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Abstract

A tuple of NP statements (𝑥1, . . . , 𝑥𝑘 ) satisfies a monotone policy 𝑃 : {0, 1}𝑘 → {0, 1} if 𝑃 (𝑏1, . . . , 𝑏𝑘 ) = 1, where

𝑏𝑖 = 1 if and only if 𝑥𝑖 is in the NP language. A monotone-policy batch argument (monotone-policy BARG) for NP is a

natural extension of regular batch arguments (BARGs) that allows a prover to prove that 𝑥1, . . . , 𝑥𝑘 satisfy a monotone

policy 𝑃 with a proof of size poly(𝜆, |R |, log𝑘), where |R | is the size of the Boolean circuit computing the NP relationR.
Previously, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) and Nassar, Waters, and Wu (TCC

2024) showed how to construct monotone-policy BARGs from (somewhere-extractable) BARGs for NP together with

a leveled homomorphic encryption scheme (Brakerski et al.) or an additively homomorphic encryption scheme over

a sufficiently-large group (Nassar et al.). In this work, we improve upon both works by showing that BARGs together

with additively homomorphic encryption over any group suffices (e.g., over Z2). For instance, we can instantiate the

additively homomorphic encryption with the classic Goldwasser-Micali encryption scheme based on the quadratic

residuosity (QR) assumption. Then, by appealing to existing compilers, we also obtain a monotone-policy aggregate

signature scheme from any somewhere extractable BARG and the QR assumption.

1 Introduction
A non-interactive batch argument (BARG) for NP allows a prover to construct a short proof attesting that a col-

lection of NP statements (𝑥1, . . . , 𝑥𝑘 ) are all true with a proof whose length scales sublinearly with 𝑘 . BARGs

have proven useful beyond the direct application of minimizing the communication cost of NP verification; they

have been used to construct aggregate signatures [WW22, DGKV22, BCJP24, NWW24], delegation for RAM pro-

grams [KVZ21, CJJ21b, KLVW23], as well as non-interactive zero-knowledge proofs (NIZKs) [CW23, BKP
+
24, BWW24].

In recent years, a number of works have shown how to construct BARGs frommany standard number-theoretic assump-

tions, such as the learning with errors (LWE) assumption [CJJ21b], the 𝑘-Lin assumption in pairing groups [WW22],

the (sub-exponential) decisional Diffie-Hellman (DDH) assumption in pairing-free groups [CGJ
+
23], or a combination

of quadratic residuosity (QR) and LWE or sub-exponential DDH [CJJ21a].

Monotone-policy batch arguments. In a batch argument, the prover’s goal is to prove that all 𝑘 statements

𝑥1, . . . , 𝑥𝑘 are true. Suppose instead that a prover wants to publish a proof attesting that a majority of the statements

are true, or more generally, that the true statements satisfy somemonotone policy such as a (weighted) threshold policy

or a monotone Boolean formula. This is the notion of a monotone-policy BARG. Previous works [BCJP24, NWW24]

show how to use monotone-policy BARGs to construct monotone-policy aggregate signatures, where an aggregator

wants to produce a short proof attesting that an authorized quorum of parties have signed a certain message.

A trivial way to build a monotone-policy BARG from a vanilla BARG is to have the prover specify a subset 𝐼 ⊆ [𝑡]
that satisfy the policy and then give a vanilla BARG proof that all of the statements {𝑥𝑖 }𝑖∈𝐼 are true. The verifier then
checks that the subset 𝐼 satisfies the policy and that the BARG proof verifies. In this case, however, the size of the

proof potentially scales linearly with the number of statements (it needs to contain the description of the set 𝐼 ). In a

monotone policy BARG [BBK
+
23], we require that the size of the proof be sublinear in the number of statements, just

as in a vanilla BARG. If we specialize a monotone-policy BARG to the special case of conjunction policies, then we
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recover the standard notion of a BARG. Thus, monotone-policy BARGs are a strict generalization of vanilla BARGs.

A natural question to ask is whether we can construct monotone-policy BARGs from vanilla BARGs. A recent line

of work has shown how to compile a BARG into a monotone-policy BARG using other cryptographic primitives:

• The first work by Brakerski, Brodsky, Kalai, Lombardi and Paneth [BBK
+
23] relied on BARGs in conjunction

with (leveled) homomorphic encryption (which in turn relies either on LWE [Gen09, BV11] or strong tools

like indistinguishability obfuscation [CLTV15]).

• Subsequently, Nassar, Waters, and Wu [NWW24] showed that BARGs along with an additively homomor-

phic encryption scheme suffice. Notably, this enabled new instantiations of monotone policy BARGs from

pairing-based assumptions and from sub-exponential DDH.

A major caveat in [NWW24] is that the plaintext group for the additively homomorphic encryption must be suffi-

ciently large (e.g., at least 𝑘 + 1 where 𝑘 is the batch size). Unfortunately, this falls short of supporting any additively

homomorphic encryption. An important example is the classic Goldwasser-Micali encryption scheme [GM82] based

on the QR problem. The Goldwasser-Micali scheme is additively homomorphic over Z2, which is too small to be able

to invoke the [NWW24] compiler. Another example is the Benaloh [Ben94] encryption scheme which is additively

homomorphic over small groups Z𝑛 . This motivates the question of whether we can reduce the gap between BARGs

and monotone-policy BARGs: namely, can we use any additively-homomorphic encryption scheme to compile BARGs

into monotone-policy BARGs?

1.1 Our Results
In this work, we show how to construct a general monotone-policy BARG from a standard (somewhere-extractable)

BARG and any additively-homomorphic encryption. In particular, assuming QR and a somewhere-extractable BARG,

we obtain a monotone-policy BARG. Our main result can be summarized in the following theorem:

Theorem 1.1 (Informal). Suppose there exists a somewhere-extractable BARG and an additively homomorphic encryption

over any group of size 𝑛 > 1. Then there exists a monotone policy BARG for general monotone policies with non-adaptive

soundness.

Monotone-policy aggregate signatures. The work of [NWW24] also shows how to construct monotone-policy

aggregate signatures with static unforgeability from any monotone-policy BARGs with non-adaptive soundness

together with a puncturable signature scheme. In a monotone-policy aggregate signature [BCJP24], the aggregator can

take a collection of tuples (vk1,𝑚1, 𝜎1), . . . , (vk𝑘 ,𝑚𝑘 , 𝜎𝑘 ) of verification key/message/signature triples and aggregate

the signatures into a single short signature 𝜎agg with respect to some monotone policy 𝑃 . The aggregate signature

affirms that the aggregator possesses signatures for a subset of the messages that satisfies 𝑃 .

Corollary 1.2 (Informal). Suppose there exists a somewhere-extractable BARG, an additively homomorphic encryption

over any group of size 𝑛 > 1, and a puncturable signature scheme. Then there exists a monotone-policy aggregate

signature scheme satisfying static unforgeability.

Thework of [ADM
+
24] show how to construct puncturable signatures from any (simulation-sound) non-interactive

zero-knowledge (NIZK) proof, which can be built from a wide range of assumptions, including the QR assump-

tion [BFM88, Sah99, DDO
+
01].

1
In Appendix B, we also show an alternative route to building puncturable signatures

from a unique signature scheme (i.e., a signature scheme where every message has exactly one signature), or more

generally, from an invariant signature [GO92].
2

1
Note that the recent implications from BARGs to NIZKs [CW23, BKP

+
24, BWW24] only yield computationally-sound arguments, which do

not seem to directly imply puncturable signatures via the [ADM
+
24] approach.

2
The construction of invariant signatures from QR from [GO92] also relies on NIZK proofs, so this approach does not provide an advantage

over the approach of [ADM
+
24]. We present it primarily to illustrate another approach for building puncturable signatures.
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2 Technical Overview
In this section, we explain our techniques for getting amonotone policy BARG from an additively homomorphic encryp-

tion over a small group. For ease of exposition, we focus on additively homomorphic bit encryptions similar to [GM82].

Zero-fixing hash functions. The work of [NWW24] shows how to compile BARGs to monotone-policy BARGs

using a zero-fixing hash (ZFH). For an overview of how a ZFH can be used to construct monotone-policy BARGs, we

refer the reader to [NWW24]. In this work, we focus on constructing a ZFH, so we start by recalling the definition.

In a nutshell, a ZFH is a succinct binding commitment with succinct local openings, similar to a Merkle hash [Mer87],

but with an additional property: there is a secret trapdoor that can be used to decide whether a hash value is zero on a

predetermined subset of indices. Zero-fixing hash functions can also be viewed as a special case of a function-binding

hash function [FWW23] (for substring matching). We start by describing the syntax of a zero-fixing hash function:

• The setup algorithm of the ZFH takes as input a subset 𝑆 ⊆ [𝑛], and outputs a hash key hk and a secret trapdoor
td.

• The hash algorithmworks like a regular Merkle hash algorithm: it takes the hash key hk and an input 𝑥 ∈ {0, 1}𝑛
and outputs a succinct digest dig and 𝑛 succinct local openings 𝜋1, . . . , 𝜋𝑛 .

• There exists a digest-validation algorithm ValidateDigest that takes as input a digest dig and the hash key hk
and outputs 1 if the digest was computed honestly using the hash key hk.

• There exists an extraction algorithm Extract that given the trapdoor td and a digest dig, outputs eitherMatching
or NotMatching.

Next, the zero-fixing hash function should satisfy the following properties:

• Opening correctness: The opening correctness property states that any honestly generated digest and

openings are valid.

• Succinctness: Similarly, succinctness is also standard and states the digest and the openings are polylog(𝑛)
bits each.

• Digest correctness: The digest correctness property states that for any digest dig and any hash key hk that is

zero-fixing on the empty set, if ValidateDigest(hk, dig) = 1 then Extract(td, dig) = Matching.

• Zero-fixing: The (computational) zero-fixing property requires that for any digest dig, if Extract(td, dig) =
Matching, then it is computationally hard to find an opening 𝜋∗𝑖 for some 𝑖 ∈ 𝑆 to the value 1. In other words,

if the adversary can open a digest dig on some index 𝑖 ∈ 𝑆 to a 1, then the extraction algorithm should declare

dig to be NotMatching.

• Set hiding: The set-hiding property says that for any two subsets 𝑆0, 𝑆1 ⊆ [𝑛], an adversary that is only given

access to hk (sampled to be zero-fixing on either 𝑆0 or 𝑆1) cannot distinguish if hk is zero-fixing on 𝑆0 or 𝑆1.

We remark here that one could also consider the following stronger requirement on Extract: instead of outputting

NotMatching, it should output a specific index 𝑖 ∈ 𝑆 for which it is feasible (for the adversary) to find an opening 𝜋∗𝑖
to the value 1. Indeed, the work of [BBK

+
23] goes down this route, however implementing such a primitive seems to

require fully-homomorphic encryption. On the other hand, [NWW24] notices that this stronger notion of extraction

is unnecessary if we require an additional set-hiding property called index hiding with extraction. We elaborate on

this property later on.
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ZFH from homomorphic encryption. The conceptual idea of [NWW24] to build a ZFH from an additively homo-

morphic encryption is simple. If we want to hash𝑛-bit inputs, the hash key consists of𝑛 ciphertexts ct1, . . . , ct𝑛 , one for
each index. To hash a string 𝑥 ∈ {0, 1}𝑛 , we first view it as a subset𝑋 ⊆ [𝑛] in the natural way (𝑥𝑖 = 1 if and only if 𝑖 ∈
𝑋 ), and take the digest dig𝑥 to be an encryption of

∑
𝑖∈𝑋 ct𝑖 , which can be computed homomorphically from ct1, . . . , ct𝑛 .

The idea is now as follows: if we want the hash key to be zero-fixing on the set 𝑆 ⊆ [𝑛], then we sample ct𝑖 as
an encryption of 1 if 𝑖 ∈ 𝑆 , and as an encryption of 0 if 𝑖 ∉ 𝑆 . If 𝑥𝑖 = 0 for all 𝑖 ∈ 𝑆 , then 𝑋 ∩ 𝑆 = ∅, and if there exists

some 𝑖 ∈ 𝑆 such that 𝑥𝑖 = 1, then 𝑋 ∩ 𝑆 ≠ ∅. This means dig𝑥 decrypts to 0 if and only if 𝑥 is all 0 on the set 𝑆 . In

this case, the secret decryption key is the extraction trapdoor.

This simplified construction already satisfies some key properties of a ZFH. First, the digest is succinct as it

consists of the encryption of a single group element. Second, we have set hiding by the CPA security of the encryption.

The problem with XOR. However, we note that this simple idea already fails if the homomorphic encryption

scheme only supports additive homomorphism over a small group. Take Z2 for example: if 𝑥 has exactly two non-zero

indices in 𝑆 , then their corresponding ciphertexts will “cancel each other out.” In fact, for this idea to work, [NWW24]

required a group of size at least 𝑛 + 1. Taking a step back, the homomorphic property with respect to addition is

useful in the previous construction because of the fact that there is no going back once 1 is added, and the whole

sum would be strictly greater than 0. Once we limit ourselves to a binary XOR operation, it is not clear where the

“irreversible” operation would come from. It is worth noting that for multiplicatively homomorphic encryption, the

previous idea would still work even with small groups: the irreversible operation in this case would be multiplying

by 0, and, unlike addition, there is no way to cancel the 0 out using multiplication.

Substituting group elements with vectors. Our first idea is to simulate the irreversible operation by associating

each index with a vector of ciphertexts instead of a single ciphertext. The digest now would be the (homomorphic)

bitwise XOR of all of the vectors. Namely, imagine that each index 𝑖 ∈ [𝑛] is associated with a binary vector v𝑖 ∈ Zℓ2
such that the vectors v1, . . . , v𝑛 are linearly independent. In this case, once a vector is XORed in, there is no way to

remove it since it is linearly independent of the other vectors. Unfortunately, getting 𝑛 linearly independent vectors

over Zℓ
2
, requires ℓ ≥ 𝑛. This violates succinctness.

Reducing the vector dimension. Our second idea is to leverage the hiding property of the encryption scheme.

In the simplified version of the [NWW24] construction we described above, CPA security is only used for set-hiding.

Namely, once the adversary knows the zero-fixing set 𝑆 , it knows that ct𝑖 is an encryption of 1 for each 𝑖 ∈ 𝑆 . But if
we use binary vectors instead of a fixed scalar, we can assign a random vector v𝑖

r← Z𝜆
2
to each 𝑖 ∈ 𝑆 , and never reveal

the vector. Recall that in the previous construction, the hash key only contained encryptions of the elements, not the

elements themselves (in order to satisfy set hiding). Intuitively, if we sample random vectors and only publish their

encryptions, then these vectors should be computationally hidden from the view of the adversary. While these vectors

are no longer linearly independent (in general, 𝑛 > 𝜆), the adversary should not be able to efficiently find a non-trivial

linear combination of the non-zero vectors that maps to the zero vector. In more detail, we make the following changes:

• When sampling the hash key, each ciphertext ct𝑖 is replaced with a ciphertext vector ct𝑖 . For each 𝑖 ∈ 𝑆 , the
Setup algorithm samples a uniform v𝑖

r← Z𝜆
2
\{0}, where 0 is the zero vector, and samples ct𝑖 to be an encryption

of v𝑖 . For each 𝑖 ∉ 𝑆 , the algorithm samples ct𝑖 as an encryption of 0. The trapdoor is still the secret key.

• When hashing a string 𝑥 , the digest dig𝑥 is an encryption of

⊕
𝑖∈𝑋 v𝑖 . This can be computed by homomor-

phically evaluating the XOR function on a subset of the encrypted vectors ct1, . . . , ct𝑛 .

• The Extract algorithm outputsMatching if and only if dig𝑥 decrypts to 0.

Set hiding follows similarly to before. Digest succinctness also still holds since we have 𝜆 ciphertexts, which is

independent of 𝑛.
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Succinct openings. The next question is how to support local openings (i.e., open dig𝑥 in position 𝑖 to some value).

The naïve way is to provide the list of the ciphertexts used to compute the digest dig𝑥 (or equivalently, provide the

entire hashed string 𝑥 ). Of course, this is not succinct. The works of [BBK+23, NWW24] used the standard technique of

computing the digest via a Merkle-tree structure [Mer87]. Namely, the hash key includes a new ciphertext ctzero which
is an encryption of 0. Given an input 𝑥 ∈ {0, 1}𝑛 , the hashing algorithm constructs a complete binary tree with𝑛 leaves,

where each leaf corresponds to an index 𝑖 ∈ [𝑛]. Each node 𝑖 in the tree is associated with a ciphertext ĉt𝑖 as follows:

• For a leaf 𝑖 ∈ [𝑛], if 𝑥𝑖 = 1 then ĉt𝑖 = ct𝑖 and if 𝑥𝑖 = 0 then ĉt𝑖 = ctzero.

• For an internal node 𝑖 , ĉt𝑖 is obtained by homomorphically XOR-ing the ciphertexts associated with its children.

By construction, the root ciphertext ĉtroot is the homomorphic XOR of all of the leaf ciphertexts, which is by definition

dig𝑥 . This way, one only needs to provide the ciphertexts along the path to a leaf 𝑖 in order to open the index 𝑖 . Note

that by construction, ctzero does not affect the decrypted value of ĉtroot.

Validating the hash. To certify that a particular digest dig𝑥 (consisting of a ciphertext ĉtroot) is correctly computed,

we follow the blueprint of [NWW24, BBK
+
23] and use a “hash-and-BARG technique” [CJJ21a]. Namely, the hashing

algorithm now also computes a commitment comdig to the evaluation tree described above, and attaches a BARG

proof that each node was computed honestly, alongside the root ciphertext ĉtroot. In more detail, we define an NP

relation parameterized by ĉtroot, comdig and the ciphertexts ct1, . . . , ct𝑛, ctzero. Each statement of the relation is an

index of a node. The relation checks the following:

• Leaf nodes: For a leaf node 𝑖 , we want to check that the associated ciphertext ĉt𝑖 is either equal to ct𝑖 or ctzero.
Since the relation does not have access to ĉt𝑖 , and instead only has access to the commitment comdig, it actually

checks that comdig opens in positions 𝑖 to such a ĉt𝑖 . In this case, the NP witness consists of an opening in

comdig to position 𝑖 .

• Non-leaf nodes: For a non-leaf node 𝑖 with children 𝑖l, 𝑖r, the relation checks that comdig opens in positions

𝑖, 𝑖l, 𝑖r to ciphertexts ĉt𝑖 , ĉtl, ĉtr respectively, where ĉt𝑖 is the ciphertext obtained by homomorphically XORing

ĉtl and ĉtr. In this case, the NP witness consists of the 3 openings in comdig.

• Root node: For the root node, the relation additionally checks that comdig opens in the appropriate position

to the given ciphertext ĉtroot.

To keep the BARG proof short, we modify the hash key to include a commitment comhk of the ciphertexts ct1, . . . , ct𝑛 ,
and modify the relation to depend on comhk instead of ct1, . . . , ct𝑛 . The NP witness for a leaf node 𝑖 now would need

to also include the opening of comhk in position 𝑖 (to the ciphertext ct𝑖 ). With these modifications, the digest dig𝑥
for an input 𝑥 ∈ {0, 1}ℓ contains the root ciphertext ĉtroot, the commitment comdig, and the BARG proof 𝜋 .

The honest opening to an index 𝑖∗ ∈ [𝑛] with a value 𝑏 ∈ {0, 1} is yet another BARG proof 𝜋open, where the BARG

statements are indices of the ciphertext evaluation tree. The NP relation is almost identical to the hashing relation

described above, but is additionally parameterized by a pair (𝑖∗, 𝑏) ∈ [𝑛] × {0, 1}. The only difference is that for the

leaf node 𝑖∗, the relation now additionally checks that if 𝑏 = 0 then ĉt𝑖 = ctzero and if 𝑏 = 1 then ĉt𝑖 = ct𝑖 .

Zero-fixing: first attempt. To argue zero-fixing security, suppose we have an adversary that outputs a digest

dig together with an opening of some 𝑖∗ ∈ 𝑆 to the value 1 and moreover, the Extract function declares dig to be

Matching (i.e., dig decrypts to 0). By somewhere extractability of the BARG, this means that the ciphertext associated

with leaf node 𝑖∗ is an encryption of a non-zero vector v𝑖∗ . Since all of the vectors are encrypted, the hope is that the
adversary cannot find a linear combination of other vectors v𝑖 where v𝑖∗ ⊕

⊕
𝑖≠𝑖∗ v𝑖 = 0. Indeed, any adversary that

does so must seemingly know something about the vectors v𝑖 , which of course, would violate CPA security of the

encryption scheme. The challenge is in setting up the reduction to CPA security. Namely, in the zero-fixing security

game, the adversary is only deemed successful if it produces a digest dig where Extract outputs Matching. However,
evaluating the Extract algorithm requires knowledge of the secret key (to decrypt dig and compare the decrypted

vector to 0). Yet, the reduction algorithm for the CPA security game cannot know the secret key, and thus, cannot

determine whether the zero-fixing adversary outputted a valid digest or not.
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Naor-Yung to the rescue. To get out of this conundrum, we adopt a Naor-Yung style strategy [NY90] and encrypt

twice. Within each pair, we refer to one ciphertext as the “main” one and the other as a “shadow” copy.

• The setup algorithm samples two encryption key pairs: (pkmain, skmain) and (pkshadow, skshadow). For every
index 𝑖 ∈ [𝑛], we associate two ciphertext vectors: ctmain

𝑖 and ctshadow𝑖 under the encryption keys pkmain
and

pkshadow respectively. Similarly, we also have two encryptions of the zero vector ctmain
zero and ctshadowzero . The

hash key is now defined analogously: it contains both public keys, both collections of encrypted vectors, and

commitments (and openings) to both collections. The trapdoor is the main secret key skmain
only.

• The hashing algorithm now computes two evaluation trees, and commits to both. The NP relation additionally

requires that the evaluation trees are consistent with one another: for each leaf 𝑖 , if the commitment of the

main tree in position 𝑖 opens to ctmain
𝑖 then the commitment of the shadow tree also opens to ctshadow𝑖 , and

if the main commitment in position 𝑖 opens to ctmain
zero then the commitment of the shadow tree also opens to

ctmain
zero . The digest is the commitments and the roots for both trees, as well as the BARG proof 𝜋hash.

• The extraction algorithm only checks that the root of the main tree decrypts to the all zero vector using skmain
.

• The opening is a BARG proof, where the NP relation is the same as the one used for hashing but, similar to

before, is parameterized by (𝑖∗, 𝑏) and requires that if 𝑏 = 0 then the nodes 𝑖∗ in both trees should use ctmain
zero

and ctshadowzero respectively, and if 𝑏 = 1 then the nodes should use ctmain
𝑖∗ and ctshadow

𝑖∗ respectively.

We now argue our zero-fixing property through a series of hybrids:

1. The first hybrid is the original zero-fixing game where the adversary declares a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 .
The challenger samples hk as described above and sends it to the adversary. The extraction trapdoor is the

secret key skmain
. The adversary outputs dig = (ĉtmain

root , ĉt
shadow
root , commain

dig , comshadow
dig , 𝜋hash) and an opening 𝜋∗

of position 𝑖∗ to value 1, and wins if Dec(skmain, ĉtmain
root ) = 0 and 𝜋∗ is a valid BARG proof for the NP relation

with the pair (𝑖∗, 1).

2. In the second hybrid, we substitute the ciphertext associated with leaf 𝑖∗ in the shadow copy only with an

encryption of 0. Namely, ctshadow
𝑖∗ ← Enc(pkshadow, 0). By CPA security (applied to the shadow copy), we

can argue that the adversary behaves the same on this hybrid as it does in the previous one. Note that the

challenger in this experiment only needs to know skmain
(to implement Extract) and not skshadow. As such, we

can rely on CPA security for the shadow copy to conclude that the output of this experiment is computationally

indistinguishable from the previous one.

3. In the third hybrid, we change the extraction algorithm to use the shadow tree root instead of the main root.

Namely, we check Dec(skshadow, ĉtshadowroot ) = v𝑖∗ instead of Dec(skmain, ĉtmain
root ) = 0. Here, we appeal to the

consistency that is guaranteed by the BARG: for each leaf 𝑖 , the adversary has to use both ctmain
𝑖 and ctshadow𝑖

for the main and shadow copy, or use ctmain
zero and ctshadowzero for both copies. Since the opening to 1 on position

𝑖∗ guarantees the commitments commain
dig and comshadow

dig open on position 𝑖∗ to ctmain
𝑖∗ and ctshadow

𝑖∗ respectively,

and the values encrypted by those ciphertexts differ by exactly v𝑖∗ , then

Pr

[
Dec(skshadow, ĉtshadowroot ) = v𝑖∗

]
≈ Pr

[
Dec(skmain, ĉtmain

root ) = 0
]
.

Thus, the output of this experiment is computationally indistinguishable from the previous one.

4. For the final hybrid, similar to what we did in the second hybrid, we substitute the ciphertext associated with

𝑖∗ in the main copy with an encryption of 0 (i.e., set ct𝑖∗ ← Enc(pkmain, 0)). In this experiment, the challenger’s

behavior only needs to know skshadow and not skmain
, so the claim follows by CPA security applied to the main

ciphertext.

In the final hybrid, the adversary wins if it outputs ĉtshadowroot that encrypts v𝑖∗ . However, its view is actually independent

of v𝑖∗ , since we removed v𝑖∗ from both the main and shadow copies. Finally, because the challenger samples v𝑖∗
r← Z𝜆

2
,

the adversary can successfully guess v𝑖∗ only with probability 2
−𝜆
, thus completing the proof.
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Index-hiding with extracted guess. The zero-fixing hash function of [NWW24] must satisfy an additional

security property called index-hiding with extracted guess. Intuitively, this property states that the set on which

the hash key is zero-fixing remains hidden, even if we give the adversary oracle access to Extract(td, ·), as long as
the queries made by the adversary do not help it to trivially distinguish between the binding sets. More formally,

the game is defined as follows:

1. The adversary chooses a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 .

2. The challenger samples a random bit 𝑏
r← {0, 1}. If 𝑏 = 0, the challenger samples hk to be zero-fixing on 𝑆 \ {𝑖∗}

and if 𝑏 = 1, the challenger samples hk to be zero-fixing on 𝑆 . The challenger gives hk to the adversary.

3. The adversary now outputs a digest dig and an opening 𝜎 .

4. The output is 1 if and only if 𝜎 is an opening of dig to the value 0 at index 𝑖∗ and moreover, Extract(td, dig) =
Matching.

We say the scheme satisfies index-hiding with extracted guess if for any efficient adversary, the output of the ex-

periment when 𝑏 = 0 is negligibly close to the output when 𝑏 = 1. We can view the output as being extracted from

dig, but the adversary is forced to provide an opening 𝜎 for dig at index 𝑖∗ to the value 0. This rules out the trivial
strategy of hashing a string x that is 1 in index 𝑖∗ and 0 elsewhere. Such a string would be consideredMatching if
the hash key was binding on 𝑆 \ {𝑖∗} and NotMatching if the hash key was binding on 𝑆 .

The construction we provided already satisfies this property. Our argument is similar to that of [NWW24], and

follows a Naor-Yung strategy similar to what we used to argue zero-fixing. The only difference between the game

with 𝑏 = 0 and 𝑏 = 1 are the ciphertexts ctmain
𝑖∗ and ctshadow

𝑖∗ . When 𝑏 = 0, these are encryptions of 0, and when 𝑏 = 1,

these are encryptions of a random vector v𝑖∗ .
We define the following series of hybrids, which follows the same templates as the series of hybrids used to argue

zero-fixing:

1. The first hybrid is the index-hiding with extracted guess game with 𝑏 = 0. Namely, ctmain𝑖∗ ← Enc(pkmain, 0)
and ctshadow𝑖∗ ← Enc(pkshadow, 0).

2. The second hybrid is the same as before, except ctshadow
𝑖∗ ← Enc(pkshadow, v𝑖∗ ). Since the security game does

not use the secret key skshadow, we can use the CPA security of the shadow instance to argue that these two

hybrids are computationally close.

3. The third hybrid is the same as before, except the extraction algorithm now uses the shadow instance to extract

the guess. Namely, the extraction algorithm outputsMatching if and only if Dec(skshadow, ĉtshadowroot ) = 0 instead
of Dec(skmain, ĉtmain

root ) = 0. The two hybrids are computationally close by the consistency that is guaranteed by

the BARG (similar to the zero-fixing argument) and the additional requirement that the hashed string has value 0

on index 𝑖∗. Notably, this is where we use the fact that the adversary must produce an opening 𝜎 to 0 at index 𝑖∗.

4. The fourth hybrid is the same as before, except ctmain
𝑖∗ ← Enc(pkmain, v𝑖∗ ). Since the security game does not use

the secret key skmain
anymore, we can use CPA security of the main instance to argue that these two hybrids

are computationally close.

5. The final hybrid is the same as before, except we change back the extraction algorithm to check the main

instance. Namely, the extraction algorithm outputsMatching if and only if Dec(skmain, ĉtmain
root ) = 0. This hybrid

is computationally close to the previous one by the same argument we used to justify the third hybrid. We

note that this is the index-hiding game with 𝑏 = 1 and thus we are done.

3 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For 𝑛 ∈ N, we write [𝑛] to denote the set

{1, . . . , 𝑛}. For any𝑚 > 𝑛, we write [𝑛,𝑚] to denote the set {𝑛, . . . ,𝑚}. We write poly(𝜆) to denote a function that
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is bounded by a fixed polynomial in 𝜆, and negl(𝜆) to denote a function that is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N. For a finite set
𝑆 , we write 𝑥

r← 𝑆 to denote that 𝑥 is a uniformly random element of 𝑆 . For a distribution D we write 𝑥 ← D to

denote that 𝑥 is a random drawn from D.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. A non-uniform

algorithm A consists of a pair of algorithms (A1,A2) where A1 is a (possibly-unbounded) algorithm that takes as

input 1
𝜆
and outputs an advice string 𝜌𝜆 of poly(𝜆) size. Algorithm A2 is an efficient algorithm. The output of A on

an input 𝑥 ∈ {0, 1}𝜆 is defined as first computing the advice string 𝜌𝜆 ← A1 (1𝜆) and then outputting A2 (𝑥, 𝜌𝜆). We

say two ensembles of distributions D1 =
{
D1,𝜆

}
𝜆∈N and D2 =

{
D2,𝜆

}
𝜆∈N are computationally indistinguishable if no

efficient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable

if their statistical distance is bounded by negl(𝜆).

3.1 Cryptographic Building Blocks
In this section, we recall the definition of a few standard cryptographic building blocks we use in this work.

Additively-homomorphic encryption over Z𝑝 . We start by reviewing the notion of additively homomorphic

encryption over Z𝑝 .

Definition 3.1 (Additively Homomorphic Encryption over Z𝑝 ). An additively homomorphic encryption scheme

over Z𝑝 is a tuple of polynomial-time algorithms ΠHE = (Gen, Enc,Dec,Add) with the following syntax:

• Gen(1𝜆) → (sk, pk): On input a security parameter 𝜆 ∈ N, the key-generation algorithm outputs a secret key

sk and a public key pk.

• Enc(pk,msg) → ct: On input a public key pk and a message msg ∈ Zℓ𝑝 of length ℓ ∈ N, the encryption

algorithm outputs a ciphertext vector ct = (ct1, . . . , ctℓ ) of length ℓ .

• Dec(sk, ct) → msg: On input a secret key sk and a ciphertext vector ct = (ct1, . . . , ctℓ ) of length ℓ ∈ N, the
decryption algorithm either outputs a plaintext msg ∈ Zℓ𝑝 , or a special symbol msg = ⊥. The decryption

algorithm is deterministic.

• Add(pk, ct1, ct2) → ct′: On input a public key pk and two ciphertext vectors ct1, ct2 of the same length ℓ , the

homomorphic addition algorithm outputs a new ciphertext vector ct′ of length ℓ . The addition algorithm is

deterministic.

We require the following properties:

• Correctness: For all 𝜆, ℓ ∈ N and all messages msg ∈ Zℓ𝑝 , it holds that:

Pr

[
Dec(sk, ct) = msg :

(sk, pk) ← Gen(1𝜆, 1𝑛)
ct← Enc(pk,msg)

]
= 1.

• Evaluation correctness: For all 𝜆, ℓ ∈ N, all (sk, pk) in the support of Gen(1𝜆) and all ciphertext vectors

ct1, ct2 of the same length ℓ , where Dec(sk, ct1) ≠ ⊥ and Dec(sk, ct2) ≠ ⊥, it holds that

Dec(sk,Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2).

• Compactness: There exists a polynomial poly(·) such that for all 𝜆, ℓ ∈ N, all (sk, pk) in the support ofGen(1𝜆),
all messagesmsg

1
,msg

2
∈ Zℓ𝑝 , all ciphertexts ct1, ct2 in the support of Enc(pk,msg

1
) and Enc(pk,msg

2
) respec-

tively, it holds that

|ct1 |, |ct2 | ≤ ℓ · poly(𝜆) and |Add(pk, ct1, ct2) | ≤ ℓ · poly(𝜆).

• CPA-security: For an adversary A and a bit 𝑏 ∈ {0, 1}, define the CPA-security experiment ExptSSA (𝜆,𝑏)
as follows:
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1. On input the security parameter 1
𝜆
, the challenger samples a key pair (sk, pk) ← Gen(1𝜆) and sends pk

to the adversary.

2. The adversary can now make (arbitrarily many) queries on pairs of messages (msg
0
,msg

1
) (where msg

0

and msg
1
are vectors with the same dimension). On each query, the challenger replies with a ciphertext

ct← Enc(pk,msg𝑏).
3. After the adversary A is done making queries, it outputs a guess 𝑏′ ∈ {0, 1}.

We say that ΠHE is semantically secure if for every efficient adversary A, there exists a negligible function

negl(·) such that

��
Pr[ExptSSA (𝜆, 1) = 1] − Pr[ExptSSA (𝜆, 0) = 1]

�� = negl(𝜆).

Fact 3.2 (Additively Homomorphic Encryption over Z𝑝 [GM82, Ben94]). Under the QR assumption, there exists

an additively homomorphic encryption scheme over Z2. For any constant 𝑝 > 2, under the 𝑝 th-order residuosity

assumption, there exists an additively homomorphic encryption scheme over Z𝑝 .

The remaining definitions are copied mostly verbatim from [NWW24].

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.

Such commitments can be built from any collision-resistant hash function [Mer87].

Definition 3.3 (Vector Commitment). A vector commitment (VC) with local openings is a tuple of efficient algorithms

ΠCom = (Setup,Commit,Verify) with the following properties:

• Setup(1𝜆, 1𝑛, 1ℓ ) → crs: On input the security parameter 𝜆 ∈ N, the block length 𝑛 ∈ N, and the vector length

ℓ ∈ N, the setup algorithm outputs a common reference string crs. We assume the common reference string

implicitly contains the parameters 1
𝑛
and 1

ℓ
.

• Commit(crs, (𝑥1, . . . , 𝑥𝑡 )) → (com, 𝜎1, . . . , 𝜎𝑡 ): On input the common reference string crs and a vector of 𝑡 ≤ ℓ

messages 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , the commit algorithm outputs a commitment com and openings 𝜎1, . . . , 𝜎𝑡 .

• Verify(crs, com, 𝑖, 𝑦, 𝜎) → 𝑏′: On input the common reference string crs, the commitment com, an index 𝑖 ∈ [ℓ],
a message 𝑦 ∈ {0, 1}𝑛 , and an opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all 𝜆, 𝑛, ℓ ∈ N, and all positive 𝑡 ≤ ℓ , all x = (𝑥1, . . . , 𝑥𝑡 ) ∈ {0, 1}𝑡𝑛 , and indices 𝑖 ∈ [𝑡],

Pr

[
Verify(crs, com, 𝑖, 𝑥𝑖 , 𝜎𝑖 ) = 1 :

crs← Setup(1𝜆, 1𝑛, 1ℓ ),
(com, 𝜎1, . . . , 𝜎𝑡 ) ← Commit(crs, x)

]
= 1.

• Computational binding: For an adversary A, define the computational binding experiment as follows:

1. On input the security parameter 1
𝜆
, algorithm A starts by outputting the block length 1

𝑛
and vector

length 1
ℓ
.

2. The challenger responds with crs← Setup(1𝜆, 1𝑛, 1ℓ ).
3. Algorithm A outputs a commitment com, an index 𝑖 ∈ [ℓ], and openings (𝑦0, 𝜎0) and (𝑦1, 𝜎1).
4. The output of the experiment is 𝑏 = 1 if Verify(crs, com, 𝑖, 𝑦0, 𝜎0) = 1 = Verify(crs, com, 𝑖, 𝑦1, 𝜎1) and

𝑦0 ≠ 𝑦1. Otherwise, the output is 𝑏 = 0.

The commitment scheme is binding if for all efficient adversaries A, there exists a negligible function negl(·)
such that Pr[𝑏 = 1] = negl(𝜆) in the binding experiment.

• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝑛, ℓ ∈ N, all crs in the support

of Setup(1𝜆, ℓ), and all (com, 𝜎1, . . . , 𝜎ℓ ) in the support of Commit(crs, ·), the following holds:

– Succinct CRS: |crs| = poly(𝜆 + log𝑛 + log ℓ).
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– Succinct commitment: |com| = poly(𝜆 + log𝑛 + log ℓ).
– Succinct local opening: For all 𝑖 ∈ [ℓ], |𝜎𝑖 | = poly(𝜆 + log𝑛 + log ℓ).

Fact 3.4 (Vector Commitments from Homomorphic Encryption [Mer87, IKO05]). If any homomorphic encryption

exists, then there exists a vector commitment scheme with local openings.

3.2 Batch Arguments for NP
In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG
for index languages [CJJ21b] and the notion of a BARG for monotone policy batch NP [BBK

+
23, NWW24].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our pre-
sentation follows that of [NWW24], with the syntax where the batch arguments support extraction on up to ℓ indices.

Definition 3.5 (Boolean Circuit Satisfiability). We define the circuit satisfiability language LCSAT as

LCSAT =

{
(𝐶, 𝑥)

��� 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, 𝑥 ∈ {0, 1}𝑛
∃𝑤 ∈ {0, 1}∗ : 𝐶 (𝑥,𝑤) = 1

}
.

Definition 3.6 (BARG). A somewhere-extractable non-interactive batch argument (BARG) for Boolean circuit sat-

isfiability is a tuple of efficient algorithms ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) with the following syntax:

• Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ ) → (crs, vk): On input the security parameter 𝜆 ∈ N, the number of instances 𝑘 ∈ N,
instance size 𝑛 ∈ N, a bound on the size of the Boolean circuit 𝑠 ∈ N, and a bound on the size of the extraction

set ℓ ∈ N, the generator algorithm outputs a common reference string crs and a verification key vk.

• Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑘 ), (𝑤1, . . . ,𝑤𝑘 )) → 𝜋 : On input the common reference string crs, a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑘 , and witnesses 𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ , the prove
algorithm outputs a proof 𝜋 .

• Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘 ), 𝜋) → 𝑏: On input the verification key vk, a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1},
statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) → (crs, vk, td): On input the security parameter 𝜆 ∈ N, the number of instances

𝑘 ∈ N, instance size 𝑛 ∈ N, a bound on the size of the Boolean circuit 𝑠 ∈ N, a bound on the size of the extraction

set ℓ ∈ N, and a set 𝑆 ⊆ [𝑘] of size at most ℓ , the trapdoor generator algorithm outputs a common reference

string crs, a verification key vk and an extraction trapdoor td.

• Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘 ), 𝜋, 𝑖) → 𝑤 . On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
a collection of statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , a proof 𝜋 and an index 𝑖 ∈ [𝑘], the extraction algorithm outputs

a witness𝑤 .

Moreover, ΠBARG should satisfy the following properties:

• Completeness: For all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all Boolean circuits𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} of size at most 𝑠 , all state-

ments x = (𝑥1, . . . , 𝑥𝑘 ) ∈ {0, 1}𝑘𝑛 and witnesses w = (𝑤1, . . . ,𝑤𝑘 ) ∈ {0, 1}𝑘ℎ where 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑘],

Pr

[
Verify(vk,𝐶, x, 𝜋) = 1 :

(crs, vk) ← Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ ),
𝜋 ← Prove(crs,𝐶, x,w)

]
= 1.

• Set hiding: For an adversary A and a bit 𝑏 ∈ {0, 1}, define the set hiding experiment ExptSHBARG
A (𝜆,𝑏) as

follows:

1. Algorithm A(1𝜆) starts by outputting the number of instances 1
𝑘
, the instance size 1

𝑛
, the bound on the

circuit size 1
𝑠
, the bound on the size of the extraction set 1

ℓ
, and a set 𝑆 ⊆ [𝑘] of size at most ℓ .
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2. If 𝑏 = 0, the challenger gives (crs, vk) ← Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ ) to A. If 𝑏 = 1, the challenger samples

(crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) and gives (crs, vk) to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies set hiding if for every efficient adversary A, there exists a negligible function negl(·)
such that ��

Pr[ExptSHBARG
A (𝜆, 0) = 1] − Pr[ExptSHBARG

A (𝜆, 1) = 1]
�� = negl(𝜆).

• Somewhere extractable in trapdoor mode: For an adversary A, define the somewhere extractable security

game as follows:

1. Algorithm A(1𝜆) starts by outputting the number of instances 1
𝑘
, the instance size 1

𝑛
, the bound on the

circuit size 1
𝑠
, a bound on the size of the extraction set 1

ℓ
, and a nonempty set 𝑆 ⊆ [𝑘] of size at most ℓ .

2. The challenger samples (crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) and gives (crs, vk) to A.

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements

𝑥1, . . . , 𝑥𝑚 ∈ {0, 1}𝑛 , and a proof 𝜋 .

4. The output of the game is 𝑏 = 1 if Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑚), 𝜋) = 1 and there exists an index 𝑖 ∈ 𝑆 for

which 𝐶 (𝑥𝑖 ,𝑤𝑖 ) ≠ 1 where𝑤𝑖 ← Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘 ), 𝜋, 𝑖). Otherwise, the output is 𝑏 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible

function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the somewhere extractable game.

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all crs in the support

of Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ ), and all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , the following

properties hold:

– Succinct proofs: The proof 𝜋 output by Prove(crs,𝐶, ·, ·) satisfies |𝜋 | ≤ poly(𝜆 + log𝑘 + 𝑠 + ℓ).
– Succinct CRS: |crs| ≤ poly(𝜆 + 𝑘 + 𝑛 + ℓ) + poly(𝜆 + log𝑘 + 𝑠 + ℓ).
– Succinct verification key: |vk| ≤ poly(𝜆 + log𝑘 + 𝑠 + ℓ).

Set hiding with extraction. Following the work of [NWW24], we also require the BARG to satisfy property of

set hiding with extraction, which we define below. As shown in [NWW24], any somewhere extractable BARG can

be modified to satisfy set hiding with extraction.

Definition 3.7 (Set Hiding with Extraction). Let ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) be a somewhere

extractable batch argument for Boolean circuit satisfiability (Definition 3.6). For an adversary A and a bit 𝑏 ∈ {0, 1},
define the set hiding with extraction experiment ExptSHwE(𝜆,𝑏) as follows:

1. AlgorithmA(1𝜆) starts by outputting the number of instances 1
𝑘
, the instance size 1

𝑛
, the bound on the circuit

size 1
𝑠
, the bound on the extraction set 1

ℓ
, a set 𝑆 ⊆ [𝑘] of size at most ℓ , and an index 𝑖∗ ∈ 𝑆 .

2. If 𝑏 = 0, the challenger samples (crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆). If 𝑏 = 1, the challenger samples

(crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , {𝑖∗}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a

proof 𝜋 .

4. If Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘 ), 𝜋) ≠ 1, then the experiment halts with output 0. Otherwise, the challenger replies

with𝑤∗ ← Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘 ), 𝜋, 𝑖∗).

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies set hiding with extraction if for every efficient adversary A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,��
Pr[ExptSHwEA (𝜆, 0) = 1] − Pr[ExptSHwEA (𝜆, 1) = 1]

�� = negl(𝜆).
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Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index language where the instance is

always the tuple (1, . . . , 𝑘). Since the statements are the integers, they have a succinct description, so we can impose

a stronger requirement on the running time of the Verify algorithm. We define this below:

Definition 3.8 (Index BARG [CJJ21b]). An index BARG is a special case of a BARG where the instances (𝑥1, . . . , 𝑥𝑘 )
are restricted to the integers (1, . . . , 𝑘). In this setting, the Gen algorithm to the index BARG does not separately take

in the instance length 𝑛 as a separate input. Moreover, instead of providing 𝑥1, . . . , 𝑥𝑘 as input to the Prove, Verify,
and Extract algorithms, we just give the single index 𝑘 (in binary). Moreover, we require the additional succinctness

property on the running time of Verify:

• Succinct verification time: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all (crs, vk)
in the support of Gen(1𝜆, 1𝑘 , 1𝑠 , 1ℓ ) and all Boolean circuits 𝐶 : [𝑘] × {0, 1}ℎ → {0, 1} of size at most 𝑠 , the

running time of Verify(vk,𝐶, 𝑘, ·) is bounded by poly(𝜆 + log𝑘 + 𝑠 + ℓ).

3.3 Zero-Fixing Hash Functions
In this section, we recall the notion of a zero-fixing hash function [NWW24]. As shown in [NWW24], a zero-fixing

hash function can be combined with any vanilla BARG to obtain a monotone policy BARG. Recall that a zero-fixing

hash function is a keyed hash function that supports succinct local openings. Moreover, the hash key is associated

with a set of indices 𝑆 ⊆ [𝑛], where 𝑛 is the input length. Moreover, there is a trapdoor td associated with the hash

key hk that can be used to decide whether a hash digest dig isMatching or NotMatching on the set 𝑆 . The zero-fixing

security requirement then says that if the extractor outputsMatching for a digest dig, it must be computationally

hard to open dig to a 1 on any index 𝑖 ∈ 𝑆 . We now give the formal definition:

Definition 3.9 (Zero-Fixing Hash Function). A zero-fixing hash function is a tuple of polynomial-time algorithms

ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest) with the following syntax:

• Setup(1𝜆, 1𝑛, 𝑆) → (hk, vk, td): On input a security parameter 𝜆, an input length 𝑛, and a set 𝑆 ⊆ [𝑛], the setup
algorithm outputs a hash key hk, a verification key vk and a trapdoor td. We implicitly assume that hk includes

𝜆 and 𝑛.

• Hash(hk, 𝑥) → dig: On input a hash key hk and a string 𝑥 ∈ {0, 1}𝑛 , the hash algorithm outputs a digest dig.
This algorithm is deterministic.

• ValidateDigest(vk, dig) → 𝑏: On input a hash key vk and a digest dig, the digest validation algorithm outputs

a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• ProveOpen(hk, 𝑥, 𝑖) → 𝜎 : On input a hash key hk, a string 𝑥 ∈ {0, 1}𝑛 and an index 𝑖 ∈ [𝑛], the prove algorithm
outputs an opening 𝜎 .

• VerOpen(vk, dig, 𝑖, 𝑏, 𝜎) → 𝑏′: On input a hash key vk, a digest dig, an index 𝑖 ∈ [𝑛], a bit 𝑏 ∈ {0, 1} and an

opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}. The verification algorithm is deterministic.

• Extract(td, dig) → 𝑚: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value

𝑚 ∈ {Matching,NotMatching}. This algorithm is deterministic.

We require ΠH satisfy the following efficiency and correctness properties:

• Succinctness: There exists a universal polynomial poly(·) such that for all parameters 𝜆, 𝑛 ∈ N, all (hk, vk, td)
in the support of Setup(1𝜆, 1𝑛, ·), all inputs 𝑥 ∈ {0, 1}𝑛 and all indices 𝑖 ∈ [𝑛], the following properties hold:

– Succinct verification key: |vk| ≤ poly(𝜆 + log𝑛).
– Succinct digest: The digest dig output by Hash(hk, 𝑥) satisfies |dig| ≤ poly(𝜆 + log𝑛).
– Succinct openings: The opening 𝜎 output by ProveOpen(hk, 𝑥, 𝑖) satisfies |𝜎 | ≤ poly(𝜆 + log𝑛).
– Succinct verification: The running time of VerOpen(vk, ·) is poly(𝜆 + log𝑛).
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• Correctness: For all 𝜆, 𝑛 ∈ N, every 𝑥 ∈ {0, 1}𝑛 , and every 𝑖 ∈ [𝑛], the following properties hold:

– Opening correctness:

Pr

 VerOpen(vk, dig, 𝑖, 𝑥𝑖 , 𝜎) = 1 :

(hk, vk, td) ← Setup(1𝜆, 1𝑛,∅)
dig← Hash(hk, 𝑥)

𝜎 ← ProveOpen(hk, 𝑥, 𝑖)

 = 1.

– Digest correctness:

Pr

[
ValidateDigest(vk, dig) = 1 :

(hk, vk) ← Setup(1𝜆, 1𝑛,∅)
dig← Hash(hk, 𝑥)

]
= 1.

We additionally require the following security properties:

• Set hiding: For a bit 𝑏 ∈ {0, 1} and an adversary A, we define the set hiding game ExptSHA (𝜆,𝑏) as follows:

1. On input 1
𝜆
, the adversary A outputs 1

𝑛
and a set 𝑆 ⊆ [𝑛].

2. If 𝑏 = 0, the challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅) and if 𝑏 = 1, the challenger samples

(hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆). It gives (hk, vk) to A.

3. Algorithm A outputs a bit 𝑏′ which is the output of the experiment.

The hash function satisfies set binding if for all efficient adversariesA, there exists a negligible function negl(·)
such that ��

Pr[ExptSHA (𝜆, 0) = 1] − Pr[ExptSHA (𝜆, 1) = 1]
�� = negl(𝜆).

• Index hiding with extracted guess: For an adversary A and a bit 𝑏 ∈ {0, 1}, we define the index hiding with

extracted guess game ExptIHEA (𝜆,𝑏) as follows:

1. On input 1
𝜆
, algorithm A outputs 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .

2. If 𝑏 = 0, the challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆 \ {𝑖∗}). Otherwise, it samples (hk, vk, td) ←
Setup(1𝜆, 1𝑛, 𝑆). The challenger sends (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening 𝜎 .

4. The output of the experiment is 1 if VerOpen(hk, dig, 𝑖∗, 0, 𝜎) = 1 and Extract(td, dig) outputsMatching.
Otherwise, the output is 0.

The hash function satisfies index hiding with extracted guess if for all efficient adversaries A, there exists a

negligible function negl(·) such that��
Pr[ExptIHEA (𝜆, 0) = 1] − Pr[ExptIHEA (𝜆, 1) = 1]

�� = negl(𝜆).

• Selective zero fixing: For an adversary A, we define the adaptive zero-fixing game ExptZFA (𝜆) as follows:

1. On input 1
𝜆
, algorithm A outputs 1

𝑛
, a set 𝑆 ⊆ [𝑛] and an index 𝑖 ∈ 𝑆 .

2. The challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆) and gives (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening 𝜎 .

4. The output of the experiment is 1 if Extract(td, dig) outputsMatching and VerOpen(hk, dig, 𝑖, 1, 𝜎) = 1.

Otherwise, the output is 0.

The hash function satisfies zero-fixing if for all efficient adversariesA, there exists a negligible function negl(·)
such that Pr[ExptZFA (𝜆) = 1] = negl(𝜆).

• Extractor validity: For an adversary A, we define the extractor validity game ExptEVA (𝜆) as follows:
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1. On input 1
𝜆
, the adversary A outputs 1

𝑛
.

2. The challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅) and sends hk to the adversary.

3. Algorithm A outputs a digest dig.

4. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and Extract(td, dig) = NotMatching.
Otherwise, the output is 0.

The hash function satisfies extractor validity if for every efficient adversaryA, there exists a negligible function

negl(·) such that Pr[ExptEVA (𝜆) = 1] = negl(𝜆).

Remark 3.10 (Adaptive Zero-Fixing Security). We can define a stronger adaptive notion of zero-fixing security where

the adversary outputs the index 𝑖 ∈ 𝑆 with the digest and the opening, instead of at the beginning of the security

game (i.e., after seeing hk and vk). As argued in [NWW24], those two notions are equivalent. When constructing

zero-fixing hash (as in Construction 4.2), it is easier to work with the simpler selective definition.

One-sided index hiding. For our application, it suffices to consider a weaker notion of “one-sided” index hiding

where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security

is often easier than proving two-sided security, so we define the simpler notion here:

Definition 3.11 (One-Sided Index-Hiding with Extracted Guess). We say a zero-fixing hash function ΠH satisfies

one-sided index-hiding with extracted guess security if for all efficient adversariesA, there exists a negligible function

negl(·) such that

Pr[ExptIHEA (𝜆, 1) = 1] ≥ Pr[ExptIHEA (𝜆, 0) = 1] − negl(𝜆).

4 Construction of Zero-Fixing Hash Functions
In this section, we show how to construct a zero-fixing hash function by combining an index BARG (Definition 3.8),

an additively homomorphic encryption scheme over Z𝑝 (Definition 3.1), and a vector commitment scheme with

succinct local openings (Definition 3.3).

Binary tree indexing. Similar to [NWW24], we will work with complete binary trees. Following [NWW24], we

use the following procedure to associate a unique index with each node in the binary tree:

Definition 4.1 (Binary Tree Indexing). Let T be a complete binary tree with 𝑛 = 2
𝑘
leaves. Then T contains exactly

2𝑛 − 1 nodes. We associate a unique index 𝑖 ∈ [2𝑛 − 1] via the following procedure:

• First, associate the value 𝑣 = 1 to the root node.

• If 𝑣 is the value associated with a node, then associate values 2𝑣 and 2𝑣+1 with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

• The index 𝑖 associated with a node is defined to be 2𝑛 − 𝑣 , where 𝑣 is the value associated with the node.

By design, Definition 4.1 has the following properties:

• The leaf nodes are indexed 1 through 𝑛 and the root node is indexed 2𝑛 − 1.

• The index of every non-leaf node is greater than the index of its children.

• Given the index of any non-leaf node, we can efficiently compute the indices of its left and right child.

Construction 4.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

• Let ΠBARG = (BARG.Gen,BARG.Prove,BARG.Verify,BARG.TrapGen,BARG.Extract) be a somewhere ex-

tractable index BARG (Definition 3.8).
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• Take any constant 𝑝 ∈ N. Let ΠHE = (HE.Gen,HE.Enc,HE.Dec,HE.Add) be an additively homomorphic en-

cryption scheme over Z𝑝 (Definition 3.1). For a security parameter 𝜆, let ℓct (𝜆) be a bound on the length of the

ciphertexts output by either HE.Enc(pk, ·) or HE.Add(pk, ·, ·) for any (sk, pk) in the support of HE.Gen(1𝜆).

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a vector commitment scheme with succinct local

openings (Definition 3.3).

We construct a zero-fixing hash ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest). In the following

description, we assume without loss of generality that the bound on the input length 𝑛 ∈ N is a power of two (i.e.,

𝑛 = 2
𝑘
for some integer 𝑘 ∈ N). Next, we define the following NP relation which we will be using in our construction.

In what follows, all of the ciphertext vectors have length 𝜆.

Statement: index 𝑖 ∈ [𝑛]
Witness: ciphertext vectors ĉt(0) , ĉt(1) , openings 𝜎 (0) , 𝜎 (1) , and an auxiliary witness 𝑤̃

Hardcoded: the common reference string crsCom for ΠCom, an index 𝑖∗ ∈ [𝑛] ∪ {⊥}, a value 𝑦 ∈ {0, 1,⊥}, and for
each 𝑏 ∈ {0, 1}, a public key pk𝑏 for ΠHE, commitments com(𝑏 )hk and com(𝑏 ) and two ciphertext vectors ct(𝑏 )zero, ct

(𝑏 )
root

On input a statement 𝑖 ∈ [𝑛] and a witness

(
ĉt(0) , ĉt(1) , 𝜎 (0) , 𝜎 (1) , 𝑤̃

)
:

• If 𝑖 ∈ [𝑛], then parse 𝑤̃ =
(
c̃t(0) , c̃t(1) , 𝜎 (0)hk , 𝜎

(1)
hk

)
. Output 1 if the following conditions hold:

1. Opening to ciphertext: for 𝑏 ∈ {0, 1}, Com.Verify
(
crsCom, com𝑏, 𝑖, ĉt

(𝑏 )
, 𝜎 (𝑏 )

)
= 1.

2. Opening to ciphertext in hk: for 𝑏 ∈ {0, 1}, Com.Verify
(
crsCom, com

(𝑏 )
hk , 𝑖, c̃t

(𝑏 )
, 𝜎
(𝑏 )
hk

)
= 1.

3. Consistent choice of ciphertexts:
(
ĉt(0) = ct(0)zero ∧ ĉt

(1)
= ct(1)zero

)
or

(
ĉt(0) = c̃t(0) ∧ ĉt(1) = c̃t(1)

)
.

4. Validity of ciphertext at target index: If 𝑖 = 𝑖∗, then additionally check that:

ĉt(𝑏 ) =

{
ct(𝑏 )zero if 𝑦 = 0

c̃t(𝑏 ) if 𝑦 = 1.

If any of these conditions are not satisfied, output 0.

• If 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1], then parse 𝑤̃ = (𝑤̃l, 𝑤̃r), where 𝑤̃𝑑 =
(
ĉt(0)𝑑 , ĉt(1)𝑑 , 𝜎

(0)
𝑑

, 𝜎
(1)
𝑑

)
for 𝑑 ∈ {l, r}. Output

1 if all of the following conditions hold for all 𝑏 ∈ {0, 1}.

1. Opening to ciphertext: Com.Verify
(
crsCom, com𝑏, 𝑖, ĉt

(𝑏 )
, 𝜎 (𝑏 )

)
= 1.

2. Opening to child ciphertexts: Com.Verify(crsCom, com𝑏, 𝑖l, ĉt
(𝑏 )
l

, 𝜎
(𝑏 )
l
) = 1 and

Com.Verify(crsCom, com𝑏, 𝑖r, ĉt
(𝑏 )
r

, 𝜎
(𝑏 )
r
) = 1, where 𝑖l and 𝑖r are the indices of the left and

right child of 𝑖 (according to the indexing scheme from Definition 4.1).

3. Correctness of evaluation: ĉt(𝑏 ) = Add
(
pk𝑏, ĉt

(𝑏 )
l

, ĉt(𝑏 )
r

)
.

4. Validity of root: If 𝑖 = 2𝑛 − 1 then ĉt(𝑏 ) = ct(𝑏 )root.

If any of these conditions are not satisfied, output 0.

Figure 1: The relation R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖

∗, 𝑦
]
.

We describe our construction below:

• Setup(1𝜆, 1𝑛, 𝑆): On input a security parameter 𝜆, the input length 𝑛 = 2
𝑘
and a set 𝑆 ⊆ [𝑛], the setup algorithm

start by sampling the following:
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– Sample two key pairs: (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
– Sample the CRS for the commitment scheme with block length 𝜆 · ℓct (𝜆) and up to 2𝑛 − 1 blocks:

crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 12𝑛−1).
– Sample the CRS for an index BARG (that supports extractability on up to 3 positions): (crsBARG, vkBARG) ←

BARG.Gen(1𝜆, 12𝑛−1, 1𝑠 , 13), where 𝑠 is a bound on the size of the circuit computing the index relation

from Fig. 1.

Next, for each 𝑏 ∈ {main, shadow}, construct an encryption of 0: ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) where 0 is a zero
vector of length 𝜆. For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \{0}. For each 𝑖 ∈ [𝑛] and 𝑏 ∈ {main, shadow},
compute the following:

– If 𝑖 ∈ 𝑆 , compute ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, v𝑖 ).

– If 𝑖 ∉ 𝑆 , compute ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Specifically,

for each 𝑏 ∈ {main, shadow}, it computes(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛

)
.

Finally, the setup algorithm constructs the hash key hk, the verification key vk, and the trapdoor td as follows:

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
(4.1)

vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
(4.2)

td = skmain . (4.3)

• Hash(hk, 𝑥): On input a hash key hk (parsed as in Eq. (4.1)) and a string 𝑥 ∈ {0, 1}𝑛 , the hashing algorithm

proceeds as follows:

– Construct two complete binary trees Tmain,Tshadow, each with 𝑛 leaves. For each tree T𝑏 , we assign a

ciphertext vector ĉt(𝑏 )𝑖 to each node 𝑖 ∈ [2𝑠 − 1] in the tree as follows (where the nodes are indexed using

Definition 4.1):

∗ If 𝑖 ∈ [𝑛], let ĉt(𝑏 )𝑖 ← ct(𝑏 )zero if 𝑥𝑖 = 0 and ĉt(𝑏 )𝑖 ← ct(𝑏 )
𝑖

if 𝑥𝑖 = 1.

∗ For each internal node 𝑖 ∈ [𝑛, 2𝑛 − 1], let ĉt(𝑏 )𝑖 = HE.Add
(
pk𝑏, ĉt

(𝑏 )
𝑖l

, ĉt(𝑏 )𝑖r

)
, where 𝑖l and 𝑖r are the

indices associated with the left and right child of node 𝑖 under the canonical tree indexing scheme

(Definition 4.1).

– For 𝑏 ∈ {main, shadow}, construct commitments to the ciphertexts associated with T𝑏 :

(com𝑏, 𝜎
(𝑏 )
1

, . . . , 𝜎
(𝑏 )
2𝑛−1) ← Com.Commit(crsCom, (ĉt

(𝑏 )
1

, . . . , ĉt(𝑏 )
2𝑛−1))

– For 𝑏 ∈ {main, shadow}, let ct(𝑏 )root = ĉt(𝑏 )
2𝑛−1 (i.e., the ciphertext vector associated with the root of T𝑏 ). Let

𝐶⊥ be the circuit that computes the following instantiation of the relation from Fig. 1:

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow},⊥,⊥

]
.

– For each 𝑖 ∈ [2𝑛 − 1], let 𝜏𝑖 =
(
ĉtmain

𝑖 , ĉtshadow𝑖 , 𝜎main
𝑖 , 𝜎shadow

𝑖

)
be the opening for the ciphertext vectors

associated with node 𝑖 in Tmain and Tshadow. Then, for each 𝑖 ∈ [2𝑠−1], define the auxiliary witness 𝑤̃𝑖 to be

∗ If 𝑖 ∈ [𝑛] then 𝑤̃𝑖 =
(
ctmain

𝑖 , ctshadow𝑖 , 𝜎main
hk,𝑖 , 𝜎

shadow
hk,𝑖

)
.
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∗ If 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1] then 𝑤̃𝑖 = (𝜏𝑖l , 𝜏𝑖r ) where 𝑖l, 𝑖r are the indices of the left and right child of node

𝑖 , respectively.

Finally,∀𝑖 ∈ [2𝑛−1] let 𝑤̂𝑖 = (𝜏𝑖 , 𝑤̃𝑖 ). Compute𝜋BARG ← BARG.Prove(crsBARG,𝐶⊥, 2𝑛−1, (𝑤̂1, . . . , 𝑤̂2𝑛−1)) .
– Output the digest

dig =

(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋BARG

)
.

• ProveOpen(hk, 𝑥, 𝑖∗): On input a hash key hk (parsed as in Eq. (4.1)), a string 𝑥 ∈ {0, 1}𝑛 and an index 𝑖∗ ∈ [𝑛],
the opening algorithm proceeds as follows:

– Let 𝐶𝑖∗,𝑥𝑖∗ be the circuit the following instantiation of the relation from Fig. 1:

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖

∗, 𝑥𝑖∗
]
.

– Compute the witnesses 𝑤̂𝑖 for each 𝑖 ∈ [2𝑛 − 1] using the same procedure as in the Hash algorithm.

– Output the opening 𝜎 ← BARG.Prove(crsBARG,𝐶𝑖∗,𝑥𝑖∗ , 2𝑛 − 1, (𝑤̂1, . . . , 𝑤̂2𝑛−1))

• VerOpen(vk, dig, 𝑖, 𝛽, 𝜎): On input the verification key vk (parsed according to Eq. (4.2)), a digest dig =(
ct(0)root, ct

(1)
root, com0, com1, 𝜋BARG

)
, an index 𝑖∗ ∈ [𝑛], a bit 𝛽 ∈ {0, 1} and an opening 𝜎 , the verification algorithm

outputs BARG.Verify(crsBARG,𝐶𝑖∗,𝛽 , 2𝑛 − 1, 𝜎) where 𝐶𝑖∗,𝛽 is the circuit computing the following relation from

Fig. 1:

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖

∗, 𝛽
]
.

• Extract(td, dig): On input a trapdoor td = skmain and a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋BARG

)
,

the extraction algorithm outputs Matching if HE.Dec(skmain, ctmain
root ) = 0. Otherwise, it outputs NotMatching.

• ValidateDigest(vk, dig): On input the verification key vk (parsed according to Eq. (4.2)) and a digest dig =(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋BARG

)
, the digest-validation algorithm outputs

BARG.Verify(vkBARG,𝐶⊥, 2𝑛 − 1, 𝜋BARG),

where 𝐶⊥ is the circuit computing the following relation from Fig. 1:

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow},⊥,⊥

]
.

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Proof. Take any 𝜆, 𝑛 ∈ N and 𝑥 ∈ {0, 1}𝑛 . Suppose (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅). Parse

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
td = skmain.

We show each property individually.

Digest validity. Let dig← Hash(hk, 𝑥). By construction, dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋BARG) where

𝜋BARG ← BARG.Prove(crsBARG,𝐶⊥, 2𝑛 − 1, (𝑤̂1, . . . , 𝑤̂2𝑛−1)) and 𝐶⊥ is the circuit computing the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow},⊥,⊥

]
from Fig. 1. Parse 𝑤̂𝑖 = (𝜏𝑖 , 𝑤̃𝑖 ) where 𝜏𝑖 = (ĉtmain

𝑖 , ĉtshadow𝑖 , 𝜎main
𝑖 , 𝜎shadow

𝑖 ). We prove that 𝐶⊥ (𝑖, 𝑤̂𝑖 ) = 1 for each

𝑖 ∈ [2𝑛 − 1]:
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• Leaf nodes: Suppose 𝑖 ∈ [𝑛]. Then by construction of Hash, we have ĉtmain
𝑖 = ctmain

𝑖 and ĉtshadow𝑖 = ctshadow𝑖

and 𝑤̃𝑖 = (ctmain
𝑖 , ctshadow𝑖 , 𝜎main

hk,𝑖 , 𝜎
shadow
hk,𝑖 ). Consider each of the checks:

1. Opening to ciphertext: by construction of Hash, for each 𝑏 ∈ {main, shadow}, the commitment com𝑏

for each 𝑏 ∈ {main, shadow} is a vector commitment to (ct(𝑏 )
1

, . . . , ct(𝑏 )
2𝑛−1) and the opening 𝜎

(𝑏 )
𝑖

is a valid

opening for position 𝑖 . Therefore the check passes.

2. Opening to ciphertext in hk: By construction of Setup, for each 𝑏 ∈ {main, shadow}, the commitment

com(𝑏 )hk is a vector commitment to (ct(𝑏 )
1

, . . . , ct(𝑏 )𝑛 ) and the opening 𝜎
(𝑏 )
hk,𝑖 is a valid opening for position

𝑖 . Therefore the check passes.

3. Consistent choice of ciphertexts: By construction of Hash, we have that for each 𝑏 ∈ {main, shadow},
it holds that v(𝑏 )

𝑖
is either ct(𝑏 )

𝑖
or ct(𝑏 )zero depending on the value of 𝑥𝑖 . Therefore they are consistent and

the check passes.

4. Validity of ciphertext at target index: Since the hash relation does not define a target index, the check

passes trivially.

• Non-leaf nodes: Suppose 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1]. Then 𝑤̃𝑖 = (𝜏𝑖l , 𝜏𝑖r ), Consider each of the checks:

1. Opening to ciphertext: This follows by the same reason as above.

2. Opening to child ciphertexts: This follows similarly from the fact that for each 𝑏 ∈ {main, shadow},
the commitment com𝑏 is a vector commitment to (ct(𝑏 )

1
, . . . , ct(𝑏 )

2𝑛−1) with openings 𝜎
(𝑏 )
1

, . . . , 𝜎
(𝑏 )
2𝑛−1.

3. Correctness of evaluation: By construction of Hash, for all 𝑏 ∈ {main, shadow}, and all non-leaf nodes,
we have that ct(𝑏 )

𝑖
= HE.Add

(
pk𝑏, ct

(𝑏 )
𝑖l

, ct(𝑏 )
𝑖r

)
, and so the checks pass (since HE.Add is deterministic).

4. Validity of root: By construction of Hash, for each 𝑏 ∈ {main, shadow} we have that ct(𝑏 )root = ct(𝑏 )
2𝑛−1, so

the check trivially passes.

Since 𝐶⊥ (𝑖, 𝑤̂𝑖 ) = 1 for each 𝑖 ∈ [2𝑛 − 1], then all of the witnesses are correct and 𝜋BARG cause BARG.Verify (and by

correspondence ValidateDigest) to accept by the completeness of Π′BARG.

Opening correctness. Let 𝑖∗ ∈ [𝑛], and suppose𝜎 ← ProveOpen(hk, 𝑥, 𝑖∗). We show thatVerOpen(vk, dig, 𝑖, 𝑥𝑖∗ , 𝜎)
accepts. This follows by an analogous argument, with the one difference being that the BARG proof 𝜎 is now computed

with respect to the circuit 𝐶𝑖∗,𝑥𝑖∗ that computes the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖

∗, 𝑥𝑖∗
]

from Fig. 1. In other words, the only difference now is that the verification algorithm additionally checks validity

at target index. Consider 𝑤̂𝑖∗ = (𝜏𝑖∗ , 𝑤̃𝑖∗ ), where 𝜏𝑖∗ and 𝑤̃𝑖∗ are defined as before. By construction of ProveOpen, for
each 𝑏 ∈ {main, shadow}, it holds that ĉt(𝑏 )𝑖∗ = ct(𝑏 )zero if 𝑥𝑖∗ = 0 and ĉt(𝑏 )𝑖∗ = ct(𝑏 )

𝑖∗ if 𝑥𝑖∗ = 1, therefore the validity at

target index check passes as well. The claim now follows by the completeness of Π′BARG similar to before.

□

Theorem 4.4 (Succinctness). Construction 4.2 is succinct.

Proof. Take any 𝜆, 𝑛 ∈ N and 𝑥 ∈ {0, 1}𝑛 . Let 𝑠 ∈ N be a bound on the size of the circuits computing the relation in Fig. 1.

Let 𝑖 ∈ [𝑛] be an index. Suppose (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅), dig← Hash(hk, 𝑥) and 𝜋open ← ProveOpen(hk, 𝑥, 𝑖).
Parse

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
td = skmain

dig =

(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
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All ciphertexts are encryptions of vectors of dimension 𝜆. By the compactness of ΠHE, the size of the ciphertexts

and the public keys is poly(𝜆). By the succinctness of ΠCom, it holds that crsCom, commain
hk , comshadow

hk , commain and

comshadow all have length poly(𝜆 + log𝑛). It remains to bound the parameters of the BARG. To do so, we bound 𝑠 . The

relation in Fig. 1 requires a constant number of openings for the ciphertext checks. Each of these can be implemented

by a circuit of size poly(𝜆). Similarly, the correctness of the homomorphic evaluation check and the constant number

of ciphertext comparisons also require a circuit of size poly(𝜆 + log𝑛). Thus, the size 𝑠 of the circuit in Fig. 1 is

bounded by poly(𝜆 + log𝑛). By succinctness of Π′BARG, it holds that the length of the verification key vkBARG and

the proofs 𝜋dig and 𝜋open have size poly(𝜆 + log𝑛). In total, everything is polynomial in poly(𝜆 + log𝑛) and therefore

all of the succinctness requirements are satisfied by Construction 4.2. □

Security. In the subsequent sections, we prove each of the required security properties on Construction 4.2. Instan-

tiating the underlying additively homomorphic encryption scheme with the Goldwasser-Micali construction [GM82]

over Z2, we obtain the following corollary:

Corollary 4.5 (Zero-Fixing Hash Functions). Assuming the quadratic residuosity assumption and a somewhere ex-

tractable BARG, there exists a zero-fixing hash function.

In combination with the compiler from [NWW24], this yields Theorem 1.1.

4.1 Set Hiding
We start by showing Construction 4.2 satisfies set hiding. This follows immediately from CPA-security of the underly-

ing encryption scheme. Recall that in Construction 4.2, the only difference between a hash key that binds to the empty

set ∅ versus the set 𝑆 is that some of the ciphertexts in the hash key switch from encryptions of zero vectors (when

binding to the empty set) to an encryptions of non-zero vectors (when binding to the set 𝑆). We formalize this below:

Theorem 4.6 (Set Hiding). If ΠHE is CPA-secure, then Construction 4.2 satisfies set hiding.

Proof. Let A be an efficient adversary for the set hiding game. For ease of exposition, we treat main and shadow
from Construction 4.2 as 0 and 1 respectively. Define the games Hyb𝛽 for each 𝛽 ∈ {0, 1, 2} as follows:

1. On input 1
𝜆
, algorithm A outputs the input length 1

𝑛
and a set 𝑆 ⊆ [𝑛].

2. The challenger samples the following quantities:

• (sk0, pk0) ← HE.Gen(1𝜆) and (sk1, pk1) ← HE.Gen(1𝜆).
• (crsBARG, vkBARG) ← Gen(1𝜆, 12𝑛, 1𝑠 , 13).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {0, 1}.
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆 and 𝑏 < 𝛽 , the challenger samples ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ). Otherwise,

if 𝑖 ∉ 𝑆 or 𝑏 ≥ 𝛽 , the challenger samples ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1} let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

3. The challenger constructs the hash key hk and the verification vk as defined in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{0,1}

)
and gives (hk, vk) to A.
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4. Algorithm A outputs a bit 𝑏′ which is the output of the experiment.

Let Hyb𝛽 (A) be the output of Hyb𝛽 with adversary A. Note that by construction ExptSHA (𝜆, 0) ≡ Hyb
0
(A) and

ExptSHA (𝜆, 1) ≡ Hyb
2
(A). We now argue that each adjacent pair of hybrid distributions are computationally

indistinguishable.

Claim 4.7. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1]

�� = negl(𝜆).

Proof. Suppose that

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1]

�� ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient CPA-security adversary B against ΠHE as follows:

1. On input 1
𝜆
, algorithm B runs A to obtain the input length 1

𝑛
and the set 𝑆 ⊆ [𝑛]. Denote 𝑆 = {𝑖1, . . . , 𝑖𝑖 },

where 𝑡 = |𝑆 |.

2. The challenger sends the public key pk
0
to B.

3. Algorithm B samples the following:

• (sk1, pk1) ← HE.Gen(1𝜆), crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• (crsBARG, vkBARG) ← BARG.Gen(1𝜆, 12𝑛−1, 1𝑠 , 13).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.

4. Then, for each 𝑖 ∈ [𝑛], algorithm B does the following:

• If 𝑖 ∈ 𝑆 , then make an encryption query on the pair (0, v𝑖 ) and receive the ciphertext ct∗𝑖 . Set ct
(0)
𝑖

= ct∗𝑖 .

• If 𝑖 ∉ 𝑆 , set ct(0)
𝑖
← HE.Enc(pk

1
, 0).

• Compute ct(1)
𝑖
← HE.Enc(pk

1
, 0).

5. For 𝑏 ∈ {0, 1}, algorithm B computes

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛

) )
.

6. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{0,1}

)
and give (hk, vk) to A.

7. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

Observe that if the ct∗𝑖 are encryptions of 0 then B perfectly simulates Hyb
0
. If ct∗𝑖 are encryptions of v𝑖 , then B

perfectly simulates Hyb
1
for A. We conclude that the advantage of B is 𝜀. In addition, if A is efficient then so is

B, therefore 𝜀 is negligible by the CPA security of ΠHE. □

Claim 4.8. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Claim 4.7. The only difference is the reduction algorithm

B sets pk
1
and the ciphertexts ct(1)

𝑖
for 𝑖 ∈ 𝑆 to be the public key and challenge ciphertexts it receives for the CPA

challenger, whereas ct(0)
𝑖

is set to be an encryption of v𝑖 if 𝑖 ∈ 𝑆 , or an encryption of 0 if 𝑖 ∉ 𝑆 . □

Theorem 4.6 now follows by combining Claims 4.7 and 4.8. □
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4.2 Additive Invariants on Ciphertexts
Similar to [NWW24], the remaining security properties of the zero-fixing hash function (zero fixing, extractor validity,

and index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext vector

associated with the root node in our tree of ciphertexts (i.e., the hash digest). The general strategy to prove these

properties is similar. We first establish a certain invariant on the leaf ciphertexts by relying on the fact that they are

honestly generated by the setup algorithm. Then, we appeal to the security of the BARG and the vector commitment

to “propagate” the invariant to the root ciphertext.

We start by recalling the invariants introduced by [NWW24] and extend them in two ways: (1) we define the

invariants with respect to a vector of ciphertexts (as opposed to a single ciphertext); and (2) we pass auxiliary input

which corresponds to the view of the challenger in the security games.

Definition 4.9 (Tree-Based Additive Invariant on Ciphertext Vectors). Let 𝑛 be a power of two and let ΠHE = (Gen,
Enc,Dec,Add) be an additively homomorphic encryption scheme over Z𝑝 . We say that an efficiently-computable predi-

cate 𝑃 : {0, 1}∗ → {0, 1} is a tree-based additive invariant forΠHE if for all 𝜆, 𝑛 ∈ N, all key-pairs (sk0, pk0), (sk1, pk1) in
the support of Gen(1𝜆, 1𝑛), all indices 𝑗, 𝑗l, 𝑗r ∈ [2𝑛−1] where 𝑗l and 𝑗r are the children of 𝑗 according to the indexing

scheme in Definition 4.1, all ciphertext vectors

(
ct(0)

l
, ct(1)

l

)
,
(
ct(0)

r
, ct(1)

r

)
, and all auxiliary input 𝑧 ∈ {0, 1}∗ where

𝑃
(
ct(0)

l
, ct(1)

l
, sk0, sk1, 𝑗l, 𝑧

)
= 1 and 𝑃

(
ct(0)

r
, ct(1)

r
, sk0, sk1, 𝑗r, 𝑧

)
= 1,

it holds that

𝑃
(
ct(0)sum, ct

(1)
sum, sk0, sk1, 𝑗, 𝑧

)
= 1,

where ct(0)sum = Add
(
pk

0
, ct(0)

l
, ct(0)

r

)
and ct(1)sum = Add

(
pk

1
, ct(1)

l
, ct(1)

r

)
. This implies that if 𝑃 holds for the two children

of a node, then it also holds for the parent node.

One way to view the tree-based invariant is that if an adversary can “break” the invariant on some non-leaf node,

then the adversary can also break the invariant on one of children of that node.

Predicate propagation experiment. We now recall the definition of the general predicate propagation experiment

from [NWW24], which we use in the analysis of Construction 4.2. This is a general experiment specification that

captures the structure of the security definitions for a zero-fixing hash function.

Definition 4.10 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 4.2

is parameterized by the following two components:

• A tree-based additive invariant 𝑃 (Definition 4.9) for the homomorphic encryption scheme ΠHE.

• An efficiently-computable “challenge-derivation” function DeriveChal(𝑆, 𝑖) that takes as input a set 𝑆 ⊆ [𝑛]
and an index 𝑖 ∈ [𝑛] and outputs two sets 𝑆0, 𝑆1 ⊆ [𝑛] and an index idx that is either a pair (𝑖∗, 𝑦∗) or ⊥. In the

predicate propagation experiment, the sets 𝑆0 and 𝑆1 will determine the distribution of the ciphertexts in the

common reference string. The index idx will determine the verification check. Each of the security properties

(i.e., zero fixing, extractor validity, and index hiding with extracted guess) will induce a different choice of

DeriveChal (to be specified in their respective proofs).

We now define the predicate propagation experiment Expt[𝑃,DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 1
𝜆
, algorithm A1 outputs the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index

𝑖∗ ∈ 𝑆 (or a special symbol ⊥).

2. The challenger computes (𝑆main, 𝑆shadow, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) , (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• (crsBARG, vkBARG) ← BARG.Gen(1𝜆, 12𝑛, 1𝑠 , 13).
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• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆𝑏 then sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ). Otherwise, sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• For all 𝑏 ∈ {main, shadow},
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig) and a proof 𝜋 .

6. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,𝐶idx, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

(b) 𝑃 (ctmain
root , ct

shadow
root , skmain, skshadow, 2𝑛 − 1, (v1, . . . , v𝑛, idx)) = 0.

Here, the circuit 𝐶idx computes the relation from Fig. 1:

• If idx = (𝑖, 𝑦), then 𝐶idx computes the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖, 𝑦

]
.

• If idx = ⊥, then 𝐶idx computes the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow},⊥,⊥

]
.

In words, the adversary “wins” the game if it produces a proof 𝜋 that verifies, but the digest does not satisfy

the tree-based additive invariant 𝑃 .

The goal now is to show that if specific “pre-conditions” are met, then for all efficient adversaries A, the probability

that Expt[𝑃,DeriveChal] outputs 1 is negligible. These pre-conditions capture properties of the leaf nodes of the tree.
To that end, we now define the predicate propagation hybrid experiment Expt𝑗 [𝑃,DeriveChal] between a challenger

and an adversary A:

Definition 4.11 (Predicate Propagation Hybrid Experiment). Let 𝑗 ∈ N be an index. For a tree-based additive

invariant 𝑃 and a challenge-derivation function DeriveChal, we define the predicate propagation hybrid experiment

between a challenger and an adversary A, which we denote by Expt𝑗 [𝑃,DeriveChal], as follows:

1. On input the security parameter 1
𝜆
, algorithm A1 outputs the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index

𝑖∗ ∈ 𝑆 (or a special symbol ⊥).

2. The challenger computes (𝑆main, 𝑆shadow, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛), (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• (crsBARG, vkBARG, tdBARG) ← TrapGen(1𝜆, 12𝑛, 1𝑠 , 13, { 𝑗}).
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• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆𝑏 then sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ). Otherwise, sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

•

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig) and a proof 𝜋 .

6. The challenger computes (ĉtmain
𝑗 , ĉtshadow𝑗 , 𝜎main

𝑗 , 𝜎shadow
𝑗 , 𝑤̃ 𝑗 ) ← BARG.Extract(tdBARG, 𝜋, 𝑗).

7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,𝐶idx, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

(b) 𝐶idx ( 𝑗, (ĉt
main
𝑗 , ĉtshadow𝑗 , 𝜎main

𝑗 , 𝜎shadow
𝑗 , 𝑤̃ 𝑗 )) = 1.

(c) 𝑃 (ĉtmain
𝑗 , ĉtshadow𝑗 , skmain, skshadow, 𝑗, (v1, . . . , v𝑛, idx)) = 0.

Here, the circuit 𝐶idx computes the relation from Fig. 1:

• If idx = (𝑖, 𝑦), then 𝐶idx computes the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖, 𝑦

]
.

• If idx = ⊥, then 𝐶idx computes the relation

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow},⊥,⊥

]
.

In words, the adversary “wins” the game if it produces a proof 𝜋 that verifies, the challenger extracts a correct

witness for instance 𝑗 but the extracted witness does not satisfy the tree-based additive invariant 𝑃 .

Theorem 4.12 (Predicate Propagation). Let 𝑃 be a tree-based additive invariant and let DeriveChal be a challenge-
derivation function. Suppose ΠCom satisfies computational binding and ΠBARG satisfies set hiding with extraction, set hid-

ing, and somewhere extractability. LetA be any efficient adversary for the predicate propagation experiment. Suppose that

for every index 𝑗 ∈ [𝑛] (where 𝑛 = 𝑛(𝜆) is the input length chosen byA), there exists a negligible function 𝜀 𝑗 (·) such that

Pr[Expt𝑗 [𝑃,DeriveChal] (A) = 1] = 𝜀 𝑗 (𝜆).

Then there exists a negligible function negl(·) such that

Pr[Expt[𝑃,DeriveChal] (A) = 1] = negl(𝜆).

Remark 4.13 (Comparison with [NWW24, Theorem 5.9]). Despite the similarities between Theorem 4.12 and

[NWW24, Theorem 5.9], there are two reasons we cannot use [NWW24, Theorem 5.9] as a black box. First, while

they use additive homomorphic encryption (which captures the scheme ΠHE) on a single element, we apply the

homomorphic operation on a vector of elements rather. Second, we allow the invariant 𝑃 to depend on the view of

the challenger, by giving it auxiliary input. We give the formal proof of Theorem 4.12 in Appendix A (which shares

the same structure as the corresponding proof from [NWW24]).
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4.3 Zero Fixing
In this section, we show that Construction 4.2 satisfies zero-fixing security. In the selective zero-fixing game, the

adversary chooses a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 . Then the hash key in Construction 4.2 is chosen to bind to a set 𝑆 .

Thismeans that the ciphertexts in the hash key associatedwith the set 𝑆 are replaced by encryptions of non-zero vectors.

The adversary is then required to produce a digest dig that is Matching together with an opening of the index 𝑖∗ to 1.

Intuitively, the BARG in Construction 4.2 guarantees that the digest and opening are computed honestly for some

string, so we assume this to be the case in the following discussion. If the size of 𝑆 is sufficiently large, then there exists

a subset 𝑆 ′ ⊆ 𝑆 for which the corresponding vectors are linearly dependent (i.e., they sum to 0), and moreover, 𝑖∗ ∈ 𝑆 ′
with non-negligible probability. Thus, if the adversary knows 𝑆 ′, then it can easily construct an “honest” digest and

opening that would win the zero-fixing game: choose 𝑥 = 𝑥1 . . . 𝑥𝑛 such that 𝑥𝑖 = 1 whenever 𝑖 ∈ 𝑆 ′ (and set 𝑥𝑖 = 0

otherwise). The adversary can then compute dig← Hash(hk, 𝑥) and 𝜎 ← ProveOpen(hk, 𝑥, 𝑖∗). It is easy to see that

Extract(vk, dig) = Matching since the vectors in 𝑆 ′ sum to 0 by construction. However, if the vectors v𝑖∗ corresponding
to 𝑖∗ are computationally hidden from the adversary, then it should be infeasible for the adversary to identify a

non-trivial set of linearly-dependent vectors. Thus, we show this by relying on CPA-security of the underlying

encryption scheme. As noted in Section 2, we use a Naor-Yung approach (with double encryption) for the analysis.

Specifically, starting from the selective zero-fixing game, we first switch to a hybrid where ctshadow
𝑖∗ is an encryption

of 0 instead of v𝑖∗ . Recall that the extraction algorithm ignores the shadow ciphertexts, so these two experiment are

computationally indistinguishable. Next, we observe that this erasure of v𝑖∗ gives us an additive invariant: for all

nodes in the evaluation tree that do not include 𝑖∗ in their sub-tree, the main and shadow ciphertexts encrypt the

same vector, but for all nodes in the evaluation tree that include 𝑖∗, the difference between the vectors encrypted

by the main and shadow ciphertexts is v𝑖∗ . The consistency condition in the relation guarantees the invariant holds

for the leaves, and using Theorem 4.12, we can propagate this invariant to the root node, which includes 𝑖∗ in its

sub-tree. Therefore we can move to another hybrid in which the extraction algorithm outputs Matching if and only

if Dec(skshadow, ctshadowroot ) = v𝑖∗ . Finally, we again use the security of the encryption scheme this time to switch ctmain
𝑖∗

to be an encryption of 0. In the final experiment, the adversary’s view is independent of v𝑖∗ , but in order to win, it

is required to produce a ciphertext that decrypts to v𝑖∗ . The claim holds information theoretically at this point over

the random choice of v𝑖∗ . We now give the formal proof:

Theorem 4.14 (Zero-Fixing Security). Suppose ΠCom is binding, ΠBARG satisfies set hiding with extraction, set hiding

and is somewhere extractable, and ΠHE is CPA-secure. Then Construction 4.2 satisfies selective zero-fixing.

Proof. Let A be an efficient adversary for the zero-fixing game. We define the following hybrid sequence:

• Hyb
0
: This is the selective zero-fixing game

1. On input 1
𝜆
, algorithm A1 outputs 1

𝑛
, a set 𝑆 ⊆ [𝑛], an index 𝑖∗ ∈ 𝑆 and a state stA .

2. The challenger samples the following quantities as in Setup:
– (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
– (crsBARG, vkBARG) ← Gen(1𝜆, 12𝑛, 1𝑠 , 13).
– crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
– ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.
– For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
– For all 𝑖 ∈ [𝑛], if 𝑖 ∈ 𝑆 then sample ctmain

𝑖 ← HE.Enc(pkmain, v𝑖 ). Otherwise sample ctmain
𝑖 ←

HE.Enc(pkmain, 0).
– For all 𝑖 ∈ [𝑛], if 𝑖 ∈ 𝑆 then sample ctshadow𝑖 ← HE.Enc(pkshadow, v𝑖 ). Otherwise sample ctshadow𝑖 ←

HE.Enc(pkshadow, 0).
–

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

3. The challenger constructs the hash key hk and the verification vk as defined in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
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and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig) and a proof 𝜋 .

5. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

– BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

– HE.Dec(skmain, ctmain
root ) = 0.

Here, the circuit 𝐶𝑖∗,1 computes the relation from Fig. 1:

R
[
crsCom,

{
pk𝑏, com

(𝑏 )
hk , com𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
root

}
𝑏∈{main,shadow}, 𝑖

∗, 1
]
.

• Hyb
1
: Same as Hyb

0
, except the challenger replaces the encryption of v𝑖∗ in the shadow branch with an

encryption of 0. Specifically, during setup, the challenger instead samples ctshadow
𝑖∗ ← HE.Enc(pkshadow, 0).

• Hyb
2
: Same as Hyb

1
except the challenger implements extraction by decrypting on the shadow branch instead

of the main branch. Specifically, the output of this experiment is 1 if all of the following conditions hold:

– BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

– HE.Dec(skshadow, ctshadowroot ) = v𝑖∗ .

• Hyb
3
: Same as Hyb

2
, except the challenger switches the encryption of v𝑖∗ in the main branch to an encryption

of 0. Specifically, during setup, the challenger samples ctmain
𝑖∗ ← HE.Enc(pkmain, 0).

Lemma 4.15. If ΠHE is CPA-secure, then
��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆).

Proof. Suppose

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = 𝜀. We use A to construct an efficient attacker B for the

CPA security game as follows:

1. On input 1
𝜆
, algorithm B runs A to obtain the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index 𝑖∗.

2. The challenger sends the public key pkshadow to B.

3. Algorithm B samples a random v𝑖
r← {0, 1}𝜆 \ {0} for each 𝑖 ∈ [𝑛].

4. Algorithm B sends the challenge (0, v𝑖∗ ) to the challenger and gets a ciphertext ct∗.

5. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1𝜆).
• (crsBARG, vkBARG) ← Gen(1𝜆, 12𝑛, 1𝑠 , 13).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.

• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆 then sample ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, v𝑖 ). Otherwise, sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• Set ctshadow
𝑖∗ = ct∗.

•

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

6. Algorithm B constructs the hash key hk and the verification vk as defined in Eqs. (4.1) and (4.2) and runs A
on (hk, vk) to get (dig, 𝜋).

7. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig), and outputs 1 if all of the following

conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.
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(b) HE.Dec(skmain, ctmain
root ) = 0.

By construction, if ct∗ is an encryption of v𝑖∗ then algorithm B simulatesHyb
0
with attackerA and if ct∗ is an encryp-

tion of 0 then attacker B simulatesHyb
1
with attackerA. Furthermore, attacker B outputs the guess 1 if and only ifA

wins the simulated game, therefore the advantage of B is exactly

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

��
. In addition,

ifA is efficient then so isB, therefore by the security of ΠHE, we conclude that 𝜀 is negligible and the claim follows. □

Lemma 4.16. If ΠCom is binding and ΠBARG satisfies set hiding with extraction, set hiding and is somewhere extractable,

then

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(𝜆).

Proof. We will leverage Theorem 4.12. To do so, we start by defining a mapping DeriveChal as follows:

DeriveChal(𝑆, 𝑖∗) := (𝑆, 𝑖∗) ↦→ (𝑆, 𝑆 \ {𝑖∗} , (𝑖∗, 1)) .

Secondly, we define the additive invariant 𝑃 . Recall the tree-indexing definition from Definition 4.1. For any

𝑗 ∈ [2𝑛 − 1], we define the set 𝑇𝑗 to be the set of nodes in the sub-tree of node 𝑗 . We start by defining a predicate

𝑃 (ct0, ct1, sk0, sk1, 𝑗, (v1, . . . , v𝑛, idx)) as follows:
• On input ciphertexts ct0, ct1, decryption keys sk0, sk1, a sub-tree index 𝑗 , vectors v1, . . . , v𝑛 of the same length

𝜆, and an index idx = (𝑖∗, 𝑦) where 𝑖∗ ∈ [𝑛], compute the difference vector

d = HE.Dec(sk0, ct0) − HE.Dec(sk1, ct1).

• Compute the target vector t = v𝑖∗ if 𝑖∗ ∈ 𝑇𝑗 and t = 0 otherwise.

• If t = d then output 1. Otherwise, output 0.

In words, the predicate requires the following:

• If 𝑖∗ is in the sub-tree of node 𝑗 , then the difference between the encrypted vectors is v𝑖∗ .

• If 𝑖∗ is not in the sub-tree of node 𝑗 , then the ciphertexts should encrypt identical vectors.

For convenience, we write 𝑃 (ct0, ct1, sk0, sk1, 𝑗, (v𝑖∗ , 𝑖∗)) := 𝑃 (ct0, ct1, sk0, sk1, 𝑗, (v1, . . . , v𝑛, idx)) since 𝑃 does not

depended on v𝑖 for all 𝑖 ≠ 𝑖∗. Let Expt := Expt[𝑃,DeriveChal] be the predicate propagation experiment from Def-

inition 4.10. First, we claim that the difference between A winning Hyb
1
and Hyb

2
is bounded by the probability

that A wins Expt.

Claim 4.17.
��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� ≤ Pr[Expt(A) = 1].

Proof. Define the event 𝐸 in Hyb
2
to be:

BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1 and HE.Dec(skmain, ctmain
root ) = 0.

Observe that the view of A in Hyb
1
is identical to its view in Hyb

2
. Furthermore, event 𝐸 is exactly the condition

in which Hyb
1
outputs 1, therefore Pr[Hyb

1
(A) = 1] = Pr[𝐸]. Then, we have��

Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = ��
Pr[𝐸] − Pr[Hyb

2
(A) = 1]

��
=
��
Pr[𝐸 ∧ Hyb

2
(A) = 0] − Pr[¬𝐸 ∧ Hyb

2
(A) = 1]

��
≤ max

{
Pr[𝐸 ∧ Hyb

2
(A) = 0], Pr[¬𝐸 ∧ Hyb

2
(A) = 1]

}
where the second equality follows from the law of total probability and the last inequality follows from the fact

that probabilities are non-negative. Now observe that the view of A in Expt is also identical to its view in Hyb
1
and

Hyb
2
by the choice of DeriveChal. Moreover, note that the event 𝐸 implies HE.Dec(skmain, ctmain

root ) = 0 and the event

Hyb
2
(A) = 1 implies HE.Dec(skshadow, ctshadowroot ) = v𝑖∗ . If exactly one of those events hold, then

HE.Dec(skmain, ctmain
root ) − HE.Dec(skshadow, ctshadowroot ) ≠ v𝑖∗ .

Further, both events 𝐸 andHyb
2
(A) = 1 imply BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛−1), 𝜋) = 1. In total, both events

𝐸 ∧ Hyb
2
(A) = 0 and ¬𝐸 ∧ Hyb

2
(A) = 1 imply
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• BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

• HE.Dec(skmain, ctmain
root ) − HE.Dec(skshadow, ctshadowroot ) ≠ v𝑖∗ .

In this case, Expt(A) = 1 by definition of the additive invariant 𝑃 and the fact that 𝑖∗ is always in the “sub-tree” of

root. Therefore, we conclude that

max

{
Pr[𝐸 ∧ Hyb

2
(A) = 0], Pr[¬𝐸 ∧ Hyb

2
(A) = 1]

}
≤ Pr[Expt(A) = 1]

and the claim follows. □

Next, we show that Pr[Expt(A) = 1] = negl(𝜆). The strategy is to use Theorem 4.12. We start by proving that

𝑃 is a tree-based additive invariant.

Claim 4.18. If ΠHE satisfies evaluation correctness, then the predicate 𝑃 is a tree-based additive invariant.

Proof. Let 𝑛 ∈ N be a power of 2 and 𝜆 ∈ N. Fix the following quantities:

• any key pairs (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1𝜆);

• any triple of indices 𝑗, 𝑗l, 𝑗r ∈ [2𝑛 − 1] where 𝑗l, 𝑗r are the children of 𝑗 according to Definition 4.1;

• and set of ciphertext vectors (ct(0)
l

, ct(1)
l
), (ct(0)

r
, ct(1)

r
) each of length 𝜆;

• any index 𝑖∗ ∈ [𝑛];

• any vector v := v𝑖∗ ∈ {0, 1}𝜆 .

Let ct(0) = HE.Add(pk
0
, ct(0)

l
, ct(0)

r
) and ct(1) = HE.Add(pk

1
, ct(1)

l
, ct(1)

r
), and suppose

𝑃 (ct(0)
l

, ct(1)
l

, sk0, sk1, 𝑗l, (v, 𝑖∗)) = 1 and 𝑃 (ct(0)
r

, ct(1)
r

, sk0, sk1, 𝑗r, (v, 𝑖∗)) = 1.

We consider the following cases:

• If 𝑖∗ ∉ 𝑇𝑗 then 𝑖∗ ∉ 𝑇𝑗l and 𝑖
∗ ∉ 𝑇𝑗r . By definition of the predicate 𝑃 , it holds that

HE.Dec(sk0, ct(0)l
) − HE.Dec(sk1, ct(1)l

) = 0 and HE.Dec(sk0, ct(0)r
) − HE.Dec(sk1, ct(1)r

) = 0.

By the correctness of ΠHE, it holds that HE.Dec(sk0, ct(0) ) − HE.Dec(sk1, ct(1) ) = 0 and therefore by definition

of 𝑃 , it holds that 𝑃 (ct(0) , ct(1) , sk0, sk1, 𝑗, v, 𝑖∗) = 1.

• Suppose 𝑖∗ ∈ 𝑇𝑗 . Without loss of generality, suppose 𝑖∗ ∈ 𝑇𝑗l and 𝑖∗ ∉ 𝑇𝑗r ; the other case is analogous. Then,

by definition of 𝑃 , it holds that

HE.Dec(sk0, ct(0)l
) − HE.Dec(sk1, ct(1)l

) = v and HE.Dec(sk0, ct(0)r
) − HE.Dec(sk1, ct(1)r

) = 0.

By the correctness of ΠHE, it holds that HE.Dec(sk0, ct(0) ) − HE.Dec(sk1, ct(1) ) = v and therefore by definition

of 𝑃 , it holds that 𝑃 (ct(0) , ct(1) , sk0, sk1, 𝑗, v, 𝑖∗) = 1.

In any case, 𝑃 (ct(0) , ct(1) , sk0, sk1, 𝑗, v, 𝑖∗) = 1 and therefore 𝑃 is a tree-based additive invariant by definition. □

For each 𝑗 ∈ [𝑛], let Expt𝑗 := Expt𝑗 [𝑃,DeriveChal] be the predicate propagation hybrid experiment from Def-

inition 4.11. The final ingredient needed to invoke Theorem 4.12 is to show that A wins each of the experiments

Expt𝑗 with negligible probability.

Lemma 4.19. If ΠCom is binding against efficient non-uniform adversaries, then for any 𝑗 ∈ [𝑛], it holds that

Pr[Expt𝑗 (A) = 1] = negl(𝜆) .
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Proof. Suppose Pr[Expt𝑗 (A) = 1] = 𝜀. We use A to construct an efficient adversary B for the binding security game

of ΠCom as follows:

1. On input 1
𝜆
, algorithm B runs A to obtain the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ [𝑛].

2. Algorithm B sends 1
2𝑛−1

to the challenger and gets a CRS crsCom.

3. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛)
• (crsBARG, vkBARG, tdBARG) ← Gen(1𝜆, 12𝑛, 1𝑠 , 13).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆 then sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ), otherwise sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• Overwrite ctshadow
𝑖∗ ← HE.Enc(pkshadow, 0).

•

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

4. Algorithm B computes hk and vk as defined in Eqs. (4.1) and (4.2), and passes (hk, vk) to get (dig, 𝜋).

5. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig).

6. Algorithm B extracts (ĉtmain
, ĉtshadow, 𝜎main, 𝜎shadow, 𝑤̃) ← BARG.Extract(tdBARG, 𝜋, 𝑗).

7. If any of the following conditions do not hold, algorithm B aborts:

(a) BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

(b) 𝐶𝑖∗,1 ( 𝑗, (ĉt
main

, ĉtshadow, 𝜎main, 𝜎shadow, 𝑤̃)) = 1.

(c) 𝑃 (ĉtmain
, ĉtshadow, skmain, skshadow, 𝑗, v𝑖∗ , 𝑖∗) = 0.

8. Algorithm B parses 𝑤̃ = (c̃tmain
, c̃tshadow, 𝜎main

hk , 𝜎shadow
hk ).

9. If HE.Dec(skmain, ctmain
hk, 𝑗 ) ≠ HE.Dec(skmain, c̃t

main) then algorithm B sets 𝑏 ← main, otherwise 𝑏 ← shadow.

10. Algorithm B outputs the commitment com(𝑏 )hk , the index 𝑗 and the openings (ct(𝑏 )
𝑗

, 𝜎
(𝑏 )
hk, 𝑗 ), (c̃t

(𝑏 )
, 𝜎
(𝑏 )
hk ).

Let d = v𝑖∗ if 𝑗 = 𝑖∗ and d = 0 otherwise. At a high level, algorithm B simulates Expt𝑗 with algorithm A, hoping that

A wins the experiment. By construction of hk, vk, the difference between the main and shadow vectors encrypted

in position 𝑗 should match d, whereas by definition of the invariant 𝑃 , the extracted encryptions do not satisfy the

condition (since 𝑃 outputs 0). Therefore, it must be the cast that A produced a different encryption for position 𝑗 for

either the main or shadow copy. Moreover, algorithm A produced a valid opening for that value. Together with the

valid opening produced by B, this contradicts the binding property of commitment. We now give the formal argument:

By construction, algorithm B perfectly simulates Expt𝑗 with attacker A and aborts if and only if A loses the

simulated game. Assume A wins the simulated game. This implies all of the following:

• Since 𝐶𝑖∗,1 ( 𝑗, (ĉt
main

, ĉtshadow, 𝜎main, 𝜎shadow, 𝑤̃)) = 1, then Com.Verify(crsCom, com(𝑏 )hk , 𝑗, ĉt
(𝑏 )

, 𝜎 (𝑏 ) ) = 1 for

each 𝑏 ∈ {main, shadow}.

• Since 𝑃 (ĉtmain
, ĉtshadow, skmain, skshadow, 𝑗, v𝑖∗ , 𝑖∗) = 0, then by definition

HE.Dec(skmain, ĉt
main) − HE.Dec(skshadow, ĉt

shadow) ≠ d.
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However, by the construction of hk, vk, it holds that:

• Com.Verify(crsCom, com(𝑏 )hk , 𝑗, ct
(𝑏 )
𝑗

, 𝜎 (𝑏 ) ) = 1 for each 𝑏 ∈ {main, shadow}.

• HE.Dec(skmain, ctmain
𝑗 ) − HE.Dec(skshadow, ctshadow𝑗 ) = d.

Since

HE.Dec(skmain, ĉt
main) − HE.Dec(skshadow, ĉt

shadow) ≠ HE.Dec(skmain, ctmain
𝑗 ) − HE.Dec(skshadow, ctshadow𝑗 ),

there exists 𝑏 ∈ {main, shadow} such that ĉt(𝑏 ) ≠ ct(𝑏 )
𝑗

by correctness of ΠHE. Furthermore, algorithm B finds that

𝑏 and outputs com(𝑏 )hk , the index 𝑗 and the openings (ct(𝑏 )
𝑗

, 𝜎
(𝑏 )
hk, 𝑗 ), (c̃t

(𝑏 )
, 𝜎
(𝑏 )
hk ). Thus, algorithm B wins the binding

game with the same probability 𝜀, so 𝜀 is negligible by the binding property of ΠCom. The lemma follows. □

By Lemma 4.19 and Claim 4.18, we can apply Theorem 4.12 and conclude that Pr[Expt(A) = 1] = negl(𝜆). By
Claim 4.17, we conclude that

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� ≤ negl(𝜆) and Lemma 4.16 follows. □

Lemma 4.20. If ΠHE is CPA-secure, then
��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = negl(𝜆).

Proof. Follow by the analogous argument as in the proof of Lemma 4.15. □

Claim 4.21. Pr[Hyb
3
(A) = 1] = negl(𝜆).

Proof. The view of A in Hyb
3
is entirely independent of v𝑖∗ . Thus, in Hyb

3
, the challenger can defer the sampling

v𝑖∗ to after the adversary outputs ctshadowroot . In order for A to win the game, it needs to output ctshadowroot such that

HE.Dec(skshadow, ctshadowroot ) = v𝑖∗ . Since v𝑖∗
r← {0, 1}𝜆 \ {0}, this holds with probability 1/(2𝜆 − 1) = negl(𝜆). □

Theorem 4.14 now follows from Lemmas 4.15, 4.16 and 4.20 and Claim 4.21 and a standard hybrid argument. □

4.4 Extractor Validity
In this section, we show that Construction 4.2 satisfies extractor validity. In the extractor validity game, the hash key

is sampled to be zero-fixing on the empty set ∅, and the goal of the adversary is to produce a valid, but non-matching

digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity

property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that

the root ciphertext was derived by summing a collection of ciphertexts that each encrypt 0. The latter is ensured
by security of the BARG, and specifically the predicate propagation theorem (Theorem 4.12). We give the formal

theorem statement and proof below:

Theorem 4.22. If ΠCom is binding and ΠBARG satisfies set hiding, set hiding with extraction and is somewhere extractable,

then ΠH satisfies the extractor validity.

Proof. Let A be an efficient adversary for the extractor validity. For any 𝜆 ∈ N, denote 1𝑛 ← A1 (1𝜆). We start by

defining the mapping DeriveChal∅ as follows:

DeriveChal(𝑆, 𝑖∗) := (𝑆, 𝑖∗) ↦→ (∅,∅,⊥).

Secondly, we define the predicate 𝑃
Matching
main as follows:

𝑃
Matching
main (ctmain, ctshadow, skmain, skshadow, 𝑗, 𝑧) =

{
1 HE.Dec(skmain, cmain) = 0
0 HE.Dec(skmain, ctmain) ≠ 0

Since 𝑃
Matching
main does not depend on ctshadow, skshadow, 𝑗 and 𝑧, we omit these quantities in the following exposition

(i.e., implicitly set them to ⊥). We start by showing that 𝑃
Matching
main is a tree-based additive invariant.
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Claim 4.23. If ΠHE satisfies correctness, then the predicate 𝑃
Matching
main is a tree-based additive invariant.

Proof. Let 𝑛 ∈ N be a power of 2 and 𝜆 ∈ N. Fix the following quantities:

• a key pair (sk, pk) in the support of HE.Gen(1𝜆);

• a set of ciphertext vectors ctl and ctr each of length 𝜆;

• ct = HE.Add(pk, ctl, ctr).

Suppose 𝑃
Matching
main (ctl, sk) = 1 and 𝑃

Matching
main (ctr, sk) = 1. This implies that Dec(sk, ctl) = Dec(sk, ctl) = 0 by defini-

tion of 𝑃
Matching
main . By the correctness of ΠHE, we have Dec(sk, ctl) = 0, and again by definition of 𝑃

Matching
main , we get

𝑃
Matching
main (ct, sk) = 1 and the claim follows. □

Let Expt := Expt[𝑃Matching
main ,DeriveChal∅] be the predicate propagation experiment from Definition 4.10. We first

claim that we can use A to construct an adversary A′ such that

Pr[ExptEVA (𝜆) = 1] ≤ Pr[Expt(A′) = 1] . (4.4)

Algorithm A′ works as follows:

1. On input the security parameter 1
𝜆
, algorithm A′ runs A on the same security parameter. Algorithm A

outputs an input length 1
𝑛
. Algorithm A′ outputs the input length 1

𝑛
, the set 𝑆 = ∅, and the index 𝑖∗ = ⊥.

2. The challenger replies with (hk, vk) which A′ forwards to A.

3. AlgorithmA outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
. AlgorithmA′ outputs the same

digest dig and 𝜋 = 𝜋dig.

We now show that Eq. (4.4) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed accord-

ing to the real setup algorithm. Thus, algorithm A perfectly simulates an execution of ExptEVA for adversary A.

Thus, with probability Pr[ExptEVA (𝜆) = 1], algorithmA outputs a digest digwhere Extract(td, dig) = NotMatching
and ValidateDigest(hk, dig) = 1. This means the following:

• By construction, Extract(td, dig) outputs NotMatching if HE.Dec(skmain, ctmain
root ) ≠ 0. By construction of

𝑃
Matching
main , this means 𝑃

Matching
main (ctmain

root , skmain) = 0.

• Next, ValidateDigest outputs 1 if BARG.Verify(vkBARG,𝐶⊥, 2𝑛 − 1, 𝜋dig) = 1. By construction of DeriveChal, we
have that idx = ⊥ in the execution of Expt(A), so this means that BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋dig) = 1.

Since 𝑃
Matching
main (ctmain

root , skmain) = 0 and BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋dig) = 1, the predicate propagation exper-

iment Expt(A′) also outputs 1. Hence, we conclude that Pr[Expt(A′) = 1] ≥ Pr[ExptEVA (𝜆) = 1]. To complete the

proof, we now show using Theorem 4.12 that Pr[Expt(A′) = 1] ≤ negl(𝜆). To leverage Theorem 4.12, we analyze

the predicate propagation hybrid experiment Expt𝑗 := Expt𝑗 [𝑃
Matching
main ,DeriveChal] from Definition 4.11.

Claim 4.24. If ΠCom satisfies binding against efficient non-uniform adversaries then for any 𝑗 ∈ [𝑛], it holds that

Pr[Expt𝑗 (A′) = 1] = negl(𝜆).

Proof. Suppose Pr[Expt𝑗 (A′) = 1] = 𝜀. We use A′ to construct an efficient adversary B for the binding security

game of ΠCom as follows:

1. On input 1
𝜆
, algorithm B runs A′ to obtain 1

𝑛
, the set 𝑆 = ∅ and the index 𝑖∗ = ⊥.

2. Algorithm B outputs the block length 𝜆 · ℓct (𝜆) and the vector length 2𝑛 − 1 to the challenger. The challenger

responds with crsCom.
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3. Algorithm B samples the following quantities as Setup:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛, 1𝑠 , 13, { 𝑗}).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.

• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow} : ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. Algorithm B computes hk and vk as defined in Eqs. (4.1) and (4.2), and runs A′ on (hk, vk) to obtain (dig, 𝜋).

5. Algorithm B parses dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig).

6. Algorithm B extracts 𝑤̂ = (ĉtmain
, ĉt(shadow) , 𝜎main, 𝜎shadow, 𝑤̃) ← BARG.Extract(tdBARG, 𝜋, 𝑗) and parses

𝑤̃ = (c̃tmain
, c̃tshadow, 𝜎main

hk , 𝜎shadow
hk ).

7. Algorithm B outputs the commitment commain
hk , the index 𝑗 and the openings (ctmain

𝑗 , 𝜎main
hk, 𝑗 ) and (c̃t

main
, 𝜎main

hk ).

By construction, the challenger samples crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1), which matches the specification

in Expt𝑗 . Thus, algorithm B perfectly simulates an execution of Expt𝑗 for A′. By assumption, with probability 𝜀,

algorithm A′ outputs dig and 𝜋 such that the experiment outputs 1. This means the following conditions hold:

𝐶⊥
(
𝑗,
(
ĉtmain

, ĉt(shadow) , 𝜎main, 𝜎shadow, 𝑤̃
) )

= 1 and 𝑃
Matching
main (ĉtmain

, skmain) = 0.

By definition of 𝐶⊥ and using the fact that 𝑗 ∈ [𝑛], this means

Com.Verify
(
crscom, commain

hk , 𝑗, c̃tmain
, 𝜎main

hk

)
= 1 and ĉtmain ∈

{
ctmain

zero , c̃tmain}
.

Next, by correctness of ΠCom,

Com.Verify
(
crscom, com

(0)
hk , 𝑗, ct

main
𝑗 , 𝜎main

hk, 𝑗

)
= 1.

Therefore, it suffices to argue that ctmain
𝑗 ≠ c̃tmain

. Since 𝑃
Matching
main (ĉtmain

, skmain) = 0, this means

HE.Dec(skmain, ĉt
main) ≠ 0.

Since ctmain
zero is an encryption of 0, we can appeal to perfect correctness of ΠHE to conclude that ĉtmain

≠ ctmain
zero .

Therefore it must be that ĉtmain
= c̃tmain

. Moreover, ctmain
𝑗 is also an encryption of 0, so again by perfect correctness

of the encryption scheme, we can conclude that ctmain
𝑗 ≠ ĉtmain

= c̃tmain
. In this case, algorithm B successfully opens

commain
hk to two distinct values ctmain

𝑗 ≠ c̃tmain
. Thus algorithm B breaks binding with the same advantage 𝜀. □

By Claims 4.23 and 4.24, we can invoke Theorem 4.12 to conclude that Pr[Expt(A′) = 1] ≤ negl(𝜆). Extractor-validity
security now follows via Eq. (4.4). □

4.4.1 Index Hiding with Extracted Guess

In this section, we show that Construction 4.2 satisfies the index hiding with extracted guess property. The challenge

in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining

the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the

secret key for the underlying encryption scheme). Similar to the proof of Theorem 4.14 and as described in Section 2,

we leverage a Naor-Yung proof strategy for the analysis here.
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Theorem 4.25. If ΠHE satisfies perfect correctness, evaluation correctness, and CPA-security, ΠCom is computationally

binding and ΠBARG satisfies set hiding with extraction, set hiding, and is somewhere extractable, then Construction 4.2

satisfies index hiding with extracted guess.

Proof. Let A be an efficient adversary for the index hiding with extracted guess security game. We define a sequence

of hybrid experiments:

• Hyb
0
: This is ExptIHEA (𝜆, 0). Specifically, the game proceeds as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index

𝑖∗ ∈ 𝑆 .
2. The challenger now samples the following quantities as in Setup:

– Sample (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
– Sample crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1).
– Sample (crsBARG, vkBARG) ← BARG.Gen(1𝜆, 12𝑛−1, 1𝑠 , 13), where 𝑠 is a bound on the size of the circuit

computing the index relation from Fig. 1.

– For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0).
– For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
– For each 𝑖 ∈ [𝑛] and 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆 \ {𝑖∗}, sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise

sample ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

– For each𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

3. The challenger constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
The challenger gives (hk, vk) to A.

4. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and an opening 𝜋 .

5. The output of the experiment is 1 if

BARG.Verify(vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
skmain, ctmain

root
)
= 0.

Otherwise, the output is 0.

• Hyb
1
: Same as Hyb

0
, except the challenger samples ctshadow

𝑖∗ ← HE.Enc(pkshadow, v𝑖∗ ).

• Hyb
2
: Same as Hyb

1
, except the output of the experiment is 1 if

BARG.Verify(vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
skshadow, ctshadowroot

)
= 0.

Notably, the challenger’s behavior in this experiment does not depend on skmain.

• Hyb
3
: Same as Hyb

2
, except the challenger samples ctmain

𝑖∗ ← HE.Enc(pkmain, v𝑖∗ ).

• Hyb
4
: Same as Hyb

3
, except the output of the experiment is 1 if

BARG.Verify(vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
skmain, ctmain

root
)
= 0.

This is experiment ExptIHEA (𝜆, 1).

We write Hyb𝑖 (A) to denote the output of experiment of Hyb𝑖 with adversary A. We now analyze each pair of

hybrid experiments.
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Claim 4.26. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1]

�� = negl(𝜆).

Proof. Suppose

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = 𝜀. We use A to construct an efficient attacker B for the

CPA security game as follows:

1. On input 1
𝜆
, algorithm B runs A to obtain the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .

2. The challenger sends the public key pkshadow to B.

3. Algorithm B samples a random v𝑖
r← {0, 1}𝜆 \ {0} for each 𝑖 ∈ [𝑛].

4. Algorithm B sends the challenge (0, v𝑖∗ ) to the challenger and gets an encryption ct∗.

5. Algorithm B samples the following:

• (skmain, pkmain) ← HE.Gen(1𝜆).
• (crsBARG, vkBARG) ← Gen(1𝜆, 12𝑛, 1𝑠 , 13).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.

• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆 \ {𝑖∗} then sample ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, v𝑖 ). Otherwise

sample ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• Let ctshadow
𝑖∗ ← ct∗.

•

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

6. The challenger constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
The challenger gives (hk, vk) to A.

7. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and an opening 𝜋 .

8. Algorithm B parses outputs 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,𝐶𝑖∗,1, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

(b) HE.Dec(skmain, ctmain
root ) = 0.

By construction, if ct∗ is an encryption of 0 then algorithmB simulatesHyb
0
with attackerA and if ct∗ is an encryption

of v𝑖∗ then attacker B simulates Hyb
1
with attacker A. Furthermore, attacker B outputs the guess 1 if and only if A

wins the simulated game, therefore the advantage of B is exactly

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

��
. In addition,

ifA is efficient then so isB, therefore by the security of ΠHE, we conclude that 𝜀 is negligible and the claim follows. □

Claim 4.27. If ΠHE is perfectly correct and satisfies evaluation correctness, ΠCom is computationally binding, ΠBARG
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(𝜆).
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Proof. By construction, the only difference between the execution of Hyb
1
and Hyb

2
is the output condition. Let 𝐸

be the following event in an execution of Hyb
1
and Hyb

2
:

BARG.Verify(vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
skmain, ctmain

root
)
≠ HE.Dec

(
skshadow, ctshadowroot

)
. (4.5)

Observe that if 𝐸 does not occur, then the output of Hyb
1
and Hyb

2
is identical. This means that

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≤ Pr[𝐸] .

We now leverage Theorem 4.12 to argue that Pr[𝐸] = negl(𝜆). To do so, we start by defining the mapping DeriveChal
as follows:

DeriveChal(𝑆, 𝑖∗) := (𝑆, 𝑖∗) → (𝑆, 𝑆 \ {𝑖∗} , (𝑖∗, 0)) .

Next, we define the validity predicate 𝑃Valid : {0, 1}∗ → {0, 1} as follows:

𝑃Valid (ctmain, ctshadow, skmain, skshadow, 𝑗, 𝑧) =
{
1 HE.Dec(skmain, ctmain) = HE.Dec(skshadow, ctshadow)
0 HE.Dec(skmain, ctmain) ≠ HE.Dec(skshadow, ctshadow)

Since 𝑃Valid does not use the index 𝑗 and the auxiliary input 𝑧, we omit them in the following exposition. We now

show that 𝑃Valid is a tree-based additive invariant.

Lemma 4.28. If ΠHE satisfies evaluation correctness, then 𝑃Valid is a tree-based additive invariant.

Proof. Let 𝜆 ∈ N. Fix the following quantities:

• any two key pairs (skmain, pkmain), (skshadow, pkshadow) in the support of HE.Gen(1𝜆, 1𝑛);

• any tuple of ciphertext vectors

(
ctmain

l
, ctshadow

l

)
,

(
ctmain

r
, ctshadow

r

)
, where each vector has length 𝜆;

• for each 𝑏 ∈ {main, shadow}, let ct(𝑏 )sum = HE.Add
(
pk𝑏, ct

(𝑏 )
l

, ct(𝑏 )
r

)
.

Suppose

𝑃Valid (ctmain
l

, ctshadow
l

, skmain, skshadow) = 𝑃Valid (ctmain
r

, ctshadow
r

, skmain, skshadow) = 1.

This implies

HE.Dec(skmain, ctmain
l
) = HE.Dec(skshadow, ctshadowl

)
HE.Dec(skmain, ctmain

r
) = HE.Dec(skshadow, ctshadowr

).

By the evaluation correctness of ΠHE, we conclude that

HE.Dec(skmain, ctmain
sum ) = HE.Dec(skmain, ctmain

l
) + HE.Dec(skmain, ctmain

r
)

= HE.Dec(skshadow, ctshadowl
) + HE.Dec(skshadow, ctshadowr

)
= HE.Dec(skshadow, ctshadowsum )

Therefore we conclude that 𝑃Valid (ctmain
sum , ctshadowsum , skmain, skshadow) = 1 and the claim follows. □

Let Expt := Expt[𝑃Valid,DeriveChal] be the predicate propagation experiment from Definition 4.10. We argue that

Pr[𝐸] ≤ Pr[Expt(A) = 1], (4.6)

where 𝐸 is the event from Eq. (4.5). By construction, the adversary’s view in Hyb
1
and Expt is identical. Suppose

𝐸 occurs in an execution of Hyb
1
. Then the following hold:

• BARG.Verify(vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1. By construction of DeriveChal, we have that idx = (𝑖∗, 0) in the

execution of Expt(A). Hence, this means that BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.
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• HE.Dec
(
skmain, ctmain

root
)
≠ HE.Dec

(
skshadow, ctshadowroot

)
. This means 𝑃Valid

(
ctmain

root , ct
shadow
root , skmain, skshadow

)
= 0.

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] ≥ Pr[𝐸]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt𝑗 := Expt𝑗 [𝑃Valid,DeriveChal].

Lemma 4.29. If ΠHE is perfectly correct and ΠCom satisfies computational binding, then there exists a negligible function

negl(·) such that for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] = negl(𝜆).

Proof. Suppose there exists some 𝑗 ∈ [𝑛] where Pr[Expt𝑗 (A) = 1] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to

construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1
𝜆
, algorithm B runs algorithm A to obtain the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs the block length 1
𝜆 ·ℓct (𝜆,𝑛)

and the vector length 2𝑛 − 1 to the challenger. The challenger

responds with crsCom.

3. Algorithm B computes (𝑆 \ {𝑖∗} , 𝑆, (𝑖∗, 0)) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛), (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}).
• Sample a random v𝑖

r← {0, 1}𝜆 \ {0} for each 𝑖 ∈ [𝑛].
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0).

• For each 𝑖 ∈ [𝑛] \ {𝑖∗} and 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆 , sample ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, v𝑖 ). If 𝑖 ∉ 𝑆 , sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

• Sample ctmain
𝑖∗ ← HE.Enc(pkmain, 0) and ctshadow

𝑖∗ ← HE.Enc(pkshadow, v𝑖∗ ).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .

6. Algorithm B extracts 𝑤̂ = (ĉtmain
, ĉt(shadow) , 𝜎main, 𝜎shadow, 𝑤̃) ← BARG.Extract(tdBARG, 𝜋, 𝑗) and parses

𝑤̃ = (c̃tmain
, c̃tshadow, 𝜎main

hk , 𝜎shadow
hk ).

7. Algorithm B checks if there exists 𝑏 ∈ {main, shadow} where Com.Verify
(
crsCom, com

(𝑏 )
hk , 𝑗, c̃t

(𝑏 )
, 𝜎
(𝑏 )
hk

)
=

1 and c̃t(𝑏 ) ≠ ct(𝑏 )
𝑗

. If so, it outputs the commitment com(𝑏 )hk , the index 𝑗 , and the value-opening pairs
(
ct(𝑏 )

𝑗
, 𝜎
(𝑏 )
hk, 𝑗

)
and

(
c̃t(𝑏 ) , 𝜎 (𝑏 )hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1), which matches the specification

in Expt𝑗 . This, algorithm B perfectly simulates an execution of Expt𝑗 for A. By assumption, with probability 𝜀,

algorithm A outputs dig and 𝜋 such that the experiment outputs 1. This means the following conditions hold:

𝐶𝑖∗,0
(
𝑗, (ĉtmain

, ĉt(shadow) , 𝜎main, 𝜎shadow, 𝑤̃)
)
= 1 and 𝑃Valid

(
ĉtmain

, ĉtshadow, skmain, skshadow,
)
= 0.

We consider two possibilities:
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• Suppose 𝑗 = 𝑖∗. By construction of𝐶𝑖∗,0 (see Fig. 1), this means ĉt(𝑏 ) = ct(𝑏 )zero for 𝑏 ∈ {0, 1}. By construction, ct(𝑏 )zero

is an encryption of 0 under pk𝑏 . In this case, 𝑃Valid
(
ĉtmain

, ĉtshadow, skmain, skshadow,
)
= 1, which contradicts the

premise.

• Suppose 𝑗 ≠ 𝑖∗. By construction of 𝐶𝑖∗,0, there are now two more possibilities:

– Suppose for 𝑏 ∈ {main, shadow}, ĉt(𝑏 ) = ct(𝑏 )zero. As in the first case, this means ĉtmain
and ĉtshadow both de-

crypt to 0 under skmain and skshadow, respectively. In this case 𝑃Valid
(
ĉtmain

, ĉtshadow, skmain, skshadow,
)
= 1,

which again contradicts the premise.

– Suppose for 𝑏 ∈ {main, shadow}, ĉt(𝑏 ) = c̃t(𝑏 ) . In this case, we also have

∗ Com.Verify
(
crsCom, commain

hk , 𝑗, c̃tmain
, 𝜎main

hk

)
= 1; and

∗ Com.Verify
(
crsCom, comshadow

hk , 𝑗, c̃tshadow, 𝜎shadow
hk

)
= 1.

Suppose c̃t(𝑏 ) = ct(𝑏 )
𝑗

for all 𝑏 ∈ {0, 1}. In this case, since 𝑗 ≠ 𝑖∗, the ciphertexts ctmain
𝑗 , ctshadow𝑗 are either

both encryptions of 0 (if 𝑗 ∉ 𝑆) or both encryptions of v𝑗 (if 𝑗 ∈ 𝑆). This again contradicts the premise.

Thus, if 𝑃Valid is not satisfied, we conclude that there exists some 𝑏 ∈ {0, 1} such that c̃t(𝑏 ) ≠ ct(𝑏 )
𝑗

.

Thus, there exists some 𝑏 ∈ {0, 1} such that the following holds:

c̃t(𝑏 ) ≠ ct(𝑏 )
𝑗

and Com.Verify
(
crsCom, com

(𝑏 )
hk , 𝑗, c̃t

(𝑏 )
, 𝜎
(𝑏 )
hk

)
= 1.

Moreover, by correctness of ΠCom, we have that

Com.Verify
(
crsCom, com

(𝑏 )
hk , 𝑗, ct

(𝑏 )
𝑗

, 𝜎
(𝑏 )
hk, 𝑗

)
= 1.

In this case, algorithm B successfully breaks the binding property of the commitment scheme. □

Since for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] = negl(𝜆), we can invoke Theorem 4.12 to conclude that

Pr[Expt(A) = 1] = negl(𝜆). Claim 4.27 now follows via Eqs. (4.5) and (4.6). □

Claim 4.30. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��
Pr[Hyb

3
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(𝜆).

Proof. This follows by an analogous argument as the proof of Claim 4.26. In particular, the reduction obtains pkmain
and ctmain

𝑖∗ from the challenger. It samples (pkshadow, skshadow) itself which it can use to compute the output (according

to the specification in Hyb
2
and Hyb

3
). □

Claim 4.31. If ΠHE is perfectly correct and satisfies evaluation correctness, ΠCom is computationally binding, and ΠBARG
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb

4
(A) = 1] − Pr[Hyb

3
(A) = 1] | = negl(𝜆).

Proof. This follows by an analogous argument as the proof of Claim 4.27. The only difference is that we take the

mapping DeriveChal to be

DeriveChal(𝑆, 𝑖) := (𝑆, 𝑖) ↦→ (𝑆, 𝑆, (𝑖, 0)).
The rest of the analysis proceeds exactly as before. □

Theorem 4.25 now follows by combining Claims 4.26, 4.27, 4.30 and 4.31. □
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A Proof of Theorem 4.12 (Predicate Propagation)
Our proof follows a very similar structure as the corresponding proof from [NWW24, Theorem 5.9]. As noted in

Remark 4.13, we cannot use the proof from [NWW24] as a black box. For this reason, we reproduce the analysis

here. Some parts of the description are taken verbatim from [NWW24, Theorem 5.9]. To simplify notation, we write

Expt := Expt[𝑃,DeriveChal] and Expt𝑗 := Expt𝑗 [𝑃,DeriveChal] in the following proof. Fix an adversary A and let

𝑛 be the input length chosen by A. We proceed by induction on the index 𝑗 ∈ [2𝑛 − 1]. In the following, we will

view the index 𝑗 as an index of a node in a (complete) binary tree with 𝑛 leaves (indexed according to Definition 4.1).

As such, we can refer to the “height” of an index 𝑗 . Then, we show the following lemma:

Lemma A.1. Suppose the conditions of Theorem 4.12 hold. Take any index 𝑗 ∈ [2𝑛 − 1] and let ℎ be the height of node

𝑗 (where the leaf nodes have height 0). Then, there exists a negligible function 𝜀 𝑗 (𝜆) such that

Pr[Expt𝑗 (A) = 1] = 2
ℎ · 𝜀 𝑗 (𝜆).

Proof. Suppose the conditions of Theorem 4.12 hold. We prove the lemma by induction on the height ℎ of the index

𝑗 ∈ [2𝑛 − 1].

Base case. For the indices 𝑗 ∈ [𝑛] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.
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Inductive step. Suppose the inductive hypothesis holds for every index 𝑗 ′ ∈ [2𝑛 − 1] of height ℎ. Let 𝑗 ∈ [2𝑛 − 1]
be an index with height ℎ + 1. Let 𝑗l, 𝑗r ∈ [2𝑛 − 1] be the indices of the left and right child of node 𝑗 (as defined in

Definition 4.1). By construction, 𝑗l and 𝑗r have height ℎ. The inductive hypothesis now asserts that for 𝑗∗ ∈ { 𝑗l, 𝑗r},

Pr

[
Expt𝑗∗ (A) = 1

]
= 2

ℎ · 𝜀 𝑗∗ (𝜆), (A.1)

for some negligible function 𝜀 𝑗∗ (𝜆). We now define an intermediate experiment Expt′𝑗 for each node 𝑗 of height ℎ > 0:

1. On input the security parameter 1
𝜆
, algorithmA outputs the input length 1

𝑛
, a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆

(or a special symbol ⊥).

2. The challenger computes (𝑆main, 𝑆shadow, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger samples the following quantities as in Setup:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛)
• (crsBARG, vkBARG, tdBARG) ← TrapGen(1𝜆, 12𝑛, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆) , 2𝑛 − 1).
• ct(𝑏 )zero ← HE.Enc(pk𝑏, 0) for all 𝑏 ∈ {main, shadow}.
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For all 𝑖 ∈ [𝑛], 𝑏 ∈ {main, shadow}, if 𝑖 ∈ 𝑆𝑏 then sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ), otherwise sample

ct(𝑏 )
𝑖
← HE.Enc(pk𝑏, 0).

•

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
for all 𝑏 ∈ {main, shadow}.

4. The challenger constructs hk and vk as defined in Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ctmain
root , ct

shadow
root , commain, comshadow, 𝜋dig) and a proof 𝜋 .

6. The challenger computes (ĉtmain
𝑗 , ĉtshadow𝑗 , 𝜎main

𝑗 , 𝜎shadow
𝑗 , 𝑤̃ 𝑗 ) ← BARG.Extract(tdBARG, 𝜋, 𝑗).

7. The output of the experiment is 1 if all of the following conditions hold, and 0 otherwise:

(a) BARG.Verify(crsBARG,𝐶idx, (1, . . . , 2𝑛 − 1), 𝜋) = 1.

(b) 𝐶idx ( 𝑗, (ĉt
main
𝑗 , ĉtshadow𝑗 , 𝜎main

𝑗 , 𝜎shadow
𝑗 , 𝑤̃ 𝑗 )) = 1.

(c) 𝑃 (ĉtmain
𝑗 , ĉtshadow𝑗 , skmain, skshadow, 𝑗, (v1, . . . , v𝑛, idx)) = 0.

In our analysis below, we define an additional set of events in an execution of Expt′𝑗 withA. First, define the following

two quantities:

• (ĉtmain
𝑗l

, ĉtshadow𝑗l
, 𝜎main

𝑗l
, 𝜎shadow

𝑗l
, 𝑤̃ 𝑗l ) ← BARG.Extract(tdBARG, 𝜋, 𝑗l).

• (ĉtmain
𝑗r

, ĉtshadow𝑗r
, 𝜎main

𝑗r
, 𝜎shadow

𝑗r
, 𝑤̃ 𝑗r ) ← BARG.Extract(tdBARG, 𝜋, 𝑗r).

Now, define the following events:

• 𝐸
( 𝑗 )
Verify: This is the event that BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.
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• 𝐸
( 𝑗 )
𝑃,𝑗∗ for each 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}: This is the event where 𝑃

(
ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , skmain, skshadow, 𝑗∗, (v1, . . . , v𝑛, idx)
)
= 1.

• 𝐸
( 𝑗 )
ValidCom, 𝑗∗ for each 𝑗∗ ∈ { 𝑗l, 𝑗r}: This is the event

Com.Verify
(
crsCom, commain, 𝑗

∗, ĉtmain
𝑗∗ , 𝜎main

𝑗∗
)
= 1 = Com.Verify

(
crsCom, comshadow, 𝑗

∗, ĉtshadow𝑗∗ , 𝜎shadow
𝑗∗

)
.

• 𝐸
( 𝑗 )
CorrectWit, 𝑗∗ for each 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}: This is the event 𝐶idx

(
𝑗∗, (ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , 𝜎main
𝑗∗ , 𝜎shadow

𝑗∗ , 𝑤̃ 𝑗∗ )
)
= 1.

We now relate the probability that Expt𝑗 (A) outputs 1 to the probability that Expt𝑗l (A) and Expt𝑗r (A) outputs 1. To
do so, we first program the BARG to be extracting on the set { 𝑗, 𝑗l, 𝑗r}. We then argue via somewhere extractability

of the BARG and computational binding of the commitment scheme that if the values associated with the nodes 𝑗l
and 𝑗r satisfy the predicate 𝑃 and the proof verifies, then the value associated with 𝑗 must also satisfy the predicate

𝑃 . In this case, the output of Expt𝑗 (A) is guaranteed to be 0.

Claim A.2. If ΠBARG satisfies set hiding with extraction, then there exists a negligible function negl(·) such that for

all 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}, it holds that���Pr[Expt𝑗∗ (A) = 1] − Pr
[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

] ��� = negl(𝜆).

Proof. Take any 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r} and suppose���Pr[Expt𝑗∗ (A) = 1] − Pr
[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

] ��� = 𝜀

for some non-negligible 𝜀. Importantly, note that the events 𝐸
( 𝑗 )
Verify, 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ , and 𝐸

( 𝑗 )
𝑃,𝑗∗ are defined for Expt′𝑗 and

not Expt𝑗∗ . We use A to construct an adversary B for the set hiding with extraction game of ΠBARG:

1. On input the security parameter 1
𝜆
, algorithm B runs algorithmA to obtain the input length 1

𝑛
, the set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs 1
2𝑛−1

, 1
𝑠
, 1

3
, the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r}, and the challenge index 𝑗∗ ∈ 𝐽 to the chal-

lenger, where 𝑠 is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛), (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈
{main, shadow}, if 𝑖 ∈ 𝑆𝑏 , sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏 )

𝑖
←

HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .
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6. Let 𝐶idx be the circuit as defined in Definition 4.10. Algorithm B first checks

BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

If the check fails, algorithm B aborts with output ⊥. Otherwise, algorithm B sends the circuit𝐶idx, the instance

number 2𝑛 − 1, and the proof 𝜋 to the challenger. The challenger replies with a string which B parses as

(ĉtmain
𝑗∗ , ĉtshadow𝑗∗ , 𝜎main

𝑗∗ , 𝜎shadow
𝑗∗ , 𝑤̃ 𝑗∗ ).

7. Algorithm B outputs 1 all of the following conditions hold:

• 𝐶idx
(
𝑗∗, (ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , 𝜎main
𝑗∗ , 𝜎shadow

𝑗∗ , 𝑤̃ 𝑗∗ )
)
= 1.

• 𝑃
(
ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , skmain, skshadow, 𝑗∗, (v1, . . . , v𝑛, idx)
)
= 0.

Otherwise, algorithm B outputs 0.

Let (crsBARG, vkBARG, tdBARG) be the parameters sampled by the challenger in the set hiding with extraction game.

In the game, after B outputs (𝐶idx, 2𝑛 − 1, 𝜋), the challenger checks BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1. If the

check passes, it replies with (ĉtmain
𝑗∗ , ĉtshadow𝑗∗ , 𝜎main

𝑗∗ , 𝜎shadow
𝑗∗ , 𝑤̃ 𝑗∗ ). We now consider the two possibilities:

• Suppose the challenger responds according to the specification of ExptIHEA (𝜆, 0). In this case, the chal-

lenger samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). Thus, algorithm B
perfectly simulates for A an execution of Expt′𝑗 . We claim that algorithm B outputs 1 if and only if the event

𝐸
( 𝑗 )
Verify∧𝐸

( 𝑗 )
CorrectWit, 𝑗∗∧¬𝐸

( 𝑗 )
𝑃,𝑗∗ occurs. This event corresponds to the conjunction of the following set of conditions:

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
𝑗∗, (ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , 𝜎main
𝑗∗ , 𝜎shadow

𝑗∗ , 𝑤̃ 𝑗∗ )
)
= 1.

– 𝑃
(
ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , skmain, skshadow, 𝑗∗, (v1, . . . , v𝑛, idx)
)
= 0.

where (ĉtmain
𝑗∗ , ĉtshadow𝑗∗ , 𝜎main

𝑗∗ , 𝜎shadow
𝑗∗ , 𝑤̃ 𝑗∗ ) ← BARG.Extract(tdBARG, 𝜋, 𝑗∗). This is the same set of conditions

that algorithmB checks, so algorithmB outputs 1 with probability Pr

[
𝐸
( 𝑗 )
Verify∧𝐸

( 𝑗 )
CorrectWit, 𝑗∗∧¬𝐸

( 𝑗 )
𝑃,𝑗∗

]
in this case.

• Suppose the challenger responds according to the specification of ExptIHEA (𝜆, 1). In this case, the challenger

samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗∗}). Thus, algorithm B simulates for

A an execution of Expt𝑗∗ . We claim that algorithm B outputs 1 if and only if Expt𝑗∗ (A) outputs 1. The latter
corresponds to the conjunction of the following set of conditions:

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
𝑗∗, (ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , 𝜎main
𝑗∗ , 𝜎shadow

𝑗∗ , 𝑤̃ 𝑗∗ )
)
= 1.

– 𝑃
(
ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , skmain, skshadow, 𝑗∗, (v1, . . . , v𝑛, idx)
)
= 0.

where (ĉtmain
𝑗∗ , ĉtshadow𝑗∗ , 𝜎main

𝑗∗ , 𝜎shadow
𝑗∗ , 𝑤̃ 𝑗∗ ) ← BARG.Extract(tdBARG, 𝜋, 𝑗∗). Once again, this is the same set of

conditions that B checks. Thus, in this case algorithm B outputs 1 with probability Pr[Expt𝑗∗ (A) = 1].

We conclude that the distinguishing advantage of B is precisely���Pr[Expt𝑗∗ (A) = 1] − Pr
[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

] ��� = 𝜀,

which completes the proof. □

Claim A.3. If ΠBARG is somewhere extractable then there exists a negligible function negl(·) such that for all 𝑗∗ ∈
{ 𝑗, 𝑗l, 𝑗r}, it holds that Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸

( 𝑗 )
CorrectWit, 𝑗∗

]
= negl(𝜆).
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Proof. Take any 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r} and suppose Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸

( 𝑗 )
CorrectWit, 𝑗∗

]
≥ 𝜀. We use A to construct an adversary B

for the somewhere extractability game of ΠBARG:

1. On input the security parameter 1
𝜆
, algorithm B runs algorithmA to obtain the input length 1

𝑛
, the set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs 1
2𝑛−1, 1𝑠 , 13, the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r}, and the challenge index 𝑗∗ ∈ 𝐽 to the chal-

lenger, where 𝑠 is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛), (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈
{main, shadow}, if 𝑖 ∈ 𝑆𝑏 , sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏 )

𝑖
←

HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶idx be the circuit as defined in Definition 4.10. Algorithm B outputs the circuit 𝐶idx, the instance number

2𝑛 − 1, and the proof 𝜋 .

By construction, algorithm B perfectly simulates an execution of Expt𝑗 . Thus, with probability at least 𝜀, the digest

dig and proof 𝜋 output by A satisfies 𝐸
( 𝑗 )
Verify but not 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ . This means

BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
𝑗∗, (ĉtmain

𝑗∗ , ĉtshadow𝑗∗ , 𝜎main
𝑗∗ , 𝜎shadow

𝑗∗ , 𝑤̃ 𝑗∗ )
)
= 0.

This means algorithm B successfully wins the somewhere extractability game of ΠBARG with probability at least 𝜀

and the claim follows. □

Claim A.4. Suppose the conditions in Claims A.2 and A.3 hold. Then, there exists a negligible function negl(·) such that

Pr

[
Expt′𝑗 (A) = 1 ∧

(
¬𝐸 ( 𝑗 )ValidCom, 𝑗l

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗l
∨ ¬𝐸 ( 𝑗 )ValidCom, 𝑗r

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗r

) ]
≤ 2

ℎ+1 · 𝜀 𝑗 (𝜆) + negl(𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)).

Proof. By Claim A.2 there exists a negligible function negl
1
(·) such that for all 𝑗∗ ∈ { 𝑗l, 𝑗r}, it holds that:���Pr[Expt𝑗∗ (A) = 1] − Pr

[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

] ��� ≤ negl
1
(𝜆). (A.2)

By Claim A.3 there exists a negligible function negl
2
(·) such that for all 𝑗∗ ∈ { 𝑗l, 𝑗r} it holds that

Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸

( 𝑗 )
CorrectWit, 𝑗∗

]
≤ negl

2
(𝜆). (A.3)
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By definition, if Expt′𝑗 (A) = 1, then event 𝐸
( 𝑗 )
Verify also occurs. Thus, for all events 𝐸, it holds that

Pr[Expt′𝑗 (A) = 1 ∧ 𝐸] ≤ Pr

[
𝐸
( 𝑗 )
Verify ∧ 𝐸

]
. (A.4)

Similarly, by construction of the circuit 𝐶idx, the event ¬𝐸 ( 𝑗 )ValidCom, 𝑗∗ implies event ¬𝐸 ( 𝑗 )CorrectWit, 𝑗∗ . Thus, for any event

𝐸, it holds that

Pr

[
¬𝐸 ( 𝑗 )ValidCom, 𝑗∗ ∧ 𝐸

]
≤ Pr

[
¬𝐸 ( 𝑗 )CorrectWit, 𝑗∗ ∧ 𝐸

]
. (A.5)

Take any 𝑗∗ ∈ { 𝑗l, 𝑗r}. Since the height of 𝑗∗ isℎ, the inductive hypothesis applies and Eq. (A.1) holds. We first show that

Pr

[
Expt′𝑗 (A) = 1 ∧ ¬𝐸 ( 𝑗 )

𝑃,𝑗∗
]
≤ 2

ℎ · 𝜀 𝑗∗ (𝜆) + negl1 (𝜆) + negl2 (𝜆). (A.6)

This follows by the following sequence of calculations:

Pr

[
Expt′𝑗 (A) = 1 ∧ ¬𝐸 ( 𝑗 )

𝑃,𝑗∗
]
≤ Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

]
by Eq. (A.4)

= Pr

[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

]
+ Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗

]
≤ Pr[𝐸 ( 𝑗 )Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗∗ ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗∗ ] + negl2 (𝜆) by Eq. (A.3)

≤ Pr[Expt𝑗∗ (A) = 1] + negl
1
(𝜆) + negl

2
(𝜆) by Eq. (A.2)

≤ 2
ℎ · 𝜀 𝑗∗ (𝜆) + negl1 (𝜆) + negl2 (𝜆) by Eq. (A.1).

Next, we have

Pr

[
Expt′𝑗 (A) = 1 ∧ ¬𝐸ValidCom, 𝑗∗

]
≤ Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸ValidCom, 𝑗∗

]
by Eq. (A.4)

≤ Pr

[
𝐸
( 𝑗 )
Verify ∧ ¬𝐸CorrectWit, 𝑗∗

]
by Eq. (A.5)

≤ negl
2
(𝜆) by Eq. (A.3).

Combined with Eq. (A.6) and applying a union bound, we have

Pr

[
Expt′𝑗 (A) = 1 ∧

(
¬𝐸 ( 𝑗 )ValidCom, 𝑗l

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗l
∨ ¬𝐸 ( 𝑗 )ValidCom, 𝑗r

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗r

) ]
≤ 2

ℎ ·
(
𝜀 𝑗l (𝜆) + 𝜀 𝑗r (𝜆)

)
+ 𝛿 (𝜆)

≤ 2
ℎ+1 · 𝜀 𝑗 (𝜆) + 𝛿 (𝜆),

where 𝛿 (𝜆) = 2negl
1
(𝜆) + 4negl

2
(𝜆) = negl(𝜆) and 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). □

Claim A.5. If 𝑃 is a tree-based additive invariant and ΠCom is computationally binding, then there exists a negligible

function negl(·) such that

Pr

[
Expt′𝑗 (A) = 1 ∧ 𝐸 ( 𝑗 )ValidCom, 𝑗l

∧ 𝐸 ( 𝑗 )
𝑃,𝑗l
∧ 𝐸 ( 𝑗 )ValidCom, 𝑗r

∧ 𝐸 ( 𝑗 )
𝑃,𝑗r

]
≤ negl(𝜆).

Proof. Suppose

Pr

[
Expt′𝑗 (A) = 1 ∧ 𝐸 ( 𝑗 )ValidCom, 𝑗l

∧ 𝐸 ( 𝑗 )
𝑃,𝑗l
∧ 𝐸 ( 𝑗 )ValidCom, 𝑗r

∧ 𝐸 ( 𝑗 )
𝑃,𝑗r

]
≥ 𝜀.

We use A to construct an adversary B for the binding game for ΠCom as follows:

1. On input the security parameter 1
𝜆
, algorithm B runs algorithmA to obtain the input length 1

𝑛
, the set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs the block length 1
𝜆 ·ℓct (𝜆,𝑛)

and the vector length 2𝑛 − 1 to the challenger. The challenger

responds with crsCom.

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
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• (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈
{main, shadow}, if 𝑖 ∈ 𝑆𝑏 , sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏 )

𝑖
←

HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
.

4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .

6. Algorithm B computes the following:

• (ĉtmain
𝑗 , ĉtshadow𝑗 , 𝜎main

𝑗 , 𝜎shadow
𝑗 , 𝑤̃ 𝑗 ) ← BARG.Extract(tdBARG, 𝜋, 𝑗).

• (ĉtmain
l

, ĉtshadow
l

, 𝜎main
l

, 𝜎shadow
l

, 𝑤̃l) ← BARG.Extract(tdBARG, 𝜋, 𝑗l).

• (ĉtmain
r

, ĉtshadow
r

, 𝜎main
r

, 𝜎shadow
r

, 𝑤̃r) ← BARG.Extract(tdBARG, 𝜋, 𝑗r).

In addition, it parses 𝑤̃ 𝑗 = (𝑤̃ 𝑗,l, 𝑤̃ 𝑗,r) and the internal witnesses 𝑤̃ 𝑗,l =
(
ĉtmain

𝑗,l , ĉtshadow𝑗,l , 𝜎main
𝑗,l , 𝜎shadow

𝑗,l

)
and

𝑤̃ 𝑗,r =
(
ĉtmain

𝑗,r , ĉtshadow𝑗,r , 𝜎main
𝑗,r , 𝜎shadow

𝑗,r

)
.

7. Algorithm B checks if there exists 𝑏 ∈ {main, shadow} and 𝑑 ∈ {l, r} such that ĉt(𝑏 )𝑑 ≠ ĉt(𝑏 )𝑗,𝑑 and

Com.Verify
(
crsCom, com𝑏, 𝑗𝑑 , ĉt

(𝑏 )
𝑗,𝑑 , 𝜎

(𝑏 )
𝑗,𝑑

)
= 1 and Com.Verify

(
crsCom, com𝑏, 𝑗𝑑 , ĉt

(𝑏 )
𝑑 , 𝜎

(𝑏 )
𝑑

)
= 1.

If so, it outputs the commitment com𝑏 , the index 𝑗𝑑 ∈ [2𝑛 − 1], and the value-opening pairs

(
ĉt(𝑏 )𝑗,𝑑 , 𝜎

(𝑏 )
𝑗,𝑑

)
and(

ĉt(𝑏 )𝑑 , 𝜎
(𝑏 )
𝑑

)
. Otherwise, algorithm B aborts with output ⊥.

By construction, algorithm B perfectly simulates an execution of Expt′𝑗 for adversary A. By assumption, with

probability at least 𝜀, algorithm A will output a digest dig and a proof 𝜋 such that the following conditions hold:

• Expt′𝑗 (A) = 1: ThismeansBARG.Verify(vkBARG,𝐶idx, 2𝑛−1, 𝜋) = 1,𝐶idx
(
𝑗, (ĉtmain

𝑗 , ĉtshadow𝑗 , 𝜎main
𝑗 , 𝜎shadow

𝑗 , 𝑤̃ 𝑗 )
)
=

1, and 𝑃
(
ĉtmain

𝑗 , ĉtshadow𝑗 , skmain, skshadow, 𝑗, (v1, . . . , v𝑛, idx)
)
= 0.

• 𝐸
( 𝑗 )
ValidCom, 𝑗𝑑

for 𝑑 ∈ {l, r}: This means

Com.Verify
(
crsCom, commain, 𝑗𝑑 , ĉt

main
𝑑 , 𝜎main

𝑑

)
= 1 = Com.Verify

(
crsCom, comshadow, 𝑗𝑑 , ĉt

shadow
𝑑 , 𝜎shadow

𝑑

)
.

• 𝐸
( 𝑗 )
𝑃,𝑗𝑑

for 𝑑 ∈ {l, r}: This means 𝑃
(
ĉtmain
𝑑 , ĉtshadow𝑑 , skmain, skshadow, 𝑗𝑑 , (v1, . . . , v𝑛, idx)

)
= 1.

We consider two possibilities:
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• Suppose for all 𝑏 ∈ {main, shadow}, we have ĉt(𝑏 )
l

= ĉt(𝑏 )𝑗,l and ĉt(𝑏 )
r

= ĉt(𝑏 )𝑗,r . By the third condition, we get

𝑃
(
ĉtmain

𝑗,l , ĉtshadow𝑗,l , skmain, skshadow, 𝑗l, (v1, . . . , v𝑛, idx)
)
= 1

𝑃
(
ĉtmain

𝑗,r , ĉtshadow𝑗,r , skmain, skshadow, 𝑗r, (v1, . . . , v𝑛, idx)
)
= 1.

By the first condition, we also have 𝐶𝑖∗,𝑦
(
𝑗, (ĉtmain

𝑗 , ĉtshadow𝑗 , 𝜎main
𝑗 , 𝜎shadow

𝑗 , 𝑤̃ 𝑗 )
)
= 1, this means that ĉt(𝑏 )𝑗 =

HE.Add
(
pk𝑏, ĉt

(𝑏 )
𝑗,l , ĉt

(𝑏 )
𝑗,r

)
for all 𝑏 ∈ {main, shadow}. Since 𝑃 is a tree-based additive invariant, we get that

𝑃
(
ĉtmain

𝑗 , ĉtshadow𝑗 , skmain, skshadow, 𝑗, (v1, . . . , v𝑛, idx)
)
= 1.

However, this contradicts the condition that 𝑃
(
ĉtmain

𝑗 , ĉtshadow𝑗 , skmain, skshadow, 𝑗, (v1, . . . , v𝑛, idx)
)
= 0, so this

case does not occur.

• Suppose there exists 𝑏 ∈ {main, shadow} and 𝑑 ∈ {l, r} where ĉt(𝑏 )𝑑 ≠ ĉt(𝑏 )𝑗,𝑑 . By the first condition, we have

𝐶𝑖∗,𝑦
(
𝑗, (ĉtmain

𝑗 , ĉtshadow𝑗 , 𝜎main
𝑗 , 𝜎shadow

𝑗 , 𝑤̃ 𝑗 )
)
= 1, this means that Com.Verify

(
crsCom, com𝑏, 𝑗𝑑 , ĉt

(𝑏 )
𝑗,𝑑 , 𝜎

(𝑏 )
𝑗,𝑑

)
= 1.

By the second condition, we also have

Com.Verify
(
crsCom, com𝑏, 𝑗𝑑 , ĉt

(𝑏 )
𝑑 , 𝜎

(𝑏 )
𝑑

)
= 1.

In this case, algorithm B outputs the commitment com𝑏 , the index 𝑗𝑑 , and the value-opening pairs

(
ĉt(𝑏 )𝑗,𝑑 , 𝜎

(𝑏 )
𝑗,𝑑

)
and

(
ĉt(𝑏 )𝑑 , 𝜎

(𝑏 )
𝑑

)
. This is a pair of valid openings for com𝑏 so algorithm B wins the binding game.

We conclude that algorithm B succeeds with the same advantage 𝜀 and the claim follows. □

Claim A.6. Suppose the conditions of Claims A.4 and A.5 hold. Then there exists a negligible function negl(·) such that

Pr[Expt′𝑗 (A) = 1] ≤ 2
ℎ+1 · 𝜀 𝑗 (𝜆) + negl(𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)).

Proof. By the law of total probability, we have

Pr[Expt′𝑗 (A) = 1] ≤ Pr

[
Expt′𝑗 (A) = 1 ∧ 𝐸 ( 𝑗 )ValidCom, 𝑗l

∧ 𝐸 ( 𝑗 )
𝑃,𝑗l
∧ 𝐸 ( 𝑗 )ValidCom, 𝑗r

∧ 𝐸 ( 𝑗 )
𝑃,𝑗r

]
+

Pr

[
Expt′𝑗 (A) = 1 ∧

(
¬𝐸 ( 𝑗 )ValidCom, 𝑗l

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗l
∨ ¬𝐸 ( 𝑗 )ValidCom, 𝑗r

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗r

) ]
.

By Claims A.4 and A.5, there exist negligible functions negl
1
(·) and negl

2
(·) such that:

Pr

[
Expt′𝑗 (A) = 1 ∧

(
¬𝐸 ( 𝑗 )ValidCom, 𝑗l

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗l
∨ ¬𝐸 ( 𝑗 )ValidCom, 𝑗r

∨ ¬𝐸 ( 𝑗 )
𝑃,𝑗r

) ]
≤ 2

ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆)

Pr

[
Expt′𝑗 (A) = 1 ∧ 𝐸 ( 𝑗 )ValidCom, 𝑗l

∧ 𝐸 ( 𝑗 )
𝑃,𝑗l
∧ 𝐸 ( 𝑗 )ValidCom, 𝑗r

∧ 𝐸 ( 𝑗 )
𝑃,𝑗r

]
≤ negl

2
(𝜆).

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). The claim follows. □

Completing the proof of Lemma A.1. To complete the proof of the inductive step (for Lemma A.1), we first

appeal to Claim A.6 to conclude that there exists negligible function negl
1
(·) such that

Pr[Expt′𝑗 (A) = 1] ≤ 2
ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). From the inductive hypothesis, 𝜀 𝑗l (𝜆) and 𝜀 𝑗r (𝜆) are both negligible functions. By

definition of Expt′𝑗 , we have that

Pr[Expt′𝑗 (A) = 1] = Pr

[
𝐸
( 𝑗 )
Verify ∧ 𝐸

( 𝑗 )
CorrectWit, 𝑗 ∧ ¬𝐸

( 𝑗 )
𝑃,𝑗

]
.
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By Claim A.2, there exists a negligible function negl
2
(·) such that���Pr[Expt𝑗 (A) = 1] − Pr[Expt′𝑗 (A) = 1]

��� ≤ negl
2
(𝜆).

We conclude that

Pr[Expt𝑗 (A) = 1] ≤ 2
ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆) + negl2 (𝜆).

Setting 𝜀′𝑗 (𝜆) = max

(
𝜀 𝑗 (𝜆), (negl1 (𝜆) + negl2 (𝜆))/2ℎ+1

)
, we have that Pr[Expt𝑗 (A) = 1] ≤ 2

ℎ+1 · 𝜀′𝑗 (𝜆), where 𝜀′𝑗 (𝜆)
is a negligible function. Lemma A.1 now follows by induction on the height ℎ. □

Completing the proof of Theorem 4.12. We now use Lemma A.1 to complete the proof of Theorem 4.12. Suppose

the conditions of Theorem 4.12 hold. Noting that the index 2𝑛 − 1 has height ℎ = log𝑛 in a complete binary tree with

𝑛 leaves, we appeal to Lemma A.1 and conclude that there exists a negligible function negl(·) such that

Pr[Expt
2𝑛−1 (A) = 1] ≤ 𝑛 · negl(𝜆). (A.7)

To complete the proof, we define a sequence of hybrid experiments:

• Hyb
0
: This is the experiment Expt

2𝑛−1 [𝑃,DeriveChal] with adversary A.

• Hyb
1
: Same as Hyb

0
, except the output of the experiment is 1 if the following properties hold:

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1;

– 𝐶idx
(
2𝑛 − 1, (ĉtmain

2𝑛−1, ĉt
shadow
2𝑛−1 , 𝜎main

2𝑛−1, 𝜎
shadow
2𝑛−1 , 𝑤̃2𝑛−1)

)
= 1; and

– 𝑃
(
ctmain

root , ct
shadow
root , skmain, skshadow, 2𝑛 − 1, (v1, . . . , v𝑛, idx)

)
= 1.

• Hyb
2
: Same as Hyb

1
, except the output of the experiment is 1 if the following properties hold:

– BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1; and

– 𝑃
(
ctmain

root , ct
shadow
root , skmain, skshadow, 2𝑛 − 1, (v1, . . . , v𝑛, idx)

)
= 1.

In particular, the challenger no longer checks the value of 𝐶idx. Note that in this experiment, the challenger’s

behavior no longer depends on the BARG trapdoor tdBARG.

• Hyb
3
: Same as Hyb

2
, except when sampling the BARG parameters at the beginning of the experiment, the

challenger now samples (crsBARG, vkBARG) ← BARG.Gen(1𝜆, 12𝑛−1, 1𝑠 , 13). This corresponds to the experiment

Expt[𝑃,DeriveChal] with adversary A.

For an adversary A, we write Hyb𝑖 (A) = 1 to denote the output of Hyb𝑖 with adversary A. We now analyze each

pair of adjacent experiments.

Claim A.7. It holds that Pr[Hyb
1
(A) = 1] = Pr[Hyb

0
(A) = 1].

Proof. These experiments are identical. Specifically, by definition of 𝐶idx (and specifically, the relation in Fig. 1), if

𝐶idx
(
2𝑛 − 1, (ĉtmain

2𝑛−1, ĉt
shadow
2𝑛−1 , 𝜎main

2𝑛−1, 𝜎
shadow
2𝑛−1 , 𝑤̃2𝑛−1)

)
= 1, then ĉt(𝑏 )

2𝑛−1 = ct(𝑏 )root for 𝑏 ∈ {main, shadow}. This means that

𝑃
(
ĉtmain

2𝑛−1, ĉt
shadow
2𝑛−1 , skmain, skshadow, 2𝑛−1, (v1, . . . , v𝑛, idx)

)
= 𝑃

(
ctmain

root , ct
shadow
root , skmain, skshadow, 2𝑛−1, (v1, . . . , v𝑛, idx)

)
.

Thus, the output of Hyb
0
(A) is identical to that of Hyb

1
(A). □

Claim A.8. If ΠBARG is somewhere extractable, then there exists a negligible function negl(·) such that��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆).
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Proof. Suppose Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] = 𝜀. Since the only difference between Hyb

1
and Hyb

2
is the

conditions the challenger checks at the very end of the experiment, this means that with probability at least 𝜀, the

adversary in Hyb
1
will output a digest dig and a proof 𝜋 such that the following conditions hold:

• BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• 𝑃
(
ctmain

root , ct
shadow
root , skmain, skshadow, 2𝑛 − 1, (v1, . . . , v𝑛, idx)

)
= 1.

• 𝐶idx
(
2𝑛 − 1, (ĉtmain

2𝑛−1, ĉt
shadow
2𝑛−1 , 𝜎main

2𝑛−1, 𝜎
shadow
2𝑛−1 , 𝑤̃2𝑛−1)

)
= 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary B that

for the somewhere extractability game of ΠBARG (similar to the proof of Claim A.3):

1. On input the security parameter 1
𝜆
, algorithm B runs algorithmA to obtain the input length 1

𝑛
, the set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Let 𝑗 = 2𝑛−1 and 𝑗l, 𝑗r be the indices of the input wires that determine the value of the output wire 𝑗 . Algorithm

B outputs 1
2𝑛−1, 1𝑠 , 13, the challenge set 𝐽 = { 𝑗, 𝑗r, 𝑗l}, and the challenge index 𝑗 = 2𝑛 − 1 to the challenger.

Here, 𝑠 is the bound on the size of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈
{main, shadow}, if 𝑖 ∈ 𝑆𝑏 , sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏 )

𝑖
←

HE.Enc(pk𝑏, 0).
• For each 𝑏 ∈ {main, shadow}, let

(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶idx be the circuit as defined in Definition 4.10. Algorithm B outputs the circuit 𝐶idx, the instance number

2𝑛 − 1, and the proof 𝜋 .

By definition, the challenger samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). This
means algorithm B perfectly simulates an execution of Hyb

1
. Thus, with probability at least 𝜀, the digest dig and

proof 𝜋 output by A satisfies

BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
2𝑛 − 1, (ĉtmain

2𝑛−1, ĉt
shadow
2𝑛−1 , 𝜎main

2𝑛−1, 𝜎
shadow
2𝑛−1 , 𝑤̃2𝑛−1)

)
= 0,

where (ĉtmain
2𝑛−1, ĉt

shadow
2𝑛−1 , 𝜎main

2𝑛−1, 𝜎
shadow
2𝑛−1 , 𝑤̃2𝑛−1) ← BARG.Extract(tdBARG, 𝜋, 2𝑛 − 1). This means algorithm B success-

fully breaks somewhere extractability of ΠBARG and the claim holds. □

Claim A.9. If ΠBARG satisfies set hiding then there exists a negligible function negl(·) such that��
Pr[Hyb

3
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(𝜆).
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Proof. Suppose

��
Pr[Hyb

3
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an

adversary B that breaks set hiding of ΠBARG:

1. On input the security parameter 1
𝜆
, algorithm B runs algorithmA to obtain the input length 1

𝑛
, the set 𝑆 ⊆ [𝑛],

and an index 𝑖∗ ∈ 𝑆 .

2. Let 𝑗 = 2𝑛−1 and 𝑗l, 𝑗r be the indices of the input wires that determine the value of the output wire 𝑗 . Algorithm

B outputs 1
2𝑛−1

, 1
𝑠
, 1

3
and the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r} to the challenger. Here, 𝑠 is the bound on the size

of the circuit in Fig. 1. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1) ← DeriveChal(𝑆, 𝑖). It then samples the following components:

• Sample (skmain, pkmain) ← HE.Gen(1𝜆, 1𝑛) and (skshadow, pkshadow) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1𝜆 ·ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For all 𝑖 ∈ [𝑛], sample a random v𝑖

r← {0, 1}𝜆 \ {0}.
• For each 𝑏 ∈ {main, shadow}, sample ct(𝑏 )zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈
{main, shadow}, if 𝑖 ∈ 𝑆𝑏 , sample ct(𝑏 )

𝑖
← HE.Enc(pk𝑏, v𝑖 ); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏 )

𝑖
←

HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {main, shadow}, let
(
com(𝑏 )hk , 𝜎

(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏 )

1
, . . . , ct(𝑏 )𝑛 )

)
4. Algorithm B constructs hk and vk according to Eqs. (4.1) and (4.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏 )
zero, ct

(𝑏 )
1

, . . . , ct(𝑏 )𝑛 , 𝜎
(𝑏 )
hk,1, . . . , 𝜎

(𝑏 )
hk,𝑛

}
𝑏∈{main,shadow}

)
vk =

(
crsCom, vkBARG,

{
pk𝑏, ct

(𝑏 )
zero, com

(𝑏 )
hk

}
𝑏∈{main,shadow}

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ctmain

root , ct
shadow
root , commain, comshadow, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶𝑖∗,𝑥𝑖∗ be the circuit as defined in Definition 4.10. Algorithm B outputs 1 if

BARG.Verify(vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝑃
(
ctmain

root , ct
shadow
root , skmain, skshadow, 2𝑛 − 1, (v1, . . . , v𝑛, idx)

)
= 1

Otherwise, algorithm B outputs 0.

We now consider the two possibilities:

• Suppose the challenger responds according to the specification of ExptSHA (𝜆, 0). In this case, the challenger

samples (crsBARG, vkBARG) ← BARG.Gen(1𝜆, 12𝑛−1, 1𝑠 , 13). In this case, algorithm B perfectly simulates an

execution of Hyb
3
for A. Moreover, algorithm B computes the outputs according to the same specification

of Hyb
3
, so we conclude that algorithm B outputs 1 with Pr[Hyb

3
(A) = 1].

• Suppose the challenger responds according to the specification of ExptSHA (𝜆, 1). In this case, the challenger

samples (crsBARG, vkBARG, tdBARG) ← BARG.TrapGen(1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). In this case, algorithm B per-

fectly simulates an execution of Hyb
2
for A, and correspondingly, algorithm B outputs 1 with probability

Pr[Hyb
2
(A) = 1].

We conclude that the distinguishing advantage of B is exactly 𝜀, which concludes the proof. □

Combining Claims A.7 to A.9, we conclude that

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = negl(𝜆). By construction,

Hyb
0
(A) ≡ Expt

2𝑛−1 (A) and Hyb
3
(A) ≡ Expt(A). From Eq. (A.7), we have that Pr[Expt

2𝑛−1 (A) = 1] = negl(𝜆)
and Theorem 4.12 follows. □
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B Puncturable Signatures from Unique Signatures
In this section, we show how to construct puncturable signatures from unique signatures. As shown in [NWW24]

(Corollary 1.2), puncturable signatures can be combined with (non-adaptively-sound) monotone-policy BARGs to

obtain statically-secure monotone-policy aggregate signatures. The work of [ADM
+
24] show how to construct

puncturable signatures from any simulation-sound non-interactive zero-knowledge proof for NP. This is known from

most standard number-theoretic assumptions, including QR [BFM88, Sah99, DDO
+
01]. Here, we describe another

simple approach to constructing puncturable signatures based on a unique signature (or more generally, an invariant

signature; see Remark B.10). The construction is a standard application of hard-core predicates.

B.1 Preliminaries Signatures
We first recall the definition of a unique signature.

Definition B.1 (Unique Digital Signatures). A unique digital signature scheme with message spaceM is a tuple

of efficient algorithms ΠSig = (Gen, Sign,Verify) with the following syntax:

• Gen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a key pair (vk, sk).

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message𝑚 ∈ M, the signing algorithm outputs a signature 𝜎 .

• Verify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ M, and a signature 𝜎 , the verification

algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the signature scheme should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ M, it holds that

Pr

[
Verify(vk,𝑚, 𝜎) = 1 :

(vk, sk) ← Gen(1𝜆)
𝜎 ← Sign(sk,𝑚)

]
= 1.

• Unforgeability: For all efficient and admissible adversaries A, there exists a negligible function negl(·) such
that

Pr

[
Verify(vk,𝑚∗, 𝜎∗) = 1 :

(vk, sk) ← Gen(1𝜆)
(𝑚∗, 𝜎∗) ← ASign(sk,· ) (1𝜆, vk)

]
= negl(𝜆),

where we sayA is admissible if it does not query the signing oracle Sign(sk, ·) on the message𝑚∗ in the above

security game.

• Uniqueness: For all 𝜆 ∈ N, all𝑚 ∈ M, all (vk, sk) in the support of Gen(1𝜆) and all signatures 𝜎1, 𝜎2 ∈ {0, 1}∗,
it holds that

Verify(vk,𝑚, 𝜎1) = Verify(vk,𝑚, 𝜎2) = 1⇒ 𝜎1 = 𝜎2.

Puncturable signatures. Next, we recall the definition of puncturable signatures, first introduced by [GVW19]

(under the name all-but-one signature).

Definition B.2 (Puncturable Signature [GVW19, adapted]). An puncturable (or all-but-one) signature scheme with

message spaceM is a tuple of efficient algorithms ΠPunctSig = (Gen,GenPunc, Sign,Verify) with the following syntax:

• Gen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a key pair (vk, sk).

• GenPunc(1𝜆,𝑚∗) → (vk, sk): On input a security parameter 𝜆 and a message𝑚∗ ∈ M, the punctured key

generation algorithm outputs a key pair (vk, sk).

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message𝑚 ∈ M, the signing algorithm outputs a signature 𝜎 .
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• Verify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ M, and a signature 𝜎 , the verification

algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ M, it holds that

Pr

[
Verify(vk,𝑚, 𝜎) = 1 :

(vk, sk) ← Gen(1𝜆)
𝜎 ← Sign(sk,𝑚)

]
= 1 − negl(𝜆).

Note that we allow a negligible correctness error.

• Punctured correctness: For all 𝜆 ∈ N, all𝑚∗ ∈ M, and all 𝜎∗ ∈ {0, 1}∗, it holds that

Pr

[
Verify(vk,𝑚∗, 𝜎∗) = 1 : (vk, sk) ← GenPunc(1𝜆,𝑚∗)

]
= 0.

• Verification key indistinguishability: For any adversary A and any 𝑏 ∈ {0, 1}, we define the verification
key indistinguishability experiment ExptVKIA (𝜆,𝑏) as follows:

1. On input a security parameter 𝜆, the adversaryA outputs a message𝑚∗ ∈ M and sends it to the challenger.

2. The challenger samples key pairs (vk0, sk0) ← Gen(1𝜆) and (vk1, sk1) ← GenPunc(1𝜆,𝑚∗) and gives vk𝑏
to the adversary.

3. Next, the adversary can make signing queries on messages𝑚 ∈ M \ {𝑚∗}. On each signing query, the

challenger replies with 𝜎 ← Sign(sk𝑏,𝑚).
4. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPunctSig satisfies verification key indistinguishability if for any efficient adversary A there exists

a negligible function negl(·) such that��
Pr[ExptVKIA (𝜆, 0) = 1] − Pr[ExptVKIA (𝜆, 1) = 1]

�� = negl(𝜆).

Goldreich-Levin hardcore predicate. Our construction will use the Goldreich-Levin hardcore predicate [GL89].

Specifically, we define a hardcore predicate for a unique signature scheme as follows:

DefinitionB.3 (Hardcore Predicate for Unique Signature). Let 𝜆 be a security parameter. LetΠSig = (Gen, Sign,Verify)
be a unique signature scheme with signatures of length ℓ . Let ℎ : {0, 1}ℓ × {0, 1}𝑧 → {0, 1} be a binary function. We

say that ℎ is a hardcore predicate for ΠSig if for all efficient and admissible algorithm A and any message𝑚∗ ∈ M,

it holds that ��������Pr
𝑏 = ℎ(𝜎∗, r) :

r r← {0, 1}𝑧
(vk, sk) ← Gen(1𝜆)
𝜎∗ ← Sign(sk,𝑚∗)

𝑏 ← ASign(sk,· ) (1𝜆, vk,𝑚∗, r)

 −
1

2

�������� = negl(𝜆),

where we say A is admissible if it does not query the signing oracle Sign(sk, ·) on the message𝑚∗.

We can construct a hardcore predicate for a unique signature scheme using the classic Goldreich-Levin construc-

tion [GL89, HLR07]. Specifically, we state the theorem below (which can be formally obtained by using the fact

that unforgeability for a unique signature implies that the signature 𝜎∗ for any message 𝑚∗ is computationally

unpredictable and then invoking [HLR07] with the [GL89] hard-core predicate):

Lemma B.4 (Hardcore Predicate for Unique Signature). Let ΠSig = (Gen, Sign,Verify) be a unique signature scheme

with signatures of length ℓ := ℓ (𝜆). Then, the function ℎ : {0, 1}ℓ × {0, 1}ℓ → {0, 1} defined as ℎ(𝜎, r) = ⟨𝜎, r⟩ is a
hardcore predicate for ΠSig.
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B.2 Puncturable Signature from Unique Signature
Suppose ΠSig is a unique signature scheme with signatures of length ℓ . To construct a puncturable signature from

ΠSig, we use the hardcore predicate ℎ : {0, 1}ℓ × {0, 1}ℓ → {0, 1} associated with ΠSig (Lemma B.4). Our puncturable

signature will use 𝜆 copies of the unique signature scheme:

• The verification key for the puncturable signature scheme contains 𝜆 triples (vk𝑖 , r𝑖 , 𝑏𝑖 ) for 𝑖 ∈ [𝜆], where vk𝑖
is a verification key for the unique signature scheme, r𝑖

r← {0, 1}ℓ is a seed for the hard-core predicate, and

𝑏𝑖
r← {0, 1} is a random bit.

• A signature on a message𝑚 consists of 𝜆 signatures 𝜎1, . . . , 𝜎𝜆 on𝑚 with respect to vk1, . . . , vk𝜆 , respectively.
The signature is valid if for all 𝑖 ∈ [𝜆], 𝜎𝑖 is a valid signature on𝑚 with respect to vk𝑖 , and moreover, there

exists some 𝑗 ∈ [𝜆], where ℎ(𝜎 𝑗 , r𝑗 ) ≠ 𝑏 𝑗 .

Since the bits 𝑏1, . . . , 𝑏𝜆
r← {0, 1} are uniform, for any fixed message𝑚, correctness holds with probability 1 − 1/2𝜆 ,

as required. To puncture the verification key at a particular message𝑚∗, we simply set 𝑏𝑖 = ℎ(𝜎∗𝑖 , r𝑖 ) where 𝜎∗𝑖 is the

(unique) signature on𝑚∗ with respect to vk𝑖 . Pseudorandomness of the hard-core bits ensures that this verification

key is computationally indistinguishable from the real verification key. Moreover, by construction, there does not

exist a signature on𝑚 with respect to the punctured key. We now give the formal description:

Construction B.5 (Puncturable Signature). Let ΠSig = (Gen, Sign,Verify) be a unique digital signature scheme

with message spaceM and signatures of length ℓ (𝜆). We construct a puncturable signature scheme ΠPunctSig =

(Gen′,GenPunc′, Sign′,Verify′) as follows:

• Gen′ (1𝜆): On input a security parameter 𝜆, the algorithm samples (vk𝑖 , sk𝑖 ) ← Gen(1𝜆), r𝑖 r← {0, 1}ℓ , and
𝑏𝑖

r← {0, 1} for each 𝑖 ∈ [𝜆]. The algorithm outputs

vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] and sk = (sk1, . . . , sk𝜆).

• GenPunc′ (1𝜆,𝑚∗): On input a security parameter 𝜆 and a message𝑚∗ ∈ M, the algorithm samples (vk𝑖 , sk𝑖 ) ←
Gen(1𝜆), r𝑖 r← {0, 1}ℓ , 𝜎∗𝑖 ← Sign(sk𝑖 ,𝑚∗), and 𝑏𝑖 ← ⟨𝜎∗𝑖 , r𝑖⟩ for each 𝑖 ∈ [𝜆]. Then it outputs

vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] and sk = (sk1, . . . , sk𝜆).

• Sign′ (sk,𝑚): On input a signing key sk = (sk1, . . . , sk𝜆) and a message𝑚 ∈ M, the signing algorithm computes

𝜎𝑖 ← Sign(sk𝑖 ,𝑚) for all 𝑖 ∈ [𝜆] and outputs 𝜎 = (𝜎1, . . . , 𝜎𝜆).

• Verify′ (vk,𝑚, 𝜎): On input a verification key vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] , a message 𝑚 ∈ M, and a signature

𝜎 = (𝜎1, . . . , 𝜎𝜆), the verification algorithm checks the following:

1. For all 𝑖 ∈ [𝜆], it holds that Verify(vk𝑖 ,𝑚, 𝜎𝑖 ) = 1.

2. There exists 𝑖 ∈ [𝜆] such that 𝑏𝑖 ≠ ⟨𝜎𝑖 , r𝑖⟩.

If both checks pass, then the verification algorithm accepts with output 1. Otherwise, it rejects with output 0.

Theorem B.6 (Correctness). If ΠSig is correct, then Construction B.5 is correct.

Proof. Take any security parameter 𝜆 ∈ N and message𝑚 ∈ M. Let (vk, sk) ← Gen′ (1𝜆). Then

vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] and sk = (sk1, . . . , sk𝜆).

Let 𝜎 ← Sign′ (sk,𝑚). By construction, 𝜎 = (𝜎1, . . . , 𝜎𝜆) where 𝜎𝑖 ← Sign(sk𝑖 ,𝑚). Consider Verify′ (vk,𝑚, 𝜎). By
correctness of ΠSig, we have that Verify(vk𝑖 ,𝑚, 𝜎𝑖 ) = 1 for all 𝑖 ∈ [𝜆]. Next, since Gen′ samples 𝑏1, . . . , 𝑏𝜆

r← {0, 1},
with probability 1 − 2

𝜆
, there will exist some index 𝑖 ∈ [𝜆] where 𝑏𝑖 ≠ ⟨𝜎𝑖 , r𝑖⟩. Thus Construction B.5 satisfies

statistical correctness. □
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Theorem B.7 (Punctured Correctness). If ΠSig satisfies uniqueness and correctness, then Construction B.5 satisfies

punctured correctness.

Proof. Fix a security parameter 𝜆 ∈ N and a message 𝑚∗ ∈ M. Let (vk, sk) be a key pair in the support of

GenPunc′ (1𝜆,𝑚∗) and parse

vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] and sk = (sk1, . . . , sk𝜆).

By construction of the punctured key, for each 𝑖 ∈ [𝜆] there exists a signature 𝜎∗𝑖 ← Sign(sk𝑖 ,𝑚∗) such that

𝑏𝑖 = ⟨𝜎∗𝑖 , r𝑖⟩. By correctness of ΠSig, it holds that Verify(vk𝑖 ,𝑚∗, 𝜎∗𝑖 ) = 1 for each such 𝑖 . Assume towards a contradic-

tion that there exists 𝜎 = (𝜎1, . . . , 𝜎𝜆) such that Verify′ (vk,𝑚∗, 𝜎) = 1. By construction of Verify, there exists 𝑖 ∈ [𝜆]
such that 𝑏𝑖 ≠ ⟨𝜎𝑖 , r𝑖⟩ and Verify(vk𝑖 ,𝑚∗, 𝜎𝑖 ) = 1. However, by uniqueness of ΠSig, we conclude that 𝜎𝑖 = 𝜎∗𝑖 which

contradicts 𝑏𝑖 = ⟨𝜎∗𝑖 , r𝑖⟩ ≠ ⟨𝜎𝑖 , r𝑖⟩. The claim follows. □

Theorem B.8 (Verification Key Indistinguishability). If ΠSig satisfies unforgeability, then Construction B.5 satisfies

verification key indistinguishability.

Proof. LetA be an efficient and admissible (non-uniform) adversary for the verification key indistinguishability game.

We use a hybrid argument. For each 𝑗 ∈ [0, 𝜆] we define the experiment Hyb𝑗 as follows:

1. On input a security parameter 1
𝜆
, the adversary A outputs a message𝑚∗ ∈ M and sends it to the challenger.

2. For each 𝑖 ∈ [𝜆], the challenger samples (vk𝑖 , sk𝑖 ) ← Gen(1𝜆), and r𝑖
r← {0, 1}ℓ , 𝜎∗𝑖 ← Sign(sk𝑖 ,𝑚∗). Next, it

samples the bit 𝑏𝑖 as follows:

• If 𝑖 ≤ 𝑗 it samples 𝑏𝑖
r← {0, 1}.

• If 𝑖 > 𝑗 , it sets 𝑏𝑖 = ⟨𝜎∗𝑖 , r𝑖⟩.

The challenger gives vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] to A.

3. Adversary A can make signing queries on messages𝑚 ∈ M \ {𝑚∗}. On each signing query, the challenger

replies with 𝜎 = (𝜎1, . . . , 𝜎𝜆) where 𝜎𝑖 ← Sign(sk𝑖 ,𝑚) for all 𝑖 ∈ [𝜆].

4. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

SinceA is non-uniform, we assume without loss of generality that the challenge message𝑚∗ is fixed for each security

parameter 𝜆. We now prove that the advantage of A in any game will be negligibly close to the adjacent game.

Formally:

Lemma B.9. If ΠSig satisfies unforgeability then for all 𝑗 ∈ [𝜆] it holds that���Pr[Hyb𝑗 (A) = 1] − Pr[Hyb𝑗−1 (A) = 1]
��� = negl(𝜆).

Proof. Suppose for some index 𝑗 ∈ [𝜆] that | Pr[Hyb𝑗 (A) = 1] − Pr[Hyb𝑗−1 (A) = 1] | = 𝜀 for some non-negligible

𝜀. Observe that in Hyb𝑗−1 if the random bit 𝑏 𝑗
r← {0, 1} satisfies 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩, then the adversary’s view in Hyb𝑗−1

is identical to the adversary’s view in Hyb𝑗−1. This means

Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] = Pr[Hyb𝑗 (A) = 1] .

This event 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩ happens with probability 1/2, therefore:

Pr[Hyb𝑗−1 (A) = 1] =1
2

(
Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] + Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

)
This means

𝜀 = | Pr[Hyb𝑗 (A) = 1] − Pr[Hyb𝑗−1 (A) = 1] |

=
1

2

·
���Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] − Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

��� (B.1)

We now use A to construct an algorithm B for the hardcore predicate game (with message𝑚∗):
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1. At the beginning of the game, algorithm B receives the security parameter 1
𝜆
, the seed r𝑗

r← {0, 1}ℓ , the
message𝑚∗ and a verification key vk𝑗 from the challenger.

2. For all 𝑖 ≠ 𝑗 , algorithm B samples (vk𝑖 , sk𝑖 ) ← Gen(1𝜆), r𝑖 r← {0, 1}ℓ , and 𝜎∗𝑖 ← Sign(sk𝑖 ,𝑚∗). Then, it
constructs 𝑏𝑖 as follows:

• If 𝑖 ≤ 𝑗 it samples 𝑏𝑖
r← {0, 1}.

• If 𝑖 > 𝑗 , it sets 𝑏𝑖 = ⟨𝜎∗𝑖 , r𝑖⟩.

Algorithm B gives vk = {(𝑖, vk𝑖 , r𝑖 , 𝑏𝑖 )}𝑖∈[𝜆] to A.

3. Whenever algorithm A makes a signing query on a message𝑚 ∈ M \ {𝑚∗}, algorithm B computes 𝜎𝑖 ←
Sign(sk𝑖 ,𝑚) for all 𝑖 ≠ 𝑗 . Algorithm B then queries the signing oracle on message𝑚 to get 𝜎 𝑗 . Algorithm B
responds with 𝜎 = (𝜎1, . . . , 𝜎𝜆).

4. At the end of the game, algorithmA outputs a bit 𝑏′ ∈ {0, 1}. If 𝑏′ = 1 then B outputs 𝑏 𝑗 . Otherwise B outputs

1 − 𝑏 𝑗 .

By construction, B perfectly simulates Hyb𝑗−1 (A). If A is admissible, that is it does not query the signing oracle

on the challenge message𝑚∗. This means B is also admissible. Finally, let 𝜎∗𝑗 ← Sign(sk𝑗 ,𝑚∗). By construction,

algorithm B outputs the correct value of ℎ(𝜎∗, r𝑗 ) = ⟨𝜎∗, r𝑗 ⟩ in the following two cases:

• Algorithm A outputs 𝑏′ = 1 and 𝑏 𝑗 = ⟨r, 𝜎∗𝑗 ⟩.

• Algorithm A outputs 𝑏′ = 0 and 𝑏 𝑗 ≠ ⟨r, 𝜎∗𝑗 ⟩.

Therefore B wins the hardcore predicate game with probability:

Pr[Hyb𝑗−1 (A) = 1 ∧ 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] + Pr[Hyb𝑗−1 (A) = 0 ∧ 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

=
1

2

(
Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] + Pr[Hyb𝑗−1 (A) = 0 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

)
=
1

2

(
Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] + 1 − Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

)
=
1

2

+ 1

2

(
Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] − Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

)
Taking the absolute difference with 1/2, we appeal to Eq. (B.1) and conclude that algorithm B succeeds with advantage

1

2

·
���Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 = ⟨𝜎∗𝑗 , r𝑗 ⟩] − Pr[Hyb𝑗−1 (A) = 1 | 𝑏 𝑗 ≠ ⟨𝜎∗𝑗 , r𝑗 ⟩]

��� = 𝜀,

Thus, algorithm B breaks security of the hardcore predicate ℎ with the same non-negligible advantage 𝜀. The claim

follows. □

By construction, Hyb
0
(A) ≡ ExptVKIA (𝜆, 0) and Hyb𝜆 (A) ≡ ExptVKIA (𝜆, 1). The proof of Theorem B.8 now

follows from a standard hybrid argument. □

Remark B.10 (Invariant Signatures). Although Construction B.5 relies on unique signatures, we can replace the

unique signature with an invariant signatures instead [GO92]. In an invariant signature, there can be many signatures

for each message, but all such signatures on a particular message share an invariant core (e.g., a common prefix). One

way to obtain an invariant signature by composing a pseudorandom function (PRF) with a (simulation-sound) NIZK

proof: the verification key contains a commitment to a PRF key and the signature on a message is the PRF evaluation

on the message together with a NIZK proof that the PRF value was computed correctly. In this construction, the PRF

evaluation on the message is the invariant part of the signature while the NIZK proof (which is randomized) is needed

for verification. We can easily adapt Construction B.5 to work with invariant signatures instead of unique signatures by

simply taking the hard-core predicate over the invariant core associated with the message rather than the full signature.
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