the
bound for non-test queries) we get strong soundness ε, assuming that the (unbounded) FLPCP we
start from has strong soundness ε.

39

Claim 5.23 (Bounded Embedding with Strong Soundness). Let R ⊆ Fn
p × Fh

p be a relation over
Fp. Also let p, α, β, γ, µ,∆,∈ N be such that p and γ are primes, µ = n + m ≤ p ≤ ∆/4µ, and
α = µ∆p−1

2 , β = µγ
2
p−1
2 . Then, for any prime

p′ > µγ∆max {γ/µ, p} ,

any k-query FLPCP over Fp for R with strong soundness error ε and proof length m, can be
transformed into a (k + k′)-query, (αk∥βk′)-bounded promise FLPCP over Fp′ for R with promise
P = Fn

p and strong soundness error

ε′ = max

{
ε,

(
1

2
+

1

γ

)k′
}

.

The proof length and prover complexity are preserved and the verifier complexity is preserved up to
a poly(log p′, k, k′) additive term.

Corollary 5.24. Any constant-query FLPCP over Fp with strong soundness ε can be transformed
into a promise DPP with strong soundness error ε over Fp′ where p′ = pO(log ε−1).

Proof of Claim 5.23. The construction is the same as Construction 5.9, with two exceptions:

• Instead of a single bound test u← Fγ , we have k′ bound tests.

• Instead of the bound vector (b∥β) enforced in the original construction, the verifier enforces
(αk∥βk′).

Going back to the proof of Theorem 5.4, we show that for any π∗ ∈ Fm
p′ exactly one of the following

holds:

1. There exists a vector π ∈ Fm
p , such that for any x ∈ Fn

p , q ∈ Fµ
p :

•
∣∣∣[⟨q, (x∥π∗)⟩]p′∣∣∣ ≤ µp−1

2 ∆.

• [⟨q, (x∥π∗)⟩]p′,p = [⟨q, (x∥π)⟩]p
2. Answers to random queries are not β-bounded with constant probability:

Pr
u←Fγ

[∣∣∣[⟨u,π∗⟩]p′∣∣∣ ≤ β
]
≤ 1

2
+

1

γ
.

We consider three cases:

1. If π∗ is not ∆-close to a (γ, p′)-fraction, then by Claim 5.12

Pr
u←Fγ

[∣∣∣[⟨u,π∗⟩]p′∣∣∣ ≤ β
]
≤ 1

2
+

1

γ
.

2. If π∗ is ∆-close to a (γ, p′)-fraction, and maxi {ri} ≥ 2, then by Claim 5.13,

Pr
u←Fγ

[∣∣∣[⟨u,π∗⟩]p′∣∣∣ ≤ β
]
≤ 2µp

∆
≤ 1

2
,

where the last inequality follows by the fact that ∆ ≥ 4µp.

40

3. Otherwise, π∗ is ∆-close to a (γ, p′)-fraction, and maxi {ri} = lcm{ri} = 1. Here, the first
case follows directly from the analysis of Claim 5.11 (where α(q) ∈ Z for every q).

It is left to note that in the first case, the strong soundness of the underlying FLPCP kicks in, and
hence according to π∗, the verifier either accepts with probability 1− ε, or rejects with probability

1− ε. In the second case, the verifier rejects except with probability 1−
(
1
2 + 1

γ

)k′
.

6 From DPP to Hardness of Approximation

Our hardness results stem from the simple observation that 1-query linear PCPs are essentially
equivalent to MAXLIN (the problem of finding an assignment that maximizes the number of
linear equations satisfied). More precisely, we have the following proposition.

Proposition 6.1 (1-Query Linear PCPs and MAXLIN). Suppose a language L has a 1-query
linear PCP over a field F with proof length m(·), randomness complexity r(·), completeness c,
soundness error s, and accepting set of size t. Then there exists a O(t · 2r(n))-time reduction
from L to gapc/t,s/t-MAXLIN(F) that maps instance x of L of size n to instances (A, b) of
gapc/t,s/t-MAXLIN(F) with m(n) variables and t · 2r(n) equations (i.e, A ∈ Fm(n)×t·2r(n) and
b ∈ Ft·2r(n)).

Conversely, if L is reducible in polynomial time to gapc,s-MAXLIN(F) where an instance x of
size n is mapped to an instance (A, b) with m(n) variables and 2r(n) equations, then L has a 1-
query linear PCP over the field F with proof length m(·), randomness complexity r(·), completeness
c, soundness error s and accepting set of size 1.

Proof. Suppose a language L has a 1-query linear PCP over field F with proof length m(·), random-
ness complexity r(·), completeness c, soundness error s, and accepting set of size t. The reduction
from L to gapc/t,s/t-MAXLIN(F) runs as follows: On input x (an instance of L) of length n,
run the 1-query linear PCP verifier V for each random string R ∈ {0, 1}r(n) to obtain the linear
query q(x, R) and answer set A(x, R). The output gapc/t,s/t-MAXLIN(F) instance Φ consists of
all equations of the form ⟨q(x, R), z⟩ = b for each b ∈ A(x, R) and R ∈ {0, 1}r(n). It is not hard to
see that if x ∈ L then Φ is at least c/t-satisfiable and if x /∈ L then Φ is at most s/t-satsifiable.

Furthermore, If we start with a DPP for L instead of 1-query linear PCP, the above reduction
produces MAXLIN instances A · z = b where only b depends on the input instance x and the
matrix A only depends on the input length n = |x|. We summarize this in the following proposition.

Proposition 6.2 (DPP and MAXLIN). Suppose a language L has a DPP over a field F with
proof length m(·), randomness complexity r(·), completeness c, soundness error s, and accepting set
of size t. Then there exists a O(t · 2r(n))-time reduction from L to gapc/t,s/t-MAXLIN(F) that
maps instance x of L of size n to instances (A, b) of gapc/t,s/t-MAXLIN(F) with m(n) variables
and t · 2r(n) equations (i.e, A ∈ Fm(n)×t·2r(n) and b ∈ Ft·2r(n)) and A is only a function of the input
length |x| and only b is a function of the input x

Such reductions are said to be reductions with universal factor graphs [FJ12, ABH21].

41

For a constant C > 1, let 3SATC refer to the set of satisfiable 3CNF formulas over n variables
with at most Cn clauses. The constant-soundness variant of our small-field DPP construction
(Theorem 4.3) implies that there is ε < 1 such that over every finite field F of order q > 2, 3SATC

has a DPP with proof length Oq(n), randomness complexity log n + Oq(1), perfect completeness,
soundness error ε and accepting set A of size 2. For F2 we have a constant gap with A of size 1.
Plugging this into the above proposition yields the following theorem.

Theorem 6.3 (Hardness of Approximation for MAXLIN). There is a constant 1/3 < δ < 1/2 such
that for every finite field F other than F2 the following holds. There is a polynomial time reduction
from 3SATC to gap1/2,δ-MAXLIN(F) that transforms a 3CNF formula Φ over n variables and at
most Cn clauses into a MAXLIN instance Φ with a universal factor graph with over N = O(n)
variables and M = O(n) equations.

For F2, we obtain a polynomial reduction from 3SATC to gap5/8,5/8−ε-MAXLIN(F2) for some
constant ε ∈ (0, 1) that transforms a 3CNF formula Φ over n variables and at most Cn clauses into
a MAXLIN instance Φ with over N = O(n) variables and M = O(n) equations.

We remark that this theorem immediately implies that there is some constant c > 1 such that
it is NP-hard to approximate MAXLIN(F) to within a factor better than c, and similarly for the
nearest codeword problem NCP(F).

We note that these are not the best inapproximability results for either of these problems. For
instance, for MAXLIN, H̊astad [H̊as01] and Austrin, Brown-Cohen, and H̊astad [ABH21] obtain
the optimal inapproximability factor of |F|(1 + ε) for every ε > 0 even for MAXLIN instances
which have at most 3 variables per equation.

This theorem is nevertheless interesting as it produces MAXLIN instances with O(n) variables
while all previously known reductions involve at least a multiplicative logarithmic overhead. This
in particular yields the following corollary.

Corollary 6.4 (Exponential-Time Hardness of Approximation for MAXLIN under ETH). There
is a universal constant c > 1 such that for every field F, the following holds. Assuming the expo-
nential time hypothesis (ETH) (Hypothesis 3.6), there does not exist any 2o(n)-time algorithm that
can approximate MAXLIN(F) to a factor better than c.

To the best of our knowledge, this is the first (fully) exponential time hardness of an approx-
imation problem obtained assuming the ETH. All previous exponential hardness results required
an assumption at least as strong as the gap-ETH. This is because all prior reductions use the PCP
Theorem which incurs at least a multiplicative logarithmic overhead (c.f., discussion in [Din16, Sec-
tion 1, Page 4]). Previous reductions used the stronger gap-ETH instead to obtain exponential time
hardness instead. We get around this logarithmic multiplicative overheard by constructing a simpler
PCP (more precisely, DPPs or 1-query linear PCPs) which avoids the use of the PCP Theorem.

7 From DPP to Succinct Arguments

In this section, we present several compilers from DPPs to different kinds of efficient proof systems.
Most of the results of this section in fact apply even to the more general notion of LPCP (which
follows also from promise DPP), though in the rest of this section we stick to the DPP terminology.

We discuss three kinds of compilers. First, in Section 7.1, we use the previous compiler
from [BCIOP22] to convert a DPP into a designated-verifier succinct non-interactive arguments

42

(SNARG) in the preprocessing model, where the proof consists of just a single ciphertext of a
suitable encryption scheme. Then, in Section 7.2, we present a new compiler that has even better
succinctness features in the generic group model, at the cost of requiring interaction and non-reusable
(but input-independent) preprocessing. Finally in Section 7.3, we leverage the “fully linear” feature
of DPPs to obtain succinct commit-and-prove arguments.

7.1 From DPP to Single-Ciphertext SNARGs

In this section we use the compiler of Bitansky, Chiesa, Ishai, Ostrovsky and Paneth [BCIOP22] to
combine a DPP for a language L with a “linear-only” encryption scheme, obtaining a designated-
verifier SNARG for L in the preprocessing model, where the proof consists of a single ciphertext
(of the linear-only encryption scheme). We recall the formal definition of SNARGs and linear-only
encryption schemes in Appendix D.

We state the main implication below from [BCIOP22], and then compare our DPP-based instan-
tiation with the previous approaches from [BCIOP22] based on traditional PCPs and the approach
of Barta, Ishai, Ostrovsky, and Wu [BIOW20] based on the Hadamard linear PCP. Throughout this
section, we consider DPPs for NP where there is an explicit polynomial-time (uniform) prover P
that takes as input a statement x and a witness w, and outputs a DPP proof π. We write ⟨P,V⟩ to
denote such a DPP, where P denotes the prover and V denotes the verifier. Similarly, we require
that there is an efficient polynomial-time algorithm for deciding membership in the accepting set A
of the DPP.

Theorem 7.1 (SNARGs from Linear-Only Encryption [BCIOP22]). Let R = {Rλ}λ∈N be an NP
relation and let ⟨P,V⟩ = {⟨Pλ,Vλ⟩}λ∈N be a DPP for R over F = {Fλ}λ∈N with completeness
c = c(λ) and soundness error s = s(λ) against affine strategies (see Remark 7.2). Suppose there
exists a linear-only encryption scheme over F. Then, there exists an adaptively-sound single-theorem
designated-verifier preprocessing SNARG with completeness c(λ) and soundness error s(λ)+negl(λ).
The SNARG proof consists of a single ciphertext for the linear-only encryption scheme.

Moreover, if the underlying DPP satisfies strong soundness (Definition 5.21) against affine
strategies and the encryption scheme is linear-only with interactive extraction (see [BCIOP22, Def-
inition C.6]), then there exists a multi-theorem preprocessing SNARG with completeness c(λ) and
soundness error Q(λ) · s(λ) + negl(λ), where Q = Q(λ) is the number of verification queries the
adversary makes in the multi-theorem soundness experiment.

Remark 7.2 (Soundness for Affine Strategies). The [BCIOP22] compiler (Theorem 7.1) requires
that the underlying linear interactive proof (i.e., the DPP in our setting) is sound against affine
strategies. Let V be a DPP over F with input length n and proof length m. Soundness against affine
strategies then says that for every x /∈ L and every affine strategy π∗ ∈ Fm, t∗ ∈ F,

Pr
(q,A)←V

[⟨x∥π∗, q⟩+ t∗ ∈ A] ≤ s,

where s ∈ [0, 1] is the soundness error. We note that we can transform any DPP with soundness
error s into a DPP with soundness error s+δ against affine strategies, where δ = Pr(q,A)←V [q = 0].
First, we observe that

Pr
(q,A)←V
r←F\{0}

[r ∈ A | q ̸= 0] ≤ s

1− δ
.

43

The idea now is to take (q, A) ← V and define the new query q′ ← αq where α ← F \ {0} and
answer set A′ ← αA := {αr : r ∈ A}. To see that this provides soundness against affine strategies,
take any x /∈ L and consider any affine strategy (π∗, t∗). We consider two possibilities:

• If t∗ = 0, then soundness of the DPP says that Pr(q,A)←V [⟨x∥π∗, q⟩ ∈ A] ≤ s. Correspond-
ingly, for any α ∈ F \ {0}, Pr(q,A)←V [⟨x∥π∗, αq⟩ ∈ A′] ≤ s.

• If t∗ ̸= 0, then

Pr[⟨x∥π∗, αq⟩+ t∗ ∈ A′] ≤ Pr[q = 0] + Pr[⟨x∥π∗, αq⟩+ t∗ ∈ A′ | q ̸= 0] · Pr[q ̸= 0]

= δ + (1− δ) Pr[⟨x∥π∗, q⟩+ α−1t∗ ∈ A | q ̸= 0]

≤ δ + s.

where all probabilities are taken over (q, A)← V and α← F \ {0}.

It the DPP satisfies strong soundness (Definition 5.21), then the same construction and analysis
can be used to obtain a DPP with strong soundness against affine strategies (and strong soundness
error s+ δ).

Remark 7.3 (Comparison with Previous SNARGs). The designated-verifier preprocessing SNARG
from Theorem 7.1 has the appealing property that the proof consists of just a single ciphertext of
the underlying linear-only encryption scheme. We briefly compare against previous approaches for
obtaining similar SNARGs with single-ciphertext proofs:

• The [BCIOP22] approach using classical PCPs. The construction of Bitansky, Chiesa, Ishai,
Ostrovsky and Paneth [BCIOP22] applies a packing transformation to a classical PCP to
obtain a 1-query (input-oblivious) linear PCP. This construction has high concrete cost (due
to the reliance on classical PCPs) and more significantly, does not satisfy strong soundness
(Definition 5.21). The lack of strong soundness means that the resulting SNARG obtained
by applying the [BCIOP22] compiler does not satisfy reusable soundness (i.e., soundness no
longer holds if the prover has oracle access to the verifier).

• The [BIOW20] approach based on packing the Hadamard linear PCP. Barta, Ishai, Ostrovsky,
and Wu [BIOW20] apply a packing transformation to the Hadamard linear PCP to obtain
a DPP that satisfies strong soundness. However, since the [BIOW20] construction relies on
the Hadamard linear PCP as its starting point, the size of the query in the resulting DPP is
quadratic in the size of the circuit. Correspondingly, this leads to a succinct argument where
the common reference string is quadratic in the circuit size.

In this work, we show how to construct a DPP with linear-size proofs by combining the 2-query
FLPCP for Boolean circuit satisfiability (Corollary B.6) with our embedding and packing trans-
formations (Corollary 5.7). In conjunction with an encryption scheme that satisfies an interactive
linear-only assumption (see [BCIOP22, Appendix C]), this yields a SNARG with reusable soundness
and a linear-size CRS.

7.2 From DPP to Laconic Arguments with Preprocessing

A disadvantage of the generic compiler from Theorem 7.1 is that it requires a linear-only encryption
scheme. Concretely, this leads to constructions with longer proofs (when instantiated with can-
didate linear-only encryption schemes based on decisional composite residuosity [Pai99] or lattice

44

assumptions [Reg09]), or the construction imposes requirements on the size of the DPP response
(when instantiated with group-based assumptions). While the group-based instantiations yields the
most concretely-succinct constructions (c.f., [BIOW20]), this instantiation require that the DPP
response be sufficiently small so that computing discrete log is feasible (either via the Pollard kan-
garoo algorithm [Pol00] or through precomputing a lookup table). This small-response property
does not hold for the DPP with linear-size proofs from Corollary 5.8.

Here, we show an alternative approach to use a DPP to directly construct an interactive laconic
argument in the preprocessing model where the prover’s message consists of a single group element
and a single field element. Similar to [BIOW20], we obtain this construction by embedding a DPP
“in the exponent” of a pairing-free group. Security of our construction follows in the generic group
model.

Definition 7.4 (Laconic Argument). Let R = {Rλ}λ∈N be a family of NP relations indexed by
a security parameter λ ∈ N, and let L = {Lλ}λ∈N be the associated family of NP languages. A
laconic argument for R is an interactive protocol ⟨P,V⟩ between an efficient prover P and an
efficient verifier V. For a statement x and a witness w, we write ⟨P(1λ, x, w),V(1λ, x)⟩ to denote
the verifier’s output in an execution of the protocol where the prover’s input is (1λ, x, w) and the
verifier’s input is (1λ, x). The laconic argument should satisfy the following properties:

• (Completeness:) for every λ ∈ N and every (x,w) ∈ Rλ,

Pr[⟨P(1λ, x, w),V(1λ, x)⟩ = 1] ≥ c(λ)

where c ∈ [0, 1] is called the completeness parameter. By default, we assume perfect correct-
ness, that is, c = 1.

• (Soundness:) for every λ ∈ N, every x /∈ Lλ, and every efficient (and possibly non-uniform)
prover P∗

Pr[⟨P∗(1λ, x),V(1λ, x)⟩ = 1] ≤ ε(λ),

where ε is the soundness error.

• (Laconic prover:) There exists a universal polynomial poly(·) such that for all security param-
eters λ ∈ N and every (x,w) ∈ Rλ, the total communication from the prover to the verifier in
an execution of ⟨P(1λ, x, w),V(1λ, x)⟩ is poly(λ+ |x|+ log |w|).

Definition 7.5 (Laconic Argument with Preprocessing). A laconic argument ⟨P,V⟩ supports (instance-
independent) preprocessing if the protocol can be decomposed into two phases:

• (Offline preprocessing:) In the offline preprocessing step, the verifier computes a long instance-
independent message crs, which we refer to as a common reference string (CRS). The length
of the CRS should satisfy |crs| = poly(λ+ |x|+ |w|).

• (Online verification:) After the offline preprocessing step, the total size of all subsequent mes-
sage (i.e., the “online” phase of the protocol) must be short (i.e., poly(λ+ |x|+ log |w|)).

If the initial message crs can be reused across an arbitrary polynomial number of protocol invoca-
tions (without breaking soundness), we say the laconic argument supports reusable preprocessing.
Otherwise, we say it supports non-reusable preprocessing.

45

Construction 7.6 (Laconic Argument from DPP). Let GroupGen be a prime-order group generator,
and let p = p(λ) be the group order output by GroupGen. Let R = {Rλ}λ∈N be an NP relation and
let L = {Lλ}λ∈N be the associated NP language. Let (P,V) = {(Pλ,Vλ)}λ∈N be a DPP for L
over Fp = {Fp(λ)}λ∈N with input length n = n(λ) and proof length m = m(λ). We construct a
four-message preprocessing laconic argument for L as follows:

• Verifier preprocessing: On input the security parameter λ, the verifier samples (G, p, g)←
GroupGen(1λ) and (q, A) ← Vλ(ρ), where ρ is the verifier randomness for the DPP. The
verifier parses q = (q1, . . . , qn+m) and samples α ← Fp. For i ∈ [m], let hi ← gαqn+i . It
outputs the message crs = ((G, p, g), h1, . . . , hm).

• Prover commitment: On input the initial message crs = ((G, p, g), h1, . . . , hm), the state-
ment x, and a witness w, the prover constructs a DPP proof π ← Pλ(x,w). It outputs the
message h =

∏
i∈[m] h

πi
i .

• Verifier challenge: On input the prover message h ∈ G, the verifier replies with the DPP
randomness ρ.

• Prover response: On input ρ, the prover computes q = (q1, . . . , qn+m)← Vλ(ρ) and replies
with t =

∑
i∈[m] πiqn+i ∈ Fp.

• Verification: On input the statement x and the prover response t ∈ Fp, the verifier first
computes z = t+

∑
i∈[n] xiqi and accepts if h = gαt and z ∈ A.

Theorem 7.7 (Laconic Argument from DPP). Suppose (P,V) is a DPP for L over Fp with input
length n = n(λ), proof length m = m(λ), completeness c = c(λ), and soundness error s = s(λ).
Suppose that for all fixed vectors y ∈ Fn+m

p ,

Pr
(q,A)←Vλ

[⟨q,y⟩ = 0] ≤ 1/2κ.

Then, modeling GroupGen as a generic group (Definition E.1), for all (malicious) provers P∗ making
at most Q = Q(λ) queries to the generic group oracle, Construction 7.6 is a laconic argument in
the non-reusable preprocessing model with parameter error c and soundness error s′ where

s′ ≤ s+Q/2κ + 2Q/p.

Proof. We separately analyze the completeness and soundness of Construction 7.6.

Completeness. Completeness essentially follows by completeness of the underlying DPP. Con-
sider an execution of the protocol on input (x,w) ∈ R. The verifier’s initial message crs =
((G, p, g), h1, . . . , hm), where (q, A) ← Vλ(ρ) and hi = gαqn+i . The prover’s message h is then
h =

∏
i∈[m] h

πi
i = gα

∑
i∈[m] πiqn+i where π ← Pλ(x,w). The verifier replies with the randomness ρ

and the prover responds with t =
∑

i∈[m] πiqn+i. Consider now the final verification procedure. The
verifier now computes

z = t+
∑
i∈[n]

xiqi =
∑
i∈[m]

πiqn+i +
∑
i∈[n]

xiqi = ⟨x∥π, q⟩ .

By completeness of the DPP, z = ⟨x∥π, q⟩ ∈ A with probability at least c. Moreover, by construc-
tion, h = gαt, and so the verifier accepts with probability at least c.

46

Soundness. Take any instance x /∈ Lλ. Let P∗ be a malicious prover. We proceed via a hybrid
argument:

• Hyb0: This is the real soundness experiment where we replace the group (G, p, g) with oracle
access to a generic group G. Specifically, in this experiment, the challenger proceeds as follows:

1. Run (pp, sk, p) ← GGM.Setup(1λ). It samples (q, A) ← Vλ(ρ), α ← Fp, and computes
g ← GGM.Encode(sk, 1) and hi ← GGM.Encode(sk, αqn+i) for each i ∈ [m]. The chal-
lenger sends crs = (pp, p, g, h1, . . . , hm) to P∗.

2. Algorithm P∗ replies with an encoding h ∈ {0, 1}λ. The challenger then sends ρ to P∗
and P∗ replies with t ∈ Fp.

3. The challenger computes z = t+
∑

i∈[n] xiqi.

The output of the experiment is 1 if h and GGM.Encode(sk, αt) encode the same value (checked
using GGM.Add and GGM.Test) and moreover, z ∈ A.

• Hyb1: Same as Hyb0 except the challenger in this experiment will explicitly maintain the
mapping T : {0, 1}λ → Fp of encodings to scalars (i.e., the challenger will implement the
behavior of G). After the malicious prover outputs the encoding h ∈ {0, 1}λ, the challenger
first checks if there exists an entry (h 7→ c) in T for some c ∈ Fp. If not, the challenger
halts with output 0. Otherwise, if there is a mapping (h 7→ c) in T, then the output of the
experiment is 1 if α−1c+

∑
i∈[n] xiqi ∈ A and 0 otherwise.

• Hyb2: In this experiment, we change how the generic group queries are implemented. The
challenger starts by sampling (pp, sk, p) ← GGM.Setup(1λ) as in Hyb1. For each i ∈ [m], the
challenger samples hi ← {0, 1}λ and adds the mapping (hi 7→ q̂n+i) to the table T. It also
samples g ← {0, 1}λ and adds (g 7→ 1) to T. Here, q̂n+i is a formal variable. The challenger
gives crs = (pp, p, g, h1, . . . , hm) to P∗. The challenger then simulates the generic group oracles
as follows:

– GGM.Setup: The challenger always replies with ⊥.

– GGM.Encode: The challenger always replies with ⊥.

– GGM.Add: On input a key k and handles ξ1, ξ2 ∈ {0, 1}λ, the challenger checks that
k = pp and that the handles ξ1, ξ2 are present in T and mapped to formal polynomials
f1, f2 over Fp. If not, the challenger replies with ⊥. If the checks pass, the challenger
samples a fresh handle ξ ← {0, 1}λ and adds the entry ξ 7→ (f1 + f2) to T and replies
with ξ.

– GGM.Test: On input a key k and a handle ξ, the oracle checks that k = pp, that ξ is
present in T and mapped to a formal polynomial f over Fp. If not, the challenger replies
with ⊥. If the checks pass, the challenger outputs “zero” if f ≡ 0 is the identically-zero
polynomial over Fp and “non-zero” otherwise.

In this experiment, every encoding in T maps onto a formal polynomial f in the variables
q̂n+1, . . . , q̂n+m. After the prover outputs the encoding h ∈ {0, 1}λ, the prover proceeds as
in Hyb1. Specifically, the challenger checks that there exists a mapping (h 7→ f) in T, and
moreover, that α−1 · f(αqn+1, . . . , αqn+m) +

∑
i∈[n] xiqi ∈ A where α← Fp and (q, A)← Vλ.

If both checks pass, the output of the experiment is 1, and otherwise, it is 0.

47

For a malicious prover P∗, we write Hybi(P∗) to denote the output distribution of experiment Hybi
with P∗. We now argue that the output distributions of each pair of adjacent distributions are
statistically indistinguishable.

Lemma 7.8. For all adversaries P∗ that make at most Q queries to G,

|Pr[Hyb0(P∗) = 1]− Pr[Hyb1(P∗) = 1]| ≤ Q/p.

Proof. By construction, experiments Hyb0 and Hyb1 are identical unless the following events occur:

• Algorithm P∗ outputs an encoding h ∈ {0, 1}λ that does not exist in the table T.

• After outputting h, algorithm P∗ makes a sequence of generic group oracle queries such that
at the end of the experiment, there exists a mapping (h 7→ c) in the table T for some value c
where α−1c+

∑
i∈[n] xiqi ∈ A.

After P∗ chooses h, the generic group oracle adds encodings to T only if P∗ makes successful queries
to GGM.Encode and GGM.Add. If such a query succeeds, then the challenger samples an encoding
ξ ← {0, 1}λ and adds ξ to T. If P∗ makes at most Q generic group queries, the probability that the
challenger samples ξ = h and adds h to T is at most Q/2λ < Q/p, and the claim follows.

Lemma 7.9. For all adversaries P∗ that make at most Q queries to G,

|Pr[Hyb1(P∗) = 1]− Pr[Hyb2(P∗) = 1]| ≤ Q/2κ +Q/p.

Proof. For each i ∈ [Q], we define a sequence of intermediate hybrids

• Hyb1,i: Same as Hyb1 except the challenger answers the first i queries to G according to the
specification of Hyb2.

By construction, Hyb1,0 is Hyb1 while Hyb1,Q is Hyb2. We now argue that for all i ∈ [Q], the
statistical distance between Hyb1,i−1 and Hyb1,i is 1/2κ + 1/2λ + 1/p. The only difference between
Hyb1,i−1 and Hyb1,i is in how the challenger answers the ith query:

• GGM.Setup: In both Hyb1,i−1 and Hyb1,i, the challenger responds to a setup query with ⊥.

• GGM.Encode: In both experiments, the output of the GGM.Encode query is ⊥ unless the
adversary queries the oracle on k = sk. Since the view of A in the first i − 1 queries in
Hyb1,i−1 is independent of sk (by construction) and sk is uniform over {0, 1}λ, the challenger
in Hyb1,i−1 responds with ⊥ with probability 1 − 1/2λ. In Hyb1,i, the challenger always
responds with ⊥. In this case, the challenger’s response on the ith query in Hyb1,i−1 and
Hyb1,i differ with probability at most 1/2λ < 1/p.

• GGM.Add: The behavior of the addition oracle is identical in Hyb1,i−1 and Hyb1,i.

• GGM.Test: Suppose an adversary makes a query to GGM.Test on k = pp and a handle ξ ∈
{0, 1}λ. First, if k ̸= pp or ξ /∈ T, then the output in both Hyb1,i−1 and Hyb1,i is ⊥. It thus
suffices to consider the case where k = pp and ξ ∈ T. Let (ξ 7→ f) be the mapping in T. By

48

construction, in Hyb1,i−1 and Hyb1,i, the polynomial f is an affine polynomial in the formal
variables q̂n+1, . . . , q̂n+m. Let f0, f1, . . . , fm ∈ Fp be the coefficients. Namely, write

f(q̂n+1, . . . , q̂n+m) := f0 +
∑
i∈[m]

fiq̂n+i.

If f ≡ 0 is the identically-zero polynomial, then the output in both Hyb1,i−1 and Hyb1,i is
“zero.” Thus, consider the case where f ̸≡ 0. In this case, the output in Hyb1,i is always “non-
zero,” whereas in Hyb1,i−1, the output is “zero” if f(αqn+1, . . . , αqn+m) = 0, where α ← Fp

and (q, A) ← V are the query components the challenger sampled at the beginning. The
key observation is that the challenger’s behavior in the first i − 1 queries of Hyb1,i−1 and
Hyb1,i are independent of α and q. Indeed, the values of α and q can be sampled after
the malicious prover outputs its ith query. In particular, this means that the coefficients
f0, f1, . . . , fm are independent of α and q1, . . . , qm. Applying the assumption to the vector
y = (0, . . . , 0, f1, . . . , fm), we have that

Pr
(q,A)←Vλ

[⟨q,y⟩ = 0] = Pr
(q,A)←Vλ

∑
i∈[m]

fiqn+i = 0

 ≤ 1/2κ.

Now, f(αqn+1, . . . , αqn+m) = f0 + α · ⟨q,y⟩. With probability 1 − 1/2κ, ⟨q,y⟩ ≠ 0. Thus,
f(αq1, . . . , αqn+m) = 0 only if α = −f0/⟨q,y⟩. However, since α ← Fp, this occurs with
probability 1/p. Thus, we conclude that over the choice of q and α,

Pr
(q,A)←Vλ
α←Fp

[f(αq1, . . . , αqn+m) = 0] ≤ 1

2κ
+

1

p
.

We conclude that the challenger’s response on the ith query in Hyb1,i−1 and Hyb1,i differ with
probability at most 1/2κ + 1/p.

The above analysis shows that the challenger’s response to the ith query in Hyb1,i−1 and Hyb1,i only
differs with probability at most 1/2κ + 1/p. The claim now follows by a hybrid argument.

Lemma 7.10. For all adversaries P∗, Pr[Hyb2(P∗) = 1] ≤ s.

Proof. By construction, in hybrid Hyb2, the view of the prover P∗ (prior to P∗ outputting its
commitment h) is independent of α and q. Namely, the components of crs = (pp, p, g, h1, . . . , hm)
are independent of α and q, and likewise for the prover’s queries to the generic group oracle. This
means that in Hyb2, the challenger can defer sampling α ← Fp and (q, A) ← Vλ until after the
prover outputs h ∈ {0, 1}λ. Suppose there exists a mapping (h 7→ f) in T. Otherwise, the output of
the experiment is 0. Write f(q̂n+1, . . . , q̂n+m) := f0+

∑
i∈[m] fiq̂n+i. By assumption, the coefficients

(f0, . . . , fm) are independent of q and α. Let π∗ = (f1, . . . , fm). Then, the output of the experiment
is 1 only if

α−1f(αqn+1, . . . , αqn+m) +
∑
i∈[n]

xiqi = α−1f0 + ⟨x∥π∗, q⟩ ∈ A.

Recall that x is a false statement. We now consider two cases:

49

• Suppose f0 = 0. Since π∗ is independent of q, we can appeal to soundness of the DPP to
conclude that Pr(q,A)←Vλ [⟨x∥π

∗, q⟩ ∈ A] ≤ s.

• Suppose f0 ̸= 0. Since α← Fp, the distribution of α−1f0 is uniform over Fp (and independent
of ⟨x∥π∗, q⟩). Thus,

Pr
(q,A)←Vλ
α←Fp

[α−1f0 + ⟨x∥π∗, q⟩ ∈ A] ≤ |A|
p
≤ s.

Note that |A|/p ≤ s since otherwise, a uniform random strategy would break soundness with
probability greater than s.

We conclude that in Hyb2, the experiment outputs 1 with probability at most s.

Soundness now follows by combining Lemmas 7.8 to 7.10.

Laconic prover. The total prover communication consists of a single group element h ∈ G and
a single field element t ∈ Fp. Since log |G|, log p = poly(λ), the overall proof size is poly(λ).

Preprocessed verification. This follows by construction. Namely, the verifier’s initial (long)
message is statement-independent. The subsequent (online) communication consists of the prover’s
messages (a group element and a field element) and the randomness used in the preprocessing step.
The query randomness can be taken to be poly(λ) bits9 without loss of generality by having the
verifier sample it using a seed for any secure cryptographic pseudorandom generator (PRG).

Concrete instantiations. We now describe how to instantiate Construction 7.6 for the language
of Boolean circuit satisfiability.

• Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size S and consisting of fan-in-2
NAND gates. By Corollary 5.8, there exists a DPP of length 2S over Fp with soundness error
ε whenever p > (4S+n)18

32ε15
.

• In this case, the underlying DPP has soundness error

ε <
(4S + n)18/15

(32p)1/15
, (7.1)

and log(1/ε) = 18/15 log(4S + n)− 1/15 log p− 1/3.

Suppose we instantiate the group G in Construction 7.6 with a standard 256-bit elliptic curve group
(e.g., P-256 or Curve25519), which provides 128 bits of security. In this case log p = 256. We
provide some sample parameter instantiations in Table 1.

Our laconic argument gives a concretely-efficient laconic argument for proving relations on simple
Boolean circuits with very low communication. The size of the initial verifier message is linear in the
size of the circuit, and the total online communication consists of a group element, a field element,
9In practice, a PRG seed is typically 128-bits long.

50

Circuit Size s Soundness Error ε Total Online Communication

28 2−5.2 640 bits
210 2−2.9 640 bits
212 2−0.6 640 bits

Table 1: Laconic argument for Boolean circuit satisfiability (Construction 7.6) for proving satisfia-
bility of a Boolean circuit with up to s NAND gates. We fix the statement size to be n = 128 and
instantiate the group G using a 256-bit group (e.g., P-256 or Curve25519). For each instantiation,
we report the minimum soundness error ε achieved by our construction. In the laconic argument,
the verifier’s initial message consists of O(s) group elements and the verifier’s online message is at
most 128 bits (corresponding to either the DPP randomness or a PRG seed). The prover’s message
consists of a group element and a field element; we assume that each of these can be represented by
a 256-bit string.

and a short PRG seed (or the DPP verification randomness). Moreover, the computational cost
of verification is extremely small: just a single group exponentiation. This makes our scheme
particularly well-suited for verifier that are running on weak or energy-constrained devices. While
the current constructions does not achieve a high level of soundness, this can still be useful in settings
where there are out-of-band mechanisms for incentivizing honest behavior (e.g., strong penalties if
a prover is caught behaving maliciously). This is similar to the notion of covert security in the
context of multiparty computation [CO99, AL10]. We conclude with a brief comparison against
previous approaches here:

• The most succinct pairing-based SNARGs [Gro16, Lip24, DMS24] have longer proofs. The
current state-of-the-art is Pari [DMS24] which has proofs of size 1280 bits at the 128-bit
security level. In all of these constructions, the verifier also needs to compute more expensive
pairings. The total communication is 2× smaller for our construction (640 bits) and the only
cryptographic operation for our verifier is a single exponentiation in a pairing-free group. On
the flip side, the pairing-based constructions are non-interactive, publicly-verifiable, and have
negligible soundness error.

• If we consider concretely-efficient schemes with proofs that are shorter than those in [Gro16],
the best construction is the Barta, Ishai, Ostrovsky, and Wu [BIOW20] construction. They
give a designated-verifier SNARG where the proof consists of two group elements in a pairing-
free group. Concretely, this yields a construction where the proof size is just 512 bits (20%
shorter than our construction). However, the drawback of their construction is the size of
the CRS scales quadratically with the size of the circuit. For instance, for a circuit with 210

gates, the size of the CRS in their construction is 16 MB, whereas in our scheme, it is under
100 KB. Note that the non-interactive version of the [BIOW20] scheme either storing a large
verification state or a large verification time (for solving discrete logarithm). One may also
consider an interactive variant (analogous to Construction 7.6) with slightly longer proofs
(same as Construction 7.6) which would achieve comparable verification complexity to our
construction (and modestly smaller soundness error). However, the initial verification message
still scales quadratically in their construction, as opposed to linearly in our construction.

51

Remark 7.11 (Proving Batch Statements). Construction 7.6 operates in the setting where the
prover is trying to convince the verifier of a single NP statement x. The same construction and
analysis can also be used in a batch setting, where there are N statements x1, . . . , xn, and the
prover simultaneously proves that there are witnesses w1, . . . , wN such that C(xi, wi) = 1 for all i ∈
[N]. In this case, we can use the same (offline) statement-independent message to verify all online
statements. Importantly, this offline message length is independent of the number of statements.
Moreover, the same short verifier-to-prover message can be used for proving all statements.

Remark 7.12 (Reducing Communication with a Hashed Commitment). In Construction 7.6, the
prover commits to its DPP proof π by publishing a group element h ∈ G. In this case, to provide
λ bits of security, the size of the group element h is at least 2λ bits. One approach to reduce the
communication is for the prover to commit using a hash H(h) of the group element rather than the
group element. Here, the output length of the hash function can be exactly λ-bits. When the hash
function H : G → {0, 1}λ is modeled as a random oracle, we can argue that the construction still
preserves soundness with a poly(λ, logQ)-increase in the soundness error, where Q is the number of
random oracle queries the adversary makes. The increase in the soundness error is due to the fact
that a malicious prover can potentially find multiple vectors π1,π2, . . . ,πT where H(πi) = H(π1)
for all i ∈ [T]. If any of these strategies convinces the verifier, then the prover succeeds. By a union
bound, if the underlying DPP has soundness error s, then with probability Ts, none of the strategies
π1, . . . ,πT are successful. Finally, if we model H as a random oracle, then we can show that an
adversary making at most Q queries to the random oracle will only be able to find T = λ logQ vectors
with the same hash, except perhaps with probability 2−Ω(λ). To summarize this strategy reduces the
size of the prover commitment by roughly a factor of 2 at the expense of a modest increase to the
soundness error.

Using a hashed commitment is beneficial when the soundness error of the underlying DPP is
at most s ≤ 1/(λ logQ). This is due to the increase in soundness incurred from replacing the
group element with a hash of the group element. Our current concrete instantiations of DPPs over
large fields in Table 1 have high soundness error, so this approach does not help improve the concrete
efficiency of our instantiations. However, as we see no barrier to constructing DPPs over large fields
with better soundness, we believe this approach for reducing prover communication could enable new
concretely-efficient laconic arguments in the future.

7.3 From DPP to Succinct Commit-and-Prove Arguments

DPPs (and, more broadly, fully linear PCPs) are also useful for constructing succinct commit-and-
prove arguments [Kil92, CLOS02, EG14, CFHK+15]. In this setting, a prover first commits to
an input x ∈ {0, 1}ℓ with a short digest σ and later on, can provide succinct openings π1, . . . , πℓ
to different functions f1, . . . , fℓ of the committed input (i.e., that fi(x) = yi for each i ∈ [ℓ]).
The primary efficiency requirement is that the size of the commitment σ as well as the size of
each proof πi be sublinear in both the input length |x| and the size of the Boolean (or arithmetic)
circuit computing f . The security requirement is knowledge soundness which requires that for every
efficient adversary that is able to produce a commitment σ together with openings π1, . . . , πℓ for
function-value pairs (f1,y1), . . . , (fℓ,yℓ), there exists an efficient extractor that can output an input
x ∈ {0, 1}ℓ such that fi(x) = yi for all i ∈ [ℓ]. We provide the formal definition below:

Definition 7.13 (Succinct Commit-and-Prove Argument). Let F = {Fλ}λ∈N be a family of Boolean
functions indexed by a security parameter, where each Fλ is a set of Boolean functions f : {0, 1}ℓ →

52

{0, 1}t on inputs of length ℓ = ℓ(λ) and outputs of length t = t(λ). A succinct commit-and-prove
argument system for F is a tuple of probabilistic polynomial-time algorithms (Setup,Commit,Prove,
Verify) with the following syntax:

• Setup(1λ)→ (crs, vk): On input the security parameter, the setup algorithm outputs a common
reference string crs together with a verification key vk.

• Commit(crs,x)→ (σ, st): On input the common reference string crs and an input x ∈ {0, 1}ℓ,
the commit algorithm outputs a commitment σ together with a commitment state st.

• Prove(st, f) → π: On input the commitment state st and a function f : {0, 1}ℓ → {0, 1}t, the
prove algorithm outputs a proof π. The proof π is sometimes also referred to as an opening.

• Verify(vk, σ, f,y, π) → b: On input the verification key vk, the commitment σ, a function
f : {0, 1}ℓ → {0, 1}t, a value y ∈ {0, 1}t, and a proof π, the verification algorithm outputs a
bit b ∈ {0, 1}.

Moreover, the commit-and-prove argument should satisfy the following properties:

• (Completeness:) for every λ ∈ N, every input x ∈ {0, 1}ℓ(λ), and every function f ∈ Fλ,

Pr

Verify(vk, σ, f, f(x), π) = 1 :
(crs, vk)← Setup(1λ)

(σ, st)← Commit(crs,x)
π ← Prove(st, f)

 ≥ c(λ)

where c ∈ [0, 1] is called the completeness parameter. By default, we assume perfect correct-
ness, that is, c = 1.

• (Knowledge soundness:) for every efficient adversary A, there exists an efficient extractor E
such that for all λ ∈ N,

Pr

 ∃i ∈ [k] : Verify(vk, σ, fi,yi, πi) = 1
and fi(x) ̸= yi

:

(crs, vk)← Setup(1λ)(
σ, {(fi,yi, πi)}i∈[k]

)
← A(1λ, crs; rA)

x← E(1λ, crs; rA)

 ≤ ε(λ),

where ε ∈ [0, 1] is called the knowledge soundness error and rA denotes the (uniform) random
coins used by adversary A.

• (Succinctness:) There exists a universal polynomial poly(·) such that for all security pa-
rameters λ ∈ N, every input x ∈ {0, 1}ℓ(λ), every function f ∈ Fλ, every (σ, st) in the
support of Commit(crs,x), and every proof π in the support of Prove(st, f), it holds that
|σ|, |π| = poly(λ+ log |x|+ log |f |).

Remark 7.14 (Public Verification vs. Designated Verifier). Similar to Remark D.2, we can also
consider a publicly-verifiable commit-and-prove argument where the verification state is simply the
common reference string.

Remark 7.15 (Relationship to Functional Commitments). Succinct commit-and-prove arguments
are also referred to as functional commitments [IKO07, BC12, LRY16]. In the setting of (non-
interactive) functional commitments, the knowledge soundness requirement is often relaxed to a

53

weaker evaluation binding property which requires that a computationally-bounded adversary cannot
produce a commitment σ together with accepting proofs π1, π2 to distinct values y1 ̸= y2 with respect
to a single function f . However, even if the adversary opens a commitment σ to y with respect to a
function f , evaluation binding does not require that there exist any x where y = f(x). On the flip
side, the weaker evaluation binding property is a falsifiable property [GW11], and a recent line of
works have shown how to construct (publicly-verifiable) functional commitments for general functions
from falsifiable number-theoretic assumptions [CP23, WW23b, BCFL23, WW23a, WW24b, ABF24].

Succinct commit-and-prove arguments from DPPs and linear-only encryption. With a
simple adaptation of the [BCIOP22] compiler, we can combine any DPP (and more generally, any
FLPCP) with a linear-only encryption scheme to obtain a succinct commit-and-prove argument.
The commitment and the opening in our scheme consists of a single ciphertext for the underlying
linear-only encryption scheme. We describe the construction below:

Construction 7.16 (Succinct Commit-and-Prove Argument). Let F = {Fλ}λ∈N be a family of
Boolean functions f : {0, 1}ℓ → {0, 1}t. Suppose that each function f ∈ Fλ can be described by a
bit-string of length s = s(λ). Define the language

L = {(x, f,y) ∈ {0, 1}ℓ × {0, 1}s × {0, 1}t : y = f(x)}.

Let n = n(λ) = ℓ(λ)+s(λ)+t(λ) be the length of a statement (x, f,y), Let (P,V) = {(Pλ,Vλ)}λ∈N be
a DPP for L over a finite field F with proof length m = m(λ). Let ΠEnc = (KeyGen,Encrypt,Decrypt,
Add, ImVer) be a linear-only encryption scheme with plaintext space F (see Definition D.3). We
construct a succinct commit-and-prove argument for F as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm samples a DPP query
(q, A) ← Vλ, a public/private key-pair (pk, sk) ← KeyGen(1λ), and a random scalar α ←
F \ {0}. For i ∈ [ℓ], it computes ctx,i ← Encrypt(pk, αqi), and for i ∈ [m], it computes
ctπ,i ← Encrypt(pk, qn+i). It outputs crs = (pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m) along with the
verification key vk = (sk, q′, α,A), where q′ = [qℓ+1, . . . , qn].

• Commit(crs,x): On input crs = (pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m) and the input x ∈ {0, 1}ℓ,
the commitment algorithm views ctx,1, . . . , ctx,ℓ as an encryption of qx ∈ Fℓ and uses Add to
homomorphically compute a ciphertext ctx that encrypts ⟨qx,x⟩. It outputs the commitment
σ = ctx and the commitment state st = (ctπ,1, . . . , ctπ,m,x).

• Prove(st, f): On input the commitment state st = (ctπ,1, . . . , ctπ,m,x) and a function f , the
prover algorithm computes y = f(x). Then, it construct a DPP proof π ← Pλ((x, f,y),⊥). It
views ctπ,1, . . . , ctπ,m as an encryption of qπ ∈ Fm and uses Add to homomorphically compute
a ciphertext ctπ that encrypts ⟨qπ,π⟩. It outputs the proof π = ctπ.

• Verify(vk, σ, f,y, π): On input the verification key vk = (sk, q′, α,A), a commitment σ = ctx, a
function f ∈ {0, 1}s, an output y ∈ {0, 1}t, and a proof π = ctπ, the verification algorithm first
checks that ImVer(sk, ctx) = 1 and ImVer(sk, ctπ) = 1. If either check fails, then the verification
algorithm outputs 0. Otherwise, it computes zx ← Decrypt(sk, ctx), zπ ← Decrypt(sk, ctπ),
and z = α−1zx + zπ + ⟨f∥y, q′⟩. The algorithm outputs 1 if z ∈ A and 0 otherwise.

54

Theorem 7.17 (Succinct Commit-and-Prove Argument). Suppose (P,V) has completeness c and
soundness error s against affine strategies. Then Construction 7.16 has completeness c and sound-
ness error k ·

(
s + 2

|F|−1
)
+ negl(λ), where k is a bound on the number of openings the adversary

outputs.

Proof. We show each requirement separately.

Completeness. Take any security parameter λ ∈ N, input x ∈ {0, 1}ℓ, and function f ∈
Fλ. Let (crs, vk) ← Setup(1λ). By construction, the Setup algorithm samples (q, A) ← Vλ,
(pk, sk) ← KeyGen(1λ), and α ← F \ {0}. Then, crs = (pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m) and
vk = (sk, q′, α,A), where ctx,i is an encryption of αqi, ctπ,i is an encryption of qn+i, and q′ =
[qℓ+1, . . . , qn]. Next, let (σ, st) ← Commit(crs,x). Then, σ = ctx and st = (ctπ,1, . . . , ctπ,m,x). By
correctness of the linear-only encryption scheme, we have that

Decrypt(sk, ctx) = α ⟨qx,x⟩ ∧ ImVer(sk, ctx) = 1,

where qx = [q1, . . . , qℓ]. Next, let π ← Prove(st, f). By construction, the Prove algorithm first
constructs a DPP proof π ← Pλ((x, f,y),⊥) and homomorphically computes the proof π = ctπ.
By correctness of the linear-only encryption scheme, we have that

Decrypt(sk, ctπ) = ⟨qπ,π⟩ ∧ ImVer(sk, ctπ) = 1,

where qπ = [qn+1, . . . , qn+m]. Finally, consider the output of Verify(vk, σ, f,y, π). As argued above,
ImVer(sk, ctx) = 1 and ImVer(sk, ctπ) = 1. Similarly, zx = Decrypt(sk, ctx) = α ⟨qx,x⟩ and zπ =
Decrypt(sk, ctπ) = ⟨qπ,π⟩. Moreover,

z = α−1zx + zπ +
〈
f∥y, q′

〉
= ⟨qx,x⟩+ ⟨qπ,π⟩+

〈
q′, f∥y

〉
= ⟨q,x∥f∥y∥π⟩ ,

since q′ = [qℓ+1, . . . , qn]. By completeness of DPP, this means that z ∈ A with probability at least
c. Correctness follows.

Knowledge soundness. Let A be any efficient adversary for the knowledge soundness security
game. We now describe how to construct an efficient extractor algorithm E from A. First, we define
a “wrapper algorithm” A′ as follows:

• A′(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA): On input a public key, a collection of ciphertexts
ctx,i and ctπ,i, and randomness rA, let crs = (pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m). Invoke(
σ, {(fi,yi, πi)}i∈[k]

)
← A(1λ, crs; rA) and output (σ, π1, . . . , πk).

The wrapper algorithm A′ conforms to the syntactic requirements for the linear-only security game.
Let ELO be the linear-only extractor associated with A′. We use ELO to construct the knowledge
extractor E for A as follows:

• E(1λ, crs; rA): On input λ ∈ N, crs = (pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m), and randomness
rA, run (Π, b)← ELO(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA). Let ΠT

1 ∈ Fℓ+m be the first row
of Π, and parse ΠT

1 = x∥z where x ∈ Fℓ and z ∈ Fm. If x ∈ {0, 1}ℓ, output x; otherwise,
output ⊥.

55

We now argue that the extractor E satisfies the required property. We begin by defining a sequence
of hybrid experiments:

• Hyb0: This is the real knowledge soundness experiment:

– The challenger first samples a DPP query (q, A)← Vλ, a public/private key-pair (pk, sk)←
KeyGen(1λ), and a random scalar α ← F \ {0}. For i ∈ [ℓ], it computes ctx,i ←
Encrypt(pk, αqi), and for i ∈ [m], it computes ctπ,i ← Encrypt(pk, qn+i). It sets crs =
(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m).

– The challenger runs
(
σ, {(fi,yi, πi)}i∈[k]

)
← A(1λ, crs; rA), where rA is a uniform random

string. It parses σ = ctx and πi = ct
(i)
π for each i ∈ [k].

– The challenger computes x← E(1λ, crs; rA). In addition, the challenger computes zx ←
Decrypt(sk, ctx), and for each i ∈ [k], z

(i)
π ← Decrypt(sk, ct

(i)
π). Finally, it sets zi =

α−1zx + z
(i)
π + ⟨fi∥yi, q

′⟩ where q′ = [qℓ+1, . . . , qn].

– The output of the experiment is 1 if there exists an index i ∈ [k] such that fi(x) ̸= yi,
ImVer(sk, ctx) = 1 = ImVer(sk, ct

(i)
π) = 1, and zi ∈ A.

• Hyb1: Same as Hyb0, except the challenger computes zx and z
(i)
π using the linear-only extrac-

tor:

– The challenger computes (Π, b) ← ELO(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA), where
Π ∈ F(k+1)×(ℓ+m) and b ∈ Fk+1

– Next, it sets
ẑx

ẑ
(1)
π
...

ẑ
(k)
π

 = Π ·

αq1
...

αqℓ
qn+1

...
qn+m

+ b. (7.2)

The output of the experiment is 1 if there exists an index i ∈ [k] such that fi(x) ̸= yi and
ẑi ∈ A, where ẑi = α−1ẑx + ẑ

(i)
π + ⟨fi∥yi, q

′⟩. Notably, in this experiment, the challenger does
not check if ImVer(sk, ctx) = 1 = ImVer(sk, ct

(i)
π) = 1.

• Hyb2: Same as Hyb1, except the challenger now computes ctx,i ← Encrypt(pk, 0) for all i ∈ [ℓ].
Similarly, for all i ∈ [m], the challenger computes ctπ,i ← Encrypt(pk, 0). In this experiment,
the challenger can defer the sampling of (q, A)← Vλ until after it computes (Π, b).

We write Hybi(A, E) to denote the random variable corresponding to the output of an execution of
Hybi with adversary A and extractor E . We now analyze each pair of adjacent distributions.

Lemma 7.18. If ΠEnc is linear-only, then there exists a negligible function negl(·) such that for all
λ ∈ N, Pr[Hyb1(A, E) = 1] ≥ Pr[Hyb0(A, E) = 1]− negl(λ).

Proof. Suppose that Hyb0(A, E) = 1. This means that there exists an index i ∈ [k] where

fi(x) ̸= yi and ImVer(sk, ctx) = 1 = ImVer(sk, ct
(i)
π) = 1 and zi ∈ A,

56

where zi = α−1zx + z
(i)
π + ⟨fi∥yi, q

′⟩, q′ = [qℓ+1, . . . , qn], zx ← Decrypt(sk, ctx) and z
(i)
π ←

Decrypt(sk, ct
(i)
π). We argue that in this case, the output in Hyb1 is also 1 with all but negligi-

ble probability. Suppose otherwise: namely, that with non-negligible probability ε, the output in
Hyb1 is 0. By construction then, it must be the case that in Hyb1, ẑi /∈ A. By construction of ẑi,
this means either

ẑx ̸= zx or z
(i)
π ̸= ẑ

(i)
π . (7.3)

We claim that this breaks the linear-only property of ΠEnc. Specifically, define a message samplerM
that takes as input a public key pk, samples (q, A)← Vλ, and outputs (αq1, . . . , αqℓ, qn+1, . . . , qn+m).
Then let E be the following event:

• Sample (pk, sk)← KeyGen(1λ) and (αq1, . . . , αqℓ, qn+1, . . . , qn+m)←M(pk).

• Let ctx,i ← Encrypt(pk, qi) for all i ∈ [ℓ] and ctπ,i ← Encrypt(pk, qn+i) for all i ∈ [m].

• Let (ct′1, . . . , ct′k)← A′(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA), where rA is a uniform random
string. By construction of A′, the output is derived by running A(1λ, crs; rA), where crs =
(pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m).

• Let (Π, b)← E(pk, ct1, . . . , ctm; rA) and compute ẑx, ẑ
(1)
π , . . . , ẑ

(k)
π according to Eq. (7.2).

• We say E occurs if ImVer(sk, ctx) = 1 and Decrypt(sk, ctx) ̸= ẑx or if ImVer(sk, ct
(i)
π) = 1 and

Decrypt(sk, ct
(i)
π) ̸= ẑ

(i)
π .

By construction, if Hyb0(A, E) = 1 and Eq. (7.3) holds, then event E occurs. But this event
precisely coincides with the winning condition in the linear-only security game, so algorithm A′
breaks linear-only security with the same advantage ε. Thus, we conclude that ε = negl(λ). In
other words, whenever Hyb0(A, E) = 1, with all but ε = negl(λ) probability, Hyb1(A, E) = 1, and
the claim holds.

Lemma 7.19. If ΠEnc is semantically secure, then there exists a negligible function such that for
all λ ∈ N, |Pr[Hyb2(A, E) = 1]− Pr[Hyb1(A, E) = 1]| = negl(λ).

Proof. Suppose |Pr[Hyb2(A, E) = 1]−Pr[Hyb1(A, E) = 1]| ≥ ε(λ) for some non-negligible ε = ε(λ).
We use A to construct an adversary B for the semantic security experiment for ΠEnc:

• On input the public key pk, algorithm B samples α ← F \ {0} and (q, A) ← Vλ. It submits
the vectors (αq1, . . . , αqℓ, qn+1, . . . , qn+m) and 0ℓ+m to A.

• The challenger replies with a collection of ciphertexts
(
ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m

)
.

• Algorithm B sets crs =
(
pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA

)
and runs

(
σ, {(fi,yi, πi)}i∈[k]

)
←

A(1λ, crs; rA), where rA is a uniform random string.

• Algorithm B computes the extracted input x← E(1λ, crs; rA) and the extracted linear function
(Π, b)← ELO

(
pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA

)
.

• Algorithm B computes ẑx, ẑ
(1)
π , . . . , ẑ

(k)
π according to Eq. (7.2) using (Π, b), α, and q. Finally,

algorithm B outputs 1 if there exists an index i ∈ [k] such that fi(x) ̸= yi and ẑi ∈ A, where
ẑi = α−1ẑx + ẑ

(i)
π + ⟨fi∥yi, q

′⟩ and q′ = [qℓ+1, . . . , qn].

57

By construction, if the challenger encrypts the vector (αq1, . . . , αqℓ, qn+1, . . . , qn+m), then algorithm
B computes the output according to the specification of Hyb1(A, E) whereas if the challenger encrypts
the vector 0ℓ+m, then algorithm B computes the output according to the specification of Hyb2(A, E).
Correspondingly, algorithm B breaks semantic security with the same advantage ε.

Lemma 7.20. Suppose DPP has soundness error s. Then, for all adversaries A that output at
most k possible openings, Pr[Hyb2(A, E) = 1] ≤ k ·

(
s+ 2

|F|−1
)
.

Proof. In Hyb2, the adversary’s view is independent of the DPP query q (and the random scalar α),
so we can defer the sampling of α and q until after running A and E . Consider such an execution
of Hyb2. Then, we have the following:

• Let
(
σ, {(fi,yi, πi)}i∈[k]

)
← A(1λ, crs; rA).

• Let (Π, b) ← ELO
(
pk, ctx,1, . . . , ctx,ℓ, ctπ,1, . . . , ctπ,m; rA

)
. Let ΠT

1 ∈ Fℓ+m be the first row of
Π, and parse ΠT

1 = xσ∥zσ where xσ ∈ Fℓ and zσ ∈ Fm. If xσ /∈ {0, 1}ℓ, then let x = ⊥;
otherwise, let x = xσ; note that this is consistent with the specification of the extractor E .

• Let α← F \ {0} and let (q, A)← Vλ. Compute ẑx, ẑ
(1)
π , . . . , ẑ

(k)
π according to Eq. (7.2) using

(Π, b), α, and q. For each i ∈ [k], let ẑi = α−1ẑx + ẑ
(i)
π + ⟨fi∥yi, q

′⟩ where q′ = [qℓ+1, . . . , qn].

Take any index i ∈ [k] where ẑi ∈ A. Let ΠT
i+1 ∈ Fℓ+m be the (i + 1)st row of Π (corresponding

to the ith proof ct(i)π). Parse ΠT
i+1 = xπ∥zπ where xπ ∈ Fℓ and zπ ∈ Fm. Let q1 = [q1, . . . , qℓ] and

q2 = [qn+1, . . . , qn+m]. Then, q = q1∥q′∥q2. From Eq. (7.2),

ẑx = α ⟨xσ, q1⟩+ ⟨zσ, q2⟩+ b1

ẑ
(i)
π = α ⟨xπ, q1⟩+ ⟨zπ, q2⟩+ bi+1.

This means that

ẑi = α−1ẑx + ẑ
(i)
π +

〈
fi∥yi, q

′〉
= ⟨xσ + αxπ, q1⟩+

〈
fi∥yi, q

′〉+ 〈α−1zσ + zπ, q2
〉
+ b1 + bi+1

=
〈
(xσ + αxπ)∥fi∥yi∥(α−1zσ + zπ), q

〉
+ b1 + bi+1.

As argued above, the DPP query q is sampled after the values of α, xσ, xπ, zσ, zπ, fi, yi, b1, and
bi+1 are determined. Thus, by soundness of DPP (against affine strategies), if ẑi ∈ A, then with
probability at least 1 − s, it must be the case that (xσ + αxπ)∥fi∥yi ∈ L. Otherwise, the affine
strategy (α−1zσ + zπ, b1 + bi+1) breaks soundness of the DPP for the statement (xσ + αxπ)∥fi∥yi.
This means that

xσ + αxπ ∈ {0, 1}ℓ and yi = fi(xσ + αxπ). (7.4)

Next, we show that if Eq. (7.4) holds, then xπ = 0ℓ. Suppose otherwise. Since α ← F and is
sampled independently of xσ,xπ,

Pr[xσ + αxπ ∈ {0, 1}ℓ : α← F \ {0}] ≤ 2

|F| − 1
.

Thus, if Eq. (7.4) holds, then with probability 1 − 2/(|F| − 1), we have that x = xπ ∈ {0, 1}ℓ and
fi(x) = yi. Thus, we conclude that whenever ẑi ∈ A, then fi(x) = yi except with probability
s+ 2/(|F| − 1). The claim now holds by a union bound over all k openings.

Knowledge soundness now follows from Lemmas 7.18 to 7.20 and a hybrid argument.

58

Succinctness. Both the commitment and the opening in Construction 7.16 consist of a single
ciphertext for the linear-only encryption scheme, which has size poly(λ+ log |F|).

Remark 7.21 (Extending to NP Relations). Construction 7.16 extends directly to proving NP
relations on the committed input x. Namely, instead of showing that y = f(x) for a committed
input x, the prover can also prove that there exists a w such that y = f(x,w). To do so, we
instantiate Construction 7.16 with a DPP for the NP language

L = {(x, f,y) | ∃w : y = f(x,w)}.

Laconic commit-and-prove arguments. Construction 7.16 leverages a linear-only encryption
scheme to construct a succinct commit-and-prove argument where commitments and openings each
consist of a single ciphertext for a linear-only encryption scheme. By adapting our laconic argument
(Construction 7.6), we can achieve better succinctness using an interactive approach and working
in the generic group model. In this setting, the commitment and opening consist of a single group
element. The construction is the analog of Construction 7.16, and we sketch it below.

We use the same conventions as in Construction 7.16. Specifically, let F = {Fλ}λ∈N be a family
of Boolean functions f : {0, 1}ℓ → {0, 1}t and that each function f ∈ Fλ can be described by a
bit-string of length s = s(λ). Define the language

L = {(x, f,y) ∈ {0, 1}ℓ × {0, 1}s × {0, 1}t : y = f(x)}.

Let n = n(λ) = ℓ(λ)+s(λ)+ t(λ) be the length of a statement (x, f,y), Let (P,V) = {(Pλ,Vλ)}λ∈N
be a DPP for L over a finite field F with proof length m = m(λ). We work over a prime-order group
GroupGen. The construction then proceeds as follows:

• Verifier preprocessing: On input the security parameter λ, the verifier samples (G, p, g)←
GroupGen(1λ) and (q, A) ← Vλ(ρ), where ρ is the verifier randomness for the DPP. The
verifier parses q = (q1, . . . , qn+m) and samples α1, α2 ← Fp. For each i ∈ [ℓ], let hx,i ← gα1qi .
For each i ∈ [m], let hπ,i ← gα2qn+i . It outputs the message

crs = ((G, p, g), hx,1, . . . , hx,ℓ, hπ,1, . . . , hπ,m).

• Prover commitment: On input the message crs = ((G, p, g), hx,1, . . . , hx,ℓ, hπ,1, . . . , hπ,m)
and an input x ∈ {0, 1}ℓ, the prover commits to it by computing σ =

∏
i∈[ℓ] h

xi
x,i.

• Prover opening: To construct an opening to a function f , the prover first evaluates y = f(x),
and constructs a DPP proof π ← Pλ((x, f,y),⊥). It outputs the message π =

∏
i∈[m] h

πi
π,i.

• Verifier challenge: On input a commitment σ ∈ G and an opening (f,y, π), the verifier
replies with the DPP randomness ρ.

• Prover response: On input ρ, the prover computes q = (q1, . . . , qn+m) ← Vλ(ρ). Then, it
computes tx =

∑
i∈[ℓ] qixi and tπ =

∑
i∈[m] πiqn+i

• Verification: On input the prover response (tx, tπ) the verifier computes z = tx+⟨f∥y, q′⟩+
tπ and accepts if σ = gα1tx , π = gα2tπ , and z ∈ A.

The above approach also generalizes directly to the setting where the prover constructs multi-
ple openings of the commitment with respect to different functions f1, . . . , fk. Completeness and
(knowledge) soundness follow by a similar analysis as in the proof of Theorem 7.7.

59

Acknowledgments

We thank Ignacio Cascudo for his help with the formulation of Theorem 3.5, Madhu Sudan for
pointers on AG codes and Ohad Barta and Jens Groth for helpful discussions at early stages of
this project. N. Bitansky was supported in part by the European Research Council (ERC) under
the European Union’s Horizon Europe research and innovation programme (grant agreement No.
101042417, acronym SPP). P. Harsha’s research supported by the Department of Atomic Energy,
Government of India (project no.: RTI4001) and partially supported by a Google India Research
Award. Y. Ishai was supported by ERC grant NTSC (742754), BSF grant 2022370, ISF grant
2774/20, and ISF-NSFC grant 3127/23. R. Rothblum was supported by the European Union
(ERC, FASTPROOF, 101041208). D. J. Wu was supported by NSF CNS-2140975, CNS-2318701,
a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[ABF24] Gaspard Anthoine, David Balbás, and Dario Fiore. Fully-succinct multi-key homo-

morphic signatures from standard assumptions. In Leonid Reyzin and Douglas Stebila,
eds., Proc. 44th CRYPTO, Part III, volume 14922 of LNCS, pages 317–351. Springer, 2024.
ePrint.iacr:2024/895. 54

[ABH21] Per Austrin, Jonah Brown-Cohen, and Johan Håstad. Optimal inapproximability with
universal factor graphs. In Dániel Marx, ed., Proc. 32nd Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 434–453. 2021. eccc:2019/151. 9, 41, 42

[ACY22] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. Hardness of approximation for
stochastic problems via interactive oracle proofs. In Shachar Lovett, ed., Proc. 37th Comput.
Complexity Conf., volume 234 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl, 2022. ePrint.
iacr:2022/168. 8

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. J. Cryptol., 23(2):281–343, 2010. (Preliminary version in 4th
TCC, 2007). ePrint.iacr:2007/060. 51

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998. (Preliminary version in 33rd FOCS, 1992). eccc:1998/008. 1, 20

[App17] Benny Applebaum. Exponentially-hard Gap-CSP and local PRG via local hardcore functions.
In Chris Umans, ed., Proc. 58th IEEE Symp. on Foundations of Comp. Science (FOCS),
pages 836–847. 2017. eccc:2017/063. 5

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP . J. ACM, 45(1):70–122, 1998. (Preliminary version in 33rd FOCS, 1992). 1, 10

[BBCG+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin,
Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran
Tromer, and Madars Virza. Computational integrity with a public random string from
quasi-linear PCPs. In Jean-Sébastien Coron and Jesper Buus Nielsen, eds., Proc. 36th
EUROCRYPT, Part III, volume 10212 of LNCS, pages 551–579. 2017. ePrint.iacr:2016/646.
1

[BBCGI19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Zero-knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva
and Daniele Micciancio, eds., Proc. 39th CRYPTO, Part III, volume 11694 of LNCS, pages
67–97. Springer, 2019. ePrint.iacr:2019/188. 2, 8, 9, 10, 13

60

https://eprint.iacr.org/2024/895
https://doi.org/10.1137/1.9781611976465.27
https://doi.org/10.1137/1.9781611976465.27
https://eccc.weizmann.ac.il/report/2019/151
https://doi.org/10.4230/LIPIcs.CCC.2022.24
https://doi.org/10.4230/LIPIcs.CCC.2022.24
https://eprint.iacr.org/2022/168
https://eprint.iacr.org/2022/168
https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7
https://eprint.iacr.org/2007/060
https://doi.org/10.1145/278298.278306
https://eccc.weizmann.ac.il/report/1998/008
https://doi.org/10.1109/FOCS.2017.82
https://eccc.weizmann.ac.il/report/2017/063
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://eprint.iacr.org/2016/646
https://doi.org/10.1007/978-3-030-26954-8_3
https://eprint.iacr.org/2019/188

[BBCGI21] ———. Lightweight techniques for private heavy hitters. In Proc. IEEE Symp. Security and
Privacy (S&P), pages 762–776. 2021. arXiv:2012.14884, ePrint.iacr:2021/017. 8

[BBGS14] Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henning Stichtenoth. An improve-
ment of the Gilbert-Varshamov bound over nonprime fields. IEEE Trans. Inform. Theory,
60(7):3859–3861, 2014. 15

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In Reihaneh Safavi-Naini and Ran Canetti, eds., Proc.
32nd CRYPTO, volume 7417 of LNCS, pages 255–272. Springer, 2012. ePrint.iacr:2012/095.
53

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable
functional commitments for unbounded-depth circuits. In Guy N. Rothblum and Hoeteck
Wee, eds., Proc. 21st International Theory of Crypt. Conf. (TCC), Part III, volume 14371 of
LNCS, pages 363–393. Springer, 2023. 54

[BCGG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In Michael Backes, Adrian Perrig, and Helen Wang, eds., Proc. IEEE
Symp. Security and Privacy (S&P), pages 459–474. 2014. ePrint.iacr:2014/349. 1

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the con-
crete efficiency of probabilistically-checkable proofs. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, eds., Proc. 45th ACM Symp. on Theory of Computing (STOC), pages
585–594. 2013. eccc:2012/045. 1

[BCIOP22] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs. J. Cryptol., 35(3):15,
2022. (Preliminary version in 10th TCC, 2013). ePrint.iacr:2012/718. 1, 2, 4, 6, 7, 8, 9, 12,
13, 30, 31, 32, 37, 39, 42, 43, 44, 54, 70, 71

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, eds., Proc. 14th International Theory of Crypt. Conf.
(TCC), Part II, volume 9986 of LNCS, pages 31–60. Springer, 2016. ePrint.iacr:2016/116.
1, 8

[BGHSV05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Short PCPs verifiable in polylogarithmic time. In Luca Trevisan, ed., Proc. 20th IEEE
Conf. on Comput. Complexity, pages 120–134. 2005. doi:10.1109/CCC.2005.27. 1

[BGHSV06] ———. Robust PCPs of proximity, shorter PCPs and applications to coding . SIAM J. Comput.,
36(4):889–974, 2006. (Preliminary version in 36th STOC, 2004). eccc:2004/021. 3, 10, 21

[BHIRW24] Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D. Rothblum, and David J. Wu.
Dot-product proofs and their applications. In Santosh Vempala, ed., Proc. 65th IEEE Symp.
on Foundations of Comp. Science (FOCS), pages 806–825. 2024. eccc:2024/114, ePrint.
iacr:2024/1138. 1, 9

[BIOW20] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments
and witness encryption from groups. In Daniele Micciancio and Thomas Ristenpart,
eds., Proc. 40th CRYPTO, Part I, volume 12170 of LNCS, pages 776–806. Springer, 2020.
ePrint.iacr:2020/1319. 2, 6, 7, 9, 12, 13, 20, 30, 31, 32, 37, 39, 43, 44, 45, 51, 73

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via
linear multi-prover interactive proofs. In Jesper Buus Nielsen and Vincent Rijmen, eds.,
Proc. 37th EUROCRYPT, Part III, volume 10822 of LNCS, pages 222–255. Springer, 2018.
ePrint.iacr:2018/133. 7

61

https://doi.org/10.1109/SP40001.2021.00048
https://arxiv.org/abs/2012.14884
https://eprint.iacr.org/2021/017
https://doi.org/10.1109/TIT.2014.2316531
https://doi.org/10.1109/TIT.2014.2316531
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
https://eprint.iacr.org/2012/095
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://eprint.iacr.org/2014/349
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://eccc.weizmann.ac.il/report/2012/045
https://doi.org/10.1007/s00145-022-09424-4
https://eprint.iacr.org/2012/718
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2016/116
http://www.tcs.tifr.res.in/~prahladh/papers/BGHSV2/BGHSV2005.pdf
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1137/S0097539705446810
https://eccc.weizmann.ac.il/report/2004/021
https://doi.org/10.1109/FOCS61266.2024.00057
https://eccc.weizmann.ac.il/report/2024/114
https://eprint.iacr.org/2024/1138
https://eprint.iacr.org/2024/1138
https://doi.org/10.1007/978-3-030-56784-2_26
https://doi.org/10.1007/978-3-030-56784-2_26
https://eprint.iacr.org/2020/1319
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://eprint.iacr.org/2018/133

[BKKMS16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning
Stichtenoth. Constant rate PCPs for circuit-sat with sublinear query complexity . J. ACM,
63(4):32:1–32:57, 2016. (Preliminary version in 54th FOCS, 2013). eccc:2013/085. 1, 8

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity . SIAM J.
Comput., 38(2):551–607, 2008. (Preliminary version in 37th STOC, 2005). eccc:2004/060. 1

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation
of aggregate statistics. In Aditya Akella and Jon Howell, eds., Proc. 14th NSDI, pages
259–282. USENIX, 2017. arXiv:1703.06255. 8

[CFHK+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile ver-
ifiable computation. In Proc. IEEE Symp. Security and Privacy (S&P), pages 253–270. 2015.
ePrint.iacr:2014/976. 7, 52

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In Proc. 34th ACM Symp. on Theory of
Computing (STOC), pages 494–503. 2002. ePrint.iacr:2002/140. 7, 52

[CO99] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-looking parties: What
if nobody is truly honest? (extended abstract). In Jeffrey Scott Vitter, Lawrence L. Lar-
more, and Frank Thomson Leighton, eds., Proc. 31st ACM Symp. on Theory of Computing
(STOC), pages 255–264. 1999. 51

[CP23] Leo de Castro and Chris Peikert. Functional commitments for all functions, with trans-
parent setup and from SIS . In Carmit Hazay and Martijn Stam, eds., Proc. 42nd EU-
ROCRYPT, Part III, volume 14006 of LNCS, pages 287–320. Springer, 2023. ePrint.iacr:
2022/1368. 54

[CXY20] Ronald Cramer, Chaoping Xing, and Chen Yuan. On the complexity of arithmetic secret
sharing. In TCC, pages 444–469. 2020. 15

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square
span programs with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu
Iwata, eds., Proc. 20th ASIACRYPT (Part I), volume 8873 of LNCS, pages 532–550. Springer,
2014. ePrint.iacr:2014/718. 5, 10, 20, 33, 67

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Preliminary
version in 38th STOC, 2006). eccc:2005/046. 1

[Din16] ———. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover, 2016.
(manuscript). eccc:2016/128. 6, 16, 42

[DMS24] Michel Dellepere, Pratyush Mishra, and Alireza Shirzad. Garuda and Pari: Faster
and smaller SNARKs via equifficient polynomial commitments, 2024. (manuscript). ePrint.
iacr:2024/1245. 51

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
PCP Theorem. SIAM J. Comput., 36:975–1024, 2006. (Preliminary version in 45th FOCS,
2004). 3

[ECZB21] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Express:
Lowering the cost of metadata-hiding communication with cryptographic privacy . In Michael
Bailey and Rachel Greenstadt, eds., Proc. 30th USENIX Security Symposium, pages 1775–
1792. USENIX, 2021. arXiv:1911.09215. 8

[EG14] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk,
ed., Public-Key Cryptography (PKC), volume 8383 of LNCS, pages 630–649. Springer, 2014.
ePrint.iacr:2013/662. 7, 52

62

https://doi.org/10.1145/2901294
https://eccc.weizmann.ac.il/report/2013/085
https://doi.org/10.1137/050646445
https://eccc.weizmann.ac.il/report/2004/060
https://www.usenix.org/conference/nsdi17/technical-sessions/ presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/ presentation/corrigan-gibbs
https://arxiv.org/abs/1703.06255
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://eprint.iacr.org/2014/976
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://eprint.iacr.org/2002/140
https://doi.org/10.1145/301250.301313
https://doi.org/10.1145/301250.301313
https://doi.org/10.1007/978-3-031-30620-4_10
https://doi.org/10.1007/978-3-031-30620-4_10
https://eprint.iacr.org/2022/1368
https://eprint.iacr.org/2022/1368
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://eprint.iacr.org/2014/718
https://doi.org/10.1145/1236457.1236459
https://eccc.weizmann.ac.il/report/2005/046
https://eccc.weizmann.ac.il/report/2016/128
https://eprint.iacr.org/2024/1245
https://eprint.iacr.org/2024/1245
https://doi.org/10.1137/S0097539705446962
https://doi.org/10.1137/S0097539705446962
https://www.usenix.org/conference/usenixsecurity21/ presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/ presentation/eskandarian
https://arxiv.org/abs/1911.09215
https://doi.org/10.1007/978-3-642-54631-0_36
https://eprint.iacr.org/2013/662

[FGLSS96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.
(Preliminary version in 32nd FOCS, 1991). 1

[FJ12] Uriel Feige and Shlomo Jozeph. Universal factor graphs. In Artur Czumaj, Kurt
Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, eds., Proc. 39th International
Colloq. of Automata, Languages and Programming (ICALP), Part I, volume 7391 of LNCS,
pages 339–350. Springer, 2012. arXiv:1204.6484. 9, 41

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, eds., Proc. 32nd EUROCRYPT, volume 7881 of LNCS, pages 626–645. Springer,
2013. ePrint.iacr:2012/215. 1, 10

[GLRSW24] Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Pa-
rameterized inapproximability hypothesis under exponential time hypothesis. In Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell, eds., Proc. 56th ACM Symp. on Theory of Computing
(STOC), pages 24–35. 2024. arXiv:2311.16587. 6

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008. 5

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP . In Serge Vaudenay, ed., Proc. 25th EUROCRYPT, volume 4004 of LNCS, pages
339–358. Springer, 2006. eccc:2005/097, ePrint.iacr:2005/290. 69

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, ed., Proc. 16th ASIACRYPT, volume 6477 of LNCS, pages 321–340. Springer, 2010. 1

[Gro16] ———. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, eds., Proc. 35th EUROCRYPT, Part II, volume 9666 of LNCS, pages
305–326. Springer, 2016. 1, 51

[GS95] Arnaldo G. Garcia and Henning Stichtenoth. Algebraic function fields over finite fields
with many rational places. IEEE Trans. Inform. Theory, 41(6):1548–1563, 1995. 15

[GS01] Venkatesan Guruswami and Madhu Sudan. On representations of algebraic-geometry
codes. IEEE Trans. Inform. Theory, 47(4):1610–1613, 2001. (Preliminary version in 8th ESA,
2000). 15

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, eds., Proc. 43rd ACM
Symp. on Theory of Computing (STOC), pages 99–108. 2011. ePrint.iacr:2010/610. 54

[H̊as01] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. (Pre-
liminary version in 29th STOC, 1997). 2, 5, 9, 16, 42

[HKLT19] Prahladh Harsha, Subhash Khot, Euiwoong Lee, and Devanathan Thiruvenkat-
achari. Improved hardness for 3LIN via linear label cover . In Dimitris Achlioptas and
László A. Vêgh, eds., Proc. 22nd International Conf. on Approximation Algorithms for Com-
binatorial Optimization Problems (APPROX), volume 137 of LIPIcs, pages 9:1–9:16. Schloss
Dagstuhl, 2019. eccc:2019/093. 2, 5, 16

[IKNOS25] Yuval Ishai, Eyal Kushilevitz, Varun Narayanan, Rafail Ostrovsky, and Akash
Shah. On reusable proof systems. In Proc. 44th EUROCRYPT. 2025. (To appear). 1

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In Peter Bro Miltersen, ed., Proc. 22nd IEEE Conf. on Comput. Complexity, pages
278–291. 2007. 1, 20, 53

63

https://doi.org/10.1145/226643.226652
https://doi.org/10.1007/978-3-642-31594-7_29
https://arxiv.org/abs/1204.6484
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2012/215
https://doi.org/10.1145/3618260.3649771
https://doi.org/10.1145/3618260.3649771
https://arxiv.org/abs/2311.16587
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://eccc.weizmann.ac.il/report/2005/097
https://eprint.iacr.org/2005/290
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1109/18.476212
https://doi.org/10.1109/18.476212
https://doi.org/10.1109/18.923745
https://doi.org/10.1109/18.923745
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2010/610
https://doi.org/10.1145/502090.502098
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://eccc.weizmann.ac.il/report/2019/093
https://doi.org/10.1109/CCC.2007.10
https://doi.org/10.1109/CCC.2007.10

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT . J. Comput.
Syst. Sci., 62(2):367–375, 2001. (Preliminary version in 14th CCC, 1999). 15

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. (Preliminary
version in 39th FOCS, 1998). 15

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs
of equivalence. In Jelani Nelson, ed., Proc. 63rd IEEE Symp. on Foundations of Comp.
Science (FOCS), pages 1023–1034. 2022. ePrint.iacr:2022/1430. 7

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, eds., Proc. 24th
ACM Symp. on Theory of Computing (STOC), pages 723–732. 1992. 1, 7, 52

[KPV14] Subhash Khot, Preyas Popat, and Nisheeth K. Vishnoi. Almost polynomial factor hard-
ness for closest vector problem with preprocessing . SIAM J. Comput., 43(3):1184–1205, 2014.
(Preliminary version in 44th STOC, 2012). arXiv:1109.2176, eccc:2011/119. 2, 16

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP . In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, eds., Proc. 35th International Colloq. of Automata, Languages and Program-
ming (ICALP), Part II, volume 5126 of LNCS, pages 536–547. Springer, 2008. eccc:2007/031.
1, 8

[Lip24] Helger Lipmaa. Polymath: Groth16 is not the limit . In Leonid Reyzin and Douglas
Stebila, eds., Proc. 44th CRYPTO, Part X, volume 14929 of LNCS, pages 170–206. Springer,
2024. ePrint.iacr:2024/916. 51

[LRY16] Benoı̂t Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:
From polynomial commitments to pairing-based accumulators from simple assumptions. In
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, eds., Proc. 43rd International Colloq. of Automata, Languages and Programming
(ICALP), volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, 2016. ePrint.iacr:
2016/766. 53

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.
(Preliminary version in 35th FOCS, 1994). 1

[MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound
zero-knowledge SNARKs for UP . In Leonid Reyzin and Douglas Stebila, eds., Proc.
44th CRYPTO, Part X, volume 14929 of LNCS, pages 38–71. Springer, 2024. ePrint.iacr:
2024/227. 7

[MR17] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and com-
plexity of approximating dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, eds., Proc. 44th International Colloq. of Automata, Languages
and Programming (ICALP), volume 80 of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl, 2017.
arXiv:1611.05530. 16

[Nec94] Vasilii Il’ich Nechaev. К вопросу о сложности детерминированного алгоритма для
дискретного логарифма (Russian) [Complexity of a determinate algorithm for the discrete
logarithm] . Matematicheskie Zametki, 55(2):91–101, 1994. (English translation in Mathematical
Notes, 55(2):165–172, 1994). doi:10.1007/BF02113297. 7, 73

[NR22] Shafik Nassar and Ron D. Rothblum. Succinct interactive oracle proofs: Applications and
limitations. In Yevgeniy Dodis and Thomas Shrimpton, eds., Proc. 42nd CRYPTO, Part
I, volume 13507 of LNCS, pages 504–532. Springer, 2022. ePrint.iacr:2022/281. 8

64

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1109/FOCS54457.2022.00100
https://doi.org/10.1109/FOCS54457.2022.00100
https://eprint.iacr.org/2022/1430
https://doi.org/10.1145/129712.129782
https://doi.org/10.1137/130919623
https://doi.org/10.1137/130919623
https://arxiv.org/abs/1109.2176
https://eccc.weizmann.ac.il/report/2011/119
https://doi.org/10.1007/978-3-540-70583-3_44
https://eccc.weizmann.ac.il/report/2007/031
https://doi.org/10.1007/978-3-031-68403-6_6
https://eprint.iacr.org/2024/916
https://doi.org/10.4230/LIPICS.ICALP.2016.30
https://doi.org/10.4230/LIPICS.ICALP.2016.30
https://eprint.iacr.org/2016/766
https://eprint.iacr.org/2016/766
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1007/978-3-031-68403-6_2
https://doi.org/10.1007/978-3-031-68403-6_2
https://eprint.iacr.org/2024/227
https://eprint.iacr.org/2024/227
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://arxiv.org/abs/1611.05530
https://www.mathnet.ru/eng/mzm2145
https://www.mathnet.ru/eng/mzm2145
https://www.mathnet.ru/eng/mzm2145
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18
https://eprint.iacr.org/2022/281

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, ed., Proc. 18th EUROCRYPT, volume 1592 of LNCS, pages 223–238.
Springer, 1999. 44

[Pet94] Erez Petrank. The hardness of approximation: Gap location. Comput. Complexity, 4:133–
157, 1994. (Preliminary version in 2nd ISTCS, 1993). 4

[PHGR16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly
practical verifiable computation. Commun. ACM, 59(2):103–112, 2016. (Preliminary version in
IEEE S&P, 2013). ePrint.iacr:2013/279. 1

[Pol00] John M. Pollard. Kangaroos, monopoly and discrete logarithms. J. Cryptol., 13(4):437–447,
2000. 45

[Ran13] Hugues Randriambololona. Asymptotically good binary linear codes with asymptotically
good self-intersection spans. IEEE Trans. Inform. Theory, 59(5):3038–3045, 2013. arXiv:
1204.3057. 15

[Raz87] Alexander A. Razborov. Нжние оценки размера схем ограниченной глубины в полном
базисе, содержащем функцию логического сложения (Russian) [Lower bounds on the size of
bounded depth circuits over a complete basis with logical addition] . Mathematicheskie Zametki,
41(4):598–607, 1987. (English translation in Mathematical Notes of the Academy of Sciences of
the USSR, 41(4):333–338, 1987). doi:10.1007/BF01137685. 23

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography . J.
ACM, 56(6):34:1–34:40, 2009. (Preliminary version in 37th STOC, 2005). 45

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. SIAM J. Comput., 50(3), 2021. (Preliminary version in 48th
STOC, 2016). eccc:2016/061. 1, 8

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, eds., Proc. 45th ACM Symp. on Theory of Computing (STOC), pages 793–802.
2013. 2

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
ed., Proc. 16th EUROCRYPT, volume 1233 of LNCS, pages 256–266. Springer, 1997. 7, 73

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity . In Alfred V. Aho, ed., Proc. 19th ACM Symp. on Theory of Computing (STOC),
pages 77–82. 1987. 23

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable en-
cryption, and more. SIAM J. Comput., 50(3):857–908, 2021. (Preliminary version in 46th
STOC, 2014). ePrint.iacr:2013/454. 7

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur., 4(2-
4):117–660, 2022. doi:10.1561/3300000030. 16

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336,
2012. doi:10.1561/0400000010. 20

[VH97] Conny Voss and Tom Høholdt. An explicit construction of a sequence of codes attaining
the Tsfasman-Vladut-Zink bound: The first steps. IEEE Trans. Inform. Theory, 43(1):128–135,
1997. 15

[WW23a] Hoeteck Wee and David J. Wu. Lattice-based functional commitments: Fast verification
and cryptanalysis. In Jian Guo and Ron Steinfeld, eds., Proc. 29th ASIACRYPT (Part
V), volume 14442 of LNCS, pages 201–235. Springer, 2023. ePrint.iacr:2024/028. 54

65

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/BF01202286
https://doi.org/10.1145/2856449
https://doi.org/10.1145/2856449
https://eprint.iacr.org/2013/279
https://doi.org/10.1007/s001450010010
https://doi.org/10.1109/TIT.2013.2237944
https://doi.org/10.1109/TIT.2013.2237944
https://arxiv.org/abs/1204.3057
https://arxiv.org/abs/1204.3057
http://mi.mathnet.ru/eng/mz4883
http://mi.mathnet.ru/eng/mz4883
http://mi.mathnet.ru/eng/mz4883
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1137/16M1096773
https://doi.org/10.1137/16M1096773
https://eccc.weizmann.ac.il/report/2016/061
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1137/15M1030108
https://doi.org/10.1137/15M1030108
https://eprint.iacr.org/2013/454
https://people.cs.georgetown.edu/jthaler/ ProofsArgsAndZK.html
https://doi.org/10.1561/3300000030
https://people.seas.harvard.edu/~salil/pseudorandomness/
https://doi.org/10.1561/0400000010
https://doi.org/10.1109/18.567659
https://doi.org/10.1109/18.567659
https://doi.org/10.1007/978-981-99-8733-7_7
https://doi.org/10.1007/978-981-99-8733-7_7
https://eprint.iacr.org/2024/028

[WW23b] ———. Succinct vector, polynomial, and functional commitments from lattices. In Carmit
Hazay and Martijn Stam, eds., Proc. 42nd EUROCRYPT, Part III, volume 14006 of LNCS,
pages 385–416. Springer, 2023. ePrint.iacr:2022/1515. 54

[WW24a] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from indis-
tinguishability obfuscation. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, eds.,
Proc. 56th ACM Symp. on Theory of Computing (STOC), pages 387–398. 2024. ePrint.iacr:
2024/165. 7

[WW24b] Hoeteck Wee and David J. Wu. Succinct functional commitments for circuits from k-lin. In
Marc Joye and Gregor Leander, eds., Proc. 43rd EUROCRYPT, Part III, volume 14652
of LNCS, pages 280–310. Springer, 2024. ePrint.iacr:2024/688. 54

[WZ24] Brent Waters and Mark Zhandry. Adaptive security in SNARGs via iO and lossy func-
tions. In Leonid Reyzin and Douglas Stebila, eds., Proc. 44th CRYPTO, Part X, volume
14929 of LNCS, pages 72–104. Springer, 2024. ePrint.iacr:2024/254. 7

[Zim15] Joe Zimmerman. How to obfuscate programs directly . In Elisabeth Oswald and Marc
Fischlin, eds., Proc. 34th EUROCRYPT, Part II, volume 9057 of LNCS, pages 439–467.
Springer, 2015. ePrint.iacr:2014/776. 73

A Impossibility Results for DPPs with Perfect Completeness

In this section we show some impossibility results for DPPs with perfect completeness. The basic
impossibility result says that such DPPs cannot have an accepting set of size 1. As a corollary, we
get that DPPs over F2 (the two element field) cannot have perfect completeness.

We say that a language L ⊆ Fn is affine if there exist parameters k,m ∈ N, a matrix A ∈
Fk×(n+m) and vector b ∈ Fk such that L =

{
x ∈ Fn : ∃w ∈ Fm, A · (x∥w) = b

}
.

Lemma A.1 (DPP with Accepting Set Size 1). Let F be a finite field. If L has a DPP over F with
perfect completeness, an accepting set of size 1 and any soundness error δ < 1, then L is affine.

Proof. Since the accepting set is of size 1, all of the verifier’s tests are of the form ⟨z,x∥π⟩ = b, with
z ∈ Fn+m and b ∈ F. By perfect completeness, if x ∈ L, then all of these equations are satisfied,
whereas if x /∈ L, then at least one should not be satisfied. Thus, L is an affine language.

In Proposition A.3 below, we give an example of a very simple language that is not affine. First
however we show that in the case of F2, the accepting set is (without loss of generality) always of
size 1 and therefore any DPP (for a non-affine language) must have imperfect completeness.

Lemma A.2 (DPP over F2 with Perfect Completeness is Affine). If L has a DPP over F2 with
perfect completeness, and any soundness error δ < 1, then L is affine.

Proof. Over F2, the answer set A satisfies A ⊆ {0, 1}. This means A ∈ {∅, {0}, {1}, {0, 1}}. Since
the DPP has perfect completeness, and L is not empty, then it always holds that A ̸= ∅. Similarly,
any query in which A = {0, 1} can be removed without affecting completeness nor soundness.
Thus, without loss of generality, the accepting set is always of size 1. The lemma now follows from
Lemma A.1.

Next, we give even an extremely simple language which is not affine: namely, the OR of two
bits, and thus, cannot have a DPP with an accepting set of size 1.

66

https://doi.org/10.1007/978-3-031-30620-4_13
https://eprint.iacr.org/2022/1515
https://doi.org/10.1145/3618260.3649671
https://doi.org/10.1145/3618260.3649671
https://eprint.iacr.org/2024/165
https://eprint.iacr.org/2024/165
https://doi.org/10.1007/978-3-031-58723-8_10
https://eprint.iacr.org/2024/688
https://doi.org/10.1007/978-3-031-68403-6_3
https://doi.org/10.1007/978-3-031-68403-6_3
https://eprint.iacr.org/2024/254
https://doi.org/10.1007/978-3-662-46803-6_15
https://eprint.iacr.org/2014/776

Proposition A.3 (OR Language). The 2-bit OR language (i.e., {01, 10, 11}) is not affine over any
field F.

Proof. Suppose that there exists a matrix A and a vector b such that for any x ∈ {01, 10, 11}, there
exists wx such that A · (x∥wx) = b. Consider the proof string w = w01 + w10 − w11 for input
x = 00. Using the fact that 00 = 10 + 01− 11, we have that:

A · (00∥w) = A ·
(
(01∥w01) + (10∥w10)− (11∥w11)

)
= A · (01∥w01) +A · (10∥w10)−A(11∥w11)

= b+ b− b

= b,

in contradiction to the fact that x = 00 is not in the language.

Finally, we show that over fields of characteristic 2, even an accepting set of size 2 does not
suffice.

Proposition A.4 (Accepting Set Size of DPP for UV over Fields of Characteristic 2). Let k, n ≥ 2
and F = F2k . The language UV ⊆ Fn does not have a DPP with perfect completeness, any
soundness error δ < 1, and accepting set A of size 2.

Proof. Since 0 ∈ UV, we must have 0 ∈ A. Suppose A = {0, c} for some c ∈ F \ {0}. Let π1, π2
be the DPP proofs for the unit vectors e1, e2, respectively. By perfect completeness, every possible
query vector q must satisfy ⟨(e1∥π1), q⟩ ∈ A and ⟨(e2∥π2), q⟩ ∈ A. Since F has characteristic 2, A is
closed under addition. It follows that ⟨(e1 + e2∥π1 + π2), q⟩ ∈ A, and so π1+π2 is always accepted
as a proof for x = e1 + e2 ̸∈ UV.

B 2-Query FLPCP for Boolean Circuits with Squaring Verification

Our abstract FLPCP construction from multiplication codes natively applies to arithmetic circuits
and has 3 queries. In this section we construct a 2-query variant of this construction for Boolean
circuits.

Our construction generalizes and simplifies a previous construction of a 2-query LPCP based
on “square span programs” implicit in [DFGK14], and adapts it to the fully linear setting. First,
in Appendix B.1 we construct a 2-query FLPCP that a given input is Boolean valued. Then, in
Appendix B.2 we convert the latter to an FLPCP for Boolean circuit satisfiability.

B.1 2-Query FLPCP for Booleanity

Let Bool = {0, 1}n (i.e., the “Booleanity” language). We construct a 2-query FLPCP for Bool over
general fields.

Theorem B.1 (2-Query FLPCP for Bool). Let F be a finite field and suppose that E : Fn → Fℓ is
a multiplication code with respect to to the product code E⋆ : Fn⋆ → Fℓ. Then, Bool has an FLPCP
over F with 2 queries, proof length n⋆, soundness error 1 − δ⋆ + 1/|F| and randomness complexity
log2(ℓ) + log(|F|), where δ⋆ is the minimal distance of E⋆. Furthermore, the verifier’s accepting set
is always {(α, α2) : α ∈ F}.

Furthermore, if E and E∗ are systematic then the proof length is n∗ − n.

67

The proof of the theorem mimics the proof of Theorems 4.5 and 4.6 but takes advantage of the
specific problem to force two of the queries in these FLPCPs to be the same (thereby reducing the
query complexity to 2).

Proof. Let E : Fn → Fℓ be a multiplication code with respect to the product code E⋆ : Fn⋆ → Fℓ

and let δ⋆ denote the distance of E⋆. Recall that both E and E⋆ are linear and systematic codes.
Let x ∈ {0, 1}n. Since E is a multiplication code with respect to to E⋆, it holds that E(x) ⋆

E(x) ∈ E⋆, and in particular there exists w ∈ Fn⋆ such that E⋆(w) = E(x) ⋆ E(x). The FLPCP
proof string is simply w. In case E∗ is systematic, it suffice to include only the non-systematic part
of w.

Given linear access to the concatenation of the input x and the alleged proof string w, the
verifier samples a random index i ∈ [ℓ] and scalar λ ∈ F and checks that

E⋆(w)i + λ · E⋆(x−w1∥0n
⋆−n)i = (E(x)i)

2,

where w1 denotes the first n entries of w ∈ Fn∗ . Note that each side of the equation consists of a
single linear query to (x∥w).

Completeness. Suppose x ∈ {0, 1}n and let w be the proof vector as described above.
By construction E⋆(w) = E(x)⋆E(x). Thus, for every i ∈ [ℓ], it holds that E⋆(w)i = (E(x)i)

2.
Also, for i ∈ [n], since E is systematic, it holds that (w1)i = (E⋆(w))i = ((E(x))i)

2 = (xi)
2 = xi,

where the last equality follows from the fact that x is Boolean valued. Thus, w1 = x and so:

E⋆(w)i + λ · E⋆(x−w1∥0n
⋆−n)i = E⋆(w)i = (E(x)i)

2,

and so the verifier accepts.

Soundness. Let x ∈ Fn and fix a proof string w ∈ Fℓ.
Suppose first that w1 ̸= x. In this case with all but 1−δ⋆ probability, it holds that E⋆(w1−x)i ̸=

0. When this is the case then λ · E⋆(x −w1∥0n
⋆−n)i is uniformly distributed and the probability

that the test passes is 1/|F|.
Thus, we may assume that w1 = x. Suppose now that E⋆(w) ̸= E(x) ⋆ E(x). Since E is a

multiplication code with respect to to E⋆, there exists c⋆ ∈ E⋆ such that c⋆ = E(x) ⋆ E(x). Since
c⋆ ̸= E⋆(x), by the distance of E⋆, with probability at least δ⋆ over i ∈ [ℓ], it holds that:

E⋆(w)i ̸= (c⋆)i =
(
E(x) ⋆ E(x)

)
i
= (E(x)i)

2,

and so the verifier’s test fails with probability at least δ⋆.
Thus, we may assume that E⋆(w) = E(x) ⋆ E(x). But this means that for every coordinate

i ∈ [n]:
xi = wi = E⋆(w)i = E(x)i · E(x)i = (xi)

2,

which implies that x ∈ {0, 1}n.

Corollary B.2 (Reed-Solomon-Based FLPCP for Bool). Let F be a finite field of size |F | > 2n+1.
Then, the language Bool has an FLPCP over F with 2 queries, n proof length, soundness error
(2n + 1)/|F| and randomness complexity O(log(|F|)). Furthermore, the verifier’s accepting set is
always Sq = {(α, α2) : α ∈ F}.

68

B.2 From Booleanity to Boolean Circuits

The following proposition shows that testing whether a given input x ∈ Fn belongs to {x ∈ {0, 1}n :
C(x) = 1} reduces to the Booleanity problem.

Given an input x ∈ {0, 1}n to a Boolean circuit C : {0, 1}n → {0, 1} of size s, we say that
w ∈ {0, 1}s is a full evaluation if it contains the values of all gates in the evaluation of C on input
x (using some predetermined fixed topological ordering of the gates).

Proposition B.3 (DPP for Boolean Circuit Satisfiability). Let F be a field with characteristic
greater than or equal to 5. Suppose that Bool has an FLPCP over F with query complexity d = d(n),
proof length m = m(n), soundness error ε = ε(n) and randomness complexity r = r(n), for inputs
of size n.

Let C : {0, 1}n → {0, 1} be a Boolean circuit of size s which consists of fan-in 2 NAND gates.
Then, the language{

(x,w) ∈ {0, 1}n × {0, 1}s−n : C(x) = 1 and (x∥w) is the full evaluation for C(x) = 1
}

has an FLPCP over F with query complexity d(s), proof length s+m(s), soundness error ε(s), and
randomness complexity r(s).

Proof. Given an input (x∥w), it suffices to check that:

1. x ∈ {0, 1}n.

2. For every gate with input wires i, j and output wire k, it holds that w′k = NAND(w′i,w
′
j),

where w′i,w
′
j ,w

′
k denote the corresponding variables in the extended witness.

We shall use the following useful fact (due to [GOS06, Lemma 1]), which can be verified by
explicitly writing down the relevant truth tables.

Fact B.4 (NAND Gates). Let a, b, c ∈ {0, 1}. Then, c = NAND(a, b) if and only if a+ b+ 2c− 2 ∈
{0, 1}, where the arithmetic is over the integers.

Fact B.4 holds over the integers, but given that the expression a+ b+2c− 2 is between −2 and
2 (for a, b, c ∈ {0, 1}) it is also true over any field with characteristic greater than or equal to 5.

Thus, Item 2 above reduces to checking that for every gate with input wires i, j and output
wire k, it holds that wi + wj + 2wk − 2 ∈ {0, 1}. Overall we get that checking that (x,w) is in the
language reduces to checking that M · (x∥w) ∈ Bool, for a suitable matrix M ∈ Fs×s arising from
Fact B.4. The lemma then follows from Proposition 3.3.

Using Proposition 3.2 we immediately derive the following corollary for Boolean circuit satisfi-
ability.

Corollary B.5 (FLPCP for Boolean Circuit Satisfiability from FLPCP for Bool). Let F be a field
with characteristic greater than or equal to 5. Suppose that Bool has an FLPCP over F with query
complexity d = d(n), proof length m = m(n), soundness error ε = ε(n) and randomness complexity
r = r(n), for inputs of size n.

Let C : {0, 1}n×{0, 1}ℓ → {0, 1} be a Boolean circuit of size S which consists of fan-in 2 NAND
gates. Then, the language

{
x ∈ {0, 1}n : ∃w ∈ {0, 1}ℓ : C(x,w) = 1

}
has an FLPCP over F with

query complexity d(s), proof length s+m(s), soundness error ε(S), and randomness complexity r(s).

69

Combining Corollary B.5 with Corollary B.2 we get that:

Corollary B.6 (FLPCP for Boolean Circuit Satisfiability). Let F be a field with characteristic
greater than or equal to 5. Let C : {0, 1}n × {0, 1}m → {0, 1} be a Boolean circuit of size s which
consists of fan-in 2 NAND gates. Then, the language

{
x ∈ {0, 1}n : ∃w ∈ {0, 1}m : C(x,w) =

1
}

has an FLPCP over F with query complexity 2, proof length 2s, soundness error (2s + 1)/|F|
and randomness complexity O(log(|F|)). Furthermore, the verifier’s accepting set is always Sq =
{(α, α2) : α ∈ F}.

C Proof of Theorem 4.4 for Non-Squares

Let q be a prime power. Recall that our goal is to construct a DPP over Fq with soundness error
O(1/

√
q).

Observing that q2 is a square, the furthermore part of Theorem 3.5 gives a multiplication code
E : Fk

q2 → Fk/ρq
q2

such that ρq = 1/poly(q) and the square code E⋆ has distance 1 − O(1/q). Com-
bining this code with Theorem 4.6, we obtain an FLPCP for dR1CSA,B,C over the field of order
q2 with 3 queries, proof length k · poly(q), soundness error 1−O(1/q) and randomness complexity
log(k) +O(log(q)). The accepting set has cardinality q4.

Each linear query over the field of order q2, can be emulated by two linear queries over the field
q. This follows from the fact that multiplication by a fixed element over the field Fq2 is a linear
map over Fq.

Thus, the above FLPCP can be viewed as a 6-query FLPCP over the field Fq with proof length
k · poly(q), soundness error 1 − O(1/q), randomness complexity log(k) + O(log(q)) and with an
accepting set A of size q4.

By Lemma 4.24, the language A has a DPP with proof length poly(q), soundness error O(1/
√
q)

and randomness complexity poly(q).
We compose the 6-query FLPCP with the above DPP via Lemma 4.12. This results in a DPP

with soundness error O(1/
√
q), proof length k · poly(q) + 2log(k)+O(log(q) · poly(q) = k · poly(q), and

randomness complexity log(k) + poly(q), as desired.

D SNARGs from Linear-Only Encryption

In this section, we recall the notion of a succinct non-interactive argument (SNARG) as well as the
Bitansky, Chiesa, Ishai, Ostrovsky and Paneth [BCIOP22] compiler for constructing SNARGs in
the preprocessing model from a linear interactive proof (LIP) together with a linear-only encryption
scheme. For simplicity of exposition, we simply note here that any DPP is already an (input-
oblivious) LIP. Correspondingly, we state the main theorem for a DPP in place of a LIP. This
specialization suffices for all of the applications we consider in this work.

Definition D.1 (Succinct Non-Interactive Argument). Let R = {Rλ}λ∈N be a family of NP rela-
tions indexed by a security parameter λ ∈ N and let L = {Lλ}λ∈N be the associated family of NP
languages. A preprocessing succinct non-interactive argument (SNARG) for R is a tuple of three
probabilistic polynomial-time algorithms (G,P,V) with the following properties:

• G(1λ)→ (σ, τ): On input the security parameter λ, the generator algorithm outputs a common
reference string σ and a verification state τ .

70

• P(σ, x, w)→ π: On input a common reference string σ, a statement x, and a witness w, the
prover algorithm outputs a proof π.

• V(τ, x, π)→ {0, 1}: On input the verification key τ , a statement x, and a proof π, the verifi-
cation algorithm outputs a bit b ∈ {0, 1}.

The algorithms (G,P,V) should satisfy the following properties:

• (Completeness:) for all security parameters λ ∈ N and every (x,w) ∈ Rλ,

Pr

[
V(τ, x, π) = 1 :

(σ, τ)← G(1λ);
π ← P(σ, x, w)

]
≥ c.

We refer to c as the completeness parameter. By default, we consider constructions with perfect
completeness (i.e., c = 1).

• (Soundness:) We consider two notions of soundness:

– (Single-theorem adaptive soundness:) For every polynomial-size prover P∗, there exists
a negligible function negl(·) such that for all security parameters λ ∈ N,

Pr

[
V(τ, x, π) = 1 and x /∈ Lλ :

(σ, τ)← G(1λ)
(x, π)← P∗(1λ, σ)

]
= negl(λ).

– (Multi-theorem soundness:) For every polynomial-size prover P∗, there exists a negligible
function negl(·) such that for all security parameters λ ∈ N,

Pr

[
V(τ, x, π) = 1 and x /∈ Lλ :

(σ, τ)← G(1λ)
(x, π)← (P∗)V(τ,·,·)(1λ, σ)

]
= negl(λ).

• (Succinctness:) There exists a universal polynomial poly(·) such that the running time of
G is poly(λ + |Rλ|), the running time of P is poly(λ + |Rλ|), the running time of V is
poly(λ+ |x|+ log |Rλ|), and the size of the proof is poly(λ+ log s).

Remark D.2 (Public Verification vs. Designated Verifier). We say a SNARG is publicly verifiable
if the verification state τ is simply the common reference string σ (i.e., τ = σ). Otherwise, we
say the SNARG is designated-verifier (and knowledge of the verification state τ is needed to check
proofs).

Definition D.3 (Linear-Only Encryption [BCIOP22]). Let F = {Fλ}λ∈N be a field ensemble. A
linear-only encryption scheme with plaintext space F is a tuple of efficient algorithms (KeyGen,
Encrypt,Decrypt,Add, ImVer) with the following properties:

• KeyGen(1λ)→ (pk, sk): On input the security parameter λ, the key-generation algorithm out-
puts a secret key sk and a public key pk.

• Encrypt(pk, x)→ ct: On input the public key pk and a message x ∈ F, the encryption algorithm
outputs a ciphertext ct.

• Decrypt(sk, ct) → x: On input the secret key sk and a ciphertext ct, the decryption algorithm
outputs a message x ∈ F (or a special symbol ⊥ to denote a decryption failure).

71

• Add(pk, ct1, ct2)→ ct′: On input the public key pk, ciphertexts ct1, ct2, and scalars α1, α2 ∈ F,
the addition algorithm outputs an evaluated ciphertext ct′.

• ImVer(sk, ct) → b: On input the secret key sk and a ciphertext ct, the image-verification
algorithm outputs a bit b ∈ {0, 1}.

In addition, the above algorithms should satisfy the following properties:

• (Correctness:) For every λ ∈ N and every message x ∈ Fλ,

Pr

[
Decrypt(sk, ct) = x ∧ ImVer(sk, ct) = 1 :

(pk, sk)← KeyGen(1λ);
ct← Encrypt(pk, x)

]
= 1.

In addition, for all (pk, sk) in the support of KeyGen(1λ), and all ciphertexts ct1, ct2 where
Decrypt(sk, ct1) = x1 and Decrypt(sk, ct2) = x2 for some x1, x2 ∈ Fλ, we have that

Pr

Decrypt(sk, ct′) = x1 + x2 ∧ ImVer(sk, ct′) = 1 :
ct′ ← Add(pk, ct1, ct2);
x1 ← Decrypt(sk, ct1);
x2 ← Decrypt(sk, ct2)

 = 1.

• (Semantic security:) For an adversary A and a bit b ∈ {0, 1}, we define the semantic security
experiment as follows:

– The challenger begins by sampling (pk, sk)← KeyGen(1λ) and gives pk to A.

– The adversary outputs two vectors x0,x1 ∈ Fℓ.

– For each i ∈ ℓ, the challenger computes cti ← Encrypt(pk, xb,i). It gives (ct1, . . . , ctℓ) to
A.

– At the end of the game, algorithm A outputs a bit b′ ∈ {0, 1}, which is also the output of
the experiment.

The encryption scheme is semantically secure if for all efficient adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N,

|Pr[b′ = 1 : b = 0]− Pr[b′ = 1 : b = 1]| = negl(λ).

• (Linear-only:) For all polynomial-size adversaries A, there exists a polynomial-size extractor
E such that for all plaintext generators M, there exists a negligible function negl(·) such that
for all security parameters λ,

Pr

∃i ∈ [k] : ImVer(sk, ct′i) = 1

and
Decrypt(sk, ct′i) ̸= yi

:

(pk, sk)← KeyGen(1λ);
x = (x1, . . . , xm)←M(pk);
∀i ∈ [m] : cti ← Encrypt(pk, xi);

(ct′1, . . . , ct
′
k)← A(pk, ct1, . . . , ctm; rA);

(Π, b)← E(pk, ct1, . . . , ctm; rA);
y = (y1, . . . , yk)← Πx+ b

 = negl(λ),

where rA denotes the (uniform) randomness used by adversary A.

72

E The Generic Group Model

As described in Section 7, we analyze the security of our interactive laconic argument in the generic
group model [Nec94, Sho97]. In the generic group model, access to group elements are replaced by
handles. The generic group oracle is responsible for maintaining a consistent mapping between han-
dles and the group elements they represent. We follow the exact same syntax as used in [BIOW20,
Appendix C]:

Definition E.1 (Generic Group Oracle). A generic group oracle is a stateful oracle G that responds
to queries GGM.Setup,GGM.Encode,GGM.Add,GGM.Test as follows:

• On a query GGM.Setup(1λ), the generic group oracle samples two fresh nonces pp, sk← {0, 1}λ
and a prime p < 2λ. It outputs (pp, sk, p). The oracle stores the values generated, initializes
an empty table T ← {}, and sets the internal state so subsequent invocations of GGM.Setup
fail (with output ⊥).

• On a query GGM.Encode(k, x) where k ∈ {0, 1}λ, x ∈ Fp, the oracle checks that k = sk
(returning ⊥ if the check fails). The oracle then generates a fresh nonce ξ ← {0, 1}λ and adds
the entry ξ 7→ x to the table T, and replies with ξ.

• On a query GGM.Add(k, ξ1, ξ2) where k, ξ1, ξ2 ∈ {0, 1}λ, the oracle checks that k = pp, that
the handles ξ1, ξ2 are present in its internal table T, and are mapped to values x1, x2 ∈ Fp,
respectively (returning ⊥ otherwise). If the checks pass, the oracle samples a fresh handle
ξ ← {0, 1}λ and adds the entry ξ 7→ (x1 + x2) to T, and replies with ξ. The addition oracle
can be used to implement scalar multiplication by arbitrary Fp elements via repeated doubling.

• On a query GGM.Test(k, ξ) where k, x ∈ {0, 1}λ, the oracle checks that k = pp, that the handle
ξ is present in T, and that ξ maps to some value x ∈ Fp (returning ⊥ otherwise). If the checks
pass, the oracle returns “zero” if x = 0 ∈ Fp and “non-zero” otherwise.

Remark E.2 (Unique Encodings). Many formulations, including [Sho97], model the generic group
using a random injective function σ : Fp → {0, 1}λ. In this formulation, every value in Fp has a
unique encoding, and there is no need for an explicit GGM.Test procedure (GGM.Test would just cor-
respond to equality of bitstrings). Our formulation in Definition E.1 (taken verbatim from [BIOW20,
Definition C.1]) samples a new encoding on every query and provides an explicit GGM.Test proce-
dure for checking whether an element is an encoding of 0 (or equivalently, whether two elements
are equal). We can implement a generic group model with unique encodings by using the GGM.Test
procedure to test equality against the existing entries in the table T after each GGM.Encode and
GGM.Add query, and returning the previously-computed handle if it is already present in the table.
Otherwise, a new handle is sampled as usual. This transformation incurs a quadratic overhead
in the number of queries. Thus, without loss of generality, we can assume fresh handles are out-
put by GGM.Encode and GGM.Add, and equality-checking is handled through an explicit algorithm
GGM.Test.

Remark E.3 (Oracle Queries as Formal Polynomials [Zim15, Remark 2.11, adapted]). Although
the generic group oracle is defined formally in terms of “handles” (Definition E.1), it is oftentimes
more conducive to regard each oracle query as referring to a formal query polynomial. The formal
variables in this formal query polynomial are specified by the expressions supplied to the GGM.Encode

73

oracle (as determined by the details of the construction), and the adversary can construct terms that
refer to new polynomials by making queries to the group operation oracle GGM.Add. Rather than
operating on a “handle,” each valid GGM.Test query refers to a formal query polynomial, and the
result of the query is “zero” if the polynomial evaluates to zero when its variables are instantiated
with the joint distribution over their values in Fp as generated in the real security game.

74

	Introduction
	Our Contributions
	Related Works

	Technical Overview
	DPPs over Small Fields
	DPPs over Large Fields

	Preliminaries
	Fully Linear PCP
	Codes
	Exponential Time Hypothesis
	MAXLIN and Its Variants

	DPPs over Small Fields
	FLPCP for dR1CS
	DPP Composition
	DPP Gadgets
	Lower Bound on the Soundness Error

	From FLPCP to DPP Over Large Fields
	Bounded Embedding (Proof of 5.4)
	Query Packing (Proof of refthm:pack)
	Strong Soundness

	From DPP to Hardness of Approximation
	From DPP to Succinct Arguments
	From DPP to Single-Ciphertext SNARGs
	From DPP to Laconic Arguments with Preprocessing
	From DPP to Succinct Commit-and-Prove Arguments

	Impossibility Results for DPPs with Perfect Completeness
	2-Query FLPCP for Boolean Circuits with Squaring Verification
	2-Query FLPCP for Booleanity
	From Booleanity to Boolean Circuits

	Proof of 4.4 for Non-Squares
	SNARGs from Linear-Only Encryption
	The Generic Group Model

