
Exploring Crypto Dark Matter:

New Simple PRF Candidates and Their Applications∗

Dan Boneh† Yuval Ishai‡ Alain Passelègue§ Amit Sahai§ David J. Wu†

Abstract

Pseudorandom functions (PRFs) are one of the fundamental building blocks in cryptography.
We explore a new space of plausible PRF candidates that are obtained by mixing linear functions
over different small moduli. Our candidates are motivated by the goals of maximizing simplicity
and minimizing complexity measures that are relevant to cryptographic applications such as
secure multiparty computation.

We present several concrete new PRF candidates that follow the above approach. Our
main candidate is a weak PRF candidate (whose conjectured pseudorandomness only holds for
uniformly random inputs) that first applies a secret mod-2 linear mapping to the input, and then
a public mod-3 linear mapping to the result. This candidate can be implemented by depth-2
ACC0 circuits. We also put forward a similar depth-3 strong PRF candidate. Finally, we present
a different weak PRF candidate that can be viewed as a deterministic variant of “Learning
Parity with Noise” (LPN) where the noise is obtained via a mod-3 inner product of the input
and the key.

The advantage of our approach is twofold. On the theoretical side, the simplicity of our can-
didates enables us to draw natural connections between their hardness and questions in complex-
ity theory or learning theory (e.g., learnability of depth-2 ACC0 circuits and width-3 branching
programs, interpolation and property testing for sparse polynomials, and natural proof barri-
ers for showing super-linear circuit lower bounds). On the applied side, the “piecewise-linear”
structure of our candidates lends itself nicely to applications in secure multiparty computation
(MPC). Using our PRF candidates, we construct protocols for distributed PRF evaluation that
achieve better round complexity and/or communication complexity (often both) compared to
protocols obtained by combining standard MPC protocols with PRFs like AES, LowMC, or
Rasta (the latter two are specialized MPC-friendly PRFs). Our advantage over competing ap-
proaches is maximized in the setting of MPC with an honest majority, or alternatively, MPC
with preprocessing.

Finally, we introduce a new primitive we call an encoded-input PRF, which can be viewed
as an interpolation between weak PRFs and standard (strong) PRFs. As we demonstrate, an
encoded-input PRF can often be used as a drop-in replacement for a strong PRF, combining
the efficiency benefits of weak PRFs and the security benefits of strong PRFs. We conclude by
showing that our main weak PRF candidate can plausibly be boosted to an encoded-input PRF
by leveraging error-correcting codes.

∗This is a preliminary full version of [BIP+18]
†Stanford University. Email: {dabo, dwu4}@cs.stanford.edu
‡Technion. Email: yuvali@cs.technion.ac.il. Work done in part while visiting UCLA.
§UCLA. Email: alain.passelegue@inria.fr, sahai@cs.ucla.edu

1

mailto:dabo@cs.stanford.edu
mailto:dwu4@cs.stanford.edu
mailto:yuvali@cs.technion.ac.il
mailto:alain.passelegue@inria.fr
mailto:sahai@cs.ucla.edu

1 Introduction

In this paper, we continue a line of work on constructing low-complexity pseudorandom functions.
We explore a new space of simple candidate constructions that enjoy several advantages over existing
candidates. We start with some relevant background.

As discussed in [ABG+14], there are two primary paradigms for designing cryptographic prim-
itives. The “theory-oriented” or “provable security” approach is to develop constructions whose
security can be provably reduced to the hardness of well-studied computational problems (e.g., fac-
toring, discrete log, or learning with errors). The second and “practice-oriented” approach aims at
obtaining efficient constructions for specific functionalities (e.g., block ciphers or hash functions).
Here, designers typically try to maximize concrete efficiency at the expense of relying on heuristic
arguments and prior experience to argue security. But ultimately, confidence in the underlying
security assumptions or cryptographic designs only grows if they withstand the test of time.

There are several limitations to these approaches. On the one hand, both the efficiency and the
structure of provably-secure constructions are inherently limited by the underlying computational
problems. This leads to constructions that are far less efficient than those obtained from the
practice-oriented approach. On the other hand, despite the efficiency of practical constructions,
their designs are often complex, thereby complicating their analysis. Consequently, it is difficult
to argue whether the lack of cryptanalysis against practical constructions is due to their actual
security or due to the complexity of their design. The structure of both types of constructions
often makes them poorly suited as building blocks for cryptographic applications that are different
from the ones envisioned by their designers (e.g., secure multiparty computation).

In this work, we depart from these traditional approaches and consider a surprisingly unexplored
space of cryptographic constructions. Our approach is driven by simplicity, and aims at circum-
venting some of the limitations of the existing approaches. Our hope is to obtain constructions
that are (1) relatively easy to describe and analyze, (2) concretely efficient, and (3) well-suited for
different applications. In particular, we aim at relying on assumptions that are simple to state, and
yet at the same time, breaking them would likely require new techniques that may themselves have
other applications. In a sense, the assumptions we introduce have a win-win flavor and can be of
independent interest beyond the cryptographic community (e.g., to complexity theorists, learning
theorists, or mathematicians). A notable example for prior work in this direction is Goldreich’s pro-
posal of a simple one-way function candidate [Gol00], which had an unexpected impact in different
areas of cryptography and beyond (see [App13] for a survey). More closely relevant to this work,
the works of Miles and Viola [MV12] and (especially) Akavia et al. [ABG+14] proposed heuristic
constructions of simple pseudorandom functions and proved their security against natural classes
of attacks, without reducing their security to any previously studied assumption.

What do we mean by simplicity? The concrete direction we take is exploring whether the
idea of mixing linear functions over different moduli can be a source of hardness in the context
of secret-key cryptographic primitives. Our starting observation is that computing the sum of m
binary-valued variables modulo 3 is actually a high-degree polynomial over Z2. More precisely,
the mapping function map : {0, 1}m → Z3 where map(x) :=

∑
i∈[m] xi (mod 3) is a polynomial of

high-degree over the binary field Z2 (but a simple linear function over Z3). Surprisingly, this simple

2

idea of mixing different small moduli enables new constructions of “piecewise-linear1” symmetric
primitives that are conceptually simple to describe, can plausibly achieve strong security guarantees,
and minimize complexity measures that are relevant to natural cryptographic applications.

Our focus: pseudorandom functions. In this work, we focus specifically on pseudorandom
functions (PRFs) [GGM86]—one of the most fundamental building blocks of modern cryptography.
Our primary focus is on weak pseudorandom functions: namely, functions whose behavior looks
indistinguishable from that of a random function to any adversary who only observes the input-
output behavior of the function on random domain elements. Since weak PRFs cannot replace
standard (or strong) PRFs in all cryptographic applications, we then show how our construction
can be adapted to yield a new primitive we call an encoded-input PRF. An encoded-input PRF
is defined similarly to a standard (strong) PRF, except that its input domain is restricted to
an efficiently recognizable set. Encoded-input PRFs can be viewed as an intermediate primitive
between strong PRFs and weak PRFs that combines the security advantages of the former and
efficiency advantages of the latter. Indeed, we show that in many cases they can be used as a
replacement for a strong PRF. At the same time, we exhibit simple candidates of encoded-input
PRFs in complexity classes where strong PRFs are not known to exist. Finally, a unique feature of
our new PRF candidates is that they are very “MPC-friendly.” As we show in Section 6, in some
natural settings of secure computation, our PRFs can be computed more efficiently in a distributed
fashion compared to standard block ciphers like AES and even custom-built MPC-friendly block
ciphers like LowMC [ARS+15] or Rasta [DEG+18].

Previous work on simple PRFs. Before describing our contributions, it is useful to survey
some closely relevant previous works on low-depth PRFs (see Sections 1.2 and 3.2 for a broader
survey). We denote by AC0 the class of polynomial-size, constant-depth circuits with unbounded
fan-in AND, OR, and NOT gates and by ACC0[m] the class of such circuits that can additionally
have unbounded fan-in MODm gates, which return 0 or 1 depending on whether the sum of their
inputs is divisible by m. We denote by ACC0 the union over all m of ACC0[m].

With the goal of minimizing the depth complexity of weak PRFs, Akavia et al. [ABG+14]
proposed the first candidate that can be computed by ACC0[2] circuits. More precisely, their
candidate construction can be computed by depth-3 circuits in which the first layer consists of MOD2

gates computing a matrix-vector product Ax, where A ∈ Zn×n2 is the secret key and x ∈ Zn2 is the
input. The second and third layer define a public DNF formula. While the Akavia et al. candidate
could plausibly provide exponential security,2 Bogdanov and Rosen [BR17] recently showed that
this candidate (on n-bit inputs) can be computed by a rational function of degree O(log n), which
in turn gives rise to a quasi-polynomial time attack. Their work also raises the question of coming
up with an explicit function g for which g(Ax+b) is a weak PRF with better than quasi-polynomial
security. Applebaum and Raykov [AR16] show that low-complexity PRFs can be based on one-
wayness assumptions. In particular, under a variant of Goldreich’s one-wayness assumption [Gol00],
they present a weak PRF with quasi-polynomial security that can be implemented (on any fixed
key) by depth-3 AC0 circuits.

1In our context, we use the term “piecewise-linear” to refer to the fact that our pseudorandom function candidates
can be expressed as a composition of linear functions over different moduli.

2Roughly speaking, we say that a weak PRF is exponentially secure if the distinguishing advantage of any adversary
(modeled as a Boolean circuit) of size 2λ is bounded by 2−Ω(λ).

3

These recent results leave several open questions regarding the complexity of low-depth (weak)
PRFs. First, even if one settles for quasi-polynomial time security, there is no proposed PRF
candidate of any kind that can be realized by depth-2 circuits over any standard basis. When
restricting attention to (weak) PRFs that offer a better level of security, the situation is even
worse. While it is known that weak PRFs with better than quasi-polynomial security do not exist
in AC0,3 and that strong PRFs with similar security do not exist in ACC0[p] for any prime p,4 it
is plausible that weak PRFs with exponential security could still exist in ACC0[2]. But to the best
of our knowledge, no such candidates have been suggested. If we do settle for quasi-polynomial
security, then the result of Kharitonov [Kha93, Theorem 9] (resp., Viola [Vio13, Theorem 11])
gives a weak PRF in AC0 (resp., strong PRF in ACC0[p] for any p) based on the hardness of
factoring. This raises the question of whether it is possible to construct (weak or strong) PRFs
with exponential (or even just better than quasi-polynomial) security in ACC0. In this work, we
propose a new candidate weak PRF that can be computed by depth-2 ACC0 circuits. Our candidate
is conceptually simple and can plausibly satisfy exponential security, thus addressing both of the
above challenges simultaneously. We also propose other variants of this candidate, including a
candidate for an exponentially secure strong PRF that can be computed by depth-3 ACC0 circuits.
We provide a comparison of the known positive and negative results for weak and strong PRFs in
different complexity classes in Table 1.

Complexity Class

Circuit Depth AC0 ACC0[p] ACC0[m]

Depth 2
Weak PRF (§3)
(exponential)

Depth 3
Weak PRF [AR16] Weak PRF [ABG+14] Strong PRF (§7.3)
(quasi-polynomial) (quasi-polynomial) (exponential)

Depth > 3
Weak PRF [Kha93] Strong PRF [Vio13]
(quasi-polynomial) (quasi-polynomial)

Lower Bound

No weak PRF with No strong PRF with
better than better than

quasi-polynomial quasi-polynomial
security [LMN89] security [CIKK16]

Table 1: Comparison of positive and negative results for low-complexity PRF candidates. We
write ACC0[p] to denote the class AC0 with MODp gates for a prime p and ACC0[m] to denote the
class AC0 with MODm gates for any integer m. For each candidate, we denote in parenthesis their
security (i.e., quasi-polynomial security or exponential security). The entries shown in bold (the
right-hand column) are from this work.

3Specifically, the classic learning result of Linial et al. [LMN89] showed that AC0 circuits can be learned from random
examples in quasi-polynomial time.

4The recent learning result by Carmosino et al. [CIKK16] showed that for any prime p, ACC0[p] circuits can be learned
using membership queries in quasi-polynomial time. Extending this result to the setting of learning from uniformly
random examples (without membership queries) or to composite moduli seems challenging.

4

1.1 Our Contributions

In this section, we give a more detailed overview of the main results of this paper.

New weak PRF candidates. We put forward several new (weak) PRF candidates that mix
linear functions over different moduli. We start by describing our most useful candidate, and will
discuss other variants later. Our primary weak PRF candidate follows a very similar design philos-
ophy as that taken by Akavia et al. [ABG+14]. Recall first that in the Akavia et al. construction,
the secret key is a matrix A ∈ Zm×n2 and the input is a vector x ∈ Zn2 . The output of the PRF
is defined as FA(x) := g(Ax), where the function g is a non-linear mapping (in the case of the
Akavia et al. construction, the function g is a “tribes” function and can be expressed as a DNF
formula). In our setting, we adopt the same high-level structure, but substitute a different and
conceptually simpler non-linear function g. In our candidate, we define the non-linear function to
be the function that interprets the binary outputs of Ax as 0/1 values over Z3, and the output of
the function is simply the sum of the input values over Z3. This gives a simple candidate answer
to the aforementioned open question of Bogdanov and Rosen [BR17].

Specifically, we define the mapping function map : {0, 1}m → Z3 that maps y ∈ {0, 1}m 7→∑
i∈[m] yi (mod 3). Our weak PRF candidate (with key A) is then defined as

FA(x) := map(Ax) . (1.1)

We formally introduce our candidate (and discuss several generalizations5) in Section 3. We state
our formal conjectures regarding the hardness of our candidate in Section 3.1. There are several
properties of our weak PRF candidate that we want to highlight:

• Conceptual simplicity. Our candidate is conceptually very simple to describe. It reduces
to computing a (secret) matrix-vector product over Z2, reinterpreting the output vector as
a 0/1 vector mod-3 and then computing the sum of its components. The simplicity of our
construction is fairly apparent compared to block cipher candidates like AES or number-
theoretic constructions of PRFs. In spite of its simplicity, to the best of our knowledge, such
a candidate has not previously been proposed, let alone studied.

• Low complexity. Our candidate can be computed by depth-2 ACC0[2, 3] circuits. More
precisely, the first layer consists entirely of MOD2 gates to compute the matrix-vector product
Ax, and the second layer consists of two MOD3 gates that computes the binary representation
of the output. We refer to Remark 3.10 for a more precise definition.

• MPC friendliness. The simplicity of our candidate also lends itself nicely for use in MPC
protocols. In Section 6, we give an efficient protocol that enables distributed evaluation
of our PRF in a setting where both the key and the input are secret-shared. We discuss
this further in the sequel. As we show in Table 2 and Table 3, the round complexity and
communication complexity of our distributed evaluation protocol outperform existing MPC
protocols for distributed evaluation of not only AES, but even those for MPC-friendly block
ciphers like LowMC [ARS+15] and Rasta [DEG+18]. This applies both to the 3-party case
with one corrupted party and (especially) to the case of secure 2-party computation with
preprocessing.

5An immediate generalization is replacing 2 and 3 by different numbers. However, the particular choice of 2 and 3
turns out to be the most useful for our purposes. A more useful generalization replaces the above choice of map by
a suitable compressive mod-3 linear mapping, which yields weak PRF candidates with a longer output.

5

Cryptanalysis. In Section 4, we consider several classic cryptanalytic techniques on our weak
PRF candidate. While our analysis is by no means exhaustive, we are able to rule out several classes
of attacks, thereby providing some confidence into the security of our new candidate. Following the
work of Akavia et al. [ABG+14], we focus on two primary classes of attacks:

• Lack of correlation with fixed function families. First, we rule out the learning-type
attacks of Linial et al. [LMN89] by showing that there are no fixed function families of expo-
nential size that are noticeably correlated with our PRF candidate (previously, Linial et al.
showed that for all AC0 functions, there exists a quasi-polynomial-size function family such
that any AC0 function is noticeably correlated with a function in that class; this implies a
quasi-polynomial time learning algorithm for AC0).

• Inapproximability by low-degree polynomials. Next, we show that there does not
exist a low-degree polynomial approximation to our PRF candidate. Our argument here
follows from the well-known Razborov-Smolensky lower bounds [Raz87, Smo87] for ACC0

circuits, which say that for distinct primes p, q, the MODp function cannot be computed
(or even approximated) by a polynomial-size circuit in ACC0[q]. We conjecture that the
Razborov-Smolensky lower bounds also generalize to rule out low-degree rational approxima-
tions. Namely, for distinct primes p, q, there does not exist a low-degree rational function
that approximates MODp gates sufficiently well over GF(q`) for any ` (Conjecture 4.3). We
believe that this question is of independent interest from a complexity-theoretic perspective,
and leave it as an interesting challenge.

Given the above, we conjecture that our main weak PRF candidate is exponentially secure. We
hope that our exploratory analysis will encourage further study and refinement of our conjectures.

Additional PRF candidates. In addition to our main weak PRF candidate (Eq. (1.1)), we also
propose a similar strong PRF candidate and an alternative weak PRF candidate.

• Strong PRF candidate in depth-3 ACC0. Our weak PRF candidate from Eq. (1.1) is not
a strong PRF, and as we discuss later in this section and in Section 5.3, there is a non-adaptive
attack against our candidate. Moreover, in Appendix B.1, we describe a more general adaptive
attack that rules out many natural strong PRF constructions in depth-2 ACC0. However, the
existing attacks do not seem to extend to depth-3 ACC0, and in Section 7.3, we propose a
strong PRF candidate in depth-3 ACC0 that relies on the same general technique of mixing
linear operations over different moduli (Construction 7.9, Remark 7.14).

Our depth-3 strong PRF candidate is obtained by first applying a public random mod-3
linear mapping to the input, taking the binary decomposition of the resulting vector (to
obtain a mod-2 vector), and then evaluating our weak PRF candidate F (Equation 1.1) on
the decomposed mod-2 vector. Essentially, we can view the initial mod-3 mapping and binary
decomposition as computing a public “encoding” of the input. The strong PRF candidate
is then essentially our weak PRF applied to the encoding of the input. The overall PRF
computation thus consists of a mod-3/mod-2/mod-3 computation, where the mod-3 mappings
are public and the mod-2 mapping is secret.

Specifically, let G ∈ Zn
′×n

3 be a fixed public matrix, bin : Zn′3 → {0, 1}2n
′

be the component-
wise binary decomposition function (that maps each Z3 component into two bits correspond-
ing to the binary representation of the component). The PRF key is a matrix A ∈ Zm×2n′

2

6

and on input x ∈ {0, 1}n, the output is

F′A(x) := FA(bin(G · x)) , (1.2)

where FA is our weak PRF candidate from Eq. (1.1). To the best of our knowledge, this
is the first strong PRF candidate computable by a depth-3 circuit that plausibly provides
exponential (or even better than quasi-polynomial) security. We discuss this candidate and
its applications in Section 7.3.

• An alternative weak PRF candidate. As we discuss below (and in Section 6), the struc-
ture of our main candidate enables efficient protocols for distributed evaluation in several
standard MPC settings (specifically, the honest majority setting and the MPC with prepro-
cessing setting). In other settings such as the two-party setting, it is natural to rely on a
“garbling scheme” such as that of Yao [Yao86] or its optimized variants. However, when
applied to our candidate (Eq. (1.1)), the cost of this approach will be high because of the
super-linear number of multiplications needed for computing the matrix-vector product. In
Section 6.5, we introduce an alternative weak PRF candidate (Construction 6.3) that is more
suitable for two-party distributed evaluation.

The secret key in our alternative candidate is a vector k ∈ {0, 1}n, and on input x ∈ {0, 1}n,
the output is defined to be

Fk(x) :=
∑
i∈[n]

kixi mod 2 +
∑
i∈[n]

kixi mod 3 (mod 2) . (1.3)

This construction can be viewed as a deterministic LPN instance with noise rate 1/3, where
the noise is generated via a deterministic, key-dependent, and input-dependent computation.
Namely, the noise is 1 if and only if 〈k, x〉 = 1 mod 3. Equivalently, Fk(x) = 1 if and
only if 〈k, x〉 mod 6 ∈ {3, 4, 5}, which corresponds to a special instance of the learning with
rounding (LWR) assumption with constant-size composite modulus. We note that using a
composite modulus in this setting is critical for security in the constant-modulus regime,
since otherwise there is a direct polynomial-time linearization attack (e.g., [AG11]) on the
scheme. An advantage of this candidate over our main candidate is that it outputs unbiased
bits (rather than elements of Z3). On the downside, this candidate falls short of providing full
exponential security because (similarly to LPN), it is susceptible to BKW-style attacks. We
discuss this alternative weak PRF candidate (as well as a two-party distributed evaluation
protocol for computing it) in Section 6.5.

Theoretical implications. We next turn to studying the implications and applications of our
new PRF candidates. Unless stated otherwise, we refer here to our main depth-2 weak PRF
candidate. We first describe several theoretical implications related to complexity theory and
learning theory that are implied by our conjectures:

• Hardness of learning for depth-2 ACC0 and width-3 branching programs. As men-
tioned earlier, one of the key structural properties of our weak PRF candidate is that it can
be computed by a depth-2 ACC0 circuit. Another low-complexity feature, which crucially
depends on the choice of the moduli 2 and 3, is that it can be computed by (polynomial-
length) width-3 permutation branching programs [Bar85]. The existence of a weak PRF in

7

any complexity class rules out learning algorithms for that class even with uniformly random
examples (but without membership queries). This means that, assuming the exponential
security of our weak PRF candidate in Eq. (1.1), the classes of depth-2 ACC0 circuits and
width-3 permutation branching programs are not learnable (in the standard sense of PAC-
learnability [Val84] without membership queries), even under the uniform distribution and
even when allowing sub-exponential time learning algorithms. We explore these connections
in greater detail in Sections 5.1 and 5.2. We note that efficient learning algorithms for the
above classes would imply an efficient learning algorithm for DNF formulas [EKR95]. While
there are quasi-polynomial time learning algorithms for DNF formulas (in fact, even for AC0

circuits) under the uniform distribution [LMN89, Ver90], no such learning algorithm (even a
sub-exponential one) is known for depth-2 ACC0 or width-3 branching programs.

• Hardness of interpolating and property-testing sparse polynomials. In Section 5.3,
we give an alternative characterization of Eq. (1.1) as essentially implementing a sparse multi-
linear polynomial over Z3, where the monomials are determined by the key A. We then show
that the conjectured hardness of our weak PRF candidate implies that sparse polynomials
over Z3 (with sufficient degree and sparsity) are hard to interpolate given random evaluations
drawn from a subset of the domain, namely from {−1, 1}n. Similar to the previous connec-
tions to hardness of learning, if it is easy to interpolate the polynomial corresponding to the
operation of the PRF (on random inputs), then the interpolation algorithm gives a trivial
distinguisher for the scheme. While the problem of sparse polynomial interpolation has been
the subject of extensive study [Zip79, BOT88, KY88, Zip90, Wer94, GS09, AGR14], much less
is known when the interpolation algorithm only sees random evaluations from a subset of the
domain. Our conjectures imply hardness results for this variant of the sparse interpolation
problem. In fact, as we show in Remark 5.11, our conjectures even rule out property-testing
algorithms [PRS02, AKK+03, JPRZ04, DLM+07] for sparse polynomials.

• Natural proofs barrier for super-linear circuit lower bounds. Our work also has
relevance to minimizing the sequential time complexity or circuit size of strong PRFs. We
consider the problem of constructing “asymptotically optimal” strong PRFs, namely ones
that have exponential security in the input length and can be computed by linear-size circuits.
This problem is motivated by the goal of ruling out natural proofs of super-linear circuit lower
bounds, in the sense of Razborov and Rudich [RR94]. While previous works constructed
PRFs that can be evaluated by linear-size circuits [IKOS08] or in linear time on a RAM
machine [AR16], these PRFs fail to achieve full exponential security. The work of Miles and
Viola [MV12] presented a simplified abstraction of existing block cipher designs and proved
their security under a class of natural attacks. One of their constructions can be implemented
by quasi-linear size circuits and is shown to have exponential security against a wide class of
attacks, thus falling a bit short of the asymptotic optimality goal. Our depth-3 strong PRF
candidate from Eq. (1.2) (with a suitable instantiation of the public matrix G described in
Remark 7.15) yields a concrete candidate that can plausibly meet this goal. Thus, we give the
first candidate construction for an asymptotically optimal strong PRF, which in turn rules
out natural proofs of super-linear circuit lower bounds.

Applications to MPC and distributed PRF evaluation. A particularly appealing property
of our weak PRF candidate is that it is very MPC-friendly. Protocols for PRF evaluation in a

8

distributed setting (where the secret key and input are distributed or secret-shared between two or
more parties) have received a significant amount of attention recently, and new block ciphers have
been proposed specifically to be MPC-friendly [ARS+15, DEG+18]. The structure of our weak
PRF lends itself nicely to an efficient MPC protocol (with semi-honest security) for evaluating the
PRF with a secret-shared key and a secret-shared input. Consider a scenario where the PRF key
and input are secret-shared across multiple servers. Our protocol proceeds roughly as follows:

• If we use a linear secret-sharing scheme to share the keys and the inputs over Z2 (alter-
natively, a field of characteristic 2), then the matrix-vector product Ax can be computed
non-interactively: each party simply operates locally on their shares (of the key and input).6

• Next, the servers engage in a simple interactive protocol to convert their secret-shared values
(over Z2) to a linear secret-sharing of the same value over Z3 (effectively implementing the
non-linear step in our PRF). Working in the 3-server setting (in a semi-honest model tolerating
at most one corruption), we can implement this protocol very efficiently using the protocol
of Araki et al. [AFL+16]. Here, the “share conversion” procedure essentially requires 13 bits
of communication for each bit of Ax.

• Once the parties have a linear secret-sharing of Ax over Z3, computing the output can
again be done non-interactively. Note that to extend our weak PRF candidate to output
multiple bits, we replace the summation over Z3 with a matrix-vector product. Namely
if y ← Ax ∈ {0, 1}m, then we define the PRF output to be Gy (mod 3), where G here is a
fixed public matrix in Zt×m3 (Remark 3.3). Even with this extension, computing the output
(given a Z3 secret-sharing of the values Ax) still corresponds to computing a linear function
over Z3. Again, this is possible non-interactively.

The takeaway is that even though our weak PRF candidate is highly nonlinear (due to the mixing of
mod-2 and mod-3 operations), the piecewise-linear structure means that it can be securely computed
by a constant-round information-theoretic MPC protocol with O(|x|) bits of communication. In
Table 2, we provide some concrete comparisons of our protocol for distributed evaluation of our
PRF candidate to some of the existing candidates. As the baseline for our comparisons, we use
the protocol of Araki et al. [AFL+16] as the representative for 3-party secret-sharing-based MPC
protocols, and optimized garbled circuit constructions [KS08, ZRE15] for 2-party protocols. We
compare against both the AES block cipher as well as several settings of LowMC [ARS+15] and
Rasta [DEG+18], two custom-designed block ciphers tailored for MPC applications. We describe
our precise methodology for deriving these estimates in Section 6.2.

From Table 2, we see that using an optimistic setting of parameters for our candidate, the com-
munication and round complexity of our 3-server protocol for distributed (weak) PRF evaluation is
better than the generic MPC protocols applied to existing (strong) PRF candidates in terms of both
round complexity and communication complexity in almost all cases. The only case where another
protocol has smaller communication complexity is the case of evaluating the AND-gate-optimized
variant of LowMC (using the Araki et al. protocol); however, evaluating this variant of LowMC
requires over 250 rounds of communication compared to the 2 rounds needed for our protocol.

6More precisely, one needs here a linear secret-sharing scheme that supports multiplication. In our 3-server imple-
mentation we use replicated additive shares (also known as “CNF secret-sharing”) to achieve this. We refer to
Section 6.1 for the full details.

9

Construction
Number Round Communication

of Servers Complexity Complexity

Araki et al. (AES) 3 40 ≈ 1.6 · 104

Araki et al. (LowMC, min-depth) 3 14 ≈ 7.9 · 103

Araki et al. (LowMC, min-gates) 3 252 ≈ 2.3 · 103

Araki et al. (Rasta, min-depth) 3 2 ≈ 2.6 · 1010

Araki et al. (Rasta, min-gates) 3 6 ≈ 6.3 · 103

Garbled Circuit (AES) 2 2 ≈ 1.4 · 106

Garbled Circuit (LowMC, min-gates) 2 2 ≈ 1.9 · 105

Garbled Circuit (Rasta, min-gates) 2 2 ≈ 5.4 · 105

Our Protocol (Optimistic) 3 2 ≈ 3.8 · 103

Our Protocol (Conservative) 3 2 ≈ 5.5 · 103

Our Protocol (General) 3 2 13n+ 4t

Table 2: Comparison of semi-honest oblivious PRF evaluation protocols. In all cases, we assume
that the keys and inputs have been secret-shared between the (2 or 3) servers. We estimate the
round complexity and the total communication complexity (in bits) needed to evaluate the PRF
on the shared key and input. All of our comparisons assume semi-honest servers with up to one
corruption and assuming a concrete security parameter of λ = 128. When comparing to the
LowMC block cipher [ARS+15] and the Rasta block cipher [DEG+18], we compare against two
variants: a depth-optimized variant (min-depth) that minimizes the multiplicative depth of the
circuit implementing the block cipher, and a gates-optimized variant (min-gates) that minimizes
the number of AND gates. We refer to Section 6.2 for the parameter settings we use for our estimates.
For our protocol, we set the dimensions m,n according to our concrete parameter estimates from
Table 4 (in particular we let m = n), and set the output dimension to be t = 128 (for output space
Z128

3).

Compared to the communication-intensive protocols based on garbled circuits, the communica-
tion complexity of our protocol is roughly two orders of magnitude smaller than garbled circuit eval-
uation of LowMC and Rasta, and three orders of magnitude smaller than garbled circuit evaluation
of AES. The secret-sharing-based protocols are much more competitive in terms of communication,
but these protocols generally have much larger round complexities, which can be problematic in
high-latency networks. To summarize, our new PRFs have the advantage that they are very friendly
to compute in a distributed MPC setting when both the key and the input are secret-shared. We
note that even weak PRFs are still useful in a variety of application scenarios. In Section 6.6 we
describe a concrete application of MPC-friendly weak PRFs for implementing distributed flavors
of secure keyword search and searchable symmetric encryption. Moreover, for applications that
require strong PRFs, one can apply the encoded-input variant of our weak PRF with a modest loss
of efficiency (see Section 7).

Distributed PRF evaluation in the preprocessing model. The piecewise-linear structure of
our weak PRF enables even more savings if we consider the MPC with preprocessing model [Bea92,

10

Construction
Round Output Online Preprocessing

Complexity Bits Communication Size

Yao + AES 2 128 6.6 · 104 1.5 · 106

Yao + LowMC 2 128 6.6 · 104 2.9 · 105

Yao + Rasta 2 351 1.8 · 105 8.1 · 105

Our Protocol 4 128 2.6 · 103 3.5 · 103

Table 3: Comparison of protocols for two-party fully-distributed PRF evaluation in the preprocess-
ing model. We measure the online round complexity, the online communication (in bits), and the
size of the correlated randomness (in bits) for the different protocols. We use Yao’s two-party pro-
tocol as the representative protocol for evaluating existing block ciphers such as AES, LowMC, and
Rasta. We refer to Section 6.3 for a complete description of how the estimates were computed. For
our protocol, we set the dimensions m = n = 256 according to our concrete parameter estimates
from Table 4, and assume that the key A is a block-circulant matrix (and in particular, can be
represented by a single vector (Remark 3.4).

BDOZ11, DPSZ12, IKM+13]. In this model, prior to the computation, a trusted dealer distributes
some input-independent randomness to the computing parties. This correlated randomness can
significantly reduce the online complexity (both computation and communication) of the protocol
execution. The piecewise-linear structure of our weak PRF candidate makes it very amenable for
fully distributed evaluation in the preprocessing model, and we give efficient protocols for both fully
distributed evaluation as well as the closely related problem of oblivious PRF evaluation [FIPR05] in
Sections 6.3 and 6.4. In Table 3, we compare the cost of two-party fully distributed PRF evaluation
of our weak PRF candidate to the costs of generic Yao-based protocols for evaluating alternative
PRF candidates in the preprocessing model.

Compared to the generic approaches for fully-distributed evaluation, the online communication
complexity of our protocol is over 25x smaller than the generic approach (applied to existing PRF
candidates like AES as well as MPC-friendly PRFs like LowMC and Rasta). In terms of the amount
of correlated randomness needed, the gap is even greater (due to the large sizes of the garbled
circuits that need to be stored). Compared to the generic protocol for distributed evaluation of
LowMC, the amount of preprocessing needed for distributed evaluation of our candidate is over
80x smaller (with even larger improvements when comparing to AES or Rasta). One disadvantage
of our protocol is that it requires 4 rounds while the generic approaches give a 2 round protocol.

Garbling our alternative weak PRF candidate. As mentioned before, the cost of distributed
evaluation of our main candidate (Eq. (1.1)) using Yao-based protocols in the standard two-party
setting (or the OT-hybrid model) is high due to the large number of multiplications needed for
computing the matrix-vector product. Our alternative weak PRF candidate (Eq. (1.3)) is more
suitable in this setting, and we describe a simple two-party evaluation protocol (in the OT-hybrid
model) in Section 6.5. The core ingredient in our protocol is a lightweight information-theoretic
garbling scheme using arithmetic randomized encoding techniques (cf. [AIK11]). The full two-party
distributed evaluation protocol additionally relies on a single (parallel) invocation of a 1-out-of-6
OT; the overall two-party distributed evaluation protocol for this alternative candidate is 3 rounds

11

(rather than the usual 2 rounds with Yao’s protocol). The output size of this garbling scheme (as
well as the total communication complexity of the distributed evaluation protocol) is linear in the
input size times the output size of the PRF. Thus, this candidate is particularly attractive when
the PRF output is short.

Towards strong pseudorandomness. Turning now to strong pseudorandomness, we first de-
scribe in Section 5.3 a simple non-adaptive distinguishing attack against our basic PRF candidate
by reducing it to a sparse polynomial interpolation problem over Z3 (which can be solved using
existing algorithms for sparse polynomial interpolation [Zip90]). Next, in Appendix B, we show
that we can also express our PRF as an automaton with multiplicity. We can then apply known
learning results for these function families [BV96] to obtain an adaptive attack against our weak
PRF candidate. In fact, we show that the learning algorithms for automaton with multiplicity rule
out a broad class of depth-2 strong PRF candidates (which includes a direct generalizations of our
basic candidate to the setting of mod-p/mod-q moduli). Neither the non-adaptive sparse interpo-
lation attack against our basic candidate nor the more general adaptive attack based on learning
automaton with multiplicity seem to extend to the setting of weak pseudorandomness. Both attacks
require seeing the outputs of the PRF on heavily-correlated inputs that are unlikely to arise given
uniform samples. Moreover, we can show that if the learning attack in [BV96] can be generalized
to the weak pseudorandomness setting (where the learning algorithm is only provided function
evaluations on a random subset of the domain), then the same algorithm implies a polynomial-time
attack on the learning with rounding (LWR) [BPR12] assumption with any polynomial moduli p
and q (Lemma B.7).

Encoded-input PRFs and strong PRFs. Motivated by the fact that many applications of
PRFs (e.g., message authentication codes (MACs)) do not naturally follow from weak pseudoran-
domness, we introduce an intermediate notion between weak PRFs and strong PRFs we refer to as
encoded-input PRFs. Our new notion suffices for instantiating most applications of strong PRFs,
and at the same time, still admits simple constructions (and circumvents known lower bounds on
the existence of strong PRFs in various complexity classes). At a high-level, an encoded-input
PRF is a function that behaves like a PRF on some (possibly sparse) subset of its domain. More-
over, this subset is specific to the PRF family, and in particular, independent of the key. For
instance, a suitable subset might be the set of valid codewords in a linear error-correcting code.
In Section 7, we formally define this notion, and then show that many standard applications of
PRFs (e.g., MACs, authenticated encryption) can be instantiated from encoded-input PRFs by
incorporating an additional validity check for the encoded input. The validity check can be made
more efficient by using an additional proof provided by the evaluator. We then propose an efficient
candidate construction of encoded-input PRFs by combining our weak PRFs with error-correcting
codes (Construction 7.9). The resulting construction resists the adaptive attacks we describe in Ap-
pendix B and can remain MPC-friendly. Using our candidate encoded-input PRFs, we are able to
construct MACs with low-complexity verification and CCA-secure encryption with low-complexity
decryption (that is, both operations can be computed by a depth-3 ACC0 circuit). In fact, as
mentioned earlier, for a suitable instantiation of our encoding function (e.g., taking the generator
matrix of a linear error-correcting code), we obtain a candidate strong PRF (Eq. (1.2)) that can
be computed by a depth-3 ACC0 circuit (Remark 7.14).

12

1.2 Related Work

There is a large body of work on minimizing different complexity measures of (weak or strong)
PRFs. Most relevant to the present work are works proposing PRF constructions that can be eval-
uated by different classes of low-depth circuits such as AC0, ACC0, TC0 [Kha93, BFKL94, NR99,
NR04, NRR00, BPR12, BLMR13, Vio13, ABG+14, BP14, YS16, AR16]. Of these candidates, those
in AC0 [Kha93, AR16] and in ACC0 [ABG+14, Vio13] are either vulnerable to quasi-polynomial
time attacks [Kha93, AR16, ABG+14] or can only be shown to have quasi-polynomial time secu-
rity [Vio13]. In more detail, the result of Viola [Vio13, Theorem 11] says that assuming hardness
of factoring against 2n

ε
-time adversaries (for some constant ε), there is a strong PRF in ACC0

with security against quasi-polynomial time adversaries. We discuss these candidates and their
cryptanalysis in greater detail in Section 3.2. On the concrete efficiency side, numerous works have
focused on designing simple PRFs that are well-suited for use in specific scenarios such as multi-
party computation, homomorphic encryption, or evaluation on embedded systems (see, for example,
[Can06, Sha08, ARS+15, MJSC16, CCF+16, AGR+16, DEG+18] and the references therein).

2 Preliminaries

We begin by defining some basic notation that we will use throughout this work. For a positive
integer n, we write [n] to denote the set of integers {1, . . . , n}. We use bold uppercase letters (e.g.,
A, B) to denote matrices.

For a finite set S, we write x
r←− S to denote that x is drawn uniformly at random from S.

For a distribution D, we write x ← D to denote a draw from a distribution D. Unless otherwise
noted, we write λ to denote the security parameter. We say that a function f(λ) is negligible in
λ if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = poly(λ) to denote that f is bounded by some
(fixed) polynomial in λ. We say that an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input.

For two sets X and Y, we write Funs[X ,Y] to denote the set of all functions from X to Y. For two
functions f and g on a common domain X , we say that f is ε-close to g if Prx [f(x) 6= g(x)] ≤ ε and
that it is ε-far from g if Prx [f(x) 6= g(x)] > ε. Next, we review the definition of a pseudorandom
function (PRF) [GGM84].

Definition 2.1 (Pseudorandom Function). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and Y = {Yλ}λ∈N be
ensembles of finite sets indexed by a security parameter λ. Let {Fλ}λ∈N be an efficiently-computable
collection of functions Fλ : Kλ × Xλ → Yλ. Then, we say that the function family {Fλ}λ∈N is a

(t, ε)-strong pseudorandom function if for all adversaries A running in time t(λ), and taking k
r←− Kλ

and fλ
r←− Funs[Xλ,Yλ], we have that∣∣∣Pr[AFλ(k,·)(1λ) = 1]− Pr[Afλ(·)(1λ) = 1]

∣∣∣ ≤ ε(λ).

We say that the function family {Fλ}λ∈N is an (`, t, ε)-weak pseudorandom function if for all adver-

saries A running in time t(λ) and taking k
r←− Kλ, fλ

r←− Funs[Xλ,Yλ], x1, . . . , x`
r←− Xλ, we have

that ∣∣∣Pr
[
A
(

1λ, {(xi,Fλ(k, xi))}i∈[`]

)]
− Pr

[
A
(

1λ, {(xi, fλ(xi))}i∈[`]

)]∣∣∣ ≤ ε(λ).

To simplify the notation, we will often drop the index λ on F. We will also write Fk to denote
F(k, ·).

13

Domains and their representations. The key-space, domain, and range of all of the PRF
candidates we consider in this work consist of vector spaces over finite fields (i.e., Zkp for some p
and k). For notational convenience, we write everything using vector space notation. However,
when measuring the complexity of evaluating the PRF, we measure everything in terms of Boolean
operations (as opposed to arithmetic or finite field operations). Specifically, we view the keys,
inputs, and outputs of our PRF candidates as vectors of bit-strings, where each bit-string encodes
the binary representation of its respective field element. For example, a vector v ∈ Zkp would be
represented by a binary string of length k · dlog pe, where each block of dlog pe bits represents a
single component of v. This way, we can discuss the Boolean circuit complexity of evaluating a
PRF over a key-space Zm×np , domain Znp , and range Ztq.

Circuit classes. We also recall the definition of several basic complexity classes. First, the
circuit class AC0 consists of all circuits with constant depth, polynomial size, and unbounded fan-
in (containing only AND,OR, and NOT gates). The circuit class TC0 (resp., TC1) consists of all
circuits with constant (resp., logarithmic) depth, polynomial size, unbounded fan-in and threshold
gates.

Definition 2.2 (Modular Gates). For any integer m, the MODm gate outputs 1 if m divides the
sum of its inputs, and 0 otherwise.

Definition 2.3 (Circuit Class ACC0). For integers m1, . . . ,mk > 1, we say that a language L is
in ACC0[m1, . . . ,mk] if there exists a circuit family {Cn}n∈N with constant depth, polynomial size,
and consisting of unbounded fan-in AND, OR, NOT, and MODm1 , . . . ,MODmk gates that decides
L. We write ACC0 to denote the class of all languages that is in ACC0[m1, . . . ,mk] for some k ≥ 0
and integers m1, . . . ,mk > 0.

3 Candidate Weak Pseudorandom Functions

In this section, we introduce our candidate weak pseudorandom function families. We begin with a
basic candidate below (Construction 3.1), and then describe several generalizations and extensions.
When describing our applications in the subsequent sections, we will focus primarily on our basic
construction.

Construction 3.1 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a security parameter, and
define parameters m = m(λ) and n = n(λ). The weak PRF candidate is a function Fλ : Zm×n2 ×
Zn2 → Z3 with key-space Kλ = Zm×n2 , domain Xλ = Zn2 and output space Yλ = Z3. For a key
A ∈ Zm×n2 , we write FA(x) to denote the function Fλ(A, x). We define FA as follows:

• On input x ∈ Zn2 , compute y′ = Ax ∈ Zm2 .

• The output is defined by applying a non-linear mapping to y′. In this case, we take our
non-linear mapping to be the function map : {0, 1}m → Z3 that outputs the sum of the inputs
values modulo 3. Specifically, for y′ ∈ {0, 1}m, we write map(y′) :=

∑
i∈[m] y

′
i (mod 3).

We define FA(x) := map(Ax). Note that we compute the matrix-vector product Ax over Z2, and
then re-interpret the values as their integer values 0 and 1.

14

Remark 3.2 (Weak PRF Candidate for Arbitrary p and q). The weak PRF candidate in Construc-
tion 3.1 can be generalized to work over two arbitrary fields Zp and Zq where p 6= q. In particular,
we define the key-space to be Kλ = Zm×np , the domain to be Xλ = Znp , and the range to be Yλ = Zq.
We define the non-linear mapping mapp,q : {0, 1, . . . , p− 1}m → Zq that computes the sum of input
values modulo q:

mapp,q(y
′) :=

∑
i∈[m]

y′i (mod q).

Putting all the pieces together, the PRF is defined to be FA(x) := mapp,q(Ax). In this case,
Construction 3.1 corresponds to the special case where p = 2 and q = 3. Note that for certain
choices of p, q, the output of this mapping might not be balanced (this is not the case for p = 2
and q = 3), and pseudorandomness is then defined with respect to the corresponding distribution.
We now describe several variations on our general candidate:

• We can consider a binary input space Xλ = Zn′2 rather than a mod-p input. In this case, we
require that the key A to be compressing so that the product Ax for a random x ∈ Zn′2 is
statistically close to the uniform distribution over Zmp . For instance, this holds by the leftover
hash lemma [HILL99] if we take n′(λ) = Ω(m log p).

• We can consider more complex input spaces and non-linear mappings. As a concrete example,
we can define a PRF where the input domain is an elliptic curve group E(Zq) of prime order
p. That is, we take the domain to be Xλ = E(Zq)n; the key-space and range are unchanged:
Kλ = Zm×np and Yλ = Zq. In this case, the linear mapping Ax corresponds to computing
a linear combination of elliptic curve points. We can define the non-linear mapping mapp,q
from E(Zq) into Zq to be the mapping that returns the x-coordinate of the curve point (recall
that each element in E(Zq) can be represented by a pair of (x, y)-coordinates in Zq).

Remark 3.3 (Multiple Output Bits). The output of our weak PRF candidate from Construc-
tion 3.1 consists of a single element in Z3. In many scenarios (such as the ones we describe in
Section 6), we require a PRF with longer output. One way to extend Construction 3.1 to pro-
vide longer outputs is to take the vector Ax ∈ Zm2 , reinterpret it as a 0/1 vector y′ ∈ Zm3 , and
output Gy′ ∈ Zt3, where G ∈ Zt×m3 is a fixed public matrix. Formally, we define the mapping
mapG : {0, 1}m → Zt3 that maps y′ 7→ Gy′, and define the PRF candidate F : Zm×n2 × Zn2 → Zt3 to
be FA(x) := mapG(Ax). Construction 3.1 then corresponds to the special case where G = 11×m,
where 11×m denotes the all-ones matrix of dimension 1-by-m. In our constructions, we propose
taking G to be the generator matrix of a linear error-correcting code over Z3. This choice is moti-
vated by the fact that the generator matrix of a linear code with sufficient distance implements a
good extractor for a bit-fixing source [CGH+85]. As a concrete candidate for our constructions, we
propose taking G to be the generator matrix of a BCH code over Z3. Note that we require t < m.
Otherwise, if t ≥ m, then we can use linear algebra (over Z3) to recover y′ = Ax from the output
Gy′ (since G is public). Given multiple pairs (x, y′), we can recover the secret key A (over Z2). In
particular, in our concrete parameter settings, we require m− t ≥ λ.

Remark 3.4 (Using Structured Matrices as the PRF Key). We can improve the asymptotic (and
concrete) efficiency of our weak PRF candidate (Construction 3.1) by taking the key to be a
structured matrix rather than a random matrix. For example, we can take A to be a uniformly
random Toeplitz matrix rather than a uniformly random matrix. This has the advantage that the
size of the PRF key is reduced from mn to m+n. In our concrete parameter proposals (Section 4.5),

15

both m,n = O(λ), so using a Toeplitz matrix reduces the size of the key from being quadratic in
the security parameter to being linear in the security parameter. A similar optimization for using a
random Toeplitz matrix in place of a random matrix was previously proposed to reduce the key size
in authentication schemes based on the learning parity with noise (LPN) problem [GRS08, Pie12].

Similarly, we can also take the key A to be a generator matrix for a (random) quasi-cylic code
(c.f., [Pan15, ABB+17, MBD+18]). Using generator matrices of quasi-cyclic codes enables both
short keys (the generator matrix of a quasi-cyclic code is a block-circulant matrix, which can be
represented by a single vector of dimension n) as well as more efficient PRF evaluation. Namely,
we can use FFT algorithms to efficiently implement the matrix-vector multiplication Ax.

3.1 Conjectures on the Security of Weak PRF Candidates

We now state three conjectures on our new family of weak PRF candidates, sorted in order from
the weakest to the strongest:

Conjecture 3.5 (General Mod-p/Mod-q Weak PRF Candidate). Let λ be a security parameter.
Then, there exist fixed primes p and q and m,n = poly(λ) such that for all `, t = poly(λ), there
exists a function ε = negl(λ) such that the family {Fλ}λ∈N from Remark 3.2 is an (`, t, ε)-weak
PRF.

Conjecture 3.6 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a security parameter. Then,
there exist m,n = poly(λ) such that for all `, t = poly(λ), there exists ε = negl(λ) such that the
function family {Fλ}λ∈N from Construction 3.1 is an (`, t, ε)-weak PRF.

Conjecture 3.7 (Exponential Hardness of Mod-2/Mod-3 Weak PRF Candidate). Let λ be a
security parameter. Then, there exist constants c1, c2, c3, c4 > 0 such that for n = c1λ, m = c2λ,
` = 2c3λ, and t = 2λ, the function family {Fλ}λ∈N from Construction 3.1 is an (`, t, ε)-weak PRF
for ε = 2−c4λ .

Remark 3.8 (Further Generalizations). As stated, Conjectures 3.6 and 3.7 are specific to the
security of our mod-2/mod-3 weak PRF candidate from Construction 3.1. But more generally, we
can consider an analogous pair of conjectures for any fixed mod-p/mod-q candidate (where p and q
are distinct primes). Going further, we can even conjecture that the analogous claims hold for all
choices of p and q. In this work however, we focus on the security of the mod-2/mod-3 candidate,
since that candidate is most well-suited for our MPC applications.

Remark 3.9 (Polynomial Number of Samples). Conjecture 3.7 says that the distinguishing ad-
vantage of any 2λ-time weak PRF adversary is exponentially small given an exponential number
of samples ` = 2Ω(λ). In many applications of weak PRFs, it suffices to require hardness against
an adversary that sees a polynomial number of samples. For these settings, we can formulate the
following weaker conjecture: there exists constants c1, c2 > 0 such that for n = c1λ, m = c2λ,
t = 2λ, and any ` = poly(λ), there exists a constant c3 > 0 such that the function family {Fλ}λ∈N
from Construction 3.1 is a (`, t, ε)-weak PRF for ε = 2−c3λ.

Remark 3.10 (Weak PRF in ACC0). An appealing property of the mod-2/mod-3 PRF candidate
from Construction 3.1 is that the PRF can be computed by a depth-2 ACC0 circuit (in fact, a
depth-2 ACC0[2, 3] circuit suffices). Specifically, if A ∈ Zm×n2 is the secret key to the PRF, then the
function FA can be computed by a depth-2 circuit where the first layer consists of m MOD2 gates,

16

one associated with each row of A (concretely, each MOD2 gate takes as input the subset of input
bits on which the corresponding row of A depends). All of the MOD2 gates feed into two MOD3

gates, each computing one bit of the binary encoding of the output value (more precisely, the MOD3

gate computing the most significant bit of the output outputs 1 if the sum of the inputs is 2 mod 3
and the MOD3 gate computing the least significant bit of the outputs outputs 1 if the sum of its
input bits is 1 mod 3). Note that we can also implement the PRF in depth-2 ACC0[6], that is, ACC0

with MOD6 gates only (using essentially the same construction). In either case, we conclude that
under Conjecture 3.6, there exists a weak-PRF candidate in depth-2 ACC0. Intuitively, this means
that under Conjecture 3.6, the complexity class ACC0 should be hard to learn. We formalize this
intuition in Section 5.1.

3.2 Comparison with Other Weak PRF Candidates

In this section, we compare our weak PRF candidate (Construction 3.1) to previous candidates of
low-complexity PRFs [BFKL94, NR99, NR04, NRR00, BPR12, BLMR13, Vio13, ABG+14, BP14,
AR16]. We conclude by discussing several advantages of our construction.

The Akavia et al. candidate. Akavia et al. [ABG+14] previously introduced a weak PRF
candidate in ACC0 (more precisely, in the class AC0 ◦MOD2) that shares many structural properties
with our candidate (Construction 3.1). Specifically, the key is a random matrix A ∈ Zn×n2 and
the PRF is defined to be FA(x) := g(Ax), where the function g is a specially-designed non-linear
“tribes”7 function. Their construction is then computable by a depth-3 ACC0[2] circuit. Our work
follows a very similar design philosophy, except we replace the tribes function with the conceptually
simpler operation of computing the sum of the outputs Ax modulo 3. Recently, Bogdanov and
Rosen [BR17] showed that the Akavia et al. construction (on n-bit inputs) can be computed by a
rational polynomial of degree O(log n). This gives a quasi-polynomial time attack (running in time
nO(logn)) on the Akavia et al. candidate.

Candidates based on hard learning problems. Blum et al. [BFKL94] proposed a weak
PRF construction based on hard learning problems. Specifically, they propose a distribution over
(polynomial-size) DNF formulas (or alternatively, decision trees) and conjecture that such functions
are hard to learn given uniform samples. They then give a direct construction of a weak PRF
assuming hardness of learning for this distribution. More concretely, the input space of the resulting
PRF candidate is {0, 1}n and the key consists of two random disjoint sets A,B ⊆ [n]. On input
x ∈ {0, 1}n, the PRF first computes yA to be the parity of the bits of x indexed by A and yB to be
the majority function over the bits indexed by B. The output of the PRF is y = yA⊕ yB. We note
though that this candidate is not known to be computable in ACC0, since the majority function on
Ω(n) bits is not known to be in ACC0.

Candidates based on expander graphs. Applebaum and Raykov [AR16] gave a weak PRF
candidate based on a variant of Goldreich’s low-locality one-way function (which is in turn based
on expander graphs) [Gol00]. Their weak-PRF candidate can be computed by a depth-3 AC0

circuit. Although AC0 is a weaker complexity class than ACC0, the classic learning result of

7A tribe function Tw,s : {0, 1}ws → {0, 1} is a width-w, size-s DNF, defined via Tw,s(x) = ∨s−1
j=0(∧wi=1xwj+i).

17

Linial et al. [LMN89] gives a quasi-polynomial distinguisher against all weak PRF candidates in
AC0.

Number-theoretic candidates. Kharitonov [Kha93] gave a weak PRF in AC0 satisfying quasi-
polynomial security assuming the hardness of factoring. The classic PRF constructions by Naor
and Reingold [NR99, NR04, NRR00] give strong PRFs in TC0 from standard number-theoretic
assumptions such as the decisional Diffie-Hellman (DDH) problem or factoring. Viola [Vio13]
subsequently built upon the Naor-Reingold family of constructions to obtain a strong PRF in
ACC0[m] (for any possibly prime m ≥ 2) with quasi-polynomial security (assuming sub-exponential
hardness of factoring).

Lattice-based candidates. The classic learning parity with noise (LPN) and learning with errors
(LWE) [Reg05] assumptions are also natural starting points for building highly-parallelizable PRFs.
However, as discussed in [BPR12], the main obstacle to leveraging the traditional noisy-learning
problems to constructing deterministic8 pseudorandom functions is finding a way to introduce
(sufficiently independent) errors terms into the exponentially-many function outputs of the PRF,
while keeping the function deterministic and the key-size polynomial. Lattice-based constructions
of PRFs have thus relied on a “derandomized” variant of LWE called the learning with rounding
(LWR) assumption (and variants thereof) [BPR12, BLMR13, BP14]. The LWR-based constructions
can be computed by simple circuits (TC0 for the ring-LWR-based construction [BPR12] and TC1

for the standard LWR-based constructions [BPR12, BLMR13, BP14]). Note that all of the lattice-
based constructions are in fact strong PRFs. Note that the LWR assumption (Definition B.6) also
gives a direct construction of a weak PRF (where the secret key is the LWR secret, and the PRF
evaluation consists of taking the rounded inner product between the secret key and the input).

Advantages of our construction. We now describe two appealing properties of our new weak
PRF candidate compared to the existing ones:

• Low complexity: Our weak PRF candidate is the first that can be computed by an ACC0

circuit and plausibly satisfy exponential security (Conjecture 3.7). Previous PRF candidates
in ACC0 (or AC0) only provided quasi-polynomial security [Vio13, ABG+14, AR16]. In fact,
our candidates are computable by a depth-2 ACC0 circuit, which is the minimal depth possible
for any PRF candidate. To our knowledge, there are no other candidates that can be computed
by a depth-2 AC0 or ACC0 circuit (even if we just require polynomial hardness).

• MPC-friendliness: Another advantage of our construction is that our PRF is very MPC-
friendly. Specifically, we consider scenarios where multiple parties hold shares of the PRF key
as well as the PRF input, and the goal is for the parties to compute the PRF output on their
joint inputs. The structure of our PRF is very amenable for use in MPC protocols. Notably,
much of the computation is linear (over Z2 and Z3). Using (standard) MPC protocols based
on linear secret-sharing, computing linear functions on secret-shared values can be done non-
interactively. Communication is only needed to handle the non-linear transformation from
values over Z2 to values over Z3. In Section 6, we show that this step can be done very
efficiently using either the protocol of Araki et al. [AFL+16] or using oblivious transfers. In

8Constructing randomized weak PRFs, however, is possible directly from LWE, as shown by Apple-
baum et al. [ACPS09].

18

contrast, evaluating the tribes function (in the case of Akavia et al. [ABG+14]) or the majority
function (in the case of Blum et al. [BFKL94]) over secret-shared values will incur additional
overhead in either round complexity or communication complexity (or both).

4 Rationales for Security

In this section, we provide several rationales to support the conjectured security of our candidate.
First, we follow the security analysis of the weak-PRF candidate proposed by Akavia et al. [ABG+14]
and show that (1) standard learning algorithms cannot break the security of our construction, and
(2) our candidate cannot be expressed as (or even approximated by) a low-degree polynomials over
finite fields. In addition, we conjecture that it is difficult to approximate our construction with
low-degree rational functions. Finally, we suggest concrete parameters for our candidate weak PRF.

4.1 Lack of Correlation with Fixed Function Families

The most natural way to rule out the existence of pseudorandom functions in a complexity class
is to provide a learning algorithm for the class. For instance, Linial, Mansour, and Nisan [LMN89]
showed that AC0-functions can be learned in quasi-polynomial time given access to uniformly ran-
dom samples. This means that there are no weak PRFs in AC0. Specifically, Linial et al. showed
that every AC0-function is noticeably correlated with at least one linear function which depends on
at most polylogarithmically many variables. This in turn yields a quasi-polynomial time learning
algorithm for AC0.

For simplicity, we focus on our main mod 2-mod 3 candidate whose output is in Z3 (identified
with {0,±1} below) and moreover, we assume n = m (this also corresponds to the parameters we
suggest later). We show in this section that with overwhelming probability, a randomly chosen
function in our PRF family does not have a noticeable correlation with any sufficiently small (but
still exponential-size) collection of functions H = {h : {0, 1}n → {0,±1}}. Our analysis relies on
techniques similar to those used by Akavia et al. [ABG+14, Proposition 16].

Lemma 4.1 (No Correlation with Fixed Function Families). Let H = {h : {0, 1}n → {0,±1}} be
a collection of functions of size s. Then,

PrA

[
∃h ∈ H | Prx [map(Ax) = h(x)] >

1

3
+

1

2n−1
+ ε

]
≤ 5s

2n · ε2
,

where A
r←− {0, 1}n×n. In particular, if we take s = 2n/2, then with overwhelming probability over

the choice of A, there is no function h ∈ H that has non-negligible correlation with the function
FA(x) = map(Ax). In particular, for any polynomial p(n) and any s ≤ 2n/2,

PrA

[
∃h ∈ H | Prx [map(Ax) = h(x)] >

1

3
+

1

2n−1
+

1

p(n)

]
≤ 5p(n)2

2n/2
= negl(n).

We give the proof of Lemma 4.1 in Appendix A.1.

4.2 Inapproximability by Low-Degree Polynomials

Another necessary condition for a PRF family is that the family should be hard to approximate
by low-degree polynomials. Specifically, assume there exists a degree-d multivariate polynomial

19

f over GF(2) such that Fk(x) = f(x) for all x ∈ {0, 1}n. Then, given (sufficiently many) PRF
evaluations (xi,Fk(xi)) on uniformly random values xi, an adversary can set up a linear system
where the unknowns corresponds to the coefficients of f . Since f has degree d, the resulting system
has N =

∑d
k=0

(
n
k

)
variables. Thus, given O(2d ·N) random samples, the adversary can solve the

linear system and recover the coefficients of f (and therefore, a complete description of Fk). We
note that this attack still applies even if Fk is 1/O(2d ·N)-close to a degree d polynomial. In this
case, the solution to the system will be 1/O(2d ·N)-close to Fk with constant probability (which still
suffices to break pseudorandomness). Thus, for a candidate PRF family to be secure, the family
should not admit a low-degree polynomial approximation.

In our setting, we are able to rule out low-degree polynomial approximations by appealing to
the classic Razborov-Smolensky lower bounds for ACC0 [Raz87, Smo87], which essentially says that
for distinct primes p and q, MODp gates cannot be computed in ACC0[q`] for any ` ≥ 1. Translated
to our setting, this essentially says that our “modulus-switching” mapping mapp : {0, 1}n → Zp,
which implements the mapping x 7→

∑
i∈[n] xi (mod p), is hard to approximate over GF(q`) as long

as p 6= q. We formalize this in the following lemma.

Lemma 4.2 (Inapproximability by Low-Degree Polynomials). For n > 0 and d < n/2, let

B(n, d) = 1
2n ·

∑n/2−d−1
i=0

(
n
i

)
. Then, for all primes p 6= q, the function mapp : {0, 1}n → Zq on

n-bit inputs that maps x 7→
∑

i∈[n] xi (mod p) is B(n, d)-far from all degree-d polynomials over

GF(q`) for all ` ≥ 1.

We give the proof of Lemma 4.2 in Appendix A.2.

4.3 Inapproximability by Low-Degree Rational Functions

The low-degree polynomial approximation attack described in Section 4.2 generalizes to the setting
where the PRF Fk can be approximated (sufficiently well) by a low-degree rational function. For
instance, suppose there exist multivariate polynomials f, g over GF(2) of degree at most d such
that f(x) = Fk(x) · g(x) for all x ∈ {0, 1}n. Then, a similar attack can be mounted, as any random
input-output pair corresponds to an equation in the 2N variables (with N =

∑d
k=0

(
n
k

)
) defining

polynomials f and g. Thus, if our PRF candidate is 1/O(2d · N)-close to a degree-d rational
function, then there is an O(2d ·N)-time attack given O(2d ·N) evaluations of the PRF.

While the Akavia et al. weak PRF candidate [ABG+14] cannot be approximated by a low-
degree polynomial, Bogdanov and Rosen [BR17] showed that the function has rational degree
O(log n) (i.e., the PRF can be written as a rational polynomial of degree O(log n)), where n is the
length of the key. This gives a quasi-polynomial distinguisher against the Akavia et al. candidate.

In our case, we conjecture that the mapp function (respectively, the mapp,q function for our more
general candidates from Remark 3.2) cannot by approximated (sufficiently well) by a low-degree
rational function over GF(q`), for any q 6= p and ` ≥ 1. While the Razborov-Smolensky argument
used to argue hardness of approximation of mapp by low-degree polynomials over GF(q`) does not
generalize to rational functions, we still believe that this is a very plausible conjecture.

Conjecture 4.3 (Inapproximability by Rational Functions). For any distinct primes p 6= q,
any integer ` ≥ 1, and any d = o(n), there exists a constant α < 1 such that the function
mapp : {0, 1}n → Zp that maps x 7→

∑
i∈[n] xi (mod p) is 1/(2d ·N)α-far from all degree-d rational

functions over GF(q`).

20

We believe that studying this conjecture is a natural and well-motivated complexity problem.
Proving or disproving this conjecture would lead to a better understanding of ACC0.

Finally, we note that while Conjecture 4.3 is essential for the asymptotic security of our candi-
date, the concrete cost of this attack is large enough that the concrete security of our instantiations
is unlikely to be affected even if the conjecture turns out to be false. For instance, assuming n = 512
and that the degree of the rational approximation over GF(2) is very modest (i.e., 10), then the
system of equations would already have over

∑10
k=0

(
512
k

)
≈ 268 variables. Solving a linear system

over this many variables (näıvely) would already require more than 2128 operations.

4.4 Resilience to Standard Cryptanalysis Techniques

In this section, we survey several other relevant cryptanalytic techniques and their impact on the
conjectured security of our weak PRF candidate.

Pairwise independence and unbiased outputs. First, we note that our candidate is pairwise
independent. This is immediate as for any pair of distinct non-zero inputs x1, x2 ∈ Zn2 , the values
of Ax1 and Ax2 are independent and uniformly random over Zm2 (over the randomness of A).
Then, appealing to Claim A.1, the joint distribution of map(Ax1) and map(Ax2) for any x1 6= x2

is (1/2m)-close to the uniform distribution over Z3. Correspondingly, this means that the bias of
our weak PRF candidate is negligible. Moreover, by refining the proof of Claim A.1, it is easy
to show that if m ≡ 0 mod 6, restricting the input domain to Zn2 \ {0n} gives a perfectly uniform
distribution (in which case, the weak PRF outputs are totally unbiased). Pairwise-independence
is sufficient to argue that basic versions of differential and linear cryptanalysis (in the sense of the
definitions proposed in [MV12]) do not apply to our candidate. We note that these linear and
differential cryptanalysis are particularly relevant when evaluating the security of our encoded-
input PRF (Section 7.3), since there, the adversary can make adaptive queries (over a restricted
subset of the domain).

Blum-Kalai-Wasserman attacks. Due to the structural similarities between our candidate
and the learning parity with noise (LPN) assumption, the Blum-Kalai-Wasserman (BKW) at-
tack [BKW00] seems particularly relevant. Recall that the BKW algorithm on LPN relies on the
following insight: given two LPN samples (~a,~a · ~s+ e), (~b,~b · ~s+ e), where ~a,~b, ~s ∈ Zn2 and e ∈ Berτ
(here Berτ denotes the Bernoulli distribution with some parameter τ < 1/2), the adversary can
create a “new” sample by adding the two samples (over Z2). Doing this with carefully-chosen
vectors drawn from a large set of samples, it is possible to obtain LPN samples for the basis vectors
(e.g., for vectors of the form ~ei = (0, . . . , 0, 1, 0, . . . , 0)). We can then guess the corresponding bit
of the LPN secret si by taking a majority vote over the “new” LPN samples with respect to ~ei.

We do not see a way to adapt such attacks to our candidate as it does not seem possible to
create “new” samples given a collection of samples. In particular, the mixing of the mod-2 and the
mod-3 operations in our basic candidate destroys the linear structure exploited by BKW.

Other classical techniques. Several other classical techniques used in cryptanalysis, such as
algebraic or correlation attacks, are closely related to the degree of approximation by polynomials
or by rational functions. Thus, we can appeal to our previous analysis and conjectures (Sections 4.1
to 4.3) to argue that our weak PRF candidate plausibly resists those attacks.

21

Assumption λ = 80 λ = 128

LPN 300 384

Construction 3.1 (Optimistic) 160 256
Construction 3.1 (Conservative) 300 384

Table 4: Proposed parameters (for Construction 3.1, we set m = n) and comparison with parame-
ters for LPN.

Further cryptanalysis. To conclude, we emphasize that the analysis we have done is not in-
tended to be exhaustive, and we invite the community to further evaluate the security of our
new candidate. We believe though that the initial exploratory study we have conducted provides
evidence to support the security of our candidate.

4.5 Concrete Parameters

We now propose some concrete parameters for our candidate. Our proposals (summarized in
Table 4) are based on our exploration of possible attacks as well as concrete parameters for LPN
with constant noise rate. Specifically, we use the parameters suggested by [EKM17, Table 4] based
on the estimated runtime on a machine with 260 bits of memory and assuming a constant noise
rate τ = 1/4.9 We propose optimistic and conservative parameters. Our optimistic choice of
parameters (n = m = 2λ, where λ is the security parameter) suggests better parameters than those
for LPN, which is in part justified by the fact that the most efficient attacks against LPN (e.g.,
BKW) do not seem to apply to our candidate. Our conservative parameters are the same as those
suggested for LPN. We further conjecture that choosing a structured key (e.g., a Toeplitz matrix
or a block-circulant matrix; see Remark 3.4) does not significantly affect the parameters. Based on
our exploratory analysis, we see no need to use larger parameters to instantiate our candidate. We
encourage further cryptanalysis to support or disprove the validity of our proposals.

5 Connections to Learning Theory

In this section, we highlight several connections of the hardness of our weak PRF candidates with
concrete problems in learning theory.

5.1 Hardness of PAC-Learning for ACC0

In this section, we show that our conjectures from Section 3.1 imply hardness of PAC-learning for
the complexity class ACC0. We begin by reviewing the definition of PAC learning.

Definition 5.1 (PAC Learnability [Val84]). Let C be a class of Boolean functions f : {0, 1}n →
{0, 1}. We say that C is PAC-learnable if there exists an algorithm A such that for every f ∈ C,
9Better algorithms for LPN are possible if we allow for machines with even larger memory, but as noted in [EKM17],
a machine with 260 bits of memory is already significantly larger than the largest existing supercomputers today.

22

every distribution D over X , every 0 < ε < 1/2, 0 < δ < 1, if we set h← A(ε, δ, {(xi, f(xi))}i∈[N])
for some (sufficiently large) N , then with probability at least 1− δ, the hypothesis h satisfies

Prx∈D [h(x) 6= f(x)] ≤ ε.

We say that C is efficiently PAC-learnable if N = poly(n, 1/ε, 1/δ) and the running time of A is
poly(n, 1/ε, 1/δ).

Theorem 5.2 (Hardness of Learning for Depth-2 ACC0). Under Conjecture 3.6, the complexity
class of depth-2 ACC0 circuits is not efficiently PAC-learnable (even under the uniform distribution).

Proof. Let λ be a security parameter, and let m,n = poly(λ) be parameters under which Conjec-
ture 3.5 holds. We show that if ACC0 is efficiently PAC-learnable, then there exists an efficient
distinguisher B for the weak PRF candidate from Construction 3.1 with parameters m,n. At a
high-level, this follows from the fact that the weak PRF candidate {Fλ}λ∈N from Construction 3.1
can be computed by a family of ACC0 circuits (Remark 3.10), so an efficient PAC-learning algorithm
for ACC0 immediately gives a distinguisher for {Fλ}λ∈N.

For a matrix A ∈ Zm×n2 , define the function fA(x) := 1(map(Ax), 0) to be the function that
outputs 1 if and only if map(Ax) = 0 and 0 otherwise. Then, define the class C = {fA : A ∈ Zm×n2 }
of Boolean functions on n-bit inputs. As discussed in Remark 3.10, the function fA : {0, 1}n →
{0, 1} can be computed by a depth-2 ACC circuit. Let 0 < ε < 1/2 and 0 < δ < 1 be constants such
that (1− δ)(1− ε) ≥ 3/4. By assumption, if depth-2 ACC0 is efficiently PAC-learnable, there exists

an algorithm A such that given N = poly(n) samples of the form {(xi, fA(xi))}i∈[N] where xi
r←−

{0, 1}n, A outputs a hypothesis h such that with probability at least 1− δ, Prx [h(x) 6= f(x)] ≤ ε,
where the probability is taken over a random choice of x ∈ {0, 1}n. Moreover, algorithm A runs in
time poly(n). We use A to build a distinguisher B for {Fλ}λ∈N with ` = N + 1 = poly(n) samples:

• Algorithm B receives a challenge (x1, y1), . . . , (xN , yN), (xN+1, yN+1) from the weak PRF
challenger. It runs A(ε, δ, {(xi,1(yi, 0))}i∈[N]) to obtain a hypothesis h.

• Finally, algorithm B output 1 if h(xN+1) = 1− 1(yN+1, 0), and 0 otherwise.

To complete the proof, we bound the distinguishing probability of A:

• If yi = FA(xi) = map(Ax) (for some matrix A ∈ Zm×n2), then algorithm B is providing

A with samples of the form (xi, fA(xi)) where xi
r←− {0, 1}n. Since A is a PAC-learning

algorithm for ACC0 (and correspondingly, for the circuit class C), with probability at least
(1 − δ)(1 − ε) ≥ 3/4, h(xN+1) = 1(yN+1, 0). Thus, in the case, algorithm B outputs 1 with
probability at least 3/4.

• If all of the yi’s are random over Z3, then yN+1 is independent of h and xN+1. In this case,
the probability that 1(yN+1, 0) = h(xN+1) is at most 2/3. In this case, algorithm B outputs
1 with probability at most 2/3.

The distinguishing advantage of B is (1 − δ)(1 − ε) − 2/3 ≥ 3/4 − 2/3, which is non-negligible.
This contradicts Conjecture 3.6, and the claim follows. In the above analysis, we only required
a learning algorithm A that operates given samples from the uniform distribution (as opposed to
an arbitrary distribution). Thus, under Conjecture 3.6, depth-2 ACC0 circuits are not efficiently
PAC-learnable even if we only require learnability given uniform samples.

23

Theorem 5.3 (Hardness of Learning for ACC0). Under Conjecture 3.5, the complexity class ACC0

is not efficiently PAC-learnable (even under the uniform distribution).

Proof (Sketch). The proof proceeds exactly as the proof of Theorem 5.2, with the exception that the
circuit needed to implement PRF evaluation is no longer depth-2 (but still constant depth). For a
security parameter λ, let p, q andm,n = poly(λ) be the parameters from Conjecture 3.5 under which
{Fλ}λ∈N is a weak PRF. For a matrix A ∈ Zm×np , define the function fA : {0, 1}n·dlog pe → {0, 1}
where fA(x) first interprets the input x ∈ {0, 1}n·dlog pe as the binary representation of the elements
of an vector x′ ∈ Znp . Then, it computes and outputs 1(mapp,q(Ax

′), 0). That is, fA(x) = 0 if
mapp,q(Ax

′) = 0 and 1 otherwise. Since p, q are constants, the function fA can be computed by an

ACC0[p, q] circuit (where the MODp and MODq gates are used to implement the modular arithmetic
and the modulus switching). The claim then follows by a similar argument as that used in the
proof of Theorem 5.2.

Remark 5.4 (Hardness of Learning for ACC0 vs. AC0). By the same argument as in the proof of
Theorem 5.2, if we make the stronger conjecture that our mod-2/mod-3 weak PRF candidate sat-
isfies exponential hardness (Conjecture 3.7), then we can rule out all sub-exponential time learning
algorithms for depth-2 ACC0[2, 3] circuits. In contrast, there are quasi-polynomial time algorithms
for learning AC0 circuits [LMN89]. Thus, under Conjecture 3.7, learning depth-2 ACC0[2, 3] is
fundamentally harder than learning AC0.

5.2 Hardness of Learning for Width-3 Branching Programs

Next we show that our hardness conjectures on our mod-2/mod-3 weak PRF candidate from Con-
struction 3.1 imply a similar hardness of learning results for width-3 permutation branching pro-
grams. We first recall the definition of a branching program.

Definition 5.5 (Branching Program). A branching program B on n-bit inputs of width w and
length ` consists of a sequence of instructions {(ji, fi, gi)}i∈[`], a start state z0 ∈ [w], and a set
of accepting states A ⊆ [w]. Each instruction (ji, fi, gi) is specified by an index ji ∈ [n] and two
functions fi, gi : [w]→ [w]. To evaluate B on an n-bit input x = x1 · · ·xn ∈ {0, 1}n, compute

zi ←

{
fi(zi−1) xji = 0

gi(zi−1) xji = 1,

for all i ∈ [`]. The output of the branching program on x, denoted B(x) is 1 if z` ∈ A, and 0 oth-
erwise. We say that B is a permutation branching program if the functions fi, gi are permutations
on [w] for all i ∈ [`]. We say that a branching program is “read-once” if the branching program
reads each bit of the input exactly once (i.e., for each j ∈ [n], there is exactly one i ∈ [`] where
ji = j). We define “read-twice” branching programs analogously.

Theorem 5.6 (Hardness of Learning Width-3 Branching Programs). Under Conjecture 3.6, the
class of width-3 branching programs is not PAC-learnable (even under the uniform distribution).

Proof. The theorem immediately follows from a result by Barrington [Bar85, Lemma 1] who showed
that any “3-2-parity circuit” of size s can be simulated by a permutation branching program with
width 3 and length O(ns). Here, a 3-2-parity circuit is a circuit with a single mod-3 output gate
whose inputs consist of the outputs of mod-2 gates. This precisely captures the structure of the

24

circuit that evaluates our weak PRF candidate in Construction 3.1. The claim then follows by the
same argument as that used in the proof of Theorem 5.2.

Remark 5.7 (Difficulties in Learning Width-3 Branching Programs). Ergün et al. [EKR95] previ-
ously showed that a learning algorithm for width-3 branching programs would imply an algorithm
for learning DNFs (given uniform samples). In the same work, they showed that a learning al-
gorithm for width-3 branching programs would also imply a learning algorithm for a restricted
version of the LPN problem. Thus, there is evidence that learning width-3 branching programs is
seemingly difficult, thus ruling out another candidate class of attacks against our construction.

Remark 5.8 (Learning Width 3 Branching Programs vs. Learning DNFs). As noted before, the
work of Ergün et al. [EKR95] showed that a learning algorithm for width-3 branching programs
implies an algorithm for learning DNFs (under the uniform distribution). While classic results
in learning theory have shown quasi-polynomial time algorithms for learning DNFs or even gen-
eral AC0 circuits [LMN89, Ver90], to our knowledge, there are no such algorithms for learning
width-3 branching programs. In fact, if we assume that our mod-2/mod-3 weak PRF candidate
(Construction 3.1) satisfies exponential hardness (Conjecture 3.7), then by the same argument as
that used in the proof of Theorem 5.6, there are no sub-exponential time algorithms for learning
width-3 branching programs (without membership queries). This means that under Conjecture 3.7,
learning width-3 branching programs is fundamentally harder than learning DNFs or even AC0.

5.3 Hardness of Interpolating Sparse Multilinear Polynomials

To conclude, we highlight a connection between the conjectured security of our weak PRF candidate
(Construction 3.6) and the hardness of interpolating sparse multivariate polynomials over Z3. We
begin by showing how the behavior of our PRF candidate corresponds to evaluating a sparse
polynomial over Z3.

Take a matrix A ∈ Zm×n2 and an input x ∈ Zn2 . Consider the change of variables yi = 1 + xi
(mod 3). In particular, we map 0 7→ 1 and 1 7→ −1. For i ∈ [n], let Ai denote the ith row of
A. Under this transformation, the inner product Aix =

∑
j∈[n] Ai,jxj ∈ Z2 corresponds to the

product
∏
j∈[n] y

Ai,j

j ∈ Z3. Essentially, we are embedding the operations over Z2 by working within
the multiplicative subgroup of order 2 in Z3. This means that we can write

FA(x) =
∑
i∈[m]

∏
j∈[n]

y
Ai,j

j − 1

 ∈ Z3, (5.1)

where yi = 1 + xi (mod 3) are the transformed variables and all of the operations occur over
Z3. Thus, for every choice of the key A ∈ Zm×n2 , the PRF FA implements a sparse multilinear
polynomial over Z3 with n variables of degree at most n and containing at most m non-zero mono-
mials.10 Thus, security of our weak PRF candidate implies that it should be hard to approximate
sparse multilinear polynomials over Z3 given random evaluations on inputs drawn uniformly at
random from the set {±1}n. To formalize this, we define the notion of approximately interpolating
a polynomial over a finite field. Our definition is adapted from the definition of PAC-learning.

10A multilinear polynomial over n variables of degree up to n can have up to 2n monomials. Our PRF candidate can
be expressed as a multilinear polynomial containing m = poly(n) monomials. Thus, our PRF candidate is very
sparse.

25

Definition 5.9 (Approximate Polynomial Interpolation). Let F be a finite field, and fix parameters
m, n, and d. Let F ⊆ F[x1, . . . , xn] be a family of polynomials over n variables of degree at most d
and containing at most m non-zero coefficients. We say that F can be efficiently approximated given
evaluations from a distribution D if there exists an algorithm A such that for every f ∈ F , and every
0 < ε < 1/2, 0 < δ < 1, if we set g ← A(ε, δ, {xi, f(xi)}i∈[N]) for some N = poly(n,m, d, 1/ε, 1/δ),
with probability at least 1− δ, the function g is ε-close to f , and moreover, the running time of A
is bounded by poly(n,m, d, 1/ε, 1/δ).

Theorem 5.10 (Hardness of Interpolating Sparse Polynomials over Z3). Let λ be a parameter.
Under Conjecture 3.5, there exists m,n = poly(λ) such that the class of sparse multilinear polyno-
mials over Z3 on n variables with degree at most n and containing at most m non-zero coefficients
cannot be efficiently approximated given evaluations drawn uniformly from {±1}n.

Interpolating sparse polynomials. Numerous works have studied the problem of interpolating
sparse polynomials over both finite fields [Wer94, GS09, AGR14] and over fields of characteristic
zero [Zip79, BOT88, KY88, Zip90]. However, existing algorithms rely on making structured, and
oftentimes, adaptively-chosen queries to the underlying polynomial. The existing algorithms do not
generalize to the setting where they only have access to random evaluations of the polynomial over
a restricted subset of the domain. In fact, our conjectures imply an even stronger requirement: it
should be difficult to test whether a particular function can be represented by a sparse polynomial.
We discuss this in Remark 5.11.

Remark 5.11 (Connection to Property Testing). Theorem 5.10 shows that the conjectured hard-
ness of our weak PRF candidate implies that it is difficult to (approximately) interpolate sparse
multilinear polynomials over Z3 (with appropriate degree and sparsity). We can strengthen this
to say that it should be difficult to test whether a function F : Zn3 → Z3 has a sparse multilin-
ear polynomial representation of degree n and at most m = poly(n) non-zero coefficients given
only evaluations of the function on random points from the set {±1}n. This question falls into
the general model of property testing [PRS02, AKK+03, JPRZ04, DLM+07], and the question of
testing whether a function has a sparse polynomial representation was explicitly considered in the
work of Diakonikolas et al. [DLM+07]. While Diakonikolas et al. gave an efficient algorithm for
testing whether a function has a sparse polynomial representation, their algorithm relies on making
structured queries to the oracle. We do not know of any efficient algorithm for testing whether a
function can be represented as a sparse polynomial given only random evaluations (over a restricted
subset of the domain). The conjectured hardness of our new PRF candidates suggests that this
should be a hard problem.

Non-adaptive attacks. While we are primarily interested in the security of our candidate as a
weak PRF, we note that that there is a non-adaptive distinguishing attack (in fact, a non-adaptive
key-recovery attack) on the mod-2/mod-3 variant of our weak PRF candidate (Construction 3.1).
Recall that in a non-adaptive attack, the adversary chooses a set of points on which to evaluate the
PRF, but it must commit to all of the points ahead of time (before seeing any PRF evaluations).
The attack is essentially Zippel’s algorithm [Zip90] for sparse polynomial interpolation. We give a
high-level sketch of the idea here. For simplicity of exposition, we will just sketch the distinguishing
attack. At a high-level, the attack operates by fixing all but a logarithmic number of variables in
the polynomial, and then interpolating the polynomial over the restricted subset (which can be

26

done via linearization). This is also conceptually very similar to the approach from [KL01] for
ruling out strong PRFs in depth-2 TC0.

Let A ∈ Zm×n2 be the PRF key. To simplify the description, suppose m = n (the attack
naturally extends to the setting where m 6= n). Then, by Eq. (5.1), FA(·) is a degree-n multilinear
polynomial over n2 variables and contains n non-zero monomials. The non-adaptive distinguisher
works as follows. First, it fixes an arbitrary ±1 assignment to all but ` = c log n variables in

FA for some constant c > 1. Let F
(`)
A denote the restriction of FA to the inputs lying in the

`-dimensional subspace S ⊂ Zn2

3 that is consistent with the chosen assignment. By design, F
(`)
A

is a degree-` multilinear polynomial over Z3 over ` variables and containing at most n non-zero
terms. The non-adaptive distinguisher queries the polynomial FA on all 2` = O(n) elements in the

intersection S∩{−1, 1}n2
. It uses the evaluations of FA (which coincide with the evaluations of F

(`)
A)

to interpolate the restricted polynomial F
(`)
A (via linearization). Now, if the distinguisher obtained

outputs from the PRF, then the interpolated polynomial will contain at most n < ` = 2cn non-zero
monomials. If instead the distinguisher obtained outputs of a random function, then the resulting
polynomial will contain more than n non-zero monomials with noticeable probability (for instance,
when c � 1). This yields a distinguisher that succeeds with noticeable probability. Mounting
this attack requires having sufficiently-many evaluations of the weak PRF on a low-dimensional
subspace. Thus, this attack does not seem to give an attack against the weak PRF, and if there
was such an attack, it would have implications for interpolating (and property testing for) sparse
multilinear polynomials over Z3 (Theorem 5.10, Remark 5.11).

6 Applications to Secure Multiparty Computation

An attractive feature of our candidate is that it supports efficient evaluation in a fully distributed
setting, where both the PRF key and the PRF input are secret-shared between multiple parties.
We highlight one such application of this primitive to distributed searchable symmetric encryption
(SSE) in Section 6.6.

6.1 Fully-Distributed Weak PRF Evaluation

In this section, we describe a 3-party protocol with security against one passive corruption for secure
evaluation of our weak PRF candidate (Construction 3.1).11 At the beginning of the protocol, we
assume that the servers hold a secret-sharing of both the input x and the PRF key k. At the end
of the protocol execution, each server should hold a fresh secret-sharing of the output.

We assume the parties use an additive secret sharing scheme, so additions on secret-shared
values are free. For multiplications, we use the protocol from Araki et al. [AFL+16] that allows 3
servers to take secret shares of bits a, b ∈ {0, 1} and compute a share of the product ab ∈ {0, 1}
where each server only needs to broadcast a single bit. In other words, using the Araki et al.
protocol for evaluating Boolean circuits, computing XOR is free while computing an AND requires
1-bit of communication. The protocol relies on pseudorandom secret sharing (PRSS) [CDI05] and
requires a one-time setup of replicated PRF keys. We note that we can achieve information-theoretic
security without the need for the (trusted) setup at twice the cost of the basic protocol.

11The protocol uses two rounds of interaction between the servers.

27

We now describe our protocol πfde for distributed evaluation of our mod-2/mod-3 candidate
(Construction 3.1). We assume a structured key (e.g., a block-circulant matrix), so the key can
be compactly represented by a single vector k ∈ Zn2 . This assumption is only needed to simplify
the protocol description. Our protocol naturally generalizes to the setting with an unstructured
(i.e., fully random) key with no overhead (in either communication or round complexity). To
recall, to evaluate our PRF, we first evaluate the matrix-vector product between the key and the
input: k, x 7→ h ∈ Zm2 . We then reinterpret h as an m-dimensional vector over Z3. The output
mapG(h) ∈ Zt3 can then be computed as a linear function mapG on h. We begin by defining the
fully-distribution evaluation functionality that we seek to instantiate.

Definition 6.1 (Fully-Distributed Evaluation Functionality). The ideal fully-distributed PRF eval-
uation functionality is defined as follows:

• Inputs: The servers hold replicated additive shares of the input and the key over Z2. Con-
cretely, let k1, k2, k3 be vectors in Zn2 such that k1⊕k2⊕k3 = k and similarly x1, x2, x3 vectors
in Zn2 such that x1 ⊕ x2 ⊕ x3 = x. Server i holds kj , xj with j 6= i.

• Outputs: The first two servers hold random y1, y2 ∈ Zt3 such that y1 + y2 = Fk(x).

We write [h]p to denote an additive sharing of h over Zp—that is, a tuple of values whose sum is
h mod p. Depending on the context, this will sometimes be a triple of shares held by the 3 servers
and sometimes a pair of shares held by the first 2 servers. Our protocol uses a sub-protocol π2,3

that transforms an additive sharing [h]2 (i.e., a mod-2 secret-sharing of h) held by the 3 servers
into an additive sharing [h]3 (i.e., a mod-3 secret-sharing of h) held by the first two servers. We
define this functionality f23 below.

Definition 6.2 (Share Conversion Functionality f23). The share-conversion functionality converts
a 3-party mod-2 secret sharing of a value h ∈ {0, 1} into a 2-party mod-3 secret sharing of the same
value h. Specifically, the functionality’s input/output behavior is as follows:

• Inputs: Every server i ∈ [3] has an input bi ∈ {0, 1}. Server 1 has an additional input c ∈ Z3.

• Outputs: Servers 1 and 3 receive no output. Server 2 receives an output d ∈ Z3 such that
c+ d = b1 ⊕ b2 ⊕ b3 (mod 3).

It is straightforward to design a Boolean circuit that implements the ideal share-conversion func-
tionality from Definition 6.2. We give the circuit in Figure 6.2 below. The circuit consists of 3 AND
gates and 10 XOR gates. To obtain our final share-conversion protocol, we use the PRSS-based
protocol by Araki et al. [AFL+16] to evaluate the circuit in Figure 1.

The protocol πfde. We now describe our protocol πfde for fully-distributed evaluation of our
mod-2/mod-3 weak PRF candidate. Recall that at the beginning of the protocol, we assume that
the three servers have a replicated additive secret-sharing of the input and the key. The protocol
πfde then consists of three phases:

• During the first phase, each server Si computes an additive share hi ∈ Zm2 of the linear
mapping (k, x) 7→ h defined by the key. This can be done locally using the replicated additive
shares of the input and the key. This follows from the fact that for any two secret-shared
values a, b split into 3 shares (i.e., a = a1 + a2 + a3 and b = b1 + b2 + b3), we have that

28

Simple Circuit that Implements f23

• Input: ((c0c1, b1), b2, b3) ∈ {0, 1}5, where c0c1 is the 2-bit representation of c ∈ Z3.

• Output: d0d1 ∈ {0, 1}2, representing d ∈ Z3.

• Computation:
d0 = c1 · (1⊕ b1 ⊕ b2 ⊕ b3)⊕ c0 · (b1 ⊕ b2 ⊕ b3)
d1 = c0 ⊕ (1⊕ c1) · (b1 ⊕ b2 ⊕ b3).

Figure 1: A simple circuit that implements the share-conversion functionality f23 (Definition 6.2).

ab = (a1 +a2 +a3)(b1 + b2 + b3) =
∑

1≤i,j≤3 aibj . In a replicated secret-sharing scheme, server
Si knows aj , bj for j 6= i. This means that every term aibj in the sum can be computed by at
least 1 of the servers.

• In the second step of the protocol, the three servers evaluate the share-conversion protocol
π2,3 to their secret-shared values. For each component of their additive share, the servers runs
the interactive protocol π2,3 to transform additive shares (held by the 3 servers) modulo 2
into additive shares (held by the first 2 servers) modulo 3. At the end of this phase, servers
S1 and S2 hold a share [h]3 of the linear mapping.

• In the final step of the protocol, the two parties evaluate mapG on their share. Since the
matrix G is public, this is a linear operation, and can be done non-interactively. The output
is the output of the protocol.

Observe that by construction, only the second step of the protocol is interactive. Moreover, the
protocol requires just two rounds of interaction. We give the full protocol in Figure 2 below.

Protocol πfde

1. Each server locally computes its shares hi ∈ Zm
2 of the linear mapping (k, x) 7→ h.

2. Server S1 chooses c
r←− Zm

3 .

3. Servers S1, S2, S3 runs m parallel instances of the share-conversion protocol π2,3. On the jth

instance, each server provides as input its share of hi,j ∈ {0, 1}, and server S1 additionally
provides as input its value cj ∈ Z3. At the end of this step, server S2 obtains a share c′ ∈ Zm

3

where c+ c′ = h.

4. Servers S1 and S2 locally apply mapG to their shares c and c′, respectively. They then output
their share in Zt

3.

Figure 2: Description of our fully distributed PRF evaluation protocol with 3 servers.

6.2 Concrete Efficiency of Distributed PRF Evaluation

In this section, we compare the concrete efficiency of secure evaluation of our PRF to alternative
constructions. Here, we assume that both the input x and the key k to the PRF are secret-shared
across multiple servers. We measure the concrete cost in terms of the round complexity and the
communication complexity needed for joint evaluation of the PRF. For all of our estimates, we use
a concrete security parameter of λ = 128.

29

Our methodology. We compare the concrete cost of evaluating our PRF to that of evaluating
AES (a common baseline for MPC applications) as well as custom-designed block ciphers optimized
for MPC applications like LowMC [ARS+15] and Rasta [DEG+18]. When computing our perfor-
mance metrics, we use the following values taken from [ARS+15, Table 2] for the size and depth of
the Boolean circuit computing AES and LowMC. We use the values taken from [DEG+18, Table 1]
for the size and depth of the Boolean circuit computing Rasta.

• AES-128: We assume that the AES-128 block cipher can be computed by a Boolean circuit
with depth 40 (ignoring the cost of computing the key schedule), and 5440 AND gates. The
output of each PRF invocation is 128 bits.

• LowMC: There are many different ways to instantiate the LowMC family of block ciphers.
For comparisons, we consider variants along two extremes: one that minimizes the multi-
plicative depth and one that minimizes the number of AND gates of the Boolean circuit
implementing the cipher. At 128 bits of security, this corresponds to the following:

– Depth-optimized LowMC: Using the variant that minimizes the multiplicative depth,
the LowMC block cipher can be computed by a Boolean circuit with depth 14 and 2646
AND gates. The output is a block of 256 bits.

– Gates-optimized LowMC: Using the variant that minimizes the number of AND
gates, the LowMC block cipher can be computed by a Boolean circuit with depth 252
and 756 AND gates. The output is a block of 128 bits.

• Rasta: Similar to LowMC, there are several ways to instantiate the Rasta family of block
ciphers. For our comparisons, we again consider two variants: one that minimizes the mul-
tiplicative depth and one that minimizes the number of AND gates of the Boolean circuit
implementing the cipher. At 128-bits of security, this corresponds to the following:

– Depth-optimized Rasta: Using the variant that minimizes the number of AND gates,
the Rasta block cipher can be computed by a Boolean circuit with depth 2 and ≈ 233

AND gates. The output is a block of ≈ 233 bits.

– Gates-optimized Rasta: Using the variant that minimizes the multiplicative depth,
the Rasta block cipher can be computed by a Boolean circuit with depth 6 and 2106
AND gates. The output is a block of 351 bits.

There are mainly two different approaches for secure computation protocols: the secret-sharing
approach [GMW87, BOGW88, CCD88] and the garbled circuit approach [Yao86]. We consider
both approaches for oblivious PRF evaluation:

• Secret-sharing approaches: In the secret-sharing approach [GMW87, BOGW88, CCD88]
for oblivious PRF evaluation, we assume that each of the parties has a secret share of the
input to the computation. For our estimates, we use the work of Araki et al. [AFL+16] who
give a highly-efficient 3-party MPC protocol with security against semi-honest adversaries in
the honest-majority setting (i.e., security against a single passive corruption in the 3-party
setting). In their protocol, each of the three parties has to communicate a single bit per AND
gate in the circuit. Thus, the total communication complexity of the Araki et al. [AFL+16]
protocol is 3 ·n bits where n is the number of AND gates in the circuit. The round complexity
corresponds to the depth of the circuit. The Araki et al. [AFL+16] is well-suited in low latency
networks (due to the potentially large round complexity).

30

• Garbled circuit approaches: The classic garbled circuit protocol [Yao86] gives a general
2-round protocol for secure computation in the presence of semi-honest adversaries. Using
state-of-the-art garbled circuit optimizations like free-XOR [KS08], and half-gates [ZRE15],
the total communication complexity scales linearly with the number of AND gates in the
circuit. Concretely, two ciphertexts are communicated for each AND gate, which at the 128-
bit security level, translates to 256 bits of communication per AND gate. Note that a small
amount of communication is also needed for the oblivious transfers (OTs), but we will neglect
those in our basic comparison (the communication is dominated by the size of the circuit).
Compared to the secret-sharing-based protocols, the total communication is substantially
higher (over 256 times greater than the Araki et al. protocol). However, the round complexity
is optimal, which makes these protocols better suited in high latency networks.

In Table 2, we provide a concrete comparison of the communication complexity and round complex-
ity for oblivious evaluation of our PRF candidate. We compare them to the corresponding costs of
using the Araki et al. protocol or an optimized garbled-circuit protocol to evaluate standard block
ciphers like AES and MPC-optimized block ciphers like LowMC and Rasta.

6.3 Concrete Efficiency of Distributed Evaluation in the Preprocessing Model

In many MPC settings, we can obtain more efficient protocols by working in the preprocessing
model (or correlated randomness model) [Bea92, BDOZ11, DPSZ12, KOS16], where we assume
that prior to the computation, a trusted dealer distributes some input-independent randomness to
the computing parties. Concretely, this randomness-generation process can itself be implemented
by a separate input-independent MPC protocol. The correlated randomness can significantly re-
duce the online complexity (both computation and communication) of the protocol execution. The
piecewise-linear structure of our weak PRF candidates makes them very amenable for fully dis-
tributed evaluation in the preprocessing model. Here, we will focus on the two-party setting.

OT correlations. We first recall the classic preprocessing protocol [Bea95] for implementing
1-out-of-2 string OT (on n-bit messages) from a random OT correlation:

• Preprocessing: In the preprocessing step, a trusted dealer chooses two random messages
r0, r1

r←− {0, 1}n and a random bit z
r←− {0, 1}. It gives (r0, r1) to the sender and (z, rz) to the

receiver. The pairs (r0, r1) and (z, rz) is referred to as an OT correlation.

• OT: In the online phase of the protocol, the sender has messages x0, x1 ∈ {0, 1}n and the
receiver has a bit b ∈ {0, 1}. The receiver sends b′ ← b ⊕ z to the sender, and the sender
replies with two messages m0 ← x0 ⊕ rb′ and m1 ← x1 ⊕ rb′⊕1. The receiver computes and
outputs mb ⊕ rz.

Thus, given a random OT-correlation, the sender and the receiver can implement a 1-out-of-2 OT
in 2 rounds with 2n+ 1 bits of communication. The size of the precomputed values is 3n+ 1 bits.
More generally, we can view the messages as coming from any finite group G, in which case the
online communication consists of 2n elements in G and a single bit, and the OT correlation consists
of 3n elements in G and a single bit.

31

Oblivious linear-function evaluation. The oblivious linear-function evaluation (OLE) func-
tionality allows a receiver (who holds an element x ∈ F in some finite field F) to learn any affine
function ax + b held by a sender (who holds inputs a, b ∈ F). OLE is a useful building block for
secure arithmetic computation [NP99, IPS09, DGN+17, BCGI18] and plays an analogous role as
oblivious transfer [GMW87, Kil88, IPS08] for the setting of secure Boolean circuit evaluation.

Just as a random OT correlation can be used to implement oblivious transfer, a random OLE
correlation can be used to implement OLE. A random OLE correlation over a finite field F consists
of a random affine function for the sender (specified by two field elements ra, rb ∈ F) and the
evaluation of the affine function rarx + rb at a random point rx ∈ F for the receiver. We recall the
protocol for implementing OLE from a random OLE correlation below:

• Preprocessing: In the preprocessing step, a trusted dealer chooses ra, rb, rx
r←− F and com-

putes z = rarx + rb ∈ F. It gives (ra, rb) to the sender and (rx, z) to the receiver. The pairs
(ra, rb) and (rx, z) is referred to as an OLE correlation.

• OLE: In the online phase of the computation, the sender has an input (a, b) ∈ F and the
receiver has an input x ∈ F. The receiver sends mx ← x − rx to the sender, and the sender
replies with ma ← a−ra and mb ← ramx+b−rb. Finally, the receiver outputs max+mb+z.

By construction, at the end of the above protocol, the receiver computes and outputs

max+mb + z = (a− ra)x+ ra(x− rx) + b− rb + rarx + rb = ax+ b,

exactly as required. Moreover, the above protocol directly generalizes to computing matrix-vector
products over F. Concretely, suppose the receiver holds a vector x ∈ Fn while the sender holds an
affine function f(x) := Ax + b where A ∈ Fm×n and b ∈ Fm. Given a random OLE correlation
(RA, rb) and (rx,RArx + rb), the sender and receiver can obliviously compute the matrix-vector
product Ax + b while just communicating (mn + m + n) elements in F. Moreover, if the matrix
A is block-circulant (and thus, can be represented by cyclic shifts of a single vector a ∈ Fn), the
communication of the above protocol is further reduced to just 2n+m field elements. The size of
the precomputed OLE correlations in this case is 2n+ 2m.

When the inputs (A,x,b) are additively shared between the sender and the receiver, the two
parties can compute a sharing of the affine function Ax + b using two invocations of OLE. Specif-
ically, suppose A = A0 + A1, x = x0 + x1, and b = b0 + b1, where the sender holds A0,x0,b0

while the receiver holds A1,x1,b1. Then, Ax + b = (A0 + A1)(x0 + x1) + (b0 + b1). The parties
use two invocations of OLE to compute (an additive sharing of) the products A0x1 and A1x0. All
other components can be computed locally by one of the two parties.

Distributed evaluation in the preprocessing model. We now describe a two-party protocol
for fully distributed evaluation of our mod-2/mod-3 weak PRF candidate in the preprocessing
model. The two parties hold an additive sharing of the key A ∈ Zm×n2 and an input x ∈ Zn2 , and
their goal is to compute an additive sharing of FA(x) = map(Ax). We assume that the sender and
the receiver have a sufficient number of OLE and OT correlations.

• The parties use two (parallel) OLE invocations to compute an additive secret-sharing of
Ax ∈ Zm2 . At the end of this protocol, the two parties have an additive secret sharing of
y′ = Ax ∈ Zm2 . Denote the two shares by y′0, y

′
1 ∈ Zm2 . This step requires two rounds of

interaction.

32

• The two parties use m (parallel) invocations of 1-out-of-2 OT (with messages in Z3) to convert
their shares of y′ ∈ Zm2 into shares over Zm3 . Specifically, on the ith invocation, the sender

chooses a random r0,i
r←− Z3 and uses (r0,i + y′0,i, r0,i + y′0,i + 1) ∈ Z2

3 as its input to the OT
while the receiver uses its share y′1,i as its input. Let r1,i be the receiver’s output from the OT.
By construction, r0,i and r1,i is an additive secret sharing of y′i over Z3. This step requires
two rounds of interaction.

• The two parties locally apply the map function to their respective Z3-shares of y′. Since map
is a public linear function over Z3, this can be done non-interactively. Note that replacing
map with a general matrix-vector product to obtain longer outputs (see Remark 3.3) does
not require additional communication.

The above protocol requires 4 rounds of communication. We now consider the communication
complexity and the preprocessing size:

• Communication complexity: When the matrix A is block-circulant, the OLE computation
requires a total of 2(2n + m) bits of communication. The m invocations of OT requires
communicating a total of 2m elements in Z3 and m bits. Since the OTs are performed
in parallel, all of the Z3 elements can be packed together into a single bit-string of length
approximately d2m log2(3)e. Thus, the total communication complexity is ≈ 4n+ 6.2m bits.

• Preprocessing size: When the matrix A is block-circulant, the OLE correlations consist of
2(2n + 2m) bits. The OT correlations consists of 3m elements in Z3 and m bits. As before,
the 3m elements of Z3 can be packed together (specifically, the 2m elements on the sender’s
side and the m elements on the receiver’s side are packed separately into bitstrings). The
total size of the correlated randomness is ≈ 4n+ 9.8m bits.

Comparison with existing PRF candidates. We compare the costs of two-party distributed
evaluation of our mod-2/mod-3 PRF candidate with that of using a Yao-based evaluation protocol
in conjunction with an existing PRF. In the preprocessing model, we assume that the garbled circuit
is included as part of the correlated randomness (along with sufficiently many OT correlations).
In the fully-distributed setting, the online communication only consists of the oblivious transfers
the receiver uses to obtain the labels corresponding to its share of the PRF key and PRF input.
At the 128-bit security level, each OT is over a 128-bit message, so the total communication cost
needed for each OT is 257 bits. The size of the correlated randomness is 385 bits for each bit of
the PRF key and PRF input (for the OT correlations) together with the size of the garbled circuit
computing the PRF (256 bits per AND gate). We refer to Table 3 and Section 1.1 for the full
comparisons of our protocol against the Yao-based protocols.

6.4 Oblivious PRF Evaluation in the Preprocessing Model

Our fully-distributed evaluation protocol for evaluating Construction 3.1 from Section 6.3 readily
extends to a similar protocol for semi-honest oblivious PRF evaluation. Recall that in an oblivious
PRF [FIPR05], one party (the “server”) holds the PRF key A while the other party (the “client”)
holds an input x. At the end of the oblivious evaluation protocol, the client should learn FA(x)
while the server should not learn anything. Our protocol for fully-distributed evaluation directly
gives a protocol for oblivious evaluation of Construction 3.1:

33

• In the first step, the client and the server use a single OLE invocation to compute an additive
secret-sharing of the product y′ = Ax ∈ Zm2 . Specifically, the server chooses a random vector

b
r←− Zm2 . Then, the client and the server use a single OLE invocation to compute Ax + b.

At the end of this step, the client knows Ax+ b while the server knows b, which is a secret
sharing of Ax.

• The client and the server uses m (parallel) OT invocation of 1-out-of-2 OT (with messages
in Z3) to convert their shares of y′ ∈ Zm2 into shares over Zm3 . This step is identical to the
corresponding step in the fully distributed evaluation protocol.

• The two parties locally apply the map function to their respective Z3 shares of y′, and the
server concludes by sending its share of map(y′) to the client. Note that the server can include
this message with the final flow of the OT protocol, so this step does not increase the round
complexity.

This yields a 4-round oblivious PRF protocol in the preprocessing model where the total online
communication cost is roughly 2n + 5.2m bits (with proper packing of Z3 elements). With our
suggested parameters (m = n = 256), the total communication is roughly 1800 bits, and the total
size of the correlated randomness is 2n+ 7.8m, or roughly 2500 bits.

Comparison against generic approaches. A generic approach for building an oblivious PRF
is to combine Yao’s garbled circuits with an existing PRF. In this case, the online communication
cost consists of an OT (on 128-bit messages) for each bit of the client’s PRF input together with
a 128-bit label for each of bit of the sender’s PRF key. Concretely, this translates to 257 bits for
each bit of the PRF input and 128 bits for each bit of the PRF key. The size of the correlated
randomness is 385 bits for each bit of the input (for the OT correlations) and the size of the
garbled circuit (256 bits per AND gate). Compared to these generic approaches, our protocol for
oblivious PRF evaluation is over 25x better in terms of online communication complexity and over
95x better in terms of the size of the correlated randomness. The improvement is more substantial
when comparing against the generic approaches for evaluating other PRFs like AES and Rasta.
We give the full comparison in Table 5.

Comparison against algebraic approaches. There are also several highly-efficient construc-
tions of oblivious PRFs based on discrete log assumptions [NPR99, NR04, FIPR05, JL09]. The
simplest construction that provides semi-honest security in the random oracle model is the con-
struction of Naor et al. [NPR99] that operates over a group G of prime order p where the decisional

Diffie-Hellman (DDH) assumption is conjectured to hold. The PRF key is a random element k
r←− G

and the PRF Fk on inputs x ∈ X is given by Fk(x) := H(x)k where H : X → G is a hash function
(modeled as a random oracle). This PRF admits a simple oblivious evaluation procedure (without
preprocessing) where the total communication consists of 2 group elements. At 128-bits of security,
this corresponds to roughly 256 bits per group element for a total communication of 512 bits per
oblivious PRF evaluation. Compared to the online communication cost of our protocol, oblivious
evaluation of the DDH-based construction is better by a factor of roughly 3.6x.

An advantage of our PRF is that it plausibly provides security against quantum computers; in
contrast, group-based oblivious PRFs are insecure against quantum adversaries [Sho94]. Another
advantage of our oblivious PRF protocol is that computing the matrix-vector product between a

34

PRF Candidate
Round Output Online Preprocessing

Complexity Bits Communication Size

AES 2 128 4.9 · 104 1.4 · 106

LowMC, min-gates 2 128 4.9 · 104 2.4 · 105

Rasta, min-gates 2 351 1.4 · 105 6.7 · 105

DDH-based PRF [NPR99] 2 256 5.1 · 102 –

Construction 3.1 4 128 1.8 · 103 2.5 · 103

Table 5: Comparison of protocols for (semi-honest) oblivious PRF evaluation in the preprocessing
model. We measure the online round complexity, the online communication (in bits), and the size of
the correlated randomness (in bits) for fully-distributed evaluation of the different PRF candidates.
For Construction 3.1, we take m = n = 256 (using the parameters from Table 4) and assume that
the key A is a block-circulant matrix.

structured matrix A and an input x is a relatively lightweight computation compared to evaluating a
modular exponentiation over an elliptic-curve group (c.f., [HKL+12, ABB+17, Cho16] for estimates
of the computational costs of the different operations). Note that the group-based OPRF cannot
take advantage of preprocessing for fixed-based exponentiations (since the base is input-dependent),
which is a limiting factor for its efficiency. Thus, in scenarios where computation is the bottleneck
(e.g., on fast networks), our OPRF protocol likely outperforms the group-based protocols.

6.5 An Alternative Weak PRF Candidate

While our weak PRF candidate in Construction 3.1 admits a concretely-efficient secure computa-
tion protocol when the input and key are secret-shared across three servers, the large number of
multiplications makes it less amenable for garbled circuit evaluation (in the two-party setting). Of
course, as we demonstrated in Sections 6.3 and 6.4, our main candidate is well-suited for two-party
distributed evaluation (and oblivious PRF evaluation) in the preprocessing model. In this section,
we introduce an alternative variant of our weak PRF candidate that has a simple distributed eval-
uation protocol in the two-party setting, and which only relies on OTs (as opposed to the more
structured OLE correlations needed for the protocols in Sections 6.3 and 6.4). Our alternative
candidate can be viewed either as a deterministic version of LPN, where the “noise” is obtained
by taking an inner product over a different modulus, or as a special instance of the learning with
rounding (LWR) assumption with constant-size composite modulus (Remark 6.4). We present our
candidate below:

Construction 6.3 (Alternative Mod-2/Mod-3 Weak PRF Candidate). Let λ be a security pa-
rameter, and let n = n(λ) be the key length (and input length). The weak PRF candidate is a
function Fλ : {0, 1}n × {0, 1}n → Z2 with key-space Kλ = {0, 1}n, domain Xλ = {0, 1}n and output
space Yλ = Z2. For a key k ∈ Zn2 , we write Fk(x) to denote the function Fλ(k, x). We define Fk as
follows:

35

• On input x ∈ {0, 1}n,

Fk(x) =
∑
i∈[n]

kixi mod 2 +
∑
i∈[n]

kixi mod 3 (mod 2). (6.1)

In other words, the PRF evaluation consists of computing the inner product between the key k
and the input x modulo 2 and modulo 3, and then adding the results modulo 2 (where the output
of the mod-3 inner product is viewed as a 0/1 element of Z2). This construction resembles an
LPN instance with noise rate 1/3, except instead of sampling the noise independently, the noise
is generated via a deterministic, key-dependent, and input-dependent computation. Namely, the
noise is 1 if and only if 〈k, x〉 = 1 mod 3.

Remark 6.4 (Alternative View of Construction 6.3). It is easy to see from Eq. 6.1 that Fk(x) = 1 if
and only if 〈k, x〉 mod 6 ∈ {3, 4, 5}. This observation gives another way to evaluate the construction
(which we leverage in our secure distributed evaluation protocol). Equivalently, we can express the
operation of the PRF as Fk(x) = b·e2, where b·e2 : Z6 → Z2 is the rounding operator, and we view
the key k and input x as binary vectors over Z6. Thus, the security of our candidate is closely
related to the hardness of the learning with rounding (LWR) assumption [BPR12] with constant-size
composite modulus (specifically, using 2 and 6 for the inner and outer modulus, respectively). We
note that using a composite modulus in this setting is critical for security in the constant-modulus
regime. Otherwise, there is a direct linearization attack (e.g., [AG11]) on the scheme.

Multiple works have studied the hardness of LWR in several parameter settings [BPR12,
AKPW13, BGM+16, ASA16]. The known reductions from LWR to worst-case lattice problems
do not apply in the constant modulus setting, and we leave the problem of analyzing the security
(or insecurity) of LWR with constant-size composite modulus as an interesting research direction.

Remark 6.5 (Insecurity of Variant with Z3-Outputs). It might seem natural to consider the variant
of Construction 6.3 where the outputs are computed mod 3 rather than mod 2 (which would yield
longer outputs). However, there is a polynomial-time distinguisher against the mod 3 variant.
Indeed, with outputs computed modulo 3, we can obtain 2 as an output only if 〈k, x〉 6= 0 mod 3
(since the mod-2 inner product adds either 0 or 1 to the output). Moreover, over Z3, we have
12 = 22 = 1 mod 3 while 02 = 0 mod 3. Hence, if Fk(x) = 2 (mod 3), then x has to satisfy
(〈k, x〉)2 = 1 (mod 3), which is a quadratic equation over Z3 where the unknowns correspond to
the bits of k. We can efficiently solve the latter system and recover k via linearization once we
have O(n2) evaluations.

Security of Construction 6.3. While Construction 6.3 may appear slightly simpler than the
weak PRF candidate in Construction 3.1, it shares the structural similarity of mixing mod-2 and
mod-3 operations. As such, many of the rationales we discussed in Section 4 for arguing security of
Construction 3.1 (e.g., lack of correlation with fixed function families and inapproximability by low-
degree functions) also apply to this alternative candidate. However, as we discuss below, there are
sub-exponential attacks against this candidate (based on BKW), as well as a simpler non-adaptive
attack (that does not rely on sparse polynomial interpolation):

• BKW attacks: The structure of Construction 6.3 is very similar to that of the LWE or
LPN problem. In particular, we can view k to be the LWE or LPN secret, x to be the input,
and

∑
i∈[n] kixi mod 3 (mod 2) to be the error. The main difference here is that the noise

36

is correlated with both the input as well as the secret key, rather than being independently
sampled. Nonetheless, it does not seem straightforward to leverage these correlations to
construct a distinguisher for the weak PRF. We do note though that BKW-style attacks
(discussed in Section 4.4) do apply to this new candidate, and so asymptotically, the new
candidate can only provide sub-exponential security at best. Due to the large number of
samples needed to run BKW-style attacks in practice, in many applications, we do not need
to significantly increase the concrete parameters to achieve security against known attacks.

• Simpler non-adaptive attack: As discussed in Section 5.3, there is a non-adaptive distin-
guishing attack against the weak PRF candidate from Construction 3.1 via sparse polynomial
interpolation. In the case of the alternative candidate (Construction 6.3), there is a simpler
non-adaptive attack: namely, the distinguisher simply queries the PRF on the elementary
basis vectors (i.e., vectors with Hamming weight 1). Since the key for the PRF is a uniformly
random binary vector, with probability 1, the value of the PRF on an input x with Hamming
weight 1 will be 0. Thus, all the evaluations will be 0 in this case, compared to 1/2 of the
evaluations if the adversary received outputs from a random function. This immediately gives
a non-adaptive distinguisher against the candidate.

We leave it as an interesting challenge to further study the security of this weak PRF candidate.

Remark 6.6 (Search-to-Decision Reduction). Due to its structural similarity with the LWE and
LPN problems, it is straightforward to give a “search-to-decision reduction” for Construction 6.3
(c.f., [BFKL94, Reg05, AIK09] for similar types of reductions). In other words, if there exists a
distinguisher against the weak PRF candidate in Construction 6.3, then there is in fact an adversary
that can recover the secret PRF key given random inputs/outputs of the PRF.

Remark 6.7 (Branching Program Complexity). As discussed in Section 5.2, our mod-2/mod-3
weak PRF candidate from Construction 3.1 can be efficiently computed by a width-3 branching
program. The same is true for the alternative candidate in Construction 6.3, and in fact, it is
straightforward to implement Construction 6.3 using a read-twice width-3 permutation branching
program (by embedding the Z2 and Z3 arithmetic into the symmetric group S3) or by a read-
once width-6 permutation branching program (immediate from Remark 6.4). Thus, assuming that
Construction 6.3 is a weak PRF, we additionally obtain new hardness of learning results for read-
once/read-twice small-width branching programs.

Distributed evaluation in the two-party setting. We now describe a secure two-party pro-
tocol for distributed evaluation of our alternative PRF candidate (where both the key and the
input are secret-shared). As before, we work in the semi-honest model. Our two-party distributed
evaluation protocol consists of 3 rounds, where the two parties implement a garbled circuit evalua-
tion protocol (in the style of Yao) in the first 2 rounds as well as a single invocation of a 1-out-of-6
OT protocol in the last 2 rounds. We begin by introducing the information-theoretic garbling
scheme that we use (for the first two rounds of the protocol execution). This kind of garbling is a
special case of the general notion of randomized encoding of functions [IK00, AIK04] that is suit-
able for secure two-party computation. It is sometimes referred to as a decomposable randomized
encoding [IKOS08] or a projective garbling scheme [BHR12].

37

Definition 6.8 (Information-Theoretic Garbling). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time
computable function. An information-theoretic projective garbling for f , or garbling scheme for
short, is an efficiently-computable function f̂(w; r) satisfying the following requirements:

• Decomposability: Each output bit of f̂ depends on at most one bit of w. Equivalently,

for every input length ` there exist 2` “key functions” {L(0)
i (r), L

(1)
i (r)}i∈[`] such that for all

w ∈ {0, 1}` we have f̂(w; r) = (L
(w1)
1 (r), L

(w2)
2 (r), . . . , L

(w`)
` (r)).

• Correctness: There exists an efficient decoder D such that for all w ∈ {0, 1}∗ we have

Prr

[
D(f̂(w; r)) = f(w)

]
= 1.

• Security: There exists an efficient simulator S such that for every ` ∈ N and w ∈ {0, 1}`,
the output of S(1`, f(w)) is distributed identically to f̂(w; r).

The key building block in our two-party evaluation protocol is an information-theoretic garbling
scheme (in the sense of Definition 6.8) for computing the mapping fz : {0, 1}n×{0, 1}n → Z6 where

fz(k, x) := 〈k, x〉+ z ∈ Z6. (6.2)

This gives an efficient two-party distribution evaluation protocol based on the alternative view
of the evaluation procedure described in Remark 6.4. To recall, to compute Fk(x), it suffices to
compute 〈k, x〉 mod 6 and return 1 if 〈k, x〉 ∈ {3, 4, 5}, and 0 otherwise. Based on this evaluation
procedure, we construct a two-party, 3-round protocol as follows:

1. One of the parties (i.e., the “garbler”) chooses a blinding factor z
r←− Z6. The two parties

engage in a two-party protocol such that at the end of the protocol, the other party (i.e.,
the “evaluator”) learns the blinded PRF output 〈k, x〉 + z ∈ Z6. More precisely, they use
the information-theoretic garbling scheme for the function fz (Eq. (6.2)). Specifically, the
garbler first garbles the function (k, x) 7→ 〈k, x〉+ z ∈ Z6, and the receiver OTs for the labels
corresponding to the bits of its input (i.e., the bits of k and x). Note that when k and x are
secret-shared between the two parties, the garbler simply permutes the labels for the bits of
k and x, depending on the shares it possesses (i.e., it interchanges the labels for an input bit
if its share of the bit is 1). Note that security of our protocol requires that the blinding factor
z be hidden from the evaluator (who has the garbled representation of fz); thus, we require
that the garbling scheme additionally satisfies function-privacy.

2. The garbler (who knows z) uses a two-round 1-out-of-6 OT protocol with the evaluator (who
knows 〈k, x〉 + z ∈ Z6) to learn the unblinded PRF evaluation Fk(x) ∈ Z2. Specifically, the
garbler sends its first round OT message with the garbled circuit; the evaluator sends back
the OT response in the final round of the protocol (after it learns the blinded evaluation
〈k, x〉+ z ∈ Z6). The full protocol requires 3 rounds of communication.

To complete the protocol description, it suffices to construct an information-theoretic garbling
scheme for the function fz from Eq. (6.2). Here, we rely on an information-theoretic garbling
scheme for arithmetic circuits (c.f. [AIK11]). We summarize the key properties we require in the
following theorem:

38

Theorem 6.9 (Garbling Scheme for Inner Products [AIK11, Lemma 5.1]). Let R be a finite ring,
and for a fixed z ∈ R, let fz : Rn × Rn → R be the shifted inner product fz(x, y) = 〈x, y〉 + z.
Then, there exists an information-theoretic arithmetic garbling scheme for fz with the following
properties:

• Decomposability: The garbling scheme consists of an efficiently-computable randomized
algorithm f̂z(x, y; r) that on input (x, y) ∈ Rn × Rn and randomness r, outputs an encoding
(x̂, ŷ) ∈ R2n × R2n. Moreover, each ring element in x̂ (resp., ŷ) depends on exactly one
component of x (resp., y). In fact, there are exactly two components in x̂ (resp., ŷ) that
depend on each component of x (resp., y).

• Correctness: There exists an efficient decoder D such that for all (x, y) ∈ Rn × Rn,
Prr[D(f̂z(x, y; r)) = fz(x, y)] = 1.

• Security and Function-Privacy: There exists an efficient simulator S such that for every
n ∈ N, x, y ∈ Rn, and z ∈ R, the output of S(1n, fz(x, y)) is identically distributed to
f̂z(x, y; r). Notably, the simulator S is not given z.

Theorem 6.9 directly gives an information-theoretic garbling scheme for the function fz from
Eq. (6.2). In particular, when the input vectors are binary-valued, the decomposability property
in Theorem 6.9 precisely coincides with the decomposability property required in Definition 6.8.

Complexity of two-party protocol for distributed evaluation of Construction 6.3. Us-
ing the information-theoretic garbling scheme for shifted inner products together with a 2-round
1-out-of-6 OT protocol, we obtain a 3-round protocol for two-party evaluation of our alternative
PRF candidate. By Theorem 6.9, in the fully-distributed setting, a single evaluation of our protocol
requires computing 2n 1-out-of-2 OTs on messages containing two Z6 elements and a single evalu-
ation of a 1-out-of-6 OT on a 1-bit message. We note that this procedure suffices for obtaining a
single bit of output. To obtain `-bit outputs, we can run ` copies of the protocol in parallel. Näıvely,
this would amount to performing 2n` 1-out-of-2 OTs on 6-bit messages (for representing two Z6

elements) and ` invocations of a 1-out-of-6 OT on 1-bit messages. But since the input is shared
across all of the invocations, we can reduce the first set of 2n` OTs to n` 1-out-of-2 OTs on 6-bit
messages (corresponding to the encodings for the key bits) and n 1-out-of-2 OTs on d2` · log2 6e-bit
messages (corresponding to a (packed) encoding for the input bits).

Comparison with other schemes. We now briefly compare the complexity of our two-party
distributed evaluation protocol for our alternative PRF candidate with that of using a Yao-based
approach in conjunction with existing PRF candidates like AES, LowMC, and Rasta. To simplify
the comparisons, we measure the costs in the OT-hybrid model, and take the communication cost
of each OT to be the sum of the total input lengths for the client and the server. We additionally
measure the total number of OTs. From the above analysis, the communication complexity of our
two-party distributed evaluation protocol in the OT-hybrid model can be decomposed as follows:

• n` 1-out-of-2 OTs on 6-bit messages: this requires n` ·(2 ·6+1) = 13n` bits of communication
in the OT-hybrid model.

• n 1-out-of-2 OTs on d2` · log2 6e-bit messages: this requires n · (2 d2` · log2 6e + 1) bits of
communication in the OT-hybrid model.

39

Communication (bits)

PRF Candidate Output Size OT Total Number of OTs

AES 128 6.6 · 104 1.5 · 106 256
LowMC, min-gates 128 6.6 · 104 2.6 · 105 256
Rasta, min-gates 351 1.8 · 105 7.2 · 105 702

Construction 6.3
20 1.8 · 105 1.8 · 105 8084
40 3.6 · 105 3.6 · 105 15784
128 1.1 · 106 1.1 · 106 49664

Table 6: Comparison of two-party distributed evaluation protocols for different PRF candidates.
For the comparisons, we work in the OT hybrid model and measure the total communication cost
(in bits) and the number of OTs required. In the OT-hybrid model, we take the communication
cost of an OT to be the size of the sender’s and receiver’s inputs. For AES, LowMC, and Rasta,
we measure the cost using Yao’s 2-round distributed evaluation protocol. We consider the variants
of LowMC and Rasta that minimize the number of AND gates. For Construction 6.3, we use the
3-round distributed evaluation protocol described in Section 6.5. We set n = 384 to target 128 bits
of security (estimated based on LPN parameters with constant noise rate τ = 1/3).

• ` 1-out-of-6 OTs on 1-bit messages: this requires ` · (6 + 3) = 9` bits of communication in the
OT-hybrid model.

For the Yao-based protocols for two-party evaluation of AES, LowMC, and Rasta, we additionally
measure the cost of communicating a garbled circuit implementing the underlying functionality.
Here, we consider the garbling cost with the free-XOR [KS08] and half-gate [ZRE15] optimizations.

For our candidate, we choose n = 384. Our estimates are based on the best-known existing
attacks on the closely-related LPN problems. Specifically, the recent estimates from [EKM17,
Table 7] indicate that the best attack on an LPN instance with noise rate τ = 1/3 and dimension
n = 384 on a machine with 260 bits of memory will take time between 2124 and 2153. We note
that smaller parameters are possible if we additionally restrict the number of samples the LPN
adversary obtains (and indeed, the best attacks oftentimes requires an extremely large number of
samples). However, the precise trade-off between the number of samples and the distinguishing
advantage is not simple to characterize, so we take the more conservative approach in our estimates
and set n = 384. We give the full comparison of our protocol with that obtained by combining
Yao’s protocol with an existing PRF candidate in Table 6.

Table 6 shows that in the setting where we only require short PRF outputs (e.g., 20-bits of
output),12 then the communication complexity of our protocol in the OT-hybrid model is about
30% smaller than that obtained from using Yao’s protocol to evaluate LowMC. If we require longer
outputs, then the combination of Yao’s protocol with an MPC-friendly block cipher gives a more
efficient two-party distributed evaluation protocol.

12It is not clear that the performance of block ciphers like AES, LowMC, or Rasta can be improved when we only
require a small number of output bits.

40

6.6 Applications to Searchable Encryption

In this section, we describe how our shared-input shared-output oblivious PRF primitive can be
used to build a distributed searchable symmetric encryption (SSE) system.

Distributed SSE. In the classic SSE problem [SWP00, Goh03, CGKO06], a single server holds
a set of encrypted documents and a client wants to retrieve all of the documents that match its
query. Here, we focus on keyword search and we assume that each document is tagged with a set
of keywords. A straightforward PRF-based SSE protocol works as follows. First, the client chooses
a key k for a PRF F. Then, for each keyword w, the client adds a mapping from F(k,w) onto
an encrypted list of document indices (corresponding to the documents that contain the keyword
w). To search, for a keyword w, the client who holds the PRF key computes the value F(k,w) and
sends it to the server, which then looks up the value in the encrypted index and replies with the
set of encrypted document indices. Security of the PRF ensures that the index does not reveal the
set of keywords to the server. Note that if we work in the random oracle model, then even a weak
PRF suffices to argue security. Namely, the tag associated with a keyword is F(k,H(w)), where H
here is a hash function (modeled as a random oracle).

A limitation of the basic single-server SSE is that only clients who possess the secret PRF key k
is able to search the database. In the distributed-SSE setting, a database curator can construct the
index (exactly as in the single-server SSE setting), but then secret share the PRF key to multiple
different servers. When a client (who may be different from the database curator and who does not
know k) wants to perform a query on a keyword w, they would engage in an MPC protocol with the
servers such that at the end of the protocol, the client learns F(k,H(w)) (and nothing more) while
the servers learn nothing (about the query w). A shared-input, shared-key oblivious PRF directly
provides an efficient solution for implementing distributed SSE. To query on a keyword w, an honest
client would first secret-share its input H(w) and send one share to each server. The servers would
then engage in an oblivious PRF evaluation where each server’s input is their individual key-share
and the share of the client’s query. At the end of the computation, the servers send the shares of
the output F(k,H(w)) to the client, who reconstructs the shares and learns the tag F(k,H(w)).
Now, the client can simply look up the entries associated with this tag in the database. Thus, our
new weak PRF candidate provides an efficient way of realizing distributed SSE assuming the client
is semi-honest. (If a client was malicious, it could query the weak PRF on arbitrary inputs of its
choosing; to achieve security in this setting, we will need to rely on the encoded-input weak PRF
we introduce in Section 7).

7 Encoded-Input Pseudorandom Functions

Motivated by applications in which a weak PRF does not suffice, in this section we introduce a new
“encoded-input PRF” primitive that allows us to combine the efficiency advantages of weak PRFs
with the security advantages of strong PRFs. Our candidate instantiations of this new primitive
also imply a depth-3 strong PRF variant of our main depth-2 weak PRF candidate.

As we showed in Section 5.3, there is already a non-adaptive attack against our basic weak PRF
candidate via sparse polynomial interpolation. In Appendix B, we show an even stronger result:
namely, that strong PRFs do not exist in a large class of depth-2 circuits (which in particular also
includes the mod-p/mod-q generalizations of our candidate). Our lower bound relies on the classic

41

learning algorithm for automata with multiplicity by Bergadano and Varricchio [BV96].
There are many scenarios where a weak PRF does not suffice for security. For instance, if we

consider the distributed SSE from Section 6.6 and impose the additional requirements of security
against malicious adversaries, then a weak PRF no longer suffices. To address this limitation,
we introduce a new notion we call an encoded-input pseudorandom function (EI-PRF) that can
be used as a drop-in replacement for strong PRFs in many applications. At a high-level, an EI-
PRF is a function that behaves like a PRF on some (possibly sparse) subset of the domain. As a
concrete example, a suitable subset might be the set of codewords under a linear error-correcting
code (Construction 7.9).

We now formally define the EI-PRF primitive, describe several natural applications, and propose
candidate instantiations whose efficiency is comparable to that of our weak PRF candidate. This
EI-PRF candidate remains MPC-friendly, and can thus be useful for MPC applications that require
a strong PRF.

7.1 Definitions of (P)EI-PRFs

We define two versions of our notion: encoded-input pseudorandom function (EI-PRF) and protected
encoded-input pseudorandom function (PEI-PRF).

Definition 7.1 (Encoded-Input PRF). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, X ′ = {X ′λ}λ∈N, and Y =
{Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ. Let {F′λ}λ∈N = {(Eλ,Fλ)}λ∈N
be an efficiently-computable collection of functions where Eλ : X ′λ → Xλ is an encoding function
and Fλ : Kλ × Xλ → Yλ is a keyed evaluation function. Then, we say that {F′λ}λ∈N is a (t, ε)-
encoded-input PRF (EI-PRF) if the function Kλ × X ′λ → Yλ defined via (k, x′) 7→ Fλ(k,Eλ(x′))
is a (t, ε)-strong pseudorandom function. Moreover, we say that F′λ is computable in C if Fλ is
computable in C.

While the definition of an encoded-input PRF may seem equivalent to that of a standard PRF,
the important point is that the encoding function is a keyless procedure. This means that an honest
user can evaluate for itself the encoding algorithm on an input to obtain a valid encoded input, and
then ask for the PRF value on the encoded input. The holder of the PRF secret key only needs
to evaluate F. This is the reason we define the complexity of an EI-PRF to be the complexity
of its evaluation function (rather than the composition of its evaluation and encoding functions).
Furthermore, we note that even though the overall function F(·,E(·)) is a strong PRF, the function
F itself may live in a complexity class where strong PRFs do not exist.

One of the main reasons we are interested in EI-PRFs is that we can potentially use them as a
drop-in replacement for strong PRFs in concrete applications. In many of these scenarios, however,
it does not make sense to assume that the evaluator behaves honestly and will only evaluate the F
on properly-encoded inputs. This motivates our stronger notion of a protected encoded-input PRF
(PEI-PRF), which augments an EI-PRF with an additional verification algorithm. The inputs to a
PEI-PRF consists of a point x as well as a proof w that x is a proper encoding (with respect to the
encoding function of the underlying EI-PRF). The guarantee is that the output of the PEI-PRF
are pseudorandom on all properly-encoded inputs, and ⊥ on improperly-encoded inputs.

Definition 7.2 (Protected EI-PRF). Let {F′λ}λ∈N = {(Eλ,Vλ,Fλ)}λ∈N be an efficiently-computable
collection of functions where Eλ : X ′λ → Xλ ×Wλ is a protected encoding function whose range is
polynomial-time checkable by Vλ : Xλ ×Wλ → {0, 1}. That is, Vλ(x,w) = 1 if and only if (x,w) is

42

a valid encoding. Finally, Fλ : Kλ × Xλ ×Wλ → Yλ is a keyed evaluation function. Denote by ⊥ a
special element of Yλ. For a function f ∈ Funs[Xλ,Yλ], define Evalfλ : Xλ ×Wλ → Yλ as:

Evalfλ(x,w) =

{
f(x) if Vλ(x,w) = 1

⊥ otherwise.

Then, we say that {F′λ}λ∈N is a (t, ε)-PEI-PRF if for all adversaries A running in time t(λ), and

taking k
r←− Kλ and f

r←− Funs[Xλ,Yλ], we have that∣∣∣Pr[AFλ(k,·,·)(1λ) = 1]− Pr[AEvalfλ(·,·)(1λ) = 1]
∣∣∣ ≤ ε(λ).

We say that F′λ is computable in a circuit class C if the mapping (k, x, w) 7→ Fλ(k, x, w) is computable
in C. Finally, we say that a PEI-PRF is systematic if the witness w has the form x′‖w′ such that
Vλ(x, (x′‖w′)) = 1 if and only if (x,w) = Eλ(x′).

Remark 7.3 (Relation between EI-PRFs and PEI-PRFs). PEI-PRFs are stronger objects than
EI-PRFs, since if (E,V,F) is a PEI-PRF, then (E,F) is an EI-PRF.

We first show that that PEI-PRFs can be generically constructed from EI-PRFs.

Lemma 7.4 (PEI-PRFs from EI-PRFs). Let {(E∗λ,F∗λ)}λ be an EI-PRF. Then, assuming Fλ and
CNF formulas can be computed by depth-d circuits in a class C, there exists a systematic PEI-PRF
{(Eλ,Vλ,Fλ)}λ computable by a depth-(d+ 1) circuit.

Proof. The lemma follows from the fact that we can check the correctness of any Boolean circuit
computation using a CNF formula. In particular, we define a variable associated with each wire in
the circuit, and construct a constant-size CNF associated with each gate in the circuit (checking
that the gate is implemented correctly). The conjunction of all of these gate-by-gate CNFs gives a
CNF for the overall circuit. For notational convenience, we drop the λ subscripts in the description
below. We now define a systematic PEI-PRF (Eλ,Vλ,Fλ) as follows:

• E(x′)→ (x,w): On input a point x′ ∈ X ′, output (E∗(x′), w), where w is the set of all of the
wire values for the Boolean circuit computing E∗(x′). Specifically, we can write w = x′‖w′,
where x′ is the input to E∗ and w′ contain the internal (and output) wire values of E∗(x′).

• V(x,w) → {0, 1}: On input an encoded input x ∈ X and a witness w ∈ W, the verification
algorithm interprets w = x′‖w′. Then, it invokes the CNF verification procedure (for checking
correct computation of E∗) to check that E∗(x′) = (x,w).

• F(k, x, w) → y: On input the key k ∈ K, an encoded input x ∈ X , and a witness w ∈ W,
the evaluation algorithm outputs y ← F∗(k, x) if V (x,w) = 1, and ⊥ otherwise. This can be
implemented by computing an AND between the output of V(x,w) and F∗(k, x).

Since the verification algorithm V can be expressed as a CNF formula, and moreover, both F∗ and
CNFs can be computed by a circuit of depth d > 2, the evaluation algorithm F can be implemented
by a circuit of depth d+ 1.

43

7.2 Applications of (P)EI-PRFs

We now describe several interesting applications of strong PRFs that can be based on PEI-PRFs.
Certainly, we can instantiate any application of strong PRFs using an EI-PRF, since EI-PRFs are
PRFs if we consider the combination of the encoding and the evaluation functions. However, we
note here that our notions of EI-PRFs and PEI-PRFs allow us to obtain interesting alternative
instantiations of many of the classic applications of PRFs.

Symmetric encryption with low-depth decryption. A symmetric encryption scheme is a
tuple (G,E,D) such that the key-generation algorithm G(1λ) outputs a secret key k, the encryption
algorithm E(k,m) outputs an encryption c of a message m, and the decryption algorithm D(k, c)
outputs a string y such that D(k,E(k,m)) = m for all k,m. CPA-security of an encryption scheme
requires that an efficient adversary given access to an encryption oracle E(k, ·) cannot distinguish an
encryption of m0 from an encryption of m1 (for any two adversarially-chosen messages m0 and m1).
The following theorem states how we can obtain a symmetric encryption scheme with low-depth
decryption from any EI-PRF.

Theorem 7.5 (Symmetric Encryption with Low-Depth Decryption). Let C be a circuit class.
Then, if there exists an EI-PRF computable in C, there exists a symmetric encryption scheme with
decryption in C (assuming C is closed under composition with binary XOR gates).

Proof. This theorem follows direction from the textbook construction of symmetric encryption from
weak PRFs. Let (E∗,F∗) be an EI-PRF with key-space K, domain X ′, encoded domain X , and
range {0, 1}. Then, we define our symmetric encryption scheme (G,E,D) over a binary message
space M = {0, 1} as:

• G(1λ)→ k: On input the security parameter λ, sample and output an EI-PRF key k
r←− K.

• E(k,m)→ (x, c): On input an EI-PRF key k ∈ K and a message m ∈ {0, 1}, sample r
r←− X ′

and output (E∗(r),m⊕ F∗(k,E∗(r))).

• D(k, (x, c)) → m: On input an EI-PRF key k ∈ K and a ciphertext (x, c), output m =
c⊕ F∗(k, x).

Correctness and CPA-security are immediate by definition.

Remark 7.6 (Low-Complexity Symmetric Encryption). An important property of the construction
in Theorem 7.5 is that the decryption function does not need to evaluate the encoding function
(since the ciphertext contains the encoded nonce x = E∗(x′)). Thus, assuming an EI-PRF in AC0

d

(resp., ACC0
d), we obtain a symmetric encryption scheme where decryption can be implemented by

an AC0
d+3 (resp., ACC0

d+1) circuit.13

MAC with low-depth verification. A MAC is a tuple (G,S,V) where the key-generation
algorithm G(1λ) outputs a secret key k, the signing algorithm S(k,m) outputs a MAC t of the
message m, and the verification algorithm V(k, (m, t)) outputs 1 if and only if t is a valid MAC
on m. Unforgeability requires that an efficient adversary with access to the signing oracle S(k, ·)
cannot produce a MAC (on any message m) that was not previously output by the signing oracle.

13Fan-in 2 XOR gates can be computed by a depth-3 AC0 circuit and by a depth-1 ACC0 circuit.

44

MACs are immediate from strong PRFs: let G(1λ) outputs a PRF key k and define S(k,m) =
F(k,m). Then V(k, (m, t)) simply checks if t = F(k,m). Security is immediate as any adversary
that can forge a MAC can also predict the output of the PRF on a previously-unqueried input.
In fact, for this basic construction, an unpredictable function suffices, so plausibly, we can realize
MACs from weaker complexity classes (where strong PRFs may not exist). However, similar to the
case for PRFs, the existence of a learning algorithm for a class C also rules out the existence of an
unpredictable function. Here we show that systematic PEI-PRFs are powerful enough for building
MAC. In particular, we obtain the following theorem.

Theorem 7.7 (MACs with Low-Depth Verification). Let C be a circuit class. Then, if there exists
a systematic PEI-PRF in C, there exists a MAC with verification in C (assuming C is closed under
composition with an equality testing circuit).

Proof. Let F′ = (E,V′,F) be a systematic PEI-PRF with key-space K, domain X ′, encoded-domain
X , witness space W, and range Y. We construct a MAC with message-space X ′ as follows:

• G(1λ) → k: On input the security parameter λ, the key-generation algorithm samples and

outputs a PEI-PRF key k
r←− K.

• S(k,m) → (x,w, t): On input the signing key K ∈ K and a message m ∈ X ′, the signing
algorithm computes the encoding (x,w) = E(m) and the tag t = F(k, (x,w)). Finally, it
outputs (x,w, t).

• V(k,m, (x,w, t))→ {0, 1}: On input the signing key k, the message m, and a tag (x,w, t), the
verification algorithm outputs 1 if t = F(k, (x,w)) and that w = (m‖w′) for some bit-string
w′. Otherwise, the verification algorithm outputs 0.

Correctness and security immediately follows from the definition of systematic PEI-PRFs, and
verification only relies on evaluating F and checking for equality.

Remark 7.8 (On Non-Systematic PEI-PRFs). Note that we require the PEI-PRF to be systematic,
since the verification algorithm needs to check that (x,w) is a valid encoding of the target-message
m (as opposed to just a valid encoding of some message) without recomputing the encoding of m
(which need not be a low-depth computation). We note that we can obtain a relaxed version of a
MAC with low-depth verification from a non-systematic PEI-PRF if we instead define the message
space to be the set of valid PEI-PRF encoded inputs (i.e. pairs (x,w) where V′(x,w) = 1).

CCA-secure symmetric encryption with low-depth decryption. Combining our CPA-
secure encryption scheme with low-depth decryption (Theorem 7.5) and our MAC with low-depth
verification (Theorem 7.7) yields a CCA-secure symmetric encryption scheme (in fact, an authenti-
cated encryption scheme) with low-depth decryption via the classic “encrypt-then-MAC” construc-
tion [BN00]. The decryption procedure of the resulting encryption scheme consists of evaluating the
decryption operation of the underlying scheme together with the MAC verification. This increases
the depth of the overall decryption circuit by 1.

45

Distributed SSE for malicious clients. One of our primary motivations for introducing our
PEI-PRF notion is to realize a malicious-secure variant of our distributed SSE application. Specif-
ically, in a distributed SSE application, a malicious client might issue queries that are invalid (i.e.,
do not correspond to the output of the random oracle). In particular, a cheating client can learn
the outputs of the PRF on adaptively-chosen inputs, thereby compromising security. However, if
we used a PEI-PRF, we can ensure the servers abort whenever the client tries to evaluate the PRF
on an invalid input. This is done as follows: in addition to sending the servers a secret sharing of its
input, it also sends the servers a secret sharing of the proof that its input is properly encoded. The
servers can then jointly evaluates the PEI-PRF. This ensures that the client will learn the output
of the PRF only if the client provided a valid encoding; otherwise, the client learns nothing.

7.3 Candidate Constructions of (P)EI-PRFs and Strong PRFs

We begin with a heuristic construction of PEI-PRFs from weak-PRFs using random oracles. This
construction is primarily of conceptual interest and follows some basic observations on the connec-
tion between weak and strong PRFs [NR95]. We then propose a candidate PEI-PRF based on our
mod-2/mod-3 weak PRF candidate (Construction 3.1) that remains MPC-friendly.

A heuristic approach to boost weak PRFs to PEI-PRFs. Suppose that F is a weak PRF.
Then, the pair (H,F) is an EI-PRF, where the hash function H is modeled as a random oracle.
Of course, this is a purely heuristic construction, since we cannot represent a random oracle (over
a super-polynomial-size domain) by a polynomial-size circuit. However, we could heuristically
instantiate the random oracle by a concrete hash function like SHA-3. Then, the pair (SHA-3,F)
gives a heuristic construction of an EI-PRF. This means that if F is a weak PRF computable by
a depth-d circuit in a class C satisfying the requirements of Lemma 7.4, we obtain a heuristic
construction of a PEI-PRF computable by a depth-(d+ 1) circuit in C. This in turn gives heuristic
constructions of the applications from Section 7.2 (to symmetric encryption and MACs).

(P)EI-PRF from our candidate. Next, we propose a candidate PEI-PRF based on Construc-
tion 3.1 whose design is well-suited for our MPC applications. In particular, we need an encoding
function such that the outputs of the PRF on all encoded inputs appear pseudorandom. At a high
level, both the non-adaptive attack (Section 5.3) and the adaptive attack (Appendix B) on our
weak PRF candidate relies on querying inputs that are heavily correlated (e.g., have low Hamming
distance). This suggests that using a code with large minimal distance to encode the input x should
prevent these attacks. For MPC-friendliness, we would like to use a linear code, as verifying that
an input is a valid codeword can be done efficiently (by multiplying by the parity-check matrix for
the code).

A natural candidate is to use a linear code (G,H) over Z2: the encoding of an input x′ is the
codeword G · x′. Unfortunately, the same attack still applies since we can always view the PRF
evaluation as A · (G · x′) = (A ·G) · x′ and interpret (A ·G) as the key. To defend against this, we
instead use a linear code over Z3 and define the encoded bitstring x to be the binary representation
of the codeword obtained by applying the code to x′ (where we interpret x′ ∈ {0, 1}n′ as a vector
over Z3). By mixing mod-2 and mod-3 operations, the encoding procedure becomes non-linear,
but verification can still be expressed as a linear function. At the same time, the use of the linear
code ensures that (1) encoded inputs are far from each other, (2) verification is MPC-friendly

46

as the code is linear, and (3) the input of the second mapping cannot be expressed as a read-
once computation (this property is important for resisting the learning automata with multiplicity
attacks from [BV96]).

Construction 7.9 (EI-PRF and PEI-PRF Candidate). Let λ be a security parameter, and take
n = n(λ), n′ = n′(λ), and m = m(λ). Let G ∈ Zn

′×n
3 and H ∈ Zn

′−n×n′
3 be the generator and

parity-check matrices, respectively, for a linear error-correcting code over Z3. We use G and H to
construct a candidate EI-PRF (Eλ,Fλ) and PEI-PRF (Eλ,Vλ,Fλ) with domain {0, 1}n and range
Z3 as follows:

• EI-PRF: We define the encoding function Eλ : {0, 1}n → {0, 1}2n′ for our encoded-input PRF
to be the mapping x′ ∈ {0, 1}n 7→ bin(G·x′) ∈ {0, 1}2n′ , where bin is a “binary decomposition”
operator. In words, the encoding function Eλ takes as input an element in {0, 1}n, interprets it
as a binary-valued vector in Zn3 , maps it to a codeword w ∈ Zn′3 , and then outputs the binary
representation of the elements of w. Namely, each element of w is a Z3 element which we can
encode using two bits. Next, we take Fλ : Zm×2n′

2 ×Z2n′
2 → Z3 to be our weak PRF candidate

(Construction 3.1) with input length 2n′. The encoded-input PRF is the pair (Eλ,Fλ).

• PEI-PRF: Our candidate PEI-PRF construction is defined as (Eλ,Vλ,Fλ) where Eλ and Fλ
are defined as above (for our EI-PRF candidate). Checking that an input is properly encoded
is now possible using the parity-check matrix (the input is the encoded codeword and the
witness is empty). In particular, on input an encoded input x ∈ {0, 1}2n′ , the verification
algorithm Vλ : {0, 1}2n′ → {0, 1} outputs 1 if (H · B · x = 0n

′−n) and 0 otherwise, where
B ∈ Zn

′×2n′

3 denotes the powers-of-two matrix:

B = (2 1)⊗ In′ =

2 1 0 · · · 0
0 0 2 1 0 · · · 0

. . .

0 · · · 0 2 1

 ,

where In′ denotes the (n′ × n′) identity matrix. By construction, on input a binary vector
x ∈ {0, 1}2n′ , the mapping Bx returns the unique y ∈ Zn′3 such x = bin(y).

Note that we can obtain a systematic PEI-PRF by assuming that G has the form (Ik|P)T so
that it transforms an input x′ into a codeword of the form (x′,P · x′). This is without loss of
generality.

Remark 7.10 (Non-Interactive Verification). The verification algorithm for our PEI-PRF can-
didate in Construction 7.9 is a linear function over Z3. Thus, there is an efficient distributed
protocol where multiple servers, who each hold a linear secret-sharing of the encoded input, can
non-interactively compute a share of the verification bit for their shared input.

Remark 7.11 (Fully-Distributed Evaluation). We can easily extend our 3-party protocol for eval-
uating our weak PRF candidate (Construction 3.1) to obtain a similar protocol for distributed
evaluation of our PEI-PRF candidate in Construction 7.9. In this setting, our objective is to de-
fend against a malicious client. The servers are still assumed to be semi-honest. The only additional
component we require is a way for the servers the check that the input is valid before releasing the
shares of the output. One possibility is to have the client provide secret shares of the encoded input

47

over both Z2 and Z3 to the servers. The servers would use the Z2-secret shares to evaluate the
PRF (using the distributed evaluation protocol from Figure 2) and the Z3-secret shares to verify
the encodings (using the approach from Remark 7.10).

Unfortunately, a malicious client can provide inconsistent shares. Instead, we only require the
client to submit a Z2-sharing of the encoded input and have the servers use the share-conversion
protocol π2,3 (Definition 6.2, Figure 1) to convert this sharing into a Z3-sharing (between 2 out of the
3 servers). The two servers can then non-interactively compute a secret sharing of the verification
bit (since the verification algorithm is linear). Näıvely, performing the verification check introduces
an additional round in the evaluation protocol since we need the servers to reveal the verification
bit before publishing their shares of the output. Fortunately, in the share-conversion protocol π2,3,
one of the two servers that obtains a share of the Z3-sharing picks its share. This means that this
server can output its share of the verification in the first round and its share of the PRF output
in the second round. The other server then computes its share of the verification bit after the
first round, checks if the verification is successful, and outputs its share of the PRF output only if
the verification is successful. Otherwise, it does not output anything. This ensures that the client
does not learn anything about the PRF value if the input is not properly encoded, thus yielding a
2-round distributed SSE protocol with security against a malicious client.

Instantiating Construction 7.9. Our main conjecture is that instantiating Construction 7.9
with a random linear code yields an (exponentially-secure) encoded-input PRF. We state our main
conjecture below, and then describe several variants:

Conjecture 7.12 (Exponential Hardness of Encoded-Input PRF Candidate). Let λ be a security
parameter. Then, there exist constants c1, c2, c3, c4 > 0 such that for n = c1λ, n′ = c2λ, m = c3λ
and t = 2λ, the function family {(Eλ,Fλ)}λ∈N from Construction 7.9, when instantiated using a

random linear code (i.e., sample a uniformly random generator matrix G
r←− Zn

′×n
3 and publish G

as part of the description of the EI-PRF), is a (t, ε)-EI-PRF for ε = 2−c4λ. Correspondingly, for
this choice of linear code, the function family {(Eλ,Vλ,Fλ)}λ∈N is a (t, ε)-PEI-PRF.

We leave the question of further evaluating the conjecture and studying the concrete achievable
tradeoffs between the parameters c1, c2, c3, c4 for further study.

Remark 7.13 (Alternative Instantiations of Construction 7.9). We now describe several alternative
instantiations of Construction 7.9 and its associated hardness conjecture (Conjecture 7.12):

• Using a specific linear code: Instead of using a random linear code for the encoding func-
tion, we can formulate Construction 7.9 (and Conjecture 7.12) for a specific choice (or family)
of linear codes. For example, in our application to natural proof barriers (Remark 7.15), we
rely on an instantiation using the Druk-Ishai [DI14] family of codes.

• A simpler encoding function. Instead of taking the binary decomposition of the mod-3
codeword in the encoding function Eλ, we can define a simpler encoding function Eλ : {0, 1}n →
{0, 1}n′ to be the mapping x′ 7→ lsb(G · x′), where lsb returns the least significant bit of each
mod-3 component of the codeword G · x′ ∈ Zn′3 . This encoding function has the advantage
that it preserves the length of the codeword. A drawback of this encoding function is that
verification is no longer a linear function (unlike bin, the lsb function is not even invertible).
This makes it less suitable for distributed evaluation (Remarks 7.10 and 7.11).

48

Remark 7.14 (Candidate Strong PRF in Depth-3 ACC0[2, 3]). Construction 7.9 gives a strong
PRF candidate if we consider the composition of the encoding function E with the evaluation
function F. The strong PRF candidate starts by applying a public mod-3 linear encoding function
to the input, then interprets the result as a vector over Z2 and applies a secret random mod-2
linear mapping, and finally interprets the result as a vector over Z3 and outputs the sum of its
entries. (One could obtain a variant with a longer output by using a suitable compressive mod-3
linear mapping for the final step, as in our weak PRF candidate.) Since the encoding function E
computes a linear function over Z3, it can be computed by a depth-1 ACC0[3] circuit. As noted
in Remark 3.10, the PRF evaluation function F can be computed by a depth-2 ACC0[2, 3] circuit.
Thus, the composition of E and F can be computed by a depth-3 ACC0 circuit (note that the binary
decomposition in the encoding function is easily handled via fan-in and does not increase the depth
of the circuit). More precisely, under Conjecture 7.12, we obtain a strong PRF with exponential
security in depth-3 ACC0[2, 3] by instantiating the error-correcting code in Construction 7.9 with
a random linear code. One could also consider a seemingly more conservative variant where the
mod-3 linear encoding function is secret.

Remark 7.15 (Asymptotically-Optimal Strong PRFs and Natural Proof Barriers). As noted in
Remark 7.14, Construction 7.9 gives a strong PRF candidate if we consider the composition of the
encoding function E with the evaluation function F. If both E and F can be computed by a circuit of
size O(λ) (where all parameters are linear in λ, as in Conjecture 7.12), then we obtain a candidate
strong PRF with exponential security that can be computed by linear-size circuits. This gives an
“asymptotically optimal” PRF that rules out natural proofs of super-linear circuit lower bounds
in the sense of Razborov and Rudich [RR94]. We now describe a variant of our EI-PRF from
Construction 7.9 that gives the first candidate instantiation of an asymptotically-optimal PRF,
and correspondingly, the first natural proof barrier for proving super-linear circuit lower bounds.

Evaluating our EI-PRF candidate from Construction 7.9 consists of three main steps: encoding
the input over Z3, computing the binary decomposition of the encoded vector, and then multiplying
the encoded input with the secret key A over Z2. If we instantiate the Z3-encoding with a linear-
time encodable code over Z3 and then replace the key A with the generator matrix of a linear-time
encodable code over Z2, then the resulting construction can be computed by a linear-size circuit.
For instance, we can instantiate the code with the linear-time encodable code family proposed
by Druk and Ishai [DI14] (which builds on the hash function from [IKOS08]). This family gives
a randomized construction of a linear-time encodable code that has many of the combinatorial
properties of a random linear code. Thus, we conjecture that sampling the key to be the generator
matrix of a Druk-Ishai code does not compromise the security of our candidate. Putting these
pieces together, we obtain a plausible candidate of a strong PRF with exponential security and
which can be computed by a linear-size circuit. As far as we know, this is the first candidate
instantiation of such an asymptotically-optimal strong PRF. Assuming it is indeed exponentially
secure, natural proof techniques cannot prove super-linear circuit lower bounds.

Conclusions. We believe that the conjectures we have made in this section are strong and a
healthy dose of skepticism is warranted. We hope that the applications and implications we point
out will motivate further study and constructions of (P)EI-PRFs, as well as additional cryptanalysis
of our concrete candidates. We also leave open the question of setting concrete parameters for our
new PEI-PRF (Construction 7.9) and strong PRF candidates (Remark 7.14 and Conjecture 7.12).

49

Acknowledgments

We thank Benny Applebaum, Andrej Bogdanov, Arkadev Chattopadhyay, Itai Dinur, Neeraj Kayal,
Sam Kim, Hart Montgomery, Alon Rosen, Adi Shamir, Alexander Sherstov, Nitzan Tur, Emanuele
Viola, Gilles Zémor, and the anonymous TCC reviewers for helpful discussions and pointers.
D. Boneh and D. J. Wu were supported by NSF, DARPA, a grant from ONR, and the Simons
Foundation. Y. Ishai, A. Passelègue, and A. Sahai were supported in part from a DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and
1065276, BSF grant 2012378, NSF-BSF grant 2015782, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
Y. Ishai was additionally supported by ERC grant 742754, ISF grant 1709/14, and a grant from the
Ministry of Science and Technology, Israel and Department of Science and Technology, Government
of India. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of
the authors and do not reflect the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.

References

[ABB+17] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar
Melchor, et al. BIKE: Bit flipping key encapsulation. 2017.

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candi-
date weak pseudorandom functions in AC0 o MOD2. In ITCS 2014, pages 251–260,
2014.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems.
In CRYPTO, pages 595–618, 2009.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
ACM CCS, pages 805–817, 2016.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
ICALP 2011ICALP, pages 403–415, 2011.

[AGR14] Andrew Arnold, Mark Giesbrecht, and Daniel S Roche. Sparse interpolation over finite
fields via low-order roots of unity. In Proceedings of the 39th International Symposium
on Symbolic and Algebraic Computation, pages 27–34. ACM, 2014.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. MiMC: Efficient encryption and cryptographic hashing with minimal mul-
tiplicative complexity. In ASIACRYPT 2016, pages 191–219, 2016.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In FOCS,
pages 166–175, 2004.

50

[AIK09] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. Journal of Cryptology, 22(4):429–469, October 2009.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic cir-
cuits. In FOCS, pages 120–129, 2011.

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
low-degree polynomials over GF(2). In APPROX-RANDOM, pages 188–199, 2003.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited - new reduction, properties and applications. In CRYPTO, pages
57–74, 2013.

[App13] Benny Applebaum. Cryptographic hardness of random local functions-survey. In TCC,
page 599, 2013.

[AR16] Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander
graphs. In TCC 2016-BTCC, pages 27–56, 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT, pages 430–454, 2015.

[ASA16] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE
to LWR. Cryptology ePrint Archive, Report 2016/589, 2016. http://eprint.iacr.

org/2016/589.

[Bar85] David A. Barrington. Width-3 permutation branching programs. Technical Memoran-
dum TM-293, 1985.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In ACM CCS, pages 896–912, 2018.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, pages 169–
188, 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, pages 420–432, 1992.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In CRYPTO, pages 97–109, 1995.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In CRYPTO, pages 278–291,
1994.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On
the hardness of learning with rounding over small modulus. In TCC 2016-A, pages
209–224, 2016.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In ACM CCS, pages 784–796, 2012.

51

http://eprint.iacr.org/2016/589
http://eprint.iacr.org/2016/589

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring
crypto dark matter: New simple PRF candidates and their applications. In TCC, pages
699–729, 2018.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In ACM STOC, pages 435–440, 2000.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In CRYPTO, pages 410–428, 2013.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In ASIACRYPT,
pages 531–545, 2000.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In ACM
STOC, pages 1–10, 1988.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In ACM STOC, pages 301–309, 1988.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudo-
random functions. In CRYPTO, pages 353–370, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In EUROCRYPT, pages 719–737, 2012.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In
Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography., pages 79–158.
Springer International Publishing, 2017.

[BV96] Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from
multiplicity and equivalence queries. SIAM J. Comput., 25(6):1268–1280, 1996.

[Can06] Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In ISC 2006, pages 171–186, 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In ACM STOC, pages 11–19, 1988.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution for
efficient homomorphic-ciphertext compression. In FSE, pages 313–333, 2016.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In TCC, pages 342–362, 2005.

[CGH+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Ro-
man Smolensky. The bit extraction problem of t-resilient functions (preliminary ver-
sion). In FOCS, pages 396–407, 1985.

52

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: improved definitions and efficient constructions. In ACM CCS,
pages 79–88, 2006.

[Cho16] Tung Chou. Sandy2x: New Curve25519 speed records. In SAC, pages 145–160, 2016.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In CCC, pages 10:1–10:24,
2016.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor
Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A cipher with
low ANDdepth and few ANDs per bit. In CRYPTO, pages 662–692, 2018.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Tri-
filetti. TinyOLE: Efficient actively secure two-party computation from oblivious linear
function evaluation. In ACM CCS, pages 2263–2276, 2017.

[DI14] Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the Gilbert-
Varshamov bound and their cryptographic applications. In ITCS, pages 169–182, 2014.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A. Servedio, and Andrew Wan. Testing for concise representations. In FOCS,
pages 549–558, 2007.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In CRYPTO, pages
486–514, 2017.

[EKR95] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. On learning bounded-width branch-
ing programs. In COLT, pages 361–368, 1995.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In TCC, pages 303–324, 2005.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications
of random functions. In CRYPTO, pages 276–288, 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, October 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In ACM STOC, pages
218–229, 1987.

[Goh03] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216.

53

http://eprint.iacr.org/2003/216

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063.

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. HB]: Increasing the
security and efficiency of HB+. In EUROCRYPT, pages 361–378, 2008.

[GS09] Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-line
programs. Theoretical Computer Science, 410(27-29):2659–2662, 2009.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[HKL+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
Lapin: An efficient authentication protocol based on ring-LPN. In FSE, pages 346–365,
2012.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In TCC,
pages 600–620, 2013.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In ACM STOC, pages 433–442, 2008.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In TCC, pages 294–314, 2009.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with
applications to adaptive OT and secure computation of set intersection. In TCC, pages
577–594, 2009.

[JPRZ04] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing
low-degree polynomials over prime fields. In FOCS, pages 423–432, 2004.

[Kha93] Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In ACM
STOC, pages 372–381, 1993.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In ACM STOC, pages 20–31,
1988.

[KL01] Matthias Krause and Stefan Lucks. Pseudorandom functions in TC0 and cryptographic
limitations to proving lower bounds. Computational Complexity, 10(4):297–313, 2001.

54

http://eprint.iacr.org/2000/063

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In ACM CCS, pages 830–842, 2016.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In ICALP 2008, pages 486–498, 2008.

[KY88] Erich Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial inter-
polation algorithms. In International Symposium on Symbolic and Algebraic Compu-
tation, pages 467–474. Springer, 1988.

[LMN89] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. In FOCS, pages 574–579, 1989.

[MBD+18] Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans.
Information Theory, 64(5):3927–3943, 2018.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet.
Towards stream ciphers for efficient FHE with low-noise ciphertexts. In EUROCRYPT,
pages 311–343, 2016.

[MV12] Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom
functions, and natural proofs. In CRYPTO, pages 68–85, 2012.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In ACM
STOC, pages 245–254, 1999.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions
and KDCs. In EUROCRYPT, pages 327–346, 1999.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In FOCS, pages 170–181, 1995.

[NR99] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. Journal of Computer and System Sciences,
58(2):336–375, 1999.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM, 51(2):231–262, 2004.

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions and factoring
(extended abstract). In ACM STOC, pages 11–20, 2000.

[Pan15] Pavel Panteleev. Fast systematic encoding of quasi-cyclic codes using the chinese re-
mainder theorem. In IEEE International Symposium on Information Theory, ISIT
2015, Hong Kong, China, June 14-19, 2015, pages 1916–1920, 2015.

[Pie12] Krzysztof Pietrzak. Cryptography from learning parity with noise. In SOFSEM, pages
99–114, 2012.

55

[PRS02] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM Journal on Discrete Mathematics, 16(1):20–46, 2002.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over a
complete basis with logical addition (russian). Matematicheskie Zametki, 41(4):598–
607, 1987. English translation in Mathematical Notes of the Academy of Sci. of the
USSR, 41(4):333-338, 1987.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In ACM STOC, pages 84–93, 2005.

[RR94] Alexander A. Razborov and Steven Rudich. Natural proofs. In ACM STOC, pages
204–213, 1994.

[Sha08] Adi Shamir. SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags. In FSE, pages 144–157, 2008.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In FOCS, pages 124–134, 1994.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In ACM STOC, pages 77–82, 1987.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages 44–
55, 2000.

[Val84] Leslie G. Valiant. A theory of the learnable. In ACM STOC, pages 436–445, 1984.

[Ver90] Karsten A. Verbeurgt. Learning DNF under the uniform distribution in quasi-
polynomial time. In COLT, pages 314–326, 1990.

[Vio13] Emanuele Viola. The communication complexity of addition. In SODA, pages 632–651,
2013.

[Wer94] Kai Werther. The complexity of sparse polynomial interpolation over finite fields.
Applicable Algebra in Engineering, Communication and Computing, 5(2):91–103, 1994.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

[YS16] Yu Yu and John P. Steinberger. Pseudorandom functions in almost constant depth
from low-noise LPN. In EUROCRYPT, pages 154–183, 2016.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages
216–226, 1979.

[Zip90] Richard Zippel. Interpolating polynomials from their values. J. Symb. Comput.,
9(3):375–403, 1990.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In EUROCRYPT, pages 220–250,
2015.

56

A Proofs from Section 4

In this section, we give the proofs from Section 4.

A.1 Proof of Lemma 4.1

We first prove the claim for the setting where the H contains a single function. The claim then
follows by a union bound. Consider a function h : {0, 1}n → {0,±1} and define the random variable

Z(A) = Prx [map(Ax) = h(x)] = Ex[1(map(Ax), h(x))],

where 1(x, y) is the indicator function: 1(x, y) = 1 if and only if x = y and 0 otherwise. Then, we
have

EA[Z(A)] = EA[Ex[1(map(Ax), h(x))]] = Ex[EA[1(map(Ax), h(x))]]

=
1

2n
·

1(0n, h(0n)) +
∑
x 6=0n

EA[1(map(Ax), h(x))]

For a uniformly random choice of A and x 6= 0n, we have that Ax is uniform and independent of
x. Hence, for any fixed x 6= 0n, we have:

EA[1(map(Ax), h(x))] = Ey[1(map(y), h(x))] = Pry [map(y) = h(x)] .

We next need to use the following claim about the distribution of the mapping.

Claim A.1. For any n > 0 and b ∈ {0,±1} and taking y
r←− {0, 1}n,∣∣∣∣Pr[map(y) = b]− 1

3

∣∣∣∣ ≤ 1

2n
.

Proof. We show the following: for each n, the number of bitstring mapped to each of (0, 1,−1) is
either a tuple of the form (x, x, x+1) or (x+1, x+1, x) (up to permutation) for some x. We proceed
via induction. The base case n = 1 is immediate (take x = 0). Assume that for a fixed n that the
number of bitstring mapped to each (0, 1,−1) has one of these forms. Then, if we introduce an
additional bit (either 0 or 1), the number of inputs mapped to (0, 1,−1) is then (2x+ 1, 2x, 2x+ 1)
or (2x+ 1, 2x+ 2, 2x+ 1), which has the desired structure. The claim follows.

Hence, since 0 ≤ 1(0n, h(0n)) ≤ 1 we have that
∣∣Pry [map(y) = h(x)]− 1

3

∣∣ ≤ 1
2n for any fixed x,

EA[Z(A)] ≤ 1

3
+

1

2n−1

The next step is to use the Bienaymé-Chebyshev inequality, which we recall below.

Fact A.2 (Bienaymé-Chebyshev Inequality). Let X be a random variable with finite expected
value µ and finite non-zero variance σ2. Then, for any real number k > 0:

Pr [|X − µ| ≥ kσ] ≤ 1

k2
.

57

Applying the inequality immediately gives us:

PrA

[
Prx [map(Ax) = h(x)] >

1

3
+

1

2n−1
+ ε

]
≤ σ2

ε2
,

where σ2 denote the variance of Z, which we estimate to conclude the proof.

EA[Z(A)2] = EA[Ex[1(map(Ax), h(x))]2]

= EA[Ex[1(map(Ax), h(x))] · Ey[1(map(Ay), h(y))]]

= Ex,y[EA[1(map(Ax), h(x)) · 1(map(Ay), h(y))]].

Again, over the randomness used to sample A, the quantities Ax and Ay are uniformly random
and independent over {0, 1}n, as long as x 6= y, x 6= 0n, and y 6= 0n. Since each of these events
occurs with probability 1/2n, we have:

EA[Z(A)2] ≤ Ex,y[Es[1(map(s), h(x))] · Et[1(map(t), h(y))]] +
3

2n

≤
(

1

3
+

1

2n

)2

+
3

2n
,

and then, by definition of the variance,

σ2 = EA[Z(A)2]− EA[Z(A)]2

≤ EA[Z(A)2]−
(

1

3
− 1

2n

)2

≤
(

1

3
+

1

2n

)2

−
(

1

3
− 1

2n

)2

+
3

2n

≤ 4

3 · 2n
+

3

2n
=

13

3 · 2n
≤ 5

2n
.

Lemma 4.1 immediately follows by applying a union bound.

A.2 Proof of Lemma 4.2

By contradiction, let us assume there exists f ′ ∈ GF(q`)[X1, . . . , Xn] of degree at most d such that

f ′(x) = mapp(x) ∀x ∈ X , (A.1)

for some subset X ⊆ {0, 1}n. Consider the extension F = GF(q`)
p−1

. By definition, F contains an
element r of order p since p divides xp−1 − 1 for any x > 0 provided that p does not divide x. We
apply the mapping Xi ∈ {0, 1} 7→ Yi = 1 + (Xi · (r−1)) ∈ {1, r} to every indeterminate. This maps
0 to 1 and 1 to r. Then, f ′ is transformed into a polynomial f ∈ F[Y1, . . . , Yn] over the Yi’s with
the same degree, mapp(X) becomes

∏n
i=1 Yi (with z ∈ [p] being mapped to rz), and X ⊆ {0, 1}n

becomes a set Y ⊆ {1, r}n with same cardinality. Moreover, Eq. (A.1) becomes:

f(y) =
n∏
i=1

yi , ∀y ∈ Y. (A.2)

58

Consider the set FY of all functions t : Y → F. For any function t ∈ FY , we uniquely associate a
function t′ : X → F such that t′(x) = t(y) using the above mapping xi 7→ yi, and we construct a
multilinear14 polynomial PX over F of total degree at most n/2 + d such that PX (x) = t′(x) for all
x ∈ X . Thus |FY | is at most the number of multilinear polynomials over F of total degree at most

n/2 + d, which is |F|
∑n/2+d
i=0 (ni). As |FY | = |F||Y|, we then obtain |Y| ≤

∑n/2+d
i=0

(
n
i

)
.

It remains to show how to construct the polynomial PX . Consider a function t ∈ FY . We
can write it as a (possibly huge) multilinear polynomial P over F. Indeed, as we aim at building
a polynomial PY that matches t over Y ⊆ {1, r}n, we can interpolate t using only multilinear
monomials ((r − 1)n)−1∏

bi=1(r − Yi) ·
∏
bi=r

(Yi − 1), for any b ∈ {1, r}n, that map b to 1 and
any b′ 6= b to 0. This polynomial can then be expanded as P =

∑
I⊆[n] aI ·

∏
i∈I Yi, with aI ∈ F.

Moreover, for any |I| > n/2, we have
∏
i∈I Yi =

∏
i∈[n] Yi ·

∏
i∈I Yi

−1. Since Yi
−1 = (r−1− 1)Xi + 1

(it can be easily verified by computing Yi · Y −1
i) we obtain via Eq. (A.2):

P =
∑
I⊆[n]
|I|≤n/2

aI ·
∏
i∈I

Yi + f ·
∑
I⊆[n]
|I|>n/2

aI ·
∏
i∈I

Yi
−1,

over Y. Then, replacing Yi’s and Yi
−1’s by their linear expression in the Xi’s, we obtain a polynomial

of degree at most n/2 + d that matches t′ over X . This concludes the proof of Lemma 4.2.

B On the Non-Existence of Depth-2 Strong PRFs

Here, we show that our candidates are not strong PRFs, and moreover, that a large class of depth-2
circuits does not contain strong PRFs. The distinguisher relies on a learning algorithm for automata
with multiplicity from membership queries15 by Bergadano and Varricchio [BV96]. We also show
that generalizing this attack to using only random examples (i.e. to weak PRFs) would also break
the LWR assumption for any polynomial parameters.

B.1 Adaptive Insecurity of our Candidate

We first state the adaptive attack against our candidates.

Lemma B.1 (Adaptive Attacks on Construction 3.1). There exists an adaptive polynomial-time
(in n) distinguisher that breaks the pseudorandomness of Construction 3.1 with input length n. In
fact, for general p, q, there exists an adaptive polynomial-time (in n, p, q) distinguisher that breaks
the mod-p/mod-q generalization of Construction 3.1 (Remark 3.2) with input length n.

The above lemma follows from the learnability of automata with multiplicity [BV96], and its proof
just consists of constructing a polynomial-size (in s, n) automaton with multiplicity over Zq that
evaluates our candidate. Before detailing the proof, we recall the definition of an automata and
automata with multiplicity.

14By multilinear, we mean that every monomial has degree at most 1 in each indeterminate (i.e., has the form
∏
i∈I Xi

for I ⊆ [n].)
15We recall that having access to membership queries in learning theory corresponds to having adaptive oracle access

to the target function (“concept”) f . Specifically, in this model, the learning algorithm can make adaptive queries
on inputs x to obtain f(x).

59

Definition B.2 (Automaton). An automaton is a 5-tuple A = (Σ, Q, T, I, F), where Σ is an
alphabet, Q is a set of states, T ⊆ Q × Σ × Q is a set of transitions, and I, F ⊆ Q are a set of
initial and final states, respectively. We say that a sequence π = (q1, x1, q2), . . . , (q`, x`, q`+1) is an
accepting path for x ∈ Σ` if q1 ∈ I, q`+1 ∈ F , and (qi, xi, qi+1) ∈ T for all i ∈ [`]. We denote by
Π(x) the set of accepting paths for x. Then, for any x ∈ Σ`, we define the evaluation

A(x) =

{
1 if Π(x) 6= ∅
0 otherwise

.

Definition B.3 (Automaton with Multiplicity). An automaton with multiplicity is an automaton
A = (Σ, Q, T, I, F) associated with a multiplicity (λ, µ, γ) over a field F, where λ : I → F, µ : T → F,
and γ : F → F. For any x ∈ Σ`, A(x) is then defined as:

A(x) =
∑

π∈Π(x)
π=(q1,x1,q2),...,(q`,x`,q`+1)

λ(q1) ·
∏̀
i=1

µ((qi, xi, qi+1)) · γ(q`+1).

We can now prove Lemma B.1 using the following theorem from [BV96].

Theorem B.4 (Learning Automaton with Multiplicity [BV96]). There exists an efficient learning
algorithm with membership queries for automata with multiplicity; in particular, the running time
of the learning algorithm is polynomial in the size of the automaton.

Proof of Lemma B.1 To prove the lemma, we only need to construct an automaton with
multiplicity that evaluates our candidate mod-p/mod-q PRF. The idea is simple: for every output
of the linear mapping (i.e. an inner product over Znp), we construct an automaton with multiplicity
that returns the value of the mapping modulo q. Then, doing this for every output of the linear
mapping and considering the union of all such automata, we obtain an automaton with multiplicity
that evaluates precisely our PRF. The output of this automaton is the sum (over Zq) of all of the
outputs of each automaton, which is precisely evaluating mapq on the output of the linear mapping.

Concretely, we describe the automaton for computing a single inner product 〈k, x〉, where k is
a row of the key. We construct an automaton of size np + 1 to compute the inner product 〈k, ·〉
(over Zp) as follows:16

• Σ: the alphabet is Zp.

• Q: the automaton has np+1 states. The initial state is denoted (0, 0). There are n successive
layers, each with p states. We index these states by [n]× Zp.

• T : transitions are defined by T = {((i, j), x, (i+ 1, j + ki · x mod p)) | (i, j) ∈ Q}.

• I: the only initial state is (0, 0).

• F : the final states consist of the states in the last layer: every state (n, j) where j ∈ Zp.
16Actually, as we are only interested in the result of the inner product modulo q, we could represent it by an automaton

of size nq + 1 if q < p

60

0 0

1

0

1

0

1

layer 1 layer 2 layer 3 γ

0

1

0

1

0, 1

0, 1

0

1

0

Figure 3: Automaton for computing 〈(1, 0, 1), x〉 over Z2. On the right, we show the multiplicities γ
associated with the 2 final states (layer 3). The other multiplicities for the initial state and the
transitions are all set to 1.

x(1) x(2) x(3) . . . x(`)

MODm AND OR . . . THt

mapq

C(x)

Figure 4: An example of depth-2 circuit that cannot be a strong pseudorandom function. Every
x(i) corresponds to a subset of the input x ∈ {0, 1}n.

We define the multiplicity (λ, µ, γ) over Zq as follows. The multiplicity of the starting states and
the transitions are defined as the constant function 1. The multiplicity of the output states γ maps
the node (n, j) to j mod q. It is easy to verify that on input x ∈ Znp , the above automaton computes
the inner product 〈k, x〉 over Zp and returns the output modulo q. We give a simple automaton
with inputs of length n = 3 over a binary field Z2 in Figure 3. Lemma B.1 then follows from
Theorem B.4.

Remark B.5 (Generalizing the Attack). This attack described in the proof of Lemma B.1 gener-
alizes to a much larger class of depth-2 circuits. Specifically, as long as the outputs are computed
as a (possibly weighted)17 sum of values modulo some prime q and if the first layer only consists
of functions that can be evaluated by automaton with multiplicity, we can mount the same at-
tack. In particular, any gate of the form AND,OR,MODm for any (polynomial) m, EXACTk, where
EXACTk(x) outputs 1 if hw(x) = k and 0 otherwise, and where hw denoting the Hamming weight,
or THt gates, where THt(x) outputs 1 if hw(x) ≥ t and 0, can be evaluated by an automaton with
multiplicity. This rules out a large class of depth-2 circuits. An example of such a circuit is given
in Figure 4.

17Specifically, if an input has weight c, it suffices to replicate the automaton associated to that input c times

61

B.2 Relation to the Learning with Rounding Assumption

While Lemma B.1 rules out strong pseudorandomness of our candidates (and more generally, a
large class of depth-2 circuits computable by automaton with multiplicity), it critically relies on the
adversary being able to make adaptive queries (Theorem B.4). Below, we show that strengthening
the attack to also apply in the setting where the adversary only sees random samples (which
would break weak pseudorandomness of our candidates) would give an attack on the learning
with rounding (LWR) assumption [BPR12] with polynomial parameters. We first recall the LWR
problem.

Definition B.6 (Learning with Rounding (LWR) [BPR12]). Let n, p, q ∈ N be positive integers.
The learning with rounding (LWR) assumption LWR(n, p, q) assumption states that the following
two distributions are computationally indistinguishable:(

~a, d〈~a,~s〉cq,p
)

and
(
~a, r
)
,

where ~a
r←− Znq , ~s

r←− Znq , r
r←− Zp, and d·cq,p denote the rounding operator that maps values in Zq to

Zp. The assumption naturally extends to the setting where the distinguisher is given many samples
(i.e., distinguish ((~a1, 〈~a1, ~s〉cq,p), . . . , (~am, 〈~am, ~s〉cq,p)) from ((~a1, r1), . . . , (~am, rm))).

Lemma B.7 (Connection to Learning with Rounding). Suppose there exists an algorithm that
learns automaton with multiplicity over Zp given only random samples. If the running time of the
algorithm is T (`, s), where ` is the size of the alphabet and s is the size of the automaton, then there
exists an algorithm that breaks LWR(n, p, q) in time T (q, q2n). In particular, if T is a polynomial,
then LWR does not hold for any polynomial parameters p, q, n = poly(λ).

Proof. The lemma follows from the same argument as in the proof of Lemma B.1. Specifically, in
the proof of Lemma B.1, we showed how to compute an inner product over Zq using an automaton
with multiplicity. For LWR samples, only a single inner product needs to be computed, so only a
single automaton (instead of an union in the previous lemma) is needed. The only difference with
the previous proof is how we define the multiplicity (λ, µ, γ). Again, we define the multiplicity
λ, µ for the input nodes and the transitions, respectively, to be the constant function equal to 1.
The output multiplicity γ is defined to be the rounding function that maps a final state (n, j) with
j ∈ Zq to djcq,p ∈ Zp. It is easy to verify the correctness of the evaluation. In Figure 5, we give an
example for p = 2, q = 3, n = 3, ~s = (2, 0, 1).

62

0 0

1

2

0

1

2

0

1

2

layer 1 layer 2 layer 3 γ

0

0

1

0

2

1

0, 1, 2

0, 1, 2

0, 1, 2

Figure 5: Automaton evaluating LWR samples for p = 2, q = 3, n = 3, s = (2, 0, 1). On the right,
we give the multiplicities γ associated with the 3 final states (layer 3). The rest of the multiplicities
(for transitions and initial state) are set to 1.

63

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Candidate Weak Pseudorandom Functions
	Conjectures on the Security of Weak PRF Candidates
	Comparison with Other Weak PRF Candidates

	Rationales for Security
	Lack of Correlation with Fixed Function Families
	Inapproximability by Low-Degree Polynomials
	Inapproximability by Low-Degree Rational Functions
	Resilience to Standard Cryptanalysis Techniques
	Concrete Parameters

	Connections to Learning Theory
	Hardness of PAC-Learning for ACC0
	Hardness of Learning for Width-3 Branching Programs
	Hardness of Interpolating Sparse Multilinear Polynomials

	Applications to Secure Multiparty Computation
	Fully-Distributed Weak PRF Evaluation
	Concrete Efficiency of Distributed PRF Evaluation
	Concrete Efficiency of Distributed Evaluation in the Preprocessing Model
	Oblivious PRF Evaluation in the Preprocessing Model
	An Alternative Weak PRF Candidate
	Applications to Searchable Encryption

	Encoded-Input Pseudorandom Functions
	Definitions of (P)EI-PRFs
	Applications of (P)EI-PRFs
	Candidate Constructions of (P)EI-PRFs and Strong PRFs

	Proofs from Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.2

	On the Non-Existence of Depth-2 Strong PRFs
	Adaptive Insecurity of our Candidate
	Relation to the Learning with Rounding Assumption

