Heli: Heavy-Light Private Aggregation

Ryan Lehmkuhl
MIT MIT

Abstract

This paper presents Heli, a system that lets a pair of servers
collect aggregate statistics about private client-held data with-
out learning anything more about any individual client’s data.
Like prior systems, Heli protects client privacy against a mali-
cious server, protects correctness against misbehaving clients,
and supports common statistical functions: average, variance,
and more. Heli’s innovation is that only one of the servers (the
“heavy server”’) needs to do per-run work proportional to the
number of clients; the other server (the “light server”) does
work sublinear in the number of clients, after a one-time setup
phase. As a result, a computationally limited party, such as a
low-budget non-profit, could potentially serve as the second
server for a Heli deployment with millions of clients.

Heli relies on a new cryptographic primitive, aggregation-
only encryption, that allows computing certain restricted
functions on many clients’ encrypted data. In a deployment
with ten million clients, in which the servers privately compute
the sum of 32 client-held 1-bit integers, Heli’s heavy server
does 240,000 core-s of work and the light server does 7
core-ms of work. Compared with prior work, the heavy
server does 38X more computation, but the light server does
120,000x less.

1 Introduction

A private-aggregation system allows an app developer or hard-
ware vendor to collect aggregate telemetry information from
their users’ devices, without needing to gather any sensitive
disaggregated user data. Private-aggregation systems have
been at the heart of privacy-friendly telemetry applications at
Apple [7], Google [69], and Mozilla [88].

At the same time, private-aggregation technology is not
in widespread use today—even privacy-focused products,
such as encrypted-messaging apps, do not often use it. Well-
resourced tech giants are responsible for the vast majority of
successful deployments.

Henry Corrigan-Gibbs

Emma Dauterman David J. Wu
Stanford UT Austin
Server 1 Server 2
AWS Cost AWS Cost

Prio 155 15.5

Whisper
Heli (this work) 113

100 10! 10~3 1075 10~3 10~! 10!
US Cents (log scale)

Figure 1: After a one-time setup, Heli reduces the AWS cost of
aggregation for the second server by five orders of magnitude
compared to Prio [46] and Whisper [95], but increases the
first server’s cost by up to 38x. The plot shows the current
AWS cost in US cents to aggregate 32 boolean values over 10
million clients when 10% of clients don’t participate.

One reason for the lack of use is that private-aggregation sys-
tems require at least two independent infrastructure providers,
with security holding against an adversary that does not con-
trol both. (It is possible in principle to offload one provider’s
computation work onto clients [14, 15, 16,25,43,73,75, 80,
81,83, 84,85,99], though this may be even more challenging
to do in practice. We discuss these schemes in Section 7.)

A major drawback is that the second party needs to do
work linear in the number of participating clients. Thus, if
the second party is providing this service for thousands of
applications, it must run server-side infrastructure to handle
thousands of applications’ worth of client requests. As a
result, the one organization that does this work today, Divvi
Up [52], charges money for the service and requires a business
negotiation to use—both severe barriers to casual use [2].

Our goal is to drive down the cost of running the second
private-aggregation party to the point that a single organization
can afford to provide private-aggregation infrastructure for
thousands of applications at once, as a free service.

As a step towards this goal, this paper presents Heli, a two-
party private-aggregation scheme in which the second party’s

work is sublinear in the number of clients, after a one-time
setup. More specifically, in Heli, one of the parties (the “heavy
server””) does work proportional to the number of clients while
the other party (the “light server”) does much less—as little
as constant per measurement, after a one-time setup. We
envision a deployment in which the application provider runs
the heavy server, since the application provider is likely doing
work linear in the number of users of their service already.
Then, a reputable but compute-limited provider, such as the
ISRG [1], can operate the light server.

The core technical challenge in Heli is upholding the strong
privacy guarantees of a traditional private-aggregation sys-
tem without requiring the light server to communicate with
every client for every measurement. To show why these two
properties are in tension, consider the following straw man:
to compute some statistic, each client encrypts its value under
the light server’s public key using an additively homomorphic
encryption scheme [96] and sends the ciphertext to the heavy
server. The heavy server sums the ciphertexts and sends the
sum to the light server for decryption. While this approach
requires the light server to decrypt just one ciphertext, a mali-
cious adversary that compromises the heavy server can break
privacy. For example, such an adversary could send a single
client’s submission to the light server to decrypt or compute
a different function of user inputs than the sum. Security
is further complicated by the fact that we want to collect
measurements over many rounds; a malicious heavy server
should not be able to mix ciphertexts across rounds either.

We address these challenges with a new cryptographic
primitive that we call aggregation-only encryption. With
aggregation-only encryption, it is possible for two parties
to compute an aggregate statistic over many encrypted user
submissions while preserving user privacy in the presence of
a malicious adversary that can compromise one of the two
parties. At a high level, aggregation-only encryption enables
many clients to submit ciphertexts to an aggregator (the heavy
server), which collects them into a single, compact ciphertext.
The aggregator can then send the ciphertext to the decryptor
(the light server), which can decrypt the aggregate ciphertext
and validate that every client’s contribution was included in the
final result. We build our construction using a Diffie-Hellman-
based key-homomorphic PRF. Our construction can be viewed
as an extreme special case of private aggregation schemes such
as LERNA [80] and OPA [75] that have committees of clients
run the second party as an MPC. Collapsing the committee
size of these schemes to one and applying some additional
modifications yields an aggregation-only encryption scheme.

With aggregation-only encryption as the cryptographic
core, we show how to construct a private-aggregation system
called Heli. Most of the systems-level engineering is to handle
malicious and unreliable clients. Heli is able to detect and
exclude clients that deviate from the protocol, make progress
in spite of clients that go offline, and allow clients to join the
system after the initial setup phase.

We implement Heli and evaluate its performance across
a range of benchmarks. In an end-to-end deployment that
privately aggregates 32 binary values across ten million clients
(with 10% of clients dropping out each round) aggregation
costs 113 US-cents for the aggregator and 0.000025 US-cents
for the decryptor; Heli’s aggregator is at most 38X more
expensive to operate than a Prio or Whisper server, while the
decryptor is at least 120,000 cheaper. Figure 1 shows Heli’s
asymmetric server costs relative to Prio and Whisper.

Limitations. One important limitation is that the heavy
server’s cost in Heli becomes larger than conventional private-
aggregation servers [46,95] as the number or bitwidth of
measurements grows. Both Heli and prior work use zero-
knowledge proofs to defend against misbehaving clients; in our
heavy/light setting, we cannot use the lightweight information-
theoretic zero-knowledge techniques that prior systems use.
A second limitation is that the light server must (1) run a
one-time setup protocol with each new client and (2) do work
per measurement that scales linearly with the number of offline
clients.

Notation. For a natural number n, we write [n] ={1,2,...,n}.
For sets X and), Funs[X,)] is the set of all functions
from X to), and 2% is the powerset of X. “Efficient” means
probabilistic polynomial time. For a finite set S, we use x & §
to denote a uniform random sample from S. We use 4 to
denote the security parameter.

2 System overview

Heli allows a company, such as the developer of a mobile app,
to collect telemetry data from their clients (e.g., app users)
without seeing the clients’ sensitive data in the clear.

Servers. A Heli deployment involves two servers, which we
call the “aggregator” (i.e., the heavy server) and the “decryptor”
(the light server). The system protects user privacy against
a malicious adversary compromising one of the two servers
and any number of clients.

The aggregator does the bulk of the computational work
during the collection of each statistic. We envision the
app developer as running this server, possibly outsourcing
the computational work to a cloud provider. The decryptor
communicates with each client once in a registration step; after
this per-client setup, the servers can compute an unbounded
number of statistics with no interaction between the clients and
the decryptor. We envision a reputable but compute-limited
infrastructure provider, such as the ISRG [1], as running the
decryptor.

We assume that all parties in the system hold a copy of the
two servers’ long-term public keys.

Clients. Before using Heli, the servers must agree upon a
strategy for client authentication—a technique for mapping
each connecting client to some globally unique identifier,

which could be a public key, Google account name, etc. The
servers must also agree upon a policy for which clients to admit
to the system. For example, the servers could use Apple’s
identity infrastructure [9] to only admit genuine iPhone clients.
In an open Internet setting, the servers might authenticate
users via their SSH public keys and would admit any user
with a valid public key.

At a certain point, the servers must agree that the set of
client identities is “large enough” to proceed with aggregation.
For example, the servers might agree to proceed whenever
there are more than 10,000 valid Apple devices participating.

Tolerance to offline clients. In a large-scale deployment,
some participating clients will go offline for periods of time. In
any system (including ours) in which clients only communicate
with one server during aggregation, there is an inherent trade-
off between security and tolerance to offline clients: if the
servers agree to make progress if up to a threshold 7 clients
are offline, then a malicious aggregator can always exclude
t clients’ submission from the final sum without detection.
During setup, the servers must agree on some policy to
determine, given a candidate set of participating clients in a
protocol round, whether to proceed with aggregation.

Aggregation function. The system is parameterized by a
modulus p, abound B, a function f(xy,...,Xn) = Xic[n] @iXi
with all a; € {1,...,B} € Z,. For each client i holding
a value m; € {0,...,B} Heli allows the servers to com-
pute the function f(my,...,m,) without learning anything
else. Further, the servers agree during setup on a predicate
Valid: Z,, — {0,1} indicating which client-provided data
values are “allowed;” each client’s data value must satisfy
Valid(m;) = 1. For example, if each client is a car and the
manufacturer wants to gather average speeds, the predicate
Valid might return ‘1’ on inputs {0, 1,...,160}. (For sim-
plicity, we focus on single-argument Valid predicates. Our
approach naturally extends to multi-variate predicates, e.g.,
where clients upload (x,x?) and prove that x is in a valid range
and x? is correctly computed.) We focus on private sums
since (1) many telemetry applications use only private sums,
and (2) off-the-shelf techniques show how to use private sums
to compute other simple statistics [46,74, 86, 93].

2.1 Protocol flow
We describe the high-level flow of a Heli deployment below.

One-time client registration. When a new client with
identity id joins the system, the decryptor generates a secret
“encryption key” for the client and sends it to the client. The
client never needs to communicate with the decryptor again.
Once the decryptor has registered a sufficiently large set of
clients C = {idy,id»,...,id, }, the decryptor sends the list of
client identities C to the aggregator.

Aggregator
@ Aggregation

n
ct=) a-ct;
i=1

Decryptor

@ Decryption
ct Dec(sk, ct)
- N
= 2 a;-m; € Z,
i=1
sk

@ Client data
submission
cty cty cts ct,

1117, ekz m,, ekn

Figure 2: Heli protocol flow for one round of measurement
collection. (1) Client i uses its encryption key ek;, to encrypt
its data value x;, generating ct;. (2) The aggregator sums the
client ciphertexts to product the aggregate ciphertext ct. (3)
The decryptor uses its secret key sk to obtain the result and
check for aggregator misbehavior.

After registration, the servers can collect an unlimited
number of aggregate statistics, in a sequence of data-collection
protocol “rounds.” The application assigns a unique per-
round identifier string to each round. An unlimited number of
protocol rounds can safely execute concurrently with clients
using the same encryption keys across rounds. In each round,
the clients communicate only with the aggregator.

The per-round protocol flow, depicted in Figure 2, is:

Step 1: Client data submission. Each client, with identity id;,
uses their secret encryption key (obtained from the decryptor
during setup) along with the round identifier to encrypt their
data value m; for the round into a ciphertext ct;. The client
forwards this ciphertext ct; to the aggregator.

Step 2: Aggregation (at heavy server). The aggregator
combines the ciphertexts it received into a single ciphertext ct,
whose size is independent of the number of clients. The
aggregator forwards this ciphertext to the decryptor. (In
Section 5, we explain how Heli handles offline clients.)

Step 3: Decryption (at light server). Finally, the decryptor
receives the aggregate ciphertext ct from the aggregator. The
decryptor attempts to decrypt the ciphertext using its secret
key to recover the aggregate statistic. Decryption will only
succeed if the aggregator behaved correctly. The decryptor
can return this statistic to the aggregator, broadcast it to the
clients, or otherwise publish it, depending on the needs of
the application. The decryptor’s per-round work is sublinear
in the total number of clients in the system, though it does
depend linearly on the number offline clients, as we explain
in Section 5.

2.2 Security goals

Client-input privacy against one malicious server. Heli
protects the privacy of honest clients’ inputs against an attacker
that compromises one of the servers and an arbitrary number
of clients, even if these parties deviate from the protocol
arbitrarily. A malicious server’s influence is limited to its
ability to (1) choose the inputs of corrupt clients, and (2)
exclude a subset of honest clients, within limits determined
by the system’s configuration. Against a malicious server,
Heli makes no guarantee about the correctness of the system’s
output.

Security against malicious clients. In addition, Heli pro-
vides full malicious security against a coalition of malicious
clients, provided that the servers execute the protocol cor-
rectly. More precisely, the system parameters include a
predicate Valid(); Heli allows clients to submit data values m
such that Valid(m) = 1. The only influence that a malicious
client has on the output is the influence allowed via its choice
of a data value in the set {m | Valid(m) = 1}.

To make these definitions more precise, we define an ideal
functionality Fpe); in Figure 3. A “set of inputs” I for an
execution is, for each participant, the messages they submit to
the ideal functionality, and a timestamp at which they submit.

Definition 2.1 (Client-input privacy against one malicious
server). For all efficient adversaries A controlling a subset of
the clients and either the aggregator or the decryptor, there
exists an efficient simulator S such that for all inputs 7, the
following distributions are computationally indistinguishable:
e Real world: The adversary A’s view in a Heli protocol
execution on inputs /.
e Ideal world: The output of the simulator S, playing the
role of the adversary, in an execution of Fej; on inputs /.

Definition 2.2 (Security against malicious clients). For all
efficient adversaries .A controlling a subset of the clients, there
exists an efficient simulator S such that for all inputs 7, the
following distributions are computationally indistinguishable:

* Real world: The joint distribution of (a) the adversary A’s
view and (b) the decryptor’s output, in a Heli protocol
execution on inputs /.

* Ideal world: The joint distribution of (a) the output of the
simulator S, playing the role of the adversary, and (b) the
set of messages the decryptor receives, in an execution
of Fieli on inputs /.

2.3 Homomorphic encryption is not enough

The overview of Heli in Section 2.1 explains that Heli relies on
the aggregator’s ability to aggregate many client ciphertexts
into a single ciphertext. The question then arises: what

Ideal functionality F1¢;. Participants are: n clients, two
servers (the aggregator and decryptor), and the adversary.
The functionality is parameterized by:
(i) a message space M, with default value m* € M,
(ii) an aggregation function f: M" — M,
(iii) an input-validation predicate Valid: M — {0, 1},
which checks if a client’s input is “allowed” and
(iv) a predicate Proceed: 2”1 — {0,1} that takes as
input a set of client identifiers and indicates whether
to reveal an aggregate statistic computed over these
clients’ inputs, and
(v) anumber of time periods T € A

Initialization. For each time period ¢ € [T], the func-
tionality maintains the following state:

* Inputs, € M", each entry initialized to m*,
* Online, C [n], initialized to the empty set, and
* atime-period counter t,oy «— 1.

Client data submission. Each client i € [n] submits

inputs of the form: (¢,m) € [T] x M. Upon receiving a

client input, the ideal functionality proceeds as follows:
* Send a message (input,?,i) to the aggregator.

* If the aggregator or the decryptor is corrupted, set
v = 1. Otherwise set v = Valid(m).

o If t > thow, i € Online;, and v = 1:

— Set Online; < Online; U {i} and Inputs, [i] < m.

Aggregation. The aggregator submits a set U C [n]
to the ideal functionality. The ideal functionality then
responds as follows:
o If thow > T or U ¢ Online,_,, respond with L to the
aggregator.
* Fori € [n], set m; « Inputs, _[i].
* If Proceed(U) =1, sety « f(my,...,my).
e Otherwise, sety « L.
* Send (output, 0w, U, ¥) to the aggregator and decryp-
tor and set fnow < fnow + 1.

Figure 3: Ideal functionality of Heli.

encryption scheme should we plug in to this framework? The
right answer, as we will show, is aggregation-only encryption,
anew type of encryption scheme that we describe in Section 4.

First, we explain why the system would be insecure if we
instead used a vanilla homomorphic-encryption scheme [96].
Two problems arise when using homomorphic encryption in
our setting.

The first problem with this approach is that a malicious
aggregator could learn more than it should about honest
clients’ data. For example, a malicious aggregator could
set the aggregate ciphertext ct equal to client 1’s ciphertext
ct = ct;. The decryptor would not be able to detect this attack
and the aggregate statistic could leak client 1’s input data
in the clear. Somehow we need to ensure that decryption
fails whenever a malicious aggregator produces the “wrong’
aggregate ciphertext.

A related problem is domain separation across protocol
rounds: If the parties want to run the data collection many
times, they need some way to ensure that a malicious aggre-
gator cannot replay ciphertexts from round ¢ in round 7 + 1
in a way that causes a privacy violation. Even if the parties
used fresh encryption keys in each round, subtle cross-round
attacks seem hard to prevent [53].

]

3 Background

Short-interval discrete logarithm. We will need to compute
small discrete logarithms in cryptographic groups. In par-
ticular, for a cyclic group G with generator g and integer M
such that 1 < M < |G|, we define the M-bounded discrete-log
decoding procedure DLog,, : G — [M]U{L} as:

m if y=g" forme [M],

DL =
ogu () {J_ otherwise.

An implementation of DLog,, using the baby-step giant-step
algorithm runs in time roughly VM, or M'/3 with prepro-
cessing [47]. In our applications, the bound M is always
polylog(|G|), which means that the algorithm is efficient.

Key-homomorphic PRFs. A pseudorandom function [66]
(PRF) with key space /C, input space X’ and output space) is
an efficient deterministic function F: K x X —). APRF is
secure if, for a random key k <& K, no efficient algorithm can
distinguish F'(k,-) from a truly random function. (Appendix A
has the formal definition.) Moreover, a pseudorandom func-
tion F' is key homomorphic [31] if the key space and output
space are additive groups such that for all kg, k; € K and
all x € X, it holds that F'(ko,x) + F (k1,x) = F(ko+k1,x).
The following is due to Naor, Pinkas, and Reingold [89]:

Construction 3.1 (Key-homomorphic PRF [89]). Let G be a
cyclic group of prime order p in which the decisional Diffie-
Hellman (DDH) assumption holds [26]. Let H: {0,1}* - G
be a hash function. Define X =7Z,, X ={0,1}*,and Y =G.
Then the function: F(k,x) := H(x)* is a key-homomorphic
PRF, provided that we model H as a random oracle.

4 New tool: Aggregation-only encryption

In this section, we introduce aggregation-only encryption,
the new cryptographic primitive at the core of Heli. An

aggregation-only encryption scheme for a function f allows n
independent (and mutually distrusting) clients, each holding
an encryption key, to encrypt messages my,...,m,. An
aggregator can then aggregate the n client ciphertexts into a
single, short aggregate ciphertext. A decryptor, who holds a
secret decryption key, can decrypt the aggregated ciphertext,
revealing the plaintext f(my,...,m,).

The aggregator can also specify a subset D C [n] of clients
that dropped out (i.e., did not contribute a ciphertext). If the
decryptor runs decryption with respect to this same dropped-
out set D, the revealed plaintext is instead f (m’l, ce.,my)
where m; =m; foralli ¢ D, and m} = 0 (or some other default
value) for alli € D.

We require that an aggregation-only encryption scheme
reveal nothing more about the honest clients’ messages than
the output of the aggregation function, applied honestly to
all n clients’ messages (where the message for dropped-out
clients D C [n] is replaced by the default message m*), reveals.
We require this property to hold against an adversary that
compromises:

* an arbitrary number of clients; and

* either (a) the aggregator or (b) the decryptor, who also
generates the clients’ encryption keys.

Moreover, we also require security to hold if the parties
execute this aggregation protocol over multiple rounds using
the same set of keys (but with distinct round-identifier strings).

Technical challenge. The challenge in constructing aggre-
gation-only encryption is ensuring that, for client messages
mi,...,my, neither the aggregator nor the decryptor can
deviate from the protocol to learn more than f(my,...,m,).
For example, the aggregator should not be able to aggregate
just one client’s ciphertext, learn the output of a different
function f’, or mix-and-match ciphertexts across rounds.

Construction overview. We build an aggregation-only en-
cryption system for computing linear functions (with small
coefficients) over private client data. Our construction makes
black-box use of a key-homomorphic pseudorandom func-
tion (Section 3). When using a Diffie-Hellman-based key-
homomorphic PRF (Construction 3.1), generating a submis-
sion requires the client to perform two group exponentiations,
aggregating n submissions requires one exponentiation per-
client (or one group operation per-client if computing a simple
sum), and decryption requires 1 group exponentiation and
a small-interval discrete-log computation (see Section 5.5).
Each client’s encrypted submission is 1 group element.

Our construction can be viewed as an extreme special case
of prior single-server aggregation protocols LERNA [80]
and OPA [75]. These schemes sample a subset of clients
to form a “decryption committee” that ensures a malicious
aggregator learns nothing more than the honest aggregation
output. Shrinking the committee size of these schemes to one
(in the right way) and applying some additional preprocessing
produces our aggregation-only encryption scheme.

4.1 Syntax

An aggregation-only encryption scheme is parameterized
by a message space M, a round-identifier space R, and a
function class F C Funs[M*, M]. It consists of four efficient
algorithms:

» Gen(14, f) — (sk,ekj,...,ek,). Given a security param-
eter A and a function f € F of type f: M" — M, out-
put a secret decryption key sk and (secret) encryption
keys ekj, ... eky.

* Enc(ek;,r,m) — ct;. Given secret encryption key ek;,
round identifier r € R, and message m € M, output cipher-
text ct;.

* Apply(f,D,{cti}icn)\p) — ct. Given a function f € F
of type f: M"™ — M, a drop-out set D C [n], and a
collection of ciphertexts ct; for i € [n] \ D, output an
aggregated ciphertext ct.

e Dec(sk,r,D,ct) > m e M or L. Given a secret decryp-
tion key sk, round identifier » € R, a drop-out set D, and a
ciphertext ct, output a message m or the failure symbol L.

4.2 Definition of aggregation-only encryption

We now describe the properties that an aggregation-only
encryption scheme must satisfy. We define these formally in
Appendix B.

Correctness. An aggregation-only encryption scheme is
correct if, for any drop-out set D C [n], encrypting mes-
sages m; for i € [n] \ D under the same round identifier,
running Apply(f,D,-) on the resulting ciphertexts, and de-
crypting under the same round identifier and drop-out set D,
yields f(my,...,m,), where the message associated with
dropped-out clients i € D is m; = m*. In this work, m* = 0.

Compactness. An aggregation-only encryption scheme & is
compact if the running time of the decryption algorithm is a
fixed polynomial in the security parameter A and the size of the
drop-out set D, and is sublinear in the arity n of the function f
passed to Gen. Homomorphic encryption schemes require a
similar form of compactness [65]. This requirement rules out
trivial schemes where the Apply function just concatenates
its arguments.

In our application, this requirement ensures that the de-
cryptor’s running time is linear in the number of dropped-out
clients, and is sublinear in the total number of clients.

Security. We demand security against an adversary that
compromises an arbitrary subset of the clients and either the
aggregator (who runs the Apply algorithm) or the decryptor
(who runs the Gen and Dec algorithms), and that runs the
aggregation scheme with the same keys over many rounds.
Against such an adversary, the encryption scheme should
reveal nothing more about honest clients’ inputs than what the

adversary would learn by seeing the aggregation function f
applied to the online clients’ inputs in each round.

We give a precise simulation-based definition in Ap-
pendix B. A few comments about our definition:

Clients can safely submit ciphertexts for multiple rounds at
once. In some applications, it may make sense to run multiple
rounds of our aggregation scheme in parallel. Our security
definition says that such parallel execution is safe. In particular,
when defining security against a malicious aggregator, we
allow the aggregator to see all honest clients’ ciphertexts for
all rounds at once at the start of the experiment. (In contrast,
the malicious decryptor never sees unaggregated ciphertexts.)
Even in such a setting, a malicious aggregator cannot learn
more than it should about honest clients’ inputs.

Security holds even against maliciously generated keys. When
defining security against a malicious decryptor, we allow the
adversary to generate all of the clients’ keys. This implies that
it is safe in a deployment to have the (potentially malicious)
decryptor run key generation and distribute keys to clients.

The basic scheme does not protect correctness against ma-
licious clients or servers. Our basic aggregation-only en-
cryption scheme does not guarantee that the servers obtain
the correct aggregate statistic if any party misbehaves. In
Section 5, we discuss how to protect against malicious clients.

4.3 Construction

We present our construction of aggregation-only encryption
for linear functions in Construction 4.1. The construction sup-
ports a deployment setting in which each client i € {1,...,n},
holds a (small) input m; € Z,,, for a large prime modulus p.
The scheme supports linear aggregation functions over Z,
with small coefficients.

More precisely, the construction is parameterized by a
bound B € Z=°. The construction then supports all functions f,
where f(x1,...,x,) = X7, a;x, mod p, where all coefficients
a; are in {1,..., B}, and all inputs x; are in {0,..., B}.

Construction idea. We build our construction from a key-
homomorphic PRF (Section 3).

The high-level idea is to have each client generate a per-
round mask using their encryption key that they use to encode
their message. When the aggregator sums together ciphertexts,
it also combines the client masks. Then at decryption time,
the decryptor uses its secret key to remove client masks from
the aggregate ciphertext.

Let the aggregation function be f(xi,...,x,) =
2ie[n] 4iXi € Zp. In the following, we assume that the coef-
ficients ay,...,a, as well as the client inputs xy,...,x, are
drawn from a fixed-size range {0,...,B}. The construction
works as follows:

Key generation. The decryptor samples random keys (eky, ...,
ekj,) for a key-homomorphic PRF with key-space Z,. The de-

cryptor computes the aggregated key k = 3;c(,1ai -ek; € Z)
and stores the PRF keys (k,eky, ..., ek;,). The decryptor sends
key ek; to client i € [n].

Client data submission. To encrypt their message m; €
{0,...,B} € Z,, in a given round, client i first uses its secret
key ek; and the round-identifier string r € {0, 1}* to derive
a per-round mask R; <« F(ek;,r) € G. Then the client’s
ciphertext ct;, which it sends to the aggregator, is simply their
input multiplied by the mask, ct; = R; - g"".

Aggregation. Let D C [n] be the subset of clients that drop
out. The aggregator combines the ciphertexts from the online
clients, ct < [T;e(u\pcty” € G, and sends the aggregate
ciphertext ct to the decryptor.

Decryption. If all the online clients and the aggregator behaved
honestly, the ciphertext ct = [[;e)\p 8% - F(ek;,r)“. By
relying on key homomorphism of the PRF, the decryptor can
compute the masking component by first computing

k/ = k_ZiED a; 'ek[
= Die[n] i ~€ki — 2jep ai ki = Xje[n)\p @i - eki

and then evaluating R = F(k’,r). The time required to
compute the aggregate key only depends on the number
of clients that drop out |D|, not on the total number of
clients n. Finally, the decryptor computes the discrete-log
of ct/R = gZicin\p 4% and publishes the result m € Z,,.

The maximum possible value of the discrete log of the
output value y is 3;cp,) (max; m;a;) = nB?. The discrete-log
calculation thus returns the correct output. (A malicious client
could disrupt the scheme by submitting a large/malformed
data value m;. We discuss protection against such attacks in
Section 5.)

Correctness. This follows by construction.

Compactness. The running time of decryption depends lin-
early on the number of dropped-out clients | D| and sublinearly
in the total number of clients n. This is so because the final
discrete-log calculation takes time VnB?2, with B being either
constant or a fixed polynomial in the security parameter.

Security analysis. In Appendix B we prove the security of
our construction. We summarize the security analysis here.

Informal Theorem (Summarizing Theorems B.3 and B.6).
When instantiated with a secure key-homomorphic pseudoran-
dom function (Section 3), our aggregation-only encryption
construction for linear functions (Construction 4.1) is com-
putationally secure against a malicious aggregator and is
unconditionally secure against a malicious decryptor.

Proof idea. Security against a malicious aggregator follows
from the security of the key-homomorphic PRF. In particular,
honest clients mask their input using the output of a PRF

Construction 4.1 (Our construction: Aggregation-only
encryption for linear functions). The construction is
parameterized by a message-size bound B € Z and a
modulus p. The message space is Z), and the round-
identifier space is {0, 1}*. The supported function class
is the set of linear functions over Z, with coefficients
in {1,..., B}. The default value for dropped-out clients
is 0. The construction uses a key-homomorphic PRF
F: Kx{0,1}* — G with key space X, domain {0, 1}*,
and output space G.

Gen(14, f) — (sk,eky,...,eky,).

* Write f as f(X1,...,X,) = Dje[n] @i - Xi € Lp.
» Sample eky,...,ek, & K.

* Compute k « ;e ai ek €Zp

o Setsk « (f,k,ekq,...,eky,).

* Output (sk,eky,...,eky).

// Requires: m € {0,...,B}.
» Compute R; < F(ek;,r) €G.

* Output R; - g™.

Apply(f, D, {cti}ic(n)\p) — ct.

* Write f as f(x1,....xn) = Yje[n) diXi € Lp.

* Output ct < [[;c[n)\p Ctl.ai €eG.

Enc(ek;,r,m) — ct.

Dec(sk,r,D,ct) > mor L.

* Parse sk as a secret key (f, k,eki,...,eky).
o Write f as f(xq,...,Xxy) = Z,-e[n] aix; € Lyp.
» Compute k' < k-3 ;cpa;-ek; € Z,.

e Compute y « ct/F(k’,r) € G.

* Output m < DLog,,.52)(y) € Z)p

evaluated on a key that the aggregator doesn’t know, so any
linear combination of honest clients’ ciphertexts other than
the honest one will result in the honest decryptor outputting L
with overwhelming probability.

Security against a malicious decryptor follows from the
fact that the aggregated ciphertext that the decryptor receives
reveals nothing more than the sum of all online clients’ con-
tributions. O

4.4 Handling longer data vectors

In many applications of private-aggregation, each client holds
a vector of data values in each round, and the servers want
the sum of these vectors in each round. For example, if
a browser vendor is collecting information on which of d
different browser features clients use, each client’s data vector

might be in {0, 1}—one bit for each potential feature.

Our construction supports aggregation of ¢ metrics in a
single round: a client can run the Enc routine many times with
distinct round identifiers r and can send all of the ciphertexts
to the aggregator in a batch.

4.5 Post-quantum security

The security of our aggregation-only encryption construction
(Construction 4.1) relies on the security of the underlying
key-homomorphic PRF, whose outputs are pseudorandom
elements of the group used to encode messages. Following
prior work on single-server aggregation [75, 80], we can
instantiate this PRF using a lattice-based key-homomorphic
construction over an appropriate group, yielding a candidate
aggregation-only encryption scheme for linear functions (with
small coefficients). We expect this simple construction to be
post-quantum secure, though we leave a formal treatment of
post-quantum security to future work.

One subtlety is that the lattice-based key-homomorphic
PRFs (e.g., [31]) only satisfy approximate correctness where
homomorphic operations may introduce some error in the
low-order bits of their output. A standard way to handle the
error is to have clients first pad their input values with a few
zeros in the low-order bits and then round away the error at
decryption time.

S Heli system design

In this section, we describe how Heli uses aggregation-only
encryption to build an end-to-end private-aggregation sys-
tem. The additional challenge here is handling unreliable
clients: they may deviate from the protocol, go offline between
aggregation rounds, or join the system after setup.

5.1 System parameters

Heli uses our aggregation-only encryption scheme (Gen, Enc,
Apply, Dec) of Construction 4.1. That scheme is parameter-
ized by a bound B € Z=° and a modulus p. To use the scheme,
the servers must agree on the following public values:

e an aggregation function f(xi,...,x,); in the follow-
ing description, we focus on linear aggregation func-
tions f(x1,...,Xn) = Xic[n] @iXi € Zp with coeficients
a; € {1,...,3},

* an input-validation predicate Valid: Z, — {0,1} that
checks if a client’s input is “allowed” (at a minimum,
Valid tests whether the client’s input is in {0,..., B}),

« a predicate Proceed: 21" — {0, 1} that takes as input a
set of client identifiers and indicates whether to reveal an
aggregate statistic computed over these clients’ inputs,

e alist of distinct round identifiers rq,...,r7 € {0,1}*, one
per aggregation time period (these can be arbitrary—e.g.,

for a daily statistic these could be the encoding of each
date in a year), and

» a mechanism for client authentication (e.g., public keys).
All parties also hold copies of the servers’ public keys.

5.2 Protocol flow

We explain how Heli implements the protocol flow we
overviewed in Section 2.1. All communication takes place
over encrypted and authenticated channels established using
server public keys and a client-authentication mechanism.

Initialization: Aggregator. For each aggregation time pe-
riod ¢ € [T], the aggregator maintains an array S; of client-
uploaded ciphertexts for round ¢. Each set begins empty. The
aggregator also maintains a counter ¢ € Z=° of the current
time period, initialized to ¢ < 0.

Initialization: Decryptor. The decryptor also maintains a
counter ¢ € Z2Y of the current time period, initialized to ¢ < 0.
The decryptor runs the key-generation algorithm Gen, de-
riving each per-client encryption key ek; in Gen from a
pseudorandom function. This allows the decryptor to easily
regenerate offline clients’ encryption keys without having to
store them individually. Specifically, the decryptor samples
a key kprr for a pseudorandom function G: K X [n] — Z,,.
For all i € [n], the decryptor computes ek; < G (kpg,i). It
also computes the aggregate key k « ;e @i -ek; € Zp.

Client registration. To join the system, the i" client con-
tacts and authenticates to the decryptor with their iden-
tity id. The decryptor validates the client’s identity and
sends ek; « G (kpgg,i) to the client. To the aggregator, the
decryptor sends the index i of the client, its identity id, and
a cryptographic commitment C; to the client’s encryption
key ek;: Ciy < Commit(ek;). The aggregator will use this
commitment in the next step to check the well-formedness of
the client’s submission.

Step 1: Client data submission. Client / holds an encryption
key ek;, a round identifier r, € {0,1}* for the current time
period ¢, and its data value m; € Z, such that Valid(m;) =
1. (Recall from Section 5.1 that Valid(-) tests whether a
client input value is allowed.) The client then runs the
encryption algorithm for our aggregation-only encryption
scheme: ct; « Enc(ek;,r;,m;).

The client generates a non-interactive zero-knowledge proof
of knowledge 7; [24,67] attesting to the fact that its ciphertext
ct; is well-formed. That is, the client proves knowledge of a
data value m; and an encryption key ek; such that:

1. the submission is valid: Valid(m;) =1,

2. the client’s ciphertext is consistent with these values:
ct; = Enc(ek;,r,,m;), where r, is the round identifier for
time period ¢, and

3. the client’s encryption key e~k,~ is consistent with the com-
mitment that the aggregator holds: C; = Commit(ek;).

We provide more detail on the proof in Section 5.4.

Step 2: Aggregation (at heavy server). The client sends
the aggregator the tuple (¢,ct;, ;). The aggregator checks
the proof m; against the client-submitted ciphertext ct; and
the decryptor-provided commitment C;. If the proof fails, the
aggregator rejects the submission. Otherwise, the aggregator
adds the pair (i, ct;) to the set S; of ciphertexts for this time
period.

The aggregator then checks if enough clients have submitted
ciphertexts for the current time period ¢ to allow decryption
to proceed. Precisely, letting i1,7,,... denote the identities
attached to the ciphertexts in set S;, the aggregator computes
the set of dropped-out clients D « [n] \ {i1,i2,...}. The
aggregator then checks if Proceed([n] \ D) = 1.

If so, the aggregator computes ct «— Apply(f,D,
{cti}ien\p)> Where f is the sum function, and ct; is a
ciphertext in set S;. The aggregator forwards the tuple (D, ct)
to the decryptor.

Step 3: Decryption (at light server). Upon receiving (D, ct)
from the aggregator in time period ¢, the decryptor first
checks that Proceed([n] \ D) = 1. If Proceed([n] \ D) =0,
the decryptor outputs L as the statistic for time period 7.
Otherwise, it runs the aggregation-only encryption decryption
algorithm: m « Dec(sk,r;, D,ct). The decryptor outputs m
as the statistic for time period ¢. In both cases, it then
increments ¢t «— ¢+ 1.

5.3 Security analysis

In Appendix C we analyze the security of Heli. To summarize,
we show that any adversary that breaks input privacy by
corrupting either server along with a subset of clients can
be used to break the underlying aggregation-only encryption
scheme. Additionally, we show that security against malicious
clients follows from the knowledge-soundness of the zero-
knowledge proofs.

5.4 Implementation note: ZK proofs

When the client sends its ciphertext to the aggregator, the
client proves to the aggregator (in zero knowledge), that (1) the
client’s ciphertext is well-formed with respect to its encryption
key and a round identifier, and (2) the client’s encrypted
message is well-formed with respect to the application’s
validity predicate.

To execute this proof, the system can use any discrete-log-
based proof system [32,33,34]. Concretely, our construction
(Construction 4.1) uses a group G of prime order p. We
sketch how this works in Heli.

During client registration: To commit to the client’s encryp-
tion key, ek; € Z,,, the decryptor sends to the aggregator a
commitment Cig «— gﬁ‘é;’n € G to the client’s encryption key,
for a public, random generator g¢om € G.

During data submission: The client uses a discrete-log proof
of equality to prove that its aggregation-only encryption cipher-
text encrypts the tuple (r,ek;,m;) € {0,1}* X Z%,, where r; is
the round identifier for time period ¢, ek; is their encryption
key, and m; is a value in A C Z,,. (When the client’s data is a
vector, the construction generalizes naturally.)

Each client proves that their ciphertext is well-formed using
a Schnorr proof [34,98] and proves that their encrypted
message is well-formed with Bulletproofs [33,44]. We use
two different proof systems since Schnorr proofs efficiently
handle discrete-log relations, while Bulletproofs efficiently
handle range constraints. We evaluate proof overheads in
Section 6 and describe them in Appendix D.

5.5 Outsourcing decryptor work

Our aggregation-only encryption construction (Construc-
tion 4.1) requires the decryptor to solve a discrete-log instance
to recover the final aggregation result. If the final sum is a
b-bit value, the decryptor must compute 2/2 group operations.
When summing up one-bit values from a billion clients, this
requires about 30k elliptic-curve operations—under a second
of computation on a standard CPU. Using a precomputed table
of size 2873 . poly(b), the decryptor can reduce the decoding
time to 2°/3 - poly(b) operations [19,47,87]. Alternatively, or
in addition, the decryptor can partially decrypt the aggregate
ciphertext and outsource the final discrete-log computation to
the aggregator. This outsourcing has no impact on security.

5.6 Extension: Differential privacy

The aggregate statistic itself may reveal information about
individual clients’ data. Like prior private aggregation
schemes [4, 28, 46,50, 94, 95], we can compose Heli with
differential privacy techniques [55] to limit the information
revealed by the final aggregate statistic. The aggregator can
sample noise value v| from a Laplace distribution, and add
this value to the aggregate ciphertext that it sends to the de-
cryptor. The decryptor decrypts, adds its own noise value v,
and publishes the resulting statistic. The output will be shifted
by vi +v,. If either the aggregator or decryptor is honest,
and the noise is sampled from an appropriate distribution the
resulting output distribution will be differentially private.

6 Evaluation

We evaluate the performance of Heli through several mi-
crobenchmarks and demonstrate that:

— Heli’s computational cost, for the light server, and to-
tal server-to-server communication depends only on the
number of offline clients in each round (Section 6.1).

108 108 Heli (Heavy) Heli (Heavy)
g 10° @ ///W T 10 Whisper
T o 10° =) Prio
© 10t 5 Prio 5
Q
< 10° = L = o
3 10 S 10 =)
o o
& 10 o S,
" « 1071 = 10
5 10 2 % d s
S 100 5] o1 0% dropot S (10% dropout)
2 o 102 : @ 103
n Do Heli (Light) .
o Heli (Light) (Lig Heli (Light)
108
10’ 10° 10° 107 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of clients (n) Number of measurements (£) Measurement bitwidth (b)
7
T 100 g [R — : m—
< X 108 Prio 4 Prio
10
. : 5 S T 5
E 10¢ £ 10 WHRiSper (1% malicious) E 10 WRISper (1% malicious)
8 10 8 1o S e
D 102 5 10° Heli-(16% dropout) 5 10° Heli-{10% dropout)
2 10 2 2
[
& 1o 3 o @ 10
o 100 . i<} Whisper o
5 Whisper | A° e 100 - = Whisper
g 107 . 2 o Heli g 1o
S 102 Heli 3 & Heli
10' 103 108 107 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of clients (n)

Number of measurements (£)

Measurement bitwidth (b)

Figure 4: Heli’s light server’s work and total server-to-server communication scales with the number of dropped-out clients, not
the total number of clients. The left plots show costs for aggregating £ = 1 measurements of bitwidth » = 1 as the number of clients
grows. The middle and right plots show costs for aggregating submissions from »n = 10,000,000 clients as the measurement
length or bitwidth grows. The line with hollow markers shows the light server’s work when 10% of clients drop out. All plots use

a logarithmic y-axis.

— Heli’s computational cost for the heavy server and clients
grows linearly with the number of measurements, and is
larger than those of Prio and Whisper (Section 6.2).

— When privately aggregating 32 1-bit integers across 10
million users, the AWS cost of operating a light server is
five orders of magnitude cheaper than Prio and Whisper,
but operating the heavy server is 38X more expensive
(Section 6.3).

Implementation. We implemented Heli in 5,000 lines of
Rust over the Curve25519 elliptic curve group [18]. Our
code is open-source and available at https://github.com/
ryanleh/heli.

Evaluation Setup. We compare against Prio [46,50] and
Whisper [95], two private aggregation schemes that achieve
similar security goals to Heli. We use DivviUp’s implementa-
tion of Prio [71] and Whisper’s public implementation [103].
Whisper’s server-to-server communication grows with the
number of clients who submit invalid inputs (i.e., “malicious
clients”). In Heli, “dropped-out clients” refers to both missing
clients and clients who submit invalid inputs. We also compare
Heli to a scheme that uses ElGamal encryption [63] in place
of aggregation-only encryption to illustrate the overhead our
approach introduces to protect against a malicious aggregator.

All aggregation schemes achieve 128-bits of computational
security. We ran microbenchmarks on a single core of an
AWS c7i.4xlarge instance (16 vCPUs, 32 GB of RAM).
The heavy server’s work is highly parallelizable, though our
implementation did not exploit this. Our CPU benchmarks

10

only account for cryptographic overheads, not network latency.

6.1 Costs of Heli’s light server

Figure 4 shows that the light server’s per-round computation
and the server-to-server communication scales with the num-
ber of offline clients, not the total number of clients. In each
aggregation round, the light server decrypts the aggregate
ciphertext and performs a constant-time verification check.
When d out of n clients drop out, the light server additionally
receives dlogn extra bits from the aggregator and computes
the sum of d PRF (i.e., AES) evaluations.

Compared to a Prio or Whisper server, when aggregating a
single bit over 10 million users (Figure 4, left), Heli’s light
server reduces the server CPU time by 23 million times when
no clients drop out, and 178,000x when 10% of clients drop
out. Heli servers communicate 44 million times fewer bits
than Prio’s servers when no clients drop out, and 480x fewer
bits when 10% of clients drop out. When 1% of clients
misbehave, Heli servers communicate 5.5 million times fewer
bits than Whisper when no client drop out, and 60x fewer bits
when 10% of clients drop out (Figure 4, bottom-left).

For a fixed number of users, the light server’s work and
communication between Heli servers increases linearly with
the number of measurements (Figure 4, middle), but remains
constant as the bitwidth grows (Figure 4, right).

Heli’s light server remains efficient compared to a Prio or
Whisper server, even when a large fraction of clients drop out.
This is because computing missing clients’ keys (one PRF

https://github.com/ryanleh/heli
https://github.com/ryanleh/heli

70000
30
812 = 60000
£25 i
X 10 5 . 2 50000
] 5 \/\e\\ Q
S 20
58 G A S 40000 @\\\\\
o 215 i
= / & G 30000 Y\e\\\
Q — (5
e 4 o \Whisper S 10 g 20000
] 2
(%]
2 > O 5 i 10000 - Heli-(Light)
& Prio v Prio / Whisper Prio . Whisper /
0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of measurements (£) Number of measurements (£) Number of measurements (£)
3.0 10 12000
— @ @
) 25 E 8 © 10000
© 20 g 8)
I 8 g 2 8000 G
> =6 et > et
o215 2 &
1. o O 6000
g S 4 5
1.0 € 4000
& Heli) 2, § Heli (Light)
051 7 o - _) 2000 Whisper
f Prio / Whisper ——t B i —3
0.0 ol=== 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Measurement bitwidth (b)

Measurement bitwidth (b)

Measurement bitwidth (b)

Figure 5: Compared to Prio and Whisper, Heli incurs higher costs on both the heavy server and clients as the number and bitwidth
of measurements increase. Compared to the ElGamal-based scheme, Heli has a constant overhead in all metrics. The plots show
encoding size, per-client CPU time, and server CPU time to aggregate n = 10,000, 000 client submissions as the measurement
type varies. The right-most plots are the same plots as the top-middle and top-right plots in Figure 4, but use a linear y-axis and

omit the performance of Heli’s light server.

evaluation per missing client) is several orders of magnitude
faster than decrypting client submissions (1 group operations
per online client). Moreover, if more than 50% of clients drop
out, the heavy server can provide the list of online clients to
the light server who directly computes the aggregated key. In
Figure 12 we show that when aggregating a single bit over 10
million users, Heli’s light server requires less server CPU time
and server-to-server communication than Prio even when 50%
of clients drop out.

6.2 Costs of Heli’s heavy server and clients

Figure 5 shows the computational and communication costs
of a Heli heavy server and client aggregating 10 million
client submissions as the measurement type varies. The
computational costs scale linearly with measurement length
and bitwidth at a faster rate than Prio or Whisper, making large
measurements more costly. Compared to the ElIGamal baseline
that only provides semi-honest security, Heli introduces at
most a 5% overhead in client work, but reduces costs for all
other metrics by up to 8%.

Compared to Prio and Whisper, the main source of addi-
tional cost for Heli’s heavy server and clients comes from
differences in the proof systems used to protect against ma-
licious clients. Heli relies on discrete-log-based proofs (see
Section 5.4) where the prover and verifier times scale linearly
in the measurement length and bitwidth, and the encoding
size scales linearly with the number of measurements (from
the Schnorr proofs) and logarithmically with the measurement

11

bitwidth (from Bulletproofs). In contrast, Prio and Whisper
use information-theoretic proofs [27], with lower prover and
verifier times, and whose encoding size scales sublinearly
with the number and bitwidth of measurements. Table 1
summarizes the asymptotic costs of the different schemes.

The computational costs for Prio and Whisper’s servers and
clients is dominated by the cost of encrypting and decrypting
client submissions: for the settings we consider, they take
up 50-95% of the servers’ and clients’ total runtime, and so
compute costs grow very slowly with the number and bitwidth
of measurements (Figure 5, middle and right). Prio and
Whisper’s encoding sizes scale linearly with the number of
measurements, but more slowly than Heli (Figure 5, top left).
When the measurement bitwidth increases, the logarithmic
scaling of Heli results in Prio and Whisper’s encoding sizes
eventually becoming larger (Figure 5, bottom left).

As the number of measurements grows, Heli’s encoding
becomes 0.4—7.5x larger than Prio and Whisper, the client
encoding time grows by 2-138x%, and the heavy server is
2-33x slower. As the measurement bitwidth grows, Heli’s
encoding is 0.3—1.4x larger than Prio and Whisper, the client
encoding time is 4-43x slower, and the heavy server is 2—11x
slower.

6.3 Costs of an end-to-end deployment

We give end-to-end AWS deployment costs for privately
aggregating vectors of 1-bit values across ten million clients
when 10% drop out each aggregation round. We demonstrate

Per-client costs

Per-server costs

Computation Communication
PKE Ciphertext PKE
Encrypt Prove Wrap Size Unwrap Verify Aggregate Verify Aggregate
Prio [46,50]| ¢F VBIF AG (¢+VBOF G nbtF ntF nVb{F {F
Whisper [95] | (F Vb(F G (¢+VbOF G nb(F ntF mF {F
o Heavy: AnG Anb(G (n€+ANn2P)G 0 G
Heli (this work) | (G Ab(G 4G (E+logh)G |7y) 0 AMG+m+d)PRF| 0 (G+(m+d)logn

Table 1: Asymptotic costs to aggregate £ measurements of b-bit integers over n clients, with d dropped-out clients, m malicious
clients and security parameter A. Heli’s light server work and total server-to-server communication scales with the number of
missing clients, not the total number of clients. Costs are expressed in terms of the number of field operations / elements (F),
group operations / elements (G), and PRF evaluations (PRF). Clients use public-key encryption (PKE) over the same group as
Heli to establish a secure channel with each server. In practice, group operations are 10x more expensive than field operations,
and group elements are 2X the size of field elements. The ElGamal baseline has the same asymptotic costs as Heli.

that Heli reduces the AWS cost of running a decryptor by
several orders of magnitude compared to Prio and Whisper,
but increases the aggregator’s cost. Boolean aggregates
like these can track when application features trigger without
revealing individual behavior. For example, Mozilla used them
to measure how often specific websites triggered Firefox’s
tracker-blocking rules [22].

We deploy aggregation servers on AWS c7i.24xlarge in-
stances (96 vCPUs, 192 GB RAM) and run Heli ’s light
server on a c7i.large instance (2 vCPUs, 4 GB RAM). In each
deployment, the two servers are placed in us-east-1 and us-
east-2. We generate and submit client reports from a separate
c7i.24xlarge instance in us-east-2. The c7i.24xlarge instances
provide 15 Gbit/s of network bandwidth; during aggregation,
we fully saturate this bandwidth by pre-generating client re-
ports and submitting them in batches. Based on current AWS
pricing, the aggregating instances cost $4.28/hr, and outbound
(egress) bandwidth is $0.90/GB.

Setup cost estimates. We estimate the setup costs for Heli’s
light server using Apple’s App Attest [9] to verify clients.
The main overheads of the verification are establishing a TLS
connection, two ECDSA signature verifications for device
attestation, a PRF evaluation to generate the client’s key, and a
group exponentiation to generate a commitment to the client’s
key. On our machine, the light server can process ten million
clients in 2.5 hours of runtime and 1145 MB of network
egress. Using current AWS estimates, this costs $0.32.

Aggregation cost estimates. In Table 2, we show the concrete
costs of aggregating boolean vectors of length ¢ € {1,32,128}
when 10% of clients drop out. When aggregating vectors of
length ¢ = 128, Heli’s heavy server costs $3.23, 13x more
expensive than a single Prio server. Compared to Whisper,
Heli’s heavy server is 54X as expensive to run when no clients
are malicious, and 49X more expensive when 1% of clients
are malicious. Heli’s light server costs 0.000057¢, which
is 400,000x cheaper than Prio and at least 100,000x cheaper
than Whisper.

12

For smaller vector sizes, Heli’s relative performance to
Prio and Whisper improves. For example, when aggregating
a single boolean (¢ = 1), Heli’s heavy server is 10X more
expensive than a Prio server and at most 20X more expensive
than Whisper, while the light server is 500,000x cheaper than
Prio and at least 140,000 cheaper than Whisper.

Note that the total deployment cost and client costs of
Heli are higher than Prio or Whisper. Moreover, because of
the one-time setup, Heli ’s light server may require multiple
aggregation rounds before it becomes cheaper to run than a
Prio or Whisper server. When aggregating boolean vectors of
length £ = 32 and verifying clients with Apple’s App Attest [9],
the light server becomes cheaper than a Prio server after two
aggregation rounds, and cheaper than a Whisper server after
six rounds. (Note that the setup cost is one-time per user; a
single setup can support multiple applications by partitioning
the round identifier space.)

7 Related work

Multi-server private aggregation. Many works build private
aggregation schemes via a multiparty computation between
multiple non-colluding servers [4, 11,28, 46, 48, 50, 56, 62,
78,94,95]. These schemes require the servers’ compute and
communication to scale linearly with the number of clients. An
alternative approach uses additively homomorphic encryption:
one server aggregates client’s encrypted submissions and a
second server decrypts the aggregate [3,35]. As discussed in
Section 2.3, this approach is insecure in our setting where the
aggregator sees the final result.

Single-server private aggregation. To avoid the need for
multiple servers, a body of work builds private aggregation
from a single, untrusted server by having clients do additional
work [14,15,16,25,43,73,75,80,81,83,84,85,99]. The most
efficient of these schemes [14, 16,75, 80, 84, 85] draft a subset

Per-client costs

Server aggregation costs

Number of cpU Upload Egress AWS Cost
Measurements (core-ms) (KB) Wall Time (s) (KB) (UScents) Typle 2: After a one-time setup
Prio 022 025 30 1350000 15 Heli’s light server reduces the
Whisper 022 074 33 0.09 3.9 AWS cost of aggregation by up
=1 Whisper (1% mal.) 0.22 0.74 33 168000 5.3 to five orders of magnitude, but
o Heavy: 669 2846 go increases the heavy server’s cost
Heli (this work) 035 0390 i on: 0.0054 0.047 0.000014 by up to 54x. The table shows
Prio 024 105 50 2910000 51 e CPF;\I{IH;’ data. eg[rjesss, antd
Whisper 024 234 52 155 6.1 curren costIn s cents
¢=32 Whisper (1% mal) 024 2.34 52 168000 7.6 toaggregate {=1,32,128 mea-
surements of bitwidth b = 1 over
Heli (this work) 867 6.64 HLe“ZyZ : 0 0(9)2 284? 0 000(1)2 n =10,000,000 clients, when
18h : : 10% of clients are offline. Server
Prio 026 292 105 4160000 48 costs for Prio and Whisper reflect
Whisper 040 5.10 99 2.05 12 the use of two servers, whereas
=128 Whisper (1% mal.) 0.40 5.10 99 168000 13 Heli’s costs are given separately
o Heavy: 2713 2846 323 for each server.
Heli (this work) 344 248 Light: 0.092 4 0.000057

of clients into committees, concentrating most of the extra
work on them. This design introduces a performance-security
tradeoff: smaller committees reduce overall client costs, but
require an adversary to compromise fewer clients to break
security. In Heli, clients only need to send their input, and
privacy is guaranteed for all honest clients, regardless of how
many clients the adversary controls. However, this comes at
the cost of requiring a second, non-colluding server.

LERNA [80] and OPA [75] use key-homomorphic PRFs
in a similar manner to our aggregation-only encryption con-
struction (Section 4.3). By collapsing their committee sizes
to one (in the right way) and performing some additional pre-
processing, you can extract an aggregation-only encryption
scheme from their single-server constructions.

We highlight some key differences between Heli and three
recent single-server aggregation schemes: OPA [75], Wil-
low [16], and Armadillo [84]. Willow and OPA improve on
prior work by requiring clients to send only a single mes-
sage per aggregation task. However, in Willow, a malicious
aggregator can learn the input of any honest client without
detection by dropping client submissions and injecting fake
ones to reach the decryption threshold. OPA protects against
this type of attack, but is not robust: a single malicious client
can cause the protocol to abort without detection. In principle,
these attacks could be mitigated via zero-knowledge proofs or
a more complicated MPC, but the authors do not describe or
evaluate these extensions. Both protocols require a committee
whose total work scales linearly with the number of clients.
In Heli, clients also send only a single message, but their
workload is independent of the number of clients. Moreover,
Heli is secure against a malicious aggregator, and can identify
and remove malicious clients without aborting. Armadillo
similarly supports identifying and removing malicious clients

13

without aborting, but assumes a semi-honest aggregator, re-
quires three rounds of interaction between the server and
clients, and requires each committee member to do work that
scales linearly with the number of clients.

We view part of our contribution as recognizing that tech-
niques from prior single-server aggregation works can apply
to an asymmetric two-server setting. This setting combines
the strengths of existing single- and two-server schemes: it
offers a deployment model we expect to be more practical
than traditional two-server designs, while maintaining strong
privacy and robustness guarantees with low client overhead.

Differentially private aggregation. Some systems aim for
differential privacy [55] instead of cryptographic privacy
[8,12,45,54,57,100,105]. In these approaches, clients locally
randomize their data before submission, which trades-off
accuracy for privacy: more noise provides stronger privacy
guarantees but the resulting measurement is less accurate.
The additional noise also requires more complicated proof
techniques to detect malicious clients [20]. In contrast, Heli
reveals nothing beyond the final, exact aggregate. If output
leakage is a concern, differential privacy can still be added in
by the servers, as discussed in Section 5.6.

Aggregation from anonymity networks. PrivStats [93]
gathers user statistics using an anonymity network build from
onion routing [23,51,61]. Consequently, they are vulnerable
to traffic-analysis attacks [76] while Heli protects against
an adversary who compromises the entire network. Several
works [10,21,49,91] defend against these attacks by using
anonymity networks build from mixnets [41, 79] or DC-
nets [42]. Prochlo [21] uses hardware enclaves to implement a
mixnet, but these are vulnerable against enclave side-channel
attacks [82]. Other approaches to building these types of

networks require either each server to do quadratic work in
the number of clients [42, 68] or run an expensive verifiable-
shuffle routine [13,79, 90, 104] that limit their practicality for
large numbers of users.

Homomorphic MACs. Homomorphic message authenti-
cation codes (MACs) [36,37,40,64,77] and homomorphic
signatures [5,29,30,38,39,70,72,102] allow an untrusted party
to homomorphically evaluate a function on signed data and
generate a succinct tag that certifies the function was applied
correctly. Multi-key homomorphic MACs and homomorphic
signatures [6,58, 59, 60,97] extend this notion to authenticate
computation over data signed under different keys. Compared
to aggregation-only encryption, homomorphic MACs and sig-
natures do not require fixing a specific function during setup
and provide a stronger security guarantee (an adversary cannot
additively shift authenticated values). However, verification
scales with the number of keys.

8 Conclusions

Heli demonstrates that a private-aggregation system can si-
multaneously (1) provide strong protection against a malicious
server and (2) require only a single server to do per-statistic
computational work scaling linearly with the number of clients.
We close by mentioning a few intriguing directions for future
work. Heli uses two servers; what is the cleanest way to
extend Heli to support k > 2 servers (one heavy server and
k —1 light ones) in a way that protects client privacy if any
size-(k — 1) subset of the servers is malicious? Heli requires
the light server to do work linear in the number of dropped-out
clients in each aggregation round; is there a simple way to
tolerate offline clients without requiring the light server to pay
this cost?

Acknowledgments

We thank the USENIX Security reviewers for their detailed
feedback, with special thanks to our anonymous shepherd
for thoughtful guidance that substantially improved the final
manuscript. We also thank Nickolai Zeldovich for early
discussions of this work, as well as Christopher Patton and
Tim Geoghegan for conversations that inspired the initial idea
of Heli and for helpful feedback on an early draft. This work
was supported in part by gifts from Amazon, Apple, Google,
Meta, Microsoft, Mozilla, NSF Awards 2452708, 2140975,
2318701, 2141064 and a Sloan Research Fellowship. This
work was done in part while H.C.G. and D.W. were visiting the
Simons Institute for the Theory of Computing and supported
in part by a grant from the UC Noyce Initiative.

14

Ethical considerations

In this work, we presented Heli, a new approach to privately
gathering statistics over user data. By making it feasible
for a single organization to operate a private-aggregation
infrastructure supporting thousands of applications, Heli could
significantly broaden the deployment of private aggregation.
This raises several important ethical considerations, which
we analyze through the lenses of “Respect for Persons” and
“Beneficence,” as defined in the Menlo Report [101].

First, Heli offers a path for companies to replace existing
measurements that currently require intrusive access to sensi-
tive user information. This would benefit users, whose privacy
is better respected, as well as the companies themselves, who
obtain the data they require without introducing additional
risks of misuse or leakage. Since these measurements are
already being performed, introducing private aggregation in
this context constitutes a clear privacy improvement.

Second, Heli enables new types of measurements that were
not possible previously due to legal or ethical concerns. For ex-
ample, researchers could study the effects of personal devices
without direct access to individual-level behavioral data, or
companies could see if their application has disparate effects
across different demographics groups. However, the ability
to make new measurements does not, by itself, determine
whether they are ethically appropriate: even with a guarantee
of individual privacy, a statistic can still cause harm. Conse-
quently, decisions about what measurements to pursue should
involve consultation with data and privacy ethicists.

Finally, safeguards are needed to prevent misuse. Even if a
given measurement is ethically acceptable, an organization
might use Heli to justify increasingly intrusive data collection,
and later remove Heli and measure the information directly. To
reduce this risk, real-world deployments should be structured
so that multiple parties have oversight and the ability to limit
or shut down the system if necessary.

Overall, Heli has the potential to reduce existing privacy
harms and enable new beneficial applications, but this potential
can only be realized with appropriate ethical review and robust
safeguards.

References

[1] Internet security research group.
abetterinternet.org/.

https://www.

[2] Joshua Aas. Invited talk: Let’s Encrypt: Ten years
encrypting the web. Real World Cryptography Con-
ference, slides at https://iacr.org/submit/files/
slides/2025/rwc/rwc2025/invl/invl_slides.pdf,
2025.

[3] Ojaswi Acharya, Suvasree Biswas, Weiqi Feng, Adam
O’Neill, and Arkady Yerukhimovich. Non-interactive

https://www.abetterinternet.org/
https://www.abetterinternet.org/
https://iacr.org/submit/files/slides/2025/rwc/rwc2025/inv1/inv1_slides.pdf
https://iacr.org/submit/files/slides/2025/rwc/rwc2025/inv1/inv1_slides.pdf

[4

[}

(5]

(6]

(7]

(8]

[9

—

(10]

(11]

(12]

(13]

[14

[}

(15]

verifiable aggregation. Proc. Priv. Enhancing Technol.,
2025(4):1055-1074, 2025.

Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostro-
vsky, and Antigoni Polychroniadou. Prio+: Privacy
preserving aggregate statistics via boolean shares. In
SCN, pages 516-539, 2022.

Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan
Hohenberger, Abhi Shelat, and Brent Waters. Comput-
ing on authenticated data. J. Cryptol., 28(2):351-395,
2015.

Gaspard Anthoine, David Balbds, and Dario Fiore.
Fully-succinct multi-key homomorphic signatures from
standard assumptions. In CRYPTO, pages 317-351,
2024.

Apple. Learning iconic scenes with differen-
tial privacy. https://machinelearning.apple.com/
research/scenes-differential-privacy.

Apple. Learning with privacy at scale.
"https://docs-assets.developer.apple.com/ml-
research/papers/learning-with-privacy-at-
scale.pdf".

Apple. Validating apps that connect to your server.
https://developer.apple.com/documentation/
devicecheck/validating-apps-that-connect-to-
your-server.

Borja Balle, James Bell, Adria Gascén, and Kobbi
Nissim. Private summation in the multi-message shuffle
model. In ACM CCS, pages 657-676, 2020.

Laasya Bangalore, Mohammad Hossein Faghihi
Sereshgi, Carmit Hazay, and Muthuramakrishnan
Venkitasubramaniam. Flag: A framework for
lightweight robust secure aggregation. In ASIA CCS,
pages 14-28, 2023.

Raef Bassily and Adam D. Smith. Local, private,
efficient protocols for succinct histograms. In STOC,
pages 127-135, 2015.

Stephanie Bayer and Jens Groth. Efficient zero-
knowledge argument for correctness of a shuffle. In
EUROCRYPT, pages 263-280, 2012.

James Bell, Adria Gascon, Tancrede Lepoint, Baiyu Li,
Sarah Meiklejohn, Mariana Raykova, and Cathie Yun.
ACORN: input validation for secure aggregation. In
USENIX Security Symposium, pages 4805-4822, 2023.

James Henry Bell, Kallista A. Bonawitz, Adria Gascén,
Tancréde Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In
ACM CCS, pages 1253-1269, 2020.

15

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

James Bell-Clark, Adria Gascon, Baiyu Li, Mariana
Raykova, and Phillipp Schoppmann. Willow: Secure
aggregation with one-shot clients. In CRYPTO, pages
285-318, 2025.

Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch
verification for modular exponentiation and digital
signatures. In EUROCRYPT, pages 236-250, 1998.

Daniel J. Bernstein. Curve25519: New diffie-hellman
speed records. In PKC, pages 207-228, 2006.

Daniel J. Bernstein and Tanja Lange. Non-uniform
cracks in the concrete: The power of free precomputa-
tion. In ASIACRYPT, pages 321-340, 2013.

Ari Biswas and Graham Cormode. Interactive proofs
for differentially private counting. In ACM CCS, pages
1919-1933, 2023.

Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya
Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnés, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In SOSP, pages 441-459, 2017.

Mozilla Security Blog. Next steps in privacy-
preserving telemetry with prio. https://blog.
mozilla.org/security/2019/06/06/next-steps-
in-privacy-preserving-telemetry-with-prio/,
2019.

Stevens Le Blond, David R. Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Francis. To-
wards efficient traffic-analysis resistant anonymity net-
works. In ACM SIGCOMM, pages 303-314, 2013.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications (ex-
tended abstract). In STOC, pages 103—-112, 1988.

Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter,
Antonio Marcedone, H. Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
Practical secure aggregation for privacy-preserving
machine learning. In ACM CCS, pages 1175-1191,
2017.

Dan Boneh. The decision diffie-hellman problem. In
ANTS, pages 48-63, 1998.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Zero-knowledge proofs on
secret-shared data via fully linear PCPs. In CRYPTO,
pages 67-97, 2019.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for

https://machinelearning.apple.com/research/scenes-differential-privacy
https://machinelearning.apple.com/research/scenes-differential-privacy
"https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf"
"https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf"
"https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf"
https://developer.apple.com/documentation/devicecheck/validating-apps-that-connect-to-your-server
https://developer.apple.com/documentation/devicecheck/validating-apps-that-connect-to-your-server
https://developer.apple.com/documentation/devicecheck/validating-apps-that-connect-to-your-server
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

[29]

(30]

(31]

[32

[ar}

[33

—_

(34]

(35]

(36]

(37]

(38]

(39]

(40]

private heavy hitters. In IEEE S&P, pages 762-776,
2021.

Dan Boneh and David Mandell Freeman. Homomor-
phic signatures for polynomial functions. In EURO-
CRYPT, pages 149-168, 2011.

Dan Boneh and David Mandell Freeman. Linearly
homomorphic signatures over binary fields and new
tools for lattice-based signatures. In PKC, pages 1-16,
2011.

Dan Boneh, Kevin Lewi, Hart William Montgomery,
and Ananth Raghunathan. Key homomorphic PRFs
and their applications. In CRYPTO, pages 410428,
2013.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log
setting. In EUROCRYPT, pages 327-357, 2016.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Gregory Maxwell. Bullet-
proofs: Short proofs for confidential transactions and
more. In IEEE S&P, pages 315-334, 2018.

Jan Camenisch and Markus Stadler. Proof systems for
general statements about discrete logarithms. Technical
Report 260, ETH Zurich, 1997.

Claude Castelluccia, Aldar C.-F. Chan, Einar Mykletun,
and Gene Tsudik. Efficient and provably secure aggre-
gation of encrypted data in wireless sensor networks.
ACM Trans. Sens. Networks, 5(3):20:1-20:36, 2009.

Dario Catalano and Dario Fiore. Practical homomor-
phic MAC:s for arithmetic circuits. In EUROCRYPT,
pages 336-352, 2013.

Dario Catalano, Dario Fiore, Rosario Gennaro, and
Luca Nizzardo. Generalizing homomorphic MACs for
arithmetic circuits. In PKC, pages 538-555, 2014.

Dario Catalano, Dario Fiore, and Ida Tucker. Additive-
homomorphic functional commitments and applica-
tions to homomorphic signatures. In ASIACRYPT,
pages 159-188, 2022.

Dario Catalano, Dario Fiore, and Bogdan Warinschi.
Homomorphic signatures with efficient verification for
polynomial functions. In CRYPTO, pages 371-389,
2014.

Sylvain Chatel, Christian Knabenhans, Apostolos
Pyrgelis, and Jean-Pierre Hubaux. Verifiable en-
codings for secure homomorphic analytics. CoRR,
abs/2207.14071, 2022.

16

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
[53]

[54]

David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24, 1981.

David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. J.
Cryptol., 1(1):65-75, 1988.

Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and
Laurens van der Maaten. Fiffel: Ensuring integrity for
federated learning. In ACM CCS, pages 2535-2549,
2022.

HeeWon Chung, Kyoohyung Han, Chanyang Ju,
Myungsun Kim, and Jae Hong Seo. Bulletproofs+:
Shorter proofs for a privacy-enhanced distributed ledger.
IEEE Access, 10:42067-42082, 2022.

Graham Cormode and Akash Bharadwaj. Sample-
and-threshold differential privacy: Histograms and
applications. In AISTATS, pages 1420-1431, 2022.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, pages 259-282, 2017.

Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-
logarithm problem with preprocessing. In EURO-
CRYPT, pages 415-447, 2018.

George Danezis, Cédric Fournet, Markulf Kohlweiss,
and Santiago Zanella-Béguelin. Smart meter aggrega-
tion via secret-sharing. In ACM Workshop on Smart
Energy Grid Security, pages 75-80, 2013.

Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang,
and Beng Chin Ooi. Privacy-preserving computation
with trusted computing via scramble-then-compute.
Proc. Priv. Enhancing Technol., 2017(3):21, 2017.

Hannah Davis, Christopher Patton, Mike Rosulek, and
Phillipp Schoppmann. Verifiable distributed aggre-
gation functions. Proc. Priv. Enhancing Technol.,
2023(4):578-592, 2023.

Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The second-generation onion router. In
USENIX Security Symposium, pages 303-320, 2004.

Divvi Up. https://divviup.org/.

Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and
Daniel Wichs. Spooky encryption and its applications.
In CRYPTO, pages 93—-122, 2016.

Yitao Duan, NetEase Youdao, John F. Canny, and
Justin Z. Zhan. P4P: practical large-scale privacy-
preserving distributed computation robust against ma-
licious users. In USENIX Security Symposium, pages
207-222, 2010.

https://divviup.org/

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Cynthia Dwork. Differential privacy. In ICALP, pages
1-12, 2006.

Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx:
Private collection of traffic statistics for anonymous
communication networks. In ACM CCS, pages 1068—
1079, 2014.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Ko-
rolova. RAPPOR: randomized aggregatable privacy-
preserving ordinal response. In ACM CCS, pages
1054-1067, 2014.

Shuai Feng, Shuaijianni Xu, and Liang Feng Zhang.
Multi-key homomorphic MACs with efficient verifi-
cation for quadratic arithmetic circuits. In ASIA CCS,
pages 17-27, 2022.

Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and
Elena Pagnin. Multi-key homomorphic authenticators.
In ASIACRYPT, pages 499-530, 2016.

Dario Fiore and Elena Pagnin. Matrioska: A compiler

for multi-key homomorphic signatures. In SCN, pages
43-62, 2018.

Michael J. Freedman and Robert Morris. Tarzan: a
peer-to-peer anonymizing network layer. In ACM CCS,
pages 193-206, 2002.

David Froelicher, Juan Ramén Troncoso-Pastoriza,
Joao Sa Sousa, and Jean-Pierre Hubaux. Drynx: De-
centralized, secure, verifiable system for statistical
queries and machine learning on distributed datasets.
IEEFE Trans. Inf. Forensics Secur., 15:3035-3050, 2020.

Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, pages 10-18, 1984.

Rosario Gennaro and Daniel Wichs. Fully homomor-
phic message authenticators. In ASIACRYPT, pages
301-320, 2013.

Craig Gentry. A fully homomorphic encryption
scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions. J. ACM, 33(4):792—
807, 1986.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof-systems
(extended abstract). In STOC, pages 291-304, 1985.

Philippe Golle and Ari Juels. Dining cryptographers
revisited. In EUROCRYPT, pages 456-473, 2004.

17

[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

(81]

Google. Exposure notifications: Help slow
the spread of COVID-19, with one step on
your phone. "https://www.google.com/covidl9/
exposurenotifications".

Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel
Wichs. Leveled fully homomorphic signatures from
standard lattices. In STOC, pages 469—477, 2015.

https://github.com/divviup/janus.

Robert Johnson, David Molnar, Dawn Xiaodong
Song, and David A. Wagner. Homomorphic signa-
ture schemes. In CT-RSA, pages 244-262, 2002.

Swanand Kadhe, Nived Rajaraman, Onur Ozan Koylu-
oglu, and Kannan Ramchandran. FastSecAgg: Scalable
secure aggregation for privacy-preserving federated
learning. CoRR, abs/2009.11248, 2020.

Alan F. Karr, Xiaodong Lin, Ashish P. Sanil, and
Jerome P. Reiter. Regression on distributed databases
via secure multi-party computation. In Proceedings
of the 2004 Annual National Conference on Digital
Government Research, 2004.

Harish Karthikeyan and Antigoni Polychroniadou.
OPA: one-shot private aggregation with single client
interaction and its applications to federated learning.
CoRR, abs/2410.22303, 2024.

Ishan Karunanayake, Nadeem Ahmed, Robert A.
Malaney, Rafiqul Islam, and Sanjay K. Jha. De-
anonymisation attacks on tor: A survey. I[EEE Commun.
Surv. Tutorials, 23(4):2324-2350, 2021.

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Designated verifier/prover and pre-
processing NIZKs from Diffie-Hellman assumptions.
In EUROCRYPT, pages 622-651, 2019.

Klaus Kursawe, George Danezis, and Markulf
Kohlweiss. Privacy-friendly aggregation for the smart-
grid. In PETS, pages 175-191, 2011.

Albert Kwon, David Lazar, Srinivas Devadas, and
Bryan Ford. Riffle: An efficient communication system
with strong anonymity. Proc. Priv. Enhancing Technol.,
2016(2):115-134, 2016.

Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and
Stefano Tessaro. LERNA: secure single-server aggre-
gation via key-homomorphic masking. In ASIACRYPT,
pages 302-334, 2023.

Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li,
and Xiaowei Li. SASH: Efficient Secure Aggregation
Based on SHPRG for Federated Learning. 2021/2022.

crypto.stanford.edu/craig
"https://www.google.com/covid19/exposurenotifications"
"https://www.google.com/covid19/exposurenotifications"
https://github.com/divviup/janus

[82]

[83

[}

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian
Zhang. A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography.
ACM Comput. Surv., 54(6):122:1-122:37, 2022.

Hidde Lycklama, Lukas Burkhalter, Alexander Viand,
Nicolas Kiichler, and Anwar Hithnawi. RoFL: Robust-
ness of secure federated learning. In IEEE S&P, pages
453-476, 2023.

Yiping Ma, Yue Guo, Harish Karthikeyan, and Antigoni
Polychroniadou. Armadillo: Robust single-server se-
cure aggregation for federated learning with input vali-
dation. In ACM CCS, pages 2219-2233, 2025.

Yiping Ma, Jess Woods, Sebastian Angel, Antigoni
Polychroniadou, and Tal Rabin. Flamingo: Multi-round
single-server secure aggregation with applications to
private federated learning. In JEEE S&P, pages 477—
496, 2023.

Luca Melis, George Danezis, and Emiliano De Cristo-
faro. Efficient private statistics with succinct sketches.
In NDSS, 2016.

Joseph P. Mihalcik. An analysis of algorithms for
solving discrete logarithms in fixed groups. Master’s
thesis, Naval Postgraduate School, 2010.

Mozilla. Built for privacy: Partnering to
deploy oblivious HTTP and Prio in Fire-
fox. https://blog.mozilla.org/en/products/

firefox/partnership-ohttp-prio/.

Moni Naor, Benny Pinkas, and Omer Reingold. Dis-
tributed pseudo-random functions and KDCs. In EU-
ROCRYPT, pages 327-346, 1999.

C. Andrew Neff. A verifiable secret shuffle and its
application to e-voting. In ACM CCS, pages 116-125,
2001.

Olga Ohrimenko, Manuel Costa, Cédric Fournet, Chris-
tos Gkantsidis, Markulf Kohlweiss, and Divya Sharma.
Observing and preventing leakage in MapReduce. In
ACM CCS, pages 1570-1581, 2015.

Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In CRYPTO, pages 129-140, 1991.

Raluca A. Popa, Andrew J. Blumberg, Hari Balakr-
ishnan, and Frank H. Li. Privacy and accountability
for location-based aggregate statistics. In ACM CCS,
pages 653-666, 2011.

Mayank Rathee, Conghao Shen, Sameer Wagh, and
Raluca Ada Popa. ELSA: secure aggregation for fed-
erated learning with malicious actors. In IEEE S&P,
pages 1961-1979, 2023.

18

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

Mayank Rathee, Yuwen Zhang, Henry Corrigan-Gibbs,
and Raluca Ada Popa. Private analytics via streaming,
sketching, and silently verifiable proofs. In IEEE S&P,
pages 3072-3090, 2024.

Ronald L Rivest, Len Adleman, and Michael L Der-
touzos. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11), 1978.

Lucas Schabhiiser, Denis Butin, and Johannes Buch-
mann. Context hiding multi-key linearly homomorphic
authenticators. In CT-RSA, pages 493-513, 2019.

Claus-Peter Schnorr. Efficient signature generation by
smart cards. Journal of Cryptology, 1989.

Jinhyun So, Corey J. Nolet, Chien-Sheng Yang, Songze
Li, Qian Yu, Ramy E. Ali, Basak Guler, and Salman
Avestimehr. LightSecAgg: a lightweight and versatile
design for secure aggregation in federated learning. In
MLSys, 2022.

Timothy Stevens, Christian Skalka, Christelle Vin-
cent, John H. Ring, Samuel Clark, and Joseph P. Near.
Efficient differentially private secure aggregation for
federated learning via hardness of learning with errors.
In USENIX Security Symposium, pages 1379—1395,
2022.

Science U.S. Department of Homeland Security and
Cyber Security Division Technology Directorate. The
menlo report: Ethical principles guiding information
and communication technology research. Technical
report, August 2012.

Hoeteck Wee and David J. Wu. Succinct functional
commitments for circuits from k-Lin. In EUROCRYPT,
pages 280-310, 2024.

https://github.com/ucbsky/whisper.

David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In OSDI, pages 179-182, 2012.

Mingxun Zhou, Tianhao Wang, T.-H. Hubert Chan,
Giulia Fanti, and Elaine Shi. Locally differentially
private sparse vector aggregation. In /EEE S&P, pages
422-439, 2022.

Additional notation

The set Z20 = {1,2,3,...,} denotes the natural numbers. We
use boldfaced lowercase variable names (e.g., v) to denote
vectors and boldfaced uppercase names (e.g., M) to denote
matrices. For a matrix M, we use M; ; to denote the element

in the i row and j™ column of the matrix. We write Dy ~ D,

https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio/
https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio/
https://github.com/ucbsky/whisper

to denote that the distributions Dy and D; are computationally
indistinguishable. For vectors u and v, we denote their
concatenation as ul||v. We write negl(1) to denote a function
that is bounded by a negligible function in A (a function that
is 0(17¢) for all ¢ € Z=9).

A Pseudorandom function:
Standard definitions

Syntax. A pseudorandom function [66] with key space C,
input space A" and output space) is an efficient deterministic
function F: Kx X — Y. (Formally, the key space would be
parameterized by the security parameter A).

Definition: PRF security. Security for a pseudorandom
function states that, for a random key k & X, no efficient
algorithm can distinguish F (&, -) from a truly random function.
Formally, for a given adversary .4, define their advantage with
respect to F as:

PRFAdv 4 £ () = |Pr[AO (1Y) = 1: f & Funs[X,)]]
—Pr[AFEI (1Y =11 k &K
A PRF F is secure if for all efficient adversaries A,

PRFAdv 4 (1) < negl(1).

B Details on aggregation-only encryption

In this section, we formally show that Construction 4.1 satisfies
security against a malicious aggregator and a malicious decryp-
tor when instantiated with any secure key-homomorphic PRF
(e.g., the Naor-Pinkas-Reingold scheme in Construction 3.1).

B.1 Definitions

We first formally define correctness and security notions for
aggregation-only encryption.

Definition B.1 (Aggregation-only encryption: Correctness).
Formally, let £ = (Gen, Enc, Apply, Dec) be an aggregation-
only encryption scheme for message space M (with default
value m*), round-identifier space R, and function class F.
We say that £ is correct if for all functions f € F, all drop-out
sets D C [n], all messages m; € M for i € [n] \ D, and all
round identifiers r € R, the following probability is at least
1 —negl(A):

(sk, ski,...,skn) « Gen(1%4, f)
Vi e [n]\ D :ct; < Enc(sk;,r,m;)
VieD:mj —m"
ct « Apply(f, D, {cti}ie(ap\n) |
m « Dec(sk,r,D,ct)

m’ «— f(my,..

Pr

~,mn)

19

We use the following definition of security, which references
the security experiments in Figure 6.

Definition B.2 (Aggregation-only encryption: Security). Let
€ be an aggregation-only encryption scheme for message
space M, and function class F. We say that & is secure
against a malicious decryptor if for every efficient adversary
A, there exists an efficient simulator S such that for all
time bounds 7 € Z=° and for all messages M € MT*" the
distribution families defined in Figure 6 (parameterized by 1)
are computationally indistinguishable:

Dec < Dec
REALg 4 7\ ¥ IDEALg s 7 M-
We further say that £ is secure against a malicious aggregator
if, under the same conditions, we have

9 A
~ IDEAL

Ag| g8
REAL £.5.T.M>

g
EATM

which are again defined in Figure 6.

B.2 Security against a malicious aggregator

We now show that Construction 4.1 is secure against a mali-
cious aggregator.

Theorem B.3 (Security against malicious aggregator).
Construction 4.1, when instantiated with a secure key-
homomorphic PRF F (Appendix A), satisfies security against
a malicious aggregator. More precisely, for a given security
parameter A, let A be any adversary that breaks malicious
aggregator security with advantage € when interacting with n
clients for T = poly(Q) rounds with output bound B = poly ().
Then there exists a PRF adversary B such that:

PRFAdv 5(1) > 2.
n

Proof. Take any malicious aggregator A for Construction 4.1,
a number of rounds 7, and a set of messages M € MTxn,
Throughout the proof we will use .4 to build a PRF adversary
B. We first use A to construct an efficient simulator S. We
give the description of S in Figure 7.

We now argue that the real experiment REAL?%E"T’M(/I)

and the ideal experiment IDEALg’ggT’M are computationally
indistinguishable when F is a secure key-homomorphic PRF.
To do so, we define a sequence of hybrids.
* Hybrid Hyb,: This is the real experiment REAL?’gi’T’M ().
We refer to Figure 8 for a self-contained description.
* Hybrids Hyb,,...,Hyb, : Fori € [n], in Hyb;, if client i is
honest, the experiment encrypts their inputs using a uniform
random element instead of PRF output and responds to

All experiments are parameterized by:

an aggregation-only encryption scheme & = (Gen, Enc, Apply, Dec) for message space M, round-identifier space R, and function

class F C Funs[M*, M] (with default value m* for dropped-out clients),

— an algorithm, which is the adversary A in the real world, and is the simulator S in the ideal world,

— anumber of rounds T € ZZO, and

— amatrix of messages M € MT*" representing honest parties’ inputs.

All experiments take a security parameter A € 729 as input and the final output is a single bit b € {0, 1}.

Security experiments: Malicious aggregator.
REAL?’g_i’T’M(/l) :
// Adversary chooses function f € F and
// compromised set C C [n].
e (st, f,C) «— A(1%).
o (sk,ekq,...,ek,) « Gen(1%, f).
// Adversary picks round identifiers ry,
o (st,ri,...,rr) < A(st, {ek; }iec)-
e If {ry,...,rr} are not distinct: Output L.
// Adversary gets honest ciphertexts.

...,VTER.

* (st,D,ct) « A(st,{Enc(ek;, 7, My i }ie[1ie[n]\C)-

e Forre [T]:
— m’ « Dec(sk,r;,D,ct).
— (st,D,ct) « A(st,m’).
e Qutput st.

Agg .
IDEALg g 1y () :

o (st, f,C) « S(1Y).

e Forre [T]:
— (st,D) « S(st).
— Fori € [n]:
* IfieD: m; «— m*.
% IfieC\D: (stym;) «— S(st).
+ Otherwise: m; < M; ;.

- m«— f(my,...,my).
— st « S(st,m).

e Qutput st.

Security experiments: Malicious decryptor.

D .
REAnga;LT’M () :

// Adversary chooses a function f € F,
// compromised set C C [n], keys ek;
// and initial round identifier ri € R.

o (st, f.C,sk,eky,...,ek,,D,r) «— A(1Y).
e Forte [T]:
— Fori € [n]:
* IfieC:
% Otherwise:

(st,ct;) « A(st).
ct; < Enc(ek;,r;,M; ;).
- ct < Apply(f,D,{cti}ic(np\n)-
— (st,D,rpq1) <« A(st,ct).
- If {rl 5o
e Qutput st.

..,Fr+1} are not distinct: Output L.

D .
IDEALZSS 7 v Q) :

// Exactly the same as above ideal case.
A
* Output IDEAL"E /. \(A).

Figure 6: Security experiments for defining security against a malicious aggregator and decryptor.

20

Simulator S:

* On input the security parameter A, run (st, f,C) — A(11)
and output (st, f,C) to the experiment.

Write f as f(xq,...,Xn) = Zie[n] aixi.

* Run (sk,ekj,...,ekn) « Gen(14, f).

. ’rT) — A(St’ {ekl}lEC)

.,r7} are not distinct, halt and output L.

¢ Run (st,rq,..

o If {rl, ..

* Foreacht e [T] and i € [n] \C, sample p; ; < G and set
Ctri < Pri-

» Foreacht € [T] andi€C,let p; ; < F(ek;,rs).

* Run (st,D,ct) « Afst, {Ct’»i}ze[T],ie[n]\c)‘

¢ For each t € [T], the simulator proceeds as follows:

Output (st, D) to the experiment. For each i € C\ D,
output m; =0 to the experiment.

The experiment responds with message 1 € Zp,.
Compute R = [Tie[n)\D P15

Compute y = (g" - ct)/R.

— Compute m’ = DLogg ().

Run (st,D,ct) « A(st,m’).

* Finally, the simulator outputs the final state st output by the
adversary A. Note that the final state st is a single bit (as
required by the experiment).

Figure 7: The simulator S used in the proof of Theorem B.3.

decryption queries using the same random element. In
other words, for all ¢t € [T], we replace F(ek;,r,) with a
uniform element p, ;. We refer to Figure 9 for the complete
description.

e Hybrid Hyb,,,;: The same as Hyb,,, except the experiment
replaces honest ciphertexts with encryptions of zero and
changes how it responds to decryption queries. This is the
ideal experiment.IDgAL?,gg’T,M. We refer to Figure 10 for
a complete description.

Indistinguishability of hybrids. For eachi € [0,...,n+1],
we write Hyb,; (A) to denote the output distribution of an
execution of Hyb; with adversary .A. We then define W; =
Pr[Hyb;(A) = 1]. We now bound the distance between each
pair of adjacent hybrid experiments.

Lemma B.4. For alli € [n], it holds that:
|[Wi_1 —W;| < PRFAdvg 5(1).

Proof. There are two cases. If i € C, then Hyb;_; and Hyb;
are identical experiments. In this case, W;_; = W; and the

claim trivially holds. Consider now the case where i ¢ C.

Then, the only difference between Hyb;_; and Hyb; is the
distribution of p,; for t € [T]. We use A to construct an

21

Hybrid Hybg:
- (st, f,C) « A(1Y).
- Write f as f(x1,...,Xn) = Xie[n] @iXi € Zp.

— Sample ekq,...,ek, & K.
= (st,ry,...,rr) < A(st, {eki}iec).
— If {rq,...,rr} are not distinct: Output L.

— Foreacht e [T] andi € [n], let p; ; < F(ek;,r¢).
— Foreacht e [T] andi € [n]\C, set ct; ; « gMri Pt
— (st,D,ct) « A(st, {Ct”i}te[T],ie[n]\C)'
— Fort e [T]:
% Compute R < [Tic[n]\D P}
+ Compute y « ct/R.
* Output m’ < DLogpg(y).
* (st,D,ct) « A(st,m’).

— Output st.

Figure 8: The hybrid distribution Hyb, used in the proof
of Theorem B.3. Since F is a key-homomorphic PRF,
this is equivalent to the real experiment REALé’gj,T’M(/l).
Specifically, since the PRF is key homomorphic, the
value of R = [];cin)\p F(eki,r)% in Hyb, is the same as
R = F(Xie[n)\p €ki»7:), which is how it is computed in

Agg

REAL&A’T’M(/D.

adversary B against the PRF F. Adversary B simulates an
execution of Hyb,_; and Hyb; for A except for each 7 € [T],
it computes p; ; by querying its PRF oracle O on input r,
(i.e., it computes p; ; < O(r;)). Adversary 13 computes p; ;
for j # i using the same procedure as in Hyb,_;. It outputs
whatever bit .4 outputs. Notice that:

o If O = F(k,-) for k & K, then the interaction between B
and A is distributed identically to Hyb;_; where the PRF
key k chosen by the challenger plays the role of ek; in
Hyb;_;.

o If O = f(-) for f <& Funs[R,G], then the interaction
between BB and A is distributed identically to Hyb,.

Therefore, in this case,
PRFAdVF,B(/l)Z |Wi_1—Wi|.]

Lemma B.5. It holds that W,, = W, 1.

Proof. These two distributions are equivalent. In Hyb,,, the
experiment generates the ciphertext of honest client i in round
tasct,; = ngvf - pr.i where p; ; & G. During decryption, the
experiment computes ct/[T;c[,\p p;’fi to remove the honest
clients’ masks.

Consider now a change of variable. Namely, rather than
sample p; ; & G as described in Hyb,,, the experiment instead

Hybrid Hyb; for j € [1,....n]:

- (st f,C) « A(1Y).

— Write f as f(xq,...,xn) = Zie[n] aix; € Lp.
— Sample eky, ..., ek, & K.

1) — A(st, {eki}iec)-

.,rr} are not distinct: Output L.

- (st,ry,..
- If {ry,..
— Foreacht e [T] andi € [n]:

* IfieC,let ps; «— F(ek;,ry).

% Ifi¢Candi< j,sample p;; & G.

% Ifi¢Candi> j,letp;; < F(eki,rs).

— Foreacht e [T]andi€ [n]\C,setct;; « thvf Pt
— (st,D,ct) « A(st, {Ct”i}te[T],ie[n]\C)'
— Forte[T]:
* Compute R « [;e[n]\D p;“l
Compute y « ct/R.
% Output m’ < DLogg(y).
(st,D,ct) « A(st,m’).
— Output st

Figure 9: The hybrid distribution Hyb; used in the proof of
Theorem B.3.

samples p; . < G and then sets

o o ieC
Pt.i Y .
b |gMepr, ie[n]\C

Since p;’i is uniform random, the distribution of p; ; remains
unchanged under this substitution. Consider now the decryp-
tion procedure in Hyb,, after the substitution. The experiment
would first compute

R= || o

ie[n]\D

_ ai aj
= Pyi o

ieC\D ie[n]\(CUD)

[0

ieC\D

-M;;

(g -pp)™

ie[n]\(CUD)
gZienicup) ~aiMei l_[(o7,

ie[n]\D
=[] w0

ie[n]\D

where

m=

aiM; ;= f(my,...
ie[n]\(CUD)

,mn)

22

Hybrid Hyb,,,;:
- (st, f,C) « A(1Y).
Write f as f(x1,...,Xn) = Xje[n] diXi € Zp.

— Sample ekq,...,ek, & K.
= (st,ry,...,rr) < A(st, {eki}iec).
— If {rq,...,rr} are not distinct: Output L.

Foreachr € [T] andi € [n]:
x IfieC,let py; «— F(ek;,r).
x Ifi ¢ C, sample p; ; & G.

Foreacht e [T]andi€ [n]\C, setct;; < p;,;.

(st,D,ct) «— A(st, {ct ;}
Fort e [T]:
% Forie [n]\(CUD),setm; =M; ;.

te[T],ie[n]\C)‘

% ForieCUD,setm; =0.
+ Compute i «— f(mq,...,my).
* Compute R < [Tie(n)\D pf,"i.
% Compute y — (g™ -ct)/R.
% Output m’ « DLogg(y).
% (st,D,ct) «— A(st,m’).
— Output st

Figure 10: The hybrid distribution Hyb,,,; used in the proof
of Theorem B.3.

and
ieCuD

0
m; = .
M;; otherwise.

In this case, under this choice of variables,

y=ct/R=(")/ [] (o1

ie[n]\D

Observe that this is precisely the logic in Hyb,,,.;. We conclude
that Hyb,, and Hyb,,, | are identical experiments. O

The distinguishing advantage of A is |W,,; — Wp|. Com-
bining Lemmas B.4 and B.5, gives that:

[Wyt1 —Wo| < n-PRFAdvr 5(1),

which implies the theorem. O

B.3 Security against a malicious decryptor

We now prove that Construction 4.1 satisfies security against
a malicious decryptor.

Theorem B.6 (Security against malicious decryptor). Suppose
Construction 4.1 is instantiated with a key-homomorphic

PRF F. Then the resulting construction is secure against a
malicious decryptor.

Proof. Take any malicious decryptor A for Construction 4.1.
We use A to construct the simulator S as follows:
1. Run (st, f,C,sk,ekq,...,ek,, D1,r1) < A(11) and out-
put (st, f,C).
2. Write f as f(x1,...,Xn) = Xjen] @iXi-
3. Foreacht e [T]:
* Output D, as the set of dropped-out users.
e Forie D, \C:
— Run (st,ct;) « A(st).
— Output m, ; = 0 to the experiment.
* Receive a value m; good € Z), as input from the exper-
iment.
* Set Rgood < [Tiepn\(p,uc) F(ai - ki, 7).
* Set Ctgood Rgood * Mt 900d-
* Setct < ([Tiec\p, ct;") - Ctgood-
e Run (st,D;y1,7r41) < A(st,ct).
o If {l’] b
4. Output st.

Now, we must prove that the simulated output is correctly
distributed. To do so, we define T + 1 hybrid distributions,
Hyby, Hyb,, through Hyb;, described in Figure 11. The
hybrid distributions are defined such that:

.,F+1} are not distinct: Output L.

e Hybrid Hyb,: This is the real experiment REAL?ejl rmAD-

* Hybrid Hyb;: This experiment interpolates between the
real and ideal interactions. For the first 7 — j rounds, the
distribution computes the value ct given to the adversary
as in the real interaction. For the last j rounds, the
distribution computes the value ct given to the adversary
as the simulator does.

e Hybrid Hyb;: This is the ideal experiment
IDEAL?eé rmAD-
First, we argue that Hyby (as described in Figure 11) is exactly

the ideal experiment IDEAL??E’T’M(/U. The only difference

between these two experiments is how mgooq is computed.

Since m* =0, and the simulator specifies m; ; = 0 for all
t€[T] andi € D, \C, the ideal experiment computes Mgood
as

Mgood = f(mt,l’ cee 7mt,n)7
where
0 ieD,UC
my i = .
M,;; otherwise.
In particular, this means that
Mgood = Z aim; ; = aiM; ;,

i€[n] ie[n]\(D;UC)
which coincides with the value in Hyby. We conclude that

Hyby is precisely the ideal experiment IDEAL?eg rmAD-

23

To complete the proof, we now argue that each pair of
adjacent hybrid experiments are identical. Fix a distinguisher.
For hybrid distribution j € {0,...,T}, let W; denote the event
that the distinguisher outputs 1 when given a sample from
hybrid distribution Hyb;. Our goal is to show Pr[W,] =
Pr[Wr]. It suffices to prove the following claim:

Claim B.7. For all j € [T], Pr[W;_{] = Pr[W;].

Proof of claim. The only difference between the two hybrids
is how they compute ctgooq. We show that both methods are
indeed equivalent. To see this, denote the set of online, honest
users as H; = [n] \ (D; UC). Then, using the fact that F is
key-homomorphic,

[] (Flekire)-g™Me)™
ieH;
= | | F(a; -ek;,r;) - g@Mei

i€cH;

(Ctgood in Hybj— 1)

[]F -ek,-,m) gict @M (Ctgooa in Hyb))
i€eH,;

]

Security against a malicious decryptor now follows by a
hybrid argument. o

C Security analysis of Heli

In this section, we sketch the end-to-end analysis of the
security of Heli, per the security definitions in Section 2.2.

Input privacy against one malicious server and multiple
malicious clients. Given an adversary .4 against the Heli
system controlling either server and many clients, we must
construct a simulator S that interacts with the ideal func-
tionality Fpeji of Figure 3 such that the distribution of the
adversary’s view is computationally indistinguishable between
the real and ideal executions. In the following, let M € MT*"
be the matrix of messages the honest client chooses in the
aggregation protocol; specifically M, ; is the i client’s mes-
sage associated with the round identifier r,. We assume that
Valid(M; ;) =1forallz € [T] and i € [n] (i.e., honest clients
only provide valid inputs to the aggregator). To construct
the simulator, we appeal to the security of the underlying
aggregation-only encryption scheme.

For the case of a malicious aggregator: We first use A to
construct an adversary A,ggenc for the malicious-aggregator
security of the aggregation-only encryption scheme (Defi-
nition B.2) with aggregation function f, T rounds, and the
matrix of message M. That adversary A,ggenc Operates as
follows:

Hybrid Hyb; for j € [0,...,T]:

o (st, f,C,sk,eky,...,ek,, Dy, 1) «— A(11).
* Write f as f(x1,...,Xn) = Xie[n] diXi-

e Forre{l,...,T—j}:

— ForieC(C: (st,ct;) « A(st).
— Forie [n]\(D;UC):

ct,; « F(ek;,r,) - gMei.
— Ctoood < [licpup\(pue) €t
= ct — (Tliec\p, Cti") - Ctgood-
— (st,Dsy41,7141) « A(st,ct).
e Forte{T-j+1,...,T}:
— ForieC: (st,ct;) « A(st).
= Rgood < [liern\(p,uc) F(ai-eki,re).
= Mgood < Lie[n)\(Dyue) % - M i.
— Ctgood < Rgood * geed.

= ct — (Tliec\p, Cti") - Ctgood-
— (st,Dyy1,7:41) < A(st,ct).
o If {ry,..
* Output st.

.,F+1} are not distinct: Output L.

Figure 11: The hybrid distribution used in the proof of Theo-
rem B.6. The distribution is parameterized by an adversary
A, a number of time steps 7', and inputs M. The important
differences between the first T — j loop iterations and the last
Jj iterations are shaded .

24

* Algorithm A,ggenc starts by running algorithm .4 who
declares the set of compromised clients C C [n]. It then
outputs (L, f,C), where f is the aggregation function.

* Algorithm A,ggenc receives the encoding keys ek; for the
corrupted clients i € C and provides those to .A. Algorithm
A then outputs the round identifiers (ry,...,r7) used for
aggregation. The experiment provides the ciphertexts of
the honest clients to A,ggenc.

* Algorithm A,ggenc gives the ciphertexts of the honest clients
to A (together with simulated proofs of validity; here, we
rely on the zero-knowledge property of the underlying
proof system) and continues running .4, who plays the role
of the malicious aggregator (and the corrupted clients).

* On each aggregation round, .4 outputs a drop-out set D
and ciphertext ct. Algorithm A,ggenc first checks that
Proceed([n] \ D) = 1. If not, it replies to A with L.
Otherwise, Aaggenc outputs (D, ct) to the experiment. The
experiment responds with a message m’, which Aj,ggenc
then forwards to 4. Note that .4 can also direct a corrupted
client to output a ciphertext, but A,ggenc ignores such
messages.

* At the end of the experiment, algorithm A,ggenc Outputs
whatever A outputs.

By security of the aggregation-only encryption scheme, there
is a simulator Syggenc that simulates A,ggenc’s view in this
interaction given only the value of the aggregation function f
in each round applied to the honest clients’ data.

To complete the proof, we show how to construct the
simulator S associated with A that only interacts with the
ideal functionality Fe;. The simulator S works as follows:

* The simulator starts running S,ggenc Which outputs
(st, f,C). The simulator S declares C to be the set of
corrupted users.

* Oneachround? € [T], the simulator runs Saggenc (St) to get
(st,D). For each i € C\ D, algorithm S,ggenc also outputs
an updated state st and message m;. Foreach suchi € C\ D,
the simulator directs the corrupted client i to forward the
message (¢,m;) to the ideal functionality. Note that since
the aggregator is corrupt, the ideal functionality does not
perform the validity check on the input m;. Finally, the
simulator checks that Proceed([n] \ D) =1 and if so, it
directs the aggregator to submit the set U = [n] \ D to
the ideal functionality. The ideal functionality responds
with the value (output,?,U,y). The simulator S forwards
the value y to Syggenc. If Proceed([n] \ D) # 1, then the
simulator forwards L t0 Saggenc-

* At the end, the simulator outputs whatever S,ggenc OUtpULS.

Essentially, our simulator runs the underlying simulator
Saggenc for the aggregation-only encryption scheme, getting
the value of the aggregation function from the ideal func-
tionality Fnei in each simulated round of aggregation. By
definition of the ideal functionality (Figure 3), on each round,

the ideal functionality replies with (output,?,U,y) where
y = f(my,...,my). This is precisely the value that the ideal
experiment IDEAL,¢ /. \,(4) from Figure 6 would provide to
the simulator. Thus, the simulator S,ggenc correctly invokes
the underlying simulator S for IDEAL?%’T’M(/D.

The critical features of the Heli protocol that enable this
simulation are that if the decryptor is honest (1) the decryptor
only publishes a single result for each time period and (2) this
result comes from aggregating a “large enough” set of client
ciphertexts (as determined by Proceed).

For the case of a malicious decryptor: The argument follows
very similarly to that for the case of the malicious aggrega-
tor, except that we construct an adversary in the malicious-
decryptor game of the aggregation-only encryption scheme
(rather than the malicious-aggregator game).

Security against malicious clients. Given an adversary A
against the Heli system we must construct a simulator S that
interacts with the ideal functionality e of Figure 3 and that
induces the same view (for the decryptor and aggregator) as
in the real protocol.

The simulator S runs the initialization and client-
registration steps as in the real protocol, feeding the relevant
keys to A, who directs the corrupt clients. Whenever a corrupt
client i € C produces a ciphertext, the simulator checks the
proof of knowledge r attached to the ciphertext:

 If m is valid: The knowledge-soundness of the underlying
proof system ensures the existence of an “extractor” that
can extract a well-formed input (7, m) from A. In particular,
this means r = r; for some ¢ € [T] and Valid(m) = 1). The
simulator directs client i to forward (input,¢,m) to the
ideal functionality Fiej;-.

e [f rr is not valid: The simulator sends nothing to Fiej;.

To show that the simulated ideal distribution is indistinguish-
able from the real distribution, we appeal to the knowledge
soundness of the underlying proof system.

D Proofs for detecting malicious clients

Here we describe how the client proves their aggregation-
only ciphertext is well-formed when using Construction 4.1
instantiated with the Naor-Reingold-Pinkas key-homomorphic
PRF (Construction 3.1).

Recall that client i must prove that their ciphertext encrypts
the tuple (r;,ek;,m;) € {0,1}* XZ?,, where r; is the round
identifier for time period ¢, ek; is their encryption key, and m;
is a value in A C Z,,. We focus on the case where A is the set
of b-bit integers and describe the proof for single values (the
construction naturally generalizes when the client’s data is a
vector).

Let G be a group of prime order p with generators g, gcom, /.
Let H : {0,1}* — G be a hash function. Both parties hold
the round identifier r, and a commitment C; < ggg;n to the

25

client’s encryption key. The client generates a ciphertext:
ct=g" - H(r)™,
and a Pedersen commitment [92] to its input,
P=h"-g",

using fresh randomness p « Z,. Then, the client proves
knowledge of secrets (ek;,m;,p) € Z; such that:

s ct=g" - H(r)™,

. P:hp.gmi’
o C;=g% and
* m; €A.

To do this efficiently, we use two sub-proofs:

1. Ciphertext validation: A Schnorr proof 7. [34, 98]
attesting that:

e P commits to a value m;,

* the ciphertext ct = g™ - H(r,)®*, and

« the key commitment C; = &% .

These are standard discrete-log relations that we prove
using known techniques [34].

2. Input validation: A Bulletproof mjspu [33,44] attesting
that P commits to a value m; € A.

The client sends (ct, P, mct, Tinput) to the aggregator. The
binding property of the Pederson commitment ensures that
the client uses the same input m; for both proofs. As a result,
if both proofs validate, the ciphertext is well-formed and
encrypts a valid input. The aggregator can also batch proofs
from multiple clients to verify them more efficiently [17,33].

[o]
o
o

o]
o
o

400

Server CPU (core-s)

200

Heli (Light)
o+t4—o—-a o -+ o 2 -

0 20 40 60 80 100
Percentage of dropped-out clients (%)

12001

1000 -

800 1

600 1

4001

200 1

Server-to-Server Comm. (MB)

Heli
20 40 60 80 100
Percentage of dropped-out clients (%)

Figure 12: Heli’s light server requires less total work and
communication than a Prio server, even in its worst-case
scenario where 50% of users drop out. The plots shows server
CPU time and server-to-server communication to aggregate
¢ = 1 measurements of bitwidth b = 1 over n = 10, 000, 000
clients as the percentage of dropped-out clients increases.

26

	Introduction
	System overview
	Protocol flow
	Security goals
	Homomorphic encryption is not enough

	Background
	New tool: Aggregation-only encryption
	Syntax
	Definition of aggregation-only encryption
	Construction
	Handling longer data vectors
	Post-quantum security

	Heli system design
	System parameters
	Protocol flow
	Security analysis
	Implementation note: ZK proofs
	Outsourcing decryptor work
	Extension: Differential privacy

	Evaluation
	Costs of Heli's light server
	Costs of Heli's heavy server and clients
	Costs of an end-to-end deployment

	Related work
	Conclusions
	Pseudorandom function:Standard definitions
	Details on aggregation-only encryption
	Definitions
	Security against a malicious aggregator
	Security against a malicious decryptor

	Security analysis of Heli
	Proofs for detecting malicious clients

