
END-TO-END TEXT RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

AN HONORS THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

OF STANFORD UNIVERSITY

David J. Wu

Principal Adviser: Andrew Y. Ng

May 2012

Abstract

Full end-to-end text recognition in natural images is a challenging problem that has recently

received much attention in computer vision and machine learning. Traditional systems in

this area have relied on elaborate models that incorporate carefully hand-engineered features

or large amounts of prior knowledge. In this thesis, I describe an alternative approach

that combines the representational power of large, multilayer neural networks with recent

developments in unsupervised feature learning. This particular approach enables us to

train highly accurate text detection and character recognition modules. Because of the high

degree of accuracy and robustness of these detection and recognition modules, it becomes

possible to integrate them into a full end-to-end, lexicon-driven, scene text recognition

system using only simple off-the-shelf techniques. In doing so, we demonstrate state-of-the-

art performance on standard benchmarks in both cropped-word recognition as well as full

end-to-end text recognition.

ii

Acknowledgements

First and foremost, I would like to thank my adviser, Andrew Ng, for his advice and

mentorship throughout the past two years. His class on machine learning first sparked my

interest in the field of artificial intelligence and deep learning; his willingness to let me

work in his lab has helped me refine my own research interests and convinced me to pursue

graduate studies.

Special thanks also to Adam Coates for the tremendous support and guidance he has

provided me over these past two years. From him, I have learned an immense amount about

the practical side of machine learning and how to get algorithms to work well in practice.

I also want to thank him for giving me the opportunity to work on so many projects, even

when I was just a freshman with absolutely no background in machine learning. I would

also like to thank Tao Wang for the invaluable advice he provided through the course of

this project. The work presented in this thesis is the joint work of our collaboration; none

of it would have been possible without his input and ideas. Both Adam and Tao have

contributed countless hours to bring this project to a successful completion. It has truly

been both a pleasure and a privilege for me to have worked with them. For that, I thank

them both.

I would like to thank Hoon Cho for being a great source of insights and lively discussion,

and most of all, for being a great friend. Without his input, I would probably not have

pursued this thesis in the first place. I would also like to thank Will Zou for allowing me

the opportunity to continue working in the lab after the completion of this project. Thanks

also to Mary McDevitt for her insightful comments and proofreading of an early draft of

this thesis.

Finally, I would like to thank my family for their unconditional support both before

and during my undergraduate career. To my grandparents, I thank you for sparking my

curiosity and for instilling within me a passion for learning so early on in my childhood. To

iii

my parents, I thank you for your ever-present advice and encouragement. Without your

support, this work would not have been possible. This thesis is for you.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Background and Related Work 4

2.1 Scene Text Recognition . 4

2.1.1 Text Detection . 5

2.1.2 Text Segmentation and Recognition 5

2.1.3 Lexicon-Driven Recognition . 6

2.2 Unsupervised Feature Learning . 7

2.3 Convolutional Neural Networks . 9

2.3.1 Feed-Forward Neural Networks . 9

2.3.2 Convolutional Neural Networks . 11

3 Methodology 15

3.1 Detection and Recognition Modules . 16

3.1.1 Unsupervised Pretraining . 16

3.1.2 Convolutional Neural Network Architecture 19

3.1.3 Datasets . 21

3.2 Text Line Detection . 22

3.2.1 Multiscale Sliding Window . 23

3.2.2 Text Line Formation . 23

3.3 End-to-End Integration . 28

3.3.1 Space Estimation . 29

v

3.3.2 Cropped Word Recognition . 30

3.3.3 Full End-to-End Integration . 33

3.3.4 Recognition without a Specialized Lexicon 34

4 Experiments 35

4.1 Text Detection . 36

4.2 Character and Word Recognition . 39

4.2.1 Cropped Character Recognition . 39

4.2.2 Cropped Word Recognition . 40

4.3 Full End-to-End Text Recognition . 42

4.3.1 Recognition without a Specialized Lexicon 44

5 Conclusion 46

5.1 Summary . 46

5.2 Limitations of the Current System and Future Directions 47

Bibliography 49

vi

List of Tables

4.1 Text detector performance on the ICDAR 2003 dataset. 37

4.2 Character recognition accuracy on the ICDAR 2003 character test set. . . . 40

4.3 Word recognition accuracy on the ICDAR 2003 dataset. 41

4.4 F-scores from end-to-end evaluation on the ICDAR and SVT datasets. . . . 44

4.5 Results from end-to-end evaluation on the ICDAR dataset in the general

lexicon setting. 45

vii

List of Figures

2.1 Illustration of end-to-end text recognition problem. 5

2.2 A simple feed-forward neural network. 9

2.3 Average pooling in a convolution neural network. 13

3.1 Operation of detection and recognition modules. 16

3.2 Visualization of dictionary elements learned from whitened grayscale image

patches. 18

3.3 Convolutional neural network architecture used for detection. 19

3.4 Comparison of real and synthetic training examples. 22

3.5 Detector response maps at different scales. 24

3.6 Detector and NMS responses across lines in the image. 25

3.7 Estimated bounding boxes from text detector. 27

3.8 Negative responses across a line of text. 30

3.9 Character classifier responses. 31

4.1 Sample example from the Street View Text dataset. 36

4.2 Visualization of ICDAR ground truth bounding boxes and coalesced ground

truth bounding boxes. 38

4.3 Sample images from the ICDAR 2003 Robust Word Recognition dataset. . 41

4.4 Precision and recall curves for end-to-end evaluation on the ICDAR and SVT

datasets. 43

4.5 Sample outputs from the full end-to-end system on the ICDAR and SVT

datasets. 45

viii

Chapter 1

Introduction

A system that can automatically locate and recognize text in natural images has many

practical applications. For instance, such a system can be instrumental in helping visually

impaired users navigate in different environments, such as grocery stores [28] or city land-

scapes [3], or in providing an additional source of information to an autonomous navigation

system. More generally, text in natural images provides a rich source of information about

the underlying image or scene.

At the same time, however, text recognition in natural images has its own set of dif-

ficulties. While state-of-the-art methods generally achieve nearly perfect performance on

object character recognition (OCR) for scanned documents, the more general problem of

recognizing text in unconstrained images is far from solved. Recognizing text in scene im-

ages is much more challenging due to the many possible variations in backgrounds, textures,

fonts, and lighting conditions that are present in such images. Consequently, building a full

end-to-end text recognition system requires us to develop models and representations that

are robust to these variations. Not surprisingly, current high-performing text detection and

character recognition systems have employed cleverly hand-engineered features [10, 11] to

both capture the details of and represent the underlying data. In many cases, sophisticated

models such as conditional random fields (CRFs) [32] or pictorial-structure models [38] are

also necessary to combine the raw detection or recognition responses into a complete system.

In this thesis, I describe an alternative approach to this problem of text recognition

based upon recent advances in machine learning, and more precisely, unsupervised feature

learning. These feature-learning algorithms are designed to automatically learn low-level

1

CHAPTER 1. INTRODUCTION 2

representations from the underlying data [8, 15, 16, 19, 23, 33] and thus present one alterna-

tive to hand-engineering the features used for representation. Such algorithms have already

enjoyed numerous successes in many related fields, such as visual recognition [42] and action

classification [20]. In the case of text recognition, the system in [7] has achieved solid re-

sults in text detection and character recognition using a simple and scalable feature-learning

architecture that relies very little on feature-engineering or prior knowledge.

By leveraging these feature-learning algorithms, we were able to derive a set of special-

ized features tuned particularly for the text recognition problem. These learned features

were then integrated into a larger, discriminatively-trained convolutional neural network

(CNN). CNNs are hierarchical neural networks that have immense representational capac-

ity and have been successfully applied to many problems such as handwriting recognition

[21], visual object recognition [4], and character recognition [35]. By tapping into the rep-

resentational power of these architectures, we trained highly accurate text detection and

character recognition modules. Despite the inherent differences between the text detection

and character recognition tasks, we were able to use structurally identical network archi-

tectures for both the text detector and character classifier. Then, as a direct consequence

of the increased accuracy and robustness of these models, it was possible to construct a

full end-to-end system using very simple and standard post-processing techniques such as

non-maximal suppression (NMS) [29] and beam search [34]. In spite of the simplicity, how-

ever, our system achieved state-of-the art performance on the standard ICDAR 2003 [25]

and Street View Text (SVT) [38] benchmarks. Our results thus demonstrate the viability

of our alternative construction of a complete end-to-end text recognition system that does

not rely extensively on hand-engineered features or hard-coded prior knowledge.

The following thesis begins with a survey of the relevant literature, continues with

a description of our end-to-end text recognition system, and concludes with a detailed

analysis of the proposed system. More concretely, Chapter 2 discusses background and

related work on scene text recognition, unsupervised feature learning, and convolutional

neural architectures. Chapter 3 provides a high-level description of the different components

in the full end-to-end recognition system. As part of this discussion, I provide a careful

description of the text detection module. The character recognition module and final end-

to-end integration of the two modules is primarily the work of Tao Wang and thus, is

not elaborated upon as extensively in this thesis. Chapter 4 presents some experimental

analysis of the text detection module as well as the full end-to-end recognition system.

CHAPTER 1. INTRODUCTION 3

Finally, Chapter 5 summarizes the key results outlined in this thesis and provides some

concluding remarks.

As a final note, the construction of the full end-to-end text recognition system was done

in collaboration with Tao Wang and advised by Adam Coates and Professor Andrew Ng.

Thus, in describing the system, I generally refer to it as “our system” and “our work” to

reflect the joint nature of this work.

Chapter 2

Background and Related Work

2.1 Scene Text Recognition

Text recognition is a problem in machine learning and computer vision that dates back

several decades. At the high level, the general problem of end-to-end text recognition

consists of two primary components: text localization and word recognition. First, in text

localization, the goal is to locate individual words or lines of text. Then, once we know

where the regions of text are located in the image, we seek to identify the actual words and

lines of text in those regions. An illustration of the end-to-end recognition task is presented

in Figure 2.1.

Over the years, much time and effort have been invested in solving different components

of the text-recognition problem. As a direct result, there now exist algorithms that achieve

extremely high performance on specialized tasks such as digit recognition in constrained

settings. For instance, the system in [5] is able to achieve near-human performance on

handwritten digit recognition. Similarly, the system in [7] attains very high accuracy on

the task of recognizing English characters. Despite these advances in the field of text

recognition, however, the more general task of detecting and recognizing text in complex

scenes still remains an open problem.

Much of the literature on scene text recognition tends to focus on a sub-component of the

full end-to-end text recognition system. The three primary subsystems that have received

much of this attention are text detection, character/word segmentation, and character/word

recognition. Below I describe each of these subsystems individually.

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

Figure 2.1: Illustration of the end-to-end text recognition problem. Given an input image,
we first localize the text. Then, we recognize the words in the image. This particular image
is taken from the Street View Text (SVT) dataset [38].

2.1.1 Text Detection

As mentioned above, the goal of text detection or localization is to identify candidate regions

of text in a given input image. Typically, the detection task corresponds to identifying a

bounding box or rectangle for each word or for each line of text in the image. Many different

methods have been proposed for text detection. These methods range from using simple

off-the-shelf classifiers with hand-coded features [3] to much more sophisticated multi-stage

pipelines incorporating many different algorithms and processing layers [31, 32]. One ex-

ample of an elaborate multi-stage pipeline is the system proposed by [32], which employs

extensive pre-processing stages such as binarization of the input image, followed by con-

nected component analysis via a conditional random field (CRF) to identify lines of text.

Still others in the field of text detection have developed clever hand-engineered features

and transformations well-suited for the task at hand. For example, the system in [11] ex-

ploits the uniformity of stroke width in characters to develop a robust, state-of-the-art text

detection system.

2.1.2 Text Segmentation and Recognition

The story is similar in the case of text segmentation and recognition. I begin by briefly

outlining the problem of text segmentation and recognition. In the case of segmentation,

the task is to take a single word or single line of text and produce individual characters or

CHAPTER 2. BACKGROUND AND RELATED WORK 6

individual words. In the context of an end-to-end system, this input line or word would

correspond to a region of text identified by the text detection system. In turn, the character

or word recognizer would identify these segmented characters and words. It follows that if

we can recognize each character in the word, we can concatenate the characters together

to identify the underlying word. Thus, the final result of the segmentation and recognition

stages is a set of annotated bounding boxes, similar to those shown in Figure 2.1. The label

or annotation for each bounding box is just the identified word.

As in the case of detection, a wide variety of techniques has been applied to the problem

of segmentation and recognition. These techniques include various flavors of probabilistic

graphical models for joint segmentation and recognition [13, 40, 41], a multi-stage hypoth-

esis verification pipeline [30] that leverages geometric models, language models, and other

forms of prior knowledge in a complete end-to-end recognition system, as well as a picto-

rial structure model [38] that combines a simple character classifier along with geometric

constraints on character locations that also achieves end-to-end recognition. Because of

the nature of the recognition problem, many of these systems incorporate varying degrees

of prior knowledge in the form of geometric models or language models. Geometric typo-

graphic models, like the one used in [30], encode knowledge such as the fact that the height

of certain characters is greater than that of others (e.g., the letter ‘b’ versus the letter ‘c’)

or that certain characters are interchangeable because they have similar appearances (e.g.,

uppercase ‘S’ and lowercase ‘s’). Similarly, language models provide information about how

characters are typically distributed within words. For instance, a language model might

encode the fact that certain bigrams, or sequences of two characters, occur more frequently

than others in the English language.

2.1.3 Lexicon-Driven Recognition

Since the ultimate goal of a text recognition system is to detect and localize text in images,

one common component used to improve the performance of recognition systems is the

inclusion of a lexicon [30, 38, 40]. The lexicon is simply a list of candidate words that may

appear in the scene or image. For instance, if we are focused on reading the English text in

images, it is reasonable to provide a listing of words that appear in the English language,

perhaps augmented with a list of common names, places, abbreviations, and so forth. By

including a lexicon, we give the model the ability to correct some of its own mistakes; for

instance, the model can misread a character in a word, but still identify the correct word by

CHAPTER 2. BACKGROUND AND RELATED WORK 7

searching through a list of possible words and choosing the one most similar to the predicted

word.

Naturally, the smaller the set of possible words, the better the performance of the text

recognizer. At first, requiring that there be a lexicon may seem like a severe limitation of

the system; in many applications, however, it is possible to obtain a small and restrictive

lexicon. As argued in [38], in the case where the system is used to assist someone at a

grocery store, the number of words that may be present in the scene would certainly be

much smaller than the total number of words in the English language. In a case where

a user is trying to recognize street names, store signs, and so forth, we can often obtain

additional context based upon location data. For instance, given a user’s location, the

system can perform an Internet search for the streets and stores in the immediate vicinity

of the user and then use these search results to construct an appropriate lexicon. Thus,

while requiring that a small lexicon (consisting of 50-500 words) be provided for each image

would certainly reduce the generality of the model, in many applications, this requirement

is in fact a reasonable one. In constructing our system then, we focused more heavily on

this simplified lexicon-constrained environment. I refer to this framework as the lexicon-

driven or lexicon-constrained recognition framework. Note, however, that in this thesis, I

also present a method to relax this assumption and obtain decent recognition results in the

more general setting where specialized lexicons are not readily available.

2.2 Unsupervised Feature Learning

In the field of machine learning, the performance of a model is oftentimes strongly influenced

by the way the data is represented. Thus, devising effective representations of the data is an

important component of constructing a high-performing model. As the survey of scene text

recognition in Section 2.1 demonstrates, it is evident that many of the techniques that have

been successfully applied in the area of text detection and recognition have generally relied

on carefully hand-engineered features [3, 11, 30] for data representation. These specialized

features are essential for constructing a representation for the data that is robust to the high

degree of variation present in natural images. As mentioned in Chapter 1, these variations

include, but are not limited to, variations in lighting, texture, font, background, and image

resolution. While hand-engineering is certainly one way of approaching this problem of data

representation, in many cases, hand-engineering is also a difficult and expensive process.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Recent work in machine learning has focused on the development of algorithms that can

automatically learn these underlying representations, or features, from the data itself. In the

case of unsupervised feature-learning algorithms, these features are learned from unlabeled

data. These feature-learning systems thus present an alternative method of devising very

specialized features for use in the problems of text detection and recognition. Furthermore,

these algorithms allow us to generate much larger and richer sets of features than would

be possible by hand-engineering alone. In turn, these larger feature banks may be used

to achieve higher performance in standard classification algorithms. Indeed, the system in

[8] achieves state-of-the-art performance in character recognition using upwards of 4,000

features learned from an unsupervised learning algorithm.

Many different types of unsupervised feature-learning algorithms have been applied to

various fields across machine learning, such as image classification [42], sentiment analysis

[26], and text recognition [7]. Some of the different types of feature learning algorithms fea-

tured prominently in the literature include restricted Boltzmann machines (RBMs) [16, 19],

sparse autoencoders [14, 33], sparse coding [15, 23, 42], and K-means [8]. One differentiat-

ing factor among these various algorithms is their computational complexity and scalability.

Unfortunately, most of these algorithms tend to be very computationally expensive and can-

not be scaled to work effectively with large images such as those that would be input to

a text detection system. In our work, we employed the variant of the K-means algorithm

described in [7, 8], which is known for its simplicity (requiring almost no hyperparameters)

and speed.

Overall, the ability to automatically extract domain-specific features from the underlying

data provides a viable alternative to the method of hand-engineering that has been the more

traditional approach in machine learning and computer vision. As I demonstrate in this

thesis, the use of these learned features in conjunction with the representational power of

a convolutional neural network enables us to design a high-performing and robust model

with virtually no hand-tuning. As such, this work represents a departure from some of the

more conventional methods that have been applied to the problems of text detection and

recognition.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Input

Layer

Hidden

Layer

Output

Layer

Figure 2.2: A simple feed-forward neural network.

2.3 Convolutional Neural Networks

Thus far in my exposition, I have described some of the existing methods researchers have

used for detection and recognition. In many cases, these methods combine sophisticated

models with cleverly designed features for the problem at hand. In this thesis, my goal is

to illustrate an alternative design that does not require clever, hand-designed features or

very intricate models incorporating vast amounts of prior knowledge. Unsupervised feature-

learning techniques present a viable alternative to the hand-engineering of features. In our

work, we then integrated these learned features into a convolutional neural network [21, 22].

This section provides a brief overview of both neural networks as well as convolutional neural

network (CNN).

2.3.1 Feed-Forward Neural Networks

Before describing the convolutional neural network, I begin with a description of the basic,

or feed-forward, neural network. A more thorough treatment of this material is provided

in [1]. Consider a supervised learning scenario where we are given a set of labeled data{(
x(i), y(i)

)}
. Here, x(i) and y(i) denote the features and label, respectively of the ith training

example. At a high-level then, neural networks provide a way of representing a complex,

nonlinear function hW (x) of our input variable x. The function hW (x) is parameterized by a

weights matrix W that we can tune to fit our data. Figure 2.2 shows a simple neural network

consisting of three input units or neurons, denoted x11, x12, and x13, and one output unit

y = hW (x11, x12, x13).

CHAPTER 2. BACKGROUND AND RELATED WORK 10

A neural network is generally organized into multiple layers. For example, the network

in Figure 2.2 consists of three layers: the input layer, the hidden layer, and the output

layer. As evidenced in the diagram, we also have a set of edges connecting neurons between

adjacent layers. While Figure 2.2 shows a fully connected network where each neuron is

connected to every neuron from the preceding layer, this is not a necessary condition in the

construction of a neural network. The connectivity pattern of a neural network is generally

referred to as the network’s architecture.

Aside from the neurons in the input layer, each neuron xi in the neural network is a

computational unit that takes in as input the values of the neurons from the preceding layer

that feed into xi. As a concrete example, the inputs to the neuron labeled z21 in the sample

neural network is x11, x12, and x13 and the input to y is z21 and z22. Given its inputs, a

neuron first computes a weighted linear combination of those inputs. More precisely, let

x1, . . . , xn denote the inputs to a neuron zj . Then, we first compute

aj =

n∑
i=1

wjixi + bj

where wji is a parameter describing the interaction between zj and the input neuron xi. The

bj term is a bias or intercept term associated with neuron zj . We then apply a nonlinear

activation function [18] to aj . Some common activation functions include the sigmoid and

the hyperbolic tangent functions. In particular, the activation or value of the neuron zj is

defined to be

zj = h (aj) = h

(
n∑

i=1

wjixi + bj

)
where h in this case is our nonlinear activation function. Given a set of input variables x,

and weights W (one term for each edge and a bias term for each node excluding the ones in

the input layer), we can compute the activation of each neuron by following the above steps.

Since the activation of each neuron depends only upon the values of neurons in preceding

layers, we compute the activations starting from the first hidden layer (which depend only

upon the input values) and proceed layer-wise through the network. This process where

information propagates through the network is called the forward-propagation step. At the

end of the forward-propagation step, we obtain a set of outputs y = hW (x). In the case

where we are performing binary classification, we can view the output y as a classification

result for the input x.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

The parameters W in the neural network are comprised of the weight terms for each

of the edges as well as a bias term for each of the nodes, excluding the ones in the input

layer. Given our labeled training set
{(
x(i), y(i)

)}
, the objective is to learn the parameters

W so as to minimize some objective or loss function. In the case where we are performing

binary classification, a simple objective function might the classification error over the entire

dataset (e.g., the mean squared difference between the predicted label ŷ = hW (x) and the

true label y). The standard approach to learning the parameters W in order to minimize the

desired objective is the error backpropagation algorithm [1]. Because the backpropagation

algorithm is a standard approach in the literature on neural networks and is not essential

to understanding the work presented in this thesis, I omit the details here.

2.3.2 Convolutional Neural Networks

With this preparation, I now describe the structure of the convolutional neural network. At

the most basic level, a convolutional neural network is just a multilayer, hierarchical neural

network. There are three principal factors that distinguish the CNN from the simple feed-

forward neural networks described in Section 2.3.1: local receptive fields, weight sharing, and

spatial pooling or subsampling layers. I consider each of these three properties individually

in the context of a visual recognition problem. In particular, suppose that the input to the

CNN consists of a single 32-by-32 image patch. For instance, this input can be a 32-by-32

grid of pixel intensity values.

In the simple neural networks described in Section 2.3.1, each neuron was fully connected

to each of the neurons in the subsequent layer. More concretely, each neuron in the hidden

layer computed a function that depended on the values of every node in the input layer.

In visual recognition, however, it is often advantageous to exploit local substructure within

the image. For example, pixels that are close together in the image (e.g., adjacent pixels)

tend to be strongly correlated while pixels that are far apart in the image tend to be weakly

correlated or uncorrelated. Not surprisingly then, many standard feature representations

used in computer vision problems are based upon local features within the image [9, 24]. In

the CNN architecture, we capture this local substructure within the image by constraining

each neuron to depend only on a spatially local subset of the variables in the previous layer.

For example, if the input to the CNN is a 32-by-32 image patch, a neuron in the first hidden

layer might only depend on an 8-by-8 subwindow within the overall 32-by-32 window. The

set of nodes in the input layer that affect the activation of a neuron is referred to as the

CHAPTER 2. BACKGROUND AND RELATED WORK 12

neuron’s receptive field. Intuitively, this is the part of the image that the neuron “sees.”

Thus, in a CNN, individual neurons generally have a local receptive field rather than a

global receptive field. In terms of network architecture, this translates to a sparser set of

edges since adjacent layers are not always fully connected.

The second feature that distinguishes CNNs from simple neural networks is the fact that

the edge weights in the network are shared across different neurons in the hidden layers.

Recall that each neuron in the network first computes a weighted linear combination of its

inputs. We can view this process as evaluating a linear filter over the input values. In

this context, sharing the weights across multiple neurons in a hidden layer translates to

evaluating the same filter over multiple subwindows of the input image. In this regard, we

can view the CNN as effectively learning a set of filters F = {Fi | i = 1, . . . , n}, each of

which is applied to all of the subwindows within the input image. Using the same set of

filters over the entire image forces the network to learn a general encoding or representation

of the underlying data. Constraining the weights to be equal across different neurons also

has a regularizing effect on the CNN; in turn, this allows the network to generalize better

in many visual recognition settings. Another benefit of weight sharing is the fact that it

substantially reduces the number of free parameters in the CNN, making it markedly easier

and more efficient to train. As a final note, evaluating a filter F over each window in the

input image I amounts to performing a convolution of the image I with the filter F (we

convolve the image I with the filter F). Thus, in the convolutional step of the CNN, we take

the input image and convolve it with each filter in F to obtain the convolutional response

map.

The final distinguishing component in a CNN is the presence of subsampling or pooling

layers. The goal here is twofold: reduce the dimensionality of the convolutional responses

and confer a small degree of translational invariance into the model. The standard approach

is through spatial pooling [2]. In spatial pooling, the convolutional response map is first

divided into a set of m× n blocks (generally disjoint). We then evaluate a pooling function

over the responses in each block. This process yields a smaller response map with dimension

m×n (one response for each block). In the case of max pooling, the response for each block

is taken to be the maximum value over the block responses, and in the case of average

pooling, the response is taken to be the average value of the block responses. Figure 2.3

shows an example of average pooling. In this case, the convolutional response map is a

4-by-4 grid and we average pool over four 2-by-2 blocks (the shaded regions in Figure 2.3)

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Convolutional

Responses

Pooled

Responses

2

2

1

7

4

4

3

5

6

6

5

3

8

8

7

1

Region I Region II

Region III Region IV

3

4

7

4

Region I

Average

Region II

Average

Region III

Average

Region IV

Average

Figure 2.3: Average pooling in a convolution neural network. In this case, we average pool
over a 2-by-2 grid over the 4-by-4 convolutional responses. The shaded regions denote the
blocks over which we are average pooling. We compute the average over the values in each
block, yielding the 2-by-2 pooled response map shown on the right.

arranged in a 2-by-2 grid. The pooled response is taken to be the average of the values in

the block. After applying this average pooling procedure, we arrive at a final 2-by-2 pooled

response map. Compared to the original 4-by-4 convolutional response map, this represents

a significant reduction in dimensionality of the response map.

In a typical CNN, we have multiple layers, alternating between convolution and pooling.

For example, we can stack another convolution-pooling layer on top of the outputs of the

first convolution-pooling layer. In this case, we simply treat the outputs of the first set

of convolution-pooling layers as the input to the second set of layers. In this way, we can

construct a multilayered or deep architecture. Intuitively, the low-level convolutional filters,

such as those in the first convolutional layer, can be thought of as providing a low-level

encoding of the input data. In the case of image data, these low-level filters may consist of

simple edge filters. As we move to higher layers in the neural network, the model begins to

learn more and more complicated structures. By using multiple layers and large numbers

of filters, the CNN architecture can thus provide vast amounts of representational power.

To train a CNN, we can use the standard technique of error backpropagation used to train

neural networks [1].

Convolutional neural networks have enjoyed a series of successes in many problems

related to text classification such as handwriting recognition [21], visual object recognition

[4] and character recognition [35]. Coupled with the rapid advancements in distributed and

CHAPTER 2. BACKGROUND AND RELATED WORK 14

GPU (graphics processing units) computation, it is now possible to train much larger and

more powerful CNNs that achieve state-of-the-art performance on standard benchmarks

[4, 27]. Thus, by leveraging the representational capacity contained within these networks

in conjunction with the robustness of features derived from unsupervised algorithms, we

are able to construct simple, but powerful and robust, systems for both text detection

and recognition. Using these robust and highly-accurate components renders it possible to

obtain full end-to-end results using only the simplest of post-processing techniques.

Chapter 3

Methodology

In this chapter, I first describe the learning architecture used to train our text detection

and recognition modules. These were the essential building blocks of our full end-to-end

system. I then describe how we integrated these two individual components into a complete

end-to-end system.

To provide context, I begin with a high-level description of our text recognition system.

Our system consisted of two principal modules: the text detector and the character classifier.

To construct the text detector, we first trained a binary classifier that decided whether a

single 32-by-32 image patch contained a well-centered character or not. To compute the

detector responses over a full image then, we took this binary classifier and evaluated its

response over every 32-by-32 window in the image. By using this sliding-window approach

where we essentially slid the fixed-size detection window across the full image, we identified

candidate lines and groups of text. Next, we trained a character classifier that decided

which of 62 possible characters (26 uppercase letters, 26 lowercase letters, 10 digits) was

present in a 32-by-32 input patch. Note that by construction, the character classifier always

assumed that the input image patch contained a single character; in particular, we did not

introduce a non-character class. Then, by sliding the character classifier across the regions

of text identified by the text detector, we identified the characters in each region or line.

Finally, using a beam search algorithm, we combined the outputs from the text detection

and character recognition modules to obtain the final end-to-end results: a set of annotated

bounding boxes for the words in the image. Figure 3.1 provide a simple illustration of this

recognition pipeline.

15

CHAPTER 3. METHODOLOGY 16

Text

Not Text

Detector

Detector

Recognizer H

Figure 3.1: Operation of detection and recognition modules. The detector decides whether
a single 32-by-32 image patch contains text or not. The recognizer identifies the character
present in a text-containing input patch.

3.1 Detection and Recognition Modules

In this section, I elaborate on the construction of the text detection and recognition modules,

and conclude with a few remarks on the datasets used to train the detector and recognizer.

At the most fundamental level, both the text detector and character recognizer consisted

of a two-layer convolutional neural network. In both cases, we first applied an unsupervised

feature-learning algorithm to learn a set of low-level features to represent the data. Armed

with this low-level representation, we trained the neural network discriminatively by back-

propagation of the L2-SVM classification error.

3.1.1 Unsupervised Pretraining

First, we used an unsupervised learning algorithm similar to [7, 8] to extract features for

use in the first convolutional layer of the CNN. Our specific goal was to develop a robust

low-level representation of the input data (a single 32-by-32 image patch). We followed the

basic procedure outlined below.

1. We began by extracting a set of m small image patches from the training set. As in

[7], we used 8-by-8 grayscale patches. Each such image patch can be regarded as a

vector of 8 × 8 = 64 pixel intensity values. Thus, we obtained a set of m vectors of

pixels x̃(i) ∈ R64, i = 1, . . . ,m.

CHAPTER 3. METHODOLOGY 17

2. We then normalized each vector x̃(i) for brightness and contrast by subtracting the

mean and dividing by the standard deviation. This process yielded a set of normalized

vectors x̂(i):

x̂(i) =
x̃(i) − µx̃i

σx̃i

where µx̃i and σx̃i denote the mean and standard deviations of x̃i, respectively.

3. Next, we centered and whitened the normalized vectors x̂(i) using ZCA whitening

[17] to obtain a new set of vectors x(i). More specifically, given normalized data

x̂(1), . . . , x̂(m), we computed the mean M and covariance Σ along each component.

We then took the eigendecomposition of Σ = V DV T , where V is the orthogonal

matrix consisting of the eigenvectors of Σ and D is the diagonal matrix consisting

of the eigenvalues of Σ. Mathematically, the centering and whitening transforms are

given by

x(i) = V D−1/2V T
(
x̂(i) −M

)
= P

(
x̂(i) −M

)
where P = V D−1/2V T . This step essentially had the effect of decorrelating adjacent

pixels in the image.

4. We then applied an unsupervised learning algorithm to the preprocessed patches x(i)

to construct a mapping from the input patches to feature vectors z(i) = f(x(i)).

For our unsupervised feature-learning algorithm, we used the variant of the K-means

algorithm described in [7] where we learn a dictionary D ∈ R64×d of normalized basis

vectors. In this case, the mapping f is simply the projection of x(i) onto the subspace

spanned by the columns of D: z(i) = f
(
x(i)
)

= DTx(i). Note that d represents the

number of basis vectors or filters in the dictionary D (recall that our input patches

x(i) ∈ R64 so the dictionary D has dimension 64 × d). In our particular setup, we

learned d = 96 filters for use in the text detection module and d = 115 filters for

use in the character recognition module. To compute D, we solved the following

optimization problem:

minimize
∑m

i=1

∥∥Ds(i) − x(i)∥∥2
2

subject to
∥∥s(i)∥∥

1
=
∥∥s(i)∥∥∞ , i = 1, . . . ,m∥∥D(j)

∥∥
2

= 1, j = 1, . . . , d.

As in [7], the minimization was performed over the variables D and s(i). In this

CHAPTER 3. METHODOLOGY 18

Figure 3.2: A visualization of the dictionary elements learned from whitened grayscale
8-by-8 image patches.

optimization problem, the x(i) represent the preprocessed input examples, and the

s(i) represent the scaled canonical basis vectors (the constraint
∥∥s(i)∥∥

1
=
∥∥s(i)∥∥∞

forces each s(i) to have at most one non-zero component). The second constraint in

the optimization problem is simply the normalization condition on the columns D(j)

of D where j = 1, . . . , d. Thus, we effectively approximate each example x(i) using

a scalar multiple of one of the basis vectors (one of the columns of D). As in the

standard K-means algorithm [1], we solved the optimization problem by alternately

minimizing the objective over D given the encodings s(i) and minimizing the objective

over s(i) given the dictionary D.

Figure 3.2 presents a visualization of the set of basis vectors learned using the above method.

Visually, these features are not significantly different from the typical set of edge filters

learned by other unsupervised algorithms [16, 17].

Using D, we proceeded to define the feature representation for a single 8-by-8 image

patch x̃. First, we applied the same normalization and whitening transforms from Step 3

above to obtain x:

x = P

(
x̃− µx̃
σx̃

−M
)
.

Next, we projected x onto the vector space spanned by the columns of D to obtain a new

representation z′ ∈ Rd. More precisely, we computed z′ = DTx. As will be described in

Section 3.1.2, the filters in the dictionary D were used as the filters in the first convolutional

layer of the CNN. Thus, as was standard in the literature on neural networks, we applied a

CHAPTER 3. METHODOLOGY 19

32×32 25×25×96 5×5×96 4×4×256 2×2×256

Convolution
Average Pooling

Convolution
Average Pooling

Classification

[Non-Text]

[Text]

Figure 3.3: Convolutional neural network used for detection. An analogous network is used
for recognition.

nonlinear activation function to the responses z′. Here, we adopted the activation function

used in [7]:

z = h(z′) = max
{

0,
∣∣z′∣∣− α} = max

{
0,
∣∣DTx

∣∣− α} ∈ Rd

where α is a hyperparameter. For all experiments described in this thesis, we took α = 0.5.

3.1.2 Convolutional Neural Network Architecture

For both the text detection and character recognition modules, we used a two-layer, convo-

lutional neural network similar to [21, 35]. As discussed in Section 2.3.2, each layer of the

CNN consisted of a convolutional layer, followed by a spatial pooling layer. The outputs of

the second spatial pooling layer fed into a fully connected classification layer that performed

either binary classification in the case of the text detection module or 62-way classification

in the case of the character recognition module.

The CNN we used for text detection is shown in Figure 3.3; a larger, but structurally

identical network was used for character recognition. As mentioned at the beginning of

Chapter 3, the input to both the detector and the recognizer consisted of a single 32-by-32

grayscale image patch. In the first convolutional layer, we used the encoding described in

Section 3.1.1. More precisely, for every 8-by-8 subwindow x̃ in the input image, we first

normalized and whitened it to obtain an 8-by-8 patch x. Using x, we then computed the

activated response z = h
(
DTx

)
= max

{
0,
∣∣DTx

∣∣− α}. By evaluating the activation over

each 8-by-8 subwindow, we thus obtained the final 25-by-25-by-d representation of the input

image. In the case of text detection, we used a dictionary of d = 96 basis vectors and in

the case of character recognition, we used a dictionary of d = 115 basis vectors in the first

CHAPTER 3. METHODOLOGY 20

layer. Note that to efficiently compute this representation, we convolved the input image

with each of our basis elements or filters.

We next introduced a spatial pooling layer [2] on top of the convolutional layer. As

done in [7], we used average pooling which both reduced the dimensionality of the response

map as well as conferred a degree of translational invariance to the model. More precisely,

in the first average-pooling layer, we averaged over the activations of 25 blocks arranged in

a 5-by-5 grid over the 25-by-25-by-d response map from the first convolutional layer. As

expected, this process yielded a 5-by-5-by-d response map.

We then stacked an additional layer of convolution and average pooling on top of the

outputs from this first layer. In this second convolutional layer, we used a set of 2-by-2-

by-d filters. As was the case in the first layer, we convolved each 2-by-2-by-d filter with

the 5-by-5-by-d response from the first layer. After performing these convolutions, we

arrived at a 4-by-4-by-d2 response map where d2 denotes the number of filters used in the

second convolutional layer. In the case of detection, we used d2 = 256 filters, and in the

case of recognition, we used d2 = 720 filters. We used a larger number of filters in the

case of recognition because the recognizer was performing 62-way classification rather than

binary classification as in the case of the detector. Thus, to achieve similar performance, the

character recognizer required greater expressive power, and correspondingly, a larger number

of filters. As was the case in the first convolutional layer, we again applied the activation

function h to the convolutional responses in the second layer. Finally, we averaged over the

responses over four blocks arranged in a 2-by-2 grid over the image, yielding a final 2-by-

2-by-d2 representation as the output of the second layer. This 2-by-2-by-d2 representation

served as the input to a one-versus-all, multiclass support vector machine (SVM). In the

case of detection, the SVM performed binary classification and in the case of recognition,

62-way classification.

To discriminatively train the CNN, we minimized the L2-SVM classification error. Given

a training set
{(
x(i), y(i)

)}
1≤i≤n with inputs x(i) ∈ Rn and output labels y(i) ∈ {0, 1}, the

standard L2-SVM optimization problem is

minimize 1
2 ‖w‖

2
2 + C

∑n
i=1 ξ

2
i

subject to y(i)
(
wTx(i) + b

)
≥ 1− ξi

ξi ≥ 0

where we minimize over the weights w ∈ Rn and the bias b ∈ R. Here, C > 0 is the

CHAPTER 3. METHODOLOGY 21

standard SVM regularization parameter that controls the tradeoff between classification

error minimization and margin maximization [1]. Equivalently, we may formulate this as

an unconstrained optimization problem with a hinge loss objective:

minimize 1
2 ‖w‖

2
2

+ C
n∑

i=1

[
max

{
0, 1− y(i)

(
wTx(i) + b

)}]2
.

We then applied error backpropagation [1] to fine-tune, or update, the weights of the CNN

so as to minimize this objective. Note that we only fine-tuned the parameters in the classi-

fication layer and the second set of convolutional and average-pooling layers. The first layer

of filters, namely the pretrained ones, were kept fixed throughout the process. This was

motivated by the fact that K-means features tended to work well as a low-level encoding of

the data [7, 8] as well as the fact that it was computationally less intensive to train only a

subset of the layers in the CNN.

It is important to note that due to the relatively large networks we were using, we

performed the fine-tuning over multiple graphics processing units (GPUs) in a distributed

setup. The use of GPUs and distributed computing is gradually becoming commonplace in

large-scale machine learning [4, 6] and is often essential to constructing and training larger,

more powerful, representational models.

3.1.3 Datasets

Before proceeding to a discussion of the end-to-end integration process, I briefly describe

the datasets used to train both the text detector and character recognizer. In the case of the

text detector, we defined a“positive”example to be a single 32-by-32 image patch containing

a well-centered character (some examples are shown in Figure 3.4). Examples where the

character was off-center or just contained parts of a character were taken to be negatives.

This distinction provided a relatively unambiguous definition of what constituted a positive

example. By training the detector using this definition of “positive” and “negative,” the

detector was thus able to select for and identify windows containing well-centered characters.

This detail played an important role later in the space estimation process described in

Section 3.3.1.

In much of the recent literature in text recognition, researchers have augmented their

datasets with synthetic training examples in order to improve model performance [7, 30, 38].

Likewise, in our system, we generated high quality synthetic training images using a total

CHAPTER 3. METHODOLOGY 22

(a) Examples from ICDAR 2003 (b) Synthetically Generated Examples

Figure 3.4: Comparison of training images from the ICDAR 2003 dataset and synthetically
generated examples.

of 665 fonts for training both the text detector and character recognizer1. To construct

the synthetic examples, we first sampled the grayscale level of the character as well as the

background from Gaussian distributions with the same mean and standard deviation as

the examples in the ICDAR 2003 training images [25]. We then applied small amounts of

Gaussian blurring and projective transformations to random portions of the image. Finally,

we blended the synthesized images with natural backgrounds to simulate background clutter.

A comparison of our synthetically generated examples with actual training examples from

the ICDAR 2003 training images is shown in Figure 3.4.

Last, to train the detector and recognizer, we compiled a dataset consisting of examples

drawn from the ICDAR 2003 training images [25], the English subset of the Chars74k

dataset [10], and a very large number of synthetically generated examples. In training the

detector and recognizer, we used over 100,000 examples in total.

3.2 Text Line Detection

In this section, I describe the process of generating a set of candidate lines of text given a

high-resolution input image. I begin with a high-level overview of our process. First, we

took the text detector and ran sliding-window detection across the image. This yielded a

response map that encoded the likelihood of text occurring at every 32-by-32 window in the

image. We repeated this process at multiple scales of the image to obtain a set of multiscale

1Note that the synthetic data generator described here was largely the work of Tao Wang. I present the
key details to provide useful context for the subsequent sections of this thesis.

CHAPTER 3. METHODOLOGY 23

response maps. From these response maps, we inferred and scored a set of bounding boxes

for candidate lines of text in the original image. We then applied non-maximal suppression

(NMS) [29] to this set of candidate bounding boxes to obtain our final set of bounding

boxes.

3.2.1 Multiscale Sliding Window

Given a high-resolution input image (resolutions typically ranged from 640-by-480 pixels

to 1600-by-1200 pixels), we began by evaluating the detector response for every 32-by-32

window in the image. This kind of sliding-window detection has proven to be effective in

a wide variety of related vision tasks, such as pedestrian detection [9] or face recognition

[37]. Computing the detector response for every 32-by-32 window in the image amounted

effectively to a forward propagation step in the CNN used for detection. Thus, the detector

effectively assigned a score or confidence to each window in the image. More concretely,

a large positive score from the detector translated to a higher degree of confidence that

the window contained text and a large negative value from the detector translated to a

low degree of confidence that the window contained text. Note that according to our

specifications outlined in Section 3.1.3, for a window to “contain text,” the window must

contain a well-centered character.

Because the detection window was fixed at 32-by-32 pixels, detecting text at different

scales required us to apply this sliding-window process to multiple scales of the image.

Specifically, we considered both upsampling and downsampling the image in order to cap-

ture text at a wide range of scales. In total, we used 13 different scales, ranging from as high

as 150% the size of the original image to as low as 10% the size of the original image. For

example, a 32-by-32 detection window oven an input image at 50% scale would translate to

a 64-by-64 detection window over the original image. By performing this sliding-window de-

tection at each of these scales, we obtained a multiscale response map. Figure 3.5 illustrates

an example of this multiscale sliding-window response process.

3.2.2 Text Line Formation

With the multiscale response map for an input image, we were able to compute bounding

boxes for each line of text in the image. To do so, we first made the simplifying assumption

that text tends to lie along horizontal lines in natural images. This was generally a rea-

sonable assumption since most of the text in natural images do indeed fall along horizontal

CHAPTER 3. METHODOLOGY 24

40%

90%

(a) Original image. Numbers denote scale of detection windows.

(b) Response map at 40% scale.

(c) Response map at 90% scale.

Figure 3.5: Detector response maps at different scales. The top image shows the effective
size of the detector window on the original image (a 32-by-32 detection window applied
to an image at 50% scale translates to a 64-by-64 window applied to the image at normal
scale). The bottom two images show detector response maps at two different scales. In the
response maps, the brightness of a pixel measures the detector’s confidence for a window
centered at that position. Thus, a black pixel indicates a negative prediction and a white
pixel indicates a positive prediction. In particular, note that the response map at 40% scale
appears to capture the words SLUSH PUPPIE while the response map at 90% scale appears
to capture the words AS COOL AS IT GETS. Finally, note that because the CNN is invariant
to small translations, we tend to see clusters of positive responses around the locations of
each character.

CHAPTER 3. METHODOLOGY 25

−4

−2

0

2

4

6
Re

sp
on

se

(a) Detector responses across
a centered line of text.

Re
sp
on

se

−3

−2

−1

0

1

(b) Detector responses across
an uncentered line of text.

0

1

2

3

4

5

6

Re
sp
on

se

(c) Non-maximally
suppressed responses
across a single line of text.

Figure 3.6: Detector and NMS responses across lines in the image.

or slightly slanted lines. The detector responses across a single line in the image (e.g., a

32-by-w window where w is the width of the image) corresponded to a single row in the

response map for the image. Figures 3.6a and 3.6b show the detector responses across two

different lines in the input image. From these examples, we noted two things. First, the

detector responses across a line of centered text tended to be positive, while those across a

line of uncentered text tended to be negative. This particular behavior from the detector

was expected because we had defined a positive example to be a window containing a well-

centered character. Thus, windows where the character was only partially visible, such as

those in the line of uncentered text, would not have produced a positive signal. Second, we

noted that the peaks of the detector responses generally corresponded to the positions of

the characters in the line of text. Again, this particular behavior was not surprising in light

of our particular definition of what constituted a positive example.

Because a line of text would generally contain multiple characters and characters gener-

ally appeared as peaks in the detector response profile across a line, we applied non-maximal

suppression (NMS) [29] to the response profile to identify the peaks. Then, given the num-

ber of peaks that occurred in a line along with the magnitudes of the peak responses, we

could decide whether the line contained text or not. More precisely, let R(x) denote the

detector response at every position x along a single line. From R(x), we constructed the

non-maximally suppressed response R′(x) by computing

R′(x) =

R(x) R(x) ≥ R(y), ∀y : |x− y| < δ

0 otherwise

CHAPTER 3. METHODOLOGY 26

where δ is the width of the interval over which we performed NMS. We chose δ by cross-

validation. Intuitively, NMS filtered out all responses that were not maximal in their im-

mediate neighborhood. An example of NMS applied to a centered line of text is shown in

Figure 3.6c.

Using the NMS responses across a single line, we computed the average peak response

R̄peak and compared it to a fixed threshold τ . If R̄peak exceeded the threshold τ , then the

line was taken to be a positive (contains text), and if R̄peak was below the threshold, then

we disregarded the line (does not contain text). If the line contained text, then we took the

positions of the left and rightmost peaks in the NMS response map to be the extents of the

bounding box for the text in that line. As usual, we selected τ by cross-validation. There

were two potential problems with this method of bounding box estimation. First, there

were cases where two or more groups of words resided on the same line, but were separated

by a large gap or non-text region. One example of this is shown in Figure 3.7. In this case,

the words Ipswich and London roughly reside on the same line, as do Gt Yarmouth and

Chelmsford. However, it does not make sense to have one large bounding box spanning the

width of the image; there are clearly two regions of text in this line.

Another problem was the fact that the response maps could contain many false positives,

and in turn, produce spurious peaks in the NMS response across a line. This caused non-text

regions to be misidentified as text regions. What distinguished these spurious detections

from those corresponding to a true region of text was the variance of the spacing between

peaks in the NMS profile. In a typical line of text, the spacing between characters tends to

be consistent; correspondingly, the spacing between peaks would tend to be roughly uniform.

Not surprisingly, the spacing between spurious peaks did not exhibit this uniformity. Thus,

we exploited this consistency to both distinguish between groups of words that reside along

the same line as well as filter out some of the spurious responses. In particular, we computed

the distance between adjacent peaks from the NMS profile across the line. We then took

the median m of these peak separation distances. If the separation distance between two

adjacent peaks exceeded some scalar multiple of the median distance m, then we split the

line at that peak. If either of the two resultant segments contained just a single peak after

the split, then we discarded that segment altogether. This was because it was far more

likely for a single, isolated peak to be due to a spurious detection response than to a single,

isolated character in the image.

I illustrate this line-splitting process with a more concrete example. Consider again the

CHAPTER 3. METHODOLOGY 27

Figure 3.7: Estimated bounding boxes from text detector after all post-processing steps.
There are two things to notice. First, the bounding boxes capture groups of words such
as Leisure World or Town Centre. Word-level segmentation is done during end-to-end
integration. Secondly, words that appear on the same “line” such as Ipswich and London

are split into two boxes because of the large gap between the last character in Ipswich and
the first character in London.

image in Figure 3.7. In particular, focus on the line containing Ipswich and London. The

NMS profile in this line would contain peaks for the characters in Ipswich as well as for

London. In the region between the two words, however, there are no significant activations.

Thus, the median distance between peaks would be comparable to the distance between

adjacent characters in the words Ipswich and London. Thus, when we consider the peaks

across the line, we would observe a large gap between the peak corresponding to the last

character in Ipswich and the peak corresponding to the first character in London. As a

result, we split the line into two segments, one ending on the last character in Ipswich and

the other starting from the first character in London (the location of the next peak in the

line). Thus, we see that this heuristic has the desired effect of partitioning the line into

groups of words. In cases where there are spurious responses, the peaks would tend to stand

isolated in the NMS profile across a line and thus, be filtered out as part of this process.

Next, given a single or a set of bounding boxes for a line, we scored each bounding box by

averaging the magnitudes of the peaks contained within the bounding box. As noted earlier,

strong peak responses were indicative of higher confidence that a character was present at

the underlying position. Thus, higher scores generally corresponded to better-fitting boxes.

CHAPTER 3. METHODOLOGY 28

We applied the above line-finding and splitting algorithm to each of the response maps

to estimate bounding boxes at each scale of the image. More concretely, we applied another

iteration of non-maximal suppression to the set of bounding boxes over all the different

scales in order to obtain the final set of bounding boxes. In this particular case, given two

bounding boxes B1 and B2, possibly from different scales, and corresponding scores s1 < s2,

we suppressed the box with lower score (B2 in this example) if

|B1 ∩B2|
min {|B1| , |B2|}

>
1

2

where |B1|, |B2| denotes the areas of B1 and B2, respectively, and |B1 ∩B2| denotes the

area of the intersection of B1 and B2. In words, we suppressed the bounding box with the

smaller score if the bounding box significantly overlapped with another bounding box with

higher score. After performing NMS, we arrived at a final set of estimated bounding boxes

for the lines of text in the image. Figure 3.7 shows a sample image together with a set of

bounding boxes for the detected lines and groups of words.

3.3 End-to-End Integration

In the preceding section, I described a method for identifying candidate lines and groups of

text from an image using a multiscale, sliding-window approach. In this section, I complete

the discussion by presenting our method of obtaining final end-to-end text recognition results

from these candidate bounding boxes. At a high-level, this process consisted of three steps.

First, given a bounding box, we estimated where the word boundaries were within the

bounding box. Next, using the character recognizer, we identified the characters that occur

within the bounding box. Finally, using both the estimated locations of the word boundaries

(spaces) as well as the identities of the characters along this line, we used a beam search

to jointly determine the most likely segmentation of the line into words as well as the

identity of the individual words within each segment. This overall process resulted in a set

of annotated bounding boxes for the image. Figure 2.1 shows a sample image along with

the set of annotated bounding boxes returned by our system.

CHAPTER 3. METHODOLOGY 29

3.3.1 Space Estimation

The first step towards obtaining an end-to-end result was to identify the word boundaries

in a line of text. To do so, we leveraged the same technique used to identify candidate lines

of text described in Section 3.2.2 where we examined the detector response profile across

a single line of text. Furthermore, as was described in Section 3.1.3, the text detector was

trained to select for images of well-centered characters. In particular, images where the

characters were only partially visible or off-centered were taken to be negative examples.

Thus, a window centered on a space between characters should produce a negative response.

Noting this, we were able to estimate the locations of the spaces by considering the inverse

or negative detector response across a line of text. Just as we selected for the positive peak

responses in order to locate characters in a line, we selected for the negative peak responses

across a line to identify spaces. More precisely, we applied NMS to the negative responses

across a line.

Unfortunately, it was difficult to distinguish between a space between two individual

characters and a space between two individual words. In natural images, there tends to be

high variability in the types of fonts and styles that can be present, and so, correspondingly,

there is a high degree of variation in the amount of spacing that exist between words and

between characters. In general, however, the amount of spacing between two words tends to

be larger than the amount of spacing between two characters. Thus, to reduce the number

of false positives (mistaking a space between two characters for a space between two words),

we further imposed a threshold on the peak responses. In this case, from the negative NMS

response profile R̃′(x), we computed R′(x) = max
{
R̃′(x)− τ, 0

}
where τ is a threshold

parameter selected through cross-validation to offer a good tradeoff between number of

false positives (too low threshold) and number of false negatives (too high threshold). After

applying NMS, the non-zero entries in the thresholded NMS response R′(x) corresponded

to the predicted word boundaries in the line. The magnitudes of these peaks were used as

confidences or scores for the prediction. In other words, larger peaks at a position x in the

response profile indicated a higher likelihood that there was a space at position x in the

line. Figure 3.8 illustrates an example of this space-estimation process.

CHAPTER 3. METHODOLOGY 30

−4

−2

0

2

4

−6

N
eg

at
iv

e
Re

sp
on

se

(a) Negative detector responses across a
line of text.

0

1

2

3

4

N
eg

at
iv

e
Re

sp
on

se

(b) Thresholded negative NMS
response.

Figure 3.8: Negative responses across a line of text. Because it is difficult to distinguish
between a space between two characters and a space between two words, this method tends
to produce false positives. For instance, in the above image, we have a small peak between
the C and the A in CAR.

3.3.2 Cropped Word Recognition

The next two sections conclude the discussion of the full end-to-end system by describing

how we integrated the text detection and space estimation procedures with the character

recognition module. Note that most of the work described in this section and the following

section was done by Tao Wang; I include it here to provide necessary context.

I begin by describing a more constrained setting where we were provided a well-cropped

bounding box containing a single word. Furthermore, we assumed that we were provided a

lexicon L containing the words that could appear in the bounding box. The goal in this word-

recognition task was to identify the word that appeared in the bounding box. Our approach

in this problem was very similar to the approach we took in detection. In particular, we used

sliding window classification, in which we slid the character classifier across the confines of

the bounding box. Because we were provided a word-level bounding box in this scenario,

we only needed to slide the character classifier horizontally across the bounding box. This

was in contrast to the case of detection where we needed to slide the binary classifier

both vertically and horizontally across the full image. At each horizontal position in the

bounding box, the character classifier produced a 62-way classification response (sample

shown in Figure 3.9). As usual, a positive prediction (the window contained a character of

that class) was encoded by a positive response, and a negative prediction was encoded by a

CHAPTER 3. METHODOLOGY 31

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

Class
Re

sp
on

se

Figure 3.9: 62-way character classifier response for a single 32-by-32 image patch.

negative response.

Evaluating the character classifier response at every point in the bounding box yielded

a 62-by-N scoring matrix M . In this expression, N denotes the number of sliding windows

contained within the bounding box. Intuitively speaking, a larger value of M(i, j) indicates

a higher likelihood that the character with class i appears at the position of the jth window.

At each position j, we defined the confidence margin cj to be the difference between the

largest and second largest values in M (j) where M (j) denotes the jth column of M . For

example, a large confidence margin cj indicates that the classifier is fairly certain of the

class of the character in the jth window (e.g., there is only one dominant peak), while a

small confidence margin indicates more uncertainty (e.g., there are at least two peaks with

similar magnitude, so it is unclear to which class the character belongs). In this way, we

computed the confidence margin for each window in the bounding box to obtain a response

profile c = (c1, c2, . . . , cN). As in the case of detection, the peaks in c corresponded to

windows where the character was well-centered and thus, produced the largest confidence

margin. We then selected for these peaks using NMS. More concretely, from the confidence

margin c, we computed

c′j =

cj cj ≥ ci, ∀i : |j − i| ≤ δ

0 otherwise
.

Note that we did not use the peaks from the detection profile to estimate the locations of

each characters since the window that maximally activated the detector did not necessarily

CHAPTER 3. METHODOLOGY 32

coincide with the window that had the greatest confidence margin with respect to the

character recognizer. Since the goal was to identify the characters in the word, relying on

the classifier responses was the more appropriate choice.

Using the non-maximally suppressed confidence margins c′, we were able to estimate

the location of each character in the bounding box. Then, for each position j, if c′j = 0, we

set the entries in M (j) to −∞. In other words, if there was no character at position j in the

bounding box, we effectively eliminated that column from the matrix M . We did this by

assigning a score of −∞ to each class. With this preparation in hand and given a lexicon

L, we defined the alignment score Sw
M of a word w ∈ L with respect to the modified score

matrix M (the original score matrix with the non-character columns set to −∞) to be

Sw
M = max

`w∈Lw

 |w|∑
k=1

M (wk, `
w
k)

 .

In the above, `w is a |w|-dimensional alignment vector of the characters in w with the

columns in M . As a more concrete example, suppose w = CAT. Then `w2 = 6 means that

the 2nd character in w (‘A’) is aligned with the 6th column in M , or equivalently, the 6th

sliding window within the provided word-level bounding box. Furthermore, since `w is an

alignment vector, it must satisfy the ordering constraints: `wk < `wk+1 for all k = 1, . . . , |w|−1.

The term M (wk, `
w
k) is precisely the classifier response for class wk at position `wk in the

word-level bounding box; this reflects how likely the character at position `wk is actually wk.

To compute the final score between a word and the scoring matrix, we took the maximum

score over the set Lw of possible alignments of the characters in w with the columns in

M . For a given word w and score matrix M , computing Sw
M was done using an efficient

Viterbi-style dynamic programming algorithm similar to the one presented in [36].

To improve the scoring metric defined above, we also introduced a few terms to encourage

geometric consistency of the alignment. For instance, we noted that while the spacing

between characters was not consistent across different images, the spacing tended to be

consistent within a single word. We thus introduced a penalty term that was proportional to

variations in the character spacings within a word. Introducing these additional consistency

factors, we arrived at the augmented recognition score Ŝw
M . Then, for all words w in the

lexicon L, we computed the augmented alignment score Ŝw
M and labeled the bounding box

CHAPTER 3. METHODOLOGY 33

with the highest scoring word w?:

w? = arg max
w∈L

Ŝw
M .

3.3.3 Full End-to-End Integration

This section describes how we jointly performed segmentation and recognition on a line or

a group of words. Recall from Section 3.2 that the output of the text detector generally

consisted of a line of text or a group of words. Then, in Section 3.3.1, I described how we

estimated a set of candidate spaces for the groups of words identified by the text detector.

In order to integrate the detection and classification components into a complete end-to-

end system, we first assumed that for each bounding box B computed by the text detector,

the true segmentation of the words in B could be constructed from the set S of estimated

spaces for the bounding box. In other words, if there were multiple words contained in B,

then the space between every adjacent pair of words in B must be contained in the set S

of estimated spaces. Thus, it was acceptable for S to be an over-segmentation (contain a

space at a location that does not contain a space in the ground truth), but not an under-

segmentation (miss a space between two words) of the words in B. With this assumption, we

were able to systematically evaluate different word-level segmentations using a beam search

[34], a variant of breadth-first search that explores the top N possible partial segmentations

of the line or group of words according to some heuristic score. In our case, we took the

heuristic score of a candidate segmentation to be the sum of the augmented alignment

score (described in Section 3.3.2) over each individual segment. By searching over this

set of possible segmentations as allowed by the list of candidate spaces, we were able to

recover the true segmentation of the words in the bounding box. To deal with possible false

positives from the text detection stage, we also thresholded individual segments based upon

their alignment scores. Segments with low recognition scores were thus filtered out as being

“non-text.” At the end of the beam search, we thus obtained a segmentation of the words

in the bounding box, along with the identity of the words in each segment. In this manner,

we achieved complete end-to-end recognition.

CHAPTER 3. METHODOLOGY 34

3.3.4 Recognition without a Specialized Lexicon

Much of the work described so far has hinged on the existence of a lexicon. As elaborated

upon in Section 2.1, specialized lexicons are available in many different scenarios. Nonethe-

less, a truly general system should not make the assumption that a specialized lexicon would

always be available. In this section, I describe how we generalized our system to the setting

where we do not have access to a specialized lexicon.

One approach to generalizing the system to the case where a specialized lexicon is not

readily available is to simply use the entire English dictionary, perhaps augmented with

a list of common names, abbreviations, and proper nouns, as the lexicon. However, if we

apply the method described in Sections 3.3.2 and 3.3.3, computing the alignment score for

each candidate segment requires a full pass over the lexicon. Thus, using the full English

language as the lexicon would not be computationally feasible. We therefore considered an

alternative approach.

Our approach was to construct a lexicon by leveraging a spell-checking system. As in

the lexicon-constrained setting, we first ran the text detection system to obtain a candidate

set of bounding boxes for the regions of text in the image. For each bounding box, we

computed the character classifier responses across the bounding box. As in Section 3.3.2,

we next applied NMS to the character classifier responses in order to estimate the locations

of each character in the bounding box. We then extracted the most-likely character at each

of these identified positions and concatenated the corresponding characters together to form

our initial guess for the underlying word. We next provided the candidate word to Hunspell,

an open source spell-checker2 to obtain a set of possible corrections. Note that in practice,

we augmented the default Hunspell English lexicon with lists of common names, places,

and other proper nouns that tended to occur in natural images. Using Hunspell then, we

were able to obtain a set of suggested words, which we used to dynamically construct a

lexicon. Armed with this lexicon, we simply applied the algorithm described in Section

3.3.3 to obtain our final end-to-end results. Using this method, we were able to extend our

system to work in more general environments where we did not have access to a specialized

lexicon.

2Hunspell is available for download at http://hunspell.sourceforge.net/.

Chapter 4

Experiments

In this chapter, I describe our evaluation of the text detection, character recognition, and

the full end-to-end system. In addition, I show how our systems compare to other text

recognition systems when measured against standard benchmarks. For all of these experi-

ments, we evaluated our end-to-end recognition system on the ICDAR 2003 Robust Reading

[25] and Street View Text (SVT) [38] datasets.

Before proceeding to the evaluation results, I briefly describe the characteristics of our

particular evaluation sets. The ICDAR dataset is a fairly standard dataset used to assess

text detection and recognition systems. The ICDAR images are taken from multiple sources,

and include images of book covers, street signs, as well as store signs. On the other hand,

the SVT dataset consists of images taken from Google Street View. As a result, images from

this dataset tend to exhibit much higher variability and oftentimes have lower resolution

compared to the images in the ICDAR dataset. Because of the increased variability and

lower resolution, recognition over the SVT dataset is a much more challenging task compared

to recognition over the ICDAR dataset. At the same time, compared to the ICDAR dataset,

the SVT dataset is a much better approximation of the kinds of real-life conditions under

which which a text recognition system would operate. As an additional note, the SVT

dataset is designed purposefully for lexicon-driven end-to-end text recognition; as such, a

lexicon is included with each image. One caveat, however, is that not all of the text in the

image is represented in the lexicon. The goal on this dataset is to only identify the words

in the image that appear in the lexicon. Other words that appear in the scene, but not in

the lexicon should not be identified. An example of an image from the SVT dataset along

with its ground truth annotations is shown in Figure 4.1.

35

CHAPTER 4. EXPERIMENTS 36

Figure 4.1: Sample example from the Street View Text dataset [38]. The words within
the green boxes are ones that are labeled in the ground truth, and therefore, included in
the provided lexicon. The other words in the scene are not a part of the ground truth
annotations and thus should not be recognized in the context of the SVT task. These
extraneous words do not appear in the provided lexicon.

4.1 Text Detection

This section describes our evaluation of the text detection system. Recall that the output

of the detector was a set of bounding boxes corresponding to groups of words in the image.

Based upon the true set of bounding boxes for the text in the image, we assessed the

performance of the detector. Like the authors of [11, 30, 32], we evaluated using the modified

precision and recall metrics prescribed by [25]. For context, I briefly describe this criterion

here. First, given two bounding boxes r1, r2, we take the match mp to be the ratio of the

area of r1 ∩ r2 to the area of the smallest rectangle that contains both r1 and r2. Then, the

match m between a rectangle and a set of rectangles R is given by

m(r,R) = max
{
mp(r, r

′) | r′ ∈ R
}
.

Effectively, we compute the score of the best match between the rectangle r and some

rectangle r′ in R. Next, given the set of predicted bounding boxes E and true bounding

boxes T , we take the precision p and recall r of the detector to be

p =

∑
re∈Em(re, T)

|E|
r =

∑
rt∈T m(rt, E)

|T |
.

CHAPTER 4. EXPERIMENTS 37

Algorithm Precision Recall F-Score

Pan et al. [32] 0.67 0.71 0.69
Epshtein et al. [11] 0.73 0.60 0.66
Neumann et al. [30] 0.59 0.55 0.57

Ashida [25] 0.55 0.46 0.50
HWDavid [25] 0.44 0.46 0.45

Wolf [25] 0.30 0.44 0.35

Our approach 0.42 0.36 0.39
Our approach (coalescing lines) 0.55 0.56 0.55

Table 4.1: Text detector performance on the ICDAR 2003 dataset.

We can combine the two measures by taking the F-score, defined to be the harmonic mean

of the precision and recall:

f = 2 ·
[

1

p
+

1

r

]−1
=

2pr

p+ r
.

We evaluated the detector performance over the ICDAR 2003 test set. To report results,

we selected the detection threshold that corresponded to the highest F-score. Table 4.1

compares our method to other methods on the ICDAR 2003 dataset.

From the table, it is evident that our standard approach performed poorly compared to

other methods. One reason for this was that the ICDAR 2003 Robust Reading ground truths

consisted of bounding boxes for individual words, while our detection system outputted

bounding boxes for entire lines of text. As a result, even if the detector successfully identified

the text in the image, the match scores between a bounding box for an entire line and a

bounding box for a single word tended to be very low. Thus, in order to assess the detector’s

ability to identify lines and groups of text, we made a small adjustment to the ground truth

bounding boxes. In particular, we coalesced bounding boxes that resided along the same

line; we then measured the precision and recall of the detector using these coalesced boxes

as the ground truth. An example of this process is illustrated in Figure 4.2.

By testing against the coalesced bounding boxes, we observed a significant jump in

the overall performance of the detector; in particular, the F-score increased by 0.16 on

the ICDAR test set. Because of this adjustment to the ground truth bounding boxes, the

performance metrics were no longer appropriate to use as a source of comparison with

other work in this area. However, in terms of understanding how well the detector was at

identifying lines of text, this adjusted metric was much more representative. Nonetheless,

CHAPTER 4. EXPERIMENTS 38

(a) Original ICDAR ground truths. The
ground truth bounding boxes are for
individual words. Detector performance on
this image: 0.3137 (precision), 0.2836
(recall).

(b) Ground truth bounding boxes after
coalescing ones that reside on the same
line. Detector performance on this image:
0.5001 (precision), 0.6251 (recall).

Figure 4.2: Visualization of ICDAR ground truth bounding boxes and coalesced ground
truth bounding boxes. The green bounding boxes are the ground truths and the blue
bounding boxes are the detector outputs.

the results still suggested that the detector’s performance was still below that of several

other text-detection systems. One of the primary limitations of our text detection system

was the fact that it did not precisely crop out the text. As evidenced by the bounding boxes

in Figure 4.2, the estimated boxes tended to be larger than the ground truth bounding boxes.

In general, there were small amounts of padding between the extents of the words and the

boundaries of the estimated bounding box.

I describe two possibilities that could have led to suboptimal performance with respect

to the ICDAR metric. First, the examples we used to train the detector consisted of

well-centered characters, and not necessarily perfectly-cropped characters. Moreover, the

positive examples used to train the detector (examples shown in Figure 3.4) generally did

not have uniform padding. As a result, the detector was tuned for recognizing the presence

of a well-centered character and was relatively robust to the amount of padding present.

Thus, the detector did not favor a tightly-cropped bounding box over a bounding box with

small amounts of padding; both would receive similar scores as long as the characters in

each were well-centered). Another factor that contributed to this suboptimal performance

was the small number of scales we considered. Because we only considered a limited range

CHAPTER 4. EXPERIMENTS 39

of scales, the possible heights of the estimated bounding boxes were confined to a small set

of possible values (one for each scale). As a result of this limitation, it may simply have

been impossible for the detector to produce a better cropped bounding box for a given line

or set of words.

The limitations of our detection system described here did not fully apply to the purpose-

built systems in [11, 30, 32], which generally employed additional processing steps to obtain

well-cropped bounding boxes. Thus, it should not be too surprising that these more so-

phisticated systems were able to achieve better-cropped bounding boxes and thus, superior

performance on this particular metric. It is important to note, however, that our goal here

was not to achieve perfectly cropped bounding boxes, but rather, to obtain full end-to-end

results. As long as the character recognizer was robust to these variations in padding, the

bounding boxes returned by the detector were sufficient for the task.

4.2 Character and Word Recognition

In this section, I present a detailed evaluation of the complete text recognition pipeline. I

begin by briefly describing the performance of the system on the tasks of cropped-character

recognition and word recognition. For these two tasks, we evaluated our system on the

ICDAR 2003 Robust Reading dataset [25].

4.2.1 Cropped Character Recognition

We first evaluated our character recognition module on the ICDAR 2003 test set, which

consisted of 5198 test characters taken from 62 classes (10 digits, 26 uppercase and 26

lowercase letters). In the cropped character recognition task, we are given a single bound-

ing box containing a well-centered character; the goal then is to identify the character in

the bounding box. This is effectively the same 62-way classification problem described in

Chapter 3. As described in Section 3.1.2, the character recognition module consisted of a

two-layer CNN trained on a mix of real and synthetic data. Table 4.2 compares the per-

formance of our system on the ICDAR 2003 test set to that of other character-recognition

systems. As the table shows, our system achieved state-of-the-art accuracies in the task of

cropped character recognition. This performance was a testament to the representational

power of our convolutional neural architecture. By applying supervised fine-tuning over

a large, multilayer convolutional architecture, we were thus able train a very robust and

CHAPTER 4. EXPERIMENTS 40

Algorithm Accuracy on ICDAR 2003 Character Test Set

Wang et al. [39] 52%
Wang et al. [38] 64%

Neumann et al. [30] 67.0%
Coates et al. [7] 81.7%

Our approach 83.9%

Table 4.2: Character recognition accuracy on the ICDAR 2003 character test set. Note
that the result by Neumann et al. [30] was achieved without pre-segmented characters.

highly-accurate character recognition system. In turn, this robustness enabled us to use

simpler algorithms to complete the integration of the detection and recognition subsystems

and obtain a final end-to-end result.

4.2.2 Cropped Word Recognition

For the subsequent experiments that are described in the following sections, we adopted

the lexicon-constrained framework described in Section 2.1.3. In particular, for the set

of experiments in cropped word recognition and full end-to-end recognition, we assumed

the existence of a lexicon. To provide necessary context, I compare the performance of

our system with the similarly constructed lexicon-driven system described in [38]. In this

section in particular, I assess the performance of the word recognition system from Section

3.3.2.

For the task of cropped word recognition, we evaluated on the ICDAR 2003 Robust

Word Recognition dataset. In this case, the input images consisted of perfectly-cropped

words such as the ones shown in Figure 4.3; the goal, of course, was to identify the word in

the image. In the context of a full end-to-end system, the word recognition task would be

analogous to measuring the best-possible recall assuming we had a perfect text detection

system. Thus, the performance of our method (as described in Section 3.3.2) on this word

recognition task would generally translate to an upper bound on the performance of our

complete end-to-end system. We assessed the performance of our word recognition method

by computing the case-insensitive word-level accuracy (percentage of words that we correctly

identified, disregarding case). This case-insensitive metric represented a departure from the

previous experiment with character recognition where we measured the performance under

a case-sensitive setting. In this more challenging problem, we thus relaxed the case-sensitive

CHAPTER 4. EXPERIMENTS 41

Figure 4.3: Sample images from the ICDAR 2003 Robust Word Recognition dataset. In this
task, we are provided a perfectly cropped bounding box and the objective is to recognize
the word in the image.

Algorithm ICDAR (50) ICDAR (Full)

Wang et al. [38] 76% 62%

Our approach 90% 84%

Table 4.3: Word recognition accuracy on the ICDAR 2003 dataset.

constraint and focused on just identifying the given word without trying to also distinguish

the case of the underlying letters. We should note that in practice, it is generally sufficient

to just identify the correct word and not to be concerned about the precise case of the

characters. Thus, switching to a case-insensitive setting did not necessarily represent a

significant loss of information or generality in our final end-to-end system.

Because we were now working in the lexicon-constrained setting, in each of our exper-

iments, therefore, we provided the word recognition system a lexicon of candidate words.

In the first experiment, denoted ICDAR (50), we provided the end-to-end system a lexicon

consisting of the ground truth words (the words that actually appeared in the image) aug-

mented by a list of 50 random “distractor” words (words that do not appear in the image).

Thus, given an input image, the goal was to identify the correct word among a list of 50 or

so possibilities. In the second experiment, denoted ICDAR (Full), we constructed a lexicon

consisting of all of the words that appeared in the ICDAR 2003 test set, yielding a lexicon

of more than 500 words. To compare performance with the lexicon-constrained end-to-end

system in [38], we used the same lexicons that those authors used in their experiments.

Table 4.3 compares the performance of our word-recognition system with the corresponding

system in [38]. As of this writing, we do not know of any other word recognition system

that has been evaluated on the ICDAR 2003 Word Recognition dataset.

As evidenced in Table 4.3, our word recognition system achieved much higher accuracies

than the system in [38] (an improvement of 14% and 22% on the ICDAR (50) and ICDAR

(Full) setups, respectively). Moreover, the decrease in performance as we increased the size

of the lexicon from 50 or so words to 500+ words was substantially smaller: a 6% decrease in

CHAPTER 4. EXPERIMENTS 42

performance in the case of our system compared to a 14% decrease in the case of the system

in [38]. This difference suggests that our model is more robust in a more general setting.

In particular, our end-to-end recognition system did not require an extremely specialized

lexicon to achieve high performance. Part of this gain in performance was due directly to

the higher accuracy of our character classifier. Compared to the character classifier in [38],

which obtained 64% accuracy on the ICDAR 2003 character sets, our character classifier

obtained an accuracy of almost 84%. Naturally, with more accurate character recognizers,

we were better able to discern the characters in the word and, thus, form better estimates

regarding the identity of the underlying word. More generally, this result shows that by

constructing a high-performing character recognition system, we can obtain state-of-the-art

word recognition without needing to leverage more sophisticated methods such as using

probabilistic inference or pictorial structure models.

4.3 Full End-to-End Text Recognition

This section completes the experimental analysis by describing the performance of the full

end-to-end system on the ICDAR 2003 Robust Reading dataset as well as the Street View

Text dataset. In the end-to-end setting, the input to the recognition system consisted of a

full image and the task was to locate and identify all of the words in the image. To do so,

we began by using the text detection system to identify a set of bounding boxes for lines

and groups of text. Then, as described in Section 3.3.1, we estimated the locations of the

spaces. We next evaluated these estimated space locations using a beam search to jointly

determine the optimal segmentation of the line and the identity of the underlying words.

As in the case of word recognition, we worked under the lexicon-constrained setting. In

the case of the SVT dataset, we used the provided lexicons, and in the case of the ICDAR

dataset, we used the lexicons consisting of 5, 20, and 50 distractor words, as provided by

the authors of [38]. We also conducted the end-to-end experiment using the full lexicon

consisting of all of the words in the ICDAR test set. In the discussion below, I refer to

these experiments as SVT, ICDAR (5), ICDAR (20), ICDAR (50), and ICDAR (Full),

respectively. In all cases, we used the standard evaluation criterion described in [25] and

used in [38]. These evaluation criterion are very similar to those used in other object

recognition competitions, such as the PASCAL Visual Object Recognition Challenge [12].

More precisely, a predicted bounding box is considered to be a “match” if it overlaps a

CHAPTER 4. EXPERIMENTS 43

0.52 0.56 0.60 0.64 0.68
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Recall

Pr
ec

is
io

n

ICDAR (20)
ICDAR (50)

ICDAR (5)

(a) Precision and recall curves on ICDAR 2003
using lexicons with 5, 20, and 50 distractor
words. Best F-scores for ICDAR (5),
ICDAR (20), ICDAR (50): 0.74, 0.73, 0.70,
repectively.

0.48 0.52 0.56 0.60 0.64

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall

Pr
ec
is
io
n

(b) Precision and recall curve on ICDAR 2003
using a complete lexicon consisting of all
words from the ICDAR test set. Best
F-score: 0.64.

Pr
ec
is
io
n

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Recall
0.25 0.30 0.35 0.40 0.45 0.50

(c) Precision and recall curve on SVT using
provided lexicons. Best F-score: 0.46.

Recall

Pr
ec
is
io
n

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.29 0.30 0.31 0.32

(d) Precision and recall curve on ICDAR 2003
using Hunspell. Best F-score: 0.38.

Figure 4.4: Precision and recall curves for end-to-end evaluation on the ICDAR and SVT
datasets.

ground truth bounding box by more than 50% and the predicted word matches the ground

truth. As in the case of word recognition described in the preceding section, we ignored the

case when comparing the predicted word to the ground-truth word. Using this convention,

we measured the precision and recall of the full end-to-end system. Plots of the precision

and recall curves for these experiments are presented in Figure 4.4.

To summarize results, we also computed the highest F-scores across the precision and

recall curves for each of the end-to-end experiments. Table 4.4 compares the F-scores

obtained by our end-to-end system with those obtained by the system in [38]. As evidenced

by the table, our system achieved higher F-scores in every case. Furthermore, the margin

CHAPTER 4. EXPERIMENTS 44

Algorithm ICDAR (5) ICDAR (20) ICDAR (50) ICDAR (Full) SVT

Wang et al. [38] 0.72 0.70 0.68 0.51 0.38

Our approach 0.74 0.73 0.70 0.64 0.46

Table 4.4: F-scores from end-to-end evaluation on the ICDAR and SVT datasets.

of improvement between the performance, as measured by the F-score, of our end-to-end

system and that of their system was much higher on the more difficult benchmarks: a

difference of 0.13 on ICDAR (Full) and 0.08 on SVT. Once again, this result suggests that

our system is more robust in a general setting where we either do not have access to a very

specialized lexicon or in images where there is additional background clutter and increased

variation in fonts and lighting conditions.

4.3.1 Recognition without a Specialized Lexicon

As a final experiment, we extended our model to the more general environment where we

did not have access to a specialized lexicon. As described in Section 3.3.4, we leveraged

an open-source spell checker, Hunspell, to dynamically construct a lexicon based upon the

raw classifier responses. Figure 4.4d shows a plot of the precision and recall of this general-

lexicon system on the ICDAR dataset. Table 4.5 compares the performance of our system

to the system in [30], which notably does not rely on any lexicon or dictionary. As of

this writing, I am not aware of any other full end-to-end recognition system that has been

evaluated on the complete ICDAR 2003 Robust Reading dataset.

When we compare the precision and recall curves for the experiments where we supplied

the recognition system a specialized lexicon to the experiment where we used Hunspell to

dynamically construct a lexicon, we observed that the performance was significantly lower.

This drop in performance was not surprising because the end-to-end system was designed

to operate in a lexicon-constrained framework. Nonetheless, it is important to note that

by using this simple extension with a freely available spell-checking tool, we are able to

extend our end-to-end system to work in settings where there is no specialized lexicon.

Furthermore, we observe that the performance of our system in this case is still comparable

to state-of-the-art.

To conclude this section, I present some example outputs of the system from the ICDAR

2003 Robust Reading and SVT dataset. These are shown in Figure 4.5.

CHAPTER 4. EXPERIMENTS 45

Algorithm Precision Recall F-Score

Neumann, et al. [30] 0.42 0.39 0.40

Our approach 0.54 0.30 0.38

Table 4.5: Results from end-to-end evaluation on the ICDAR dataset in the general lexicon
setting. Note that the results from [30] used case-sensitive comparison and did not leverage
any form of lexicon or dictionary. Their work is the only other work that I am aware of
that performs full, lexicon-free, end-to-end recognition on the ICDAR 2003 dataset.

(a) Example outputs of our end-to-end system on the ICDAR (Full) dataset.

(b) Example outputs of our end-to-end system on the SVT dataset.

Figure 4.5: Sample outputs from the full end-to-end system on the ICDAR and SVT
datasets.

Chapter 5

Conclusion

To conclude, I first summarize the work presented in this thesis. I then describe some of

the limitations of the current system and possible directions for future work.

5.1 Summary

The work described in this thesis presents an alternative means of approaching the prob-

lem of end-to-end text recognition using techniques from unsupervised feature learning and

large scale convolutional architectures. In particular, our system integrates the specificity

of learned features for capturing the underlying data with the vast representational power

of a two-layer convolutional neural network. Using the same convolutional architecture, we

are able to train highly accurate and robust text detection and character recognition mod-

ules. Then, by applying simple non-maximal suppression techniques in conjunction with

a beam search, we are able to weave these two components into a complete, end-to-end

system. This approach represents a departure from previous text detection and recogni-

tion systems which have generally required exquisite hand-engineering, prior knowledge, or

sophisticated, multistage pipelines. As evidence of the robustness of our approach, I have

presented our state-of-the-art results in character recognition, lexicon-based word recogni-

tion, and lexicon-based end-to-end recognition. In addition, I have shown that it is possible

to extend the lexicon-constrained system to work in the absence of a specialized lexicon by

simply leveraging freely available, open-source spell checking tools such as Hunspell. In this

more general setting, the system again obtained results comparable to the state-of-the-art.

Our results thus demonstrate the feasibility of using large, multilayer convolutional neural

46

CHAPTER 5. CONCLUSION 47

networks as an alternative to purpose-built, hand-engineered systems for the problem of

text recognition.

5.2 Limitations of the Current System and Future Directions

In this section, I highlight some of the limitations of our current end-to-end recognition

system and propose some directions for future work. First, we observed a substantial gap

between the performance of our system on lexicon-driven, cropped word recognition versus

the full end-to-end text recognition task. Several reasons contributed to this performance

gap. First, as noted in Section 4.1, the bounding boxes estimated by the text detection

system were not perfectly cropped. Since the word-recognition system was specially tuned

to operate on perfectly cropped word-level bounding boxes, part of the observed decrease

in performance in the full end-to-end system could have been due to the poorer quality

of the bounding boxes provided by the detector. Another contributing factor was the fact

that the recall of the full end-to-end recognition system was limited by the recall of the

text detection system. For instance, if the text detector failed to detect a word or line

in the image, then it was impossible for the overall end-to-end system to recover from

the detection failure. Thus, improving the recall of the detector would certainly improve

performance. One possible direction for future work, then, is to continue improving the

performance of the text detection system and aim for better-cropped bounding boxes. For

instance, one possible method to achieve better-cropped bounding boxes is to train the

binary classifier used in text detection on consistent and well-cropped characters. That

way, the text detection system becomes more selective for well-cropped bounding boxes.

Another limitation of the text detection system was the fact that the detection system

focused on finding horizontal lines of text (described in Section 3.2.2). While this was a

reasonable assumption in many cases and turned to work well in practice, it was, nonetheless,

still a limitation in our system. This constraint became particularly problematic in cases

where the text was slightly slanted, and thus appeared to span multiple lines. In these

cases, the detector was unable to provide a well-cropped bounding box for the entire word

or line. In more extreme cases where the characters in a word were vertically aligned or

arranged in a curved shape, the text detector was simply unable to localize the word. Thus,

generalizing the end-to-end system so that it is able to handle cases where the text is not

horizontally aligned is another possible direction for future work.

CHAPTER 5. CONCLUSION 48

A third limitation of our current end-to-end system was the fact that we did not have

an effective means of estimating word boundaries in a single line of text. In other words,

we did not have a good solution to the problem of word-level segmentation. In the lexicon-

constrained setting, we were able to use the simple space estimation routine described in

Section 3.3.1 along with a beam search over the possible segmentations to decent effect.

However, in the more general setting where we relied on Hunspell, this space estimation

and beam search approach did not generalize very well. Thus, better means of segmentation

that is not heuristic-based would certainly improve the performance of our full end-to-end

system, especially in the setting where we do not have access to a specialized lexicon.

Finally, we can also consider developing a system that relies on a specialized lexicon, but

is also able to identify words that are not present in the lexicon. Even though in the real

world, it is often the case that we have access to specialized lexicons, it is not always safe

to assume that all the words that could appear in the scene is necessarily contained within

the provided lexicon. In this case then, it would be useful to have a specialized lexicon,

but also allow the model to predict words that appear in the scene but are not present in

the lexicon. Such a system would be a blend of the lexicon-constrained framework and the

spell-correction framework I have described in the course of this thesis. This kind of hybrid

framework would in turn be a better approximation of real-world operating conditions than

either the fully lexicon-driven framework or the fully general, lexicon-free framework.

To conclude, I hope that the above description provides a sense of direction for future

research in the area of end-to-end text recognition. In this thesis, I have presented our

approach to the problem of end-to-end recognition. We have made some progress in this

field, but the full end-to-end text recognition problem remains unsolved. It is my hope that

this research shall stimulate and inspire future work in this exciting area.

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New

York, NY, USA, 2006.

[2] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recog-

nition. In Computer Vision and Pattern Recognition, 2010.

[3] Xiangrong Chen and A.L. Yuille. Detecting and reading text in natural scenes. In

Computer Vision and Pattern Recognition, volume 2, 2004.

[4] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. High

performance neural networks for visual object classification. Technical Report IDSIA-

01-11, Dalle Molle Institute for Artificial Intelligence, 2011.

[5] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for

image classification. Technical Report IDSIA-04-12, Dalle Molle Institute for Artificial

Intelligence, 2012.

[6] Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y. Ng. Scalable learning for

object detection with GPU hardware. In IROS, 2009.

[7] Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh, Tao Wang,

David J. Wu, and Andrew Y. Ng. Text detection and character recognition in scene

images with unsupervised feature learning. In ICDAR, 2011.

[8] Adam Coates, Honglak Lee, and Andrew Y. Ng. An analysis of single-layer networks

in unsupervised feature learning. In AISTATS, 2011.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, 2005.

49

BIBLIOGRAPHY 50

[10] T. E. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images.

In VISAPP, 2009.

[11] B. Epshtein, E. Oyek, and Y. Wexler. Detecting text in natural scenes with stroke

width transform. In CVPR, 2010.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-

CAL Visual Object Classes Challenge 2008 (VOC2008) Results. http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/index.html.

[13] X. Fan and G. Fan. Graphical Models for Joint Segmentation and Recognition of

License Plate Characters. IEEE Signal Processing Letters, 16(1), 2009.

[14] I.J. Goodfellow, Q.V. Le, A.M. Saxe, H. Lee, and A.Y. Ng. Measuring invariances in

deep networks. In NIPS, 2009.

[15] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Interna-

tional Conference on Machine Learning, 2010.

[16] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18(7):1527–1554, 2006.

[17] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applica-

tions. Neural networks, 13(4-5):411–430, 2000.

[18] Bekir Karlik and A. Vehbi Olgac. Performance analysis of various activation func-

tions in generalized mlp architectures of neural networks. In International Journal of

Artificial Intelligence and Expert Systems, 2010.

[19] A. Krizhevsky. Learning multiple layers of features from Tiny Images. Master’s thesis,

Dept. of Comp. Sci., University of Toronto, 2009.

[20] Quoc V. Le, Will Y. Zou, Serena Y. Yeung, and Andrew Y. Ng. Learning hierarchical

invariant spatio-temporal features for action recognition with independent subspace

analysis. In CVPR, 2011.

[21] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1:541–551, 1989.

BIBLIOGRAPHY 51

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. In IEEE, 1998.

[23] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In

Neural Information Processing Systems, 2007.

[24] David Lowe. Distinctive image features from scale-invariant keypoints. In IJCV, vol-

ume 20, pages 91–110, 2003.

[25] S.M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young. ICDAR 2003

robust reading competitions. ICDAR, 2003.

[26] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,

and Christopher Potts. Learning word vectors for sentiment analysis. In ACL, pages

142–150, 2011.

[27] U. Meier, D.C. Ciresan, L.M. Gambardella, and J. Schmidhuber. Better digit recogni-

tion with a committee of simple neural nets. In ICDAR, 2011.

[28] Michele Merler, Carolina Galleguillos, and Serge Belongie. Recognizing groceries in

situ using in vitro training data. In CVPR, 2007.

[29] A. Neubeck and L.V. Gool. Efficient non-maximum suppression. In ICPR, 2006.

[30] L. Neumann and J. Matas. A method for text localization and recognition in real-world

images. In AACCV, 2010.

[31] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. A robust system to detect and local-

ize texts in natural scene images. In International Workshop on Document Analysis

Systems, 2008.

[32] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. Text localization in natural scene

images based on conditional random field. In ICDAR, 2009.

[33] Marc’Aurelio Ranzato, Christopher Poultney, S. Chopra, and Y. LeCun. Efficient

learning of sparse representations with an energy-based model. In NIPS, 2007.

[34] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik, and Douglas D.

Edwards. Artificial intelligence: a modern approach. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1996.

BIBLIOGRAPHY 52

[35] Zohra Saidane and Christophe Garcia. Automatic scene text recognition using a con-

volutional neural network. In Workshop on Camera-Based Document Analysis and

Recognition, 2007.

[36] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields for

information extraction. In In Advances in Neural Information Processing Systems 17,

pages 1185–1192, 2004.

[37] P. Viola and M.J. Jones. Robust real-time face detection. IJCV, 2004.

[38] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In ICCV,

2011.

[39] K. Wang and S. Belongie. Word spotting in the wild. In ECCV, 2010.

[40] Jerod Weinman, Erik Learned-Miller, and Allen R. Hanson. Scene text recognition us-

ing similarity and a lexicon with sparse belief propagation. In Transactions on Pattern

Analysis and Machine Intelligence, volume 31, 2009.

[41] Jerod J. Weinman, Erik Learned-Miller, and Allen R. Hanson. A discriminative semi-

markov model for robust scene text recognition. In Proc. IAPR International Confer-

ence on Pattern Recognition, Dec. 2008.

[42] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas S. Huang. Linear spatial pyramid

matching using sparse coding for image classification. In CVPR, 2009.

