
Constrained Keys for Invertible Pseudorandom Functions

Dan Boneh, Sam Kim, and David J. Wu

Stanford University
{dabo,skim13,dwu4}@cs.stanford.edu

Abstract

A constrained pseudorandom function (PRF) is a secure PRF for which one can generate
constrained keys that can only be used to evaluate the PRF on a subset of the domain. Constrained
PRFs are used widely, most notably in applications of indistinguishability obfuscation (iO). In
this paper we show how to constrain an invertible PRF (IPF), which is significantly harder. An
IPF is a secure injective PRF accompanied by an inversion algorithm. A constrained key for
an IPF can only be used to evaluate the IPF on a subset S of the domain, and to invert the
IPF on the image of S. We first define the notion of a constrained IPF and then give two main
constructions: one for puncturing an IPF and the other for (single-key) circuit constraints. Both
constructions rely on recent work on private constrained PRFs. We also show that constrained
pseudorandom permutations for many classes of constraints are impossible under our definition.

1 Introduction

Pseudorandom functions (PRFs) [GGM84] and pseudorandom permutations (PRPs) [LR88] have
found numerous applications in cryptography, such as encryption, data integrity, user authentication,
key derivation, and others. Invertible PRFs are a natural extension that borrows features from both
concepts. An invertible PRF (IPF) is an efficiently-computable injective function F : K × X → Y
equipped with an efficient inversion algorithm F−1 : K × Y → X ∪ {⊥}. The inversion algorithm is
required to satisfy the following two properties for all k ∈ K:

– (1) F−1
(
k, F(k, x)

)
= x for all x ∈ X .

– (2) F−1(k, y) = ⊥ whenever y is not in the image of f(x) := F(k, x).

We say that an IPF F is secure if no poly-bounded adversary can distinguish the following two
experiments. In one experiment the adversary is given oracles for the function f(x) := F(k, x) and its
inverse f−1(x) := F−1(k, x), where k is randomly chosen in K. In the other experiment, the adversary
is given oracles for a random injective function g : X → Y and its inverse g−1 : Y → X ∪{⊥}. These
two experiments should be indistinguishable. We define this in detail in Section 3. Note that when
X = Y, an IPF is the same as a strong pseudorandom permutation [LR88].

IPFs come up naturally in the context of deterministic authenticated encryption (DAE) [RS06],
as discussed below. A closely related concept called a pseudorandom injection (PRI) [RS06] is
similar to an IPF except for some syntactic differences (an IPF is a pseudorandom injection without
additional length constraints and with an empty header).
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Constrained PRFs. In this paper we define and construct constrained IPFs. It is helpful to
first review constrained PRFs [BW13, KPTZ13, BGI14]. Recall that a PRF F : K × X → Y is
said to be a constrained PRF if one can derive constrained keys from the master PRF key k. A
constrained key kg is associated with a predicate g : X → {0, 1}, and this kg enables one to evaluate
F (k, x) for all x ∈ X where g(x) = 1, but at no other points of X . A constrained PRF is secure if
given constrained keys for predicates g1, . . . , gQ of the adversary’s choosing, the adversary cannot
distinguish the PRF from a random function at points not covered by the given keys, namely at
points x where g1(x) = · · · = gQ(x) = 0. We review the precise definition in Section 3.1.

Constrained PRFs have found numerous applications in cryptography [BW13, KPTZ13, BGI14]:
they imply identity-based key exchange and broadcast encryption, and are a crucial ingredient in
many applications of indistinguishability obfuscation (iO) [SW14].

The simplest non-trivial constraint is a puncturing constraint, a constraint that enables one
to evaluate the function on its entire domain except for one point. For x ∈ X we denote by kx a
punctured key that lets one evaluate the PRF at all points in X , except for the punctured point x.
Given the key kx, the adversary should be unable to distinguish F (k, x) from a random element
in Y. PRFs supporting puncturing constraints can be easily constructed from the tree-based PRF
of [GGM84], as discussed in [BW13, KPTZ13, BGI14].

Constrained IPFs. Given the wide applicability of constrained PRFs, it is natural to look at
constraining other symmetric primitives such as PRPs and, more generally, IPFs. A constrained
key kg for an IPF enables one to evaluate the IPF at all points x ∈ X for which g(x) = 1, and invert
at all points y = F(k, x′) ∈ Y for which g(x′) = 1. Security for a constrained IPF is defined as for a
PRF: the adversary is given a number of constrained keys and tries to distinguish the IPF from a
random injective function at points not covered by any of the given keys. See Section 3.1 for more
details.

We first show in Section 3.3 that constrained PRPs for many constraint classes do not exist in
our model. However constrained IPFs, where the range can be larger than the domain, can exist.
The challenge is to construct them. Surprisingly, constraining an IPF is significantly harder than
constraining a PRF, even for simple puncturing constraints. For example, it is not difficult to see
that puncturing a Luby-Rackoff cipher by puncturing the underlying PRFs does not work.

In this paper, we present constrained IPFs for both puncturing constraints and for arbitrary
circuit constraints. Both constructions make use of a recent primitive called a private constrained
PRF [BLW17] that can be constructed from the learning with errors (LWE) problem [BKM17,
CC17, BTVW17]. Roughly speaking, a private constrained PRF is a constrained PRF where a
constrained key kg reveals nothing about the constraint g. Before we describe our constructions, let
us first look at an application.

IPFs and deterministic encryption. While constrained IPFs are interesting in their own right,
they come up naturally in the context of deterministic encryption. IPFs are related to the concept of
deterministic authenticated encryption (DAE) introduced by Rogaway and Shrimpton [RS06] where
encryption is deterministic and does not take a nonce as input. A DAE provides the same security
guarantees as (randomized) authenticated encryption, as long as all the messages encrypted under a
single key are distinct. Rogaway and Shrimpton show that an IPF whose range is sufficiently larger
than its domain is equivalent to a secure DAE. They further require that the length of the IPF
output depend only on the length of the input, and this holds for all our constructions. Hence, our
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constrained IPFs give the ability to constrain keys in a DAE encryption scheme: the constrained
key holder can only encrypt/decrypt messages that satisfy a certain predicate.

1.1 Building Constrained IPFs

In Section 4, we present two constructions for constrained IPFs on a domain X = {0, 1}n. Our first
construction, a warm-up, only supports puncturing constraints. Our second construction gives a
constrained IPF for arbitrary circuit constraints, but is only secure if a single constrained key is
released. Here we give the main ideas behind the constructions. Both rely heavily on the recent
development of private constrained PRFs. In Section 5, we show how to instantiate our constructions
from the LWE assumption. In Section 7, we also show that using iO, it is possible to construct a
multi-key, circuit-constrained IPF.

A puncturable IPF. Let F1 : K1 × X → V and F2 : K2 × V → X be two secure PRFs. Define
the following IPF F on domain X using a key k = (k(1), k(2)) ∈ K1 ×K2:

F
(
(k(1), k(2)), x

)
:= F−1

(
(k(1), k(2)), (y1, y2)

)
:=

y1 ← F1(k
(1), x)

y2 ← x⊕ F2(k
(2), y1)

output (y1, y2)




x← F2(k
(2), y1)⊕ y2

if F1(k
(1), x) 6= y1 then x← ⊥

output x

 (1.1)

It is not difficult to show that F is a secure IPF. In fact, one can view this IPF as an instance of a
DAE construction called SIV (Synthetic-IV) [RS06].

The question is how to securely puncture F. As a first attempt, suppose F1 is a puncturable
PRF, say constructed from the tree-based GGM construction [GGM84]. To puncture the IPF F at a

point x ∈ X , one can puncture F1 at x to obtain the IPF punctured key kx := (k
(1)
x , k(2)). This key

kx prevents the evaluation F at the point x, as required. However, this is completely insecure. To see
why, observe that given kx, the adversary can easily distinguish F(k, x) from a random pair in V ×X :
given a challenge value (y1, y2) for F(k, x), the adversary can simply test if x = F2(k

(2), y1) ⊕ y2.
This will be satisfied by F(k, x), but is unlikely to be satisfied by a random pair in V × X .

To properly puncture F at x we must puncture F1 at x and puncture F2 at y1 := F1(k
(1), x).

The punctured key for F is then kx := (k
(1)
x , k

(2)
y1 ). Here, it is vital that the punctured key k

(2)
y1 reveal

nothing about the punctured point y1. Otherwise, it is again easy to distinguish F(k, x) = (y1, y2)
from a random pair in V × X using the exposed information about y1. To ensure that y1 is hidden,
we must use a private puncturable PRF for F2. Currently the best constructions for a private
puncturable PRF rely on the LWE assumption [BKM17, CC17, BTVW17]. It is not known how to
construct a private puncturable PRF from one-way functions. We show in Theorem 4.3 that with
this setup, the puncturable IPF in (1.1) is secure.

A constrained IPF for circuit constraints. Next we generalize (1.1) to support an arbitrary
circuit constraint g. As a first step we can constrain k(1) to g so that the IPF constrained key is

kg := (k
(1)
g , k(2)). We can use for F1 any of the candidate circuit-constrained PRFs [BW13, BV15].

As before, this is insecure: for security we must also constrain F2. However we immediately
run into a problem. Following the blueprint in (1.1) we must puncture F2 at all points F1(k

(1), x)
where g(x) = 0. However, because the size of this set can be super-polynomial, we would need to
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constrain F2 to a set containing super-polynomially-many pseudorandom points. The difficulty is
that F2 cannot efficiently test if an input v ∈ V satisfies v = F1(k(1), x) with g(x) = 0. Because F1 is
not invertible, this cannot be done even given k(1).

We solve this problem by replacing F1(k
(1), x) with a CCA-secure public-key encryption

PKE.Encrypt(pk, x; rx), where the randomness rx = F1(k(1), x) is derived from F1 and pk is the public
key. In this case, the input to F2 is a ciphertext ct that encrypts the point x. The output of the IPF
is the pair (ct, F2(k(2), ct)⊕x). When constraining F2, we embed the secret decryption key sk for the
public-key encryption scheme in the constrained key. Then, on an input ciphertext ct, the constraint
function first decrypts ct (using sk) to obtain a value x ∈ X , and then checks if g(x) = 1. Because
knowledge of sk allows one to invert on all points, it is critical that the constrained key hides sk. Here,
we rely on a strong simulation-based notion of constraint privacy [BKM17, CC17]. In Theorem 4.7,
we show that as long as the underlying PKE scheme is CCA-secure and F2 is a (single-key) private
constrained PRF, then the resulting scheme is a (single-key) secure circuit-constrained IPF.

By design, our circuit-constrained IPF provides two ways to invert: the “honest” method
where on input (ct, y2), the evaluator uses the PRF key k(2) to compute a (candidate) preimage
x← F2(k(2), ct)⊕ y2, and the “trapdoor” method where an evaluator who holds the decryption key
for the public-key encryption scheme simply decrypts ct to recover the (candidate) preimage x. The
inversion trapdoor plays an important role in the security analysis of our circuit-constrained IPF
because it enables the reduction algorithm to properly simulate the inversion oracle queries in the
IPF security game. We refer to Appendix B for the complete details.

Theorems 4.3 and 4.7 state that our puncturable IPF and circuit-constrained IPF are secure
assuming the security (and privacy) of the underlying constrained PRFs (and in the latter case,
CCA-security of the public-key encryption scheme). While it may seem that security of the IPF
should directly follow from security of the underlying puncturable (or constrained) PRFs, several
complications arise in the security analysis because we give the adversary access to an IPF inversion
oracle in the security game. As a result, our security analysis requires a more intricate hybrid
argument where we appeal to the security of the underlying constrained PRFs multiple times. We
provide the complete proofs in Appendices A and B.

A multi-key constrained IPFs from iO. In Section 7, we also show that an indistinguishability
obfuscation of the puncturable IPF from (1.1) gives a multi-key circuit-constrained IPF. This
construction parallels the Boneh-Zhandry construction of multi-key circuit-constrained PRFs from
standard puncturable PRFs and indistinguishability obfuscation [BZ14].

Supporting key-delegation. Several constrained PRF constructions support a mechanism called
key-delegation [BW13, CRV14, DDM17], where the holder of a constrained PRF key can further
constrain the key. For instance, the holder of a constrained key kf for a function f can further
constrain the key to a function of the form f ∧ g where (f ∧ g)(x) = 1 if and only if f(x) = g(x) = 1.
In Section 6, we describe how our circuit-constrained IPF can be extended to support key-delegation.

Open problems. Our impossibility results for constrained PRPs rule out any constraint class
that enables evaluation on a non-negligible fraction of the domain. For example, this rules out the
possibility of a puncturable PRP. Can we build constrained PRPs for constraint families that allow
evaluation on a more restricted subset of the domain? For instance, do prefix-constrained PRPs
exist?
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Our circuit-constrained IPF from LWE is secure only if a single constrained key is issued. In
Section 6, we show how to modify our construction to support giving out a pre-determined number
of keys, provided that each successive key adds a further constraint on the previous key (i.e., via
key delegation). Is there an IPF that supports multiple constrained keys for an arbitrary set of
circuit constraints (and does not rely on strong assumptions such as iO or multilinear maps)? A
positive answer would also give a circuit-constrained PRF that supports multiple keys, which is
currently an open problem.

Our circuit-constrained IPF relies on the LWE assumption. Can we build constrained IPFs from
one-way functions? For example, the tree-based PRF of [GGM84] gives a prefix-constrained PRF
from one-way functions. Can we build a prefix-constrained IPF from one-way functions?

1.2 Related Work

Authenticated encryption was first formalized over a sequence of works [BN00, BR00, KY00, Rog02,
RBB03]. Deterministic authenticated encryption, and the notion of a pseudorandom injection, were
introduced in [RS06]. These notions have been further studied in [IY09a, IY09b]. Our circuit-
constrained IPF relies on derandomizing a public-key encryption scheme. Similar techniques have
been used in the context of constructing deterministic public-key encryption [BBO07, BFOR08,
BFO08, FOR12]. Note however that an IPF is a secret-key primitive, so in our setting, the
randomness used for encryption can be derived using a PRF on the message rather than as a
publicly-computable function on the input. This critical difference eliminates the need to make
entropic assumptions on the inputs.

Since the introduction of constrained PRFs in [BW13, BGI14, KPTZ13], numerous works
have studied constraining other cryptographic primitives such as verifiable random functions
(VRFs) [CRV14, Fuc14, DDM17] and signatures [BGI14, BF14]. Other works have focused on
constructing adaptively-secure constrained PRFs [Hof14, FKPR14, HKW15] and constrained PRFs
for inputs of unbounded length [DKW16, DDM17].

2 Preliminaries

For a positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For a distribution D, we
write x← D to denote that x is sampled from D; for a finite set S, we write x←R S to denote that x
is sampled uniformly from S. Throughout this work, we write λ for the security parameter. We
say a function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We denote this by writing
f(λ) = negl(λ). We say that an algorithm is efficient if it runs in probabilistic polynomial time in the
length of its input. We write poly(λ) to denote a quantity that is bounded by some polynomial in λ.
We say that an event occurs with overwhelming probability if its complement occurs with negligible
probability, and that it occurs with noticeable probability if it occurs with non-negligible probability.
We say that two families of distributions D1 and D2 are computationally indistinguishable if no
efficient algorithm can distinguish between D1 and D2, except with negligible probability. We say
that D1 and D2 are statistically indistinguishable if the statistical distance between D1 and D2 is
negligible.

Function families. For two sets X , Y , we write Funs[X ,Y ] to denote the set of functions from X
to Y. We write InjFuns[X ,Y] to denote the set of injective functions from X to Y. For an injective
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function f ∈ InjFuns[X ,Y], we denote by f−1 : Y → X ∪ {⊥} the function where f−1(y) = x
if y = f(x), and ⊥ if there is no such x ∈ X . We sometimes refer to f−1 as the (generalized)
inverse of f . When the domain and range are the same, the set InjFuns[X ,X ] is precisely the set of
permutations on X .

2.1 CCA-Secure Public-Key Encryption

A PKE scheme consists of three algorithms PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) over a
message space M and a ciphertext space T with the following properties:

• PKE.Setup(1λ)→ (pk, sk): On input the security parameter λ, the setup algorithm generates
a public key pk and a secret key sk.

• PKE.Encrypt(pk,m)→ ct: On input a public key pk and a message m ∈ M, the encryption
algorithm returns a ciphertext ct ∈ T .

• PKE.Decrypt(sk, ct)→ m: On input a secret key sk and a ciphertext ct ∈ T , the decryption
algorithm outputs a message m ∈M∪ {⊥}.

We say that a PKE scheme is correct if for all keys (pk, sk)← PKE.Setup(1λ), and for all messages
m ∈M, we have that

Pr[PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1.

Definition 2.1 (CCA-Security [NY90, RS91]). Let PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt)
be a PKE scheme with message space M and ciphertext space T , and let A be an efficient
adversary. For a security parameter λ and a bit b ∈ {0, 1}, we define the CCA-security experiment

Expt
(CCA)
A,PKE(λ, b) as follows. The challenger first samples (pk, sk)← PKE.Setup(1λ). The adversary

can then issue decryption oracle queries and up to one challenge oracle query.1 Depending on the
bit b ∈ {0, 1}, the challenger responds to each query as follows:

• Decryption oracle. On input a ciphertext ct ∈ T , the challenger responds with the
decryption m← PKE.Decrypt(sk, ct).

• Challenge oracle. On input two messages m0,m1 ∈ M, the challenger responds with the
ciphertext ct∗ ← PKE.Encrypt(pk,mb).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1} which is the output of the
experiment. An adversary A is admissible if A does not submit the ciphertext ct∗ it received from
the challenge oracle to the decryption oracle. We say that PKE is secure against chosen-ciphertext
attacks (CCA-secure) if for all efficient and admissible adversaries A,∣∣∣Pr[Expt

(CCA)
A,PKE(λ, 0) = 1]− Pr[Expt

(CCA)
A,PKE(λ, 1) = 1]

∣∣∣ = negl(λ).

1In the public-key setting, security against adversaries that make a single challenge query implies security against
adversaries that make multiple challenge queries (via a standard hybrid argument).
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Smoothness. In our security analysis, we require that our public-key encryption scheme satisfy
an additional smoothness property. We say that a public-key encryption scheme is smooth if every
message can encrypt to a super-polynomial number of potential ciphertexts. This property is satisfied
by most natural public-key encryption schemes. After all, if the adversary can find a message m that
has only polynomially-many ciphertexts, then the adversary can trivially break semantic security of
the scheme. Of course, it is possible to craft public-key encryption schemes [BHK15] where there
exist (hard-to-find) messages that encrypt to only polynomially-many ciphertexts. We give the
formal definition of smoothness in Definition 2.2.

Definition 2.2 (Smoothness [BHK15, adapted]). A PKE scheme PKE = (PKE.Setup,PKE.Encrypt,
PKE.Decrypt) with message space M and ciphertext space T is smooth if for all messages m ∈M
and all strings ct ∈ T ,

Pr
[
(pk, sk)← PKE.Setup(1λ) : PKE.Encrypt(pk,m) = ct

]
= negl(λ),

where the probability is taken over the randomness in PKE.Setup and PKE.Encrypt.

3 Invertible PRFs

In this section, we introduce the notion of an invertible pseudorandom function (IPF). We then extend
our notions to that of a constrained IPF. We begin by recalling the definition of a pseudorandom
function (PRF) [GGM84].

Definition 3.1 (Pseudorandom Function [GGM84]). A pseudorandom function (PRF) with key-
space K, domain X , and range Y is a function F : K×X → Y that can be computed by a deterministic
polynomial-time algorithm. A PRF can also include a setup algorithm F.Setup(1λ) that on input
the security parameter λ, outputs a key k ∈ K. A function F is a secure PRF if for all efficient
adversaries A,∣∣∣Pr

[
k ← F.Setup(1λ) : AF(k,·)(1λ) = 1

]
− Pr

[
R←R Funs[X ,Y] : AR(·)(1λ) = 1

]∣∣∣ = negl(λ).

An invertible pseudorandom function (IPF) is an injective PRF whose inverse function can be com-
puted efficiently (given the secret key). This requirement that the inverse be efficiently computable
is the key distinguishing factor between IPFs and injective PRFs. For instance, injective PRFs
can be constructed by composing a sufficiently-expanding PRF with a pairwise-independent hash
function. However, it is unclear how to invert such a PRF. We now give the definition of an IPF:

Definition 3.2 (Invertible Pseudorandom Functions). An invertible pseudorandom function (IPF)
with key-space K, domain X , and range Y consists of two functions F : K×X → Y and F−1 : K×Y →
X ∪ {⊥}. An IPF can also include a setup algorithm F.Setup(1λ) that on input the security
parameter λ, outputs a key k ∈ K. The functions F and F−1 satisfy the following properties:

• Both F and F−1 can be computed by deterministic polynomial-time algorithms.

• For all security parameters λ and all keys k output by F.Setup(1λ), the function F(k, ·) is an
injective function from X to Y . Moreover, the function F−1(k, ·) is the (generalized) inverse of
F(k, ·).
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Definition 3.3 (Pseudorandomness). An IPF F : K × X → Y is secure if for all efficient adver-
saries A,∣∣∣Pr

[
k ← F.Setup(1λ) : AF(k,·),F−1(k,·)(1λ)

]
− Pr

[
R←R InjFuns[X ,Y] : AR(·),R−1(·)(1λ)

]∣∣∣ = negl(λ).

Remark 3.4 (Strong vs. Weak Pseudorandomness). The pseudorandomness requirement for an
IPF (Definition 3.3) requires that the outputs of an IPF be indistinguishable from random against
adversaries that can query the IPF in both the forward direction as well as the backward direction.
We can also consider a weaker notion of pseudorandomness where the adversary is given access to
an evaluation oracle F(k, ·), but not an inversion oracle F−1(k, ·). Motivated by the applications we
have in mind, in this work, we focus exclusively on building IPFs satisfying the strong notion of
pseudorandomness from Definition 3.3, where the adversary can evaluate the IPF in both directions.

3.1 Constrained PRFs and IPFs

We next review the notion of a constrained PRF [BW13, KPTZ13, BGI14] and then extend these
definitions to constrained IPFs.

Definition 3.5 (Constrained PRF [BW13, KPTZ13, BGI14]). A PRF F : K × X → Y is said to
be constrained with respect to a predicate family F = {f : X → {0, 1}} if there are two additional
algorithms (F.Constrain,F.Eval) with the following properties:

• F.Constrain(k, f)→ kf : On input a PRF key k ∈ K and a function f ∈ F , the constraining
algorithm outputs a constrained key kf .

• F.Eval(kf , x)→ y: On input a constrained key kf and a point x ∈ X , the evaluation algorithm
outputs a value y ∈ Y.

We say that a constrained PRF is correct for a function family F if for all k ← F.Setup(1λ), every
function f ∈ F , and every input x ∈ X where f(x) = 1, we have that

F.Eval(F.Constrain(k, f), x) = F(k, x).

Definition 3.6 (Constrained PRF Security Experiment). Let F : K×X → Y be a constrained PRF
with respect to a function family F , and let A be an efficient adversary. In the constrained PRF

security experiment Expt
(PRF)
A,F (λ, b) (parameterized by a security parameter λ and a bit b ∈ {0, 1}),

the challenger begins by sampling a key k ← F.Setup(1λ) and a random function R←R Funs[X ,Y].
The adversary is allowed to make constrain, evaluation, and challenge oracle queries. Depending on
the value of the bit b ∈ {0, 1}, the challenger responds to each oracle query as follows:

• Constrain oracle. On input a function f ∈ F , the challenger responds with a constrained
key kf ← F.Constrain(k, f).

• Evaluation oracle. On input a point x ∈ X , the challenger returns y = F(k, x).

• Challenge oracle. On input a point x ∈ X , the challenger returns y = F(k, x) to A if b = 0
and y = R(x) if b = 1.
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Finally, at the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1} which is also the
output of the experiment.

Definition 3.7 (Constrained PRF Security). Let F : K × X → Y be a constrained PRF for a
function family F . We say that an adversary A is admissible for the constrained PRF security
experiment (Definition 3.6) if the following conditions hold:

• For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary makes, f(x∗) = 0.

• For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary makes, x 6= x∗.

We say that F is a secure constrained PRF if for all efficient and admissible adversaries A,∣∣∣Pr[Expt
(PRF)
A,F (λ, 0) = 1]− Pr[Expt

(PRF)
A,F (λ, 1) = 1]

∣∣∣ = negl(λ).

Without loss of generality, we restrict the adversary to make at most one challenge query in the
constrained PRF security experiment.2

Remark 3.8 (Selective vs. Adaptive Security). The constrained PRF security game (Definition 3.6)
allows the adversary to adaptively choose the challenge point after making constrain and evaluation
queries. We can also define a selective notion of security where the adversary must commit to its
challenge query at the beginning of the security game (before it starts making queries). Using a
standard technique called complexity leveraging [BB04], selective security implies adaptive security at
the expense of a super-polynomial loss in the security reduction. For instance, this is the technique
used in [BW13] in the context of constrained PRFs.

Remark 3.9 (Single-Key Security). Brakerski and Vaikuntanathan [BV15] considered another
relaxation of Definition 3.7 where in the constrained PRF security game (Definition 3.6), the
adversary is restricted to making a single query to the constrain oracle. In the single-key setting,
we can consider the notion of selective-function security, where the adversary must commit to its
constrain oracle query at the beginning of the security experiment. Thus, in this setting, there are two
different notions of selectivity: the usual notion where the adversary commits to the challenge point
(Remark 3.8) and selective-function security where the adversary commits to the function. Many of
the lattice-based (single-key) constrained PRF constructions [BV15, BKM17, CC17, BTVW17] are
selectively secure in the choice of the constraint function, but adaptively secure in the choice of the
challenge point.

Definition 3.10 (Constrained IPF). An IPF (F,F−1) with key-space K, domain X , and range Y is
said to be constrained with respect to a function family F = {f : X → {0, 1}} if there are three
additional algorithms (F.Constrain,F.Eval,F.Eval−1) with the following properties:

• F.Constrain(k, f)→ kf : On input a PRF key k ∈ K and a function f ∈ F , the constraining
algorithm outputs a constrained key kf .

• F.Eval(kf , x)→ y: On input a constrained key kf and a value x ∈ X , the evaluation algorithm
outputs a value y ∈ Y.

2As noted in [BW13], a standard hybrid argument shows that security against adversaries making a single challenge
query implies security against adversaries making multiple challenge queries.
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• F.Eval−1(kf , y) → x: On input a constrained key kf and a value y ∈ Y, the evaluation
algorithm outputs a value x ∈ X ∪ {⊥}.

We say that a constrained IPF is correct for a function family F if for all keys k ← F.Setup(1λ),
every function f ∈ F , and kf ← F.Constrain(k, f), the following two properties hold:

• For all inputs x ∈ X where f(x) = 1, F.Eval(kf , x) = F(k, x).

• For all inputs y ∈ Y where there exists x ∈ X such that F(k, x) = y and f(x) = 1, then
F.Eval−1(kf , y) = F−1(k, y).

Definition 3.11 (Constrained IPF Security Experiment). Let (F,F−1) be an IPF with key-space K,
domain X , range Y, and constrained with respect to a function family F . Let A be an efficient

adversary. The constrained IPF security experiment Expt
(IPF)
A,F (λ, b) is defined exactly as the con-

strained PRF security experiment Expt
(PRF)
A,F (λ, b) (except with the IPF in place of the PRF and the

random function R is sampled from InjFuns[X ,Y ]), and in addition to the constrain, evaluation, and
challenge oracles, the adversary is also given access to an inversion oracle:

• Inversion oracle. On input a point y ∈ Y, the challenger returns F−1(k, y).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment.

Definition 3.12 (Constrained IPF Security). Let (F,F−1) be an IPF with key-space K, domain X ,
range Y, and constrained with respect to a function family F . We say that an adversary A is
admissible for the constrained IPF security experiment (Definition 3.11) if the following conditions
hold:

• For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary makes, f(x∗) = 0.

• For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary makes, x 6= x∗.

• For all inversion queries y ∈ Y the adversary makes, y /∈ Y∗, where Y∗ is the set of responses
to the adversary’s challenge oracle queries from the challenger.

We say that F is a secure constrained IPF if for all efficient and admissible adversaries A,∣∣∣Pr[Expt
(IPF)
A,F (λ, 0) = 1]− Pr[Expt

(IPF)
A,F (λ, 1) = 1]

∣∣∣ = negl(λ).

As in Definition 3.7, we restrict the adversary to making at most one challenge query in the
constrained IPF security experiment.

Remark 3.13 (Selective vs. Adaptive Security for IPFs). As with constrained PRFs, we can define
a notion of selective security for IPFs, where the adversary commits to its challenge query at the
beginning of the constrained IPF security experiment (Remark 3.8). Similarly, we can consider a
single-key variant of the security game, where the adversary makes a single constrain oracle query.
In this case, we can also define the corresponding notion of selective-function security (Remark 3.9).
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Puncturable PRFs and IPFs. An important subclass of constrained PRFs is the class of
punctured PRFs [BW13, KPTZ13, BGI14]. A punctured PRF over a domain X is a PRF constrained
with respect to the family of point functions: F = {fx∗ : X → {0, 1} | x∗ ∈ X}, where fx∗(x) = 1
for all x 6= x∗ and fx∗(x∗) = 0. For notational convenience, when working with a puncturable PRF
F : K ×X → Y, we replace the F.Constrain algorithm with the F.Puncture algorithm that takes as
input a PRF key k and a point x∗ ∈ X and outputs a punctured key kx∗ (a key constrained to the
point function fx∗). We extend these notions accordingly to puncturable IPFs.

3.2 Private Constrained PRFs

One of the key primitives we will need to build constrained IPFs is a private constrained PRF [BLW17].
A private constrained PRF is a constrained PRF with the additional property that the constrained
keys hide the underlying constraining function. Boneh et al. [BLW17] showed how to construct
private constrained PRFs for all circuits using indistinguishability obfuscation. Recently, a number
of works have shown how to construct private constrained PRFs for puncturing constraints [BKM17],
NC1 constraints [CC17], and general circuit constraints [BTVW17] from standard lattice assumptions.
We now review the simulation-based notion of privacy considered in [BKM17, CC17].

Definition 3.14 (Single-Key Constraint Privacy [BKM17, CC17]). Let F : K × X → Y be a
constrained PRF with respect to a function family F . We say that F is a single-key, selectively-private
constrained PRF for F if for all efficient adversaries A = (A1,A2), there exists a stateful simulator
S = (S1,S2) such that the following two distributions are computationally indistinguishable:

Experiment RealA,F(λ):
• (f, stA)← A(1λ)
• k ← F.Setup(1λ)
• kf ← F.Constrain(k, f)
• b← AF(k,·)(kf , stA)
• Output b

Experiment IdealA,S,F(λ):
• (f, stA)← A(1λ)
• (kf , stS)← S1(1λ)
• b← AOEval(·)(kf , stA), where the ideal evaluation

oracle OEval(·) takes as input a point x ∈ X , com-
putes (y, stS)← S2(x, f(x), stS), and returns y
• Output b

Observe that the simulator (S1, S2) in the ideal experiment is not given the function f as
input. Nevertheless, the simulator can simulate kf as in the real experiment. This implies that
the adversary learns nothing about f from kf beyond the value of f at points x ∈ X where the
adversary asks for F(k, x). Leaking this minimal information about f is unavoidable.

3.3 Special Cases: PRPs and Constrained PRPs

Invertible pseudorandom functions can be viewed as a generalization of pseudorandom permutations
(PRPs) where we allow the range of the function to be larger than its domain. A PRP is an IPF
where the domain and range are identical. Our definitions for constrained IPFs can be similarly
adapted to the setting of constrained PRPs. In this section, we make several observations on the
(non)-existence of constrained PRPs, as well as discuss some possible relaxations of the security
requirements to circumvent the impossibility results. We first show that constrained PRPs (for any
family of constraints) on polynomial-size domains do not exist. Next, we show that even over large
domains, security for many natural classes of constraints, including puncturing, is impossible to
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achieve. Our argument here can be extended to derive a lower bound on the size of the range of any
IPF that supports puncturing constraints (or more generally, any constraint that enables evaluation
a non-negligible fraction of the domain).

Remark 3.15 (Small-Domain Constrained PRPs are Insecure). No constrained PRP over a
polynomial-size domain can be secure under the standard pseudorandomness definition of Defini-
tion 3.12. This follows from the fact that a PRP is easily distinguishable from a PRF when the
domain is small—given even a single input-output pair (x∗, y∗) for the PRP, the adversary already
learns something about the values of the PRP at any point x 6= x∗ (namely, the value of the PRP
at x cannot be y∗). Thus, the adversary can distinguish the real output of the PRP at x 6= x∗

(which cannot be y∗) from a uniformly random value (which can be y∗ with noticeable probability
when the domain is small).

Theorem 3.16 (Limitations on Constrained PRPs). Let F : K × X → X be a PRP constrained
with respect to a predicate family F . For each predicate f ∈ F , let Sf = {x ∈ X : f(x) = 1} denote
the set of allowable points for f . If there exists f ∈ F where the quantity |Sf | / |X | is non-negligible,
then F cannot be secure in the sense of Definition 3.12.

Proof. Suppose there exists f ∈ F where |Sf | / |X | is non-negligible. We construct the following
adversary for the constrained security game:

1. First, A makes a constrain query for f and a challenge query on an arbitrary x∗ ∈ X where
f(x∗) = 0. It receives from the challenger a punctured key kf and a challenge value y∗.

2. Then, A computes x← F.Eval−1(kf , y
∗), and outputs 1 if either of the following conditions

hold:

• if f(x) = 0, or

• if F.Eval(kf , x) 6= y∗.

Otherwise, A outputs 0.

To complete the analysis, we compute the probability that A outputs 1:

• Suppose y∗ = F(k, x∗). Consider the case where f(x) = 1. Note in particular that this means
x 6= x∗. By correctness of F, we have that F.Eval(kf , x) = F(k, x). Moreover, since F(k, ·) is a
permutation, it follows that F(k, x) 6= F(k, x∗) = y∗. Thus, in this case, either f(x) = 0 or
F.Eval(kf , x) 6= y∗, so we conclude that A outputs 1 with probability 1.

• Suppose y∗ is uniformly random over X . Let x̂ = F−1(k, y∗). Suppose that f(x̂) = 1. Then,
by correctness of F, we have that

x = F.Eval−1(kf , y
∗) = F−1(k, y∗) = x̂.

Moreover, since f(x̂) = 1, we have

F.Eval(kf , x) = F.Eval(kf , x̂) = F(k, x̂) = y∗.

Thus, whenever f(x̂) = 1, adversary A outputs 1 with probability 0. Since y∗ is uniformly
random over X and F(k, ·) is a permutation,

Pr[A outputs 1] ≤ Pr[f(x̂) = 0] = 1− |Sf | / |X | .
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We conclude that A breaks the constrained security of F with advantage |Sf | / |X |, which is
non-negligible by assumption.

Corollary 3.17 (Puncturable PRPs are Insecure). Let F : K × X → X be a puncturable PRP.
Then, F is insecure in the sense of Definition 3.12.

Proof. The set of allowable points Sf for a puncturing constraint f is always |X | − 1, so the ratio
|Sf | / |X | is always non-negligible. The claim then follows from Theorem 3.16.

Remark 3.18 (Constrained PRPs for Very Restricted Constraint Classes). Theorem 3.16 rules
out any constrained PRP that supports issuing constrained keys that can be used to evaluate on
a non-negligible fraction of the domain. It does leave open the possibility of building constrained
PRPs where each constrained key can only be used to evaluate on a negligible fraction of the domain.
A natural class of constraints that satisfies this property is the class of prefix-constrained PRPs (for
a prefix of super-logarithmic size). We leave it as an open problem to construct a prefix-constrained
PRP, or more generally, a constrained PRP where all of the constrained keys can only be used to
evaluate on a negligible fraction of the domain.

Remark 3.19 (Constrained IPFs Must be Expanding). The attack from the proof of Theorem 3.16
also extends to the setting where F : K×X → Y is a constrained IPF with a small range. Specifically,
if |Y| ≤ |X | · poly(λ), and F supports issuing a constrained key for a function f : X → {0, 1} where
|Sf | / |X | is non-negligible, then F cannot be secure in the sense of Definition 3.12. In this setting,
we would modify the distinguisher in the proof of Theorem 3.16 to additionally output 1 if x = ⊥.
With this modification, the distinguishing advantage of the attack only decreases by a polynomial
factor |X | / |Y| = 1/poly(λ). Therefore, any constrained IPF that admits a constraint that can be
used to evaluate the IPF on a non-negligible fraction of the domain must necessarily have a range
that is larger than the domain by at least a super-polynomial factor. Concretely, a puncturable IPF
must have a range that is super-polynomially larger than the domain.

Remark 3.20 (Weaker Security Relations). The lower bound in Theorem 3.16 only applies when
we require that the IPF value at a constrained point appear pseudorandom given the constrained
key. One way to circumvent the lower bound is to consider a weaker security notion where we just
require the IPF value at a constrained point to be unpredictable rather than pseudorandom (given
the constrained key). In other words, no efficient adversary should be able to predict F(k, x) given a
constrained key kf that does not allow evaluation at x. While the weaker security properties are
potentially satisfiable, they may not be sufficient for specific applications.

4 Constructing Constrained IPFs

We now turn to constructing constrained IPFs and give two main constructions in this section. Our
main constructions use private constrained (non-invertible) PRFs as the primary tool. As a warm-up,
we first construct a puncturable IPF from a private puncturable PRF in Section 4.1. We then
show how the basic IPF construction can be extended to obtain a (single-key) circuit-constrained
IPF in Section 4.2. In Section 7, we also show that an indistinguishability obfuscation of the basic
puncturable IPF gives a multi-key circuit-constrained IPF.
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4.1 Warm-up: Puncturable IPF from Private Puncturable PRFs

We begin by showing how to construct a puncturable IPF on a domain X from a private puncturable
PRF on X . We describe the construction and then show in Theorems 4.2 and 4.3 that it is a secure
puncturable IPF.

Construction 4.1. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1×X → V be an injective
puncturable PRF with key-space K1 and range V. Let F2 : K2 × V → X be a private puncturable
PRF with key-space K2. The puncturable IPF F : K × X → Y with key-space K = K1 × K2,
domain X , and range Y = V × X is defined as follows:

• The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 ×K2 for the puncturable PRFs F1 and F2.

• On input k = (k(1), k(2)) ∈ K1 ×K2 = K, and x ∈ X the IPF is defined as the pair

F
(
(k(1), k(2)), x

)
:=
(
F1(k

(1), x), x⊕ F2(k
(2),F1(k

(1), x)
)
.

• On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the inversion
algorithm F−1(k, y) first computes x← F2(k

(2), y1)⊕ y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k

(1), x)

⊥ otherwise.

Next, we define the setup and constraining algorithms for (F,F−1).

• F.Setup(1λ): On input the security parameter λ, the setup algorithm samples two puncturable
PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ). The setup algorithm outputs the IPF
key k = (k(1), k(2)).

• F.Puncture(k, x∗): On input the IPF key k = (k(1), k(2)) and a point x∗ ∈ X to be punc-
tured, the puncturing algorithm first computes v∗ ← F1(k

(1), x∗). It then generates two

punctured keys k
(1)
x∗ ← F1.Puncture(k

(1), x∗) and k
(2)
v∗ ← F2.Puncture(k

(2), v∗) and returns

kx∗ =
(
k
(1)
x∗ , k

(2)
v∗
)
.

• F.Eval(kx∗ , x): On input the punctured key kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) and a point x ∈ X , the evaluation

algorithm first computes y1 ← F1.Eval(k
(1)
x∗ , x) and returns y = (y1,F2.Eval(k

(2)
v∗ , y1)⊕ x).

• F.Eval−1(kx∗ , y): On input the punctured key kx∗ = (k
(1)
x∗ , k

(2)
v∗ ), and y = (y1, y2) ∈ V ×X = Y ,

the inversion algorithm begins by computing the quantity x← F2.Eval(k
(2)
v∗ , y1)⊕y2. It returns

x if F1.Eval(k
(1)
x∗ , x) = y1 and ⊥ otherwise.

We now state our correctness and security theorems, but defer their formal proofs to Appendix A.

Theorem 4.2. Suppose F1 is an injective puncturable PRF and F2 is a puncturable PRF. Then,
the IPF (F,F−1) from Construction 4.1 is correct.

Theorem 4.3. Suppose F1 is a selectively-secure puncturable PRF, F2 is a selectively-secure, private
puncturable PRF, and |X | / |V| = negl(λ). Then (F,F−1) from Construction 4.1 is a selectively-secure
puncturable IPF.
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Remark 4.4 (Adaptive Security). Theorem 4.3 shows that if the underlying puncturable PRFs in
Construction 4.1 are selectively secure, then the resulting IPF is selectively secure. We note that if we
instantiate the underlying PRFs with an adaptively-secure (private) puncturable PRF (for instance,
the construction due to Canetti and Chen [CC17]), then the resulting IPF can also be shown to be
adaptively secure (following a similar argument as that used in the proof of Theorem 4.3).

4.2 Circuit-Constrained IPF from Private Circuit-Constrained PRFs

In this section, we show how to extend our puncturable IPF construction from Section 4.1 to obtain
a (single-key) constrained IPF for arbitrary circuit constraints. Our security analysis for our circuit-
constrained IPF construction relies critically on the assumption that one of the underlying PRFs is
a circuit-constrained PRF satisfying a strong simulation-based notion of privacy (Definition 3.14).
Canetti and Chen [CC17] previously showed that even a 2-key private constrained PRF satisfying
this simulation-based notion of privacy implies virtual black-box (VBB) obfuscation for the same
underlying circuit class. Since VBB obfuscation for all circuits is impossible in the standard
model [BGI+01], our construction is instantiatable only in the single-key setting, and thus, we
present our construction in the single-key setting.

Construction 4.5. Fix a domain X = {0, 1}n where n = n(λ). Our circuit-constrained IPF
construction for NC1 (resp., P/poly) relies on several primitives:

• Let PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) be a PKE scheme with message space X ,
ciphertext space T , and whose decryption function can be computed in NC1 (resp., P/poly).
Let PK and SK denote the space of public keys and the space of secret keys, respectively, for
PKE. Let V denote the space from which the randomness for encryption is sampled.

• Let F1 : K1 ×X → V be a circuit-constrained PRF for NC1 (resp., P/poly).

• Let F2 : K2 × T → X be a private circuit-constrained PRF for NC1 (resp., P/poly).3

The constrained IPF F : K × X → Y with key-space K = K1 × K2 × PK × SK, domain X , and
range Y ⊆ T × X is defined as follows:

• The IPF key consists of two PRF keys (k(1), k(2)) ∈ K1×K2 for F1 and F2, respectively, and a
public/secret key-pair (pk, sk) ∈ PK × SK for the public-key encryption scheme PKE.

• On input a key k = (k(1), k(2), pk, sk) ∈ K, and x ∈ X , the IPF F(k, x) computes randomness
rx ← F1(k

(1), x), a ciphertext ct← PKE.Encrypt(pk, x; rx), and outputs

F(k, x) :=
(
ct, F2(k

(2), ct)⊕ x
)
.

Note that the public key pk can also be included as part of the public parameters for the IPF.

3To simplify the presentation, we implicitly assume that the PRFs F1 and F2 support general circuit constraints (i.e.,
NC1 constraints or P/poly constraints). However, we can also instantiate our construction using private constrained
PRFs for weaker constraint classes, provided that the constraint class is expressive enough to include the decryption
algorithm for a CCA-secure public-key encryption scheme (see Remark 4.8).
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• On input a key k = (k(1), k(2), pk, sk) ∈ K, and (y1, y2) ∈ Y , the inversion function F−1(k, (y1, y2))
first computes x← F2(k

(2), y1)⊕ y2 and rx ← F1(k
(1), x). Finally, it outputs

F−1(k, (y1, y2)) :=

{
x if y1 = PKE.Encrypt(pk, x; rx)

⊥ otherwise.

• The range of the IPF Y is defined to be the space T ′×X where T ′ = {PKE.Encrypt(pk, x; r)}x∈X ,r∈V
is the subset of ciphertexts that correspond to a valid encryption of some message under the
public key pk.

Next, we define the setup and constraining algorithms for (F,F−1).

• F.Setup(1λ): On input the security parameter λ, the setup algorithm samples two PRF keys
k(1) ← F1.Setup(1λ), k(2) ← F2.Setup(1λ), and a public/secret key-pair for the PKE scheme:
(pk, sk)← PKE.Setup(1λ). It outputs the IPF key k = (k(1), k(2), pk, sk).

• F.Constrain(k, f): On input the IPF key k = (k(1), k(2), pk, sk) and a constraint function

f ∈ F , the algorithm first constrains k
(1)
f ← F1.Constrain(k(1), f). Then, it defines the function

Fsk,f : T → {0, 1} as follows:

Fsk,f (ct) :=

{
1 if PKE.Decrypt(sk, ct) 6= ⊥ and f(PKE.Decrypt(sk, ct)) = 1

0 otherwise.
(4.1)

The constrain algorithm constrains the key k(2) to Fsk,f and obtains k
(2)
F ← F2.Constrain(k(2), Fsk,f ).

It then defines and returns the constrained key kf = (k
(1)
f , k

(2)
F , pk). Note that if PKE.Decrypt(sk, ·)

can be computed in NC1 (resp., P/poly), then the function Fsk,f can also be computed in NC1

(resp., P/poly).

• F.Eval(kf , x): On input the constrained key kf = (k
(1)
f , k

(2)
F , pk), and a point x ∈ X , the

algorithm first computes rx ← F1.Eval(k
(1)
f , x). Then, it encrypts ct← PKE.Encrypt(pk, x; rx)

and returns the tuple y =
(
ct, F2.Eval(k

(2)
F , ct)⊕ x

)
.

• F.Eval−1(kf , y): On input the constrained key kf = (k
(1)
f , k

(2)
F , pk), and a point y = (y1, y2) ∈ Y ,

the algorithm first computes x← F2.Eval(k
(2)
F , y1)⊕y2. Then, it computes rx ← F1.Eval(k

(1)
f , x)

and ct ← PKE.Encrypt(pk, x; rx). If y1 = ct, then the algorithm returns x. Otherwise, it
returns ⊥.

We now state our correctness and security theorems, but defer their formal proofs to Appendix B.

Theorem 4.6. Suppose PKE is a public-key encryption scheme, and F1, F2 are circuit-constrained
PRFs for NC1 (resp., P/poly). Then, the IPF (F,F−1) from Construction 4.5 is a circuit-constrained
IPF for NC1 (resp., P/poly).

Theorem 4.7. Suppose PKE is a smooth, CCA-secure public-key encryption scheme, F1 is a single-
key selective-function-secure circuit-constrained PRF for NC1 (resp., P/poly), and F2 is a single-key,
selective-function-secure private circuit-constrained PRF for NC1 (resp., P/poly). Then, (F,F−1)
from Construction 4.5 is a single-key, selective-function-secure circuit-constrained IPF for NC1

(resp., P/poly).
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Remark 4.8 (Weaker Constraint Classes). While Construction 4.5 gives a circuit-constrained IPF
from private circuit-constrained PRFs, the same construction also applies for building constrained
PRFs that support a weaker class of constraints. Specifically, given a private constrained PRF
for some constraint family F , if F is expressive enough to support the decryption operation of a
CCA-secure PKE scheme (composed with the constraining function), then the constrained PRF
for F can be leveraged to construct an IPF for the family F (via Construction 4.5).

Remark 4.9 (Computational Notion of Smoothness). As stated, Theorem 4.7 imposes an additional
smoothness requirement (Definition 2.2) on the underlying public-key encryption scheme. While
most semantically-secure public-key encryption schemes naturally satisfy this property, a weaker
notion of “computational smoothness” also suffices for Theorem 4.7. In particular, we say a public-
key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with message space M and
ciphertext space T satisfies computational smoothness if for all messages m ∈ M output by an
efficient adversary (on input the security parameter λ and the public key pk), and all strings ct ∈ T ,
Pr[PKE.Encrypt(pk,m) = ct] = negl(λ). Clearly, if PKE is semantically secure, then PKE satisfies
computational smoothness. It is straightforward to modify the proof of Theorem 4.7 to rely on
the computational version of smoothness. In this case, we can use any CCA-secure public-key
encryption scheme to instantiate Construction 4.5.

5 Concrete Instantiations of Constrained IPFs

In this section, we describe how to concretely instantiate Constructions 4.1 and 4.5 using existing
lattice-based private constrained PRFs [BKM17, CC17, BTVW17] to obtain puncturable IPFs and
circuit-constrained IPFs (for both NC1 and P/poly), respectively, from standard lattice assumptions.

Puncturable IPFs from lattices. To apply Construction 4.1, we require an injective puncturable
PRF and a private puncturable PRF. As shown in [SW14], (statistically) injective puncturable
PRFs4 can be built from any one-way function. Next, the recent works of [BKM17, CC17, BTVW17]
show how to construct private puncturable PRFs from standard lattice assumptions. Thus, applying
Construction 4.1, we obtain puncturable IPFs from standard lattice assumptions. In fact, the
construction of Canetti and Chen [CC17] gives an adaptively-secure private puncturable PRF from
the (polynomial) hardness of the learning with errors (LWE) problem [Reg05], and so, combining
their construction with Theorem 4.3, we obtain an adaptively-secure puncturable IPF from the
(polynomial) hardness of LWE with subexponential error rate.

Circuit-constrained IPFs from lattices. Starting from (single-key) private circuit-constrained
PRFs for NC1 [CC17] and P/poly [BTVW17], we can leverage Construction 4.5 to obtain (single-key)
circuit-constrained IPFs for NC1 and P/poly, respectively. We give two candidate instantiations
based on standard lattice assumptions:

• To construct a circuit-constrained IPF for NC1-constraints, we require a private circuit-
constrained PRF for NC1 and a CCA-secure public-key encryption scheme with an NC1 decryp-
tion circuit. We can instantiate the private circuit-constrained PRF for NC1 using the construc-
tion of Canetti and Chen [CC17]. The CCA-secure encryption scheme with NC1 decryption can

4A statistically injective puncturable PRF is a puncturable PRF F where F(k, ·) is injective with overwhelming
probability over the choice of coins used for sampling the key k ← F.Setup(1λ).
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be instantiated using existing lattice-based CCA-secure PKE schemes [PW08, Pei09, MP12] or
by applying the Boneh et al. [BCHK07] transformation to a suitable identity-based encryption
(IBE) scheme [GPV08, ABB10a, CHKP10, ABB10b] and a message authentication code (MAC)
with verification in NC1, which can be built from lattice-based PRFs [BPR12, BLMR13, BP14].
Putting these pieces together, we obtain a (single-key) circuit-constrained IPF for NC1 con-
straints from standard lattice assumptions.

• To construct a circuit-constrained IPF for P/poly, we primarily require a private constrained
PRF for P/poly. We instantiate the private circuit-constrained PRF using the recent con-
struction of Brakerski et al. [BTVW17], and the CCA-secure public key encryption as above.
This yields a secure (single-key) circuit-constrained IPF for general predicates from standard
lattice assumptions.

Remark 5.1 (Relaxed Notions of Correctness). Several lattice-based constrained PRF construc-
tions [BV15, BKM17, BTVW17] satisfy a weaker “computational” notion of correctness which
roughly states that an efficient adversary with a constrained key kf cannot find an input x where
F.Eval(kf , x) 6= F(k, x), where k is the PRF key. If we instantiate Constructions 4.1 and 4.5 with a
constrained PRF that satisfies a computational notion of correctness, then the resulting constrained
IPF also achieves computational correctness. It is straightforward to modify the correctness analysis
(Theorem 4.2 and 4.6) to work under a computational notion of correctness. The security analysis
remains unchanged since none of the proofs rely on perfect correctness of the underlying constrained
PRFs.

6 An Extension: Supporting Delegation

In a delegatable constrained IPF, the holder of a constrained IPF key kf for a function f can further
constrain the key to some function g (i.e., construct a key kf∧g that allows IPF evaluation only on
points x where f(x) = g(x) = 1). Many constrained PRF constructions either support or can be
modified to support some flavor of key delegation [BW13, CRV14, DDM17]. In this section, we
describe (informally) how to extend our constrained IPF construction from Section 4.2 to support
key delegation.

Delegatable constrained PRFs. A constrained PRF that supports one level of delegation can
be generically constructed from any constrained PRF by defining the PRF output to be the xor of
the outputs of two constrained PRFs. For instance, we can define a PRF F as follows:

F((k1, k2), x) := F1(k
(1), x)⊕ F2(k

(2), x),

where F1 and F2 are constrained PRFs. The master secret key is k(1) and k(2), and the constrained

key for a function f is (k
(1)
f , k(2)) where k(1) ← F1.Constrain(k(1), f). The holder of the constrained

key (k
(1)
f , k(2)) can further constrain to a function of the form f ∧ g by computing (k

(1)
f , k

(2)
g ) where

k
(2)
g ← F2.Constrain(k(2), g). Security of this construction follows by a simple hybrid argument. This

general technique can be extended to support any a priori polynomially-bounded delegation depth.
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Delegatable constrained IPFs. We can define a similar notion of key delegation for constrained
IPFs. However, the above method of xoring together the outputs of several constrained IPFs does
not directly give a delegatable constrained IPF. In fact, xoring together the outputs of several IPFs
may not even give an injective function, let alone an efficiently invertible one. Thus, to support
delegation for a constrained IPF, we need a different construction. One method is to use a variant
of the xoring trick in conjunction with Construction 4.5. We describe a construction for achieving
one level of delegation here. Our construction relies on a CCA-secure public-key encryption scheme
PKE, three constrained PRFs F1, F2, F3, and a constrained IPF IPF. The master secret key consists
of keys k(1), k(2), k(3) for F1, F2, and F3, respectively, a key k(IPF) for IPF, and the public/secret
key-pair pk, sk for the PKE scheme. Our delegatable IPF works as follows:

F
(
(k(1), k(2), k(3), k(IPF), pk, sk), x

)
:= F−1

(
(k(1), k(2), k(3), k(IPF), pk, sk), (ct, z)

)
:=

r ← F1(k
(1), x)⊕ F3(k

(3), x)

ct← PKE.Encrypt(pk, x; r)

z ← F2(k
(2), ct)⊕ IPF(k(IPF), x)

output (ct, z)





x← IPF−1(k(IPF), z ⊕ F2(k
(2), ct))

r ← F1(k
(1), x)⊕ F3(k

(3), x)

if ct 6= PKE.Encrypt(pk, x; r)

then x← ⊥
output x


To constrain a key (k(1), k(2), k(3), k(IPF), pk, sk) to a function f , we first constrain the PRF keys k(1),

k(2) exactly as described in Construction 4.5. In particular, the constrain algorithm computes k
(1)
f ←

F1.Constrain(k(1), f) and k
(2)
F ← F2.Constrain(k(2), Fsk,f ), where Fsk,f is defined as in Eq. (4.1). The

constrained key is the tuple kf = (k
(1)
f , k

(2)
F , k(3), k(IPF), pk). To further constrain (that is, delegate)

to a function g, we constrain F3 and IPF to g. In other words, we compute k
(3)
g ← F3.Constrain(k(3), g)

and k
(IPF)
g ← IPF.Constrain(k(IPF), g). The constrained key kf∧g for the function f ∧ g is defined to

be kf∧g := (k
(1)
f , k

(2)
F , k

(3)
g , k

(IPF)
g , pk). Security of this construction follows by a similar argument as

that used in the proof of Theorem 4.7 (namely, by appealing to security of F1 and privacy as well as
security of F2), in addition to security of F3 and the underlying IPF. Our construction can be viewed
as taking a standard constrained IPF (that does not support key delegation), and constructing a
constrained IPF that supports one level of delegation. Iterating this construction multiple times
yields an IPF that can support any a priori bounded number of delegations.

7 Multi-Key Constrained IPF from Obfuscation

In this section, we construct a multi-key circuit-constrained IPF from (polynomially-hard) indistin-
guishability obfuscation and one-way functions. Our construction of a circuit-constrained IPF from
iO (and one-way functions) mirrors the Boneh-Zhandry construction [BZ14] of a circuit-constrained
PRF from iO (and one-way functions). More precisely, Boneh and Zhandry show that obfuscating
a puncturable PRF effectively gives a circuit-constrained PRF. Similarly, our construction works
by obfuscating our punctured IPF construction (Construction 4.1) using iO. In our construction,
each constrained IPF key contains two obfuscated programs: one for evaluating the IPF, and one
for inverting the IPF. The constraint function f is embedded within the obfuscated evaluation and
inversion programs. We now describe our scheme more formally. First, we review the standard
definition of indistinguishability obfuscation [BGI+01, GGH+13].
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Definition 7.1 (Indistinguishability Obfuscation [BGI+01, GGH+13]). An indistinguishability
obfuscator iO for a circuit class C is a uniform and efficient algorithm satisfying the following
requirements:

• Correctness. For all security parameter λ ∈ N, all circuits C ∈ C, and all inputs x, we have
that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

• Indistinguishability. For all security parameter λ ∈ N, and any two circuits C0, C1 ∈ Cλ, if
C0(x) = C1(x) for all inputs x, then for all efficient adversaries A, we have that

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| = negl(λ).

Construction 7.2. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1 × X → V be a
puncturable PRF with key-space K1 and range V . Let F2 : K2×V → X be a puncturable PRF with
key-space K2. The constrained IPF F : K ×X → Y with key-space K = K1 ×K2, domain X , and
range Y = V × X is defined as follows:

• The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 ×K2 = K. On input a key (k(1), k(2)) and
an input x ∈ X , the value of the IPF is defined to be

F(k, x) :=
(
F1(k

(1), x), F2(k
(2),F1(k

(1), x))⊕ x
)
.

• On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the inversion
algorithm F−1(k, y) first computes x← F2(k

(2), y1)⊕ y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k

(1), x)

⊥ otherwise.

Next, we define the setup and constraining algorithms for the IPF (F,F−1).

• F.Setup(1λ): On input the security parameter λ, the setup algorithm samples two puncturable
PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ), and outputs k = (k(1), k(2)).

• F.Constrain(k, f): On input the IPF key k = (k(1), k(2)) and a constraint function f ∈ F ,
the constrain algorithm outputs two obfuscated programs P0 = iO(PEval[f, k(1), k(2)]) and
P1 = iO(P Inv[f, k(1), k(2)]) where the programs PEval[f, k(1), k(2)] and P Inv[f, k(1), k(2)] are
defined as follows:

Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2, respectively.

On input x ∈ X :

1. If f(x) = 0, output ⊥.
2. Otherwise, output F(k, x) =

(
F1(k

(1), x), F2(k
(2),F1(k

(1), x))⊕ x
)
.

Figure 1: The program PEval[f, k(1), k(2)]
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Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2, respectively.

On input y = (y1, y2) ∈ V × X

1. Compute x← F2(k
(2), y1)⊕ y2.

2. If f(x) = 0 or y1 6= F1(k
(1), x), output ⊥.

3. Otherwise, output x.

Figure 2: The program P Inv[f, k(1), k(2)]

Note that the programs PEval and P Inv are padded to the maximum size of any program that
appears in the proof of Theorem 7.4.

• F.Eval(kf , x): On input the constrained key kf = (P1, P2), and a point x ∈ X , the evaluation
algorithm outputs P1(x).

• F.Eval−1(kf , y): On input the constrained key kf = (P1, P2), and a point y ∈ Y, the inversion
algorithm outputs P2(y).

We now state our correctness and security theorems, but defer their formal proofs to Appendix C.

Theorem 7.3. Suppose F1 and F2 are puncturable PRFs, and iO is an indistinguishability obfuscator.
Then, the IPF (F,F−1) from Construction 7.2 is correct.

Theorem 7.4. Suppose F1 and F2 are selectively-secure puncturable PRFs, iO is an indistinguisha-
bility obfuscator, and |X | / |V| = negl(λ). Then (F,F−1) from Construction 7.2 is a selectively-secure
circuit-constrained IPF.
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A Analysis of Puncturable IPF

In this section, we give the formal correctness and security analysis of our puncturable IPF
(Construction 4.1) from Section 4.1.
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A.1 Proof of Theorem 4.2

Correctness of Construction 4.1 follows from correctness of the underlying puncturable PRFs.

Specifically, let k = (k(1), k(2)) ← F.Setup(1λ). Take any x∗ ∈ X , and let kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) ←

F.Puncture(k, x∗). We show the two correctness requirements separately:

• Take any x 6= x∗. Suppose F(k, x) = (y1, y2), which means that y1 = F1(k
(1), x) and

y2 = F2(k
(2), y1) ⊕ x. Since F1 is injective and x 6= x∗, F1(k

(1), x) 6= F1(k
(1), x∗) = v∗. By

correctness of F1 and F2, we have that F1.Eval(k
(1)
x∗ , x) = F1(k(1), x) = y1 and F2.Eval(k

(2)
v∗ , y1)⊕

x = F2(k
(2), y1)⊕ x = y2.

• Take any input (y1, y2) ∈ V × X where there exists some x 6= x∗ such that F(k, x) = (y1, y2).
This means that y1 = F1(k(1), x) and y2 = F2(k(2), y1)⊕ x. Moreover, since F1 is injective and

x 6= x∗, y1 6= F1(k
(1), x∗) = v∗. By correctness of F2, it follows that F2.Eval(k

(2)
v∗ , y1) ⊕ y2 =

F2(k
(2), y1)⊕ y2 = x. By correctness of F1, F1.Eval(k

(1)
x∗ , x) = F1(k

(1), x) = y1, in which case
F.Eval−1(kx∗ , (y1, y2)) = x = F−1(k, (y1, y2)).

A.2 Proof of Theorem 4.3

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.
Each of our hybrid experiments consist of the following phases:

1. Setup phase. In the selective security experiment, the adversary begins by committing to a
point x∗ ∈ X . Then, the challenger generates the IPF key k ∈ K. The challenger constructs a
punctured key kx∗ and samples a challenge value y∗ ∈ Y. The challenger gives kx∗ and y∗ to
the adversary.

2. Query phase. The adversary A is now allowed to issue evaluation and inversion queries to
the challenger. However, the adversary is not allowed to query the evaluation oracle on the
punctured point x∗ or the inversion oracle on its challenge y∗.

3. Output phase. At the end of the experiment, the adversary outputs a bit b ∈ {0, 1}.

We now define our sequence of hybrid experiments. When defining a new hybrid, we only describe
the phases that differ from the previous one.

• Hyb0: This is the constrained IPF security experiment Expt
(IPF)
A,F (λ, 0) from Definition 3.11. In

the setup phase, after the adversary commits to a point x∗ ∈ X , the challenger samples keys
k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ), and sets k = (k(1), k(2)). It sets v∗ ← F1(k(1), x∗)

and z∗ ← F2(k
(2), v∗) ⊕ x∗ and constructs the constrained keys k

(1)
x∗ ← F1.Puncture(k

(1), x∗)

and k
(2)
v∗ ← F2.Puncture(k

(2), v∗). The challenger gives the punctured key kx∗ = (k
(1)
x∗ , k

(2)
v∗ )

and evaluation y∗ = (v∗, z∗) to the adversary. During the query phase, the challenger answers
all of the evaluation queries by computing F(k, ·) and the inversion queries by computing
F−1(k, ·), exactly as in the real scheme.

• Hyb1: Same as Hyb0, except during the setup phase, the challenger samples v∗ ←R V . The rest
of the setup phase proceeds as in Hyb0. When responding to the evaluation and inversion
queries, the challenger uses v∗ in place of the value F1(k

(1), x∗).
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• Hyb2: Same as Hyb1, except when responding to the evaluation and inversion queries, the
challenger always evaluates F1(k

(1), ·) instead of substituting the value v∗ for F1(k
(1), x∗).

• Hyb3: Same as Hyb2, except during the setup phase, the challenger samples z∗ ←R X . The rest
of the setup phase proceeds as in Hyb2. When responding to the evaluation and inversion
queries, the challenger uses z∗ ⊕ x∗ in place of the value F2(k

(2), v∗).

• Hyb4: Same as Hyb3, except when responding to the evaluation and inversion queries, the
challenger always evaluates F2(k(2), ·) instead of substituting the value z∗ ⊕ x∗ for F2(k(2), v∗).

• Hyb5: Same as Hyb4, except during the setup phase, the challenger punctures k(2) at F1(k(1), x∗)

instead of v∗. This is the constrained IPF security experiment Expt
(IPF)
A,F (λ, 1) from Defini-

tion 3.6.

For an adversary A, we write Hybi(A) to denote the output in hybrid Hybi. We now argue that
the output of each consecutive pair of experiments is computationally indistinguishable. In the
following, we implicitly assume that the adversary in each pair of hybrid arguments is admissible.

Lemma A.1. If F1 is a selectively-secure puncturable PRF (Definition 3.7), then for all efficient
adversaries A, |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish between hybrids Hyb0 and Hyb1. We
construct an adversary B to break puncturing security of F1. Algorithm B simulates the experiments
as follows:

• Setup phase. At the beginning of the experiment, adversary A commits to a challenge
point x∗ ∈ X . Algorithm B sends x∗ to the puncturing security challenger for F1 and receives a

punctured PRF key k
(1)
x∗ and a challenge value v∗ ∈ V . It generates the key k(2) ← F2.Setup(1λ),

the punctured key k
(2)
v∗ ← F2.Puncture(k

(2), v∗), and the evaluation z∗ ← F2(k
(2), v∗) ⊕ x∗

exactly as in the real scheme. Finally, it sends the punctured key kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) and the

challenge evaluation y∗ = (v∗, z∗) to A.

• Query phase. Algorithm B simulates the query phase exactly as in Hyb0 and Hyb1, except
whenever it needs to compute F1(k

(1), x) on some x 6= x∗, it queries the evaluation oracle for
F1 on x. Whenever it needs to compute F1(k

(1), x∗), it instead uses the value v∗.

• Output phase. After A outputs a bit b ∈ {0, 1}, algorithm B outputs the same bit b.

We now argue that if v∗ is the actual value of F1 at the punctured point x∗, then B perfectly
simulates Hyb0, and if v∗ is a uniformly random value, then it has perfectly simulated Hyb1. In
the analysis, we write k(1) to denote the key sampled by the puncturing security challenger for F1
(unknown to the reduction algorithm B). First, note that B is admissible for the puncturing security
game because it never queries the evaluation oracle for F1 on the challenge point x∗.

• Suppose v∗ = F1(k
(1), x∗). Then, the setup phase is simulated exactly as in Hyb0. It suffices

to argue that the evaluation and inversion queries are simulated correctly. In the reduction,

B queries the evaluation oracle to obtain the values F1(k
(1)
x∗ , x) whenever x 6= x∗, and it uses

v∗ = F1(k
(1), x∗) for the value of F1(k

(1), x∗). Thus, B perfectly simulates Hyb0.
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• Suppose v∗ is uniformly random over V. In this case, B perfectly simulates the setup phase
of Hyb1. In the query phase, algorithm B uses the evaluation oracle to compute F1(k

(1), x)
whenever x 6= x∗, and the value v∗ for F1(k

(1), x∗). This is precisely the distribution in Hyb1.

We conclude that B breaks the puncturing security of F1 with the same advantage adversary A has
in distinguishing Hyb0 and Hyb1. The lemma follows.

Lemma A.2. If F1 is a selectively-secure puncturable PRF (Definition 3.7), and 1/ |V| = negl(λ),
then for all efficient adversaries A, |Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

Proof. The only difference between Hyb1 and Hyb2 is that during the query phase, the challenger
uses the value v∗ in place of the value F1(k(1), x∗) in Hyb1. To show the lemma, we consider each type
of query separately, and argue that the view of the adversary is computationally indistinguishable
between hybrids Hyb1 and Hyb2.

• Evaluation queries. On an evaluation query x, the challenger in Hyb1 and Hyb2 only needs
to evaluate F1(k(1), ·) on x. Since Hyb1 and Hyb2 only differ in the value the challenger uses for
F1(k

(1), x∗), the outputs of the evaluation oracle in Hyb1 and Hyb2 are identically distributed
on all inputs x 6= x∗. By admissibility, the adversary can only query the evaluation oracle on
points x 6= x∗, and so, the responses of the evaluation oracle in Hyb1 and Hyb2 are distributed
identically.

• Inversion queries. On an inversion query (y1, y2), the challenger first computes x ←
F2(k

(2), y1) ⊕ y2. Then, the challenger checks whether y1 = F1(k
(1), x). If x 6= x∗, then the

output of the inversion oracle in Hyb1 and Hyb2 is computed identically. It suffices to only
consider the case where x = x∗, or equivalently, when F2(k

(2), y1)⊕ y2 = x∗.

– In Hyb1, the challenger substitutes the value v∗ for the value F1(k
(1), x∗). For any query

(y1, y2) where F2(k(2), y1)⊕y2 = x∗, the challenger in Hyb1 always responds with ⊥ unless
y1 = v∗. But if y1 = v∗, then it must be the case that y2 = F2(k

(2), v∗)⊕ x∗ = z∗. This
means that (y1, y2) = (v∗, z∗), which is the challenge query. Thus, the challenger in Hyb1
responds with ⊥ on all admissible inversion queries satisfying F2(k

(2), y1)⊕ y2 = x∗.

– In Hyb2, on a query (y1, y2) where F2(k(2), y1)⊕ y2 = x∗, the challenger in Hyb2 responds
with ⊥ unless y1 = F1(k(1), x∗). This in particular means that y2 = F2(k(2),F1(k(1), x∗))⊕
x∗.

We conclude that the response of the challenger on an inversion query is identically distributed
in Hyb1 and Hyb2 unless the adversary makes an inversion query on the tuple (y1, y2) where
y1 = F1(k

(1), x∗) and y2 = F2(k
(2), y1)⊕ x∗.

Suppose now that an adversary A is able to distinguish between Hyb1 and Hyb2 with some non-
negligible probability ε. By the above analysis, the adversary’s view in Hyb1 and Hyb2 is identically
distributed unless the adversary makes an inversion query on the input (y1, y2) where y1 = F1(k(1), x∗)
and y2 = F2(k

(2), y1)⊕ x∗. Since A distinguishes Hyb1 from Hyb2 with advantage ε, it must make
an inversion query on (y1, y2) with probability at least ε. We use A to construct an adversary B
that breaks the puncturing security of F1. Algorithm B simulates an execution of Hyb1 as follows:
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• Setup phase. At the beginning of the experiment, adversary A commits to a challenge
point x∗ ∈ X . Algorithm B sends x∗ to the puncturing security challenger for F1 and

receives a punctured PRF key k
(1)
x∗ and a challenge value v̂∗ ∈ V. Algorithm B then samples

a random point v∗ ←R V. It generates the key k(2) ← F2.Setup(1λ), the punctured key

k
(2)
v∗ ← F2.Puncture(k

(2), v∗), and the evaluation z∗ ← F2(k
(2), v∗) ⊕ x∗ exactly as in Hyb1

and Hyb2. Finally, it sends the punctured key kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) and the challenge evaluation

y∗ = (v∗, z∗) to A. Importantly, B does not use the challenge value v̂∗ in this phase.

• Query phase. All of the (admissible) evaluation queries are simulated as in Hyb1 and Hyb2.
In particular, whenever it needs to compute x = F1(k(1), x) for x 6= x∗, it queries the evaluation
oracle for F1 on the point x. For an inversion query (y1, y2), algorithm B first computes
x← F2(k

(2), y1)⊕ y2. If x 6= x∗, then B proceeds as in Hyb1 and Hyb2, except it queries the
evaluation oracle for F1 to compute the value of F1(k(1), x). On (admissible) inversion queries
(y1, y2) where x = F2(k

(2), y1)⊕ y2 = x∗, algorithm B responds with ⊥.

At the end of the experiment (or if A aborts), B checks whether A ever queried the inversion oracle
on the tuple (v̂∗,F2(k(2), v̂∗)⊕ x∗) where v̂∗ is the challenge it received from the puncturing security
challenger. If A made such a query, then B outputs 1. Otherwise, it outputs 0. By construction, we
note that B never needs to evaluate F1 on the challenge point x∗, so it is admissible.

To complete the argument, we first note that by construction of B and the above analysis,
algorithm B perfectly simulates the setup and query phases in Hyb1 for A. This means that with
probability at least ε, A will submit an inversion query on the tuple (y1, y2) where y1 = F1(k(1), x∗)
and y2 = F2(k

(2), y1) ⊕ x∗ at some point during the challenge phase (otherwise, the view of A is
identically distributed in Hyb1 and Hyb2). We now consider the probability that B outputs 1.

• Suppose v̂∗ = F1(k(1), x∗). By assumption, A queries the inversion oracle on the tuple (y1, y2)
where y1 = F1(k

(1), x∗) = v̂∗ and y2 = F2(k
(2), y1)⊕ x∗ = F2(k

(2), v̂∗)⊕ x∗ with probability at
least ε. Correspondingly, algorithm B outputs 1 with probability at least ε.

• Suppose v̂∗ is random in V . By construction of B, the view of A in the reduction is independent
of v̂∗. Let Q = poly(λ) be the number of inversion queries A makes. Since v̂∗ is uniformly
random over V, the probability that v̂∗ is equal to one of the adversary’s queries is at most
Q/ |V| = negl(λ) since we assume that 1/ |V| = negl(λ).

We conclude that if A is able to distinguish between hybrids Hyb1 and Hyb2 with non-negligible
advantage ε, then B is able to break puncturing security of F1 with probability at least ε−negl(λ).

Lemma A.3. If F2 is a selectively-secure puncturable PRF (Definition 3.7), then for all efficient
adversaries A, |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(λ).

Proof. This follows very similarly to the proof of Lemma A.1. Suppose there exists an adversary
A that can distinguish between hybrids Hyb2 and Hyb3. We construct an adversary to break the
puncturing security of F2. Algorithm B simulates the experiments as follows:

• Setup phase. At the beginning of the experiment, A commits to a point x∗. Algorithm B
generates k(1) ← F1.Setup(1λ), k

(1)
x∗ ← F1.Puncture(k

(1), x∗), and chooses v∗ ←R V. It submits

v∗ to the puncturing security challenger for F2 and receives a punctured key k
(2)
v∗ and a

challenge value z∗ ∈ X . Algorithm B gives kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) and y∗ = (v∗, z∗ ⊕ x∗) to A.
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• Query phase. Algorithm B simulates the query phase exactly as in Hyb2 and Hyb3, except
whenever it needs to compute F2(k

(2), v) on some v 6= v∗, it queries the evaluation oracle for
F2 on v. Whenever it needs to compute F2(k

(2), v∗), it uses the value z∗.

At the end of the simulation, B outputs whatever A outputs. Note first that B is admissible because
it never needs to query the evaluation oracle on the challenge point v∗. We now show that depending
on whether z∗ is pseudorandom or truly random, B either simulates Hyb2 or Hyb3 for A:

• Suppose z∗ = F2(k(2), v∗). Then, the setup and challenge phases are simulated as described in
Hyb2.

• Suppose z∗ is uniformly random over X . Since z∗ is independent of x∗, this means that z∗⊕x∗
is also uniform over X . Thus, the setup phase is simulated exactly as in Hyb3. By construction,
B perfectly simulates the challenge phase in Hyb2.

We conclude that B breaks puncturing security of A with the same advantage A has in distinguishing
Hyb2 and Hyb3. The lemma follows.

Lemma A.4. If |X | / |V| = negl(λ), then for all adversaries A,

|Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]| = negl(λ).

Proof. The only difference between Hyb3 and Hyb4 is that during the query phase, the challenger
uses the value z∗ ⊕ x∗ in place of F2(k(2), v∗) in Hyb3. To show the lemma, we consider each type of
query and argue that the views of the adversary is statistically indistinguishable in hybrids Hyb3
and Hyb4.

• Evaluation queries. On an evaluation query x, the challenger in Hyb3 and Hyb4 first
computes v ← F1(k(1), x) and then computes F2(k(2), v). Thus, the response to the evaluation
query in Hyb3 and Hyb4 differs only on points x ∈ X where F1(k(1), x) = v∗. But in Hyb3 and
Hyb4, the point v∗ is sampled uniformly at random from V, and in particular, independently
of k(1). Thus, for any x ∈ X , it follows that Pr[v∗ = F1(k

(1), x)] = 1/ |V|. Taking an union
bound over all x ∈ X , we have that

Pr[∀x : F1(k
(1), x) 6= v∗] = 1− |X | / |V| = 1− negl(λ).

Thus, with overwhelming probability (over the choice of v∗), F1(k
(1), x) 6= v∗ for all x ∈ X .

This means that with overwhelming probability, the outputs of the evaluation oracle in Hyb3
is the same as that in Hyb4 on all inputs.

• Inversion queries. On an inversion query (y1, y2), the challenger in Hyb3 and Hyb4 first
computes x← F2(k(2), y1)⊕ y2 and then checks whether y1 = F1(k(1), x). On all queries where
y1 6= v∗, the challenger’s behavior in Hyb3 and Hyb4 is identical. On the queries (v∗, y2), the
only instance where the challenger does not output ⊥ is if F1(k

(1), x) = v∗. But as argued in
the case of evaluation queries, with overwhelming probability over the choice of v∗, there does
not exist any x ∈ X such that this holds. Thus, regardless of the value the challenger uses
for F2(k

(2), v∗), the output in Hyb3 and Hyb4 will be ⊥ on all inversion queries of the form
(v∗, y2). We conclude that with overwhelming probability, the output of the inversion oracle
in Hyb3 is the same as that in Hyb4 on all inputs.
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The above analysis shows that with overwhelming probability over the choice of v∗, the distribution of
outputs of the evaluation and inversion oracles in Hyb3 and Hyb4 is statistically indistinguishable.

Lemma A.5. If F1 is a selectively-secure puncturable PRF (Definition 3.7), F2 is a selectively-private
puncturable PRF (Definition 3.14), and |X | / |V| = negl(λ), then for all efficient adversaries A,
|Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]| = negl(λ).

Proof. We introduce two intermediate hybrids where the challenger uses the simulator S = (S1,S2)
for F2 (from Definition 3.14) to construct the punctured key and answer the evaluation queries:

• Hyb4,1: Same as Hyb4 except the challenger uses the simulator S1 to construct the punctured

key k
(2)
v∗ and the simulator S2 in place of F2(k

(2), ·) in the challenge phase. More precisely,

in the setup phase, the challenger computes (k
(2)
v∗ , stS) ← S1(1λ). During the query phase,

the challenger answers all queries as in Hyb4, except whenever it needs to evaluate F2(k
(2), ·)

on v ∈ V, the challenger instead computes (x, stS) ← S2(v, 1, stS), and uses x in place of
F2(k

(2), v).

• Hyb4,2: Same as Hyb4,1 except during the query phase, whenever it needs to evaluate F2(k(2), ·)
on v = F1(k

(1), x∗), the challenger instead computes (x, stS) ← S2(v, 0, stS), and uses x in
place of F2(k

(2), v). All other queries to F2(k
(2), ·) are handled as in Hyb4,1.

We now show that each pair of consecutive hybrids Hyb4, Hyb4,1, Hyb4,2, and Hyb5 is computationally
indistinguishable.

Claim A.6. If F2 is a selectively-private puncturable PRF (Definition 3.14) and |X | / |V| = negl(λ),
then for all efficient adversaries A, we have that

∣∣Pr[Hyb4(A) = 1]− Pr[Hyb4,1(A) = 1]
∣∣ = negl(λ).

Proof. Suppose that there exists an adversary A that can distinguish between Hyb4 and Hyb4,1.
We use A to build an adversary B that can distinguish between RealB,F2(λ) and IdealB,S,F2(λ) from
Definition 3.14. Algorithm B runs A and simulates the experiment as follows:

• Setup phase. At the beginning of the game, A commits to a challenge point x∗. Algorithm B
generates k(1) ← F1.Setup(1λ), k

(1)
x∗ ← F1.Puncture(k

(1), x∗) and chooses v∗ ←R V. It commits

to v∗ in the privacy game and receives a key k
(2)
v∗ . Next, B chooses z∗ ←R X and gives the key

kx∗ = (k
(1)
x∗ , k

(2)
v∗ ) and the challenge value y∗ = (x∗, z∗) to A.

• Query phase. Algorithm B simulates the evaluation queries exactly as in Hyb4 and Hyb4,1,

except whenever it needs to compute F2(k(2), v) on some v ∈ V , it queries its evaluation oracle
for F2 on v. On an inversion query (y1, y2), if y1 6= v∗, then algorithm B proceeds exactly as in
Hyb4 and Hyb4,1, except it queries its evaluation oracle for F2 whenever it needs to compute

F2(k
(2), v). If y1 = v∗, then algorithm B replies with ⊥.

At the end of the simulation, algorithm B outputs whatever A outputs. We consider the two
distributions RealB,F2 and IdealB,S,F2 separately.

• If the key k
(2)
v∗ and PRF evaluations are computed according to RealB,F2 , then the setup and

evaluation queries are simulated exactly as in Hyb4. By construction, the inversion queries
(y1, y2) where y1 6= v∗ are also simulated perfectly. When y1 = v∗, the challenger in Hyb4
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outputs something other than ⊥ only if there exists some x ∈ X where F1(k
(1), x) = v∗. By

the same argument as in the proof of Lemma A.4, with overwhelming probability over the
choice of v∗ (and taking a union bound over all x ∈ X ), no such x exists, and so, the view B
simulates for A is statistically indistinguishable from its view in Hyb4.

• If the key k
(2)
v∗ and PRF evaluations are computed according to IdealB,S,F2 , then we claim that

B correctly simulates Hyb4,1 for A. There are two conditions to check. First, it must be the

case that during the challenge phase, B never needs to compute F2(k
(2), v∗). If algorithm

B needs to query F2 on v∗, then in IdealB,S,F2 , the response is computed using S2(v∗, 0, stS)
whereas in Hyb4,1, the response is computed using S2(v∗, 1, stS). We consider the two types of
queries A makes in the challenge phase.

– Evaluation queries. On an evaluation query x ∈ X , B first computes v ← F1(k
(1), x)

and then queries F2 on v. By the same argument as in Lemma A.4, with overwhelming
probability, there does not exist any x ∈ X such that v∗ = F1(k

(1), x), so B never needs
to evaluate F2 on v∗.

– Inversion queries. On an inversion query (y1, y2), algorithm B first computes x ←
F2(k

(2), y1)⊕ y2. If y1 6= v∗, then B does not need to evaluate F2 on v∗. When y1 = v∗,
B does not need to make any query to F2.

Second, we show that B correctly simulates the distribution in Hyb4,1. By construction,
the setup phase, the evaluation queries, and the inversion queries (y1, y2) where y1 6= v∗

are simulated exactly as described in Hyb4,1. For the inversion queries of the form (v∗, y2),
the challenger’s response in Hyb4,1 is always ⊥ with overwhelming probability (by the same
argument as in Lemma A.4). Thus, the distribution B simulates in this case is statistically
indistinguishable from Hyb4,1.

By puncturing security of F2, hybrids Hyb4 and Hyb4,1 are computationally indistinguishable.

Claim A.7. If F1 is a selectively-secure puncturable PRF (Definition 3.7) and 1/ |V| = negl(λ),
then for all efficient adversaries A,

∣∣Pr[Hyb4,1(A) = 1]− Pr[Hyb4,2(A) = 1]
∣∣ = negl(λ).

Proof. By construction, Hyb4,1 and Hyb4,2 only differ on how the challenger handles the evaluation

and inversion queries that require computing F2(k
(2),F1(k

(1), x∗)). There are two possibilities:

• The adversary makes an (admissible) evaluation query on x 6= x∗ where F1(k
(1), x) =

F1(k
(1), x∗).

• The adversary makes an inversion query on (y1, y2) where y1 = F1(k
(1), x∗).

Suppose there exists an adversary A that can distinguish between Hyb4,1 and Hyb4,2 with non-
negligible probability ε. This means that with probability at least ε, adversary A makes a query
satisfying one of the above two conditions in Hyb4,1. We use A to build an algorithm B that breaks
puncturing security of F1:

• Setup phase. At the beginning of the game, the adversary commits to a challenge point
x∗ ∈ X . Algorithm B commits to x∗ in the puncturing security game for F1, and receives a

punctured key k
(1)
x∗ and a challenge value v̂∗. Algorithm B then samples y∗ ←R V ×X , computes

(k
(2)
v∗ , stS)← S1(1λ), and gives the key kx∗ = (k

(1)
x∗ , k

(2)
v∗ ) as well as the challenge value y∗ to A.
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• Query phase. Algorithm B simulates the evaluation and inversion queries as follows:

– Evaluation queries. On an (admissible) evaluation query x 6= x∗, algorithm B queries
the evaluation oracle for F1 on x to obtain a value v. It then computes (z, stS) ←
S2(v, 1, stS), and returns (v, z ⊕ x), exactly as in Hyb4,1. If v = v̂∗, then B sets the flag
Good.

– Inversion queries. On an inversion query (y1, y2) 6= (v∗, z∗), algorithm B first computes
(x′, stS)← S2(y1, 1, stS) and x← x′ ⊕ y2. If x 6= x∗, then B queries its evaluation oracle
for F1 and continues as in Hyb4,1. Otherwise, B responds with ⊥. If y1 = v̂∗, then B sets
the flag Good.

At the end of the experiment, algorithm B outputs 1 if the Good flag if set. Note that the “good”
events precisely correspond to the types of queries A makes with probability ε in Hyb4.1. We now
compute the probability that B outputs 1 in the pseudorandom setting and the truly random setting:

• If v̂∗ = F1(k
(1), x∗), we show that the Good flag is set with probability at least ε. There are

two cases:

– Suppose A queries the inversion oracle on the point (y1, y2) where y1 = F1(k
(1), x∗) and

y2 = F2(k
(2), y1)⊕ x∗. In this case, the Good flag is always set.

– Suppose A does not query the inversion oracle on the point (y1, y2) where y1 = F1(k(1), x∗)
and y2 = F2(k(2), y1)⊕ x∗. Then, by construction, B perfectly simulates the view of A in
Hyb4,1. In this case, with probability ε, A makes a query in the query phase that causes
algorithm B to set the Good flag.

We conclude that with probability at most ε, B outputs 1 when v̂∗ = F1(k
(1), x∗).

• If v̂∗ is uniformly random over V, then adversary B outputs 1 with probability at most
Q/ |V| = negl(λ), where Q = poly(λ) is the number of evaluation or inversion queries the
adversary makes. This follows from the fact that the adversary’s view in the simulation is
independent of v̂∗. The probability that the Good flag is set is then equal to the probability
that the randomly sampled v̂∗ matches one of the target values appearing in each of the
queries.

The above analysis shows that B breaks the puncturing security of F1 with probability ε− negl(λ),
where ε is the advantage A has in distinguishing hybrids Hyb4,1 from Hyb4,2. The claim follows.

Claim A.8. If F2 is a selectively-private puncturable PRF (Definition 3.14), then for all efficient
adversaries A,

∣∣Pr[Hyb4,2(A) = 1]− Pr[Hyb5(A) = 1]
∣∣ = negl(λ).

Proof. This proof is very similar to the proof of Claim A.6. Suppose there exists an adversary A
that can distinguish between experiments Hyb4,2 and Hyb5. We use A to build an algorithm B that
can distinguish between RealB,F2(λ) and IdealB,S,F2(λ). Algorithm B behaves very similarly to the
corresponding algorithm used in the proof of Claim A.6.

• Setup phase. Same behavior as algorithm B in the proof of Claim A.6, except B commits to
the input F1(k

(1), x∗) in the privacy game (instead of v∗).

32



• Query phase. Algorithm B simulates the evaluation and inversion queries exactly as in
Hyb4,2 and Hyb5, except whenever it needs to compute F2(k

(2), v) on some v ∈ V, it instead
queries its evaluation oracle for F2 on v.

At the end of the simulation, algorithm B outputs whatever A outputs. Now, if the key k
(2)
v∗ and PRF

evaluations are computed according to RealB,F2 , then the setup and evaluation queries are simulated

exactly as in Hyb5. Conversely, if the key k
(2)
v∗ and PRF evaluations are computed according to

IdealB,S,F2 , then B perfectly simulates Hyb4,2. The claim follows.

By Claims A.6 through A.8, we conclude that hybrids Hyb4 and Hyb5 are computationally indistin-
guishable.

Combining Lemmas A.1 through A.5, we conclude that Construction 4.1 is a puncturable IPF.

B Analysis of Circuit-Constrained IPF

In this section, we give the formal correctness and security analysis of our circuit-constrained IPF
(Construction 4.5) from Section 4.2.

B.1 Proof of Theorem 4.6

Correctness of Construction 4.5 follows from correctness of the underlying constrained PRF
and correctness of the public-key encryption scheme. Take any function f ∈ F and let k =

(k(1), k(2), pk, sk) ← F.Setup(1λ), kf = (k
(1)
f , k

(2)
F , pk) ← F.Constrain(k, f). We now show the two

correctness requirements separately:

• Take any x ∈ X where f(x) = 1. Let (y1, y2) ← F(k, x). Then, y1 = PKE.Encrypt(pk, x; rx)
where rx = F1(k

(1), x) and y2 = F2(k
(2), y1) ⊕ x. By correctness of F1, it follows that

rx = F1.Eval(k
(1)
f , x). Furthermore, by correctness of PKE, Decrypt(sk, y1) = x and so,

Fsk,f (y1) = f(Decrypt(sk, y1)) = f(x) = 1. By correctness of F2, y2 = F2.Eval(k
(2)
F , y1)⊕ x.

• Take any input (y1, y2) ∈ T × X where there exists some x such that f(x) = 1 and
F (k, x) = (y1, y2). This means that y1 = PKE.Encrypt(pk, x; rx) for rx = F1(k

(1), x) and
y2 = F2(k

(2), y1) ⊕ x. By correctness of PKE, Fsk,f (y1) = 1. Then, by correctness of F2,

F2.Eval(k
(2)
F , y1) ⊕ y2 = F2(k

(2), y1) ⊕ y2 = x. By correctness of F1, rx = F1(k
(1), x) =

F1.Eval(k
(1)
f , x). In this case, F.Eval−1(kf , (y1, y2)) = x = F−1(k, (y1, y2)).

B.2 Proof of Theorem 4.7

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.
Recall that in the (single-key) selective-function security game (Remark 3.9), the adversary begins
by committing to the constraint. The adversary can choose the challenge point adaptively. Similar
to the proof of Theorem 4.3, we use a hybrid argument. Each hybrid experiment consists of several
phases, which we describe below:

• Setup phase. In the selective-function security experiment, the adversary begins by com-
mitting to a function f∗ ∈ F . Then, the challenger samples an IPF key k ∈ K as well as a
constrained key kf∗ . The challenger gives kf∗ to the adversary.
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• Query phase. The adversary A is now allowed to make evaluation, inversion, and challenge
queries. Without loss of generality, we assume the adversary makes at most one challenge
query, denoted x∗ ∈ X . We sometimes need to distinguish between pre-challenge inversion
queries and post-challenge inversion queries. By the admissibility requirement (Definition 3.12),
the adversary’s queries must satisfy the following conditions:

– The challenge query x∗ ∈ X must satisfy f∗(x∗) = 0.

– For all evaluation queries x ∈ X the adversary makes, x 6= x∗.

– For all inversion queries y ∈ Y the adversary makes, y 6= y∗, where y∗ is the challenger’s
response to the challenge query.

• Output phase. At the end of the experiment, the adversary outputs a bit b ∈ {0, 1}.

We now define our sequence of hybrid experiments. When defining a new hybrid, we only describe
the phases that differ from the previous one.

• Hyb0: This is the constrained IPF security experiment Expt
(IPF)
A,F (λ, 0) from Definition 3.11.

During the setup phase, after the adversary commits to a function f∗ ∈ F , the challenger
samples PRF keys k(1) ← F1.Setup(1λ), k(2) ← F2.Setup(1λ), as well as a PKE public/secret

key-pair (pk, sk)← PKE.Setup(1λ) and sets k = (k(1), k(2), pk, sk). Next, it computes k
(1)
f∗ ←

F1.Constrain(k(1), f∗), k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗), and gives kf∗ = (k

(1)
f∗ , k

(2)
F ∗ , pk) to the

adversary. The challenger answers the evaluation and inversion queries by computing F(k, ·) and
F−1(k, ·), respectively. On a challenge query x∗ ∈ X , the challenger computes r∗ ← F1(k(1), x∗),
ct∗ ← PKE.Encrypt(pk, x∗; r∗), and returns y∗ = (ct∗,F2(k

(2), ct∗)⊕ x∗).

• Hyb1: Same as Hyb0, except whenever the adversary makes a pre-challenge inversion query
(y1, y2) ∈ Y , if F−1(k, (y1, y2)) = x and f∗(x) = 0, and the challenger did not previously make
an evaluation query for x, then the challenger replies with ⊥. All other inversion queries are
handled exactly as in Hyb0. In particular, we can rewrite the challenger’s algorithm for the
pre-challenge inversion queries as follows:

– Pre-challenge inversion queries. On input (y1, y2) ∈ Y , the challenger first computes
x← PKE.Decrypt(sk, y1). If f∗(x) = 1 or A has previously made an evaluation query on x,
then the challenger checks to see if y1 = PKE.Encrypt(pk, x; rx) and y2 = F2(k(2), y1)⊕ x,
where rx ← F1(k

(1), x). If so, the challenger replies with x, and otherwise, it replies
with ⊥. If A has not previously made an evaluation query on x and f∗(x) = 0, then the
challenger responds with ⊥.

• Hyb2: Same as Hyb1, except when responding to the challenge query during the query phase,
the challenger samples r∗ ←R V. Moreover, when responding to the (subsequent) evaluation
and inversion queries, the challenger always uses r∗ in place of the value F1(k

(1), x∗).

• Hyb3: Same as Hyb2, except when responding to the evaluation and (post-challenge) inversion
queries, the challenger always evaluates F1(k

(1), ·) instead of substituting the value r∗ for
F1(k

(1), x∗).

• Hyb4: Same as Hyb3, except when responding to the challenge query, the challenger samples
z∗ ←R X and returns (ct∗, z∗) to the adversary. When responding to the (subsequent) evaluation
and inversion queries, the challenger uses z∗ ⊕ x∗ in place of the value F2(k

(2), ct∗).
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• Hyb5: Same as Hyb4, except when responding to the evaluation and (post-challenge) inversion
queries, the challenger always evaluates F2(k(2), ·) instead of substituting the value z∗ ⊕ x∗ for
F2(k

(2), ct∗).

• Hyb6: Same as Hyb5, except the challenger invokes the simulator S = (S1,S2) to generate
the constrained key and answer the adversary’s queries. The specific differences are outlined
below:

– Setup phase. Same as Hyb5 except the challenge computes (k
(2)
F ∗ , stS)← S1(1λ) instead

of setting k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗).

– Query phase. Same as Hyb5 except whenever the challenger needs to evaluate F2(k(2), ct)
on some ct ∈ T , it instead computes (z, stS)← S2(ct, Fsk,f∗(ct), stS) and uses z in place
of F2(k

(2), ct).

• Hyb7: Same as Hyb6, except the challenger answers the challenge query by choosing a random
value x̂∗ ←R X and returning (PKE.Encrypt(pk, x̂∗; r∗), z∗).

• Hyb8: Same as Hyb7, except the challenger sets k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗) in the setup

phase, and uses the real evaluations F2(k
(2), ·) rather than the simulated ones in the query

phase.

• Hyb9: Same as Hyb8, except the pre-challenge inversion queries are now handled as in the real

scheme. This is the constrained IPF security experiment Expt
(IPF)
A,F (λ, 1).

As in the proof of Theorem 4.3, we write Hybi(A) to denote the output of experiment Hybi with an
adversary A. We now show that the output of each consecutive pair of hybrids is computationally
indistinguishable. In the following, we make the implicit assumptions that the adversary A is
admissible for the constrained IPF security game and that PKE is both correct and smooth
(Definition 2.2).

Lemma B.1. If F1 is a single-key, selective-function-secure constrained PRF, then for all efficient
adversaries A, it follows that |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = negl(λ).

Proof. By construction, Hyb0 and Hyb1 differ only in how the challenger responds to the pre-challenge
inversion queries. Suppose there is an efficient algorithm A that can distinguish Hyb0 from Hyb1
with non-negligible advantage ε. Then, with probability ε, algorithm A will make a pre-challenge
inversion query (y1, y2) such that the challenger’s response is ⊥ in Hyb1, but not in Hyb0. We use
A to construct an adversary B that breaks the security of F1. Algorithm B simulates an execution
of Hyb0 and Hyb1 as follows:

• Setup phase. At the beginning of the experiment, adversary A commits to f∗ ∈ F .

Algorithm B sends f∗ to the challenger for F1 to obtain a constrained key k
(1)
f∗ . It runs

(pk, sk)← PKE.Setup(1λ), k(2) ← F2.Setup(1λ) and constructs k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗).

It gives the constrained key kf∗ = (k
(1)
f∗ , k

(2)
F ∗ , pk) to A. In addition, algorithm B initializes an

empty set S = ∅ and an empty table of mappings T = ∅.

• Query phase. Algorithm B responds to the queries as follows:

35



– Evaluation queries. On input a point x ∈ X , algorithm B queries F1 on x to obtain a
point rx. It then computes ct← PKE.Encrypt(pk, x; rx) and z ← F2(k

(2), ct) and replies
to A with (ct, z ⊕ x). In addition, B adds the mapping ct 7→ (z, x) to T .

– Pre-challenge inversion queries. On input an inversion query (y1, y2), algorithm B
first checks to see if there is a mapping of the form y1 7→ (z, x) in T for some z, x ∈ X . If
such a mapping exists, and moreover, y2 = z ⊕ x, then B replies with x. If a mapping
exists and y2 6= z⊕x, then B replies with ⊥. Otherwise, if no mapping exists, B computes
x← PKE.Decrypt(sk, y1). If f∗(x) = 0, then B responds with ⊥ and adds (y1, y2) to S
(if x 6= ⊥). Otherwise, if f∗(x) = 1, B queries F1 on x to obtain a point rx. It then
computes ct ← PKE.Encrypt(pk, x; rx) and z ← F2(k

(2), ct) ⊕ x. Finally, algorithm B
replies with x if (ct, z ⊕ x) = (y1, y2) and ⊥ otherwise.

– Challenge query. When A issues a challenge query, B halts the simulation.

At the end of the simulation (or if A aborts prematurely), algorithm B does the following:

1. If the set S is empty, then B outputs 0. Otherwise, it samples a random element (y∗1, y
∗
2)←R S.

It computes x∗ ← PKE.Decrypt(sk, y∗1) and submits x∗ as its challenge query to F1.

2. The challenger replies with a value r∗ ∈ V . Algorithm B outputs 1 if y∗1 = PKE.Encrypt(pk, x∗; r∗)
and 0 otherwise.

We first show that B is admissible. By construction, the challenge point x∗ satisfies f∗(x∗) = 0.
Next, algorithm B does not query F1 on x∗ when answering the evaluation queries (if it did, then x∗

would be contained in T and not added to S). In addition, if B added x∗ to S, then it never queries
F1 on x∗. We conclude that B is admissible.

Moreover, B perfectly simulates the setup and the pre-challenge queries according to the
specification in Hyb1. By assumption, with probability ε, A will issue a pre-challenge inversion
query (y∗1, y

∗
2) such that the challenger’s response is ⊥ in Hyb1, but not in Hyb0. In particular, this

implies the following:

• First, y∗1 must not have been part of the output of any previous evaluation query. Otherwise,
the behavior in Hyb0 and Hyb1 is identical.

• Since the challenger’s response in Hyb0 is not⊥, it must be the case that y∗1 = PKE.Encrypt(pk, x; rx)
for some x ∈ X , rx = F1(k(1), x), and y∗2 = F2(k(2), y∗1)⊕x. From the first requirement, we have
that the adversary did not previously submit an evaluation query for x. Since the challenger’s
response in Hyb1 is ⊥, it must additionally be the case that f∗(x) = 0.

With probability ε, A will make a query (y∗1, y
∗
2) satisfying the above criterion when interacting

with B. On such a query (y∗1, y
∗
2), B replies with ⊥ and adds (y∗1, y

∗
2) to the set S. Thus, with

probability ε/Q (where Q = poly(λ) is the total number of queries A makes prior to the challenge
phase), B will choose (y∗1, y

∗
2) to construct its challenge at the end of the simulation. We consider

the probability that B outputs 1 depending on whether r∗ is pseudorandom or uniformly random.
Here, k(1) is the PRF key sampled by the constrained security challenger for F1.

• Suppose r∗ = F1(k
(1), x∗). Then, with probability at least ε/Q, y∗1 = PKE.Encrypt(pk, x∗; r∗),

in which case, B outputs 1. Thus, in this case, B outputs 1 with probability at least ε/Q.
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• Suppose r∗ is uniform over V (and independent of all other quantities). Since PKE is
smooth, Pr[PKE.Encrypt(pk, x∗; r∗) = y∗1] = negl(λ). In this case, B outputs 1 with negligible
probability.

Since Q = poly(λ) and ε is non-negligible, we have that B breaks puncturing security of F1 with
probability at least ε/Q− negl(λ). The lemma follows.

Lemma B.2. If F1 is a single-key, selective-function-secure constrained PRF (Definition 3.6), then
for all efficient adversaries A, |Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

Proof. LetA be a distinguisher for Hyb1 and Hyb2. We construct an adversary B to break constrained
security of F1. Algorithm B simulates the experiments as follows:

• Setup phase. At the beginning of the experiment, adversary A commits to a function
f∗ ∈ F . Algorithm B sends f∗ to the constrained PRF challenger for F1 and receives a

constrained PRF key k
(1)
f∗ . Next, it samples (pk, sk) ← PKE.Setup(1λ), k(2) ← F2.Setup(1λ),

and k
(2)
F ∗ ← F2.Constrain(k(1), Fsk,f∗) as in Hyb1 and Hyb2. It gives the constrained key

kf∗ = (k
(1)
f∗ , k

(2)
F ∗ , pk) to A.

• Query phase. Algorithm B simulates the pre-challenge evaluation and inversion queries
exactly as described in Hyb1 and Hyb2. Whenever it needs to compute F1(k

(1), x), it instead
queries its evaluation oracle for F1. When A makes a challenge query for x∗ ∈ X , algorithm B
submits x∗ as its challenge to the constrained security challenger for F1, and receives back
a value r∗. It then computes ct∗ ← PKE.Encrypt(pk, x∗; r∗) and z∗ ← F2(k

(2), ct∗). It gives
(ct∗,F2(k

(2), ct∗)⊕ x∗) to A. The post-challenge queries are handled exactly as in Hyb1 and
Hyb2, except B queries its evaluation oracle for F1 whenever it needs to compute F1(k

(1), x)
for x 6= x∗, and B uses r∗ in place of the value of F1(k

(1), x∗).

• Output phase. After A outputs a bit b ∈ {0, 1}, algorithm B outputs the same bit b.

First, we argue that B is admissible for the constrained security game. Since A is admissible, it
follows that f∗(x∗) = 0, and moreover, A never makes an evaluation query on x∗. Correspondingly,
algorithm B never has to query F1 on x∗ when answering an evaluation query. For the pre-challenge
inversion queries, B only needs to query F1 on points x where f∗(x) = 1 (in which case, x 6= x∗) or
on points x that previously appeared in an evaluation query (in which case, again, x 6= x∗). For the
post-challenge inversion queries, algorithm B always substitutes r∗ for the value F1(k

(1), x∗), so it
never needs to query F1 on x∗. We conclude that B is admissible.

To complete the proof, we see that if r∗ = F1(k(1), x∗), then B perfectly simulates Hyb1. If r∗ is
uniformly random over V, then B perfectly simulates Hyb2 for A. Thus, B breaks the constrained
security of F1 with the same advantage as A. The lemma follows.

Lemma B.3. If F1 is a single-key, selective-function-secure constrained PRF (Definition 3.7), then
for all efficient adversaries A, |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(λ).

Proof. The only difference between Hyb2 and Hyb3 is that the challenger uses the value r∗ in place
of the value F1(k(1), x∗) to answer the post-challenge evaluation and inversion queries in Hyb2 while
the challenger uses the real value F1(k

(1), x∗) in Hyb3. To show the lemma, we consider each type
of query separately, and argue that the view of the adversary is computationally indistinguishable
between hybrids Hyb2 and Hyb3.
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• Evaluation queries. On an evaluation query x, the challenger in Hyb2 and Hyb3 only needs
to evaluate F1(k(1), ·) on x. Since Hyb2 and Hyb3 only differ in the value the challenger uses for
F1(k

(1), x∗), the outputs of the evaluation oracle in Hyb2 and Hyb3 are identically distributed
on all inputs x 6= x∗. By admissibility, the adversary can only query the evaluation oracle on
points x 6= x∗, and so, the responses of the evaluation oracle in Hyb2 and Hyb3 are distributed
identically.

• Post-challenge inversion queries. On a (post-challenge) inversion query (y1, y2), the
challenger computes x← F2(k

(2), y1)⊕ y2, rx ← F1(k
(1), x), and ct← PKE.Encrypt(pk, x; rx).

Then, it checks whether y1 = ct. If x 6= x∗, then the output of the inversion oracle in Hyb2
and Hyb3 is computed in the same way. It suffices to just consider the case where x = x∗, or
equivalently, when F2(k

(2), y1)⊕ y2 = x∗. Let ct∗ = PKE.Encrypt(pk, x∗; r∗) be the ciphertext
component in the challenge that is constructed using a uniformly random r∗.

– In Hyb2, the challenger uses the value r∗ for the value F1(k(1), x∗). For any query (y1, y2)
where F2(k

(2), y1) ⊕ y2 = x∗, the challenger in Hyb2 always responds with ⊥ unless
y1 = ct∗. But if y1 = ct∗, then it must be the case that y2 = F2(k(2), ct∗)⊕ x∗ = z∗. This
means that (y1, y2) = (ct∗, z∗), which is the challenge query. Therefore, the challenger in
Hyb2 responds with ⊥ on all admissible inversion queries satisfying F2(k(2), y1)⊕ y2 = x∗.

– In Hyb3, on a query (y1, y2) where F2(k(2), y1)⊕ y2 = x∗, the challenger in Hyb2 responds
with ⊥ unless y1 = PKE.Encrypt(pk, x∗; rx∗) where rx∗ = F1(k

(1), x∗). In this case,
y2 = F2(k

(2), y1)⊕ x∗.

We conclude that the response of the challenger on an inversion query is identically distributed
in Hyb2 and Hyb3 unless the adversary makes a (post-challenge) inversion query on the tuple
(y1, y2) where y1 = PKE.Encrypt(pk, x∗; rx∗) and y2 = F2(k

(2), y1)⊕ x∗.

Suppose now that an adversary A is able to distinguish between Hyb2 and Hyb3 with some non-
negligible probability ε. By the above analysis, the adversary’s view in Hyb2 and Hyb3 is identically
distributed unless the adversary makes a (post-challenge) inversion query on an input (y1, y2) where
y1 = PKE.Encrypt(pk, x∗; rx∗) and y2 = F2(k

(2), y1) ⊕ x∗. Since A distinguishes Hyb2 from Hyb3
with advantage ε, it will make an inversion query on a pair (y1, y2) satisfying the above property
with probability at least ε. We use A to construct an adversary B that breaks the constrained PRF
security of F1. Algorithm B simulates an execution of Hyb2 as follows:

• Setup phase. At the beginning of the experiment, the adversary commits to a constraint
f∗ ∈ F . Algorithm B sends f∗ to the constrained PRF challenger of F1 and receives a

constrained key k
(1)
f∗ . It generates the key k(2) ← F2.Setup(1λ), a public/secret key-pair

(pk, sk)← PKE.Setup(1λ), and constructs the constrained key k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗).

It sends kf∗ = (k
(1)
f∗ , k

(2)
F ∗ , pk) to A.

• Query phase. Algorithm B simulates the evaluation, pre-challenge inversion, and challenge
queries exactly as described in Hyb2 and Hyb3, with the exception that it queries its evaluation
oracle for F1 whenever it needs to evaluate F1(k

(1), ·). For post-challenge inversion queries
(y1, y2) where F2(k

(2), y1) ⊕ y2 = x∗, algorithm B always responds with ⊥. The other post-
challenge inversion queries are handled as in the real scheme, except B queries F1 on x whenever
it needs to evaluate F1(k

(1), x).
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• Output phase. At the end of the experiment (or if A aborts), B sends the challenge point x∗

as its challenge query to the constrained PRF challenger for F1. It receives the challenge r̂∗ and
computes ĉt

∗ ← PKE.Encrypt(pk, x∗; r̂∗). Now, B checks whether A made an inversion query
on the tuple (ĉt

∗
,F2(k

(2), ĉt
∗
)⊕ x∗). If A made such a query, then B output 1. Otherwise, it

outputs 0.

We first argue that if A is admissible, then B is admissible for the constrained PRF security game.
To see this, we first note that for each of A’s evaluation queries x ∈ X , we require (by admissibility)
that x 6= x∗ and therefore, B never needs to query its evaluation oracle on x∗. For the pre-challenge
inversion queries, adversary B only queries F1 on points x ∈ X where f∗(x) = 1 or that appeared in
a previous evaluation query. In particular, this means that B never needs to query on x∗. For the
post-challenge inversion queries, algorithm B only needs to evaluate F1 on points x 6= x∗. Thus, B
is admissible.

By construction, algorithm B perfectly simulates Hyb2 for A. This means that with proba-
bility at least ε, adversary A will submit an inversion query on the tuple (y1, y2) where y1 =
PKE.Encrypt(pk, x∗; rx∗), rx∗ = F1(k

(1), x∗), and y2 = F2(k
(2), y1) ⊕ x∗. We now consider the

probability that B outputs 1.

• Suppose r̂∗ = F1(k
(1), x∗). By assumption, with probability at least ε, adversary A will

query the inversion oracle on the tuple (y1, y2) where y1 = PKE.Encrypt(pk, x∗; rx∗) =
PKE.Encrypt(pk, x∗; r̂∗) and y2 = F2(k(2), y1)⊕ x∗ at some point in the execution. In this case,
algorithm B outputs 1.

• Suppose r̂∗ is uniformly random in V. Since PKE is smooth, for any fixed string ct ∈ T ,
we have that Pr[PKE.Encrypt(pk, x∗; r̂∗) = ct] = negl(λ). If the adversary makes a total of
Q = poly(λ) inversion queries, then by a union bound, the probability that ĉt

∗
= y1 for some y1

appearing in one of A’s inversion queries is bounded by Q ·negl(λ) = negl(λ). Correspondingly,
in this case, algorithm B outputs 1 with negl(λ) probability.

We conclude that if A is able to distinguish between hybrids Hyb2 and Hyb3 with non-negligible
advantage ε, then B is able to break puncturing security of F1 with probability ε− negl(λ).

Lemma B.4. If F2 is a single-key, selective-function-secure constrained PRF (Definition 3.7), then
for all efficient adversaries A, |Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]| = negl(λ).

Proof. Suppose that there exists an adversary A that can distinguish between hybrids Hyb3 and
Hyb4. We construct an adversary to break the constrained PRF security of F2. Algorithm B
simulates the experiment as follows:

• Setup phase. At the beginning of the experiment, A commits to a function f∗. Algorithm B
generates the key k(1) ← F1.Setup(1λ), the constrained key k

(1)
f∗ ← F1.Constrain(k(1), f∗), and

the PKE key (pk, sk)← PKE.Setup(1λ). It submits Fsk,f∗ to the constrained PRF challenger

for F2 and receives a constrained key k
(2)
F ∗ . Algorithm B gives kf∗ = (k

(1)
f∗ , k

(2)
F ∗ ) to A.

• Query phase. Algorithm B simulates the adversary’s evaluation and inversion queries exactly
as in Hyb3 and Hyb4, except whenever it needs to compute F2(k(2), ·), it queries its evaluation
oracle for F2. For the challenge query x∗, B samples a random element r∗ ←R V, computes
ct∗ ← PKE.Encrypt(pk, x∗; r∗), and submits ct∗ as the challenge query to the constrained
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PRF challenger of F2 to receives z∗. It returns (ct∗, z∗ ⊕ x∗) to the adversary. Subsequently,
whenever it needs to compute F2(k

(2), ct∗), it uses the value z∗.

• Output phase. Algorithm B outputs whatever A outputs.

First, we argue that if A is admissible, then B is admissible. Certainly, Fsk,f∗(ct∗) = 0 since
f∗(x∗) = 0 and ct∗ is an encryption of x∗. Next, when answering an evaluation query for a point
x ∈ X , algorithm B needs to query F2 on a ciphertext ct encrypting x. Since x 6= x∗ and ct∗ is an
encryption of x∗, correctness of PKE implies that ct 6= ct∗. For the pre-challenge inversion queries, B
only queries F2 on ciphertexts that encrypt a value x where either f∗(x) = 1 or if A has previously
made an evaluation query on x. Both of these conditions imply that x 6= x∗ and, correspondingly
ct 6= ct∗. In the post-challenge phase, B substitutes z∗ in place of F2(k

(2), ct∗), so we conclude that
B never needs to make an evaluation query for ct∗.

To conclude the proof, we note that if z∗ = F2(k
(2), ct∗), then B perfectly simulates Hyb3 for A.

If z∗ is uniformly random over X , B perfectly simulates Hyb4 for A (specifically, if z∗ is uniform
over X , so is z∗ ⊕ x∗). We conclude that algorithm B breaks the constrained PRF security of F2
with the same advantage A has in distinguishing Hyb3 and Hyb4.

Lemma B.5. For all adversaries A, we have that |Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]| = negl(λ).

Proof. The only difference between Hyb4 and Hyb5 is that to answer the (post-challenge) evaluation
and inversion queries, the challenger uses the value z∗ ⊕ x∗ (where z∗ is uniformly random over X )
in place of F2(k

(2), ct∗) in Hyb4, while the challenger uses the real value F2(k
(2), ct∗) in Hyb5.

Importantly, we will use the fact that in hybrids Hyb4 and Hyb5, the ciphertext ct∗ is an encryption
of the challenge point x∗ under PKE with uniformly-sampled randomness. To show the lemma,
we consider each type of query and argue that the views of the adversary in Hyb4 and Hyb5 are
statistically indistinguishable.

• Evaluation queries. On an evaluation query x, the challenger in Hyb4 and Hyb5 first com-
putes rx ← F1(k(1), x), ct← PKE.Encrypt(pk, x; rx), and then evaluates F2(k(2), ct). Therefore,
the response to the evaluation query in Hyb4 and Hyb5 differ only on points x ∈ X where
PKE.Encrypt(pk, x; rx) = ct∗. By construction, ct∗ is an encryption of x∗ under pk, so by
correctness of PKE, for all x 6= x∗, PKE.Encrypt(pk, x; rx) 6= ct∗. This means that the outputs
of the evaluation oracle (on all admissible queries) in Hyb4 is the same as that in Hyb5.

• Inversion queries. On an inversion query (y1, y2), the challenger in Hyb4 and Hyb5 first
computes x← F2(k

(2), y1)⊕ y2 and then checks whether y1 = PKE.Encrypt(pk, x; rx), where
rx = F1(k

(1), x). On all queries where y1 6= ct∗, the challenger’s behavior in Hyb4 and Hyb5 is
identical. On queries (ct∗, y2), the only instance where the adversary does not output ⊥ is if
PKE.Encrypt(pk, x; rx) = ct∗. By correctness of PKE, if x 6= x∗, then PKE.Encrypt(pk, x; rx) 6=
ct∗. Finally, since PKE is smooth, over the randomness used to construct ct∗ (more specifically,
over the randomness used to sample r∗), Pr[ct∗ = PKE.Encrypt(pk, x∗; rx∗)] = negl(λ), where
rx∗ = F1(k

(1), x∗). This means that with overwhelming probability, the response to all of the
inversion queries of the form (ct∗, y2) in Hyb4 and Hyb5 will be ⊥. The claim follows.

Lemma B.6. If F2 is a single-key, selective-function-private constrained PRF (Definition 3.14),
then for all efficient adversaries A, we have that |Pr[Hyb5(A) = 1]− Pr[Hyb6(A) = 1]| = negl(λ)
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Proof. Suppose there exists an adversary A that can distinguish between hybrids Hyb5 and Hyb6.
We construct an adversary B to distinguish the two experiments RealB,F2 and IdealB,S,F2 in the
single-key, selective-function-privacy game for F2 (Definition 3.14). Algorithm B simulates the
experiments as follows:

• Setup phase. At the beginning of the experiment, adversary A commits to a function

f∗ ∈ F . Algorithm B samples the key k(1) ← F1.Setup(1λ), the constrained key k
(1)
f∗ ←

F1.Constrain(k(1), f∗), and a public/secret key-pair (pk, sk)← PKE.Setup(1λ). It commits to

the function Fsk,f∗ in the privacy game, and receives a constrained key k
(2)
F ∗ from the challenger.

Finally, it gives (k
(1)
f∗ , k

(2)
F ∗ , pk) to A.

• Query phase. Algorithm B answers all of the queries exactly as described in Hyb5, except
whenever it needs to evaluate F2(k

(2), ct), it instead queries its evaluation oracle on ct, and
uses the response of its evaluation oracle in place of F2(k

(2), ct).

In RealB,F2 , the constrained key k
(1)
f∗ is constructed by first computing k(2) ← F2.Setup(1λ) and

then k
(2)
F ∗ ← F2.Constrain(k(2), Fsk,f∗). The evaluation oracle is implemented by F2(k

(2), ·). This
precisely corresponds to Hyb5. In IdealB,S,F2 , the constrained key is constructed by computing by
invoking S1(1λ), and the evaluations F2(k

(2), ct) is implemented by S2(ct, Fsk,f∗(ct), stS), which
precisely corresponds to the distribution in Hyb6. Thus, if A is able to distinguish between hybrids
Hyb5 and Hyb6 with non-negligible advantage, then B is able to break privacy of F2 with the same
probability.

Lemma B.7. If PKE is a CCA-secure public-key encryption scheme (Definition 2.1), then for all
efficient adversaries A, we have that |Pr[Hyb6(A) = 1]− Pr[Hyb7(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish between hybrids Hyb6 and Hyb7.
We construct an adversary B to break CCA-security of PKE. Algorithm B simulates the experiments
as follows:

• Setup phase. Adversary A begins by committing to a function f∗ ∈ F . Algorithm B
generates the keys k(1) ← F1.Setup(1λ), k

(1)
f∗ ← F1.Constrain(k(1), f), and (k

(2)
F ∗ , stS)← S1(1λ).

It receives pk from the CCA-security challenger, and gives the constrained key (k
(1)
f∗ , k

(2)
F ∗ , pk)

to A.

• Query phase. Algorithm B answers A’s queries as follows:

– Evaluation queries. On an evaluation query x ∈ X , B computes rx ← F1(k(1), x), and
ct← PKE.Encrypt(pk, x; rx). Then, it computes (z, stS)← S2(ct, f∗(x), stS) and returns
(ct, z).

– Pre-challenge inversion queries. On input (y1, y2) ∈ Y , algorithm B first submits y1
to the decryption oracle to obtain some value x. The rest of the query handling proceeds
as in Hyb6 and Hyb7.

– Challenge query. On input x∗ ∈ X , B samples a random point x̂∗ ←R X . It submits
the pair (x∗, x̂∗) as its challenge in the CCA-security game, and receives a challenger
ciphertext ct∗. Next, B samples a random point z∗ ←R X and gives (ct∗, z∗) to A.
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– Post-challenge inversion query. On input (y1, y2) ∈ Y, if y1 = ct∗, then B replies
with ⊥. Otherwise, B submits y1 to the decryption oracle to obtain some value x. The
rest of the query handling proceeds as in Hyb6 and Hyb7.

By construction, B never queries the decryption oracle on the challenge ciphertext ct∗, and thus, is
admissible. To conclude the proof, we show that if the challenge ciphertext ct∗ is an encryption
of x∗, then B correctly simulates the distribution in Hyb6 and if ct∗ is an encryption of x̂∗, then
B correctly simulates the distribution in Hyb7. Clearly, B perfectly simulates the setup phase, the
evaluation queries, and the pre-challenge inversion queries for A. It suffices to reason about the
challenge query and the post-challenge inversion queries.

• Suppose ct∗ is an encryption of x∗. Then, the challenge query is simulated exactly as in
Hyb6 (recall that in Hyb6, the ciphertext ct∗ is an encryption of x∗ with uniform randomness).
For the (post-challenge) inversion queries, it suffices to argue that in Hyb6, the challenger’s
response to any (post-challenge) inversion query of the form (ct∗, z) for any z ∈ X is ⊥. In
Hyb6, ct∗ is an encryption of x∗ using randomness that is sampled uniformly at random. Since
PKE is smooth, Pr[ct∗ = PKE.Encrypt(pk, x∗; rx∗)] = negl(λ) where rx∗ = F1(k

(1), x∗). Thus,
with overwhelming probability, the output on the inversion queries of the form (ct∗, z) in Hyb6
is ⊥, and so the simulation is correct.

• Suppose ct∗ is an encryption of x̂∗. Then, the challenge query is simulated exactly as in Hyb7.
For the (post-challenge) inversion queries, it suffices to argue that in Hyb7, the challenger’s
response to any (post-challenge) inversion query of the form (ct∗, z) for any z ∈ X is ⊥.
This follows by a similar argument as in the previous case. The challenger’s response to
an inversion query of the form (ct∗, z) is not ⊥ only if ct∗ = PKE.Encrypt(pk, x̂∗; rx̂∗) where
rx̂∗ = F1(k

(1), x̂∗). Since PKE is smooth, over the randomness used to sample ct∗, this occurs
with negligible probability.

We conclude that if A is able to distinguish between hybrids Hyb6 and Hyb7 with non-negligible
probability, then B breaks CCA-security of PKE with the same probability.

Lemma B.8. If F2 is a single-key, selectively-function-private constrained PRF (Definition 3.14),
then for all efficient adversaries A, we have that |Pr[Hyb7(A) = 1]− Pr[Hyb8(A) = 1]| = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma B.6.

Lemma B.9. If F1 is a single-key, selective-function-secure constrained PRF, then for all efficient
adversaries A, we have that |Pr[Hyb8(A) = 1]− Pr[Hyb9(A) = 1]| = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma B.1.

Combining Lemmas B.1 through B.9, we conclude that Construction 4.5 is a single-key, selective-
function-secure circuit-constrained IPF.

C Analysis of Multi-Key Circuit-Constrained IPF

In this section, we give the formal correctness and security analysis of our multi-key circuit-
constrained IPF (Construction 7.2) from Section 7.
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C.1 Proof of Theorem 7.3

Correctness of Construction 7.2 follows from the correctness of the underlying puncturable PRFs
and correctness of iO. Take any function f ∈ F , and let k = (k(1), k(2)) ← F.Setup(1λ). Let
kf = (P1, P2)← F.Constrain(k, f). We consider each of the two correctness requirements separately.

• By correctness of iO, P1(x) = PEval[f, k(1), k(2)](x) for all x ∈ X . Since PEval[f, k(1), k(2)](x) =
F(k, x) for all x where f(x) = 1, F.Eval(kf , x) = P1(x) = F(k, x) for all x where f(x) = 1.

• By correctness of iO, F.Eval−1(kf , y) = P2(y) = P Inv[f, k(1), k(2)](y) for all y ∈ Y. Take any
input y = (y1, y2) ∈ V × X where there exists x ∈ X such that f(x) = 1 and F(k, x) =
(y1, y2). This means that y1 = F1(k

(1), x) and y2 = F2(k
(2), y1) ⊕ x. Then, by construction,

P Inv[f, k(1), k(2)](y) = x.

C.2 Proof of Theorem 7.4

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.
Similar to the proofs of Theorem 4.3 and Theorem 4.7, our hybrid experiments consist of several
phases. Unlike the case of previous theorems, we work in the multi-key setting, where the adversary
is allowed to request constrained keys for multiple functions. In this case, selective security refers to
selectivity in the choice of the challenge query. In other words, the adversary is required to commit
to its challenge query at the beginning of the game. We now give the general structure of our hybrid
experiments:

• Setup phase. In the selective-security experiment, the adversary begins by committing to a
point x∗ ∈ X . Then, the challenger generates an IPF key k ∈ K and a challenge evaluation
y∗ ∈ Y. The challenger gives y∗ to the adversary.

• Query phase. The adversary A is now allowed to make constrain, evaluation and inversion
queries. By the admissibility requirement (Definition 3.12), the queries that the adversary
makes must satisfy the following properties:

– For all constrain queries f ∈ F the adversary makes, f(x∗) = 0.

– For all evaluation queries x ∈ X the adversary makes, x 6= x∗.

– For all inversion queries y ∈ Y the adversary makes, y 6= y∗.

• Output phase. At the end of the experiment, the adversary outputs a bit b ∈ {0, 1}.

We now define our sequence of hybrid experiments. When defining a new hybrid, we only describe
the phases that differ from the previous one.

• Hyb0: This is the constrained IPF security experiment Expt
(IPF)
A,F (λ, 0) from Definition 3.11.

During the setup phase, after the adversary commits to a point x∗ ∈ X , the challenger
samples PRF keys k(1) ← F1.Setup(1λ), k(2) ← F2.Setup(1λ) and sets k = (k(1), k(2)). Next, it
computes v∗ ← F1(k(1), x∗) and z∗ ← F2(k(2), v∗). It then gives the challenge y∗ = (v∗, z∗⊕x∗)
to the adversary. The challenger answers the constrain, evaluation, and inversion queries using
F.Constrain(k, ·), F(k, ·), and F−1(k, ·), respectively.
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• Hyb1: Same as Hyb0, except the challenger substitutes a punctured key k
(1)
x∗ for k(1) and a

punctured evaluation algorithm F1.Eval(k
(1)
x∗ , ·) for F1(k(1), ·) when constructing the obfuscated

programs P1 and P2 in the constrain queries. More concretely, during the setup phase,

the challenger sets k
(1)
x∗ ← F1.Puncture(k

(1), x∗). When responding to the constrain queries,

the challenger constructs P1 ← iO(PEval[f, k
(1)
x∗ , k

(2)]) and P2 ← iO(P Inv[f, k
(1)
x∗ , k

(2)]), where

we write PEval[f, k
(1)
x∗ , k

(2)] and P Inv[f, k
(1)
x∗ , k

(2)] to denote the programs in Figures 1 and 2,

respectively, where F1(k
(1), ·) is replaced by F1.Eval(k

(1)
x∗ , ·).

• Hyb2: Same as Hyb1, except the challenger samples v∗ ←R V during the setup phase. The
remaining of the setup phase is unchanged. When responding to the evaluation and inversion
queries, the challenger uses v∗ in place of the value F1(k

(1), x∗).

• Hyb3: Same as Hyb2, except when responding to the evaluation and inversion queries, the
challenger always evaluates F1(k

(1), ·) instead of substituting the value v∗ for F1(k
(1), x∗).

• Hyb4: Same as Hyb3, except the challenger reverts to using the real key k(1) (instead of k
(1)
x∗ )

and the real evaluation algorithm F1(k(1), ·) (instead of F1.Eval(k
(1)
x∗ , ·)) when constructing the

obfuscated programs P1 and P2 in the constrain queries.

• Hyb5: Same as Hyb4, except the challenger substitutes a punctured key k
(2)
v∗ for k(2) and a

punctured evaluation algorithm F2.Eval(k
(2)
v∗ , ·) for F2(k(2), ·) when constructing the obfuscation

programs P1 and P2 in the constrain queries. More concretely, during the setup phase, after

the challenger samples v∗ ←R V, the challenger sets k
(2)
v∗ ← F2.Puncture(k

(2), v∗). When

responding to the constrain queries, the challenger constructs P1 ← iO(PEval[f, k(1), k
(2)
v∗ ]) and

P2 ← iO(P Inv[f, k(1), k
(2)
v∗ ]), where we write PEval[f, k(1), k

(2)
v∗ ] and P Inv[f, k(1), k

(2)
v∗ ] to denote

the programs in Figures 1 and 2, respectively, where F2(k
(2), ·) is replaced by F2.Eval(k

(2)
v∗ , ·).

• Hyb6: Same as Hyb5, except during the setup phase, the challenger samples z∗ ←R X , and sets
the challenge to be y∗ = (v∗, z∗). The other steps in the setup phase remain unchanged. When
responding to the evaluation and inversion queries, the challenger uses (z∗ ⊕ x∗) in place of
the value F2(k

(2), v∗).

• Hyb7: Same as Hyb6, except when responding to the evaluation and inversion queries, the
challenger always computes F2(k(2), ·) instead of substituting the value (z∗⊕x∗) for F2(k(2), v∗).

• Hyb8: Same as Hyb7, except for each constrain query that the adversary makes, instead of using

the program PEval[f, k(1), k
(2)
v∗ ] and P Inv[f, k(1), k

(2)
v∗ ], the challenger uses PEval[f, k(1), k(2)] and

P Inv[f, k(1), k(2)] by replacing F2.Eval(k
(2)
v∗ , ·) with F2(k(2), ·). It sets P1 ← iO(PEval[f, k(1), k(2)])

and P2 ← iO(P Inv[f, k(1), k(2)]) and uses kf = (P1, P2) as the constrained key. This is the

constrained IPF security experiment Expt
(IPF)
A,F (λ, 1) from Definition 3.11.

As in the proofs of Theorems 4.3 and 4.7, we write Hyb(A) to denote the output of experiment
Hybi with an adversary A. In the following lemmas, we make the implicit assumptions that the
adversary A is admissible for the constrained IPF security game.

Lemma C.1. If iO is an indistinguishability obfuscator (Definition 7.1), then for all efficient
adversaries A, |Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| = negl(λ).
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Proof. The two experiments are identical except the challenger uses the programs PEval[f, k
(1)
x∗ , k

(2)]

and P Inv[f, k
(1)
x∗ , k

(2)] in place of PEval[f, k(1), k(2)] and P Inv[f, k(1), k(2)], respectively, in Hyb1 when
answering the constrain queries. We now show that by security of iO, for all admissible constraint
functions f ∈ F , the obfuscated programs P1 and P2 are computationally indistinguishable in Hyb0
and Hyb1. The lemma then follows by a standard hybrid argument (over the constrain queries). We
reason about each case individually:

• First, we show that the distribution of P1 in Hyb0 and Hyb1 is computationally indistinguishable.

It suffices to show that for all x ∈ X , PEval[f, k(1), k(2)](x) = PEval[f, k
(1)
x∗ , k

(2)](x). Take x ∈ X .

By correctness of F1, we have that F1(k
(1), x) = F1.Eval(k

(1)
x∗ , x) for all x 6= x∗. Thus,

PEval[f, k(1), k(2)](x) = PEval[f, k
(1)
x∗ , k

(2)](x) for all x 6= x∗. When x = x∗, we have that

f(x∗) = 0 by admissibility. Then, PEval[f, k(1), k(2)](x∗) = ⊥ = PEval[f, k
(1)
x∗ , k

(2)](x∗). The
claim follows by security of iO.

• Next, we show that the distribution of P2 in Hyb0 and Hyb1 is computationally indistinguishable.

As above, we show that for all y ∈ Y, P Inv[f, k(1), k(2)](y) = P Inv[f, k
(1)
x∗ , k

(2)](y). Take any
y = (y1, y2) ∈ Y. By construction of P Inv and correctness of F1, P

Inv[f, k(1), k(2)](y) =

P Inv[f, k
(1)
x∗ , k

(2)](y) whenever F2(k
(2), y1) ⊕ y2 6= x∗. When F2(k

(2), y1) ⊕ y2 = x∗, we have

that P Inv[f, k(1), k(2)](y) = ⊥ = P Inv[f, k
(1)
x∗ , k

(2)](x∗) because f(x∗) = 0 by admissibility. The
claim follows by security of iO.

Lemma C.2. If F1 is a selectively-secure puncturable PRF (Definition 3.7), then for all efficient
adversaries A, |Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

Proof. Follows by essentially the same argument as that used in the proof of Lemma A.1. The only
difference is that the reduction algorithm must additionally simulate the constrained key queries,

but these can be handled exactly as described in Hyb1 and Hyb2 (using the punctured key k
(1)
x∗ ).

Lemma C.3. If F1 is a selectively-secure puncturable PRF (Definition 3.12), and 1/ |V| = negl(λ),
then for all efficient adversaries A, |Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]| = negl(λ).

Proof. Follows by essentially the same argument as that used in the proof of Lemma A.2. Note
that the constrain queries are handled identically in Hyb2 and Hyb3, so they do not complicate the
proof.

Lemma C.4. If iO is an indistinguishability obfuscator (Definition 7.1), then for all efficient
adversaries A, |Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]| = negl(λ).

Proof. Follows by the same argument as that used in the proof of Lemma C.1.

Lemma C.5. If iO is an indistinguishability obfuscator (Definition 7.1) and |X | / |V| = negl(λ),
then for all efficient adversaries A, |Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]| = negl(λ).

Proof. The two experiments are identical except the challenger uses the programs PEval[f, k(1), k
(2)
v∗ ]

and P Inv[f, k(1), k
(2)
v∗ ] in place of PEval[f, k(1), k(2)] and P Inv[f, k(1), k(2)], respectively, in Hyb5 when

responding to the constrain queries. As in the proof of Lemma C.1, it suffices to show that by
security of iO, for all admissible constraint functions f ∈ F , the obfuscated programs P1 and
P2 in each constrain query is computationally indistinguishable. We reason about the two cases
separately:
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• First, we show that distribution of P1 in Hyb4 and Hyb5 is computationally indistinguishable.

It suffices to show that for all x ∈ X , PEval[f, k(1), k(2)](x) = PEval[f, k(1), k
(2)
v∗ ](x). Take x ∈ X .

Since v∗ is uniform over V (and sampled independently of k(1)), with probability 1−|X | / |V| =
1−negl(λ), there does not exist any x ∈ X such that F1(k(1), x) = v∗. Thus, with overwhelming
probability, F1(k(1), x) 6= v∗. By correctness of F2, F2(v) = F2.Eval(k

(2), v) for all v 6= v∗. This

means that with overwhelming probability, PEval[f, k(1), k(2)](x) = PEval[f, k(1), k
(2)
v∗ ](x) on all

x ∈ X , in which case the claim follows by iO security.

• Next, we show that the distribution of P2 in Hyb4 and Hyb5 is computationally indistinguishable.

It suffices to show that for all y ∈ Y, P Inv[f, k(1), k(2)](y) = P Inv[f, k(1), k
(2)
v∗ ](y) for all y ∈ Y.

Take any y = (y1, y2) ∈ Y. By correctness of F2, we have that P Inv[f, k(1), k(2)](y1, y2) =

P Inv[f, k(1), k
(2)
v∗ ](y1, y2) whenever y1 6= v∗. Consider the case where y1 = v∗. By the same

argument as in the previous case, with overwhelming probability, there does not exist any
x ∈ X where F1(k

(1), x) = v∗. Thus, with overwhelming probability (over the choice of v∗),

the programs P Inv[f, k(1), k(2)] and P Inv[f, k(1), k
(2)
v∗ ] both output ⊥ whenever y1 = v∗. The

claim then follows by iO security.

Lemma C.6. If F2 is a selectively-secure puncturable PRF (Definition 3.12), then for all efficient
adversaries A, |Pr[Hyb5(A) = 1]− Pr[Hyb6(A) = 1]| = negl(λ).

Proof. Follows by essentially the same argument as that used in the proof of Lemma A.3. The only
difference is that the reduction algorithm additionally needs to simulate the constrained key queries,

but these can be handled exactly as described in Hyb5 and Hyb6 (using the punctured key k
(2)
v∗ ).

Lemma C.7. If |X | / |V| = negl(λ), then for all adversaries A,

|Pr[Hyb6(A) = 1]− Pr[Hyb7(A) = 1]| = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma A.4.

Lemma C.8. If iO is an indistinguishable obfuscator, then for all efficient adversaries A, we have
that |Pr[Hyb7(A) = 1]− Pr[Hyb8(A) = 1]| = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma C.5.

Combining Lemmas C.1 through C.8, we conclude that Construction 7.2 is a selectively-secure
multi-key IPF for general circuit constraints.
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