
LATTICE-BASED NON-INTERACTIVE ARGUMENT SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David J. Wu

August 2018

c© Copyright by David J. Wu 2018

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Dan Boneh) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Omer Reingold)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mary Wootters)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

Non-interactive argument systems are an important building block in many cryptographic protocols.

In this work, we begin by studying non-interactive zero-knowledge (NIZK) arguments for general NP

languages. In a NIZK argument system, a prover can convince a verifier that a statement is true

without revealing anything more about the statement. Today, NIZK arguments can be instantiated

from random oracles, or, in the common reference string (CRS) model, from trapdoor permutations,

pairings, or indistinguishability obfuscation. Notably absent from this list are constructions from

lattice assumptions, and realizing NIZKs (for general NP languages) from lattices has been a long-

standing open problem. In this work, we make progress on this problem by giving the first construction

of a multi-theorem NIZK argument from standard lattice assumptions in a relaxed model called the

preprocessing model, where we additionally assume the existence of a trusted setup algorithm that

generates a proving key (used to construct proofs) and a verification key (used to verify proofs).

Moreover, by basing hardness on lattice assumptions, our construction gives the first candidate that

plausibly resists quantum attacks.

We then turn our attention to constructing succinct non-interactive arguments (SNARGs) for

general NP languages. SNARGs enable verifying computations with substantially lower complexity

than that required for classic NP verification. Prior to this work, all SNARG constructions relied

on random oracles, pairings, or indistinguishability obfuscation. This work gives the first lattice-

based SNARG candidates. In fact, we show that one of our new candidates satisfy an appealing

property called “quasi-optimality,” which means that the SNARG simultaneously minimizes both the

prover complexity and the proof size (up to polylogarithmic factors). This is the first quasi-optimal

SNARG from any concrete cryptographic assumption. Again, because of our reliance on lattice-based

techniques, all of our new candidates resist quantum attacks (in contrast to existing pairing-based

constructions).

iv

Acknowledgments

Neither my journey into cryptography nor this thesis would have happened without the support and

mentoring of my advisor, Dan Boneh. Six years ago, while I was still a starry-eyed undergrad at

Stanford, I had the fortune of taking Dan’s Introduction to Cryptography course. Dan’s boundless

energy and infectious enthusiasm for not only cryptography, but also research and life, was what first

drew me into this field. Over the years, I can say without doubt that Dan has shown by example the

sheer excitement and joy of research. As I now prepare for the next step of my own academic journey,

I will strive to emulate the qualities of the ideal researcher that Dan so brilliantly exemplifies.

I would like to say a special word of thanks to Yuval Ishai and Amit Sahai for all of the insights,

advice, and guidance they have provided me in the last few years. I can easily say that my three

visits to UCLA in the last two years have been some of the most exciting (and productive!) weeks of

my PhD, and I am grateful to both of them for being such wonderful and generous hosts. It has

been an absolute pleasure and privilege to collaborate with them on multiple projects (several of

which are featured in this thesis), and I look forward to many more. The numerous discussions we

had have certainly shaped how I think about and approach research.

Over the years, I have also had the luxury of working with and learning from all of the students

in the Stanford Applied Crypto group. I would like to thank all of them for patiently hearing out my

half-baked ideas, kindly critiquing my papers, and sharing with me their cool ideas. I consider myself

very lucky to be in the company of such a talented group of researchers. I especially would like to

thank all of my student co-authors: Henry Corrigan-Gibbs, Sam Kim, Kevin Lewi, Hart Montgomery,

and Joe Zimmerman. I thank Joe for teaching me how to reason precisely about abstract concepts

and how to communicate my ideas with technical rigor. I thank Kevin for introducing me to the

marvelous world of theoretical cryptography and for keeping me motivated and optimistic through all

the times we got stuck on problems. I thank Hart for always being willing to share his ideas and for

providing a healthy dose of skepticism for my ill-contrived constructions. I thank Henry for not only

being an amazing officemate, but also for being so willing to share with me his deep insights into

both cryptography and computer security; I am always impressed by the breadth of his knowledge

and the depth of his intuition. Finally, I thank Sam for our many fruitful collaborations in the last

few years. I cannot count how many hours we have now spent talking about cryptography and life.

v

And of course, I thank him for patiently bringing me up to speed on lattice-based cryptography. It

has truly been an honor and a pleasure.

One of the greatest joys of research is having the opportunity to collaborate with brilliant

individuals spanning a wide range of disciplines (and time zones). I would like to thank all of

my wonderful collaborators from the last five years: Shashank Agrawal, Gill Bejerano, Bonnie

Berger, Johannes Birgmeier, Dan Boneh, Nathan Chenette, Hyunghoon Cho, Henry Corrigan-Gibbs,

Tony Feng, Yuval Ishai, Karthik Jagadeesh, Sam Kim, Kristin Lauter, Kevin Lewi, Avradip Mandal,

John Mitchell, Hart Montgomery, Michael Naehrig, Alain Passelègue, Jérémy Planul, Arnab Roy,

Amit Sahai, Asim Shankar, Ankur Taly, Steve Weis, and Joe Zimmerman. I thank them for making

my time in grad school so enjoyable and for always reminding me why I chose to pursue research.

I would also like to thank the members of my thesis committee for all of the helpful feedback they

have provided to improve this work: Dan Boneh, Moses Charikar, Brian Conrad, Omer Reingold,

and Mary Wootters.

Finally, I would like to thank my friends and family who have stood with me over all these years.

I will forever be grateful for their support and encouragement. After all, this quixotic quest for truth

and understanding would be a lot less exciting if I could not share the joy with all of them.

This work was supported in part by an NSF Graduate Research Fellowship.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Non-Interactive Zero-Knowledge Arguments . 2

1.2 Succinct Non-Interactive Arguments . 4

1.3 Why Lattices? . 5

1.4 Works Contained in this Thesis . 7

2 Preliminaries 8

2.1 Background on Lattice-Based Cryptography . 10

3 Non-Interactive Zero-Knowledge Arguments 14

3.1 Construction Overview . 14

3.1.1 Additional Related Work . 18

3.2 Homomorphic Signatures . 19

3.2.1 Selectively-Secure Homomorphic Signatures 28

3.2.2 From Selective Security to Adaptive Security 31

3.3 Preprocessing NIZKs from Homomorphic Signatures 35

3.4 Blind Homomorphic Signatures . 42

3.4.1 The Universal Composability Framework . 42

3.4.2 The Blind Homomorphic Signature Functionality 46

3.4.3 Constructing Blind Homomorphic Signatures 49

3.5 Universally-Composable Preprocessing NIZKs . 53

3.5.1 Applications to MPC . 55

3.6 Proofs from this Chapter . 59

3.6.1 Proof of Theorem 3.26 . 59

3.6.2 Proof of Theorem 3.36 . 62

vii

3.6.3 Proof of Theorem 3.40 . 78

3.7 Chapter Summary . 85

4 Succinct Non-Interactive Arguments (SNARGs) 86

4.1 Summary of Results and Technical Overview . 88

4.2 Succinct Non-Interactive Arguments . 90

4.3 Linear PCPs . 92

4.3.1 Constructing Linear PCPs with Strong Soundness 94

4.4 SNARGs from Linear-Only Vector Encryption . 97

4.4.1 Linear-Only Vector Encryption . 98

4.4.2 From Linear-Only Vector Encryption to Preprocessing SNARGs 100

4.4.3 Multi-Theorem Designated-Verifier SNARGs 102

4.5 Constructing Lattice-Based SNARGs . 103

4.5.1 The Peikert-Vaikuntanathan-Waters Encryption Scheme 104

4.5.2 Our Lattice-Based SNARG Candidate . 104

4.6 Chapter Summary . 107

5 Quasi-Optimal SNARGs 108

5.1 Quasi-Optimal Linear MIP Construction Overview 111

5.1.1 Consistency Checking . 113

5.2 Main Ingredients . 117

5.2.1 Linear MIPs . 117

5.2.2 Routing Networks . 118

5.3 Quasi-Optimal Linear MIPs . 123

5.3.1 Robust Decomposition for Circuit Satisfiability 123

5.3.2 Consistency Checking . 128

5.3.3 Quasi-Optimal Linear MIP Construction . 135

5.3.4 Constructing Randomized Permutation Decompositions 138

5.3.5 Quasi-Optimal Linear MIP Analysis . 148

5.4 Quasi-Optimal SNARGs . 152

5.4.1 Defining Quasi-Optimality . 152

5.4.2 Linear-Only Vector Encryption over Rings . 154

5.4.3 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs 155

5.5 Chapter Summary . 158

6 The Power of Optimally-Laconic Arguments 160

6.1 Optimally-Succinct SNARGs and Laconic Arguments 162

6.1.1 Indistinguishability Obfuscation and Puncturable PRFs 162

viii

6.1.2 1-Bit SNARGs from Indistinguishability Obfuscation 163

6.1.3 1-Bit Laconic Arguments and Witness Encryption 166

6.2 Witness Encryption from 1-Bit Laconic Arguments 168

6.2.1 Distributional Witness Encryption to Public-Key Encryption 171

6.3 Chapter Summary . 173

7 Conclusions 174

Bibliography 176

ix

List of Tables

5.1 Asymptotic performance of different SNARG systems. 159

x

List of Figures

3.1 The FDcrs functionality. 44

3.2 The Fsot functionality. 45

3.3 The F`,sot functionality. 45

3.4 The FZK functionality. 46

3.5 The general UC functionality Ff . 46

3.6 The Fbhs functionality. 50

3.7 The Πbhs protocol. 51

3.8 Preprocessing ZK argument in the Fbhs-hybrid model. 54

5.1 A Beneš network over 8 = 23 nodes (beneš3). 119

6.1 The program Prove[Cn, k]. 164

xi

Chapter 1

Introduction

Proof systems are fundamental to modern cryptography and complexity theory. At a high level,

a proof system for a language L ⊆ {0, 1}∗ is a two-party protocol between a prover and a verifier.

The goal of the prover is to convince the verifier that some statement x ∈ {0, 1}∗ is contained in

the language L (namely, that x ∈ L). The two basic properties we expect from a proof system are

completeness, which roughly says that an honest prover should be able to convince an honest verifier

of any true statement x ∈ L, and soundness, which roughly says that a (possibly dishonest) prover

should not be able to convince an honest verifier of a false statement x /∈ L.

As a concrete example of a class of languages with a simple proof system, consider the class of

NP languages. Recall first that NP is the class of problems with efficiently checkable proofs. Namely,

a language L ⊆ {0, 1}∗ is in NP if there exists a polynomial time algorithm R (often referred to as

an NP relation) such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(|x|) : R(x,w) = 1.

It is easy to see that all NP languages have an efficient non-interactive proof system: to convince a

verifier that some statement x is contained in an NP language (for an NP relation R), the prover

simply sends the verifier the NP witness w, and the verifier simply checks that R(x,w) = 1.

In the last few decades, numerous works have explored different aspects of proof systems, includ-

ing interactive proof systems [GMR85, LFKN90, Sha90], zero-knowledge proof systems [GMR85],

probabilistically checkable proofs [BFLS91, FGL+91, ALM+92], computationally sound proofs (also

known as arguments) [Kil92, Mic00],1 and more. In this work, we focus on two specific properties

of NP argument systems: zero-knowledge arguments where the proofs do not reveal any additional

1The difference between an argument system and a proof system is that in an argument system, the prover is assumed
to be computationally bounded (namely, it runs in probabilistic polynomial time), and soundness only needs to hold
against computationally-bounded provers [BCC88]. In a proof system, we do not impose any restrictions on the
computational resources of the prover.

1

CHAPTER 1. INTRODUCTION 2

statement about the statement x other than the fact that x is contained in the language, and succinct

arguments where the length of the proof can be significantly shorter than the NP witness and can be

verified much faster than the time needed to check the NP witness (i.e., the time needed to run the

NP relation R).

1.1 Non-Interactive Zero-Knowledge Arguments

Introduced in the seminal work of Goldwasser, Micali, and Rackoff [GMR85], a zero-knowledge proof

(and argument) system enables a prover to convince a verifier that some statement is true without

revealing anything more than the truth of the statement. Traditionally, zero-knowledge proof systems

for NP are interactive, and in fact, interaction is essential for realizing zero-knowledge (for NP) in

the standard model [GO94].

Non-interactive zero-knowledge. Nonetheless, Blum, Feldman, and Micali [BFM88] showed

that meaningful notions of zero-knowledge are still realizable in the non-interactive setting, where

the proof consists of just a single message from the prover to the verifier. In the last three decades, a

beautiful line of works has established the existence of non-interactive zero-knowledge (NIZK) proof

and argument systems for all of NP in the random oracle model [FS86, PS96] or the common reference

string (CRS) model [FLS90, DDO+01, GOS06, Gro10, GOS12, SW14], where the prover and the

verifier are assumed to have access to a common string chosen by a trusted third party. Today,

we have NIZK candidates in the CRS model from several classes of cryptographic assumptions:2

(doubly-enhanced) trapdoor permutations [FLS90, DDO+01, Gro10], pairings [GOS06, GOS12], and

indistinguishability obfuscation [SW14]. Notably absent from this list are constructions from lattice

assumptions [Ajt96, Reg05]. While some partial progress has been made in the case of specific

languages [PV08, APSD18], the general case of constructing NIZK proofs (or even arguments) for all

of NP from standard lattice assumptions remains a long-standing open problem in cryptography.

NIZKs in a preprocessing model. In this work, we make progress on this problem by giving

the first multi-theorem NIZK argument (and proof3) for NP from standard lattice assumptions in the

preprocessing model. In the NIZK with preprocessing model [DMP88], there is an initial (trusted)

setup phase that generates a proving key kP and a verification key kV . The proving key is needed

to construct proofs while the verification key is needed to check proofs. In addition, the setup

phase is run before any statements are proven (and thus, must be statement-independent). In the

multi-theorem setting, we require that soundness holds against a prover who has oracle access to

2There are also NIZK candidates based on number-theoretic assumptions [BFM88, DMP87, BDMP91] which satisfy
weaker properties. We discuss these in greater detail in Section 3.1.1 and Remark 3.33.

3A simple variant of our construction gives a lattice-based NIZK proof system in the preprocessing model where
soundness also holds against computationally-unbounded provers (Remark 3.32). For reasons outlined in Remark 3.32,
however, we will focus primarily on our construction of NIZK arguments in the preprocessing model.

CHAPTER 1. INTRODUCTION 3

the verifier (but does not see kV), and that zero-knowledge holds against a verifier who has oracle

access to the prover (but does not see kP). The NIZK with preprocessing model generalizes the more

traditional settings under which NIZKs have been studied. For instance, the case where kP is public

(but kV is secret) corresponds to designated-verifier NIZKs [CD04, DFN06, CG15], while the case

where both kP and kV are public corresponds to the traditional CRS setting, where the CRS is taken

to be the pair (kP , kV). We describe our construction in detail in Chapter 3.

Why study the preprocessing model? While the preprocessing model is weaker than the more

traditional CRS model, constructing multi-theorem NIZK arguments (and proofs) in this model does

not appear to be any easier than constructing them in the CRS model. Existing constructions of

NIZKs in the preprocessing model from weaker assumptions such as one-way functions [DMP88,

LS90, Dam92, IKOS07] or oblivious transfer [KMO89] are only secure in the single-theorem setting.

As we discuss in greater detail in Remark 3.33, the constructions from [DMP88, LS90, Dam92] only

provide single-theorem zero-knowledge, while the constructions in [KMO89, IKOS07] only provide

single-theorem soundness. Even in the designated-verifier setting [CD04, DFN06, CG15] (where only

the holder of a secret verification key can verify the proofs), the existing constructions of NIZKs for

NP based on linearly-homomorphic encryption suffer from the so-called “verifier-rejection” problem

where soundness holds only against a logarithmically-bounded number of statements. Thus, the only

candidates of multi-theorem NIZKs where soundness and zero-knowledge hold for an unbounded

number of theorems are the constructions in the CRS model, which all rely on trapdoor permutations,

pairings, or obfuscation. Thus, it remains an interesting problem to realize multi-theorem NIZKs

from lattice assumptions even in the preprocessing model.

Moreover, as we show in Section 3.5.1, multi-theorem NIZKs in the preprocessing model suffice

to instantiate many of the classic applications of NIZKs for boosting the security of multiparty

computation (MPC) protocols. Thus, our new constructions of reusable NIZK arguments from

standard lattice assumptions imply new constructions of round-optimal, near-optimal-communication

MPC protocols purely from lattice assumptions. Our work also implies a succinct version of the

classic Goldreich-Micali-Wigderson compiler [GMW86, GMW87] for boosting semi-honest security

to malicious security, again purely from standard lattice assumptions. Furthermore, studying NIZKs

in the preprocessing model may also serve as a stepping stone towards realizing NIZKs in the CRS

model from standard lattice assumptions. For example, the starting point of the first multi-theorem

NIZK construction by Feige, Lapidot, and Shamir [FLS90] was a NIZK proof for graph Hamiltonicity

in the preprocessing model.

CHAPTER 1. INTRODUCTION 4

1.2 Succinct Non-Interactive Arguments

We next turn our attention to succinct argument systems for NP languages. First, we say an

argument system is succinct if the communication complexity (between the prover and the verifier)

is polylogarithmic in the running time of the NP verifier for the language. Notably, the size of the

argument is polylogarithmic in the size of the NP witness.

Computationally sound proofs. In interactive proof systems for NP with statistical soundness,

non-trivial savings in communication and verification time are highly unlikely [BHZ87, GH98, GVW01,

Wee05]. However, if we relax the requirements and consider proof systems with computational

soundness, also known as argument systems [BCC88], significant efficiency improvements become

possible. Kilian [Kil92] gave the first succinct four-round interactive argument system for NP based

on collision-resistant hash functions and probabilistically checkable proofs (PCPs). Subsequently,

Micali [Mic00] showed how to convert Kilian’s four-round argument into a single-round argument

for NP by applying the Fiat-Shamir heuristic [FS86] to Kilian’s interactive protocol. Micali’s

“computationally-sound proofs” (CS proofs) represents the first candidate construction of a succinct

non-interactive argument (that is, a “SNARG” [GW11]).

SNARGs in the standard model. In the standard model, single-round succinct arguments are

highly unlikely for sufficiently hard languages [BP04a, Wee05], so we consider the weaker goal of

two-message succinct argument systems where the initial message from the verifier is independent of

the statement being verified. We refer to this message as the common reference string (CRS).

Gentry and Wichs [GW11] showed that no SNARG (for a sufficiently difficult language) can

be proven secure under any “falsifiable” assumption [Nao03]. Consequently, all existing SNARG

constructions for NP in the standard model (with a CRS) have relied on non-falsifiable assumptions

such as knowledge-of-exponent assumptions [Dam91, BP04b, Mie08, Gro10, Lip12, GGPR13], ex-

tractable collision-resistant hashing [BCCT12, DFH12, BCC+17], homomorphic encryption with a

homomorphism extraction property [BC12, GGPR13] and linear-only encryption [BCI+13]. With

few exceptions, these existing candidates all rely on number-theoretic or group-theoretic assumptions.

Complexity metrics for SNARGs. In this work, we focus on simultaneously minimizing both

the proof size and the prover complexity of succinct non-interactive arguments. For a security

parameter λ, we measure the asymptotic cost of achieving soundness against provers (modeled as

Boolean circuits) of size 2λ with 2−λ error (that is, a prover of size 2λ should not be able to convince

an honest verifier of a false statement, except with probability 2−λ). We say that a SNARG is

quasi-optimally succinct if its proof length is Õ(λ), and that it is quasi-optimal if in addition, the

prover’s runtime is only polylogarithmically greater than the the running time of the classic NP

prover. In Section 5.4.1, we show that this notion of quasi-optimal succinctness is tight (up to

CHAPTER 1. INTRODUCTION 5

polylogarithmic factors): assuming NP does not have succinct proofs, no succinct argument system

can provide the same soundness guarantees with proofs of size o(λ).

Quasi-optimal SNARGs from lattices. In this work, we give two new candidate SNARG

constructions: one that provides quasi-optimal succinctness based on standard lattices, and another

that satisfies our notion of quasi-optimality based on ideal lattices over polynomial rings. These

are the first lattice-based SNARG candidates to achieve these properties. We refer to Table 5.1

for a concrete comparison. Prior to this work, SNARGs with quasi-optimal succinctness were only

known from pairing-based assumptions, and no quasi-optimal SNARG candidate from any concrete

cryptographic assumption was known.4

Similar to previous works [BCI+13], we take a two-step approach to construct our new lattice-

based SNARG candidates. First, we construct an information-theoretic proof system that provides

soundness against a restricted class of provers (e.g., linearly-bounded provers [IKO07]). We then

leverage cryptographic tools (e.g., linear-only encryption [BCI+13]) to compile the information-

theoretic primitive into a succinct argument system. In this work, the core information-theoretic

primitives we use are linear probabilistically-checkable proofs (linear PCPs) and linear multi-prover

interactive proofs (linear MIPs). We then show how to directly compile linear PCPs and linear MIPs

into preprocessing SNARGs using a new cryptographic primitive called linear-only vector encryption.

We describe our construction of quasi-optimally succinct SNARGs from lattices in Chapter 4, and

our construction of quasi-optimal SNARGs in Chapter 5. Finally, in Chapter 6, we explore some of

the implications between optimally-succinct SNARGs and powerful forms of encryption.

Applications of succinct argument systems. One of the most direct applications of suc-

cinct argument systems is to outsourcing and verifiable delegation of computation. Over the

last few years, there has been significant progress in designing and implementing scalable sys-

tems for verifiable computation that leverage succinct arguments in both the interactive set-

ting [GKR08, CMT12, TRMP12, SMBW12, SVP+12, Tha13, VSBW13] as well as the non-interactive

setting [PHGR13, BCG+13, BFR+13b, BCTV14, WSR+15, CFH+15]. We refer to [WB15] and the

references therein for a comprehensive survey of this area. More recently, succinct arguments

(in conjunction with zero-knowledge properties) have featured as a core building block for new

privacy-preserving cryptocurrencies [BCG+14].

1.3 Why Lattices?

The focus of this thesis is constructing non-interactive argument (and proof) systems satisfying

properties like zero-knowledge or succinctness from lattice-based assumptions—that is, hardness

4We discuss a heuristic approach for achieving quasi-optimality in Remark 5.55.

CHAPTER 1. INTRODUCTION 6

assumptions for problems defined over point lattices in Rn. We refer to [MR09, Pei16] for surveys on

lattice-based cryptography and to Section 2.1 for a technical overview of the hardness assumptions

as well as the algebraic tools we leverage in our constructions.

As discussed in Sections 1.1 and 1.2, constructions of both non-interactive zero-knowledge

arguments as well as succinct non-interactive arguments are already known in the random oracle

model and from number-theoretic and group-theoretic assumptions in the CRS model. Realizing these

primitives from standard lattice-assumptions (with similar properties) has remained open. Below,

we outline several motivating reasons for studying lattice-based instantiations of these fundamental

cryptographic primitives:

• Conjectured post-quantum security. A key appeal of lattice based cryptography is their

conjectured security against quantum attacks. Traditional number-theoretic and group-theoretic

problems such as computing discrete logarithms or factoring are all solvable in polynomial time

on a quantum computer [Sho94]. In contrast, no efficient quantum algorithms are known for the

typical problems used in lattice-based cryptography (e.g., the short integer solutions (SIS) or the

learning with errors (LWE) problems). In light of the potential threat to classical cryptosystems

posed by quantum computers, it is an important challenge to realize existing cryptographic

primitives from post-quantum assumptions. In this work, we give new constructions of NIZK

arguments (in a preprocessing model) as well as SNARGs from lattice-based assumptions which

plausibly resist quantum attacks. Previous constructions of these primitives based on factoring

or pairing-based assumptions do not provide security against quantum adversaries.

• Worst-case hardness guarantees. From a more theoretical perspective, one of the appeals

of lattice-based cryptography is that we can base security on the hardness of solving certain

problems in the worst-case (i.e., there exists at least one intractable instance of the problem).

Falsifying a worst-case hardness assumption requires exhibiting an algorithm that solves every

instance of the underlying problem. In contrast, typical cryptographic assumptions (e.g.,

factoring, discrete logarithm, etc.) are all formulated in the language of average-case hardness:

namely, that there is some distribution over problem instances such that a random instance

is intractable for a computationally-bounded algorithm. When formulating an average-case

assumption, we must carefully specify the hard distribution (for instance, there are many “easy”

distributions for factoring or discrete log over Z∗p). Identifying a hard distribution is unnecessary

when working with worst-case hardness assumptions.

The seminal work of Ajtai [Ajt96] gave the first worst-case to average-case reduction for

lattice problems. Specifically, Ajtai’s work showed that solving the short integers solutions

(SIS) problem in the average case is as hard as solving the decisional approximate shortest

vector problem (GapSVP) in the worst case. Ajtai’s work thus gave the first construction of a

cryptographic primitive with security from a worst-case complexity assumption. Subsequently,

CHAPTER 1. INTRODUCTION 7

a long sequence of works have strengthened the worst-case to average-case reductions for both

the SIS as well as the LWE problems [Mic04, Reg05, MR07, GPV08, Pei09, ACPS09, MM11,

MP12, BLP+13, MP13]. Thus, constructing new cryptosystems from lattice-based assumptions

allows us to base security on worst-case assumptions.

• Understanding the power (and limitations) of lattices. Starting with Gentry’s ground-

breaking work in realizing fully homomorphic encryption from lattices [Gen09a, Gen09b], the last

decade has seen a multitude of works leveraging lattice-based techniques to realize a number of

powerful cryptographic notions such as identity-based encryption [ABB10a, ABB10b], attribute-

based encryption [GVW13, BGG+14], predicate encryption [GVW15a], homomorphic signa-

tures [BF11a, GVW15b], constrained PRFs [BV15, BKM17, CC17a, BTVW17, BKW17, PS18],

cryptographic watermarking [KW17], and traitor tracing [LPSS14, GKW18]. For many of

these primitives, the only known instantiation from standard assumptions is based on lattice

assumptions. In spite of the tremendous successes of lattice-based techniques, there are still

numerous cryptographic primitives that still elude our best efforts to instantiate from lattices

(a major one being NIZKs from lattices). In this thesis, we fill in some of these gaps and show

how to realize several types of non-interactive argument (and proof) systems from lattices.

1.4 Works Contained in this Thesis

The results in this thesis are based on material that originally appeared in the following three

publications:

• Chapter 3: Multi-Theorem Preprocessing NIZKs from Lattices with Sam Kim (Crypto,

2018) [KW18].

• Chapter 4: Lattice-Based SNARGs and Their Application to More Efficient Obfuscation with

Dan Boneh, Yuval Ishai, and Amit Sahai (Eurocrypt, 2017) [BISW17].

• Chapters 5-6: Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs with Dan

Boneh, Yuval Ishai, and Amit Sahai (Eurocrypt, 2018) [BISW18].

Chapter 2

Preliminaries

We begin by introducing the basic notation that we use throughout this thesis. Then, in Section 2.1,

we provide some background on lattice-based cryptography. For an integer n ≥ 1, we write [n] to

denote the set of integers {1, . . . , n}. For positive integers p, q > 1, we write Zp and Zq to denote the

ring of integers modulo p and q, respectively. For a finite set S, we write x
r←− S to denote that x

is sampled uniformly at random from S. For a distribution D, we write x← D to denote that x is

sampled from D.

Throughout this work, we use λ to denote a computational security parameter and κ to denote

a statistical security parameter. We say that a function f is negligible in λ, denoted negl(λ), if

f(λ) = o(1/λc) for all constants c ∈ N. We say that an event happens with negligible probability

if the probability of the event occurring is bounded by a negligible function, and we say that an

event happens with overwhelming probability if its complement occurs with negligible probability.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input.

We write poly(λ) to denote a quantity whose value is upper-bounded by a fixed polynomial in λ.

We say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally

indistinguishable if no efficient algorithm can distinguish samples from either D1 or D2, except with

negligible probability. We denote this by writing D1
c
≈ D2. We write D1

s
≈ D2 to denote that D1 and

D2 are statistically indistinguishable (i.e., the statistical distance between D1 and D2 is bounded by

a negligible function).

Vectors and matrices. We typically use bold uppercase letters (e.g., A, B) to denote matrices

and bold lowercase letters (e.g., u,v) to denote vectors. Given two vectors u ∈ Zm and v ∈ Zn, we

write u⊗ v ∈ Zmn to denote the tensor product of u with v, or equivalently, the vector of pairwise

products uivj for i ∈ [m] and j ∈ [n] of the entries in u and v, respectively. For a matrix A ∈ Ft×q

over a finite field F, we write A[i1,i2] (where i1, i2 ∈ [t]) to denote the sub-matrix of A containing

rows i1 through i2 of A (inclusive). For i ∈ [t] and j ∈ [q], we write Ai,j and A[i, j] to refer to the

8

CHAPTER 2. PRELIMINARIES 9

entry in row i and column j of A.

Boolean circuit satisfiability. For a Boolean circuit C : {0, 1}n × {0, 1}m → {0, 1}, the Boolean

circuit satisfaction problem is defined by the relationRC = {(x,w) ∈ {0, 1}n × {0, 1}m : C(x,w) = 1}.
We refer to x ∈ {0, 1}n as the statement and w ∈ {0, 1}m as the witness. We write LC to

denote the language associated with RC : namely, the set of statements x ∈ {0, 1}n for which

there exists a witness w ∈ {0, 1}m such that C(x,w) = 1. For a family of Boolean circuits

C =
{
C` : {0, 1}n(`) × {0, 1}m(`) → {0, 1}

}
`∈N indexed by a parameter `, we write RC =

⋃
`∈NRC`

and LC =
⋃
`∈N LC` for the corresponding (infinite) relation and language, respectively.

Arithmetic circuit satisfiability. In several cases in this work, it will be more natural to work

with arithmetic circuits. For an arithmetic circuit C : Fn × Fm → Fh over a finite field F, we say that

C is satisfied if on an input (x,w) ∈ Fn × Fm, all of the outputs are 0. Specifically, we define the

relation for arithmetic circuit satisfiability to be RC =
{

(x,w) ∈ Fn × Fm : C(x,w) = 0h
}

.

Chosen-plaintext security. We also review the definition of chosen-plaintext security (CPA-

security) for a symmetric encryption scheme.

Definition 2.1 (CPA-Secure Symmetric Encryption). A (secret-key) encryption scheme with message

space M is a tuple of efficient algorithms Πenc = (KeyGen,Encrypt,Decrypt) with the following

properties:

• KeyGen(1λ)→ sk: On input the security parameter λ, the key-generation algorithm outputs a

secret key sk.

• Encrypt(sk,m)→ ct: On input a secret key sk and a message m ∈M, the encryption algorithm

outputs a ciphertext ct.

• Decrypt(sk, ct)→ m: On input a secret key sk and a ciphertext ct, the decryption algorithm

either outputs a message m ∈M or a special symbol ⊥ (to denote that decryption failed).

A CPA-secure symmetric encryption scheme should satisfy the following properties:

• Correctness: For all messages m ∈M, if we take sk← KeyGen(1λ), then

Pr[Decrypt(sk,Encrypt(sk,m)) = m] = 1.

• CPA-Security: For all efficient adversaries A, if we take sk← KeyGen(1λ), then∣∣∣Pr
[
AO0(sk,·,·)(1λ) = 1

]
− Pr

[
AO1(sk,·,·)(1λ) = 1

]∣∣∣ = negl(λ),

where Ob(sk,m0,m1) outputs Encrypt(sk,mb) for b ∈ {0, 1}.

CHAPTER 2. PRELIMINARIES 10

The Schwartz-Zippel lemma. Finally, we recall the statement of the Schwartz-Zippel lemma [Sch80,

Zip79], which we will use throughout this work.

Lemma 2.2 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let p be a prime and let f ∈ Zp[x1, . . . , xn]

be a multivariate polynomial of total degree d, not identically zero. Then,

Pr[α1, . . . , αn
r←− Zp : f(α1, . . . , αn) = 0] ≤ d

p
.

2.1 Background on Lattice-Based Cryptography

In this section, we describe several known results for lattice-based cryptography that we use in this

work.

Norms for vectors and matrices. Throughout this work, we will always use the infinity norm

for vectors and matrices. This means that for a vector x, the norm ‖x‖ is the maximal absolute

value of an element in x. Similarly, for a matrix A, ‖A‖ is the maximal absolute value of any of its

entries. If x ∈ Znq and A ∈ Zn×mq , then
∥∥xTA

∥∥ ≤ n · ‖x‖ · ‖A‖.
Learning with errors. We first review the learning with errors (LWE) assumption [Reg05]. Let

n,m, q ∈ N be positive integers and χ be a noise (or error) distribution over Zq. In the LWE(n,m, q, χ)

problem, the adversary’s goal is to distinguish between the two distributions

(A,AT s + e) and (A,u)

where A
r←− Zn×mq , s

r←− Znq , e← χm, and u
r←− Zmq . When the error distribution χ is β-bounded1, and

under mild assumptions on the modulus q, the LWE(n,m, q, χ) problem is as hard as approximating

certain worst-case lattice problems such as GapSVP and SIVP on n-dimensional lattices to within a

Õ(n · q/β) factor [Reg05, Pei09, ACPS09, MM11, MP12, BLP+13].

Short integer solutions. We also review the short integers solution (SIS) assumption [Ajt96]. Let

n,m, q, β ∈ N be positive integers. In the SIS(n,m, q, β) problem, the adversary is given a uniformly

random matrix A ∈ Zn×mq and its goal is to find a vector u ∈ Zmq with u 6= 0 and ‖u‖ ≤ β such

that Au = 0. For any m = poly(n), β > 0, and any sufficiently large q ≥ β · poly(n), solving

the SIS(n,m, q, β) problem is as hard as approximating certain worst-case lattice problems such as

GapSVP and SIVP on n-dimensional lattices to within a β ·poly(n) factor [Ajt96, Mic04, MR07, MP13].

It is also implied by the hardness of the LWE problem.

1We say that a distribution D is β-bounded if the support of D is {−β, . . . , β − 1, β} with probability 1.

CHAPTER 2. PRELIMINARIES 11

The gadget matrix. We define the “gadget matrix” G = g ⊗ In ∈ Zn×n·dlog qe
q where g =

(1, 2, 4, . . . , 2dlog qe−1). We define the inverse function G−1 : Zn×mq → Zn·dlog qe×m
q which expands

each entry x ∈ Zq in the input matrix into a column of size dlog qe consisting of the bits of the

binary representation of x. To simplify the notation, we always assume that G has width m (in our

construction, m = Θ(n log q)). Note that this is without loss of generality since we can always extend

G by appending zero columns. For any matrix A ∈ Zn×mq , we have that G ·G−1(A) = A.

Lattice trapdoors. Although solving the SIS problem for a uniformly random matrix A is believed

to be hard, with some auxiliary trapdoor information (e.g., a set of short generating vectors for

the lattice induced by A), the problem becomes easy. Lattice trapdoors have featured in many

applications and have been extensively studied [Ajt99, GPV08, AP09, MP12, LW15]. Since the

specific details of the constructions are not essential for understanding this work, we just recall the

main properties that we require in the following theorem.

Theorem 2.3 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12, LW15]). Fix a security parameter λ

and lattice parameters n, q,m and a norm bound β where m = O(n log q) and β = O(n
√

log q). Then,

there exists a tuple of efficient algorithms (TrapGen,Sample,SamplePre) with the following properties:

• TrapGen(1λ)→ (A, td): On input the security parameter λ, the trapdoor generation algorithm

outputs a rank-n matrix A ∈ Zn×mq and a trapdoor td.

• Sample(A) → U: On input a matrix A ∈ Zn×mq , the sampling algorithm returns a matrix

U ∈ Zm×mq .

• SamplePre(A,V, td)→ U: On input a matrix A ∈ Zn×mq , a target matrix V ∈ Zn×mq , and a

trapdoor td, the preimage-sampling algorithm outputs a matrix U ∈ Zm×mq .

• The above algorithms satisfy the following properties. Take (A, td)← TrapGen(1λ). Then,

1. For U← Sample(A), we have ‖U‖ ≤ β.

2. For any V ∈ Zn×mq and U← SamplePre(A,V, td), we have AU = V and ‖U‖ ≤ β.

3. For (A, td)← TrapGen(1λ), A′
r←− Zn×mq , U← Sample(A), V = AU, V′

r←− Zn×mq , and

U′ ← SamplePre(A,V′, td), we have

A
s
≈ A′ and (A, td,U,V)

s
≈ (A, td,U′,V′).

Traditionally, lattice trapdoors consist of a set of short generating vectors of the lattice that is induced

by a public SIS matrix A. In this work, we make use of an alternative form of lattice trapdoors called

a G-trapdoor formalized in [MP12]. A G-trapdoor of a matrix A ∈ Zn×mq consists of a full-rank,

low-norm matrix R ∈ Zm×mq satisfying the relation AR = G. These types of trapdoor matrices have

CHAPTER 2. PRELIMINARIES 12

additional statistical properties that we use in Sections 3.2 and 3.4. We summarize these properties

in the following theorem.

Theorem 2.4 (Lattice Sampling [CHKP10, ABB10a, MP12, BGG+14, LW15]). Fix a security

parameter λ and lattice parameters n, q,m, and a norm bound β, where m = O(n log q) and β =

O(n
√

log q). Then, in addition to the algorithms (TrapGen,Sample,SamplePre) from Theorem 2.3,

there exists a pair of algorithms (SampleLeft,SampleRight) with the following properties:

• SampleLeft(A,B,R,v, β∗) → u: On input matrices A,B ∈ Zn×mq , a matrix R ∈ Zm×mq

(trapdoor of A), a target vector v ∈ Znq , and a norm bound β∗, SampleLeft returns a vector

u ∈ Z2m
q .

• SampleRight(A,B,U,v, β∗) → u: On input matrices A,B ∈ Zn×mq , a matrix U ∈ Zm×mq , a

target vector v ∈ Znq , and a norm bound β∗, SampleRight returns a vector u ∈ Z2m
q .

• The algorithms above satisfies the following properties. For any rank-n matrices A,B ∈ Zn×mq

and a target vector v ∈ Znq , we have:

1. Let R ∈ Zm×mq be any matrix satisfying AR = G and ‖R‖ ·ω(m
√

logm) ≤ β∗ ≤ q. Then,

for u0 ← SampleLeft(A,B,R,v, β∗), we have that [A | B] · u0 = v and ‖u0‖ ≤ β∗.

2. Let U ∈ Zm×mq be any matrix satisfying AU + yG = B for some y 6= 0 where y ∈ Zq and

‖U‖ · ω(m
√

logm) ≤ β∗ ≤ q. Then, for u1 ← SampleRight(A,B,U,v, β∗), we have that

[A | B] · u1 = v and ‖u1‖ ≤ β∗.

3. The distributions of u0,u1 above are statistically indistinguishable.

GSW homomorphic operations. In this work, we use the homomorphic structure from the fully

homomorphic encryption (FHE) scheme by Gentry, Sahai, and Waters [GSW13]. Since we do not

require the specific details of the homomorphic operations, we summarize the properties we need

in the theorem below. In the language of FHE, the algorithm EvalPK corresponds to homomorphic

evaluation over ciphertexts, while EvalU corresponds to homomorphic evaluation over the encryption

randomness.

Theorem 2.5 (GSW Homomorphic Operations [GSW13, BV14, AP14, GV15]). Fix a security

parameter λ, lattice parameters n, q, m, a norm bound β, a depth bound d, and a message length `,

where m = O(n log q) and β · 2Õ(d) < q. Then, there exists a pair of efficient deterministic algorithms

(EvalPK,EvalU) with the following properties:

• EvalPK(V1, . . . ,V`, C)→ VC : On input matrices V1, . . . ,V` ∈ Zn×mq and a circuit C : {0, 1}` →
{0, 1} of depth at most d, EvalPK returns an evaluated matrix VC ∈ Zn×mq .

• EvalU
(
(V1, x1,U1), . . . , (V`, x`,U`), C

)
→ UC : On input tuples (Vi, xi,Ui), where Vi ∈

Zn×mq , xi ∈ {0, 1}, and Ui ∈ Zm×mq for all i ∈ [`], and a circuit C : {0, 1}` → {0, 1}, EvalU

returns an evaluated matrix UC ∈ Zm×mq .

CHAPTER 2. PRELIMINARIES 13

• For all circuits C : {0, 1}` → {0, 1} of depth at most d, and all matrices A,V1, . . . ,V` ∈ Zn×mq ,

inputs x1, . . . , x` ∈ {0, 1}, and matrices U1, . . . ,U` ∈ Zm×mq where

AUi + xi ·G = Vi ∀i ∈ [`],

and ‖Ui‖ ≤ β, the EvalPK and EvalU algorithms satisfy the following property. For VC ←
EvalPK(V1, . . . ,V`, C), and UC ← EvalU((V1, x1,U1), . . . , (V`, x`,U`), C), we have that

AUC + C(x) ·G = VC and ‖UC‖ ≤ β · 2Õ(d) < q.

CPA-secure encryption from lattices. Finally, we note that CPA-secure symmetric encryption

(Definition 2.1) can be built from any one-way function. Here, we state one candidate that follows

from any lattice-based PRF that can be computed by a circuit of depth independent of its output

length (c.f., [GGM84, Ajt96]).

Fact 2.6 (CPA-Secure Encryption from LWE). Let λ be a security parameter. Under the LWE

assumption (see Section 2.1), there exists a CPA-secure encryption scheme Πenc = (KeyGen,Encrypt,

Decrypt) over a message space M with the following properties:

• For all m ∈M, sk← KeyGen(1λ), and ct← Encrypt(sk,m), we have that |ct| = |m|+ poly(λ).

• The decryption algorithm Decrypt can be computed by a circuit of depth poly(λ).

Chapter 3

Non-Interactive Zero-Knowledge

Arguments

In this chapter, we show how to construct non-interactive zero-knowledge (NIZK) arguments (and

proofs) in the preprocessing model from standard lattice assumptions. We refer to NIZKs in the

preprocessing model as a “preprocessing NIZK.” As we discuss in Section 3.1.1 and in Remark 3.33,

our works gives the first candidate of a reusable (i.e., multi-theorem) NIZK argument (and proof)

from a standard lattice assumption.

3.1 Construction Overview

We begin by providing a high-level overview of our construction. Then, in Section 3.1.1, we discuss

our results in the context of other relevant works.

Homomorphic signatures. A homomorphic signature scheme [BF11a, BF11b, GVW15b, ABC+15]

enables computations on signed data. Specifically, a user can sign a message x ∈ {0, 1}` using her

private signing key to obtain a signature σ. Later on, she can delegate the pair (x,σ) to an untrusted

data processor. The data processor can then compute an arbitrary function g on the signed data

to obtain a value y = g(x) along with a signature σg,y. The computed signature σg,y should certify

that the value y corresponds to a correct evaluation of the function g on the original input x. In a

context-hiding homomorphic signature scheme [BFF+09, BF11a], the computed signature σg,y also

hides the input message x. Namely, the pair (y, σg,y) reveals no information about x other than what

could be inferred from the output y = g(x). Gorbunov et al. [GVW15b] gave the first construction of

a context-hiding homomorphic signature scheme for general Boolean circuits (with bounded depth)

from standard lattice assumptions. We refer to Section 3.1.1 for a more comprehensive survey on

14

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 15

homomorphic signature schemes.

From homomorphic signatures to zero-knowledge. The notion of context-hiding in a ho-

momorphic signature scheme already bears a strong resemblance to zero-knowledge. Namely, a

context-hiding homomorphic signature scheme allows a user (e.g., a prover) to certify the result of a

computation (e.g., the output of an NP relation) without revealing any additional information about

the input (e.g., the NP witness) to the computation. Consider the following scenario. Suppose the

prover has a statement-witness pair (x,w) for some NP relation R and wants to convince the verifier

that R(x,w) = 1 without revealing w. For sake of argument, suppose the prover has obtained

a signature σw on the witness w (but does not have the signing key for the signature scheme),

and the verifier holds the verification key for the signature scheme. In this case, the prover can

construct a zero-knowledge proof for x by evaluating the relation Rx(w) := R(x,w) on (w, σw). If

R(x,w) = 1, then this yields a new signature σR,x on the bit 1. The proof for x is just the signature

σR,x. Context-hiding of the homomorphic signature scheme says that the signature σR,x reveals

no information about the input to the computation (the witness w) other than what is revealed by

the output of the computation (namely, that R(x,w) = 1). This is precisely the zero-knowledge

property. Soundness of the proof system follows by unforgeability of the homomorphic signature

scheme (if there is no w such that Rx(w) = 1, the prover would not be able to produce a signature

on the value 1 that verifies according to the function Rx).

While this basic observation suggests a connection between homomorphic signatures and zero-

knowledge, it does not directly give a NIZK argument. A key problem is that to construct the

proof, the prover must already possess a signature on its witness w. But since the prover does not

have the signing key (if it did, then the proof system is no longer sound), it is unclear how the

prover obtains this signature on w without interacting with the verifier (who could hold the signing

key). This is the case even in the preprocessing model, because we require that the preprocessing be

statement-independent (and in fact, reusable for arbitrarily many adaptively-chosen statements).

Preprocessing NIZKs from homomorphic signatures. Nonetheless, the basic observation

shows that if we knew ahead of time which witness w the prover would use to construct its proofs,

then the setup algorithm can simply give the prover a homomorphic signature σw on w. To support

this, we add a layer of indirection. Instead of proving that it knows a witness w where R(x,w) = 1,

the prover instead demonstrates that it has an encryption ctw of w (under some key sk), and that it

knows some secret key sk such that ctw decrypts to a valid witness w where R(x,w) = 1.1 A proof

of the statement x then consists of the encrypted witness ctw and a proof πR,x,ctw that ctw is an

encryption of a satisfying witness (under some key). First, if the encryption scheme is semantically-

secure and the proof is zero-knowledge, then the resulting construction satisfies (computational)

1This is a classic technique in the construction of non-interactive proof systems and has featured in many contexts
(e.g., [SP92, GGI+15]).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 16

zero-knowledge. Moreover, the witness the prover uses to construct πR,x,ctw is always the same: the

secret key sk. Notably, the witness is statement-independent and can be reused to prove arbitrarily

many statements (provided the encryption scheme is CPA-secure).

This means we can combine context-hiding homomorphic signatures (for general circuits) with

any CPA-secure symmetric encryption scheme to obtain NIZKs in the preprocessing model as follows:

• Setup: The setup algorithm generates a secret key sk for the encryption scheme as well as

parameters for a homomorphic signature scheme. Both the proving and verification keys include

the public parameters for the signature scheme. The proving key kP additionally contains the

secret key sk and a signature σsk on sk.

• Prove: To generate a proof that an NP statement x is true, the prover takes a witness w

where R(x,w) = 1 and encrypts w under sk to obtain a ciphertext ctw. Next, we define

the witness-checking function CheckWitness[R,x, ctw] (parameterized by R, x, and ctw) that

takes as input a secret key sk and outputs 1 if R(x,Decrypt(sk, ctw)) = 1, and 0 otherwise.

The prover homomorphically evaluates CheckWitness[R,x, ctw] on (sk, σsk) to obtain a new

signature σ∗ on the value 1. The proof consists of the ciphertext ctw and the signature σ∗.

• Verify: Given a statement x for an NP relation R and a proof π = (ct, σ∗), the verifier checks

that σ∗ is a valid signature on the bit 1 according to the function CheckWitness[R,x, ct]. Notice

that the description on the function only depends on the relation R, the statement x, and the

ciphertext ct, all of which are known to the verifier.

Since the homomorphic signature scheme is context-hiding, the signature σ∗ hides the input to

CheckWitness[R,x, ctw], which in this case, is the secret key sk. By CPA-security of the encryption

scheme, the ciphertext hides the witness w, so the scheme provides zero-knowledge. Soundness

again follows from unforgeability of the signature scheme. Thus, by combining a lattice-based

homomorphic signature scheme for general circuits [GVW15b] with any lattice-based CPA-secure

symmetric encryption scheme, we obtain a (multi-theorem) preprocessing NIZK from lattices.

An appealing property of our preprocessing NIZKs is that the proofs are short: the length of a

NIZK argument for an NP relation R is |w|+ poly(λ, d) bits, where |w| is the length of a witness

for R and d is the depth of the circuit computing R. The proof size in NIZK constructions from

trapdoor permutations or pairings [FLS90, DDO+01, GOS06, Gro10, GOS12] typically scale with

the size of the circuit computing R and multiplicatively with the security parameter. Previously,

Gentry et al. [GGI+15] gave a generic approach using fully homomorphic encryption (FHE) to reduce

the proof size in any NIZK construction. The advantage of our approach is that we naturally satisfy

this succinctness property, and the entire construction can be based only on lattice assumptions

(without needing to mix assumptions). We discuss this in greater detail in Remark 3.29. We also

give the complete description of our preprocessing NIZK and security analysis in Section 3.3.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 17

In the above construction, if the homomorphic signature scheme is unforgeable even against

computationally-unbounded adversaries, then the construction gives a NIZK proof in the preprocessing

model. In Remark 3.32, we describe how to realize this using lattice-based context-hiding statistically-

binding homomorphic commitments [GVW15b]. One of the advantages of using homomorphic

signatures instead of homomorphic commitments is that they enable an efficient two-party protocol

for implementing the preprocessing, which we discuss below. For this reason, we focus primarily on

constructing preprocessing NIZK arguments from homomorphic signatures.

Blind homomorphic signatures for efficient preprocessing. A limitation of preprocessing

NIZKs is we require a trusted setup to generate the proving and verification keys. One solution is to

have the prover and verifier run a (malicious-secure) two-party computation protocol (e.g., [LP07])

to generate the proving and verification keys. However, generic MPC protocols are often costly and

require making non-black-box use of the underlying homomorphic signature scheme.

In this work, we describe a conceptually simple and more efficient way of implementing the

preprocessing without relying on general MPC. We do so by introducing a new cryptographic notion

called blind homomorphic signatures. First, we observe that we can view the two-party computation

in the setup phase as essentially implementing a “blind signing” protocol where the verifier holds the

signing key for the homomorphic signature scheme and the prover holds the secret key sk. At the end

of the blind signing protocol, the prover should learn σsk while the verifier should not learn anything

about sk. This is precisely the properties guaranteed by a blind signature protocol [Cha82, Fis06]. In

this work, we introduce the notion of a blind homomorphic signature scheme which combines the blind

signing protocol of traditional blind signature schemes while retaining the ability to homomorphically

operate on ciphertexts. Since the notion of a blind homomorphic signatures is inherently a two-party

functionality, we formalize it in the model of universal composability [Can01]. We provide the formal

definition of the ideal blind homomorphic signature functionality in Section 3.4.

In Section 3.4.3, we show how to securely realize our ideal blind homomorphic signature func-

tionality in the presence of malicious adversaries by combining homomorphic signatures with any

UC-secure oblivious transfer (OT) protocol [CLOS02]. Note that security against malicious adver-

saries is critical for our primary application of leveraging blind homomorphic signatures to implement

the setup algorithm of our preprocessing NIZK candidate. At a high-level, we show how to construct

a blind homomorphic signature scheme from any “bitwise” homomorphic signature scheme—namely,

a homomorphic signature scheme where the signature on an `-bit message consists of ` signatures,

one for each bit of the message. Moreover, we assume that the signature on each bit position only

depends on the value of that particular bit (and not the value of any of the other bits of the message);

of course, the ` signatures can still be generated using common or correlated randomness. Given

a bitwise homomorphic signature scheme, we can implement the blind signing protocol (on `-bit

messages) using ` independent 1-out-of-2 OTs. Specifically, the signer plays the role of the sender in

the OT protocol and for each index i ∈ [`], the signer signs both the bit 0 as well as the bit 1. Then,

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 18

to obtain a signature on an `-bit message, the receiver requests the signatures corresponding to the

bits of its message.

While the high-level schema is simple, there are a few additional details that we have to handle

to achieve robustness against a malicious signer. For instance, a malicious signer can craft the

parameters of the homomorphic signature scheme so that when an evaluator computes on a signature,

the resulting signatures no longer provide context-hiding. Alternatively, a malicious signer might

mount a “selective-failure” attack during the blind-signing protocol to learn information about

the receiver’s message. We discuss how to address these problems by giving strong definitions of

malicious context-hiding for homomorphic signatures in Section 3.2, and give the full construction of

blind homomorphic signatures from oblivious transfer in Section 3.4.3. In particular, we show that

the Gorbunov et al. [GVW15b] homomorphic signature construction satisfies our stronger security

notions, and so, coupled with the UC-secure lattice-based OT protocol of Peikert et al. [PVW08],

we obtain a UC-secure blind homomorphic signature scheme from standard lattice assumptions.

Moreover, the blind signing protocol is a two-round protocol, and only makes black-box use of the

underlying homomorphic signature scheme.

UC-secure preprocessing NIZKs. Finally, we show that using our UC-secure blind homomorphic

signature candidate, we can in fact realize the stronger notion of UC-secure NIZK arguments in

a preprocessing model from standard lattice assumptions. This means that our NIZKs can be

arbitrarily composed with other cryptographic protocols. Our new candidates are thus suitable

to instantiate many of the classic applications of NIZKs for boosting the security of general MPC

protocols. As we show in Section 3.5, combining our preprocessing UC-NIZKs with existing lattice-

based semi-malicious MPC protocols such as [MW16] yields malicious-secure protocols purely from

standard lattice assumptions (in a reusable preprocessing model). We also show that our constructions

imply a succinct version of the classic GMW [GMW86, GMW87] protocol compiler (where the total

communication overhead of the compiled protocol depends only on the depth, rather than the size of

the computation).

3.1.1 Additional Related Work

In this section, we survey some additional related work on NIZK constructions, blind signatures, and

homomorphic signatures.

Other NIZK proof systems. In the CRS model, there are several NIZK constructions based on

specific number-theoretic assumptions such as quadratic residuosity [BFM88, DMP87, BDMP91].

These candidates are also secure in the bounded-theorem setting where the CRS can only be used for an

a priori bounded number of proofs. Exceeding this bound compromises soundness or zero-knowledge.

In the preprocessing model, Kalai and Raz [KR06] gave a single-theorem succinct NIZK proof system

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 19

for the class LOGSNP from polylogarithmic private information retrieval (PIR) and exponentially-hard

OT. In this work, we focus on constructing multi-theorem NIZKs, where an arbitrary number of

proofs can be constructed after an initial setup phase.

NIZKs have also been constructed for specific algebraic languages in both the publicly-verifiable

setting [Gro06, GS08] as well as the designated-verifier setting [CC17b]. In the specific case of

lattice-based constructions, there are several works on building hash-proof systems, (also known

as smooth projective hash functions [CS02]) [KV09, ZY17, BBDQ18], which are designated-verifier

NIZK proofs for a specific language (typically, this is the language of ciphertexts associated with a

particular message). In the random oracle model, there are also constructions of lattice-based NIZK

arguments from Σ-protocols [LNSW13, XXW13]. Recently, there has also been work on instantiating

the random oracle in Σ-protocols with lattice-based correlation-intractable hash functions [CCRR18].

However, realizing the necessary correlation-intractable hash functions from lattices requires making

the non-standard assumption that Regev’s encryption scheme [Reg05] is exponentially KDM-secure

against all polynomial-time adversaries. In our work, we focus on NIZK constructions for general

NP languages in the plain model (without random oracles) from the standard LWE assumption (i.e.,

polynomial hardness of LWE with a subexponential approximation factor).

Very recently, Rothblum et al. [RSS18] showed that a NIZK proof system for a decisional variant

of the bounded distance decoding (BDD) problem suffices for building NIZK proof systems for NP.

Blind signatures. The notion of blind signatures was first introduced by Chaum [Cha82]. There

are many constructions of blind signatures from a wide range of assumptions in the random oracle

model [Sch89, Bra00, PS00, Abe01, Bol03, BNPS03, Rüc10, BL13], the CRS model [CKW04, KZ06,

Fis06, AO09, Fuc09, AFG+10, AHO10, GS12], as well as the standard model [GRS+11, FHS15,

FHKS16, HK16].

Homomorphic signatures. There are numerous constructions of linearly homomorphic signa-

tures [ABC+07, SW08, DVW09, AKK09, BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12, Fre12,

ABC+15]. Beyond linear homomorphisms, a number of works [BF11a, BFR13a, CFW14] have

constructed homomorphic signatures for polynomial functions from lattices or multilinear maps.

Subsequently, Gorbunov et al. [GVW15b] gave the first homomorphic signature scheme for general

circuits from lattices, and Fiore et al. [FMNP16] gave the first “multi-key” homomorphic signature

scheme for general circuits from lattices. In a multi-key scheme, homomorphic operations can be

performed on signatures signed under different keys.

3.2 Homomorphic Signatures

A homomorphic signature scheme enables computations on signed data. Given a Boolean function

C : {0, 1}` → {0, 1} (modeled as a Boolean circuit) and a signature σx that certifies a message

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 20

x ∈ {0, 1}`, one can homomorphic derive a signature σC(x) that certifies the value C(x) with respect

to the circuit C. The two main security notions that we are interested in are unforgeability and

context-hiding. We first provide a high-level description of the properties:

• Unforgeability: We say a signature scheme is unforgeable if an adversary who has a signature

σx on a message x cannot produce a valid signature on any message y 6= C(x) that verifies

with respect to the function C.

• Context-hiding: Context-hiding says that when one evaluates a function C on a message-

signature pair (x,σx), the resulting signature σC(x) on C(x) should not reveal any information

about the original message x other than the circuit C and the value C(x). In our definition,

the homomorphic signature scheme contains an explicit “hide” function that implements this

transformation.

Syntax and notation. Our construction of blind homomorphic signatures from standard ho-

momorphic signatures (Section 3.4.3) will impose some additional structural requirements on the

underlying scheme. Suppose the message space for the homomorphic signature scheme consists of

`-tuples of elements over a set X (e.g., the case where X = {0, 1} corresponds to the setting where

the message space consists of `-bit strings). Then, we require that the public parameters pp of the

scheme can be split into a vector of public keys pp = (pk1, . . . , pk`). In addition, a (fresh) signature

on a vector x ∈ X ` can also be written as a tuple of ` signatures σ = (σ1, . . . , σ`) where σi can

be verified with respect to the verification key vk and the ith public key pki for all i ∈ [`]. In our

description below, we often use vector notation to simplify the presentation.

Definition 3.1 (Homomorphic Signatures [BF11b, GVW15b]). A homomorphic signature scheme

with message space X , message length ` ∈ N, and function class C = {Cλ}λ∈N, where each Cλ is a

collection of functions from X ` to X , is defined by a tuple of algorithms ΠHS = (PrmsGen,KeyGen,

Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with the following properties:

• PrmsGen(1λ, 1`)→ pp: On input the security parameter λ and message length `, the parameter-

generation algorithm returns a set of ` public keys pp = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm

returns a verification key vk, and a signing key sk.

• Sign(pki, sk, xi)→ σi: On input a public key pki, a signing key sk, and a message xi ∈ X , the

signing algorithm returns a signature σi.

Vector variant: For pp = (pk1, . . . , pk`), and x = (x1, . . . , x`) ∈ X `, we write Sign(pp, sk,x) to

denote component-wise signing of each message. Namely, Sign(pp, sk,x) outputs signatures

σ = (σ1, . . . , σ`) where σi ← Sign(pki, sk, xi) for all i ∈ [`].

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 21

• PrmsEval(C, pp′) → pkC : On input a function C : X ` → X and a collection of public keys

pp′ = (pk′1, . . . , pk′`), the parameter-evaluation algorithm returns an evaluated public key pkC .

Vector variant: For a circuit C : X ` → X k, we write PrmsEval(C, pp′) to denote component-

wise parameter evaluation. Namely, let C1, . . . , Ck be functions such that C(x1, . . . , x`) =(
C1(x1, . . . , x`), . . . , Ck(x1, . . . , x`)

)
. Then, PrmsEval(C, pp′) evaluates pkCi ← PrmsEval(Ci, pp′)

for i ∈ [k], and outputs pkC = (pkC1
, . . . , pkCk).

• SigEval(C, pp′,x,σ) → σ: On input a function C : X ` → X , public keys pp′ = (pk′1, . . . , pk′`),

messages x ∈ X `, and signatures σ = (σ1, . . . , σ`), the signature-evaluation algorithm returns

an evaluated signature σ.

Vector variant: We can define a vector variant of SigEval analogously to that of PrmsEval.

• Hide(vk, x, σ)→ σ∗: On input a verification key vk, a message x ∈ X , and a signature σ, the

hide algorithm returns a signature σ∗.

Vector variant: For x = (x1, . . . , xk) and σ = (σ1, . . . , σk), we write Hide(vk,x,σ) to denote

component-wise evaluation of the hide algorithm. Namely, Hide(vk,x,σ) returns (σ∗1 , . . . , σ
∗
k)

where σ∗i ← Hide(vk, xi, σi) for all i ∈ [k].

• Verify(pk, vk, x, σ)→ {0, 1}: On input a public key pk, a verification key vk, a message x ∈ X ,

and a signature σ, the verification algorithm either accepts (returns 1) or rejects (returns 0).

Vector variant: For a collection of public keys pp′ = (pk′1, . . . , pk′k), messages x = (x1, . . . , xk),

and signatures σ = (σ1, . . . , σk), we write Verify(pp′, vk,x,σ) to denote applying the verification

algorithm to each signature component-wise. In other words, Verify(pp′, vk,x,σ) accepts if and

only if Verify(pk′i, vk, xi, σi) accepts for all i ∈ [k].

• VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk, a verification key vk, a message

x ∈ X , and a signature σ, the fresh verification algorithm either accepts (returns 1) or rejects

(returns 0).

Vector variant: We can define a vector variant of VerifyFresh analogously to that of Verify.

• VerifyHide(pk, vk, x, σ∗) → {0, 1}: On input a public key pk, a verification key vk, a message

x ∈ X , and a signature σ∗, the hide verification algorithm either accepts (returns 1) or rejects

(returns 0).

Vector variant: We can define a vector variant of VerifyHide analogously to that of Verify.

Correctness. We now state the correctness requirements for a homomorphic signature scheme.

Our definitions are adapted from the corresponding ones in [GVW15b]. Our homomorphic signature

syntax has three different verification algorithms. The standard verification algorithm Verify can be

used to verify fresh signatures (output by Sign) as well as homomorphically-evaluated signatures

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 22

(output by SigEval). The hide verification algorithm VerifyHide is used for verifying signatures output

by the context-hiding transformation Hide, which may be structurally different from the signatures

output by Sign or SigEval. Finally, we have a special verification algorithm VerifyFresh that can

be used to verify signatures output by Sign (before any homomorphic evaluation has taken place).

While Verify subsumes VerifyFresh, having a separate VerifyFresh algorithm is useful for formulating

a strong version of evaluation correctness. We now state our correctness definitions. First, we have

the standard correctness requirement of any signature scheme. Specifically, signatures output by the

honest signing algorithm should verify according to both Verify and VerifyFresh.

Definition 3.2 (Signing Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,

Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message length `,

and function class C satisfies signing correctness if for all λ ∈ N, messages x ∈ X `, and setting

pp← PrmsGen(1λ, 1`), (vk, sk)← KeyGen(1λ), σ ← Sign(pp, sk,x), we have

Pr[Verify(pp, vk,x,σ) = 1] = 1 and Pr[VerifyFresh(pp, vk,x,σ) = 1] = 1.

Evaluation correctness. Next, we require that if one applies the honest signature-evaluation

algorithm SigEval to valid fresh signatures (namely, signatures that are accepted by VerifyFresh), then

the resulting signature verifies according to Verify (with respect to the corresponding evaluated public

key). This is a stronger definition than the usual notion of evaluation correctness from [GVW15b],

which only requires correctness to holds when SigEval is applied to signatures output by the honest

signing algorithm Sign. In our definition, correctness must hold against all signatures deemed valid

by VerifyFresh (with respect to an arbitrary public key pk and verification key vk), which may be a

larger set of signatures than those that could be output by Sign. This notion of correctness will be

useful in our construction of (malicious-secure) blind homomorphic signatures in Section 3.4.

Definition 3.3 (Evaluation Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,

KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message

length `, and function class C = {Cλ}λ∈N (where each Cλ is a collection of functions from X ` to X)

satisfies evaluation correctness if for all λ ∈ N, all public keys pp, all verification keys vk, and all

messages x ∈ X `, the following properties hold:

• Single-Hop Correctness: For all C ∈ Cλ and all signatures σ where VerifyFresh(pp, vk,x,σ) =

1, if we set pkC ← PrmsEval(C, pp) and σ ← SigEval(C, pp,x,σ), then

Pr[Verify(pkC , vk, C(x), σ) = 1] = 1.

• Multi-Hop Correctness: For any collection of functions C1, . . . , C` ∈ Cλ and C ′ : X ` → X ,

define the composition (C ′ ◦ ~C) : X ` → X to be the mapping x 7→ C ′(C1(x), . . . , C`(x)). If

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 23

(C ′ ◦ ~C) ∈ Cλ, then for any set of signatures σ = (σ1, . . . , σ`) where Verify(pkCi , vk, xi, σi) = 1

and pkCi ← PrmsEval(Ci, pp) for all i ∈ [`], we have that

Pr[Verify(PrmsEval(C ′, (pkC1
, . . . , pkC`)), vk,x,SigEval(C ′, (pkC1

, . . . , pkC`),x,σ)) = 1] = 1.

Hiding correctness. Finally, we require that the hide algorithm also produces valid signatures.

Similar to the case of evaluation correctness, we require that correctness holds whenever Hide is

applied to any valid signature accepted by Verify (which need not coincide with the set of signatures

output by an honest execution of Sign or SigEval). This is essentially the definition in [GVW15b].

Definition 3.4 (Hiding Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,

Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message length `,

and function class C satisfies hiding correctness if for all λ ∈ N, all verification keys vk, messages

x ∈ X , and all signatures σ where Verify(pk, vk, x, σ) = 1, we have that

Pr[VerifyHide
(
pk, vk, x,Hide(vk, x, σ)

)
= 1] = 1.

Unforgeability. We now formally define unforgeability for a homomorphic signature scheme.

Intuitively, a homomorphic signature scheme is unforgeable if no efficient adversary who only

possesses signatures σ1, . . . , σ` on messages x1, . . . , x` can produce a signature σy that is valid with

respect to a function C where y 6= C(x1, . . . , x`).

Definition 3.5 (Unforgeability). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,Sign,

PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with mes-

sage space X , message length `, and function class C = {Cλ}λ∈N, where each Cλ is a collection of

functions from X ` to X . Then, for an adversary A, we define the unforgeability security experiment

ExptufA,ΠHS
(λ, `) as follows:

1. The challenger begins by generating public keys pp← PrmsGen(1λ, 1`), and a signing-verification

key (vk, sk)← KeyGen(1λ). It gives pp and vk to A.

2. The adversary A submits a message x ∈ X ` to be signed.

3. The challenger signs the messages σ ← Sign(pp, sk,x) and sends the signatures σ to A.

4. The adversary A outputs a circuit C ∈ Cλ, a message y ∈ X , and a signature σy.

5. The output of the experiment is 1 if C ∈ Cλ, y 6= C(x), and VerifyHide(pkC , vk, y, σy) = 1,

where pkC ← PrmsEval(C, pp). Otherwise, the output of the experiment is 0.

We say that a homomorphic signature scheme ΠHS satisfies unforgeability if for all efficient adver-

saries A,

Pr[ExptufA,ΠHS
(λ, `) = 1] = negl(λ).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 24

Remark 3.6 (Selective Unforgeability). We can also define a weaker notion of unforgeability called

selective unforgeability where the adversary commits to the messages x ∈ X ` at the start of the

experiment before it sees the public keys pp and the verification key vk. In Section 3.2.1, we describe

a simplified variant of the [GVW15b] construction that satisfies this weaker notion of selective

unforgeability. In Section 3.2.2, we give the full construction from [GVW15b] that satisfies the

definition of adaptive unforgeability from Definition 3.5.

Context-hiding. The second security requirement on a homomorphic signature scheme is context-

hiding, which roughly says that if a user evaluates a function C on a message-signature pair (x,σ) to

obtain a signature σC(x), and then runs the hide algorithm on σC(x), the resulting signature σ∗C(x)

does not contain any information about x other than what is revealed by C and C(x). Previous

works such as [GVW15b] captured this notion by requiring that there exists an efficient simulator

that can simulate the signature σ∗C(x) given just the signing key sk,2 the function C, and the value

C(x). Notably, the simulator does not see the original message x or the signature σC(x)

While this is a very natural notion of context-hiding, it can be difficult to satisfy. The homomorphic

signature candidate by Gorbunov et al. [GVW15b] satisfies selective unforgeability (Remark 3.6) and

context-hiding. Gorbunov et al. also give a variant of their construction that achieves adaptive

unforgeability; however, this scheme does not simultaneously satisfy the notion of context-hiding.

Nonetheless, the adaptively-secure scheme from [GVW15b] can be shown to satisfy a weaker notion of

context-hiding that suffices for all of our applications (and still captures all of the intuitive properties

we expect from context-hiding). Specifically, in our weaker notion of context-hiding, we allow the

simulator to also take in some components of the original signatures σC(x), provided that those

components are independent of the value that is signed.3

To formalize this notion, we first define the notion of a decomposable homomorphic signature

scheme. In a decomposable homomorphic signature scheme, any valid signature σ = (σpk, σm) can

be decomposed into a message-independent component σpk that contains no information about the

signed message, and a message-dependent component σm.

Definition 3.7 (Decomposable Homomorphic Signatures). Let ΠHS = (PrmsGen,KeyGen,Sign,

PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with mes-

sage space X , message length `, and function class C = {Cλ}λ∈N. We say that ΠHS is decomposable

if the signing and evaluation algorithms can be decomposed into a message-independent and a

message-dependent algorithm as follows:

• The signing algorithm Sign splits into a pair of algorithms (SignPK,SignM):

2Note that the simulator must take in some secret value (not known to the evaluator). Otherwise, the existence of
such a simulator breaks unforgeability of the signature scheme.

3The construction in Section 3.2.2 combines the homomorphic signature scheme that satisfies (full) unforgeability
but not context-hiding and the selectively unforgeable homomorphic signature scheme that satisfies context-hiding
in [GVW15b].

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 25

– SignPK(pki, sk) → σpk
i : On input a public key pki and a signing key sk, the SignPK

algorithm outputs a message-independent component σpk
i .

– SignM(pki, sk, xi, σ
pk
i) → σm

i : On input a public key pki, a signing key sk, a message

xi ∈ X , and a message-independent component σpk
i , the SignM algorithm outputs a

message-dependent component σm
i .

The actual signing algorithm Sign(pki, sk, xi) then computes σpk
i ← SignPK(pki, sk) and σm

i ←
SignM(pki, sk, xi, σ

pk
i). The final signature is the pair σi = (σpk

i , σ
m
i).

• The evaluation algorithm SigEval splits into a pair of algorithms: (SigEvalPK,SigEvalM):

– SigEvalPK(C, pp′,σpk)→ σpk: On input a circuit C ∈ Cλ, public keys pp′ = (pk′1, . . . , pk′`),

and message-independent signature components σpk = (σpk
1 , . . . , σ

pk
`), the SigEvalPK

algorithm outputs a message-independent component σpk.

– SigEvalM(C, pp′,x,σ)→ σm: On input a circuit C ∈ Cλ, public keys pp′ = (pk′1, . . . , pk′`),

messages x ∈ X `, and signatures σ, the SigEvalM algorithm outputs a message-dependent

component σm.

The signature evaluation algorithm SigEval(C, pp′,x,σ) first parses σ = (σpk,σm), computes

σpk ← SigEvalPK(C, pp′,σpk), σm ← SigEvalM(C, pp′,x,σ), and returns σ = (σpk, σm).

To formalize context-hiding, we require that there exists a simulator that can simulate the output of

the hide algorithm given only the secret signing key sk, the function C, the output C(x), and the

message-independent component of the signature σpk
C(x). We give the formal definition below:

Definition 3.8 (Context-Hiding Against Honest Signers). Fix a security parameter λ. Let ΠHS =

(PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable ho-

momorphic signature scheme (Definition 3.7) with message space X , message length `, and function

class C = {Cλ}λ∈N, where each Cλ is a collection of functions from X ` to X . For a bit b ∈ {0, 1}, a

simulator S and an adversary A, we define the weak context-hiding security experiment against an

honest signer Exptch-honestA,S,ΠHS
(λ, b) as follows:

1. The challenger begins by generating a signing and verification key (vk, sk)← KeyGen(1λ) and

sends (vk, sk) to A.

2. The adversary A can then submit (adaptive) queries to the challenger where each query consists

of a public key pk, a message x ∈ X , and a signature σ = (σpk, σm). On each query, the

challenger first checks that Verify(pk, vk, x, σ) = 1. If this is not the case, then the challenger

ignores the query and replies with ⊥. Otherwise, the challenger proceeds as follows:

• If b = 0, the challenger evaluates σ∗ ← Hide(vk, x, σ), and sends σ∗ to A.

• If b = 1, the challenger computes σ∗ ← S(pk, vk, sk, x, σpk). It sends σ∗ to A.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 26

3. Finally, A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We say that a homomorphic signature scheme ΠHS satisfies statistical context-hiding against an

honest signer if there exists an efficient simulator S such that for all (computationally-unbounded)

adversaries A,

∣∣Pr[Exptch-honestA,S,ΠHS
(λ, 0) = 1]− Pr[Exptch-honestA,S,ΠHS

(λ, 1) = 1]
∣∣ = negl(λ).

Context-hiding against malicious signers. Typically, context-hiding is defined with respect to

an honest signer that generates the signing and verification keys using the honest key-generation

algorithm KeyGen. However, when constructing blind homomorphic signatures (Section 3.4) with

security against malicious signers, the assumption that the keys are correctly generated no longer

makes sense. Hence, we need a stronger security property that context-hiding holds even if the

signing and verification keys for the homomorphic signature scheme are maliciously constructed.

Definition 3.8 does not satisfy this stronger notion of context-hiding because the challenger samples

(vk, sk) using the honest KeyGen algorithm, and the simulator is provided the (honestly-generated)

signing key sk. The natural way to extend Definition 3.8 to achieve security against malicious signers

is to allow the adversary to choose the verification key vk and signing key sk. However, this is too

restrictive because the adversary could potentially cook up signatures that verify under vk, and yet,

there is no natural notion of a signing key. To circumvent this issue, we introduce a stronger notion

of context-hiding that holds against any party with the capability to sign messages. More concretely,

we require the existence of a simulator that can extract a simulation trapdoor td from any admissible

set of valid message-signature pairs. This trapdoor information td replaces the signing key sk as

input to the simulator.

In our construction of homomorphic signatures (Construction 3.11), we say that a pair of messages

(x̃0, σ̃0) and (x̃1, σ̃1) is admissible if x̃0 6= x̃1 and σ̃0 and σ̃1 are valid signatures of x̃0 and x̃1,

respectively (with the same public components). Intuitively, our definition captures the fact that

context-hiding holds against any signer, as long as they are able to produce or forge valid signatures

on distinct messages x̃0 and x̃1 under some verification key vk. Note that this definition subsumes

Definition 3.8, since any signer with an honestly-generated signing key can sign arbitrary messages of

its choosing.

Definition 3.9 (Context-Hiding). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,

Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable homomorphic signa-

ture scheme (Definition 3.7) with message space X , message length `, and function class C = {Cλ}λ∈N,

where each Cλ is a collection of functions from X ` to X . For a bit b ∈ {0, 1}, a simulator S =

(SExt,SGen), and an adversary A, we define the context-hiding security experiment ExptchA,S,ΠHS
(λ, b)

as follows:

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 27

1. At the start of the experiment, A submits a public key pk, a verification key vk, and two

message-signature pairs (x̃0, σ̃0), (x̃1, σ̃1) where x̃0, x̃1 ∈ X and x̃0 6= x̃1 to the challenger.

2. The challenger parses the signatures as σ̃0 = (σ̃pk
0 , σ̃

m
0) and σ̃1 = (σ̃pk

1 , σ̃
m
1), and checks that

x̃0 6= x̃1, σ̃pk
0 = σ̃pk

1 , and that Verify(pk, vk, x̃0, σ̃0) = 1 = Verify(pk, vk, x̃1, σ̃1). If this is not the

case, then the experiment halts with output 0. Otherwise, the challenger invokes the simulator

td← SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)).

3. The adversary A can then submit (adaptive) queries to the challenger where each query consists

of a public key pk′, a message x ∈ X , and a signature σ = (σpk, σm). For each query, the

challenger checks that Verify(pk′, vk, x, σ) = 1. If this is not the case, then the challenger ignores

the query and replies with ⊥. Otherwise, it proceeds as follows:

• If b = 0, the challenger evaluates σ∗ ← Hide
(
vk, x, (σpk, σm)

)
, and sends σ∗ to A.

• If b = 1, the challenger computes σ∗ ← SGen(pk′, vk, td, x, σpk). It provides σ∗ to A.

4. Finally, A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We say that a homomorphic signature scheme ΠHS satisfies statistical context-hiding if there exists an

efficient simulator S = (SExt,SGen) such that for all (computationally-unbounded) adversaries A,

∣∣Pr[ExptchA,S,ΠHS
(λ, 0) = 1]− Pr[ExptchA,S,ΠHS

(λ, 1) = 1]
∣∣ = negl(λ).

Compactness. The final property that we require from a homomorphic signature scheme is

compactness. Roughly speaking, compactness requires that given a message-signature pair (x,σ),

the size of the signature obtained from homomorphically evaluating a function C on σ depends only

on the size of the output message |C(x)| (and the security parameter) and is independent of the size

of the original message |x|.

Definition 3.10 (Compactness). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,Sign,

PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with mes-

sage space X , message length `, and function class C = {Cλ}λ∈N, where each Cλ is a collection of

Boolean circuits from X ` to X of depth at most d = d(λ). We say that ΠHS is compact if there exists a

universal polynomial poly(·) such that for all λ ∈ N, messages x ∈ X `, and functions C ∈ Cλ, and set-

ting pp← PrmsGen(1λ, 1`), (vk, sk)← KeyGen(1λ), σ ← Sign(pp, sk,x), and σ ← SigEval(C, pp,x,σ),

we have that |σ| ≤ poly(λ, d). In particular, the size of the evaluated signature |σ| depends only on

the depth of the circuit C, and not on the message length `.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 28

3.2.1 Selectively-Secure Homomorphic Signatures

In this section, we show that the [GVW15b] homomorphic signature construction is decomposable in

the sense of Definition 3.7 and in addition, satisfies our stronger notion of context-hiding (Defini-

tion 3.9). We start with a description of a simpler variant of the [GVW15b] construction that satisfies

selective unforgeability (Remark 3.6), and show that it satisfies context-hiding (against malicious

signers). Although it is possible to directly construct a homomorphic signature scheme that satisfies

adaptive security, the simpler variant better demonstrates the main ideas of the construction. In

Section 3.2.2, we show how to generically modify Construction 3.11 and show that it satisfies both

adaptive unforgeability and strong context-hiding. (Corollary 3.22).

Construction 3.11 (Selectively-Secure Homomorphic Signature [GVW15b, adapted]). Fix a security

parameter λ and a message length ` = poly(λ). Let C = {Cλ}λ∈N be a function class where

each Cλ is a collection of Boolean circuits of depth at most d = d(λ) from {0, 1}` to {0, 1}. In

our description, we use lattice trapdoors and the GSW homomorphic operations described in

Section 2.1. For lattice parameters n, m, q, and norm bounds βini, βeval, βhide we construct a

decomposable homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,

Hide,Verify,VerifyFresh,VerifyHide) with message space X = {0, 1}, message length `, and function

class C as follows:

• PrmsGen(1λ, 1`) → pp: On input the security parameter λ and the message length `, the

parameter-generation algorithm samples matrices V1, . . . ,V`
r←− Zn×mq . It sets pki = Vi for

i ∈ [`] and returns the public keys pp = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm

samples a lattice trapdoor (A, td)← TrapGen(1λ). It sets vk = A and sk = (A, td).

• Sign(pki, sk, xi) → σi: The signing algorithm computes σpk
i ← SignPK(pki, sk) and σm

i ←
SignM(pki, sk, xi, σ

pk
i) where the algorithms SignPK and SignM are defined as follows:

– SignPK(pki, sk)→ σpk
i : The SignPK algorithm outputs the empty string σpk

i = ε.

– SignM(pki, sk, xi, σ
pk
i)→ σm

i : On input a public key pki = Vi, a signing key sk = (A, td), a

message x ∈ {0, 1}, and the public signature component σpk
i , the SignM algorithm samples

a preimage Ui ← SamplePre(A,Vi − xi ·G, td) and outputs σm
i = Ui.

Finally, the signing algorithm outputs the signature σi = (σpk
i , σ

m
i).

• PrmsEval(C, pp′))→ pkC : On input a Boolean circuit C : {0, 1}` → {0, 1} and a collection of

public keys pp′ = (pk′1, . . . , pk′i) where pk′i = V′i for i ∈ [`], the parameter-evaluation algorithm

outputs the evaluated public key pkC = VC ← EvalPK(V′1, . . . ,V
′
`, C).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 29

• SigEval(C, pp′,x,σ) → σ: The signature-evaluation algorithm first parses σ = (σpk,σm).

Then, it computes σpk ← SigEvalPK(C, pp′,σpk) and σm ← SigEvalM(C, pp′,x,σ), where the

algorithms SigEvalPK and SigEvalM are defined as follows:

– SigEvalPK(C, pp′,σpk)→ σpk: The SigEvalPK algorithm outputs the empty string σpk = ε.

– SigEvalM(C, pp′,x,σ) → σm: On input a Boolean circuit C : {0, 1}` → {0, 1}, a set

of public keys pp′ = (pk′1, . . . , pk′`), messages x = (x1, . . . , x`), and signatures σ =

(σ1, . . . , σ`), the SigEvalM algorithm first parses pk′i = V′i and σi = (σpk
i , σ

m
i) = (ε,Ui) for

all i ∈ [`]. Then, it outputs σm = UC ← EvalU
(
(V′1, x1,U1), . . . , (V′`, x`,U`), C

)
.

Finally, it outputs the signature σ = (σpk, σm).

• Hide(vk, x, σ)→ σ∗: On input a verification key vk = A, a message x ∈ {0, 1}, and a signature

σ = (ε,U), the hide algorithm samples and outputs a signature

σ∗ = u← SampleRight(A,AU + (2x− 1) ·G,U,0, βhide).

• Verify(pk, vk, x, σ)→ {0, 1}: On input a public key pk = V, a verification key vk = A, a message

x ∈ X , and a signature σ = (ε,U), the verification algorithm first checks if A is a rank-n

matrix and outputs 0 if this is the case. Then, it outputs 1 if ‖U‖ ≤ βeval and AU + x ·G = V

and 0 otherwise.

• VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk = V, a verification key vk = A,

a message x ∈ X and a signature σ = (ε,U), the fresh verification algorithm first checks if

A is a rank-n matrix and outputs 0 if this is the case. Then, it outputs 1 if ‖U‖ ≤ βini and

AU + x ·G = V and 0 otherwise.

• VerifyHide(pkC , vk, x, σ∗)→ {0, 1}: On input a public key pkC = V, a verification key vk = A,

a message x ∈ {0, 1}, and a signature σ∗ = u, the hide-verification algorithm first checks if A

is a rank-n matrix and outputs 0 if this is the case. Then, it checks that ‖u‖ ≤ βhide and that

[A | V + (x− 1) ·G] · u = 0, and accepts if both of these conditions hold. Otherwise, it rejects.

We now state and prove the correctness and security theorems for Construction 3.11.

Theorem 3.12 (Correctness). Fix a security parameter λ, lattice parameters n,m, q, norm bounds

βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q), βini ≥ O(n
√

log q), βeval ≥ βini · 2Õ(d),

βhide ≥ βeval ·ω(m
√

logm), and q ≥ βhide. Then, ΠHS from Construction 3.11 satisfies signing correct-

ness (Definition 3.2), evaluation correctness (Definition 3.3), and hiding correctness (Definition 3.4).

Proof. Signing correctness follows from Theorem 2.3, evaluation correctness follows from Theorem 2.5,

and hiding correctness follows from Theorem 2.4.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 30

Theorem 3.13 (Unforgeability). Fix a security parameter λ, lattice parameters n,m, q, norm bounds

βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q). Then, under the SIS(n,m, q, βeval)

assumption, ΠHS in Construction 3.11 satisfies selective unforgeability (Definition 3.5, Remark 3.6).

Proof. Follows from [GVW15b, §6].

Theorem 3.14 (Context-Hiding). Fix a security parameter λ, lattice parameters n,m, q, norm

bounds βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q), βhide ≥ 2 · βeval · ω(m
√

logm),

and q ≥ βhide. Then, ΠHS in Construction 3.11 satisfies context-hiding security (Definition 3.9).

Proof of Theorem 3.14. We construct a simulator S = (SExt,SGen) as follows:

• SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)): On input a public key pk, a verification key vk, and two message-

signature pairs (x̃0, σ̃0), (x̃1, σ̃1), the simulator first parses σ̃0 = (ε, Ũ0), σ̃1 = (ε, Ũ1), and then

outputs the simulation trapdoor td = Ũ0 − Ũ1.

• SGen(pk, vk, td, x, σpk): On input a public key pk = V, a verification key vk = A, a trapdoor

td = Ũ, a message x ∈ {0, 1}, and a message-independent component σpk, the simulator

computes u← SampleLeft(A,V + (x− 1) ·G, Ũ,0, β∗), and returns u.

We now show that for any adversary A, the experiments ExptchA,S,ΠHS
(λ, 0) and ExptchA,S,ΠHS

(λ, 1) are

statistically indistinguishable. Consider the context-hiding experiment:

• Let pk = V, vk = A, and (x̃0, σ̃0), (x̃1, σ̃1) be the values that A sends to the challenger. Write

σ̃0 = (ε, Ũ0) and σ̃1 = (ε, Ũ1). Without loss of generality, we can assume that A is a rank-n

matrix, x̃0 6= x̃1, and Verify(pk, vk, x̃0, σ̃0) = 1 = Verify(pk, vk, x̃1, σ̃1). Otherwise, the output

is always 0 in both experiments. Since x̃0, x̃1 ∈ {0, 1} and x̃0 6= x̃1, we can assume without

loss of generality that x̃0 = 0 and x̃1 = 1. Moreover, since σ̃0 and σ̃1 are valid signatures,∥∥Ũ0

∥∥,∥∥Ũ1

∥∥ ≤ βeval. This means that Ũ = Ũ0 − Ũ1 has bounded norm
∥∥Ũ∥∥ ≤ 2 · βeval, and

moreover, that AŨ = G, so td = Ũ is a G-trapdoor for A (Theorem 2.4).

• Let pk′ = V′, x ∈ {0, 1}, σ = (ε,U) be a query that A makes to the challenger. If AU+x ·G 6=
V′ or ‖U‖ > βeval, then the challenger ignores the query (and replies with⊥) in both experiments.

Therefore, assume that AU + x ·G = V′ and ‖U‖ ≤ βeval. Then the challenger proceeds as

follows:

– In ExptchA,S,ΠHS
(λ, 0), the challenger’s response is u ← SampleRight(A,AU + (2x − 1) ·

G,U,0, βhide).

– In ExptchA,S,ΠHS
(λ, 1), the challenger responds with u ← SGen(pk′, vk, td, x, σpk), which is

equivalent to u← SampleLeft(A,V′ + (x− 1) ·G, Ũ,0, βhide).

Since V′+(x−1)·G = AU+(2x−1)·G, by Theorem 2.4, as long as max(‖U‖ ,
∥∥Ũ∥∥)·ω(m

√
logm) ≤

βhide ≤ q the challenger’s responses to all of the queries in the two experiments are statistically

indistinguishable. From above,
∥∥Ũ∥∥ ≤ 2 · βeval and ‖U‖ ≤ βeval, and the claim follows.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 31

Remark 3.15 (Weak Context-Hiding). Theorem 3.14 implies that the homomorphic signature scheme

ΠHS in Construction 3.11 also satisfies context-hiding security against honest signers (Definition 3.8).

Specifically, Theorem 3.14 guarantees the existence of a simulator S = (SExt,SGen) that can be used

to simulate the signatures generated by the Hide algorithm. In the context-hiding security game

against honest signers, the signing key sk and verification key vk are generated honestly, and the

context-hiding simulator Shon is given both vk and sk. Given sk, the simulator Shon can choose an

arbitrary public key pk = V
r←− Zn×mq , and construct honest signatures σ̃0 ← Sign(pk, sk, 0) and

σ̃1 ← Sign(pk, sk, 1). Simulator Shon can then invoke SExt on (pk, vk, (0, σ̃0), (1, σ̃1)) to obtain the

simulation trapdoor td, and then use SGen to simulate the Hide algorithm. Thus, we can construct

a simulator Shon for the weak context-hiding security game using the simulator S guaranteed by

Theorem 3.14.

Theorem 3.16 (Compactness). Fix a security parameter λ, lattice parameters n,m, q, norm bounds

βini, βeval, βhide, and a depth bound d. Suppose n = poly(λ), m = O(n log q), and q = 2poly(λ,d). Then,

ΠHS in Construction 3.11 satisfies compactness (Definition 3.10).

Proof. Follows from Theorem 2.5. Specifically, the signature output by SigEval is a matrix U ∈ Zm×mq

which has size m2 log q = poly(λ, d).

3.2.2 From Selective Security to Adaptive Security

In this section, we show how to transform a homomorphic signature scheme that satisfies only

selective unforgeability to full unforgeability (Definition 3.5). Although the transformation follows

the construction of [GVW15b], we give the full construction to show that the resulting construction

still satisfies our strengthened notion of context-hiding (Definition 3.9).

Construction 3.17 (Adaptively-Secure Homomorphic Signature [GVW15b, adapted]). Fix a secu-

rity parameter λ and a message length ` ∈ N. Let C = {Cλ}λ∈N be a function class where each Cλ is

a collection of Boolean circuits (on `-bit inputs). Then, define the following quantities:

• First, let ΠHS,in = (PrmsGenin,KeyGenin,Signin,PrmsEvalin,SigEvalin,Hidein,Verifyin,VerifyFreshin,

VerifyHidein) be a selectively-secure decomposable homomorphic signature scheme with message

space {0, 1}, message length ` ∈ N, and function class C = {Cλ}λ∈N. This is the “inner”

homomorphic signature scheme that will be used to sign messages x ∈ {0, 1}`. For simplicity,

assume also that the signatures in ΠHS,in have an “empty” message-independent component.4

• Let ρ be the length of the public keys in ΠHS,in. For a circuit C ∈ Cλ, let FC be the function that

maps ppin 7→ PrmsEvalin(C, ppin), where ppin are the public parameters output by PrmsGenin.

4This restriction simplifies the presentation of our construction, and is satisfied by Construction 3.11. It is straightfor-
ward (but notationally cumbersome) to modify this generic construction to apply to the setting where the signatures
in ΠHS,in have a non-empty message-independent component.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 32

Let C′ = {C′λ}λ∈N be a function class where each function class C′λ contains all functions FC for

C ∈ Cλ.

• Finally, let ΠHS,out = (PrmsGenout,KeyGenout,Signout,PrmsEvalout,SigEvalout,Hideout,Verifyout,

VerifyFreshout,VerifyHideout) be a selectively-secure homomorphic signature scheme with message

space {0, 1}, message length ρ ∈ N, and function class C′ = {C′λ}λ∈N. This is the “outer”

homomorphic signature scheme that will be used to sign the public keys of ΠHS,in.

We construct a homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,

Hide,Verify,VerifyFresh,VerifyHide) for message space {0, 1}, message length `, and function class C
as follows:

• PrmsGen(1λ, 1`)→ pp: On input the security parameter λ and message length `, the parameter-

generation algorithm generates independent public parameters ppout,i ← PrmsGenout(1
λ, 1ρ) for

i ∈ [`]. Then, it sets pki = ppout,i for i ∈ [`] and returns pp = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm

generates two pairs of keys (vkin, skin)← KeyGenin(1λ), (vkout, skout)← KeyGenout(1
λ), and sets

vk = (vkin, vkout) and sk = (skin, skout).

• Sign(pki, sk, xi) → σi: On input a public key pki = ppout,i, a signing key sk = (skin, skout),

and a message xi ∈ {0, 1}, the signing algorithm computes σpk
i ← SignPK(pki, sk) and σm

i ←
SignM(pki, sk, xi, σ

pk
i) where the algorithms SignPK and SignM are defined as follows:

– SignPK(pki, sk): The message-independent signing algorithm first samples a fresh pub-

lic key pkin,i ← PrmsGenin(1
λ, 11) for the inner homomorphic signature scheme.5 By

assumption, pkin,i is a bit-string of length ρ. Then, the algorithm signs the public key

pkin,i using the outer signature scheme: σout,i ← Signout(ppout,i, skout, pkin,i). It returns

σpk
i = (σout,i, pkin,i).

– SignM(pki, sk, xi, σ
pk): The message-dependent signing algorithm parses σpk = (σout,i, pkin,i),

and signs the message using the inner signature scheme: σin,i ← Signin(pkin,i, skin, xi). It

outputs σm
i = σin,i.

Finally, the signing algorithm outputs σi = (σpk
i , σ

m
i).

• PrmsEval(C, pp)→ pkC : On input a circuit C ∈ C and public parameters pp = (pk1, . . . , pk`),

the parameter-evaluation algorithm parses pki = ppout,i for each i ∈ [`]. It outputs pkC ←
PrmsEvalout(FC , (ppout,1, . . . , ppout,`)).

5Note that we are implicitly assuming here that the public keys pkin,i for each i ∈ [`] can be generated independently

of one another: namely, that the output distribution of PrmsGenin(1λ, 1`) is identical to ` independent invocations of
PrmsGenin(1λ, 11). This property is satisfied by the homomorphic signature scheme in Construction 3.11.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 33

• SigEval(C, pp′,x,σ) → σ: On input a circuit C ∈ C, public parameters pp′ = (pk′1, . . . , pk′`),

a message x ∈ {0, 1}` and a signature σ = (σpk,σm), the signature-evaluation algorithm

parses pk′i = pp′out,i for all i ∈ [`]. Then, it computes σpk ← SigEvalPK(C, pp′,σpk) and

σm ← SigEvalM(C, pp′,x,σ), where SigEvalPK and SigEvalM are defined as follows:

– SigEvalPK(C, pp,σpk): The message-independent signature-evaluation algorithm first

parses σpk = ((σout,1, pkin,1), . . . , (σout,`, pkin,`)). It then computes

σout,C ← SigEvalout(FC , (pp′out,1, . . . , pp′out,`), (pkin,1, . . . , pkin,`), (σout,1, . . . ,σout,`)),

and pkin,C ← PrmsEvalin(C, (pkin,1, . . . , pkin,`)). Finally, it returns σpk = (σout,C , pkin,C).

– SigEvalM(C, pp′,x,σ): The message-dependent signature-evaluation algorithm writes σ

as (σpk,σm), where σpk = ((σout,1, pkin,1), . . . , (σout,`, pkin,`)), and σm = (σin,1, . . . , σin,`).

It outputs the signature σm ← SigEvalin(C, (pkin,1, . . . , pkin,`),x, (σin,1, . . . , σin,`)).

Finally, the signature-evaluation algorithm outputs σ = (σpk, σm).

• Hide(vk, x, σ) → σ∗: On input a verification key vk = (vkin, vkout), a message x ∈ {0, 1},
and a signature σ = (σpk, σm), the hide algorithm parses σm = σin. It computes σ∗in ←
Hidein(vkin, x, σin), and returns σ∗ = (σpk, σ∗in).

• Verify(pk, vk, x, σ) → {0, 1}: On input a public key pk = ppout, a verification key vk =

(vkin, vkout), a message x ∈ {0, 1}, and a signature σ = (σpk, σm), the verification algorithm

parses σpk = (σout, pkin), σ
m = σin, and accepts if

Verifyout(ppout, vkout, pkin,σout) = 1 and Verifyin(pkin, vkin, x, σin) = 1.

Otherwise, it rejects.

• VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk = ppout, a verification key vk =

(vkin, vkout), a message x ∈ {0, 1}, and signature σ = (σpk, σm), the fresh verification algorithm

parses σpk = (σout, pkin), σ
m = σin, and accepts if

VerifyFreshout(ppout, vkout, pkin,σout) = 1 and VerifyFreshin(pkin, vkin, x, σin) = 1.

Otherwise, it rejects.

• VerifyHide(pk, vk, x, σ∗) → {0, 1}: On input a public key pk = ppout, a verification key vk =

(vkin, vkout), a message x ∈ {0, 1}, and signature σ∗ = (σpk, σm), the hide verification algorithm

parses σpk = (σout, pkin), σ
m = σin, and accepts if

Verifyout(ppout, vkout, pkin,σout) = 1 and VerifyHidein(pkin, vkin, x, σin) = 1.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 34

Otherwise, it rejects.

Theorem 3.18 (Correctness). Suppose ΠHS,in and ΠHS,out satisfy signing correctness (Definition 3.2),

evaluation correctness (Definition 3.3), and hiding correctness (Definition 3.4). Then, Construc-

tion 3.17 satisfies signing correctness, evaluation correctness, and hiding correctness.

Proof. Follows by construction.

Theorem 3.19 (Unforgeability). Suppose ΠHS,in and ΠHS,out satisfy selective-unforgeability (Defini-

tion 3.5). Then, Construction 3.17 satisfies unforgeability (Definition 3.3).

Proof. Follows from [GVW15b, §4].

Theorem 3.20 (Context-Hiding). Suppose ΠHS,in satisfies context-hiding (Definition 3.9). Then,

Construction 3.17 satisfies context-hiding.

Proof. Let Sin = (SExtin ,SGenin) be the context-hiding simulator for ΠHS,in. We construct a context-hiding

simulator S = (SExt,SGen) for ΠHS as follows:

• SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)): On input a public key pk, a verification key vk = (vkin, vkout),

and two message-signature pairs (x̃0, σ̃0), (x̃1, σ̃1), the simulator first parses σ̃0 = (σ̃pk
0 , σ̃

m
0), and

σ̃1 = (σ̃pk
1 , σ̃

m
1). Then, it parses σ̃pk

0 = (σout, pkin) = σ̃pk
1 , σ̃m

0 = σ̃in,0, and σ̃m
1 = σ̃in,1. Finally, it

outputs the trapdoor td← SExtin (pkin, vkin, (x̃0, σ̃in,0), (x̃1, σ̃in,1)).

• SGen(pk, vk, td, x, σpk): On input a public key pk, a verification key vk = (vkin, vkout), a trapdoor

td, a message x ∈ {0, 1}, and a message-independent signature component σpk = (σout, pkin),

the simulator computes σ∗in ← SGenin (pkin, vkin, td, x, ε) and outputs σ∗ ← (σpk, σ∗in). Here, we rely

on the assumption that the signatures in ΠHS,in have an empty message-independent component.

We now show that if ΠHS,in is context-hiding, then experiments ExptchA,S,ΠHS
(λ, 0) and ExptchA,S,ΠHS

(λ, 1)

are indistinguishable for any unbounded adversary A.

• Let pk be the public key, vk = (vkin, vkout) be the verification key, and (x̃0, σ̃0), (x̃1, σ̃1) be the

message-signature pairs that A submits to the context-hiding challenger at the beginning of the

experiment. Write σ̃0 = (σ̃pk
0 , σ̃

m
0) and σ̃1 = (σ̃pk

1 , σ̃
m
1), where σ̃m

0 = σ̃in,0 and σ̃m
1 = σ̃in,1 Without

loss of generality, we can assume that x̃0 6= x̃1, σ̃pk
0 = σ̃pk

1 , and that Verifyin(pkin, vkin, x̃0, σ̃in,0) =

1 = Verifyin(pkin, vkin, x̃1, σ̃in,1). Otherwise, the output of the experiment is always 0, and

the adversary’s distinguishing advantage is correspondingly 0. Next, in ExptchA,S,ΠHS
(λ, 1), the

challenger constructs a trapdoor td by invoking td← SExtin (pkin, vkin, (x̃0, σ̃in,0), (x̃1, σ̃in,1)).

• Let pk′, x ∈ {0, 1}, σ = (σpk, σm) be a query A makes to the challenger. If Verify(pk′, vk, x, σ) =

1, then the challenger proceeds as follows:

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 35

– In ExptchA,S,ΠHS
(λ, 0), the challenger parses σm = σin, and computes σ∗in ← Hidein(vkin, x, σin).

It replies to the adversary with σ∗ ← (σpk, σ∗in).

– In ExptchA,S,ΠHS
(λ, 1), the challenger parses σpk = (σout, pkin), and computes the signature

σ∗in ← SGen(pkin, vkin, td, x, ε). It returns σ∗ = (σpk, σ∗in).

Since Verify(pkin, vkin, x̃0, σ̃in,0) = 1 = Verify(pkin, vkin, x̃1, σ̃in,1), and σ̃pk
0 = σ̃pk

1 , we have that td is a

valid trapdoor for SExtin . Since ΠHS,in is context-hiding, the message-dependent component σ∗in of the

final signature σ∗ generated by SGen in ExptchA,S,ΠHS
(λ, 1) is statistically indistinguishable from σ∗in

generated by the challenger in ExptchA,S,ΠHS
(λ, 0). The claim follows.

Theorem 3.21 (Compactness). Fix a security parameter λ. Suppose ΠHS,in and ΠHS,out satisfy

compactness (Definition 3.10), and moreover, the size of a homomorphically-evaluated public key

output by PrmsEvalout(C, ·) is poly(λ, d), where d is a bound on the depth of the circuit C. Then,

Construction 3.17 satisfies compactness.

Proof. Follows immediately by construction. Specifically, the signature output by SigEval consists of

compact signatures output by SigEvalout and SigEvalin, and a homomorphically-evaluated public key

output by PrmsEvalout. Therefore, the size of the signatures depend only on |C(x)| and is independent

of |x|.

Instantiating the construction. We note that both ΠHS,in and ΠHS,out can be instantiated by

Construction 3.11 in Section 3.2. In particular, Construction 3.11 satisfies the additional compactness

requirement on the size of the public keys needed in Theorem 3.21. This yields the following corollary:

Corollary 3.22 (Adaptively-Secure Homomorphic Signatures). Fix a security parameter λ and

a message length ` = poly(λ). Let C = {Cλ}λ∈N be a function class where Cλ consists of Boolean

circuits of depth up to d = d(λ) on `-bit inputs. Then, under the SIS assumption, there exists a homo-

morphic signature scheme ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,

VerifyHide) with message space {0, 1}, message length `, and function class C that satisfies adaptive

unforgeability (Definition 3.5), context-hiding (Definition 3.9), and compactness (Definition 3.10).

3.3 Preprocessing NIZKs from Homomorphic Signatures

In this section, we begin by formally defining the notion of a non-interactive zero-knowledge argument

in the preprocessing model (i.e., “preprocessing NIZKs”). This notion was first introduced by

De Santis et al. [DMP88], who also gave the first candidate construction of a preprocessing NIZK

from one-way functions. Multiple works have since proposed additional candidates of preprocessing

NIZKs from one-way functions [LS90, Dam92, IKOS07] or oblivious transfer [KMO89]. However,

all of these constructions are single-theorem: the proving or verification key cannot be reused for

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 36

multiple theorems without compromising either soundness or zero-knowledge. We provide a more

detailed discussion of existing preprocessing NIZK constructions in Remark 3.33.

Definition 3.23 (NIZK Arguments in the Preprocessing Model). Let R be an NP relation, and let

L be its corresponding language. A non-interactive zero-knowledge (NIZK) argument for L in the

preprocessing model consists of a tuple of three algorithms ΠPPNIZK = (Setup,Prove,Verify) with the

following properties:

• Setup(1λ)→ (kP , kV): On input the security parameter λ, the setup algorithm (implemented

in a “preprocessing” step) outputs a proving key kP and a verification key kV .

• Prove(kP ,x,w) → π: On input the proving key kP , a statement x, and a witness w, the

prover’s algorithm outputs a proof π.

• Verify(kV ,x, π)→ {0, 1}: On input the verification key kV , a statement x, and a proof π, the

verifier either accepts (with output 1) or rejects (with output 0).

Moreover, ΠPPNIZK should satisfy the following properties:

• Completeness: For all x,w where R(x,w) = 1, if we take (kP , kV)← Setup(1λ);

Pr[π ← Prove(kP ,x,w) : Verify(kV ,x, π) = 1] = 1.

• Soundness: For all efficient adversaries A, if we take (kP , kV)← Setup(1λ), then

Pr[(x, π)← AVerify(kV ,·,·)(kP) : x /∈ L ∧ Verify(kV ,x, π) = 1] = negl(λ).

• Zero-Knowledge: For all efficient adversariesA, there exists an efficient simulator S = (S1,S2)

such that if we take (kP , kV)← Setup(1λ) and τV ← S1(1λ, kV), we have that∣∣∣Pr[AO0(kP ,·,·)(kV) = 1]− Pr[AO1(kV ,τV ,·,·)(kV) = 1]
∣∣∣ = negl(λ),

where the oracle O0(kP ,x,w) outputs Prove(kP ,x,w) if R(x,w) = 1 and ⊥ otherwise, and

the oracle O1(kV , τV ,x,w) outputs S2(kV , τV ,x) if R(x,w) = 1 and ⊥ otherwise.

Remark 3.24 (Comparison to NIZKs in the CRS Model). Our zero-knowledge definition in Defini-

tion 3.23 does not allow the simulator to choose the verification state kV . We can also consider a

slightly weaker notion of zero-knowledge where the simulator also chooses the verification state:

• Zero-Knowledge: For all efficient adversariesA, there exists an efficient simulator S = (S1,S2)

such that if we take (kP , kV)← Setup(1λ) and (k̃V , τ̃V)← S1(1λ), we have that∣∣∣Pr[AProve(kP ,·,·)(kV) = 1]− Pr[AO(k̃V ,τ̃V ,·,·)(k̃V) = 1]
∣∣∣ = negl(λ),

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 37

where the oracle O(k̃V , τ̃V ,x,w) outputs S2(k̃V , τ̃V ,x) if R(x,w) = 1 and ⊥ otherwise.

We note that this definition of zero-knowledge captures the standard notion of NIZK arguments

in the common reference string (CRS) model. Specifically, in the CRS model, the Setup algorithm

outputs a single CRS σ. The proving and verification keys are both defined to be σ.

Preprocessing NIZKs from homomorphic signatures. As described in Section 3.1, we can

combine a homomorphic signature scheme (for general circuits) with any CPA-secure symmetric

encryption scheme to obtain a preprocessing NIZK for general NP languages. We give our construction

and security analysis below. Combining the lattice-based construction of homomorphic signatures

(Construction 3.11) with Fact 2.6, we obtain the first multi-theorem preprocessing NIZK from standard

lattice assumptions (Corollary 3.27). In Remark 3.28, we note that a variant of Construction 3.25

also gives a publicly-verifiable preprocessing NIZK.

Construction 3.25 (Preprocessing NIZKs from Homomorphic Signatures). Fix a security parameter

λ, and define the following quantities:

• Let R : {0, 1}n × {0, 1}m → {0, 1} be an NP relation and L be its corresponding language.

• Let Πenc = (SE.KeyGen,SE.Encrypt,SE.Decrypt) be a symmetric encryption scheme with mes-

sage space {0, 1}m and secret-key space {0, 1}ρ.

• For a message x ∈ {0, 1}n and ciphertext ct from the ciphertext space of Πenc, define the

function fx,ct(kSE) := R(x,SE.Decrypt(kSE, ct)).

• Let ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a

homomorphic signature scheme with message space {0, 1}, message length ρ, and function class

C that includes all functions of the form fx,ct.

We construct a preprocessing NIZK argument ΠNIZK = (Setup,Prove,Verify) as follows:

• Setup(1λ) → (kP , kV): First, generate a secret key kSE ← SE.KeyGen(1λ). Next, generate

ppHS ← PrmsGen(1λ, 1ρ) and a signing-verification key-pair (vkHS, skHS)← KeyGen(1λ). Next,

sign the symmetric key σk ← Sign(ppHS, skHS, kSE) and output

kP = (kSE, ppHS, vkHS,σk) and kV = (ppHS, vkHS, skHS).

• Prove(kP ,x,w)→ π: If R(x,w) = 0, output ⊥. Otherwise, parse kP = (kSE, ppHS, vkHS,σk).

Let ct ← SE.Encrypt(kSE,w), and Cx,ct be the circuit that computes the function fx,ct de-

fined above. Compute the signature σ′x,ct ← SigEval(Cx,ct, ppHS, kSE,σk) and then σ∗x,ct ←
Hide(vkHS, 1, σ

′
x,ct). It outputs the proof π = (ct, σ∗x,ct).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 38

• Verify(kV ,x, π) → {0, 1}: Parse kV = (ppHS, vkHS, skHS) and π = (ct, σ∗x,ct). Let Cx,ct be the

circuit that computes fx,ct defined above. Then, compute pkx,ct ← PrmsEval(Cx,ct, ppHS), and

output VerifyHide(pkx,ct, vkHS, 1, σ
∗
x,ct).

Theorem 3.26 (Preprocessing NIZKs from Homomorphic Signatures). Let λ be a security parameter

and R be an NP relation (and let L be its corresponding language). Let ΠNIZK be the NIZK argument

in the preprocessing model from Construction 3.25 (instantiated with a symmetric encryption scheme

Πenc and a homomorphic signature scheme ΠHS). If Πenc is CPA-secure and ΠHS satisfies evaluation

correctness (Definition 3.3), hiding correctness (Definition 3.4), selective unforgeability (Definition 3.5,

Remark 3.6), and context-hiding against honest signers (Definition 3.8), then ΠNIZK is a NIZK

argument for R in the preprocessing model.

We give the proof of Theorem 3.26 in Section 3.6.1 at the end of this chapter. Combining Con-

struction 3.25 with the homomorphic signature construction ΠHS from Construction 3.11 and any

LWE-based CPA-secure encryption scheme (Fact 2.6), we have the following corollary.

Corollary 3.27 (Preprocessing NIZKs from Lattices). Under the LWE assumption, there exists a

multi-theorem preprocessing NIZK for NP.

Remark 3.28 (Publicly-Verifiable Preprocessing NIZK). Observe that the verification algorithm in

Construction 3.25 does not depend on the signing key skHS of the signature scheme. Thus, we can

consider a variant of Construction 3.25 where the verification key does not contain skHS, and thus, the

verification state can be made public. This does not compromise soundness because the prover’s state

already includes the other components of the verification key. However, this publicly-verifiable version

of the scheme does not satisfy zero-knowledge according to the strong notion of zero-knowledge in

Definition 3.23. This is because without the signing key, the simulator is no longer able to simulate

the signatures in the simulated proofs. However, if we consider the weaker notion of zero-knowledge

from Remark 3.24 where the simulator chooses the verification key for the preprocessing NIZK,

then the publicly-verifiable version of the scheme is provably secure. Notably, when the simulator

constructs the verification key, it also chooses (and stores) the signing key for the homomorphic

signature scheme. This enables the simulator to simulate signatures when generating the proofs. The

resulting construction is a publicly-verifiable preprocessing NIZK (i.e., a “designated-prover” NIZK)

Remark 3.29 (Argument Length Approaching the Witness Size). The proofs in our preprocessing

NIZK argument from Construction 3.25 consists of an encryption ct of the witness and a homomorphic

signature σ with respect to a circuit C that implements the decryption function of the encryption

scheme and the NP relation R. Suppose the relation R can be implemented by a Boolean circuit

of depth d. Using CPA-secure encryption with additive overhead (Fact 2.6), |ct| = |w|+ poly(λ),

where |w| is the length of a witness to R. If the homomorphic signature is compact (Definition 3.10),

then |σ| = poly(λ, d′) where d′ is a bound on the depth of the circuit C. Since the decryption

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 39

function can be implemented by a circuit of depth poly(λ), we have that d′ = poly(d, λ). This means

that the overall size of the arguments in our candidate is |w| + poly(λ, d). The overhead (on top

of the NP witness) is additive in the security parameter and the depth of the NP relation. This

is asymptotically shorter than the length of the proofs in NIZK constructions based on trapdoor

permutations [FLS90, DDO+01] or pairings [GOS06, Gro10, GOS12], where the dependence is on the

size of the circuit computing R, and the overhead is multiplicative in the security parameter. Thus,

our NIZK candidate gives a construction where the argument size approaches the witness length.

Previously, Gentry et al. [GGI+15] gave a generic way to achieve these asymptotics by combining

NIZKs with FHE. The advantage of our approach is that we only rely on lattice assumptions, while

the Gentry et al. [GGI+15] compiler additionally assumes the existence of a NIZK scheme (which

prior to this work, did not follow from standard lattice assumptions).

Remark 3.30 (Arguments with Common Witness). The proofs in our preprocessing NIZK arguments

from Construction 3.25 consists of an encryption of the witness together with a signature. This

means that if the prover uses the same witness to prove multiple (distinct) statements, then the

prover does not need to include a fresh encryption of its witness with every proof. It can send the

encrypted witness once and then give multiple signatures with respect to the same encrypted witness.

In particular, if a prover uses the same witness w to prove m statements, the total size of the proof is

|w|+m ·poly(λ, d), where d is a bound on the depth of the (possibly different) NP relation associated

with the m statements. Effectively, the additional overhead of proving multiple statements using a

common witness is independent of the witness size, and thus, the cost of transmitting the encrypted

witness can be amortized across multiple proofs. We leverage this observation to implement a succinct

version of the classic Goldreich-Micali-Wigderson compiler [GMW86, GMW87] in Section 3.5.1.

We note that this amortization is also possible if we first apply the FHE-based transformation of

Gentry et al. [GGI+15] to any NIZK construction. In our case, our NIZK candidate naturally satisfies

this property.

Remark 3.31 (Preprocessing NIZKs from Homomorphic MACs). We note that we can also in-

stantiate Construction 3.25 with a homomorphic MAC [GW13, CF13, CFGN14, Cat14] to obtain

a multi-theorem preprocessing NIZK. Although the resulting NIZK will not be publicly verifiable

(Remark 3.28), a homomorphic MAC is a simpler cryptographic primitive that may be easier to

construct, and thus, enable new constructions of multi-theorem preprocessing NIZKs from weaker

assumptions. Many existing constructions of homomorphic MACs do not satisfy all of the necessary

properties: the lattice-based construction in [GW13] is only secure against adversaries that can make

a bounded number of verification queries, while the construction based on one-way functions in [CF13]

do not provide context-hiding. The construction based on the `-Diffie-Hellman inversion assump-

tion [CF13, CFGN14] gives a context-hiding homomorphic MAC for bounded-degree polynomials

(which suffices for verifying NC1 computations)—here, ` = poly(λ) is a parameter that scales with

the degree of the computation being verified. Together with a group-based PRF with evaluation in

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 40

NC1 (e.g., the Naor-Reingold PRF [NR97]), we can use Construction 3.25 to obtain a preprocessing

NIZK for general NP languages from the `-Diffie-Hellman inversion assumption.6 We leave it as an

interesting open problem to build context-hiding homomorphic MACs that suffice for preprocessing

NIZKs from weaker (and static) cryptographic assumptions (e.g., the DDH assumption).

Remark 3.32 (Preprocessing NIZK Proofs from Extractable Homomorphic Commitments). Con-

struction 3.25 gives a NIZK argument in the preprocessing model. This is because in the proof of

Theorem 3.26, soundness of the preprocessing NIZK reduces to computational unforgeability of the

underlying homomorphic signature scheme. We can modify Construction 3.25 to obtain a NIZK

proof by substituting a context-hiding statistically-binding homomorphic commitment in place of the

homomorphic signature. This means that the homomorphic commitment scheme satisfies “statistical

unforgeability:” a computationally-unbounded adversary cannot take a commitment to a message

x and open it to a commitment on any value y 6= f(x) with respect to the function f . Then, the

resulting preprocessing NIZK achieves statistical soundness. We can instantiate the statistically-

binding homomorphic commitment using the extractable homomorphic trapdoor function from

Gorbunov et al. [GVW15b, Appendix B]. The specific construction is a variant of the Gorbunov et al.

homomorphic signature scheme (Construction 3.11), where the public verification key vk = A is

chosen to be a public key of the GSW fully homomorphic encryption [GSW13] scheme.

While homomorphic commitments enable a preprocessing NIZK proof system, it is unclear how

to efficiently implement the preprocessing step without relying on general-purpose MPC. In contrast,

instantiating Construction 3.25 using homomorphic signatures yields a scheme where the preprocessing

can be implemented directly using oblivious transfer (and does not require non-black-box use of the

homomorphic signature scheme). For this reason, we focus on preprocessing NIZK arguments from

homomorphic signatures in the remainder of this work.

Remark 3.33 (Preprocessing NIZKs from Weaker Assumptions). By definition, any NIZK argument

(or proof) system in the CRS model is also a preprocessing NIZK (according to the notion of

zero-knowledge from Remark 3.24). In the CRS model (and without random oracles), there are

several main families of assumptions known to imply NIZKs: number-theoretic conjectures such as

quadratic residuosity [BFM88, DMP87, BDMP91],7 trapdoor permutations [FLS90, DDO+01, Gro10],

pairings [GOS06, GOS12], or indistinguishability obfuscation [SW14]. In the designated-verifier

setting, constructions are also known from additively homomorphic encryption [CD04, DFN06,

CG15]. A number of works have also studied NIZKs in the preprocessing model, and several

constructions have been proposed from one-way functions [DMP88, LS90, Dam92, IKOS07] and

oblivious transfer [KMO89]. Since lattice-based assumptions imply one-way functions [Ajt96, Reg05],

6For this construction, we require that the NP relation can be implemented by an NC1 circuit. While any NP relation
can be represented as a depth-2 circuit (by including the intermediate wires of the NP circuit as part of the witness),
the length of the preprocessing NIZK is now proportional to the circuit size, rather than the size of the witness.

7Some of these schemes [BFM88, DMP87] are “bounded” in the sense that the prover can only prove a small number
of theorems whose total size is bounded by the length of the CRS.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 41

oblivious transfer [PVW08], and additively homomorphic encryption [Reg05], one might think that

we can already construct NIZKs in the preprocessing model from standard lattice assumptions. To

our knowledge, this is not the case:

• The NIZK constructions of [DMP88, LS90, Dam92] are single-theorem NIZKs, and in particular,

zero-knowledge does not hold if the prover uses the same proving key to prove multiple

statements. In these constructions, the proving key contains secret values, and each proof

reveals a subset of the prover’s secret values. As a result, the verifier can combine multiple

proofs together to learn additional information about each statement than it could have learned

had it only seen a single proof. Thus, the constructions in [DMP88, LS90, Dam92] do not

directly give a multi-theorem NIZK.

A natural question to ask is whether we can use the transformation by Feige et al. [FLS90]

who showed how to generically boost a NIZK (in the CRS model) with single-theorem zero-

knowledge to obtain a NIZK with multi-theorem zero-knowledge. The answer turns out to

be negative: the [FLS90] transformation critically relies on the fact that the prover algorithm

is publicly computable, or equivalently, that the prover algorithm does not depend on any

secrets.8 This is the case in the CRS model, since the prover algorithm depends only on the

CRS, but in the preprocessing model, the prover’s algorithm can depend on a (secret) proving

key kP . In the case of [DMP88, LS90, Dam92], the proving key must be kept private for

zero-knowledge. Consequently, the preprocessing NIZKs of [DMP88, LS90, Dam92] do not give

a general multi-theorem NIZK in the preprocessing model.

• The (preprocessing) NIZK constructions based on oblivious transfer [KMO89], the “MPC-in-

the-head” paradigm [IKOS07], and the ones based on homomorphic encryption [CD04, DFN06,

CG15] are designated-verifier, and in particular, are vulnerable to the “verifier rejection”

problem. Specifically, soundness is compromised if the prover can learn the verifier’s response

to multiple adaptively-chosen statements and proofs. For instance, in the case of [KMO89], an

oblivious transfer protocol is used to hide the verifier’s challenge bits; namely, the verifier’s

challenge message is fixed during the preprocessing, which means the verifier uses the same

challenge to verify every proof. A prover that has access to a proof-verification oracle is able to

reconstruct the verifier’s challenge bit-by-bit and compromise soundness of the resulting NIZK

construction. A similar approach is taken in the preprocessing NIZK construction of [IKOS07].

From the above discussion, the only candidates of general multi-theorem NIZKs in the preprocessing

model are the same as those in the CRS model. Thus, this work provides the first candidate

8At a high-level, the proof in [FLS90] proceeds in two steps: first show that single-theorem zero knowledge implies
single-theorem witness indistinguishability, and then that single-theorem witness indistinguishability implies multi-
theorem witness indistinguishability. The second step relies on a hybrid argument, which requires that it be possible
to publicly run the prover algorithm. This step does not go through if the prover algorithm takes in a secret state
unknown to the verifier.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 42

construction of a multi-theorem NIZK in the preprocessing model from standard lattice assumptions.

It remains an open problem to construct multi-theorem NIZKs from standard lattice assumptions in

the standard CRS model.

3.4 Blind Homomorphic Signatures

One limitation of preprocessing NIZKs is that we require a trusted setup to generate the proving and

verification keys. One solution is to have the prover and the verifier run a (malicious-secure) two-party

computation protocol (e.g., [LP07]) to generate the proving and verification keys. However, generic

MPC protocols are often costly and require making non-black-box use of the underlying homomorphic

signature scheme. In this section, we describe how this step can be efficiently implemented using a

new primitive called blind homomorphic signatures. We formalize our notion in the model of universal

composability [Can01], which we review in Section 3.4.1. This has the additional advantage of

allowing us to realize the stronger notion of a preprocessing universally-composable NIZK (UC-NIZK)

from standard lattice assumptions. We then define the ideal blind homomorphic functionality in the

UC framework in Section 3.4.2. Finally, we give our UC-NIZK construction and then describe several

applications to boosting the security of MPC in Section 3.5.

3.4.1 The Universal Composability Framework

In this section, we briefly review the universal composability (UC) framework. We refer to [Can01]

for the full details. The description here is adapted from the presentation in [MW16, Appendix A]

and [GS18, Appendix A]. Readers familiar with UC security can safely skip this section, and we

include it only for completeness.

The UC framework. We work in the standard universal composability framework with static

corruptions. The UC framework defines an environment Z (modeled as an efficient algorithm) that is

invoked on the security parameter 1λ and an auxiliary input z ∈ {0, 1}∗. The environment oversees

the protocol execution in one of two possible experiments:

• The ideal world execution involves dummy parties P̃1, . . . , P̃n, an ideal adversary S (also called

a “simulator”) who may corrupt some of the dummy parties, and an ideal functionality F .

• The real world execution involves parties P1, . . . , Pn (modeled as efficient algorithms) and a

real-world adversary A who may corrupt some of the parties.

In both cases, the environment Z chooses the inputs for the parties, receives the outputs from the

uncorrupted parties, and can interact with the real/ideal world adversaries during the protocol

execution. At the end of the protocol execution, the environment outputs a bit, which is defined to

be the output of the experiment. More precisely, we define the following random variables:

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 43

• Let idealF,S,Z(1λ, z) be the random variable for the output of the environment Z after interact-

ing with the ideal world execution with adversary S, the functionality F on security parameter

λ and input z. We write idealF,S,Z to denote the ensemble
{
idealF,S,Z(1λ, z)

}
λ∈N,z∈{0,1}∗ .

• Let realπ,A,Z(1λ, z) denote the random variable for the output of the environment Z after

interacting with the real world execution with adversary A and parties running a proto-

col π on security parameter λ and input z. We write realπ,A,Z to denote the ensemble{
realπ,A,Z(1λ, z)

}
λ∈N,z∈{0,1}∗ .

Definition 3.34. Fix n ∈ N, let F be an n-ary functionality, and π be an n-party protocol. We say

that the protocol π securely realizes F if for all efficient adversaries A, there exists an ideal adversary

S such that for all efficient environments Z, we have that

realπ,A,Z
c
≈ idealF,S,Z .

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual in

the standard model of execution, the parties have access to (multiple copies of) an ideal functionality.

More precisely, in a protocol execution in the F -hybrid model (where F denotes an ideal functionality),

the parties may give inputs and receive outputs from an unbounded number of copies of F . The

different copies of F are differentiated using a session ID (denoted sid). All of the inputs to each

copy of F and the outputs from each copy of F have the same session ID. We can correspondingly

extend Definition 3.34 to define the notion of a protocol π securely realizing a functionality G in the

F-hybrid model.

The universal composition operation. We now define the universal composition operation and

state the universal composition theorem. Let ρ be an F -hybrid protocol, and let Π be a protocol that

securely realizes F (Definition 3.34). The composed protocol ρΠ is the protocol where each invocation

of the ideal functionality F in ρ is replaced by a fresh invocation of the protocol Π. Specifically,

the first message sent to each copy of F (from any party) is replaced with the first message of Π

(generated with the same input and sid associated with the particular copy of F). Each output

value generated by a copy of Π is treated as a message received from the corresponding copy of F .

Note that if Π is a G-hybrid protocol (where G is an arbitrary ideal functionality), then ρΠ is also a

G-hybrid protocol.

The universal composition theorem. Let F be an ideal functionality. In its general form, the

universal composition theorem [Can01] states that if Π is a protocol that securely realizes F , then

for any F-hybrid protocol ρ that securely realizes G, the composed protocol ρΠ securely realizes G.

We state the formal theorem below:

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 44

Theorem 3.35 (Universal Composition [Can01, Corollary 15]). Let F ,G be ideal functionalities,

and let Π be a protocol that securely realizes F . If ρ securely realizes G in the F-hybrid model, then

the composed protocol ρΠ securely realizes G.

UC functionalities. We now review several UC functionalities: the ideal common reference string

(CRS), the oblivious transfer (OT), the zero-knowledge (ZK), and the general UC functionality that

we use in this chapter.

The CRS functionality. The common reference string (CRS) functionality FDcrs (parameterized

by an efficiently-sampleable distribution D) samples and outputs a string from D. The formal

specification from [CR03] is as follows:

Functionality FDcrs

The ideal CRS functionality FDcrs is parameterized by an efficiently-sampleable distribution D and runs

with parties P1, . . . , Pn and an ideal adversary S. Its behavior is as follows:

• Upon activation with session ID sid, the functionality samples σ ← D and sends (sid, σ) to the

adversary S.

• On receiving sid from a party Pi, send (sid, σ) to Pi.

Figure 3.1: The FDcrs functionality [CR03].

The OT functionality. The oblivious transfer (OT) functionality Fsot (parameterized by the

message length s) is a two-party functionality between a sender S and a receiver R. The sender’s

input consists of two messages x0,x1 ∈ {0, 1}s and the receiver’s input consists of a bit b ∈ {0, 1}.
At the end of the protocol execution, the receiver learns xb (and nothing else), and the sender learns

nothing. These requirements are captured by the OT functionality Fsot from [CLOS02] defined as

follows:

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 45

Functionality Fsot

The ideal OT functionality Fsot is parameterized by a message length s and runs with a sender S, a

receiver R, and an ideal adversary S. Its behavior is as follows:

• Upon receiving a message (sid, sender,x0,x1) from S where x0,x1 ∈ {0, 1}s, store the tuple

(sid,x0,x1).

• Upon receiving a message (sid, receiver, b) from R, check if a tuple of the form (sid, x̂0, x̂1) has

been stored for some pair of messages x̂0, x̂1. If so, send (sid, x̂b) to R, sid to the adversary, and

halt. If not, send nothing to R, but continue running.

Figure 3.2: The Fsot functionality [CLOS02]

For simplicity of notation, we define a block-wise OT functionality F`,sot where the sender’s input

consists of ` pairs of messages {(xi,0,xi,1)}i∈[`], where each xi,0,xi,1 ∈ {0, 1}s and the receiver’s

input consists of ` bits b1, . . . , b` ∈ {0, 1}. At the end of the protocol execution, the receiver learns

the messages x1,b1 , . . . ,x`,b` (and nothing else), and the sender learns nothing. The block-wise OT

functionality can be securely realized from the standard OT functionality Fsot via the universal

composition theorem [Can01].

Functionality F`,sot

The ideal OT functionality F`,sot is parameterized by the number of messages ` and message length s,

and runs with a sender S, a receiver R, and an ideal adversary S. Its behavior is as follows:

• Upon receiving a message (sid, sender, {(xi,0,xi,1)}i∈[`]) from S where xi,β ∈ {0, 1}s for i ∈ [`],

β ∈ {0, 1}, store
(
sid, {(xi,0,xi,1)}i∈[`]

)
.

• Upon receiving a message (sid, receiver, (b1, . . . , b`)) from R for b1, . . . , b` ∈ {0, 1}, check if a tuple

of the form
(
sid, {(x̂i,0, x̂i,1)}i∈[`]

)
has been stored for some choice of x̂i,β ∈ {0, 1}` where i ∈ [`]

and β ∈ {0, 1}. If so, send (sid, {x̂i,bi}i∈[`]) to R, sid to the adversary, and halt. If not, send

nothing to R, but continue running.

Figure 3.3: The F`,sot functionality.

The ZK functionality. The zero-knowledge (ZK) functionality is a two-party functionality between

a prover P and a verifier V. The prover is able to send the functionality a description of an NP

relation R, a statement x to be proven along with a witness w. The functionality forwards the

relation and the statement x to the verifier if and only if R(x,w) = 1. Our definition is inherently

multi-theorem; namely, the prover can prove arbitrarily many statements (possibly with respect to

different NP relations). We distinguish between different proof sub-sessions by associating a unique

sub-session ID ssid with each sub-session. Our definition is adapted from the one given in [CLOS02].

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 46

Functionality FZK

The ideal ZK functionality runs with a prover P, a verifier V and an ideal adversary S. Its behavior is

as follows:

• Upon receiving a message (sid, ssid, prove,R,x,w) from P whereR is an NP relation, ifR(x,w) = 1,

then send (sid, ssid, proof,R,x) to V and S. Otherwise, ignore the message.

Figure 3.4: The FZK functionality.

The general UC functionality. Let f : ({0, 1}`in)n → ({0, 1}`out)n be an arbitrary n-input

function. The general UC-functionality Ff is parameterized with a function f and described in

Figure 3.5. Our presentation is adapted from that in [GS18].

Functionality Ff

The general UC functionality Ff is parameterized by a (possibly randomized) function f : ({0, 1}`in)n →
({0, 1}`out)n on n inputs, and runs with parties P = (P1, . . . , Pn), and an ideal adversary S, as follows:

• Each party Pi sends (sid, input,P, Pi,xi) where xi ∈ {0, 1}`in to Ff .

• After receiving inputs from each of the parties, the functionality computes (y1, . . . ,yn) ←
f(x1, . . . ,xn). For every party Pi that is corrupted, the functionality sends S the message

(sid, output,P, Pi,yi).

• When the functionality receives a message (sid, finish,P, Pi) from S, the ideal functionality sends

(sid, output,P, Pi,yi) to Pi. The functionality F ignores the message if inputs from all parties in

P have not been received.

Figure 3.5: The general UC functionality Ff .

3.4.2 The Blind Homomorphic Signature Functionality

We now define the ideal blind homomorphic signature functionality Fbhs. Our definition builds

upon existing definitions of the ideal signature functionality Fsig by Canetti [Can04] and the ideal

blind signature functionality Fblsig by Fischlin [Fis06]. To simplify the presentation, we define the

functionality in the two-party setting, where there is a special signing party (denoted S) and a single

receiver who obtains the signature (denoted R). While this is a simpler model than the multi-party

setting considered in [Can04, Fis06], it suffices for the applications we describe in this work.

Ideal signature functionalities. The Fsig functionality from [Can04] essentially provides a

“registry service” where a distinguished party (the signer) is able to register message-signature pairs.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 47

Moreover, any party that possesses the verification key can check whether a particular message-

signature pair is registered (and thus, constitutes a valid signature). The ideal functionality does not

impose any restriction on the structure of the verification key or the legitimate signatures, and allows

the adversary to choose those values. In a blind signature scheme, the signing process is replaced by

an interactive protocol between the signer and the receiver, and the security requirement is that the

signer does not learn the message being signed. To model this, the Fblsig functionality from [Fis06]

asks the adversary to provide the description of a stateless algorithm IdealSign in addition to the

verification key to the ideal functionality Fblsig. For blind signing requests involving an honest

receiver, the ideal functionality uses IdealSign to generate the signatures. The message that is signed

(i.e., the input to IdealSign) is not disclosed to either the signer or the adversary. This captures the

intuitive requirement that the signer does not learn the message that is signed in a blind signature

scheme. Conversely, if a corrupt user makes a blind signing request, then the ideal functionality asks

the adversary to supply the signature that could result from such a request.

Capturing homomorphic operations. In a homomorphic signature scheme, a user possessing a

signature σ on a message x should be able to compute a function g on σ to obtain a new signature

σ∗ on the message g(x). In turn, the verification algorithm checks that σ∗ is a valid signature on the

value g(x) and importantly, that it is a valid signature with respect to the function g. Namely, the

signature is bound not only to the computed value g(x) but also to the function g.9 To extend the

ideal signature functionality to support homomorphic operations on signatures, we begin by modifying

the ideal functionality to maintain a mapping between function-message pairs and signatures (rather

than a mapping between messages and signatures). In this case, a fresh signature σ (say, output by

the blind signing protocol) on a message x would be viewed as a signature on the function-message

pair (fid,x), where fid here denotes the identity function. Then, if a user subsequently computes

a function g on σ, the resulting signature σ∗ should be viewed as a signature on the new pair

(g ◦ fid, g(x)) = (g, g(x)). In other words, in a homomorphic signature scheme, signatures are bound

to a function-message pair, rather than a single message.

Next, we introduce an additional signature-evaluation operation to the ideal functionality. There

are several properties we desire from our ideal functionality:

• The ideal signature functionality allows the adversary to decide the structure of the signatures,

so it is only natural that the adversary also decides the structure of the signatures output by

the signature evaluation procedure.

• Signature evaluation should be compatible with the blind signing process. Specifically, the

receiver should be able to compute on a signature it obtained from the blind signing functionality,

and moreover, the computation (if requested by an honest receiver) should not reveal to the

adversary on which signature or message the computation was performed.

9If there is no binding between σ∗ and the function g, then we cannot define a meaningful notion of unforgeability.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 48

• The computed signature should also hide the input message. In particular, if the receiver

obtains a blind signature on a message x and later computes a signature σ∗ on g(x), the

signature σ∗ should not reveal the original (blind) message x.

To satisfy these properties, the ideal functionality asks the adversary to additionally provide the

description of a stateless signature evaluation algorithm IdealEval (in addition to IdealSign). The ideal

functionality uses IdealEval to generate the signatures when responding to evaluation queries. We

capture the third property (that the computed signatures hide the input message to the computation)

by setting the inputs to IdealEval to only include the function g that is computed and the output

value of the computation g(x). The input message x is not provided to IdealEval.

Under our definition, the signature evaluation functionality takes as input a function-message

pair (fid,x), a signature σ on (fid,x) (under the verification key vk of the signature scheme), and a

description of a function g (to compute on x). The output is a new signature σ∗ on the pair (g, g(x)).

That is, σ∗ is a signature on the value g(x) with respect to the function g. When the evaluator is

honest, the signature on (g, g(x)) is determined by IdealEval(g, g(x)) (without going through the

adversary). As discussed above, IdealEval only takes as input the function g and the value g(x), and

not the input; this means that the computed signature σ∗ hides all information about x other than

what is revealed by g(x). When the evaluator is corrupt, the adversary chooses the signature on

(g, g(x)), subject to basic consistency requirements.10 Once an evaluated signature is generated, the

functionality registers the new signature σ∗ on the pair (g, g(x)). Our definition implicitly requires

that homomorphic evaluation be non-interactive. Neither the adversary nor the signer is notified or

participates in the protocol.

Preventing selective failures. In our definition, the functionalities IdealSign and IdealEval must

either output ⊥ on all inputs, or output ⊥ on none of the inputs. This captures the property that a

malicious signer cannot mount a selective failure attack against an honest receiver, where the function

of whether the receiver obtains a signature or not in the blind signing protocol varies depending

on its input message. In the case of the blind signing protocol, we do allow a malicious signer to

cause the protocol to fail, but this failure event must be independent of the receiver’s message. We

capture this in the ideal functionality by allowing a corrupt signer to dictate whether a blind signing

execution completes successfully or not. However, the corrupt signer must decide whether a given

protocol invocation succeeds or fails independently of the receiver’s message.

Simplifications and generalizations. In defining our ideal blind homomorphic signature func-

tionality, we impose several restrictions to simplify the description and analysis. We describe these

briefly here, and note how we could extend the functionality to provide additional generality. Note

10The adversary is not allowed to re-register a signature that was previously declared invalid (according to the
verification functionality) as a valid signature.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 49

that all of the applications we consider (Section 3.5) only require the basic version of the functionality

(Figure 3.6), and not its generalized variants.

• One-time signatures. The ideal blind homomorphic signature functionality supports blind

signing of a single message. Namely, the ideal blind signing functionality only responds to the

first signing request from the receiver and ignores all subsequent requests. Moreover, the ideal

functionality only supports signature evaluation requests after a signature has been successfully

issued by the ideal signing functionality. We capture this via a ready flag that is only set at the

conclusion of a successful signing operation. We can relax this single-signature restriction, but

at the cost of complicating the analysis.

• Single-hop evaluation. Our second restriction on the ideal blind homomorphic signature

functionality is we only consider “single-hop” homomorphic operations: that is, we only allow

homomorphic operations on fresh signatures. In the ideal functionality, we capture this by

having the signature evaluation functionality ignore all requests to compute on function-

message pairs (f,x) where f 6= fid is not the identity function. A more general definition would

also consider “multi-hop” evaluation where a party can perform arbitrarily many sequential

operations on a signature. The reason we present our definition in the simpler single-hop setting

is because existing constructions of homomorphic signatures [GVW15b] (which we leverage

in our construction) do not support the multi-hop analog of our definition. This is because

under our definition, the ideal evaluation functionality essentially combines the homomorphic

evaluation with the context-hiding transformation in standard homomorphic signature schemes.

The current homomorphic signature candidate [GVW15b] does not support homomorphic

computation after performing context-hiding, and so, cannot be used to realize the more general

“multi-hop” version of our functionality. For this reason, we give our definition in the single-hop

setting.

We give the formal specification of the ideal blind homomorphic signature functionality Fbhs in

Figure 3.6.

3.4.3 Constructing Blind Homomorphic Signatures

In Figure 3.7, we give the formal description of our blind homomorphic signature protocol Πbhs in the

F`,sot -hybrid model (Figure 3.3).11 Here, we provide a brief overview of the construction. As discussed

in Section 3.1, our construction combines homomorphic signatures with any UC-secure oblivious

transfer protocol [CLOS02]. The key-generation, signature-verification, and signature-evaluation

operations in Πbhs just correspond to running the underlying ΠHS algorithms.

11For the protocol description and its security proof, we use the vector notation x to represent the messages (in order
to be consistent with the homomorphic signature notation).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 50

Functionality Fbhs

The ideal blind homomorphic signature functionality Fbhs runs with a signer S, a receiver R, and an
ideal adversary S. The functionality is parameterized by a message length ` and a function class H. We
write fid to denote the identity function.

Key Generation: Upon receiving a value (sid, keygen) from the signer S, send (sid, keygen) to the
adversary S. After receiving (sid, vkey, vk) from S, give (sid, vkey, vk) to S and record vk. Then, initialize
an empty list L, and a ready flag (initially unset).

Signature Generation: If a signature-generation request has already been processed, ignore the
request. Otherwise, upon receiving a value (sid, sign, vk,x) from the receiver R (for some message
x ∈ {0, 1}`), send (sid, signature) to S, and let (sid, IdealSign, IdealEval) be the response from S, where
IdealSign and IdealEval are functions that either output ⊥ on all inputs or on no inputs. Record the
tuple (IdealSign, IdealEval). If S is honest, send (sid, signature) to S to notify it that a signature request
has taken place. If S is corrupt, then send (sid, sig-success) to S and let (sid, b) be the response from S.
If b 6= 1, send (sid, signature, (fid,x),⊥) to R. Otherwise, proceed as follows:

• If R is honest, generate σ ← IdealSign(x), and send (sid, signature, (fid,x), σ) to R.

• If R is corrupt, send (sid, sign,x) to S to obtain (sid, signature, (fid,x), σ).

If (vk, (fid,x), σ, 0) ∈ L, abort. Otherwise, add (vk, (fid,x), σ, 1) to L, and if σ 6= ⊥, set the flag ready.

Signature Verification: Upon receiving an input (sid, verify, vk′, (f,x), σ) from a party P ∈ {S,R},
proceed as follows:

• Correctness: If f /∈ H, then set t = 0. If vk = vk′ and (vk, (f,x), σ, 1) ∈ L, then set t = 1.

• Unforgeability: Otherwise, if vk = vk′, the signer S has not been corrupted, and there does not exist
(vk, (fid,x

′), σ′, 1) ∈ L for some x′, σ′ where x = f(x′), then set t = 0, and add (vk, (f,x), σ, 0) to L.

• Consistency: Otherwise, if there is already an entry (vk′, (f,x), σ, t′) ∈ L for some t′, set t = t′.

• Otherwise, send (sid, verify, vk′, (f,x), σ) to the adversary S. After receiving (sid, verified, (f,x), σ, τ)
from S, set t = τ and add (vk′, (f,x), σ, τ) to L.

Send (sid, verified, (f,x), σ, t) to P. If t = 1, we say the signature successfully verified.

Signature Evaluation: If the ready flag has not been set, then ignore the request. Otherwise, upon
receiving an input (sid, eval, vk, g, (f,x), σ) from a party P ∈ {S,R}, ignore the request if f 6= fid. If
f = fid, then apply the signature verification procedure to (sid, verify, vk, (f,x), σ), but do not forward
the output to P. If the signature does not verify, then ignore the request. Otherwise, proceed as follows:

• If g /∈ H, then set σ∗ = ⊥.

• Otherwise, if P is honest, compute σ∗ ← IdealEval(g, g(x)).

• Otherwise, if P is corrupt, send (sid, eval, g, (f,x), σ) to S to obtain (sid, signature, (g, g(x)), σ∗).

Finally, send (sid, signature, (g, g(x)), σ∗) to P. If σ∗ 6= ⊥ and (vk, (g, g(x)), σ∗, 0) ∈ L, abort. If σ∗ 6= ⊥
and (vk, (g, g(x)), σ∗, 0) /∈ L, add (vk, (g, g(x)), σ∗, 1) to L.

Figure 3.6: The Fbhs functionality.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 51

Protocol Πbhs in the F`,sot -Hybrid Model

Let λ be a security parameter and H be a class of functions from {0, 1}` to {0, 1}. For a parameter t ∈ N,
we define frecon : {0, 1}t` → {0, 1}` to be a share-reconstruction function (w1, . . . ,wt) 7→

⊕
i∈[t] wi. Let

ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable
homomorphic signature scheme with message space {0, 1}, message length `, and function class H′ where
H′ contains all functions of the form f ◦ frecon where f ∈ H. We assume that the signer S and receiver R
has access to the ideal functionality F`,sot where s is the length of the signatures in ΠHS.

Key Generation: Upon receiving an input (sid, keygen), the signer S computes a set of public parameters
pp =

{
pki,j

}
i∈[t],j∈[`]

← PrmsGen(1λ, 1t`), and a pair of keys (vk′, sk)← KeyGen(1λ). It stores (sid, sk),

sets vk = (pp, vk′), and outputs (sid, vkey, vk). Finally, the signer initializes the ready flag (initially
unset).

Signature Generation: If the signer or receiver has already processed a signature-generation request,
then they ignore the request. Otherwise, they proceed as follows:

• Receiver: On input (sid, sign, vk,x), where vk = (pp, vk′) and x ∈ {0, 1}`, the receiver

chooses t shares w1, . . . ,wt
r←− {0, 1}` where

⊕
i∈[t] wi = x. Then, for each i ∈ [t], it sends(

(sid, i), receiver,wi

)
to F`,sot . It also initializes the ready flag (initially unset). Note that if vk is not

of the form (pp, vk′) where pk′ =
{

pki,j
}
i∈[t],j∈[`]

, the receiver outputs (sid, signature, (fid,x),⊥).

• Signer: On input (sid, signature), the signer generates signatures σpk
i,j ← SignPK(pki,j , sk) and

σm
i,j,b ← SignM(pki,j , sk, b, σpk

i,j), and sets σi,j,b = (σpk
i,j , σ

m
i,j,b) for all i ∈ [t], j ∈ [`] and b ∈ {0, 1}.

The signer then sends
(
(sid, i), sender, {(σi,j,0, σi,j,1)}j∈[`]

)
to F`,sot . In addition, S sends the

message-independent components
{
σpk
i,j

}
i∈[t],j∈[`]

to R, and sets the ready flag.

Let
{
σ̃pk
i,j

}
i∈[t],j∈[`]

be the message-independent signatures that R receives from S, and {σ̃i,j}i∈[t],j∈[`] be

the signatures R receives from the different F`,sot invocations. For all i ∈ [t] and j ∈ [`], the receiver checks
that VerifyFresh(pki,j , vk′, wi,j , σ̃i,j) = 1, and moreover, that the message-independent component of σ̃i,j

matches σ̃pk
i,j it received from the signer. If any check fails, then R outputs (sid, signature, (fid,x),⊥).

Otherwise, it evaluates σ ← SigEval
(
frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)

)
, where σi = (σ̃i,1, . . . , σ̃i,`) for

all i ∈ [t]. The receiver also sets the ready flag and outputs
(
sid, signature, (fid,x),σ

)
.

Signature Verification: Upon receiving an input (sid, verify, vk, (f,x),σ) where vk = (pp, vk′), party
P ∈ {S,R} first checks if f /∈ H and sets t = 0 if this is the case. Otherwise, it computes pkf ←
PrmsEval(f ◦ frecon, pp). If f = fid, then it sets t ← Verify(pkf , vk′,x,σ), and if f 6= fid, it sets
t← VerifyHide(pkf , vk′,x,σ). It outputs (sid, verified,x,σ, t).

Signature Evaluation: If the ready flag has not been set, then ignore the request. Otherwise,
upon receiving an input (sid, eval, vk, g, (f,x),σ), party P ∈ {S,R} ignores the request if f 6= fid. If
f = fid, P runs the signature-verification procedure on input (sid, verify, vk, (f,x),σ) (but does not
produce an output). If the signature does not verify, then ignore the request. Otherwise, it parses
vk = (pp, vk′), computes pkrecon ← PrmsEval(frecon, pp) and computes σ′ ← SigEval(g, pkrecon,x,σ), and
σ∗ ← Hide(vk′, g(x), σ′). It outputs (sid, signature, (g, g(x)), σ∗).

Figure 3.7: The Πbhs protocol.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 52

The blind signing protocol is interactive and relies on OT. Since we use a bitwise homomorphic

signature scheme, a signature on an `-bit message consists of ` signatures, one for each bit of the

message. In the first step of the blind signing protocol, the signer constructs two signatures (one

for the bit 0 and one for the bit 1) for each bit position of the message. The receiver then requests

the signatures corresponding to the bits of its message using the OT protocol. Intuitively, the OT

protocol ensures that the signer does not learn which set of signatures the receiver requested and the

receiver only learns a single signature for each bit position. However, this basic scheme is vulnerable

to a “selective-failure” attack where the signer strategically generates invalid signatures for certain

bit positions of the message x. As a result, whether the receiver obtains a valid signature on its entire

message becomes correlated with its message itself. To prevent this selective-failure attack, we use

the standard technique of having the receiver first split its message x into a number of random shares

w1, . . . ,wt where x =
⊕

i∈[t] wi. Instead of asking for a signature on x directly, it instead asks for a

signature on the shares w1, . . . ,wt. Since the signatures on the shares w1, . . . ,wt are homomorphic,

the receiver can still compute a signature on the original message x and hence, correctness of signing

is preserved. Moreover, as we show in the proof of Theorem 3.36, unless the malicious signer correctly

guesses all of the shares of w1, . . . ,wt the receiver chose, the probability that the receiver aborts (due

to receiving an invalid signature) is independent of x no matter how the malicious signer generates

the signatures. We formally summarize the security properties of Πbhs in the following theorem, but

defer its proof to Section 3.6.2 at the end of this chapter.

Theorem 3.36 (Blind Homomorphic Signatures). Fix a security parameter λ. Define parameters `,

t, and s as in Πbhs (Figure 3.7) where t = ω(log λ). Let H be a function class over {0, 1}` and let

ΠHS be a homomorphic signature scheme for the message space {0, 1} and function class H′ such

that for any function f ∈ H, we have f ◦ frecon ∈ H′, where frecon is the share-reconstruction function

from Figure 3.7. Suppose that ΠHS satisfies correctness (Definitions 3.2, 3.3, and 3.4), unforgeability

(Definition 3.5), and context-hiding (Definition 3.9). Then, the protocol Πbhs (when instantiated with

ΠHS) securely realizes the ideal functionality Fbhs (Figure 3.6) with respect to function class H in the

presence of (static) malicious adversaries in the F`,sot -hybrid model.

Blind homomorphic signatures from LWE. Combining the fully-secure homomorphic signa-

ture scheme from Construction 3.17 (based on [GVW15b]) with the lattice-based UC-secure oblivious

transfer protocol from [PVW08], we obtain a blind homomorphic signature scheme from standard

lattice assumptions. We describe our instantiation below.

Fact 3.37 (Oblivious Transfer from LWE [PVW08]). Let λ be a security parameter and define

parameters `, s = poly(λ). Then, under the LWE assumption, there exists a protocol Πot that

security realizes the ideal OT functionality F`,sot (Figure 3.3) in the presence of malicious adversaries

in the CRS model (and assuming static corruptions). Moreover, the protocol Πot is round-optimal:

it consists of one message from the receiver to the signer and one from the receiver to the signer.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 53

Corollary 3.38 (Blind Homomorphic Signatures from LWE). Let λ be a security parameter. Then,

under the LWE assumption, for all d = poly(λ), there exists a protocol Π′bhs that securely realizes Fbhs

for the class of depth-d Boolean circuits in the presence of malicious adversaries in the CRS model

(and assuming static corruptions). Moreover, the protocol Π′bhs satisfies the following properties:

• The key-generation, signature-verification, and signature-evaluation protocols are non-interactive.

• The signature-generation protocol (i.e., blind signing) is a two-round interactive protocol between

the signer and the receiver (one message each way).

• The length of a signature is poly(λ, d).

Proof. Let Πbhs be the protocol from Figure 3.7 instantiated with the homomorphic signature scheme

from Construction 3.17. By Theorem 3.36 and Corollary 3.22,12 protocol Πbhs securely realizes Fbhs in

the F`,sot -hybrid model, for some `, s = poly(λ). We let Π′bhs be the protocol obtained by instantiating

the functionality F`,sot in Πbhs with the protocol from Fact 3.37. Security of Π′bhs then follows from

the universal composition theorem (Theorem 3.35) [Can01]. Key generation, signature verification,

and signature evaluation in Π′bhs simply corresponds to invoking the associated functionalities of the

underlying homomorphic signature scheme, and thus, are non-interactive. The signature length is

also inherited from ΠHS. The blind signing protocol reduces to a single invocation of F`,sot , which by

Fact 3.37, can be implemented by just two rounds of interaction.

Remark 3.39 (Size of CRS in Corollary 3.38). In the lattice-based OT construction of [PVW08],

a single CRS can only be used for a bounded number of OTs. The blind signing protocol in Π′bhs

from Corollary 3.38 requires ` · poly(λ) invocations of OT, where ` is the message length. Thus,

instantiating Π′bhs requires a CRS of length poly(`, λ). In our preprocessing UC-NIZK (Section 3.5),

` = poly(λ), and so a CRS of size poly(λ) suffices to obtain a preprocessing UC-NIZK for general

NP languages. It is an open problem to build a lattice-based UC-secure OT protocol in the CRS

model with a reusable CRS.

3.5 Universally-Composable Preprocessing NIZKs

In this section, we show how to combine blind homomorphic signatures with CPA-secure encryption

to obtain UC-NIZKs in the preprocessing model from standard lattice assumptions. We give our

protocol ΠZK in the Fbhs-hybrid model in Figure 3.8. Next, we state the formal security theorem and

describe how to instantiate it from standard lattice assumptions. We give the proof of Theorem 3.40

in Section 3.6.3 at the end of this chapter.

12Note that we are using the fact that hardness of LWE also implies hardness of SIS (with corresponding parameters).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 54

Protocol ΠZK in the Fbhs-Hybrid Model

Let λ be a security parameter and Πenc = (KeyGen,Encrypt,Decrypt) be a CPA-secure encryption scheme.
We assume that the prover P and the verifier V have access to the ideal functionality Fbhs, where P
is the receiver R and V is the signer S. For any NP relation R, define the Boolean-valued function
CheckWitnessR,ct,x, parameterized by R, a statement x, and a ciphertext ct as follows: on input a secret
key sk, CheckWitnessR,ct,x(sk) outputs 1 if and only if R(x,Decrypt(sk, ct)) = 1, and 0 otherwise. We
implicitly assume that CheckWitnessR,ct,x ∈ H, where H is the function class associated with Fbhs.

Preprocessing phase: In the preprocessing phase, the prover and verifier do the following:

1. The verifier sends (sid, keygen) to Fbhs and receives in response a verification key vk. The verifier
sends vk to the prover. Subsequently, when the verifier receives (sid, signature) from Fbhs, it sets
the ready flag.

2. The prover begins by sampling a secret key sk← KeyGen(1λ). Then, it requests a signature on
sk under vk by sending (sid, sign, vk, sk) to Fbhs. The prover receives a signature σsk from Fbhs. If
σsk = ⊥, then the prover aborts.

Prover: On input a tuple (sid, ssid, prove,R,x,w) where R(x,w) = 1, the prover proceeds as follows:

1. Encrypt the witness w to obtain a ciphertext ct← Encrypt(sk,w).

2. Submit (sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain a signature σ∗.

3. Set π = (ct, σ∗) and send (sid, ssid, proof,R,x, π) to the verifier.

Verifier: When the verifier receives a tuple (sid, ssid, proof,R,x, π), it ignores the request if the ready
flag has not been set. Otherwise, it parses π = (ct, σ), and ignores the message if π does not have this
form. Otherwise, it submits (sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. If the signature is valid
(i.e., Fbhs replies with 1), then the verifier accepts and outputs (sid, ssid, proof,R,x). Otherwise the
verifier ignores the message.

Figure 3.8: Preprocessing ZK argument in the Fbhs-hybrid model.

Theorem 3.40 (Preprocessing Zero-Knowledge Arguments). Let Πenc = (KeyGen,Encrypt,Decrypt)

be a CPA-secure encryption scheme. Then, the protocol ΠZK in Figure 3.8 (instantiated with Πenc)

securely realizes FZK in the presence of (static) malicious adversaries in the Fbhs-hybrid model.

Corollary 3.41 (Preprocessing UC-NIZKs from LWE). Let λ be a security parameter. Then, under

the LWE assumption, for all d = poly(λ), there exists a protocol ΠNIZK that securely realizes FZK in

the presence of (static) malicious adversaries in the CRS model for all NP relations R that can be

computed by a circuit of depth at most d. The protocol ΠNIZK satisfies the following properties:

• The (one-time) preprocessing phase is a two-round protocol between the prover and the verifier.

• The prover’s and verifier’s algorithms are both non-interactive.

• If R is an NP relation, then the length of a proof of membership for the language associated

with R is m+ poly(λ, d), where m is the size of the witness associated with R.

Proof. Fix a depth bound d = poly(λ). First, we can instantiate the CPA-secure encryption scheme

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 55

Πenc = (KeyGen,Encrypt,Decrypt) in Figure 3.8 from lattices using Fact 2.6. Let d′ be a bound on

the depth of the circuit that computes the CheckWitnessR,ct,x function in Figure 3.8. Note that

d′ = poly(λ, d), since the depth of the relation R is bounded by d and the depth of the Decrypt

function is poly(λ). By Corollary 3.38, under the LWE assumption, there exists a protocol Πbhs

that securely realized Fbhs for the class of all depth-d′ Boolean circuits in the presence of (static)

malicious adversaries. The claim then follows by combining Theorem 3.40 with Corollary 3.38 and

the universal composition theorem (Theorem 3.35). We now check the additional properties:

• The preprocessing phase corresponds to the blind signing protocol of Πbhs, which is a two-round

protocol between the signer and the verifier.

• The prover’s algorithm corresponds to signature evaluation while the verifier’s algorithm

corresponds to signature verification. Both of these are non-interactive in Πbhs.

• The length of a proof for an NP relation R consists of an encryption of the witness under Πenc

(of size m+ poly(λ)) and a signature under Πbhs (of size poly(λ, d)). The total size is bounded

by m+ poly(λ, d).

3.5.1 Applications to MPC

In this section, we describe several applications of our preprocessing UC-NIZKs to boosting the

security of MPC protocols. First, we show that combining our construction with the round-optimal

semi-malicious MPC protocol of Mukherjee-Wichs [MW16] yields a round-optimal malicious-secure

MPC protocol where the communication complexity only depends on the size of the inputs/outputs

in a reusable preprocessing model (Remark 3.44) from lattices. Then, we show that by leveraging the

observation in Remark 3.30, we obtain a succinct version of the GMW [GMW86, GMW87] compiler

from lattice assumptions.

Malicious-secure MPC from lattices. Previously, Mukherjee and Wichs showed how to con-

struct a two-round MPC protocol with UC-security against semi-malicious adversaries from standard

lattice assumptions [MW16]. Their protocol has several notable properties, including optimal round

complexity and near-optimal communication complexity: namely, the total communication between

the parties depends only on the length of the parties’ inputs and outputs, and not on the complexity

(i.e., circuit size) of the underlying computation. Achieving this latter property is often referred to as

breaking the “circuit-size barrier” for secure computation [BGI16].

The Mukherjee-Wichs construction (as well as its predecessor [AJL+12]) achieve security against

semi-malicious adversaries, and rely on general-purpose NIZKs to achieve full security against

malicious adversaries without increasing the round complexity. However, since NIZKs are not known

to follow from standard lattice assumptions in the CRS model, the security of the malicious-secure

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 56

protocols cannot be reduced to a single set of hardness assumptions (for instance, we need to combine

lattice assumptions with other number-theoretic assumptions).

Using our lattice-based preprocessing NIZKs, we can obtain malicious-secure MPC in a pre-

processing model while basing security exclusively on standard lattice assumptions. Specifically,

in the preprocessing step, the parties would execute the preprocessing protocol of our UC-NIZK

construction (Figure 3.8, Corollary 3.41). In the online phase of the protocol, the parties essentially

have access to an ideal zero-knowledge functionality, and so, we can apply the same semi-malicious

to malicious boosting described in [AJL+12, MW16] to obtain a protocol with full malicious secu-

rity. The round complexity and communication complexity of the online phase of the protocol is

unchanged from that of the Mukherjee-Wichs construction. Moreover, our preprocessing protocol has

several appealing properties: it is not only independent of the party’s inputs, but it is also (almost)

independent of the computation being performed (it depends only polylogarithmically on the depth of

the online computation). This means that the same preprocessing can in fact be reused across many

protocol executions, provided that the computations have bounded depth. In fact we can make the

preprocessing completely independent of the online computation if we make an additional circular

security assumption (c.f., Corollary 3.43). We state our conclusions more precisely below:

Fact 3.42 (MPC from Multi-Key FHE [MW16]). Let λ be a security parameter, and f : ({0, 1}`in)n →
({0, 1}`out)n be an arbitrary n-input function. Let Cf be the circuit that computes f , and let df be

its depth. Then, under the LWE assumption, there exists a protocol Πf that securely realizes Ff in

the presence of (static) semi-malicious adversaries in the CRS model and assuming the parties have

access to an authenticated broadcast channel. Recall that Ff is the general UC functionality for

computing the function f (Figure 3.5). Moreover, the protocol πf satisfies the following properties:

• Optimal round complexity: The protocol Πf is a two-round protocol.

• Low communication complexity: The total communication complexity of the protocol

is (`in + `out) · poly(λ, n, df). In other words, the total communication depends only on the

security parameter, the length of the inputs, the length of the outputs, and the depth of the

computation (rather than the size |Cf |). Moreover, if we make an additional circular security

assumption, then the total communication complexity becomes (`in + `out) · poly(λ, n), which

is completely independent of the complexity of the computation f . This is essentially the best

we can hope for from an MPC protocol for Ff .

Corollary 3.43 (Malicious-Secure MPC in the Preprocessing Model from Lattices). Let λ be a

security parameter, and let f : ({0, 1}`in)n → ({0, 1}`out)n be an arbitrary n-input function. Let Cf be

the circuit that computes f , and let df be its depth. Then, under the LWE assumption, there exists a

protocol Πf that securely realizes Ff in the presence of (static) malicious adversaries in the CRS

model (and assuming the parties have access to an authenticated broadcast channel). The protocol Πf

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 57

splits into two sub-protocols: a preprocessing protocol Π
(pre)
f and an online protocol Π

(online)
f with the

following properties:

• Reusable preprocessing: The total computational and communication complexity of the

preprocessing protocol Π
(pre)
f is poly(n, λ, log df). Notably, the preprocessing is independent

of the size of each party’s inputs and the overall size |Cf | of the computation. Because the

preprocessing only depends logarithmically on the depth of Cf (and not its size), the same

precomputation can be reused across many parallel evaluations of Cf (which would increase

the size of the computation, but not its depth). Moreover, if we make the additional circular

security assumption from Fact 3.42, then the total computational and communication complexity

is poly(n, λ), and completely independent of the function f .

• Optimal online round complexity: The online protocol Π
(online)
f consists of two rounds of

communication.

• Low online communication complexity: The total communication complexity of the online

protocol Π
(online)
f is (`in + `out) · poly(λ, n, df). If we make the additional circular security

assumption from Fact 3.42, then the total communication complexity of Π
(online)
f is again

essentially optimal: (`in + `out) · poly(λ, n).

Proof. Follows by applying the generic semi-malicious-to-malicious compiler of [AJL+12, Appendix E]

to the MPC protocol described in Fact 3.42 along with our UC-NIZKs in the preprocessing model

from LWE.

Remark 3.44 (Reusable Preprocessing). A nice property satisfied by our MPC protocol in the pre-

processing model is that the preprocessing is reusable. Namely, we only have to run the preprocessing

protocol once, provided that all of the computations in the online phase can be implemented by

circuits of some bounded depth. In fact, if we are willing to make an additional circular security

assumption, the preprocessing is entirely independent of the computation. We note that many

classic MPC protocols that leverage preprocessing for better online efficiency do not provide reusable

preprocessing [Bea91, DPSZ12]. In these cases, the complexity of the preprocessing phase scales

with the size of the circuit that is computed in the online phase as opposed to the depth (e.g., the

classic technique of Beaver multiplication triples [Bea91] requires generating a single triple for every

multiplication gate that will be evaluated during the online phase of the protocol). Having a reusable

preprocessing protocol enables us to amortize the cost of the preprocessing across many different

computations.

Remark 3.45 (Non-Reusable Preprocessing from Weaker Assumptions). An alternative approach

to boosting the Mukherjee-Wichs protocol to provide malicious security in the preprocessing model

is to use a bounded-theorem preprocessing NIZK, which can in turn be instantiated from one-way

functions [DMP88, LS90, Dam92] or oblivious transfer [KMO89]. One drawback of this approach is

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 58

that the preprocessing is no longer reusable across multiple computations (since each NIZK system

can only be used to prove an a priori bounded number of statements). As a result, the round

complexity and the computational costs of the preprocessing protocol can no longer be amortized

across multiple protocol executions. Moreover, it is unclear that the original bounded-theorem NIZK

candidates satisfy the stronger property of universal composability. As such, they cannot be directly

applied to achieve malicious security of the Mukherjee-Wichs construction in the UC model.

A succinct GMW compiler from lattices. As discussed in Remark 3.30, if a prover wants to

prove m statements (each of which can be checked by a circuit of depth at most d) using the same

witness w, then the total length of all of the arguments will be |w|+m · poly(λ, d). In particular,

the length of the common witness can be amortized across many statements. We can leverage

this property to obtain a “succinct” version of the classic GMW compiler [GMW86, GMW87] that

transforms any MPC protocol Π for some function f in the semi-honest model to a protocol Π′ for

the same function f in the malicious model. We begin by briefly recalling the “GMW compiler:”

• Input commitment: First, the parties commit to their (private) inputs.

• Coin tossing: The parties engage in a secure coin-tossing protocol to determine the (secret)

randomness each party uses in the protocol execution. At the end of this step, each party has

a (private) random string as well as a commitment to every other party’s randomness.

• Protocol emulation: During the protocol execution, the parties run the semi-honest protocol

Π. Whenever the parties send a message, they include a NIZK argument that their message

was computed according to the specification of Π on inputs and randomness that are consistent

with their committed inputs and randomness.

The NIZK arguments bind each user to following the semi-honest protocol as described. In the

UC-model, Canetti et al. [CLOS02] showed an analog of the GMW compiler based on UC-NIZKs.

Our preprocessing NIZKs from lattices gives a new instantiation of the GMW compiler from

standard lattice assumptions. Our construction has the appealing property that the communication

overhead of the compiler protocol Π′ is essentially independent of the parties’ computational complexity

in the semi-honest protocol Π. We give a concrete comparison below:

• Using traditional NIZKs based on trapdoor permutations [FLS90, DDO+01] or pairings [GOS06,

GOS12], the total size of the NIZK proofs is proportional to the size of each party’s computation.

Thus, the communication overhead of Π′ compared to the original protocol Π on each round

r is poly(λ, n, |Cr|), where λ is the security parameter, n is the number of parties, and Cr is

the circuit that checks whether a party’s message on round r is consistent with the protocol

specification Π as well as the party’s committed inputs and randomness.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 59

• In the GMW protocol, each party uses the same witness to construct their proofs in each

round of the protocol (the witness is their private input and randomness). Thus, using the

trick described in Remark 3.30, the parties only have to communicate an encryption of their

input and randomness once at the beginning of the protocol. Thereafter, on each round r of

the protocol execution, the size of each proof is poly(λ, n, dr), where dr is a bound on the depth

of the consistency check circuit Cr defined above. Since dr can be significantly smaller than

Cr, the communication overhead of using our lattice-based preprocessing NIZK to instantiate

the GMW compiler can lead to substantial asymptotic savings.

As was also noted in Remark 3.30, a similar savings in communication is also possible by first applying

the FHE-based transformation from [GGI+15] to any NIZK construction to obtain a NIZK with the

same proof size as that of the construction in Corollary 3.41, and then using the resulting construction

to implement the GMW compiler. Compared to this alternative approach, our construction has the

advantage that it can be instantiated directly from lattice assumptions (and does not additionally

assume the existence of a NIZK). Moreover, our construction is likely more efficient since we do not

have to incur the cost of composing FHE decryption with NIZK verification in addition to performing

FHE evaluation.

3.6 Proofs from this Chapter

In this section, we give the formal proofs of Theorem 3.26 (Section 3.6.1), Theorem 3.36 (Section 3.6.2),

and Theorem 3.6.3 (Section 3.6.3).

3.6.1 Proof of Theorem 3.26

We show completeness, soundness, zero-knowledge separately.

Completeness. Take any statement x and witness w where R(x,w) = 1. Let (kP , kV) ←
Setup(1λ), where kP = (kSE, ppHS, vkHS,σk). Take (ct, σ∗x,ct) ← Prove(kP ,x,w). By correctness of

Πenc,

Cx,ct(kSE) = R(x,SE.Decrypt(kSE, ct)) = R(x,w) = 1.

Completeness of ΠNIZK then follows from evaluation correctness (Definition 3.3) and hiding correctness

(Definition 3.4) of ΠHS.

Soundness. At a high-level, soundness follows from (selective) unforgeability of ΠHS (Definition 3.5,

Remark 3.6). An adversary that succeeds in breaking soundness must produce a statement x /∈ L, a

ciphertext ct and a signature σ∗x,ct on the message 1 with respect to the function Cx,ct. Since x /∈ L,

there does not exist any witness w ∈ {0, 1}m where R(x,w) = 1, which means that there are no

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 60

inputs to Cx,ct where the output is 1. More formally, suppose there is an adversary A that breaks

soundness of ΠNIZK with advantage ε. We use A to construct an adversary that breaks selective

unforgeability of B. Algorithm B works as follows:

1. At the beginning of the selective unforgeability game, algorithm B generates a secret key

kSE ← SE.KeyGen(1λ), and sends kSE to the challenger. The challenger replies with the public

parameters ppHS, the verification key vkHS and a signature σk.

2. Algorithm B sets kP = (kSE, ppHS, vkHS,σk) and gives kP to A.

3. Whenever A makes an oracle query to the verification oracle, algorithm B answers according

to the specification in Construction 3.25. Note that the verification algorithm only depends on

ppHS and vkHS, both of which are known to B (and in fact A). Notably, the secret signing key

skHS is not needed to run Verify.

4. At the end of the game, when A outputs a statement x and a proof π = (ct, σ∗x,ct), algorithm

B gives the circuit Cx,ct, the message 1, and the signature σ∗x,ct to the challenger.

By construction, algorithm B perfectly simulates the prover key for A. Thus, with probability ε,

algorithm A outputs x /∈ L such that σ∗x,ct is a valid signature on the message 1 with respect to the

function Cx,ct. By definition, Cx,ct(kSE) = 0, so σ∗x,ct is a valid forgery. Soundness follows.

Zero-Knowledge. At a high-level, zero-knowledge follows by CPA-security of the encryption

scheme and weak context-hiding of the homomorphic signature scheme. Since ΠHS is weak context-

hiding (Definition 3.8), there exists an efficient simulator Sch that can simulate the signatures output

by the Hide algorithm. We use Sch to construct the zero-knowledge simulator S = (S1,S2):

• On input the security parameter λ and the verification state kV = (ppHS, vkHS, skHS) where

ppHS = (pk1, . . . , pkρ), algorithm S1 samples a secret key kSE ← SE.KeyGen(1λ). Next, it

computes σpk
k ← SignPK(pp, skHS), and outputs the state τV = (kSE,σ

pk
k).

• On input the verification state kV = (ppHS, vkHS, skHS), the simulation state τV = (kSE,σ
pk
k),

and a statement x ∈ {0, 1}n, the simulator algorithm S2 begins by constructing a cipher-

text ct ← SE.Encrypt(kSE, 0
m). Then, it computes pkx,ct ← PrmsEval(Cx,ct, ppHS), σpk

x,ct ←
SigEvalPK(Cx,ct, ppHS,σ

pk
k), and finally, it simulates the signature by computing σm

x,ct ←
Sch(pkx,ct, vkHS, skHS, 1, σ

pk
x,ct), and outputs the simulated proof π = (ct, σ∗x,ct), where σ∗x,ct =

(σpk
x,ct, σ

m
x,ct).

To complete the proof, we use a hybrid argument:

• Hyb0: This is the experiment where the adversary has access to O0, where O0(kP ,x,w) :=

Prove(kP ,x,w).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 61

• Hyb1: Same as Hyb0, except the Prove(kP ,x,w) queries are handled as follows:

1. The challenger first computes ct← SE.Encrypt(kSE,w).

2. Next, it computes the public key pkx,ct ← PrmsEval(Cx,ct, ppHS), a public signature

component σpk
x,ct ← SigEvalPK(Cx,ct, ppHS,σ

pk
k), and finally, a simulated signature σm

x,ct ←
Sch(pkx,ct, vkHS, skHS, 1, σ

pk
x,ct). Here σk = (σpk

k ,σ
m
sk) is the signature on kSE the challenger

generated from Setup (and is part of the proving key kP).

3. Finally, the challenger responds with π = (ct, σ∗x,ct), where σ∗x,ct = (σpk
x,ct, σ

m
x,ct).

• Hyb2: Same as Hyb1, except the challenger replaces the encryption of w with an encryption of

0m when answering the Prove(kP ,x,w) queries.

• Hyb3: This is the experiment where the adversary has access to O1, where O1(kV , τV ,x,w) :=

S2(kV , τV ,x).

We now briefly argue that each pair of hybrids are computationally indistinguishable:

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable by weak context-hiding security

of ΠHS. Specifically, if A is able to distinguish Hyb0 and Hyb1, then we can construct an

adversary B that breaks context-hiding as follows:

1. At the beginning of the game, algorithm B receives a signing and a verification key

(vkHS, skHS) from the challenger. It then samples parameters ppHS ← PrmsGen(1λ, 1ρ), a

symmetric key kSE ← SE.KeyGen(1λ) and a signature σk ← Sign(ppHS, skHS, kSE). Algo-

rithm B constructs the verification key kV = (ppHS, vkHS, skHS) and sends it to A.

2. When A makes an oracle query on a pair (x,w) where R(x,w) = 1, algorithm B
simulates the response by first computing ct ← SE.Encrypt(kSE,w). Next, it computes

σx,ct ← SigEval(Cx,ct, ppHS, kSE,σk) and parses the result as σx,ct = (σpk
x,ct, σ

′
x,ct). It also

computes pkx,ct ← PrmsEval(Cx,ct, ppHS), and sends the public key pkx,ct, the message 1,

and the signature (σpk
x,ct, σ

′
x,ct) to the context-hiding challenger. The challenger replies

with a refreshed signature σ∗x,ct. Algorithm B responds to the query with (ct, σ∗x,ct).

3. At the end of the experiment, B outputs whatever A outputs.

By construction, if the signatures returned by the context-hiding challenger are generated using

the Hide algorithm, then B perfectly simulates Hyb0, while if the signatures are generated using

the simulator, then B perfectly simulates Hyb1. Indistinguishability of the two hybrids thus

follows by context-hiding.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable by CPA-security of Πenc. Specif-

ically, the challenger’s logic in Hyb1 and Hyb2 does not depend on kSE, so we can simulate

the two hybrid experiments given access to an encryption oracle. Note that the signature

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 62

component σpk
k needed to respond to queries in Hyb1 and Hyb2 is only the public component of

the signature (and can be generated without knowledge of the actual secret key kSE).

• Hybrids Hyb2 and Hyb3 are identical experiments. Namely, the behavior of the challenger in

Hyb2 precisely coincides with the behavior in the experiment where the adversary is given

access to the oracle O1(kV , τV ,x,w) := S2(kV , τV ,x).

Since each pair of hybrid experiments are computationally indistinguishable, we conclude that ΠNIZK

provides zero-knowledge.

3.6.2 Proof of Theorem 3.36

Let A be a static adversary that interacts with the environment Z, a signer S, and receiver R

running the real protocol Πbhs (Figure 3.7). We construct an ideal world adversary (simulator) S
that interacts with the environment Z, the ideal functionality Fbhs, and dummy parties S̃, R̃ such

that no environment Z can distinguish an interaction with A in the real protocol from one with S in

the ideal world.

We begin by describing the simulator S. At the beginning of the protocol execution, the simulator

S begins by simulating an execution of Πbhs with adversary A. In particular, S simulates the

environment Z, the behavior of the honest parties, as well as the ideal OT functionality F`,sot in the

simulated protocol execution with A. Algorithm A begins by declaring which parties it wants to

corrupt, and S corrupts the analogous set of dummy parties in the ideal execution (e.g., if A corrupts

the signer S, then S corrupts the dummy signer S̃). The simulation then proceeds as follows.

Simulating the communication with the environment. Whenever the simulator S receives

an input from the environment Z, it forwards the input to A (as if it came from the environment in

the simulated protocol execution). Whenever A writes a message on its output tape (in the simulated

protocol execution), the simulator S writes the same output on its own output tape (to be read by

the environment).

Simulating the key-generation phase. In the key-generation phase, the simulator S proceeds

as follows, depending on whether the signer S̃ is corrupt:

• The signer is honest. When S receives a value (sid, keygen) from Fbhs, the simulator generates

pp← PrmsGen(1λ, 1t`), (sk, vk′)← KeyGen(1λ), and stores (sid, sk). It sets vk = (pp, vk′), and

sends (sid, vkey, vk) to Fbhs.

• The signer is corrupt. When Z activates a corrupt signer S̃ on input (sid, keygen), S activates

the signer S with the same input (sid, keygen) in its simulated copy of Πbhs. Let (sid, vkey, vk)

be the verification key output by S (as decided by A). The simulator S then sends a request

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 63

(sid, keygen) to Fbhs (on behalf of S̃), and responds to the key-generation request from Fbhs

with the tuple (sid, vkey, vk).

Simulating the signature-generation phase. The simulator S simulates the signing protocol

as follows, depending on whether the signer S̃ is corrupt:

• The signer is honest. We first describe how the simulator S constructs the ideal algorithms

(IdealSign, IdealEval) when it receives a query (sid, signature) from Fbhs. Let vk = (pp, vk′) and

sk be the parameters the simulator sampled in the key-generation phase (since S̃ is honest, the

simulator chose the secret signing key). The simulator then defines the IdealSign and IdealEval

algorithms (with pp, vk′, sk hard-wired) as follows:

– IdealSign(x): On input x ∈ {0, 1}`:

1. Sample shares w1, . . . ,wt
r←− {0, 1}` such that

⊕
i∈[t] wi = x.

2. Generate (σ1, . . . ,σt)← Sign
(
pp, sk, (w1, . . . ,wt)

)
.

3. Return SigEval
(
frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)

)
.

– IdealEval(g, x): On input a function g ∈ H and a value x ∈ {0, 1}:

1. Compute pkg ← PrmsEval(g ◦ frecon, pp).

2. Sign σ ← Sign(pkg, sk, x).

3. Return Hide(vk′, x, σ).

The simulator replies to Fbhs with (IdealSign, IdealEval). If the receiver is honest, then this completes

the simulation for the signing request. Conversely, if the receiver is corrupt, then the simulator S
proceeds as follows:

– When Z activates the receiver R̃ on input (sid, sign, vk,x), the simulator forwards (sid, sign, vk,x)

to R (which is under the control of A) in the simulated protocol execution (as if it came from

A’s environment).

– After R sends inputs
(
(sid, i), receiver,wi

)
for all i ∈ [t] to the ideal OT functionality F`,sot in

the simulated protocol execution, the simulator computes x←
⊕

i∈[t] wi. If this is not the first

signing request from R, then the simulator ignores the request. Otherwise, the simulator sends

(sid, sign, vk,x) to Fbhs.

– When Fbhs sends (sid, sign,x) to S to choose the signature on behalf of R̃, the simulator

constructs signatures σi ← Sign(ppi, sk,wi) and sends
(
(sid, i),σi) to R for i ∈ [t]. For the

message-independent components of the signatures, S parses σi = (σpk
i ,σ

m
i) for i ∈ [t], and sends{

σpk
i

}
i∈[t]

to R. The simulator also computes σ ← SigEval(frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)),

and sends (sid, signature, (fid,x),σ), where x =
⊕

i∈[t] wi, to Fbhs.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 64

• The signer is corrupt. If the receiver R̃ is also corrupt, then S determines the behavior of S̃ and R̃

using A (who controls the behavior of S and R in the simulated protocol execution). Specifically,

the simulator proceeds as follows:

– When the environment activates R̃ with an input (sid, sign, vk,x), the simulator activates the

receiver R in its simulated protocol execution with the same input.

– The simulator simulates the ideal OT functionality F`,sot in its simulated protocol execution

exactly according to the specification of F`,sot in Figure 3.3.

– The simulator echoes any output of A (to the environment).

Note that in this case where the signer and receiver are both corrupt, the simulator S never

interacts with the ideal functionality. Conversely, if the receiver R̃ is honest, then the simulator

proceeds as follows:

– When the ideal functionality sends a query (sid, signature) to S, the simulator needs to respond

with a specification of the ideal signing and evaluation functionalities IdealSign and IdealEval.

The simulator starts by performing several basic checks:

1. The simulator begins by activating the signer S with the input (sid, signature) in its simulated

execution of the protocol. Let
(
(sid, i), sender, {(σi,j,0, σi,j,1)}j∈[`]

)
for i ∈ [t] be the inputs

S sends to F`,sot , and let
{
σpk
i,j

}
i∈[t],j∈[`]

be the message-independent components S sends

to R in the simulated protocol execution. Note that in the real protocol execution, the

receiver R only interacts with F`,sot and does not send any messages to S (so S does not

need to simulate any messages on behalf of R).

2. Let vk be the verification key S chose during key-generation. The simulator parses the

verification key as vk = (pp, vk′) where pp =
{

pki,j
}
i∈[t],j∈[`]

. If the verification key does

not have this structure, then the simulator defines the ideal signing and evaluation functions

IdealSign and IdealEval to always output ⊥.

3. Otherwise, the simulator parses σi,j,b = (σpk
i,j,b, σ

m
i,j,b) for i ∈ [t], j ∈ [`], b ∈ {0, 1}. We say

that a signature σi,j,b is “valid” if

σpk
i,j,b = σpk

i,j and VerifyFresh(pki,j , vk′, b, σi,j,b) = 1, (3.1)

and otherwise, we say that σi,j,b is “invalid.” Then, if there exists indices i ∈ [t] and j ∈ [`]

where σi,j,0 and σi,j,1 are both invalid, the simulator defines the signing and evaluation

functions IdealSign and IdealEval to always output ⊥.

4. Finally, the simulator checks if for all j ∈ [`], there exists i ∈ [t] where σi,j,0 and σi,j,1 are

both valid. If this is not the case, then S defines the ideal signing and evaluation functions

IdealSign and IdealEval to always output ⊥.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 65

If all of the checks pass, then there exists i∗, j∗ where σi∗,j∗,0 and σi∗,j∗,1 are both valid. In

this case, the simulator uses the context-hiding simulator Sch = (SExt,SGen) from Definition 3.9

to extract a simulation trapdoor td ← SExt(pki∗,j∗ , vk′, (0, σi∗,j∗,0), (1, σi∗,j∗,1)). Then, the

simulator defines the functions (IdealSign, IdealEval) as follows. Note that the public keys pp,

the simulation trapdoor td, and the message-independent signature components
{
σpk
i,j

}
i∈[t],j∈[`]

are hard-wired in the description of the algorithms.

• IdealSign(x): On input x ∈ {0, 1}`:

1. First, the ideal signing algorithm initializes w1, . . . ,wt ← 0`.

2. By assumption, for all i ∈ [t] and j ∈ [`], there is at least one b ∈ {0, 1} where σi,j,b is valid.

Now, for all i ∈ [t] and j ∈ [`], if there is exactly one bit b ∈ {0, 1} where σi,j,b is valid,

then the simulator sets wi,j = b.

3. For all remaining indices i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are valid, the

simulator samples wi,j
r←− {0, 1}, subject to the restriction that

⊕
i∈[t] wi = x. Note that

this constraint is always satisfiable since for all j ∈ [`], there is at least one i ∈ [t] where

both σi,j,0 and σi,j,1 are valid by assumption.

4. Then, for all i ∈ [t], the algorithm sets σi = (σi,1,wi,1 , . . . , σi,`,wi,`), and outputs the

signature SigEval
(
frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)

)
.

• IdealEval(g, x): On input a function g ∈ H, and a value x ∈ {0, 1}:

1. Compute pkg ← PrmsEval(g ◦ frecon, pp).

2. Compute σpk
g ← SigEvalPK

(
g ◦ frecon, pp, (σpk

1 , . . . ,σ
pk
t)
)
, where σpk

i = (σpk
i,1, . . . , σ

pk
i,`).

3. Return SGen(pkg, vk′, td, x, σpk
g)

– When the ideal functionality sends (sid, sig-success) to S, the simulator responds as follows.

First, let {(σi,j,0, σi,j,1)}i∈[t],j∈[`] be the set of signatures the signer provided to the ideal OT

functionality and
{
σpk
i,j

}
i∈[t],j∈[`]

be the set of message-independent public components sent by S

in the simulated protocol execution. As before, we say that σi,j,b is valid if and only if Eq. (3.1)

holds. First, if the simulator previously defined IdealSign and IdealEval to ⊥, then it replies with

(sid, 0). Otherwise, let n be the number of indices i ∈ [t], j ∈ [`], and b ∈ {0, 1} where σi,j,b is

invalid. Then, with probability 1− 2−n, the simulator responds with (sid, 0). With probability

2−n, the simulator responds with (sid, 1).

Simulating the signature-verification phase. When the environment activates P̃ ∈
{

S̃, R̃
}

on input (sid, verify, vk′, (f,x),σ), the simulator S proceeds as follows:

• If P̃ is honest and the simulator S receives a query (sid, verify, vk′, (f,x),σ) from Fbhs, the

simulator first parses vk′ = (pp′, vk′′). It then computes pk′f ← PrmsEval(f ◦ frecon, pp′) and sets

t ← VerifyHide(pk′f , vk′′,x,σ) if f 6= fid, and t ← Verify(pk′f , vk′′,x,σ) if f = fid. It returns

(sid, verified,x,σ, t) to Fbhs.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 66

• If P̃ is corrupted, then S activates the party P with the input (sid, verify, vk′, (f,x),σ) in its

simulated copy of Πbhs. Let (sid, verified,x,σ, t) be the output by P. The simulator forwards

(sid, verified,x,σ, t) to the environment. Note that the simulator does not interact with the ideal

functionality Fbhs in this case.

Simulating the signature-evaluation phase. When the environment activates P̃ ∈
{

S̃, R̃
}

on

an input (sid, eval, vk, g, (f,x),σ), where f = fid, the simulator S proceeds as follows:

• If P̃ is honest, then S only needs to simulate the verification request (if asked by the ideal

functionality). The simulator responds to the verification request using the procedure described

above (for simulating the verification queries).

• If P̃ is corrupt, then S activates party P with the input (sid, eval, vk, g, (f,x),σ) in its simulated

copy of Πbhs. Let (sid, signature, (g, g(x)), σ′) be the output by P. The simulator forwards

(sid, signature, (g, g(x)), σ′) to the environment. Note that the simulator does not interact with the

ideal functionality Fbhs in this case.

To complete the proof, we show that no efficient environment Z can distinguish the output of the

real execution with the adversary A from the output of the ideal execution with the simulator S.

Our argument considers several distinct cases, depending on whether the signer and receiver are

honest or corrupt.

Lemma 3.46. If both the signer and the receiver are honest, then for all efficient environments Z,

we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We proceed via a hybrid argument:

• Hyb0: This is the real distribution realΠbhs,A,Z .

• Hyb1: Same as Hyb0, except we modify the honest parties’ behavior as follows:

– At the beginning of the experiment, initialize x∗ ← ⊥.

– At the end of a signing request, let (sid, signature, (fid,x),σ) be the signature output by

the receiver. Update x∗ ← x. If any party issued a verification request of the form

(sid, signature, (fid,x),σ) prior to the signing request, then the experiment aborts with

output ⊥.

– Let vk be the verification key generated by the signer in the key-generation phase. When

the environment activates a party on a verification request (sid, verify, vk′, (f,x),σ) where

vk′ = vk and x 6= f(x∗), then the party outputs (sid, verified, (f,x),σ, 0). Otherwise, the

output is determined as in Hyb0.

• Hyb2: This is the ideal distribution idealFbhs,S,Z .

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 67

We now show that the outputs of each pair of consecutive hybrid experiments are computationally

indistinguishable.

Claim 3.47. Suppose ΠHS satisfies unforgeability (Definition 3.5). Then, the outputs of Hyb0 and

Hyb1 are computationally indistinguishable.

Proof. Suppose there exists an environment Z (and an adversary A) such that the outputs of Hyb0

and Hyb1 are distinguishable. We use Z and A to construct an adversary B that breaks unforgeability

(Definition 3.5) of ΠHS. Algorithm B operates according to the specification of the unforgeability

security experiment ExptufA,ΠHS
(λ), and simulates an execution of Hyb0 or Hyb1 for the environment

Z (and adversary A). Specifically, B simulates the behavior of the honest signer and receiver in the

protocol execution experiment:

• At the beginning of the unforgeability security game, algorithm B receives public keys pp and

a verification key vk′ from the challenger. It also initializes x∗ ← ⊥.

• When Z activates the signer S to run the key-generation protocol with a query (sid, keygen),

algorithm B simulates the honest signer’s behavior by outputting (sid, vkey, (pp, vk′)).

By definition of the unforgeability experiment ExptufA,ΠHS
(λ), the unforgeability challenger

samples pp ← PrmsGen(1λ, 1t`), and (sk, vk′) ← KeyGen(1λ). Thus, algorithm B perfectly

simulates the signer’s behavior in Hyb0 and Hyb1.

• For signing queries, after Z activates the receiver R with a tuple (sid, sign, vk,x) and the

signer S with a tuple (sid, signature), algorithm B samples w1, . . . ,wt
r←− {0, 1}` such that⊕

i∈[t] wi = x and submits (w1, . . . ,wt) to the unforgeability challenger to receive (σ1, . . . ,σt).

It computes σ ← SigEval(frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)) and simulates the receiver’s

output as (sid, signature, (fid,x),σ). In addition, B sets x∗ ← x.

In ExptufA,ΠHS
(λ), the challenger computes (σ1, . . . ,σt)← Sign

(
pp, sk, (w1, . . . ,wt)

)
, exactly as

in Hyb0 and Hyb1. Thus, B perfectly simulates the signing queries in Hyb0 and Hyb1.

• For verification and evaluation queries, B implements the same procedure as in Hyb0 and Hyb1.

None of these queries require knowledge of the secret signing key sk, and thus, can be perfectly

simulated by B.

• At any point during the simulation, if Z activates a party on a verification request of the form

(sid, verify, vk, (f,x),σ) where f(x∗) 6= x and σ is a valid signature on (f,x), then B does the

following:

– If f = fid, then B computes σ∗ ← Hide(vk′,x,σ) and sends the tuple (frecon,x,σ
∗) to the

unforgeability challenger as its forgery.

– Otherwise, B sends the tuple (f ◦ frecon,x,σ) to the unforgeability challenger as its forgery.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 68

Since the only difference between Hyb0 and Hyb1 is the additional checks in the signing and verification

protocols, if the outputs of Hyb0 and Hyb1 are distinguishable with non-negligible advantage ε, then

one of the following conditions must hold with probability ε:

• The receiver’s output in the signing request is a tuple (sid, signature, (fid,x),σ) and a party was

activated to run a verification request on the tuple (sid, signature, (fid,x),σ) before the signing

request. Since σ was output by an honest signing request, this means that σ is a valid signature

on x: namely, that Verify(pkrecon, vk′,x,σ) = 1, where pkrecon ← PrmsEval(frecon, pp). Moreover,

since the verification request occurred before the signing request, algorithm B would have

submitted the tuple (frecon,x,σ
∗) to the unforgeability challenger where σ∗ ← Hide(vk′,x,σ)

before it made any signing queries to the unforgeability challenger. By hiding correctness, σ∗ is

a valid signature on x with respect to frecon, and so B wins the unforgeability game.

• Otherwise, the environment must have activated a party on a verification query of the

form (sid, verify, vk, (f,x),σ) the successfully verifies in Hyb0 but not in Hyb1. First, since

the signature σ verifies in Hyb0, this means that f ◦ frecon ∈ H′ and in particular, that

VerifyHide(pkf◦frecon , vk′,x,σ) = 1 where ppf◦frecon ← PrmsEval(f ◦ frecon, pp). Now, if the adver-

sary B made a signing request to the unforgeability challenger on the message (w1, . . . ,wt),

then it would have also set x∗ =
⊕

i∈[t] wi. Since σ verifies in Hyb0 but not in Hyb1, the special

condition in Hyb1 must be satisfied which means

(f ◦ frecon)(w1, . . . ,wt) = f(x∗) 6= x.

This means that σ is a valid signature on x with respect to the function f ◦ frecon, and thus, is

a valid forgery. Alternatively, if B never made a signing request to the unforgeability challenger,

then σ is trivially a valid forgery.

In both cases, algorithm B breaks unforgeability of ΠHS, so we conclude that B has advantage ε in

the unforgeability game.

Claim 3.48. The outputs of hybrids Hyb1 and Hyb2 are identically distributed.

Proof. We consider the view of the environment Z in Hyb1 and Hyb2 during each phase of the

protocol.

• Key-generation: For the key-generation phase, the simulator S in Hyb2 exactly emulates the

generation of pp and vk = (sk, vk′) as defined in Hyb1. Thus, the outputs of the honest parties

in the key-generation phase of Hyb1 and Hyb2 are identically distributed.

• Signature-generation: In Hyb2, since both S and R are honest, the signatures that the receiver

obtains from Fbhs are determined by the ideal algorithm IdealSign that S provides to the

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 69

functionality Fbhs. Since S defines these algorithms exactly as in the protocol specification

of Πbhs using the identically-distributed signing key sk and verification key vk, the resulting

signatures in Hyb1 and Hyb2 are identically distributed. Moreover, the same abort condition is

present in both Hyb1 and Hyb2, so whenever an environment issues a query that causes the

ideal functionality to abort in Hyb2, the experiment also aborts in Hyb1.

• Signature-verification: In Hyb2, the ideal functionality Fbhs handles the signature verification

queries (sid, verify, vk′, (f,x),σ). We consider the different possibilities:

– If f /∈ H, then Fbhs always sets the verification bit t = 0. In this case, the honest parties

in Hyb1 also sets t = 0 according to the protocol specification.

– Otherwise, if vk = vk′ and (vk, (f,x),σ, 1) ∈ L, then Fbhs sets t = 1. We consider

several scenarios depending on how the entry (vk, (f,x),σ, 1) ∈ L was added to L. If σ

was generated as the result of a signing or a evaluation request, then by correctness of

ΠHS, the honest party in Hyb1 also outputs 1. If the entry was added as a result of a

previous verification request (which successfully verified), then because the honest party’s

verification algorithm in ΠHS is deterministic (and the signature verified previously), the

party also outputs 1 in Hyb1.

– Otherwise, if vk = vk′, and there does not exist (vk, (fid,x
′),σ′, 1) ∈ L for some x′,σ′

where x = f(x′), then Fbhs sets t = 0. This corresponds to a setting where the receiver

never makes a signing request on any x∗ ∈ {0, 1}` where x = f(x∗). This means the

condition in Hyb1 is satisfied, in which case the party’s output is (sid, verified, (f,x′),σ′, 0).

This matches the behavior in Hyb2.

– Otherwise, if there is already an entry (vk′, (f,x),σ, t′) ∈ L for some t′, the ideal func-

tionality sets Fbhs sets t = t′. In the real protocol execution in Hyb1, the honest verifier’s

decision algorithm is deterministic. Hence, if a signature previously verified (resp., failed

to verify), it will continue to verify (resp., fail to verify).

– Finally, if none of the above criterion apply, then the ideal functionality allows the simulator

S to decide the verification response in Hyb2. By construction, for an honest party, the

simulator implements the same logic as that in the actual protocol Πbhs.

We conclude that the outputs of the honest parties in response to verification queries are

identically distributed in Hyb1 and Hyb2.

• Signature-evaluation: In Hyb2, since both parties S and R are honest, the resulting signatures

that a party receives from Fbhs are fully determined by the ideal algorithm IdealEval that S
provides to the functionality Fbhs. Since S implements these algorithms exactly as in the

protocol specification of Πbhs using the identically-distributed signing key sk and verification

key vk, the signatures output by the evaluation algorithm in Hyb1 and Hyb2 are identically

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 70

distributed. Moreover, by correctness of ΠHS and construction of S, the abort condition in

Fbhs for evaluation queries is never triggered.

Lemma 3.46 now follows by combining Claims 3.47 and 3.48.

Lemma 3.49. If the signer is honest and the receiver is corrupt, then for all efficient environments

Z, we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We use a similar hybrid structure as that used in the proof of Lemma 3.46:

• Hyb0: This is the real distribution realΠbhs,A,Z .

• Hyb1: Same as Hyb0, except we modify the honest signer’s behavior as follows:

– At the beginning of the experiment, initialize x∗ ← ⊥.

– During a signing request, let w1, . . . ,wt be the messages R submits to F`,sot . Update

x∗ ←
⊕

i∈[t] wi. If the environment activated the signer to make a verification request of

the form (sid, signature, (fid,x
∗),σ) where σ is a valid signature on (fid,x

∗) prior to the

signing request, then the experiment aborts with output ⊥.

– Let vk be the verification key generated by the signer in the key-generation phase.

If the environment activates the honest signer on a verification request of the form

(sid, verify, vk′, (f,x),σ) where vk′ = vk and x 6= f(x∗), then the signer’s output is set to

(sid, verified, (f,x),σ, 0). Otherwise, the output is determined as in Hyb0.

• Hyb2: This is the ideal distribution idealFbhs,S,Z .

Claim 3.50. Suppose ΠHS satisfies unforgeability (Definition 3.5). Then, the outputs of Hyb0 and

Hyb1 are computationally indistinguishable.

Proof. Suppose there exists an environment Z and adversary A (that corrupts the receiver R) such

that the outputs of Hyb0 and Hyb1 are distinguishable. We use Z and A to construct an algorithm

B that breaks unforgeability of ΠHS. In the reduction, algorithm B simulates the behavior of the

honest signer for Z and A according to the protocol specification in Hyb0 and Hyb1. The overall

argument follows a very similar structure as the proof of Claim 3.47, so we only give a sketch of how

B simulates the execution of Hyb0 and Hyb1 below:

• As in the proof of Claim 3.47, algorithm B uses the public keys pp and the verification key vk′

from the unforgeability challenger as the signer’s verification key vk = (pp, vk′).

• To simulate a signing protocol, after the receiver R (under the direction of A) submits shares

w1, . . . ,wt ∈ {0, 1}` to F`,sot , algorithm B submits (w1, . . . ,wt) to the unforgeability challenger

to obtain the signatures (σ1, . . . ,σt), which it uses to simulate the response from F`,sot .

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 71

• Finally, algorithm B simulates the verification and evaluation queries to the honest signer as

described in Hyb0 and Hyb1, since these operations only depend on the public parameters.

By an analogous argument to that in the proof of Claim 3.47, algorithm B correctly simulates the

behavior of the honest signer in a protocol execution with Z and A. Thus, with non-negligible

probability, the environment will activate the honest signer on a signing or verification query whose

behavior differs between Hyb0 and Hyb1. As in the proof of Claim 3.47, if either condition is satisfied,

the environment’s query enables B to break unforgeability of the signature scheme.

Claim 3.51. The outputs of Hyb1 and Hyb2 are identically distributed.

Proof. We argue that the view of the environment Z is identically distributed in Hyb1 and Hyb2.

The argument follows similarly to that in the proof of Claim 3.48. We sketch the key details below:

• Key-generation: The simulator S (in Hyb2) implements the key-generation phase exactly

according to the specification of the real protocol Πbhs (in Hyb1).

• Signature-generation: In Hyb1, when the receiver R (under the direction of A) submits shares

w1, . . . ,wt ∈ {0, 1}` to F`,sot , it receives in response from the F`,sot functionality signatures

σ1, . . . ,σt where (σ1, . . . ,σt)← Sign(pp, sk, (w1, . . . ,wt)). This is precisely how S simulates

the signing request for A in Hyb2. Let ((fid,x),σ) be the message-signature pair that the

simulator S registers with the ideal functionality Fbhs at the end of the signing request in

Hyb2. If this pair is already registered with Fbhs as an invalid signature, then Fbhs aborts and

the protocol execution halts in Hyb2. By definition of Hyb2 and S, this is only possible if the

environment activates the honest signer to make a verification request on the message-signature

pair ((fid,x),σ) prior to the signing request. This coincides with the abort condition in Hyb1,

and so we conclude that the output of the signature-generation phase in Hyb1 and Hyb2 is

identically distributed.

• Signature-verification: Signature verification is a non-interactive procedure, so it suffices to

argue that the outputs of the honest signer in response to the environment’s queries are

identically distributed in Hyb1 and Hyb2. By construction of S, only verification and evaluation

queries involving an honest party requires interacting with the ideal functionality. The argument

then proceeds as in the proof of Claim 3.48.

• Signature-evaluation: Similar to the case of signature verification, signature evaluation is

non-interactive, so it suffices to argue that the outputs of the honest signer in response to the

environment’s queries are identically distributed. This argument then proceeds as in the proof

of Claim 3.48.

Combining Claims 3.50 and 3.51, the lemma follows.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 72

Lemma 3.52. If the signer is corrupt and the receiver is honest, then for all efficient environments

Z, we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We proceed via a hybrid argument:

• Hyb0: This is the real distribution realΠbhs,A,Z .

• Hyb1: Same as Hyb0 except we modify the honest receiver’s behavior in the signature-generation

protocol as follows. Let vk be the verification key chosen by the signer in the key-generation

phase. Let
(
(sid, i), sender, {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

)
be the set of signatures the signer submits

to the ideal OT functionality F`,sot , and let
{
σpk
i,j

}
i∈[t],j∈[`]

be the message-independent signature

components S sends to R. The receiver always outputs (sid, signature, (fid,x),⊥) if any of the

following conditions hold:

– The signer’s verification key vk cannot be written as (pp, vk′) where pp =
{

pki,j
}
i∈[t],j∈[`]

.

– If there exists indices i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are invalid. We say

that a signature σi,j,b is valid if it satisfies Eq. (3.1).

– If there exists j ∈ [`] such that for all i ∈ [t], at least one of σi,j,0 and σi,j,1 is invalid.

Otherwise, the honest receiver implements the verification protocol as in the real scheme.

• Hyb2: Same as Hyb1 except we use the context-hiding simulator S = (SExt,SGen) to generate

the signatures the honest receiver R outputs on evaluation queries. Here, we assume that

none of the conditions from Hyb1 are satisfied (otherwise, the honest receiver outputs ⊥ in the

signing protocol and ignores all evaluation requests). In particular, we have the following:

– Let
(
(sid, i), sender, {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

)
be the set of signatures the signer submits

to the ideal OT functionality F`,sot , and let
{
σpk
i,j

}
i∈[t],j∈[`]

be the message-independent

signature components S sends to R.

– Since none of the conditions in Hyb1 are satisfied, there exist indices i∗, j∗ where σi∗,j∗,0

and σi∗,j∗,1 are both valid. Moreover, the verification key vk can be written as vk = (pp, vk′)

where pp =
{

pki,j
}
i∈[t],j∈[`]

. The experiment invokes the context-hiding simulator SExt to

extract a simulation trapdoor td← SExt(vk′, (0, σi∗,j∗,0), (1, σi∗,j∗,1)), and stores td. The

receiver’s signature is constructed using the same procedure from Hyb1.

– During signature evaluation, on input (sid, eval, vk, g, (f,x),σ), R first applies the signature

verification procedure on input (sid, verify, vk, (f,x),σ). If the signature verifies, the

receiver’s signature is generated by computing pkg ← PrmsEval(g ◦ frecon, pp), σpk
g ←

SigEvalPK
(
g ◦ frecon, pp, (σpk

1 , . . . ,σ
pk
t)
)
, where σpk

i = (σpk
i,1, . . . , σ

pk
i,`), and finally σ∗ ←

SGen(pkg, vk′, td, g(x), σpk
g). The receiver’s output is the tuple (sid, signature, (g, g(x)), σ∗).

• Hyb3: This is the ideal distribution idealFbhs,S,Z .

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 73

Claim 3.53. Suppose t = ω(log λ). Then, the outputs of hybrids Hyb0 and Hyb1 are statistically

indistinguishable.

Proof. The only difference between the two experiments is the additional checks in Hyb1 which affects

the honest receiver’s output on signing queries. We consider each of the conditions separately, and

argue that for each of them, the receiver’s output in Hyb1 is the same as that in Hyb0, except with

probability at most 2−(t−1) = 2−ω(log λ) = negl(λ).

• Suppose that the signer’s verification key is not well-formed: namely, that vk 6= (pp, vk′) where

pp =
{

pki,j
}
i∈[t],j∈[`]

. In this case, the receiver’s signature is ⊥ in both Hyb0 and Hyb1.

• Suppose there exists i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are invalid. In this case, the

honest receiver in Hyb0 outputs ⊥ as its signature, which matches the behavior in Hyb1.

• Suppose there exists j ∈ [`] such that for all i ∈ [t], at least one of σi,j,0 and σi,j,1 is invalid.

We argue that in this case, the receiver outputs ⊥ with probability at least 1− 2−(t−1) in Hyb0.

Without loss of generality, we can assume that exactly one of σi,j,0 and σi,j,1 for all i ∈ [t] is

invalid (the case where both are invalid is captured by the previous case). Let b1, . . . , bt ∈ {0, 1}
be such that σi,j,bi is invalid, and let x = (x1, . . . , x`) ∈ {0, 1}` be the receiver’s message in the

signing protocol. In the real protocol, the honest receiver samples wi,j
r←− {0, 1} for all i ∈ [t]

such that xj =
⊕

i∈[t] wi,j . We consider two possibilities:

– Suppose xj 6=
⊕

i∈[t] bi. This means that there exists i ∈ [t] where wi,j 6= bi. In the real

protocol, this means that the receiver obtains signature σi,j,wi,j , which by assumption is

invalid. In this case, the receiver in Hyb0 outputs ⊥ as its signature.

– Suppose xj =
⊕

i∈[t] bi. Since wi,j are sampled uniformly at random subject to the

constraint, with probability 2−(t−1), it is the case that wi,j = bi for all i ∈ [t]. In this case,

the receiver in Hyb0 does not output ⊥ (since every signature it obtains is valid). With

probability 1− 2−(t−1), there is an index i ∈ [t] where wi,j 6= bi. In this case, the receiver

obtains signature σi,j,wi,j , which by assumption is invalid. Thus, we conclude that the

receiver in Hyb0 aborts with probability 1− 2−(t−1).

In this case, the honest receiver in Hyb0 outputs ⊥ with probability at least 1− 2−(t−1), while

in Hyb1, the receiver outputs ⊥ with probability 1. In both cases, the probability is taken

over the receiver’s random coins. Since t = ω(log λ), we conclude that the statistical distance

between the output distributions of Hyb0 and Hyb1 is negligible.

Claim 3.54. Suppose ΠHS satisfies context-hiding (Definition 3.9). Then, the outputs of hybrids

Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Suppose there exists an environment Z and adversary A (that corrupts the signer S) such

that the outputs of Hyb1 and Hyb2 are distinguishable. We use Z and A to construct an adversary

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 74

B that breaks context-hiding security (Definition 3.9) of ΠHS. Algorithm B begins by simulating the

protocol execution in Hyb1 and Hyb2 for Z and A. In the simulation, B is responsible for simulating

the behavior of the honest receiver R and the ideal OT functionality F`,sot .

• Key-generation: The key-generation protocol only involves Z and A, so B does not need to

simulate anything.

• Signature-generation: On a signature-generation query (sid, sign, vk,x), let {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

be the signatures the signer S submits to the ideal OT functionality F`,sot in the simulated

protocol execution (as directed by Z and A). Additionally, let
{
σpk
i,j

}
i∈[t],j∈[`]

be the message-

independent signature components the signer sends to the receiver. Algorithm B checks the

three conditions in Hyb1 and Hyb2, and if any condition is satisfied, it defines the receiver’s

output to be (sid, signature, (fid,x),⊥).

Otherwise, the verification key vk has the form vk = (pp, vk′) where pp =
{

pki,j
}
i∈[t],j∈[`]

,

and moreover, there exists indices i∗, j∗ where σi∗,j∗,0 and σi∗,j∗,1 are both valid. Algorithm

B submits the public key pki∗,j∗ , the verification key vk′, and the message-signature pairs

(0, σi∗,j∗,0) and (1, σi∗,j∗,1) to the context-hiding challenger. Finally, algorithm B simulates the

receiver’s output according to the specification in Hyb1 and Hyb2.

If the receiver’s output is not ⊥, algorithm B does the following. Let w1, . . . ,wt where⊕
i∈[t] wi = x be the bit-strings B chose when simulating the honest receiver. For i ∈ [t],

algorithm B defines σi = (σi,1,wi,1 , . . . , σi,`,wi,`).

• Signature-verification: Algorithm B simulates the verification queries involving the receiver R

as described in Hyb1 and Hyb2. Note that because signature verification is non-interactive, the

environment Z and the adversary A completely dictate the behavior of verification queries to

the corrupt signer.

• Signature-evaluation: Whenever Z activates the receiver on a signature-evaluation query

(sid, eval, vk, g, (f,x),σ), where vk = (pp, vk′), algorithm B ignores the request if the receiver’s

signature in the signing protocol was ⊥. Otherwise, it proceeds as follows:

– As in Hyb1 and Hyb2, algorithm B checks that f = fid and that σ is a valid signature on

(f,x). If the signature verifies, then B first computes pkg ← PrmsEval(g ◦ frecon, pp). Then,

it computes σ′ ← SigEval(g ◦ frecon, (σ1, . . . ,σt)) where σi is defined as in the signing

protocol.

– Algorithm B submits the public key pkg, the message g(x), and the signature σ′ to the

context-hiding challenger, and receives in response a signature σ∗. Algorithm B simulates

the output of the honest receiver as (sid, signature, (g, g(x)), σ∗).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 75

Note that signature evaluation is non-interactive, the environment Z and the adversary A
completely dictate the behavior of evaluation queries to the corrupt signer.

• At the end of the experiment, when Z outputs a bit, B outputs the same bit.

We now show that B breaks context-hiding security with the same advantage as Z. By construction,

the only difference between the two hybrid experiments Hyb1 and Hyb2 is the way the honest receiver’s

signatures are generated on evaluation queries. Note that if the honest receiver outputs ⊥ in response

to a signing query, then the honest receiver in Hyb1 and Hyb2 ignores all evaluation queries. In

this case, the two experiments are identical. Thus, without loss of generality, we assume that

the signing protocol succeeds. In this case, algorithm B submits a valid key, verification key, and

message-signature pairs to the context-hiding challenger.

Now, assume that B does not abort during signature generation. Then, if the context-hiding

challenger implements the hide algorithm using Hide, then the signatures output by B when simulating

the honest evaluation queries are distributed according to Hyb1, and B perfectly simulates an execution

of Hyb1 for Z and A. Alternatively, if the context-hiding challenger implements the hide algorithm

using SGen, then the signatures output by B when simulating the honest evaluation queries are

distributed according to Hyb2, and B perfectly simulates an execution of Hyb2 for Z and A. Thus, if

Z is able to distinguish experiments Hyb1 and Hyb2, algorithm B breaks context-hiding of ΠHS with

the same advantage.

Claim 3.55. The outputs of hybrids Hyb2 and Hyb3 are identically distributed.

Proof. We now show that the view of the environment Z when interacting with an adversary A in

Hyb2 is distributed identically with its view when interacting with the simulator S in Hyb3.

• Key-generation: When the environment Z activates the signer on a key-generation query,

algorithm S simply forwards the query to its simulated protocol execution with adversary A
(as if it came from A’s environment). Thus, the output of S in Hyb3 is distributed identically

to the output of A in Hyb2.

• Signature-generation: By construction, S perfectly simulates the behavior of the ideal OT

functionality F`,sot , so it perfectly simulates the view of A in its simulated protocol execution

(since A only interacts with F`,sot). Thus, S perfectly simulates any interaction between the

adversary and the environment that can occur during this phase.

It suffices to argue that the output of the honest receiver in Hyb2 and Hyb3 is identically

distributed on a query (sid, sign, vk,x), where vk can be parsed as vk = (pp, vk′). Let

{(σi,j,0, σi,j,1)}i∈[t],j∈[`] be the signatures the signer submits to the ideal OT functionality

F`,sot , and let
{
σpk
i,j

}
i∈[t],j∈[`]

be the message-independent signature components the signer sends

to the receiver. First, if any of the verification conditions in Hyb2 (defined in the description of

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 76

Hyb1) are satisfied, then the output of the honest receiver in Hyb2 is (sid, signature, (fid,x),⊥).

By construction, the simulator S implements an identical set of checks. If any of the conditions

are satisfied, then the simulator defines the IdealSign function to output ⊥ on all inputs. This

means that in Hyb3, the honest receiver also outputs ⊥ as its signature in response to the

signing request. We conclude that the behavior in Hyb2 and Hyb3 is identical whenever any of

the conditions in Hyb2 is triggered.

Now, consider the case where none of the conditions in Hyb2 are satisfied. This means that for

all j ∈ [`], there is at least one ij ∈ [t] where both σij ,j,0 and σij ,j,1 are valid (according to the

criterion in Eq. (3.1)). We consider the receiver’s output in Hyb2 and Hyb3.

– In Hyb2, the honest receiver chooses wi
r←− {0, 1}` for all i ∈ [t] such that x =

⊕
i∈[t] wi.

This is equivalent to first sampling wi,j
r←− {0, 1} for all j ∈ [`] and i 6= ij and setting

wij ,j ∈ {0, 1} such that x =
⊕

i∈[t] wi. Next, we say that an index i ∈ [t] and j ∈ [`] is

“bad” if either σi,j,0 or σi,j,1 is invalid. For all bad indices i, j, define bi,j ∈ {0, 1} so that

σi,j,bi,j is valid. We consider two possibilities.

∗ The receiver in Hyb2 outputs ⊥ as its signature if there is a bad index i ∈ [t], j ∈ [`]

where wi,j 6= bi,j . Suppose there are n such bad indices. Since both σij ,j,0 and σij ,j,1

are valid for all j ∈ [`], and all of the wi,j ’s are sampled uniformly at random for

i 6= ij , it follows that with probability 1− 2−n (over the randomness used to sample

the wi,j ’s), there is at least one i 6= ij and j ∈ [`] where wi,j 6= bi,j .

∗ With probability 2−n, for all bad indices i ∈ [t], j ∈ [`], we have that wi,j = bi,j .

In this case, the honest receiver in Hyb2 obtains valid signatures σi,j,wi,j from F`,sot

and constructs σ according to the specification of Hyb2. Here, wi,j = bi,j for all bad

indices, and for all remaining indices i 6= ij and j ∈ [`], the choice bit wi,j is uniformly

random.

– In Hyb3, the ideal signing algorithm IdealSign is used to generate the honest receiver’s

signature, and the simulator S decides whether the honest receiver outputs ⊥ or the output

of IdealSign. By construction, if n is the number of bad indices, then S causes the honest

receiver to output ⊥ with probability 1− 2−n, which is precisely the probability that the

honest receiver outputs ⊥ in Hyb2. With probability 2−n, the honest receiver outputs

the signature computed by IdealSign. We argue that in this case, the signature output by

IdealSign is distributed identically to the signature that would have been constructed by

the honest receiver in Hyb2. By construction, IdealSign sets σi = (σi,1,wi,1 , . . . , σi,`,wi,`)

for all i ∈ [t] where wi,j = bi,j for all bad indices i ∈ [t] and j ∈ [`]. For the remaining

indices, wi,j is uniformly random subject to the restriction that
⊕

wi = x where wi =

(wi,1, . . . ,wi,`). Observe that this is the same distribution from which the wi,j are

sampled in Hyb2. Finally, IdealSign constructs the final signature σ′ by computing σ ←

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 77

SigEval(frecon, pp, (w1, . . . ,wt), (σ1, . . . ,σt)). This is precisely the behavior of the honest

receiver in Hyb2. In addition, by correctness of ΠHS, it will never be the case that

(vk, (fid,x),σ, 0) ∈ L. Specifically, σ is a valid signature on x under vk, so the simulator

S would never register it as an invalid signature in Fbhs. (Because the signer is corrupt,

the unforgeability criterion in signature verification is ignored).

We conclude that the output of the honest receiver in response to a signing query is identically

distributed in Hyb2 and Hyb3.

• Signature-verification: If the environment Z activates the corrupt signer S̃ on a verification

query (sid, verify, vk′, (f,x),σ), the simulator S activates the real signer S (under the control

of A) in its simulated version of Πbhs. Since the simulator S forwards S’s output to Z, the

responses to these queries in Hyb2 and Hyb3 are identically distributed.

Next, suppose the environment Z activates the honest receiver R on a signature verification

query (sid, verify, vk′, (f,x),σ). In Hyb3, the ideal functionality Fbhs handles the signature-

verification queries. We consider the different possibilities below. Note that because the signer

is assumed to be corrupt, the unforgeability condition is ignored.

– If f /∈ H, then Fbhs sets the verification bit t = 0. This is the behavior in Hyb2.

– Otherwise, if vk = vk′ and (vk, (f,x),σ, 1) ∈ L, then Fbhs sets t = 1. We consider several

scenarios depending on how the entry (vk, (f,x),σ, 1) was added to L. If σ was generated

as a result of a signing or a evaluation request involving the honest receiver, then by

(evaluation and hiding) correctness of ΠHS, σ is a valid signature on x, and the honest

receiver in Hyb2 would also accept the signature. If the entry was added as a result of a

previous verification request (which successfully verified), then because the honest party’s

verification algorithm in ΠHS is deterministic and since the signature previously verified,

then the honest receiver would also output 1 in Hyb2.

– Otherwise, if there is already an entry (vk′, (f,x),σ, t′) ∈ L for some t′, Fbhs sets t = t′.

In the real protocol in Hyb2, the honest verifier’s algorithm is deterministic. Hence, if a

signature previously verified (resp., failed to verify), it will continue to verify (resp., fail to

verify).

– Finally, if none of the above criterion apply, then the ideal functionality allows the simulator

S to decide the verification response in Hyb3. By construction, for the honest receiver,

the simulator implements the same logic as in the real protocol in Hyb2.

We conclude that the output of the honest receiver in response to verification queries is

identically distributed in Hyb2 and Hyb3.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 78

• Signature-evaluation: By definition, for any signature evaluation query made by Z to S̃ in

Hyb3, the simulator S invokes S (under the control of A) in its simulated copy of Πbhs and

forwards S’s output to Z. Therefore, Z’s views in Hyb2 and Hyb3 are identical.

Next, suppose that the environment Z activates the honest receiver R̃ on an evaluation query

in Hyb3. In this case, the ideal functionality first verifies the signature (as argued above, the

outcome of the signature verification procedure is identically distributed in Hyb2 and Hyb3), and

then invokes the IdealEval algorithm provided by S to construct the signature. By construction,

IdealEval is precisely the algorithm used in Hyb2 to generate the signatures (specifically, both

IdealEval and the procedure in Hyb2 simulate the signatures using the context-hiding simulator

for ΠHS). We conclude that the output of the honest receiver in response to an evaluation

query is identically distributed in Hyb2 and Hyb3.

We conclude that on all queries, the view of the environment Z in Hyb2 and Hyb3 is identically

distributed.

Lemma 3.52 now follows by combining Claims 3.53, 3.54, and 3.55.

Lemma 3.56. If both the signer and the receiver are corrupt, then idealFbhs,S,Z ≡ realΠbhs,A,Z .

Proof. When both parties are corrupt, the simulator S only needs to simulate the behavior of the ideal

OT functionality F`,sot when simulating the protocol execution for adversary A. Since S forwards all

of the queries from Z to A (as if it came from A’s environment in the simulated protocol execution),

and moreover, S perfectly simulates the behavior of the F`,sot functionality, the output of S in the

ideal execution is distributed identically to the output of A in the real execution.

Theorem 3.36 now follows by combining Lemmas 3.46, 3.49, 3.52, and 3.56.

3.6.3 Proof of Theorem 3.40

Let A be a static adversary that interacts with the environment Z, a prover P, and a verifier V
running the real protocol ΠZK (Figure 3.8). We construct an ideal world adversary (simulator) S that

interacts with the environment Z, a dummy prover P̃, a dummy verifier Ṽ, and ideal functionality

FZK such that no environment Z can distinguish an interaction with A in the real execution from

one with S in the ideal execution.

We begin by describing the simulator S. At the beginning of the protocol execution, the simulator

S begins by invoking the adversary A. Algorithm A begins by declaring which parties it would like

to corrupt, and S corrupts the corresponding set of dummy parties. The simulation then proceeds as

follows.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 79

Simulating the communication with the environment. Whenever the simulator S receives

an input from the environment Z, it forwards the input to A (as if it came from the environment in

the simulated protocol execution). Whenever A writes a message on its output tape (in the simulated

protocol execution), the simulator S writes the same output on its own output tape (to be read by

the environment).

Simulating the ideal BHS functionality. At the beginning of the protocol execution, the

simulator S initializes an empty list L to keep track of the signatures in the simulated instance

of Fbhs. The simulator S simulates the ideal BHS functionality exactly as described in Figure 3.6.

Whenever the specification of Fbhs needs to interact with the ideal adversary, the simulator S forwards

the request to A (as if it came from Fbhs in the simulated protocol execution), and uses the response

from A to continue the simulation.

Simulating the preprocessing phase. In the preprocessing phase, the verifier and the prover

never exchange any messages with each other. They only interact with the Fbhs functionality. As

stated above, the simulator simulates the behavior of Fbhs exactly as described in Figure 3.6. If a

party is corrupt, then the simulator uses A to determine the messages it sends to Fbhs. If a party is

honest, then S simulates the behavior of the honest party exactly as in the real protocol. Let ṽk be

the verification key the verifier sends to the prover in the simulated execution.

Simulating the proofs. After simulating the preprocessing phase, the simulator S proceeds as

follows, depending on which parties are corrupt:

• The prover is honest : If the prover is honest, then the prover (in both the real and ideal

executions) does nothing until it is activated by the environment. In the ideal execution,

whenever the environment activates the prover on an input (sid, ssid, prove,R,x,w) where

R(x,w) = 1, then S receives a tuple (sid, ssid, proof,R,x) from FZK. When this occurs, S
simulates the request as follows. First, let s̃k be the secret key the simulator S chose for the prover

when simulating the preprocessing phase (since the prover is honest, S chooses the secret key).

Then, S constructs a ciphertext c̃t← Encrypt(sk, 0τ), where τ denotes the length of the witness

for relation R. Next, S constructs a signature σ̃∗ ← IdealEval(CheckWitnessR,ct,x, 1), where

IdealEval is the ideal signature evaluation functionality that A chooses for Fbhs. The simulator S
constructs the simulated proof π̃ = (c̃t, σ̃∗), adds the signature (vk, (CheckWitnessR,ct,x, 1), σ̃∗, 1)

to L (if an entry does not already exist), and sends (sid, ssid, proof,x, π̃) to the verifier in the

simulated protocol execution.

• The prover is corrupt : First, if the verifier is also corrupt, then the simulator S only needs

to simulate the BHS functionality Fbhs. Specifically, whenever the environment activates the

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 80

prover on an input in the ideal execution, the simulator simply forwards the input to the

(corrupt) prover in the simulated execution.

On the other hand, if the verifier is honest, then S proceeds as follows:

– At the beginning of the simulation, S initializes s̃k to ⊥. At any point in the simulated

protocol execution, if the prover (as dictated by A) makes a successful signing request to

the Fbhs functionality, the simulator S updates s̃k to be the message the prover submitted

to the signing functionality. By definition of the Fbhs functionality, the prover can make

at most one successful signing request to the Fbhs.

– Whenever the environment activates the prover in the ideal execution on an input

(sid, ssid, prove,R,x,w), the simulator S activates the prover in the simulated protocol

execution on the same input.

– Whenever the prover in the simulated execution sends a message (sid, ssid, proof,R,x, π)

to the verifier, the simulator parses π = (ct, σ∗). If π does not have this form or if

s̃k = ⊥, then S ignores the message. Otherwise, the simulator S submits the request

(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ∗) to its (simulated) ideal functionality Fbhs. If

the signature does not verify, then S ignores the request. Otherwise, it computes w ←
Decrypt(s̃k, ct) and outputs (sid, ssid, proof,R,x) for the honest verifier in the simulated

execution. In addition, S submits (sid, ssid, prove,R,x,w) to ΠZK (on behalf of the prover

P̃).

To conclude the proof, we show that the environment cannot distinguish the output of the real

execution with adversary A from an ideal execution with the simulator S. We consider the two cases

separately.

Lemma 3.57. If the prover is honest, and Πenc is a CPA-secure encryption scheme, then in the

Fbhs-hybrid model, realΠZK,A,Z
c
≈ idealFZK,S,Z .

Proof. Our proof proceeds via a hybrid argument:

• Hyb0: This is the real distribution realΠZK,A,Z .

• Hyb1: Same as Hyb0, except when constructing proofs, the honest prover does not sub-

mit (sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain the signature σ∗. Instead,

the signature is constructed as σ∗ ← IdealEval(CheckWitnessR,ct,x, 1). Afterwards, the entry

(vk, (CheckWitnessR,ct,x, 1), σ∗, 1) is added to Fbhs (if an entry does not already exist.)

• Hyb2: Same as Hyb1, except during the preprocessing phase, the honest prover sends (sid, sign, vk, sk′)

to Fbhs where sk′ ← KeyGen(1λ) is generated independently of sk. The ciphertexts in the

encryption step are still generated using sk.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 81

• Hyb3: Same as Hyb2, except the honest prover encrypts the all-zeroes string 0τ (where τ is the

bit-length of the witness) when constructing the proofs.

• Hyb4: Same as Hyb3, except the honest prover requests the signature on sk in the preprocessing

step (instead of the dummy key sk′).

• Hyb5: This is the ideal distribution idealFZK,S,Z .

We now show that assuming Πenc is CPA-secure, the outputs of each pair of consecutive hybrid

experiments are computationally indistinguishable.

• Hybrids Hyb0 and Hyb1 are identical experiments according to the specification of Fbhs. Specif-

ically, since the prover is honest, the ideal functionality Fbhs answers the signature-evaluation

queries using the ideal evaluation function IdealEval, which is precisely the procedure described

in Hyb1.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable if the encryption scheme (KeyGen,

Encrypt,Decrypt) is CPA-secure. First, the only difference in Hyb1 and Hyb2 is that in Hyb2,

the entry (sid, vk, (fid, sk), σsk) in Fbhs is replaced with the entry (sid, vk, (fid, sk′), σsk). We

consider two cases, depending on whether the verifier is honest or corrupt.

The verifier is honest : If the verifier is honest, then these two experiments are identically

distributed. Specifically, the only queries the honest verifier makes to Fbhs are on (computed)

signatures σ∗ that are registered with Fbhs.

The verifier is corrupt : In this case, the adversary A can make arbitrary queries (on behalf of

the verifier) to the Fbhs functionality. In addition, since the verifier is the signer (with respect

to the Fbhs functionality), during signature verification, only the correctness and consistency

conditions are checked (and in particular, not the unforgeability condition). This means that the

view of adversary A is identically distributed in Hyb1 and Hyb2 unless A makes an evaluation

or a verification query to Fbhs on a message of the form (fid, sk) or (fid, sk′). We first show that

in Hyb2, the probability that A makes a verification query to Fbhs on a message of the form

(fid, sk′) is negligible. By construction, in Hyb2, the adversary’s view is completely independent

of sk′, so we can effectively defer the sampling of sk′ until after the adversary has made all

of its verification queries. Since the adversary makes poly(λ) verification queries, and sk′ is

drawn from a distribution with min-entropy at least ω(log λ),13 the probability (taken over

the randomness of the key-generation algorithm) that sk′ coincides with a message in the

adversary’s query is negligible.

13This is implied by CPA-security of the encryption scheme. Otherwise, the adversary has a noticeable probability of
guessing the key for the encryption scheme, which trivially breaks CPA-security.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 82

We now show that if there exists an adversary A and an environment Z such that the outputs of

Hyb1 and Hyb2 are not computationally indistinguishable, then we can construct an adversary

B that breaks CPA-security of Πenc. Based on the above analysis, to achieve non-negligible

distinguishing advantage, algorithm A has to issue a verification query on the message (fid, sk)

to the ideal functionality Fbhs with non-negligible probability. Algorithm B simulates an

instance of the protocol execution environment according to Hyb2 as follows:

– Then, B starts the protocol execution experiment by activating the environment Z.

Algorithm B now simulates the protocol execution experiment as described in Hyb2.

– To simulate the honest prover during the preprocessing phase, B leaves the secret key sk

unspecified (since it is not needed in the simulation). It samples sk′ ← KeyGen(1λ) for the

honest prover and simulates the rest of the preprocessing as described in Hyb2.

– Whenever the environment activates the prover to construct a proof on a statement-witness

pair (x,w) for a relation R, algorithm B simulates the honest prover in Hyb2 by first

checking that R(x,w) = 1. If so, then B submits an encryption query on the pair (w,w)

to the encryption oracle to obtain a ciphertext ct. Algorithm B simulates the rest of the

protocol exactly as described in Hyb2.

– Algorithm B simulates the Fbhs functionality according to the specification of Hyb1 and

Hyb2 (the behavior of Fbhs is identical in the two hybrids, and does not depend on sk).

– At the end of the protocol execution experiment, algorithm B chooses a random bit-

string ξ
r←− {0, 1}λ. It makes ξ chosen-message queries to the encryption oracle on pairs

(ξ1, 0), . . . , (ξλ, 1) to obtain ciphertexts ct1, . . . , ctλ. Then, for each verification query made

by adversary A to Fbhs on a message of the form (fid, ŝk) for some ŝk, algorithm B checks

to see if for all i ∈ [λ], Decrypt(ŝk, cti) = ξi. If this holds for all i ∈ [λ], then B outputs 1.

Otherwise, it outputs 0.

By definition, we see that B perfectly simulates the protocol execution according to the

specification in Hyb2. By assumption, with non-negligible probability ε, algorithm A will issue

a query to Fbhs on the message (fid, sk). This means that with probability ε, there is some ŝk

where ŝk = sk.

– Suppose B is interacting with the encryption oracle O0 in the CPA-security game. In

this case, if there is a message of the form (fid, ŝk) where ŝk = sk, then B outputs 1 by

correctness of the encryption scheme. In this case, B outputs 1 with probability at least ε.

– Suppose instead that B is interacting with the encryption oracle O1. In this case, the

ciphertexts ct1, . . . , ctλ and keys ŝk are all independent of ξi. Thus, union bounding over

all of the messages of the form (fid, ŝk) appearing in the verification queries to Fbhs, the

probability that B outputs 1 (taken over the choice of ξi’s) is at most poly(λ)/2λ = negl(λ).

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 83

We conclude that B is able to break CPA-security with non-negligible probability ε− negl(λ).

Thus, if the encryption scheme is CPA-secure, the outputs of hybrids Hyb1 and Hyb2 are

computationally indistinguishable.

• Hybrids Hyb2 and Hyb3 are computationally indistinguishable if Πenc is CPA-secure. Observe

that none of the logic in Hyb2 and Hyb3 depend on the secret key sk, and all of the messages

can be simulated given access to an encryption oracle Encrypt(sk, ·). By CPA-security of

Πenc, we conclude that the outputs of these two hybrid experiments are computationally

indistinguishable.

• Hybrids Hyb3 and Hyb4 are computationally indistinguishable if Πenc is CPA-secure. The

argument follows by the same logic as that used to argue computational indistinguishability of

Hyb1 and Hyb2.

• Hybrids Hyb4 and Hyb5 are identically distributed. By construction, the honest prover’s

behavior in Hyb4 precisely coincides with the behavior of the simulated prover in Hyb5. Thus,

the outputs of A in Hyb4 are distributed exactly as the outputs of S in Hyb5. Moreover, if the

verifier is honest, then the outputs of the honest verifier in Hyb4 are distributed identically to

the outputs in Hyb5; this follows by appealing to the correctness property of the ideal Fbhs

functionality. We conclude that the output distribution of Hyb4 is identical to that of the ideal

execution.

Since each pair of hybrid arguments is computationally indistinguishable, the lemma follows.

Lemma 3.58. If the prover is corrupt, then in the Fbhs-hybrid model, we have that realΠZK,A,Z ≡
idealFZK,S,Z .

Proof. In the case where the prover is corrupt, we show that the output of the real and ideal protocol

executions are identically distributed. We consider two cases.

The verifier is corrupt : If the verifier is also corrupt, then the simulator S is only responsible for

simulating the Fbhs functionality. Since S simulates the ideal BHS functionality exactly as described

in Figure 3.6, the output of S is identically distributed as the output of A in the real execution, and

the claim follows.

The verifier is honest : If the verifier is honest, we show that S perfectly simulates the behavior of

the honest verifier in the simulated protocol execution. By construction, S perfectly simulates the

behavior of the honest verifier in the preprocessing phase. Next, in the real execution, the honest

verifier only responds when it receives a tuple of the form (sid, ssid, proof,R,x, π) from the prover.

We show that the simulation is correct:

• Suppose in the real scheme, the verifier has not set the ready flag. This corresponds to the

setting where the prover has never made a signing request to Fbhs. In this case, the verifier

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 84

ignores the request. In the simulated protocol execution, if the prover never makes a signing

request to Fbhs, then s̃k = ⊥, and the verifier also ignores the request.

• Suppose in the real scheme, the proof π does not have the form (ct, σ). In this case, the verifier

also ignores the request. This is precisely how S simulates the honest verifier’s behavior in the

simulated protocol execution.

• Otherwise, in the real scheme, the honest verifier parses the proof as π = (ct, σ), and submits

(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. We consider several cases:

Case 1 : Suppose that (vk, (CheckWitnessR,ct,x, 1), σ, 1) ∈ L, where L is the list of signatures

maintained by Fbhs. In this case, Fbhs declares the signature valid, and the honest verifier

in the real scheme accepts the proof by outputting (sid, ssid, proof,R,x). According to the

specification of Fbhs, there are two possible ways for (vk, (CheckWitnessR,ct,x, 1), σ, 1) to be

added to L:

– The prover made a successful evaluation query with function CheckWitnessR,ct,x on some in-

put sk where CheckWitnessR,ct,x(sk) = 1, and moreover, there is an entry (vk, (fid, sk), σ′, 1) ∈
L for some σ′.

– The prover previously made a verification query on (vk, (CheckWitnessR,ct,x, 1), σ, 1) and

the adversary decided the verification result. According to the Fbhs specification, the

adversary chooses the verification output only if there exists (vk, (fid, sk), σ′, 1) ∈ L for

some σ′ where CheckWitnessR,ct,x(sk) = 1.

We conclude that in this case, there exist sk and σ′ where (vk, (fid, sk), σ′, 1) ∈ L and

CheckWitnessR,ct,x(sk) = 1. Since the verifier is honest, by the specification of Fbhs, this

is possible only if the prover has previously made a successful signing request on sk. This means

that in the simulated protocol execution, the prover must have submitted a signing request

to Fbhs on message sk. By construction of the simulator, s̃k = sk. Now, in the simulation,

S computes Decrypt(s̃k, ct) to obtain w. Since CheckWitnessR,ct,x(sk) = 1, this means that

R(x,w) = 1. In the ideal execution, the simulator sends (sid, ssid, proof,R,x,w) to ΠZK, which

by definition forwards the output (sid, ssid, proof,R,x) to the dummy verifier. Thus, in this

case, the honest verifier’s behavior in both the real and ideal executions is identical.

Case 2 : Suppose that (vk, (CheckWitnessR,ct,x, 1), σ, 1) /∈ L. We consider two possibilities.

– If there does not exist an entry (vk, (fid, sk), σ′, 1) where CheckWitnessR,ct,x(sk) = 1 in the

list L for some sk and σ′, then by the unforgeability condition, the ideal functionality

Fbhs declares the signature invalid, and the honest verifier in the real scheme ignores the

message. Since S simulates the ideal functionality Fbhs perfectly, the simulator S also

ignores the message in the simulated execution.

CHAPTER 3. NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS 85

– On the other hand, if L does contain an entry (vk, (fid, sk), σ′, 1) for some sk and σ′

where CheckWitnessR,ct,x(sk) = 1, then Fbhs allows the adversary to decide whether the

signature is valid or not. If the adversary declares the signature invalid, then in both

the real and the simulated executions, the verifier ignores the message. If the adversary

declares the signature valid, then in the real execution, the verifier accepts the proof

and outputs (sid, ssid, proof,R,x). In the simulated execution, because there does exist

(vk, (fid, sk), σ′, 1) ∈ L where CheckWitnessR,ct,x(sk) = 1, we can apply the same analysis

from Case 1 to argue that in the ideal execution, the simulated verifier also accepts

the proof and outputs (sid, ssid, proof,R,x). Moreover, in this case, S also forwards

(sid, ssid, proof,R,x,w) where w← Decrypt(s̃k, ct) and R(x,w) = 1 to ΠZK. This means

that the honest verifier in the ideal execution also outputs (sid, ssid, proof,R,x).

From the above analysis, we see that in all cases, the behavior of the honest verifier in both the real

execution and the ideal execution is identical. Moreover, algorithm S perfectly simulates the view of

A in the simulated protocol execution. The lemma follows.

Combining Lemmas 3.57 and 3.58, we conclude that the ΠZK protocol securely realizes FZK in the

presence of malicious adversaries in the Fbhs-hybrid model.

3.7 Chapter Summary

In this chapter, we constructed the first multi-theorem preprocessing NIZK arguments from standard

lattice assumptions by way of context-hiding homomorphic signatures. We then introduced a new

cryptographic primitive (blind homomorphic signatures) which provided an efficient way to implement

the preprocessing step of our new NIZK candidate. We conclude with two directions for future work.

Towards NIZKs in the CRS model. Our techniques do not directly generalize to the CRS model.

While it is possible to obtain a publicly-verifiable preprocessing NIZK (i.e., make the verification key

kV public), our construction critically relies on the prover state being hidden. This is because the

prover state contains the secret key the prover uses to encrypt its witness in the proofs, so publishing

this compromises zero-knowledge. Nonetheless, we believe that having a better understanding of

NIZKs in the preprocessing model provides a useful stepping stone towards the goal of building

NIZKs from lattices in the CRS model, and we leave this as an exciting open problem.

Preprocessing NIZKs from other assumptions? Our work gives the first construction of a

multi-theorem preprocessing NIZK from standard lattice assumptions. It is an interesting challenge

to obtain multi-theorem preprocessing NIZKs from other assumptions that are currently not known to

imply NIZKs in the CRS model. For instance, a natural target would be to construct multi-theorem

NIZKs in the preprocessing model from the decisional Diffie-Hellman (DDH) assumption.

Chapter 4

Succinct Non-Interactive

Arguments (SNARGs)

In this chapter, we turn our attention to constructing succinct non-interactive argument systems

(SNARGs) from lattice-based assumptions. Recall from Chapter 1 that an argument system for NP

is succinct if its communication complexity is polylogarithmic in the running time of the NP verifier.

We begin by providing some background on the existing approaches for constructing SNARGs. Then

in Section 4.1, we provide a technical overview of our construction.

Designated-verifier arguments. In a designated-verifier argument system, there is a setup

algorithm that generates a public proving key and a secret verification state. Only the verifier who

knows the verification state is able to verify proofs, and soundness holds provided that the prover

does not know the secret verification state. In many applications like bootstrapping obfuscation1

and verifiable computation [WB15], designated-verifier SNARGs suffice. A key question that arises

in the design and analysis of designated verifier arguments is whether the same common reference

string can be reused for multiple proofs—that is, whether the proof system provides multi-theorem

soundness. As discussed in Chapter 3, in many designated-verifier argument (and proof) systems, if

the prover can choose its queries in a way that induces noticeable correlations between the outputs of

the verification oracle and the secret verification state, then the adversary can potentially compromise

the soundness of the scheme. Thus, special care is needed to construct designated-verifier argument

systems in the multi-theorem setting.

1The application of designated-verifier SNARGs to bootstrapping obfuscation is described in the full version of this
chapter [BISW17]. Because this thesis is primarily focused on constructing non-interactive argument systems, we
omit the details here.

86

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 87

SNARGs from linear-only encryption. Bitansky et al. [BCI+13] introduced a generic compiler

for building designated-verifier SNARGs in the “preprocessing model” based on a notion called

“linear-only” encryption.2 In the preprocessing model, the setup algorithm that constructs the CRS

can run in time that depends polynomially on a time bound T of the computations that will be verified

(this is in contrast to the notion of a “fully succinct” SNARG, which stipulates that the running time

of the setup algorithm is polylog(T)). In the designated-verifier setting, the preprocessing algorithm

outputs a prover key (i.e., the public CRS), and a secret verification key.3 The resulting scheme can

then be used to verify computations that run in time at most T . The compiler of [BCI+13] can be

decomposed into an information-theoretic transformation and a cryptographic transformation, which

we outline here:

• First, they restrict the interactive proof model to only consider “affine-bounded” provers. An

affine-bounded prover is only able to compute affine functions (over a ring) of the verifier’s

queries.4 Bitansky et al. give several constructions of succinct two-message interactive

proofs in this restricted model by applying a generic transformation to existing “linear PCP”

constructions.

• Next, they introduce a new cryptographic primitive called linear-only encryption, which is

a (public-key) encryption scheme that only supports linear homomorphisms on ciphertexts.

Bitansky et al. show that combining a linear-only encryption scheme with the affine-restricted

interactive proofs from the previous step suffices to construct a designated-verifier SNARG in

the preprocessing model. The construction is quite natural: the CRS for the SNARG system

is a linear-only encryption of what would be the verifier’s first message. The prover then

homomorphically computes its response to the verifier’s encrypted queries. The linear-only

property of the encryption scheme constrains the prover to only using affine strategies. This

ensures soundness for the SNARG. To check a proof, the verifier decrypts the prover’s responses

and applies the decision algorithm for the underlying two-message proof system. Bitansky et al.

give several candidate instantiations for their linear-only encryption scheme based on Paillier

encryption [Pai99] as well as bilinear maps [Jou00, BF01].

Linear PCPs. Like [BCI+13], our SNARG constructions rely on linear PCPs.5 A linear PCP

of length m over a finite field F is an oracle computing a linear function π : Fm → F. On any

2Gennaro et al. [GGPR13] also described a similar technique based on additively homomorphic encodings and quadratic
span programs to construct publicly-verifiable and designated-verifier SNARGs.

3When describing SNARGs, the term “preprocessing SNARGs” refers to designated-verifier SNARGs with non-succinct
precomputation. This use of the term “preprocessing” differs somewhat from the notion of preprocessing NIZKs from
Chapter 3 in that a preprocessing NIZK also includes argument systems where the proving key is kept secret.

4Bitansky et al. [BCI+13] refer to this as “linear-only,” even though the prover is allowed to compute affine functions.
To be consistent with their naming conventions, we will primarily write “linear-only” to refer to “affine-only.”

5Linear PCPs were first used by Ishai et al. [IKO07] to construct efficient interactive argument systems from any
homomorphic encryption scheme. Subsequently, Bitansky et al. [BCI+13] gave a construction of succinct non-
interactive arguments from linear PCPs together with a linear-only encryption scheme.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 88

query q ∈ Fm, the linear PCP oracle responds with qTπ. More generally, if k queries are made to

the linear PCP oracle, the k queries can be packed into the columns of a query matrix Q ∈ Fm×k.

The response of the linear PCP oracle can then be written as QTπ. We provide more details in

Section 4.3. In this work, we instantiate our linear PCPs using the quadratic span programs of

Gennaro et al. [GGPR13].

Complexity measures for SNARGs. For a security parameter λ, we measure the asymptotic

cost of achieving soundness error 2−λ against provers (modeled as a Boolean circuit) of size 2λ. In

this work, we are primarily interested in minimizing the prover complexity and the proof size.

4.1 Summary of Results and Technical Overview

In this section, we summarize our main results on constructing preprocessing SNARGs based on a

new notion called linear-only vector encryption. Our results builds upon and extends the framework

introduced by Bitansky et al. [BCI+13].

New compiler for preprocessing SNARGs. The preprocessing SNARGs we construct in this

work enjoy several advantages over those of [BCI+13]. We enumerate some of them below:

• Direct construction of SNARGs from linear PCPs. Our compiler gives a direct com-

pilation from linear PCPs over a finite field F into a preprocessing SNARG. In contrast, the

compiler in [BCI+13] first constructs a two-message linear interactive proof from a linear PCP

by introducing an additional linear consistency check. The additional consistency check not only

increases the communication complexity of their construction, but also introduces a soundness

error O(1/ |F|). As a result, their construction only provides soundness when working over a

large field (that is, when |F| is superpolynomial in the security parameter). By using a direct

compilation of linear PCPs into SNARGs, we avoid both of these problems. Our construction

does not require any additional consistency checks and moreover, it preserves the soundness of

the underlying linear PCP. Thus, as long as the underlying linear PCP is statistically sound,

applying our compiler yields a computationally sound argument (even if |F| is small).

• Constructing linear PCPs with strong soundness. As noted before, constructing multi-

theorem designated-verifier SNARGs can be quite challenging. In [BCI+13], this is handled at

the information-theoretic level (by constructing interactive proof systems satisfying a notion of

“strong” or “reusable” soundness) and at the cryptographic level (by introducing strengthened

definitions of linear-only encryption). A key limitation in their approach is that the information-

theoretic construction of two-round interactive proof systems again requires linear PCPs over

superpolynomial-sized fields. As we discuss in Remark 4.26, using large fields incurs additional

overhead when using lattice-based encryption schemes to compiler linear PCPs to preprocessing

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 89

SNARGs. In this work, we show how to apply soundness amplification to standard linear

PCPs with constant soundness error against linearly-bounded provers (and which do not

necessarily satisfy strong soundness) to obtain strong, statistically-sound linear PCPs against

affine-bounded provers over polynomial-size fields. Coupled with our direct compilation of

linear PCPs to preprocessing SNARGs, we obtain multi-theorem designated-verifier SNARGs.

We describe our construction of strong statistically sound linear PCPs against affine provers from

linear PCPs with constant soundness error against linear provers in Section 4.3. Applying our

transformation to linear PCPs based on the Walsh-Hadamard code [ALM+92] as well as those based

on quadratic-span programs (QSPs) [GGPR13], we obtain two linear PCPs with strong statistical

soundness against affine provers over polynomial-size fields.

From linear PCPs to preprocessing SNARGs. The primary tool we use construction of

preprocessing SNARGs from linear PCPs is a new cryptographic primitive we call linear-only vector

encryption. A vector encryption scheme is an encryption scheme where the plaintexts are vectors

of ring (or field) elements. Next, we extend the notion of linear-only encryption [BCI+13] to the

context of vector encryption. We say that a vector encryption scheme is linear-only if the only

homomorphisms it supports is addition (and scalar multiplication) of vectors.

Our new notion of linear-only vector encryption gives an immediate method of compiling an

k-query linear PCP (over a finite field F) into a designated-verifier SNARG. The construction works

as follows. In a k-query linear PCP over F, the verifier’s query can be written as a matrix Q ∈ Fm×k

where m is the query length of the linear PCP. The linear PCP oracle’s response is QTπ where

π ∈ Fm is the proof. To compile this linear PCP into a preprocessing SNARG, we use a linear-only

vector encryption scheme with plaintext space Fk. The setup algorithm takes the verifier’s query

matrix Q (which is independent of the statement being proved) and encrypts each row of Q using the

vector encryption scheme. The key observation is that the product QTπ is a linear combination of

the rows of Q. Thus, the prover can homomorphically compute an encryption of QTπ. To check the

proof, the verifier decrypts to obtain the prover’s responses and then invokes the decision algorithm

for the underlying linear PCP. Soundness is ensured by the linear-only property of the underlying

vector encryption scheme. The advantage of linear-only vector encryption (as opposed to standard

linear-only encryption) is that the prover is constrained to evaluating a single linear function on all

of the query vectors simultaneously. This insight enables us to remove the extra consistency check

introduced in [BCI+13], and thus, avoids the soundness penalty O(1/ |F|) incurred by the consistency

check.6 Consequently, we can instantiate our transformation with statistically-sound linear PCPs

over any finite field F. We describe our construction in Section 4.4.

6This is the main difference between our approach and that taken in [BCI+13]. By making the stronger assumption of
linear-only vector encryption, we avoid the need for an extra consistency check, thus allowing for a direct compilation
from linear PCPs to SNARGs. In contrast, [BCI+13] relies on the weaker assumption of linear-only encryption, but
requires an extra step of first constructing a two-message linear interactive proof (incorporating the consistency check)
from the linear PCP.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 90

New lattice-based SNARG candidates. We then conjecture that the Regev-based [Reg05]

encryption scheme of Peikert, Vaikuntanathan, and Waters [PVW08] is a secret-key linear-only

vector encryption scheme over Zkp where p is a prime whose bit-length is polynomial in the security

parameter λ. Then, applying our generic compiler from linear PCPs to SNARGs (Construction 4.14)

to our new linear PCP constructions over polynomial-size fields Zp, we obtain a lattice-based

construction of a designated-verifier SNARG (for Boolean circuit satisfiability) in the preprocessing

model.7 Specifically, starting with a QSP-based linear PCP [GGPR13], we obtain the first lattice-

based SNARG that is quasi-optimally succinct (i.e., proof size Õ(λ) to achieve soundness error 2−λ

against 2λ-size provers). Direct instantiation of the Bitansky et al. construction with a Regev-based

candidate for linear-only encryption yields a SNARG with proof size Õ(λ2) in order to achieve

soundness 2−λ against provers of size 2λ (Remark 4.26). Thus, for Boolean circuit satisfiability,

using lattice-based linear-only vector encryption provides concrete advantages over vanilla linear-only

encryption.

4.2 Succinct Non-Interactive Arguments

We now review the definition of succinct non-interactive argument (SNARG) systems. We specialize

our definitions to the problem of Boolean circuit satisfiability.

Definition 4.1 (Succinct Non-Interactive Arguments). Let C = {Cn}n∈N be a family of Boolean cir-

cuits. A succinct non-interactive argument (SNARG) for the relation RC (and associated language LC)
is a tuple of algorithms ΠSNARG = (Setup,Prove,Verify) defined as follows:

• Setup(1λ, 1n)→ (σ, τ): On input the security parameter λ and the circuit family parameter n,

the setup algorithm outputs a common reference string σ and a verification state τ .

• Prove(σ,x,w)→ π: On input the reference string σ, a statement x, and a witness w, the prove

algorithm outputs a proof π.

• Verify(τ,x, π) → {0, 1}: On input the verification state τ , a statement x, and a proof π, the

verification algorithm outputs 1 if it “accepts” the proof, and 0 otherwise.

Moreover, ΠSNARG satisfies the following properties:

• Completeness: For all n ∈ N and (x,w) ∈ RCn ,

Pr[(σ, τ)← Setup(1λ, 1n);π ← Prove(σ,x,w) : Verify(τ,x, π) = 1] = 1.

• Soundness: Depending on the notion of soundness:

7While it would be preferable to obtain a construction based on the hardness of standard lattice assumptions like
learning with errors (LWE) [Reg05], the separation results of Gentry and Wichs [GW11] suggest that stronger,
non-falsifiable assumptions may be necessary to construct SNARGs for general NP languages.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 91

– Adaptive Soundness: For all n ∈ N and every polynomial-size prover P ∗,

Pr[(σ, τ)← Setup(1λ, 1n); (x, π)← P ∗(σ) : Verify(τ,x, π) = 1 and x /∈ LCn] = negl(λ).

– Non-adaptive Soundness: For all n ∈ N and every polynomial-size prover P ∗, and all

statements x /∈ LCn ,

Pr[(σ, τ)← Setup(1λ, 1n);π ← P ∗(σ,x) : Verify(τ,x, π) = 1] = negl(λ).

• Succinctness: Depending on the notion of succinctness:

– Fully Succinct: There exists a universal polynomial p (independent of C) such that

Setup runs in time p(λ+ log |Cn|), Verify runs in time p(λ+ |x|+ log |Cn|), and the length

of the proof output by Prove is bounded by p(λ+ log |Cn|).

– Preprocessing: There exists a universal polynomial p (independent of C) such that Setup

runs in time p(λ+ |Cn|), Verify runs in time p(λ+ |x|+ log |Cn|) and the length of the

proof output by Prove is bounded by p(λ+ log |Cn|).

Before proceeding, we give some intuition on the different soundness and succinctness notions.

A SNARG is adaptive if the prover can choose the statement after seeing the reference string σ;

otherwise, it is non-adaptive. Next, a SNARG is fully-succinct if the setup algorithm is efficient (runs

in time polylogarithmic in the size of the circuit); otherwise, the SNARG is a preprocessing SNARG.

For both fully-succinct as well as preprocessing SNARGs, the verifier’s runtime and the length of the

proof grow polylogarithmically in the size of the underlying circuit.

Public vs. designated verifiability. A SNARG is publicly verifiable if the verification state τ is

allowed to be public. Alternatively, a designated-verifier SNARG is one where security only holds

if τ remains secret. In this work, we focus on constructing designated-verifier SNARGs.

Multi-theorem SNARGs. A useful property for SNARGs to have is the ability to reuse the same

reference string σ for multiple proofs. This is particularly important in the case of preprocessing

SNARGs where an expensive precomputation stage is needed to construct the reference string. This

multi-theorem setting can be modeled by imposing a stronger requirement where soundness should

hold even if the adversary has access to a proof verification oracle. While this stronger soundness

requirement follows immediately if the SNARG system is publicly verifiable, the same is not true in

the designated-verifier setting. In fact, by issuing carefully crafted queries to the proof verification

oracle, a dishonest prover can potentially learn information about the secret verification state, and

thus, compromise the soundness of the SNARG system.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 92

In this work, we construct a compiler that combines an information-theoretic primitive (linear

PCPs) with a cryptographic primitive (linear-only vector encryption) to obtain a designated-verifier

SNARG. Correspondingly, we address this core issue of reusability at both the information-theoretic

level (via a stronger soundness definition) as well as at the cryptographic level (via a stronger notion

of linear-only encryption). We give more details in Section 4.4.3.

Other properties. In addition to the basic properties outlined above, there are numerous additional

notions that pertain to SNARGs. In some applications, the soundness requirement is strengthened to

an extractability property—that is, whenever a prover is able to convince the verifier that a statement

x is in the language, there is also an (efficient) extraction algorithm that is able to extract a witness

w for x such that (x,w) ∈ R. This yields succinct arguments of knowledge (SNARKs).

Another commonly considered notion in the context of succinct non-interactive arguments is

zero-knowledge. As shown by Bitansky et al. [BCCT12], preprocessing SNARKs can be combined

with (possibly non-succinct) non-interactive arguments of knowledge (NIZK arguments) to obtain

zero-knowledge SNARKs (i.e., “zkSNARKs”) in the preprocessing model. We also refer to [Gro10,

Lip12, PHGR13, BCG+13, GGPR13, BCI+13, Lip13, BCTV14, DFGK14, Lip16] for constructions

and implementations of zero-knowledge SNARKs. In the context of constructing zero-knowledge

SNARGs from linear PCPs, we note that we can leverage the ideas from [BCI+13] to realize succinct

zero-knowledge arguments. Since this is not the primary focus of this work, we will not consider

zero-knowledge in the remainder of this work.

4.3 Linear PCPs

In this section, we review the definition of linear probabilistically checkable proofs (linear PCPs). In a

k-query linear PCP system for a binary relation R over a finite field F, the proof consists of a vector

π ∈ Fm and the PCP oracle is restricted to computing a linear function on the verifier’s query vector.

Specifically, on input a query matrix Q ∈ Fm×k, the PCP oracle responds with y = QTπ ∈ Fk. We

now give a formal definition adapted from [BCI+13].

Definition 4.2 (Linear PCPs [BCI+13]). Let R be a binary relation, F be a finite field, P be a

deterministic prover algorithm, and V be a probabilistic oracle verification algorithm. Then, (P,V)

is a k-query linear PCP for R over F with soundness error ε and query length m if it satisfies the

following requirements:

• Syntax: For a vector π ∈ Fm, the verification algorithm Vπ = (Q,D) consists of an input-

oblivious probabilistic query algorithm Q and a deterministic decision algorithm D. The query

algorithm Q generates a query matrix Q ∈ Fm×k (independently of the statement x) and some

state information st. The decision algorithm D takes the statement x, the state st, and the

response vector y = QTπ ∈ Fk and either “accepts” or “rejects.”

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 93

• Completeness: For every (x,w) ∈ R, the output of P(x,w) is a vector π ∈ Fm such that

Vπ(x) accepts with probability 1.

• Soundness: For all x where (x,w) /∈ R for all w and for all vectors π∗ ∈ Fm, the probability

that Vπ∗(x) accepts is at most ε.

We say that (P,V) is an input-oblivious k-query linear PCP for R over F with knowledge error ε

and query length d if (P,V) satisfies the properties above, but the soundness property is replaced by

the following (stronger) knowledge property:

• Knowledge: There exists a knowledge extractor E such that for every vector π∗ ∈ Fd, if

Vπ∗(x) accepts with probability at least ε, then Eπ∗(x) outputs w such that (x,w) ∈ R. As

with soundness, we can correspondingly define a notion of knowledge against affine strategies.

We say that (P,V) is statistically sound if ε(κ) = negl(κ), where κ is a statistical security parameter.

Soundness against affine provers. In Definition 4.2, we only required soundness (correspondingly,

knowledge) to hold against provers that employ a linear strategy, and not an affine strategy. Our

construction of SNARGs (Section 4.4), will require the stronger property that soundness holds against

provers using an affine strategy—that is, a strategy which can be described by a tuple Π = (π,b)

where π ∈ Fm represents a linear function and b ∈ Fk represents an affine shift. Then, on input

a query matrix Q ∈ Fm×k, the response vector is constructed by evaluating the affine relation

y = QTπ + b. We now define this stronger notion of soundness against an affine prover.

Definition 4.3 (Soundness Against Affine Provers). Let R be a relation and F be a finite field. A

linear PCP (P,V) is a k-query linear PCP for R over F with soundness error ε against affine provers

if it satisfies the requirements in Definition 4.2 with the following modifications:

• Syntax: For any affine function Π = (π,b), the verification algorithm VΠ is still specified by

a tuple (Q,D). Algorithms Q,D are the same as in Definition 4.2, except that the response

vector y computed by the PCP oracle is an affine function y = QTπ + b ∈ Fk of the query

matrix Q rather than a linear function.

• Soundness against affine provers: For all x where (x,w) /∈ R for all w, and for all affine

functions Π∗ = (π∗,b∗) where π∗ ∈ Fm and b∗ ∈ Fk, the probability that VΠ∗(x) accepts is

at most ε.

Algebraic complexity. There are many ways one can measure the complexity of a linear PCP

system such as the number of queries or the number of field elements in the verifier’s queries. Another

important metric also considered in [BCI+13] is the algebraic complexity of the verifier. In particular,

the verifier’s query algorithm Q and decision algorithm D can both be viewed as multivariate

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 94

polynomials (equivalently, arithmetic circuits) over the finite field F. We say that the query algorithm

Q has degree dQ if the output of Q can be computed by a collection of multivariate polynomials

of maximum degree dQ in the verifier’s choice of randomness. Similarly, we say that the decision

algorithm D has degree dD if the output of D can be computed by a multivariate polynomial of

maximum degree dD in the prover’s response and the verification state.

Strong soundness. In this work, we focus on constructing designated-verifier SNARGs. An

important consideration that arises in the design of designated-verifier SNARGs is whether the same

reference string σ can be reused across many proofs. This notion is formally captured by stipulating

that the SNARG system remains sound even if the prover has access to a proof-verification oracle.

While this property naturally follows from soundness if the SNARG system is publicly-verifiable,

the same is not true in the designated-verifier setting. Specifically, in the designated-verifier setting,

soundness is potentially compromised if the responses of the proof-verification oracle is correlated

with the verifier’s secrets. Thus, to construct a multi-theorem designated-verifier SNARG, we require

linear PCPs with a stronger soundness property, which we state below.

Definition 4.4 (Strong Soundness [BCI+13]). A k-query linear PCP (P,V) with soundness error ε

satisfies strong soundness if for every input x and every proof π∗ ∈ Fm, either Vπ∗(x) accepts with

probability 1 or with probability at most ε.

Roughly speaking, in a linear PCP that satisfies strong soundness, every linear PCP prover either

causes the linear PCP verifier to accept with probability 1 or with bounded probability. This prevents

correlation attacks where a malicious prover is able to submit (potentially malformed) proofs to

the verifier and seeing responses that are correlated with the verifier’s secrets. We can define an

analogous notion of strong soundness against affine provers.

4.3.1 Constructing Linear PCPs with Strong Soundness

A natural first question is whether linear PCPs with strong soundness against affine provers exist.

Previously, Bitansky et al. [BCI+13] gave two constructions of algebraic linear PCPs for Boolean

circuit satisfaction problems: one from the Hadamard-based PCP of Arora et al. [ALM+92], and

another from the quadratic span programs (QSPs) of Gennaro et al. [GGPR13]. In both cases, the

linear PCP is defined over a finite field F and the soundness error scales inversely with |F|. Thus, the

linear PCP is statistically sound only if |F| is superpolynomial in the (statistical) security parameter. If

we use the Bitansky et al. [BCI+13] compiler in conjunction with traditional lattice-based encryption

schemes (c.f., [Reg05]) to compiler the linear PCP into a preprocessing SNARG, using large fields

incurs a cost in both the prover complexity as well as the proof size. For example, using fields of size

2Ω(κ) (needed, for example, to achieve statistical soundness 2−κ) incurs a multiplicative overhead

Ω(κ) in both the prover complexity as well as the proof size.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 95

In this section, we show that starting from any linear PCP with constant soundness error against

linear provers, we can generically obtain a linear PCP that is statistically sound against affine provers.

Our generic transformation consists of two steps. The first is a standard soundness amplification

step where the verifier makes κ sets of independently generated queries (of the underlying linear

PCP scheme) to the PCP oracle, where κ is a statistical security parameter. The verifier accepts

only if the prover’s responses to all κ sets of queries are valid. Since the queries are independently

generated, each of the κ sets of responses (for a false statement) is accepted with probability at most

ε (where ε is proportional to 1/ |F|). Thus, an honest verifier only accepts with probability at most

εκ = negl(κ).

However, this basic construction does not achieve strong soundness against affine provers. For

instance, a malicious linear PCP prover using an affine strategy could selectively corrupt the responses

to exactly one set of queries (by applying an affine shift to its response for a single set of queries).

When this selective corruption is applied to a well-formed proof and the verifier’s decision algorithm

has low algebraic complexity, then the verifier will accept with some noticeable probability less than 1,

which is sufficient to break strong soundness. To address this problem, the verifier first applies a

(secret) random linear shift to its queries before submitting them to the PCP oracle. This ensures

that any prover using an affine strategy with a non-zero offset will corrupt its responses to every

set of queries, and the proof will be rejected with overwhelming probability. We now describe our

generic construction in more detail.

Construction 4.5 (Statistically-Sound Linear PCPs over Small Fields). Fix a statistical security

parameter κ. Let R be a binary relation, F be a finite field, and
(
P(weak),V(weak)

)
be an k-query

linear PCP for R, where V(weak) =
(
Q(weak),D(weak)

)
. Define the (κk)-query linear PCP (P,V)

where V = (Q,D) as follows:

• Prover’s Algorithm P: On input (x,w), output P(weak)(x,w).

• Verifier’s Query Algorithm Q: The query algorithm invokes Q(weak) a total of κ times to

obtain (independent) query matrices Q1, . . . ,Qκ ∈ Fm×k and state information st1, . . . , stκ.

It constructs the concatenated matrix Q = [Q1|Q2| · · · |Qκ] ∈ Fm×κk. Finally, it chooses a

random matrix Y
r←− Fκk×κk and outputs the queries Q′ = QY and state st = (st1, . . . , stκ,Y

′)

where Y′ = (YT)−1.

• Verifier’s Decision Algorithm D: On input the statement x, the prover’s response vector

a′ ∈ Fκk and the state st = (st1, . . . , stκ,Y
′), the verifier’s decision algorithm computes

a = Y′a′ ∈ Fκk. Next, it writes aT = [aT1 |aT2 | · · · |aTκ] where each ai ∈ Fk for i ∈ [κ]. Then, for

each i ∈ [κ], the verifier runs D(weak)(x,ai, sti) and accepts if D(weak) accepts for all κ instances.

It rejects otherwise.

Theorem 4.6 (Statistically-Sound Linear PCPs over Small Fields). Fix a statistical security pa-

rameter κ. Let R be a binary relation, F be a finite field, and (P(weak),V(weak)) be a strongly-sound

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 96

k-query linear PCP for R with constant soundness error ε ∈ [0, 1) against linear provers. If |F| > dD,

where dD is the degree of the verifier’s decision algorithm D(weak), then the linear PCP (P,V) from

Construction 4.5 is a (κk)-query linear PCP for R with strong statistical soundness against affine

provers.

Proof. Completeness follows immediately from completeness of the underlying linear PCP system,

so it suffices to check that the linear PCP is statistically sound against affine provers. Take any

statement x, and consider an affine prover strategy Π∗ = (π∗,b∗), where π∗ ∈ Fm and b∗ ∈ Fκk.

We consider two cases:

• Suppose b∗ 6= 0κk. Then, the decision algorithm D starts by computing

a = Y′a′ = Y′(YTQTπ∗ + b∗) = QTπ∗ + Y′b∗ ∈ Fκk.

Next, the verifier invokes the decision algorithm D(weak) for the underlying linear PCP on

the components of a. By assumption, D(weak) is a polynomial of maximum degree dD in the

components of the prover’s response a, and by extension, in the components of the matrix Y′.

Since b∗ is non-zero, this is a non-zero polynomial in the Y′. Since Y′ is sampled uniformly

at random (and independently of Q,π∗,b∗), by the Schwartz-Zippel lemma (Lemma 2.2),

D(weak)(x,ai, sti) accepts with probability at most dD/ |F| for each i ∈ [κ]. Thus, the verifier

rejects with probability at least 1− (dD/ |F|)κ = 1− negl(κ) since |F| > dD.

• Suppose b∗ = 0κk. Then, the prover’s strategy is a linear function π∗. Since the underlying

PCP satisfies strong soundness against linear provers, it follows that D(weak)(ai, sti) either

accepts with probability 1 or with probability at most ε. In the former case, D also accepts with

probability 1. In the latter case, because the verifier constructs the κ queries to the underlying

linear PCP independently, D accepts with probability at most εκ = negl(κ). We conclude that

the proof system (P,V) satisfies strong soundness against affine provers.

Remark 4.7 (Efficiency of Transformation). Construction 4.5 incurs a κ overhead in the number of

queries made to the PCP oracle and a quadratic overhead in the algebraic complexity of the verifier’s

decision algorithm. Specifically, the degree of the verifier’s decision algorithm in Construction 4.5 is

d2
D, where dD is the degree of the verifier’s decision algorithm in the underlying linear PCP. The

quadratic factor arises from undoing the linear shift in the prover’s responses before applying the

decision algorithm of the underlying linear PCP. In many existing linear PCP systems, the verifier’s

decision algorithm has low algebraic complexity (e.g., dD = 2 for both the Hadamard-based linear

PCP [ALM+92] as well as the QSP-based linear PCP [GGPR13]), so the verifier’s algebraic complexity

only increases modestly. However, the increase in degree means that we can no longer leverage

pairing-based linear-only one-way encodings [BCI+13] to construct publicly-verifiable SNARGs (since

these techniques only apply when the algebraic complexity of the verifier’s decision algorithm is

exactly 2). No such limitations apply in the designated-verifier setting.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 97

Remark 4.8 (Comparison with [BCI+13, Lemma C.3]). Bitansky et al. [BCI+13, Lemma C.3]

previously showed that any algebraic linear PCP over a finite field F with soundness error ε is

also strongly sound with soundness error ε′ = max
{
ε,
dQdD
|F|

}
. For sufficiently large fields F (e.g.,

when |F| is superpolynomial), statistical soundness implies strong statistical soundness. However,

when |F| is polynomial, then their lemma is insufficient to argue strong statistical soundness of the

underlying linear PCP. In contrast, using our construction (Construction 4.5), any linear PCP with

just constant soundness against linear provers can be used to construct an algebraic linear PCP with

strong statistical soundness against affine provers (at the cost of increasing the query complexity and

the verifier’s algebraic complexity).

Concrete instantiations. Applying Construction 4.5 to the algebraic linear PCPs for Boolean

circuit satisfaction of Bitansky et al. [BCI+13], we obtain statistically-sound linear PCPs for Boolean

circuit satisfaction over small finite fields. In the following, fix a (statistical) security parameter κ

and let C be a Boolean circuit of size s.

• Starting from the Hadamard-based PCP of Arora et al. [ALM+92] over a finite field F, there

exists a 3-query linear PCP with strong soundness error 2/ |F|. The algebraic complexity of the

decision algorithm for this PCP is dD = 2. Applying Construction 4.5 and working over any

finite field where |F| > 2, we obtain a (3κ)-query linear PCP with strong statistical soundness

against affine provers and where queries have length O(s2).

• Starting from the quadratic span programs of Gennaro et al. [GGPR13], there exists a 3-query

linear PCP over any (sufficiently large) finite field F with strong soundness error O(s/ |F|). The

algebraic complexity of the decision algorithm for this PCP is dD = 2. Applying Construction 4.5

and working over a sufficiently large finite field of size |F| = Õ(s), we obtain a (3κ)-query linear

PCP with strong statistical soundness against affine provers where queries have length O(s).

4.4 SNARGs from Linear-Only Vector Encryption

In this section, we introduce the notion of a linear-only vector encryption scheme. We then show

how linear-only vector encryption can be directly combined with the linear PCPs from Section 4.3 to

obtain multi-theorem designated-verifier preprocessing SNARGs in the standard model. Then, we

describe a candidate instantiation of our linear-only vector encryption scheme using the LWE-based

encryption scheme of Peikert, Vaikuntanathan, and Waters [PVW08]. Our notion of linear-only

vector encryption is a direct generalization of the notion of linear-only encryption first introduced by

Bitansky et al. [BCI+13].

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 98

4.4.1 Linear-Only Vector Encryption

A vector encryption scheme is an encryption scheme where the message space is a vector of ring

elements. In this section, we take Zp as the underlying ring and Zkp as the message space (for some

dimension k). We introduce the basic schema below:

Definition 4.9 (Vector Encryption Scheme over Zkp). A secret-key vector encryption scheme over

Zkp consists of a tuple of algorithms Πvenc = (Setup,Encrypt,Decrypt) with the following properties:

• Setup(1λ, 1k) → sk: The setup algorithm takes as input the security parameter λ and the

dimension k of the message space and outputs the secret key sk.

• Encrypt(sk,v)→ ct: The encryption algorithm takes as input the secret key sk and a message

vector v ∈ Zkp and outputs a ciphertext ct.

• Decrypt(sk, ct)→ Zkp ∪ {⊥}: The decryption algorithm takes as input the secret key sk and a

ciphertext ct and either outputs a message vector v ∈ Zkp or a special symbol ⊥ (to denote an

invalid ciphertext).

We can define the usual notions of correctness and CPA-security (Definition 2.1) for a vector

encryption scheme. Next, we say that a vector encryption scheme over Zkp is additively homomorphic

if given encryptions ct1, ct2 of two vectors v1,v2 ∈ Zkp, respectively, there is a public operation8

that allows one to compute an encryption ct12 of the (component-wise) sum v1 + v2 ∈ Zkp. Note

that additively homomorphic vector encryption can be constructed directly from any additively

homomorphic encryption scheme by simply encrypting each component of the vector separately.

However, when leveraging vector encryption to build efficient SNARGs, we require that our encryption

scheme satisfies a more restrictive homomorphism property. We define this now.

Linear-only vector encryption. Intuitively, we say that a vector encryption scheme is linear-only

if the only homomorphic operations the adversary can perform on ciphertexts is evaluate affine

functions on the underlying plaintext vectors. At a high level, we model this property by requiring

that whenever an adversary A constructs a ciphertext ct′ from a collection of ciphertexts ct1, . . . , ctm,

there is an efficient extractor E that can produce an affine function that “explains” the ciphertext.

We give the formal definition below (adapted from the corresponding definitions in [BCI+13]):

Definition 4.10 (Linear-Only Vector Encryption [BCI+13, adapted]). Fix a security parameter λ.

A secret-key vector encryption scheme Πvenc = (KeyGen,Encrypt,Decrypt) for a message space Zkp is

linear-only if for all efficient adversariesA, there exists an efficient extractor E such that for all auxiliary

inputs z ∈ {0, 1}λ, and any plaintext generation algorithms M (on input 1k, algorithm M outputs a

8In principle, homomorphic evaluation might require additional public parameters to be published by the setup
algorithm. For simplicity of presentation, we will assume that no additional parameters are required, but all of our
notions extend to the setting where the setup algorithm outputs a public evaluation key.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 99

vector in Zkp), we have that for sk ← KeyGen(1λ, 1k), (v1, . . . ,vm) ←M(1k), cti ← Encrypt(sk,vi)

for all i ∈ [m], ct′ ← A({cti}i∈[m] ; z), (π,b)← E({cti}i∈[m] ; z), v′ ← [v1|v2| · · · |vm] · π + b,

Pr[Decrypt(sk, ct′) 6= v′] = negl(λ).

Linear targeted malleability. As noted in [BCI+13], in many scenarios, a weaker variant of linear-

only encryption called linear targeted malleability suffices for constructing preprocessing SNARGs.

We give this definition below (adapted from the corresponding definition from [BSW12]).

Definition 4.11 (Linear Targeted Malleability [BSW12, adapted]). Fix a security parameter λ. A

(secret-key) vector encryption scheme Πvenc = (Setup,Encrypt,Decrypt) for a message space Zkp satisfies

linear targeted malleability if for all efficient adversaries A and plaintext generation algorithmsM (on

input 1k, algorithm M outputs vectors in Zkp), there exists a (possibly computationally unbounded)

simulator S such that for any auxiliary input z ∈ {0, 1}poly(λ), the following two distributions are

computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1k)

2. (s,v1, . . . ,vm)←M(1k)

3. cti ← Encrypt(sk,vi) for all i ∈ [m]

4. ct′ ← A({cti}i∈[m] ; z) where

Decrypt(sk, ct′) 6= ⊥
5. Output

(
{vi}i∈[m] , s,Decrypt(sk, ct′)

)

Ideal Distribution:

1. (s,v1, . . . ,vm)←M(1k)

2. (π,b)← S(z) where π ∈ Zmp , b ∈ Zkp
3. v′ ← [v1|v2| · · · |vm] · π + b

4. Output
(
{vi}i∈[m] , s,v

′
i

)

Remark 4.12 (Multiple Ciphertexts). Similar to [BSW12, BCI+13], we can also define a variant

of linear-only vector encryption (Definition 4.10) and linear targeted malleability (Definition 4.11)

where the adversary is allowed to output multiple ciphertexts ct′1, . . . , ct′m. In this case, the extractor

E or the simulator S should output an affine function (Π,B) where Π ∈ Zm×mp and B ∈ Zk×mp that

“explains” the ciphertexts ct′1, . . . , ct′m. However, the simple variant we have defined above where the

adversary just outputs a single ciphertext is sufficient for our construction.

Remark 4.13 (Auxiliary Input Distributions). In Definitions 4.11 and 4.10, the simulator S and the

extractor E , respectively, are required to succeed for all auxiliary inputs z ∈ {0, 1}poly(λ). This seems

like a very strong requirement since z can be used to encode difficult problems that the simulator or

extractor needs to solve in order to correctly simulate the output distribution [BCPR14]. However,

the definitions can be relaxed to only consider “benign” auxiliary-input distributions for which the

property holds. For instance, in many scenarios, it suffices that the auxiliary input z is a uniformly

random string.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 100

4.4.2 From Linear-Only Vector Encryption to Preprocessing SNARGs

In this section, we give our construction of preprocessing SNARGs from linear-only vector encryption.

The analysis of our preprocessing SNARG (Theorems 4.15 and 4.17) follow analogously to the

corresponding analysis in [BCI+13, §6] and in Section 4.4.2. Thus, we only state our theorems here

and defer to the analysis in [BCI+13] for the full details.

Construction 4.14 (SNARG from Linear-Only Vector Encryption). Fix a prime p (so the ring Zp
is a field), and let C = {Cn}n∈N be a family of arithmetic circuits over Zp.9 Let RC be the relation

associated with C. Let (P,V) be an k-query input-oblivious linear PCP for C, where the verifier

V = (Q,D) can be decomposed into a query-generation algorithm Q and a decision algorithm D. Let

Πvenc = (Setup,Encrypt,Decrypt) be a secret-key vector encryption scheme for Zkp. Our single-theorem,

designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing model for RC is

defined as follows:

• Setup(1λ, 1n)→ (σ, τ): On input the security parameter λ and the circuit family parameter n,

the setup algorithm first invokes the query algorithm Q for the linear PCP to obtain a query

matrix Q ∈ Zm×kp and some state information st. Next, it generates a secret key for the vector

encryption scheme sk← Setup(1λ, 1k). Then, it encrypts each row (an element of Zkp) of the

query matrix Q. More specifically, for i ∈ [m], let qi ∈ Zkp be the ith row of Q. Then, the setup

algorithm computes ciphertexts cti ← Encrypt(sk,qi). Finally, the setup algorithm outputs the

common reference string σ = (ct1, . . . , ctm) and the verification state τ = (sk, st).

• Prove(σ,x,w): On input a common reference string σ = (ct1, . . . , ctm), a statement x, and a

witness w, the prover invokes the prover algorithm P for the linear PCP to obtain a vector

π ∈ Zmp . Viewing ct1, . . . , ctm as vector encryptions of the rows of a query matrix Q ∈ Zm×kp ,

the prover uses the linear homomorphic properties of Πvenc to homomorphically compute an

encryption of the matrix vector product QTπ. In particular, the prover homomorphically

computes the sum ct′ =
∑
i∈[m] πi · cti. The prover outputs the ciphertext ct′ as its proof.

• Verify(τ,x, π): On input the (secret) verification state τ = (sk, st), the statement x, and the

proof π = ct′, the verifier decrypts the proof ct′ using the secret key sk to obtain the prover’s

responses a← Decrypt(sk, ct′). If a = ⊥, the verifier stops and outputs 0. Otherwise, it invokes

the verification decision algorithm D on the statement x, the responses a, and the linear PCP

verification state st to decide whether the proof is valid or not. The verification algorithm

echoes the output of the decision algorithm.

Theorem 4.15 ([BCI+13, Lemma 6.3, adapted]). Fix a security parameter λ and a prime p. Let

C = {Cn}n∈N be a family of arithmetic circuits over Fp, RC be the relation associated with C,

9While we describe a SNARG for arithmetic circuit satisfiability (over Zp), the problem of Boolean circuit satisfiability
easily reduces to arithmetic circuit satisfiability with only constant overhead [BCI+13, Claim A.2].

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 101

and (P,V) be a linear PCP with soundness error ε(λ) against affine provers for the relation RC.
Let Πvenc = (Setup,Encrypt,Decrypt) be a vector encryption scheme over Zp with linear targeted

malleability (Definition 4.11). Then applying Construction 4.14 to (P,V) and Πvenc yields a (non-

adaptive) designated-verifier preprocessing SNARG for RC with soundness error 2 · ε(λ) + negl(λ).

Remark 4.16 (Adaptivity). In Theorem 4.15, we showed that instantiating Construction 4.14 with

a vector encryption scheme with linear targeted malleability and a linear PCP yields a non-adaptive

SNARG in the preprocessing model. The same construction can be shown to satisfy adaptive

soundness for proving efficiently-decidable statements. As noted in [BCI+13, Remark 6.5], we can

relax Definition 4.11 and allow the adversary to additionally output an arbitrary string in the real

distribution which the simulator must produce in the ideal distribution. Invoking Construction 4.14

with an encryption scheme that satisfies this strengthened linear targeted malleability definition

yields a SNARG with adaptive soundness for the case of verifying deterministic polynomial-time

computations. For verifying general NP computations, we can obtain adaptive soundness by conjec-

turing that the vector encryption scheme satisfies the stronger notion of linear-only property from

Definition 4.10. We state this in Theorem 4.17.

Theorem 4.17 ([BCI+13, Lemma 6.2, adapted]). Fix a security parameter λ and a prime p. Let

C = {Cn}n∈N be a family of arithmetic circuits over Fp, RC be the relation associated with C, and

(P,V) be a linear PCP with soundness error ε(λ) against affine provers for the relation RC. Let

Πvenc = (Setup,Encrypt,Decrypt) be a linear-only vector encryption scheme over Zp (Definition 4.10).

Then, applying Construction 4.14 to (P,V) and Πvenc yields a adaptive designated-verifier preprocessing

SNARG for RC with soundness error ε(λ) + negl(λ).

Remark 4.18 (Multi-Theorem SNARGs). Our basic notion of linear targeted malleability for vector

encryption only suffices to construct a single-theorem SNARG. While the same construction can be

shown secure for an adversary that is allowed to make any constant number of queries to a proof

verification oracle, we are not able to prove that the construction is secure against a prover who

makes polynomially many queries to the proof verification oracle. In Section 4.4.3, we present an

analog of the strengthened version of linear-only encryption from [BCI+13, Appendix C] that suffices

for constructing a multi-theorem SNARG. Combined with a linear PCP that is strongly sound against

affine provers, Construction 4.14 can then be applied to obtain a multi-theorem, designated-verifier

SNARG. This raises the question of whether the same construction using the weaker notion of linear

targeted malleability also suffices when the underlying linear PCP satisfies strong soundness. While

we do not know how to prove security from this weaker definition, we also do not know of any attacks.

This is especially interesting because at the information-theoretic level, the underlying linear PCP

satisfies strong soundness, which intuitively would suggest that the responses the malicious prover

obtains from querying the proof verification oracle are uncorrelated with the verifier’s state (strong

soundness states that for any proof, either the verifier accepts with probability 1 or with negligible

probability).

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 102

Remark 4.19 (Arguments of Knowledge). Theorem 4.15 shows that instantiating Construction 4.14

with a linear PCP with soundness against affine provers and a vector encryption scheme with linear

targeted malleability suffices for a SNARG. In fact, the same construction yields a SNARK (that is,

a succinct non-interactive argument of knowledge) if the soundness requirement on the underlying

linear PCP is replaced with a knowledge requirement (Definition 4.2), and the vector encryption

scheme satisfies a variant of linear targeted malleability (Definition 4.11) where the simulator is

required to be efficient (i.e., polynomially-sized). For more details, we refer to [BCI+13, Lemma 6.3,

Remark 6.4].

4.4.3 Multi-Theorem Designated-Verifier SNARGs

In Theorem 4.15 of Section 4.4.1, we showed how a vector encryption scheme satisfying linear targeted

malleability can be combined with a linear PCP with soundness against affine provers to obtain

a single-theorem, designated-verifier SNARG. In this section, we introduce a stronger notion of

linear-only encryption that can be combined with linear PCPs satisfying strong soundness against

affine provers to obtain multi-theorem SNARGs. However, as noted in Section 4.4.1, it is interesting

to see whether the simpler definition of linear targeted malleability together with strongly sound

linear PCPs already suffices in the multi-theorem setting. We begin by formally introducing the

notion of a multi-theorem SNARG.

Definition 4.20 (Adaptive Multi-Theorem SNARG). Let C = {Cn}n∈N be a family of Boolean

circuits. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for the relation RC (with corresponding

language LC). Then, ΠSNARG is an adaptive multi-theorem SNARG if for all n ∈ N and all polynomial-

size provers P ∗,

Pr[(σ, τ)← Setup(1λ, 1n); (x, π)← (P ∗)Verify(τ,·,·)(σ) : Verify(τ,x, π) = 1 and x /∈ LCn] = negl(λ).

In other words, soundness should hold even if the prover has access to a proof verification oracle

Verify(τ, ·, ·).

Next, we introduce a stronger notion of linear-only encryption that can be used to obtain a

multi-theorem SNARG (via the same construction as Construction 4.14). In order to show a SNARG

system is multi-theorem, we need a way to simulate the prover’s queries to the verification oracle. In

past works [BP04b, BP04c, BCI+13] this has been handled by defining an interactive extractability

assumption. Here, we extend the definition in [BCI+13, Definition C.6] to the vector case.

Definition 4.21 (Linear-Only with Interactive Extraction [BCI+13]). Fix a security parameter λ.

Let Πvenc = (Setup,Encrypt,Decrypt) be a secret-key vector encryption scheme where the message

space consists of vectors of Zp-elements. Let M be a message generation algorithm that on input 1k,

outputs a sequence of vectors in Zkp. Let z ∈ {0, 1}poly(λ) be some auxiliary input. We define the

interactive linear-only extraction game between A and E as follows:

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 103

1. Setup phase:

• sk← Setup(1λ)

• (v1, . . . ,vm)←M(1k)

• cti ← Encrypt(sk,vi) for all i ∈ [m]

2. Query phase: for all i ∈ [q] where q = poly(λ):

• ct′i ← A(ct1, . . . , ctm; e1, . . . , ei−1; z)

• Πi ← E(ct1, . . . , ctm; i; z) where Πi is either an affine function (πi,bi) or ⊥ where πi ∈ Zmp
and b ∈ Zkp

We say that A wins the game if one of the following conditions hold:

• For some i ∈ [q], Decrypt(sk, ct′i) = ⊥ but Πi 6= ⊥.

• For some i ∈ [q], Decrypt(sk, ct′i) 6= ⊥ and either Πi = ⊥ or Decrypt(sk, ct′i) 6= ai where

Πi = (πi,bi) and ai = [v1|v2| · · ·vm] · π + b

Finally, we say that Πvenc satisfies linear-only with interactive extraction if for all polynomial-size

interactive adversaries A, there exists a polynomial-size interactive extractor E such that for any

auxiliary input z ∈ {0, 1}poly(λ), any plaintext generation algorithm M, the probability that A wins

the above interactive linear-only extraction game is negligible.

We note state the corresponding theorem that applying Construction 4.14 to a linear PCP with

strong soundness against affine provers and a vector encryption scheme satisfying the stronger notion

of linear-only encryption with interactive extraction suffices to construct a multi-theorem SNARG.

The proof follows analogously to the proof in [BCI+13, Lemma C.8].

Theorem 4.22 (Multi-Theorem SNARG [BCI+13, adapted]). Let (P,V) be a linear PCP that

is strongly sound against affine provers. Let Πvenc = (Setup,Encrypt,Decrypt) be a linear-only

encryption scheme that satisfies linear-only with interactive extraction (Definition 4.21). Then,

applying Construction 4.14 to (P,V) and Πvenc yields an adaptive, multi-theorem SNARG in the

preprocessing model. Moreover, if (P,V) satisfies strong knowledge against affine provers, then

applying Construction 4.14 to (P,V) and Πvenc yields an adaptive, multi-theorem SNARK in the

preprocessing model.

4.5 Constructing Lattice-Based SNARGs

In this section, we describe one candidate instantiation of a lattice-based linear-only vector encryp-

tion scheme: namely, the variant of Regev encryption [Reg05] by Peikert, Vaikuntanathan, and

Waters [PVW08]. Combined with Construction 4.14, this gives a lattice-based SNARG candidate.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 104

4.5.1 The Peikert-Vaikuntanathan-Waters Encryption Scheme

The core building block in our new SNARG construction is a vector encryption scheme for Zkp that

plausible satisfies our notion of linear targeted malleability (Definition 4.11). In particular, we

conjecture that the Regev-based encryption scheme [Reg05] due to Peikert, Vaikuntanathan, and

Waters [PVW08, §7.2] satisfies our required properties.

The PVW encryption scheme. We now review the encryption scheme due to Peikert, Vaikun-

tanathan, and Waters [PVW08, §7.2]. In our setting, it suffices to just consider the secret-key

setting.

Construction 4.23 ([PVW08, §7.2, adapted]). Fix a security parameter λ, lattice parameters

n,m, q = poly(λ), and an error distribution χ. Let k be the plaintext dimension and let Zkp be the

plaintext space. The vector encryption scheme Πvenc = (Setup,Encrypt,Decrypt) with plaintext space

Zkp is defined as follows:

• Setup(1λ, 1k) → sk: The setup algorithm samples Ā
r←− Zn×mq , S̄

r←− Zn×kq , and Ē ← χk×m.

Define the matrices A ∈ Z(n+k)×m
q and S ∈ Z(n+k)×k

q as follows:

A =

[
Ā

S̄T Ā + E

]
S =

[
−S̄

Ik

]
,

where Ik ∈ Zk×kq is the k-by-k identity matrix. Finally, it outputs the secret key sk = (A,S).

• Encrypt(sk,v)→ c: To encrypt a vector v ∈ Zkp, choose r
r←− {0, 1}m and output the ciphertext

c ∈ Zn+k
q where

c = Ar +

[
0n

bq/pe · v

]
.

• Decrypt(sk, c)→ v: Compute and output [[ST c]q]p.

4.5.2 Our Lattice-Based SNARG Candidate

We now state our concrete conjecture on the vector encryption scheme Πvenc from Section 4.5.1

that yields the first lattice-based candidate of a designated-verifier, preprocessing SNARG with

quasi-optimal succinctness.

Conjecture 4.24 (Linear Targeted Malleability of Construction 4.23). The vector encryption

scheme Πvenc from Construction 4.23 satisfies exponentially-strong10 linear targeted malleability

10Achieving soundness error that is inverse exponential (i.e., 2−λ) against provers of size 2λ necessitates some kind
of exponential hardness assumptions. We can relax this conjecture as necessary if we target weaker soundness
requirements (i.e., negl(λ) soundness against all poly(λ)-size provers). Having a concrete target facilitates comparisons
between different SNARG candidates.

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 105

(Definition 4.11): namely, the distinguishing advantage of any adversary of size 2λ in Definition 4.11

is bounded by 2−Ω(λ).

Corollary 4.25 (Lattice-Based SNARG). Let λ be a security parameter and let C = {Cn}n∈N be a

family of Boolean circuits. Under Conjecture 4.24, there exists a succinct non-interactive argument

system ΠSNARG = (Setup,Prove,Verify) for the relation RC with the following properties:

• The soundness error of ΠSNARG is 2−λ against all provers of size 2λ.

• The prover algorithm Prove can be implemented by a circuit of size Õ(λ · |Cn|).

• The length of a proof is Õ(λ).

Proof. Under Conjecture 4.24, we can apply Construction 4.14 in conjunction with algebraic linear

PCPs to obtain designated-verifier SNARGs in the preprocessing model (Theorem 4.15). In particular,

we take our underlying linear PCP to be that obtained by combining Construction 4.5 with linear

PCPs based on the quadratic span programs of Gennaro et al. [GGPR13]. We consider the concrete

asymptotics below:

• Prover complexity. In Construction 4.14, the prover performs m homomorphic operations on

the encrypted vectors, where m is the length of the underlying linear PCP. When instantiating

the vector encryption scheme Πvenc over the plaintext space Zkp where p = poly(λ), the cipher-

texts consist of vectors of dimension O(λ+ k) over a ring of size q = poly(λ).11 Homomorphic

operations on ciphertexts corresponds to scalar multiplication (by values from Zp) and vector

additions. Since all operations are performed over a polynomial-sized domain, all of the basic

arithmetic operations can be performed in polylog(λ) time. Thus, as long as the underlying

linear PCP operates over a polynomial-sized field, the prover’s overhead is Õ(m(λ+ k)).

If the underlying linear PCP is instead instantiated with one based on the quadratic span

programs of Gennaro et al. [GGPR13], then m = Õ(|Cn|) and k = O(λ). The overall prover

complexity in this case is Õ(λ · |Cn|).

• Proof length. The proof in Construction 4.14 consist of a single ciphertext of the vector

encryption scheme, which has length Õ(λ+ k). Thus, in our candidate instantiation, the length

of the proof is Õ(λ).

Remark 4.26 (Comparison with [BCI+13]). An alternative route to obtaining a lattice-based

SNARG is to directly instantiate [BCI+13] with Regev-based encryption. However, to achieve

soundness error 2−λ, Bitansky et al. [BCI+13] require a linear PCP (and a linear-only encryption

11More precisely, the ciphertexts are actually vectors of dimension n+ k, where n is the dimension of the lattice in the
LWE problem. Currently, the most effective algorithms for solving LWE rely either on BKW-style [BKW00, KF15]
or BKZ-based attacks [SE94, CN11]. Based on our current understanding [LP11, CN11, KF15, BCD+16], the
best-known algorithms for LWE all require time 2Ω(n/ logc n) for some constant c. Thus, in terms of a concrete
security parameter λ, we set the lattice dimension to be n = Õ(λ).

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 106

scheme) over a field of size 2λ. Instantiating the construction in [BCI+13] with Regev-based

encryption over a plaintext space of size 2λ, the resulting SNARGs have length Õ(λ2) and the prover

complexity is Õ(sλ2). Another possibility is to instantiate [BCI+13] with Regev-based encryption

over a polynomial-size field (thus incurring 1/poly(λ)-soundness error) and perform parallel repetition

at the SNARG level to amplify the soundness. But this method suffers from the same drawback

as above. While each individual SNARG instance (over a polynomial-size field) is quasi-optimally

succinct, the size of the overall proof is still Õ(λ2) and the prover’s complexity remains at Õ(sλ2).

This is a factor λ worse than using linear-only vector encryption over a polynomial-size field.

Remark 4.27 (Comparison with Hash-Based SNARGs). An alternative approach for constructing

SNARGs is to start with Kilian’s succinct interactive argument [Kil92] and apply the Fiat-Shamir

heuristic [FS86] to obtain a SNARG in the random-oracle model (i.e., a CS proof [Mic00]). In fact,

with a suitable heuristic instantiation of the random oracle, this method yields a quasi-optimal

SNARG in terms of the prover’s complexity (namely, the prover overhead is additive in the security

parameter rather than multiplicative—we refer to Chapter 5 for a more thorough discussion of

quasi-optimal SNARGs). However, CS proofs do not provide quasi-optimal succinctness. Recall that

in Kilian’s protocol, the prover first uses a Merkle hash tree to commit to a (standard) PCP for

the statement being proved. The verifier then challenges the prover to open bits in the committed

PCP, and checks that the revealed bits satisfy the PCP verification algorithm. Using the quasilinear

PCPs of [Din06, BS08], Kilian’s protocol achieves constant soundness error ε < 1 against provers of

size 2λ with Õ(λ) communication. We can use parallel repetition (using Ω(λ) challenges) to amplify

the soundness to ε−Ω(λ) = 2−Ω(λ). But then the proof is Õ(λ2), and thus, no longer quasi-optimally

succinct. A similar issue arises with other Kilian-bsaed protocols such as [BCCT12, BCC+17],

which leverage extractable collision-resistant hash functions and single-server private information

retrieval [CMS99].

Remark 4.28 (Arithmetic Circuit Satisfiability over Large Fields). Construction 4.14 also applies

to arithmetic circuit satisfiability over large finite fields (say, Zp where p = 2λ). However, if the

size of the plaintext space for the vector encryption scheme Πvenc from Section 4.5.1 is 2λ, then

the bit-length of the ciphertexts becomes Õ(λ2) bits. Consequently, the proof system is no longer

quasi-optimally succinct. In contrast, the QSP-based constructions [GGPR13, BCI+13] remain

quasi-optimally succinct for arithmetic circuit satisfiability over large fields.

Remark 4.29 (Multi-Theorem and Adaptive SNARGs.). As noted in [BCI+13, Remark 5.6],

encryption schemes that allow for “oblivious sampling” of ciphertexts cannot satisfy Definitions 4.10

and 4.21 (but they can still plausibly satisfy the weaker notion of linear targeted malleability from

Definition 4.11 and considered in Conjecture 4.24). To satisfy the stronger notions of linear-only,

it should be the case that the set of strings c where Decrypt(sk, c) 6= ⊥ should be sparse (i.e., an

adversary cannot simply sample a random string c that successfully decrypts to a valid vector).

CHAPTER 4. SUCCINCT NON-INTERACTIVE ARGUMENTS (SNARGS) 107

Certainly, the vector encryption scheme from Section 4.5.1 does not satisfy this property since

Decrypt(sk, c) 6= ⊥ for all strings c in the ciphertext space.

A heuristic method to prevent oblivious sampling is to “sparsify” the ciphertext space using

“double-encryption” [GGPR13, BCI+13]. Specifically, an encryption of a vector v ∈ Zkp consists of

two encryptions (ct1, ct2) of v under two independent secret keys sk1 and sk2, respectively. The secret

key for the vector encryption includes the secret keys of both underlying schemes. During decryption,

ct1 and ct2 are decrypted using sk1 and sk2, respectively. The decryption algorithm outputs ⊥ if ct1

and ct2 do not decrypt to the same value; otherwise, the output is Decrypt(sk1, ct1). Intuitively, if the

adversary was to sample random vectors from the ciphertext space, with overwhelming probability,

the two ciphertexts will not decrypt to the same vector. We conjecture that this modified version of

Regev-based vector encryption satisfies the stronger notion of linear-only encryption as defined in

Definitions 4.10 and 4.21. Thus, with a factor of 2 overhead, we can obtain multi-theorem SNARGs

(resp., SNARKs) based on any linear PCP satisfying strong soundness (resp., knowledge) against

affine provers.

4.6 Chapter Summary

In this chapter, we constructed the first (designated-verifier) SNARG with quasi-optimal succinctness

from standard lattice assumptions. Since our new SNARG candidates are lattice-based, they resist

all currently-known quantum attacks. Another appealing property of our SNARGs is that proof

verification is very simple (i.e., consists of taking an inner product over a finite field or a polynomial

ring, followed by checking a quadratic relation on the inner products). In the next chapter, we further

refine these methods to obtain a quasi-optimal SNARG—namely, a SNARG that simultaneously

minimizes prover complexity as well as the proof size. We provide a concrete comparison our new

lattice-based SNARG candidates with previous constructions in Section 5.5 (Table 5.1).

One limitation of our new lattice-based SNARGs is that they are all designated-verifier con-

structions. In contrast, many existing SNARG candidates in the random oracle model [Mic00] or

from pairings [BCI+13, GGPR13] are publicly verifiable. It is an important open problem to build

publicly-verifiable SNARGs from lattices.

Chapter 5

Quasi-Optimal SNARGs

In this chapter, we introduce the notion of a quasi-optimal SNARG which is a SNARG that

simultaneously minimizes both the prover complexity as well as the proof size. We begin by defining

quasi-optimal SNARGs and then provide a technical overview of our main construction in Section 5.1.

Defining quasi-optimality. As in Chapter 4, in all of our SNARG constructions, we measure the

asymptotic cost of achieving soundness error 2−λ against provers of size 2λ. We say that a SNARG

(for Boolean circuit satisfiability) is quasi-optimally succinct if the proof size is Õ(λ), and moreover,

that it is quasi-optimal if the prover complexity is Õ(|C|) + poly(λ, log |C|), where C is the Boolean

circuit.1 In Lemma 5.54, we show that this notion of quasi-optimality is tight (up to polylogarithmic

factors) in the following sense: assuming NP does not have succinct proofs, the length of any succinct

argument system that provides this soundness guarantee is necessarily Ω(λ).

Previous SNARG constructions. Prior to this work, the only SNARG candidate that satisfies

quasi-optimal prover complexity is Micali’s CS proofs [Mic00]. However, to achieve 2−λ soundness,

the length of a CS proof is Ω(λ2), which is not quasi-optimally succinct. Conversely, if we just

consider SNARGs that are quasi-optimally succinct, we have many candidates based on bilinear

maps [Gro10, Lip12, GGPR13, BCI+13, Lip13, DFGK14, Gro16]. In all of these constructions, the

SNARG proof consists of a constant number of bilinear group elements. To construct the proof,

however, the prover has to perform a group operation for every gate in the underlying circuit, and

since each group element is Ω(λ) bits, the prover overhead is at least multiplicative in λ. Consequently,

none of the existing constructions are quasi-optimal in terms of prover complexity. Alternatively, our

lattice-based candidate from Section 4.5 (Corollary 4.25) also satisfies quasi-optimal succinctness.

The construction, though, suffers from a similar limitation: the prover needs to operate on an LWE

1We write Õ(·) to suppress factors that are polylogarithmic in the circuit size |C| and the security parameter λ.

108

CHAPTER 5. QUASI-OPTIMAL SNARGS 109

ciphertext per gate in the circuit, which also introduces a multiplicative overhead Ω(λ) in the prover’s

computational cost.

Quasi-optimal linear MIPs. In this chapter, we give the first construction of a quasi-optimal

SNARG for Boolean circuit satisfiability from a concrete cryptographic assumption. Our construction

follows a similar structure as that used in Chapter 4. Specifically, we decompose the construction into

two components: an information-theoretic component (linear MIPs), and a cryptographic component

(linear-only vector encryption). We give a brief description of the information-theoretic primitive we

construct in this work: a quasi-optimal linear MIP. At the end of this section, we discuss why the

general PCPs and linear PCPs that have featured in previous SNARG constructions (including the

one from Section 4.5) do not seem sufficient for building quasi-optimal SNARGs.

To briefly recall, a linear PCP over a finite field F is an oracle computing a linear function

π : Fm → F. On any query q ∈ Fm, the linear PCP oracle responds with the inner product

qTπ = 〈q,π〉 ∈ F. Linear MIPs directly generalize linear PCPs to the setting where there are `

independent proof oracles (π1, . . . ,π`), each implementing a linear function πi : Fm → F. In the

linear MIP model, the verifier’s queries consist of a `-tuple (q1, . . . ,q`) where each qi ∈ Fm. For each

query qi ∈ Fm to the proof oracle πi, the verifier receives the response 〈qi,πi〉. We give a formal

definition in Section 5.2.1.

In this work, we say that a linear MIP for Boolean circuit satisfiability is quasi-optimal if

the MIP prover (for proving satisfiability of a circuit C) can be implemented by a circuit of size

Õ(|C|)+poly(λ, log |C|), and the linear MIP provides soundness error 2−λ. As we note in Remark 5.3,

existing linear PCP constructions (e.g., [BCI+13] or Construction 4.5) are not quasi-optimal: they

either require embedding the Boolean circuit into an arithmetic circuit over a large field [BCI+13],

or, in the case of Construction 4.5, rely on making O(λ) queries, each of length m = O(|C|).

Constructing quasi-optimal linear MIPs. Our work gives the first construction of a quasi-

optimal linear MIP for Boolean circuit satisfiability. We refer to Section 5.1 for an overview of our

construction and to Section 5.3 for the full description. At a high-level, our quasi-optimal linear MIP

construction relies on two key ingredients: a robust circuit decomposition and a method for enforcing

consistency.

Robust circuit decomposition. Our robust decomposition primitive takes a circuit C and

produces from it a collection of constraints f1, . . . , ft, each of which can be computed by a circuit of

size roughly |C| /t. Each constraint reads a subset of the bits of a global witness (computed based

on the statement-witness pair for C). The guarantee provided by the robust decomposition is that

for any false statement x (that is, a statement x where for all witnesses w, C(x,w) = 0), no single

witness to f1, . . . , ft can simultaneously satisfy more than a constant fraction of the constraints. Now,

to prove satisfiability of a circuit C, the prover instead proves that there is a consistent witness that

CHAPTER 5. QUASI-OPTIMAL SNARGS 110

simultaneously satisfies all of the constraints f1, . . . , ft. Each of these proofs can be implemented by

a standard linear PCP. The advantage of this approach is that for a false statement, only a constant

fraction of the constraints can be satisfied (for any choice of witness), so even if each underlying

linear PCP instance only provided constant soundness, the probability that the prover is able to

satisfy all of the instances is amplified to 2−Ω(t) = 2−Ω(λ) if we let t = Θ(λ). Finally, even though the

prover now has to construct t proofs for the t constraints, each of the constraints can themselves be

computed by a circuit of size Õ(|C| /t). The robustness property of our decomposition is reminiscent

of the relation between traditional PCPs and constraint-satisfaction problems, and one might expect

that we could instantiate such a decomposition using PCPs. However, in our settings, we require

that the decomposition be input-independent, which to the best of our knowledge, is not satisfied by

existing (quasilinear) PCP constructions. We discuss this in more detail in Remark 5.22.

The robust decomposition can amplify soundness without introducing much additional overhead.

The alternative approach of directly applying a constant-query linear PCP to check satisfiability of

C has the drawback of only providing 1/poly(λ) soundness when working over a small field (i.e.,

as would be the case with Boolean circuit satisfiability). We give the formal definition of a robust

decomposition in Section 5.3.1, and then show how to realize it by combining MPC protocols with

polylogarithmic overhead [DIK10] with the “MPC-in-the-head” paradigm [IKOS07]. Since the notion

of a robust decomposition is a very natural one, we believe that our construction is of independent

interest and will have applications beyond quasi-optimal linear MIP constructions.

Enforcing consistency. The second ingredient we require is a way for the verifier to check that

the individual proofs the prover constructs (for showing satisfiability of each constraint f1, . . . , ft) are

self-consistent. Our construction here relies on constructing randomized permutation decompositions,

and we refer to Section 5.1 for the technical overview, and Section 5.3 for the full description.

Preprocessing SNARGs from linear MIPs. To complete our construction of quasi-optimal

SNARGs, we show a generic compiler from linear MIPs to preprocessing SNARGs using a variant

of the linear-only vector encryption scheme introduced in Section 4.4.1. Specifically, we require

a linear-only vector encryption scheme where the underlying encryption scheme is a polynomial

ring (as opposed to a finite field). We give our construction in Section 5.4. Combined with

our information-theoretic construction of quasi-optimal linear MIPs, this yields the first quasi-

optimal designated-verifier SNARG for Boolean circuit satisfiability in the preprocessing model

(Corollaries 5.62 and Remark 5.63).

Why linear MIPs? A natural question to ask is whether our new linear MIP to preprocessing

SNARG compiler provides any advantage over the existing compilers by Bitansky et al. [BCI+13]

or that from Chapter 4. The Bitansky et al. compiler relies on linear interactive proofs while our

compiler from Section 4.4 relies on linear PCPs as the core information-theoretic building block. After

CHAPTER 5. QUASI-OPTIMAL SNARGS 111

all, any k-query, `-prover linear MIP with query length m can be transformed into a (k`)-query linear

PCP with query length m` by concatenating the proofs of the different provers together, and likewise,

padding the queries accordingly. While this still yields a quasi-optimal linear PCP (with sparse

queries), applying the existing cryptographic compilers to this linear PCP incurs an additional prover

overhead that is proportional to `. In our settings, ` = Θ(λ), so the resulting SNARG is no longer

quasi-optimal. By directly compiling linear MIPs to preprocessing SNARGs, our compiler preserves

the prover complexity of the underlying linear MIP, and so, combined with our quasi-optimal linear

MIP construction, yields a quasi-optimal SNARG for Boolean circuit satisfiability.

Alternatively, one might ask whether a similar construction of quasi-optimal SNARGs is possible

starting from standard PCPs or linear PCPs with quasi-optimal prover complexity. Existing techniques

for compiling general PCPs [Mic00, BCCT12, BCC+17] to succinct argument systems all rely on some

form of cryptographic hashing to commit to the proof and then open up a small number of bits chosen

by the verifier. Some of the hash-based constructions [Mic00, BCCT12, BCC+17] based on traditional

PCPs can achieve quasi-optimal prover complexity, but none achieves quasi-optimal succinctness

(Remark 4.27). If instead we start with linear PCPs and apply the compiler in either [BCI+13] or

the one from Section 4.4 (Construction 4.14), the challenge is in constructing a quasi-optimal linear

PCP that provides soundness error 2−λ over a small field F. As noted above (and in Remark 5.3),

existing linear PCP constructions are not quasi-optimal for Boolean circuit satisfiability.

5.1 Quasi-Optimal Linear MIP Construction Overview

In this section, we give a technical overview of our quasi-optimal linear MIP construction for

arithmetic circuit satisfiability over a finite field F. Combined with our cryptographic compiler based

on linear-only vector encryption over rings, this gives the first construction of a quasi-optimal SNARG

from a concrete cryptographic assumption.

Robust circuit decomposition. The first ingredient we require in our quasi-optimal linear MIP

construction is a robust way to decompose an arithmetic circuit C : Fn′ × Fm′ → Fh′ into a collection

of t constraint functions f1, . . . , ft, where each constraint fi : Fn × Fm → {0, 1} takes as input a

common statement x ∈ Fn and witness w ∈ Fm. More importantly, each constraint fi can be

computed by a small arithmetic circuit Ci of size roughly |C| /t. This means that each arithmetic

circuit Ci may only need to read some subset of the components in x and w. There is a mapping

inp : Fn′ → Fn that takes as input a statement x′ for C and outputs a statement x for f1, . . . , ft, and

another mapping wit : Fn′ × Fm′ → Fm that takes as input a statement-witness pair (x′,w′) for C,

and outputs a witness w for f1, . . . , ft. The decomposition must satisfy two properties: completeness

and robustness. Completeness says that whenever a statement-witness pair (x′,w′) is accepted by C,

then fi(x,w) = 1 for all i if we set x = inp(x′) and w = wit(x′,w′). Robustness says that for a false

CHAPTER 5. QUASI-OPTIMAL SNARGS 112

statement x′ ∈ Fn′ , there are no valid witnesses w ∈ Fm that can simultaneously satisfy more than a

constant fraction of the constraints f1(x, ·), . . . , ft(x, ·), where x = inp(x′).

Roughly speaking, a robust decomposition allows us to reduce checking satisfiability of a large

circuit C to checking satisfiability of many smaller circuits C1, . . . , Ct. The gain in performance will

be due to our ability to check satisfiability of all of the C1, . . . , Ct in parallel. The importance of

robustness will be critical for soundness amplification. We give the formal definition of a robust

decomposition in Section 5.3.1.

Instantiating the robust decomposition. In Section 5.3.1, we describe one way of instantiating

the robust decomposition by applying the “MPC-in-the-head” paradigm of [IKOS07] to MPC protocols

with polylogarithmic overhead [DIK10]. We give a brief overview here. For an arithmetic circuit

C : Fn′ × Fm′ → Fh′ , the encoding of a statement-witness pair (x,w) will be the views of each party

in a (simulated) t-party MPC protocol computing C on (x,w), where the bits of the input and

witness are evenly distributed across the parties. Each of the constraint functions fi checks that

party i outputs 1 in the protocol execution (indicating an accepting input), and that the view of

party i is consistent with the views of the other parties. This means that the only bits of the encoded

witness that each constraint fi needs to read are those that correspond to messages that were sent

or received by party i. Then, using an MPC protocol where the computation and communication

overhead is polylogarithmic in the circuit size (c.f., [DIK10]), and where the computational burden

is evenly distributed across the computing parties, each f1, . . . , ft can be implemented by a circuit

of size Õ(|C| /t). Robustness of the decomposition follows from security of the underlying MPC

protocol. We give the complete description and analysis in Section 5.3.1.

Blueprint for linear MIP construction. The high-level idea behind our quasi-optimal linear

MIP construction is as follows. We first apply a robust circuit decomposition to the input circuit to

obtain a collection of constraints f1, . . . , ft, which can be computed by smaller arithmetic circuits

C1, . . . , Ct, respectively. Each arithmetic circuit takes as input a subset of the components of the

statement x ∈ Fn and the witness w ∈ Fm. In the following, we write xi and wi to denote the

subset of the components of x and w, respectively, that circuit Ci reads. We can now construct a

linear MIP with t provers as follows. A proof of a true statement x′ with witness w′ consists of

t proof vectors (π1, . . . ,πt), where each proof πi is a linear PCP proof that Ci(xi, ·) is satisfiable.

Then, in the linear MIP model, the verifier has oracle access to the linear functions π1, . . . ,πt, which

it can use to check satisfiability of Ci(xi, ·). Completeness of this construction is immediate from

completeness of the robust decomposition.

Soundness is more challenging to argue. For any false statement x′, robustness of the decomposition

of C only ensures that for any witness w ∈ Fm, at least a constant fraction of the constraints fi(x,w)

will not be satisfied, where x = inp(x′). However, this does not imply that a constant fraction of the

individual circuits Ci(xi, ·) is unsatisfiable. For instance, for all i, there could exist some witness wi

CHAPTER 5. QUASI-OPTIMAL SNARGS 113

such that Ci(xi,wi) = 1. This does not contradict the robustness of the decomposition so long as the

set of all satisfying witnesses {wi} contain many “inconsistent” assignments. More specifically, we

can view each wi as assigning values to some subset of the components of the overall witness w, and

we say that a collection of witnesses {wi} is consistent if whenever two witnesses wi and wj assign a

value to the same component of w, they assign the same value. Thus, robustness only ensures that

the prover cannot find a consistent set of witnesses {wi} that can simultaneously satisfy more than

a fraction of the circuits Ci. Or equivalently, if x is the encoding of a false statement x′, then a

constant fraction of any set of witnesses {wi} where Ci(xi,wi) = 1 must be mutually inconsistent.

The above analysis shows that it is insufficient for the prover to independently argue satisfiability

of each circuit Ci(xi, ·). Instead, we need the stronger requirement that the prover uses a consistent

set of witnesses {wi} when constructing its proofs π1, . . . ,πt. Thus, we need a way to bind each

proof πi to a specific witness wi, as well as a way for the verifier to check that the complete set

of witnesses {wi} are mutually consistent. For the first requirement, we introduce the notion of a

systematic linear PCP, which is a linear PCP where the linear PCP proof vector πi contains a copy

of a witness wi where Ci(xi,wi) = 1 (Definition 5.23). Now, given a collection of systematic linear

PCP proofs π1, . . . ,πt, the verifier’s goal is to decide whether the witnesses w1, . . . ,wt embedded

within π1, . . . ,πt are mutually consistent. Since the witnesses wi are part of the proof vectors πi, in

the remainder of this section, we will simply assume that the verifier has oracle access to the linear

function 〈wi, ·〉 for all i since such queries can be simulated using the proof oracle 〈πi, ·〉.

5.1.1 Consistency Checking

The robust decomposition ensures that for a false statement x′, any collection of witnesses {wi}
where Ci(xi,wi) = 1 for all i is guaranteed to have many inconsistencies. In fact, there must always

exists Ω(t) (mutually disjoint) pairs of witnesses that contain some inconsistency in their assignments.

Ensuring soundness thus reduces to developing an efficient method for testing whether w1, . . . ,wt

constitute a consistent assignment to the components of w or not. This is the main technical challenge

in constructing quasi-optimal linear MIPs, and our construction proceeds in several steps, which we

describe below.

Notation. We begin by introducing some notation. First, we pack the different witnesses

w1, . . . ,wt ∈ Fq into the rows of an assignment matrix W ∈ Ft×q. Specifically, the ith row of

W is the witness wi. Next, we define the replication structure for the circuits C1, . . . , Ct to be a

matrix A ∈ [m]t×q. Here, the (i, j)
th

entry Ai,j encodes the index in w ∈ Fm to which the jth

entry in wi corresponds. With this notation, we say that the collection of witnesses w1, . . . ,wt are

consistent if for all indices (i1, j1) and (i2, j2) where Ai1,j1 = Ai2,j2 , the assignment matrix satisfies

Wi1,j1 = Wi2,j2 .

CHAPTER 5. QUASI-OPTIMAL SNARGS 114

Checking global consistency. To check whether an assignment matrix W ∈ Ft×q is consistent

with respect to the replication structure A ∈ [m]t×q, we can leverage an idea from Groth [Gro09],

and subsequently used in [IPS09] for performing similar consistency checks. The high-level idea is as

follows. Take any index z ∈ [m] and consider the positions (i1, j1), . . . , (id, jd) where z appears in

A. In this way, we associate a disjoint set of Hamiltonian cycles over the entries of A, one for each

of the m components of w. Let Π be a permutation over the entries in the matrix A such that Π

splits into a product of the Hamiltonian cycles induced by the entries of A. In particular, this means

A = Π(A), and moreover, W is consistent with respect to A if and only if W = Π(W). The insight

in [Gro09] is that the relation W = Π(W) can be checked using two sets of linear queries. First, the

verifier draws vectors r1, . . . , rt
r←− Fq and defines the matrix R ∈ Ft×q to be the matrix whose rows

are r1, . . . , rt. Next, the verifier computes the permuted matrix R′ ← Π(R). Let r′1, . . . , r
′
t be the

rows of R′. Similarly, let w1, . . . ,wt be the rows of W. Finally, the verifier queries the linear MIP

oracles 〈wi, ·〉 on ri and r′i for all i and checks the relation

∑
i∈[t]

〈wi, ri〉
?
=
∑
i∈[t]

〈wi, r
′
i〉 ∈ F. (5.1)

By construction of Π, if W = Π(W), this check always succeeds. However, if W 6= Π(W), then by

the Schwartz-Zippel lemma (Lemma 2.2), this check rejects with probability 1/ |F|. When working

over a polynomial-size field, this consistency check achieves 1/poly(λ) soundness (where λ is a security

parameter). We can use repeated queries to amplify the soundness to negl(λ) without sacrificing

quasi-optimality. However, this approach cannot give a linear MIP with 2−λ soundness and still

retain prover overhead that is only polylogarithmic in λ (since we would require Ω(λ) repetitions).

To overcome this problem, we require a more robust consistency checking procedure.

Checking pairwise consistency. The consistency check described above and used in [Gro09,

IPS09] is designed for checking global consistency of all of the assignments in W ∈ Ft×q. The main

disadvantage of performing the global consistency check in Eq. (5.1) is that it only provides soundness

1/ |F|, which is insufficient when F is small (e.g., in the case of Boolean circuit satisfiability). One way

to amplify soundness is to replace the single global consistency check with t/2 pairwise consistency

checks, where each pairwise consistency check affirms that the assignments in a (mutually disjoint)

pair of rows of W are self-consistent. Specifically, each of the t/2 checks consists of two queries

(ri, rj) and (r′i, r
′
j) to 〈wi, ·〉 and 〈wj , ·〉, constructed in exactly the same manner as in the global

consistency check, except specialized to only checking for consistency in the assignments to the

variables in rows i and j. Since all of the pairwise consistency checks are independent, if there are

Ω(t) pairs of inconsistent rows, the probability that all t/2 checks pass is bounded by 2−Ω(t). This

means that for the same cost as performing a single global consistency check, the verifier can perform

Ω(t) pairwise consistency checks. As long as many of the pairs of rows the verifier checks contain

CHAPTER 5. QUASI-OPTIMAL SNARGS 115

inconsistencies, we achieve soundness amplification.

Recall from earlier that our robust decomposition guarantees that whenever x1, . . . ,xt correspond

to a false statement, any collection of witnesses {wi} where Ci(xi,wi) is satisfied for all i necessarily

contains many pairs wi and wj that are inconsistent. Equivalently, many pairs of rows in the

assignment matrix W contain inconsistencies. Now, if the verifier knew which pairs of rows of W

are inconsistent, then the verifier can apply a pairwise consistency check to detect an inconsistent W

with high probability. The problem, however, is that the verifier does not know a priori which pairs

of rows in W are inconsistent, and so, it is unclear how to choose the rows to check in the pairwise

consistency test. However, if we make the stronger assumption that not only are there many pairs of

rows in W that contain inconsistent assignments, but also, that most of these inconsistencies appear

in adjacent rows, then we can use a pairwise consistency test (where each test checks for consistency

between an adjacent pair of rows) to decide if W is consistent or not. When the assignment matrix

W has many inconsistencies in pairs of adjacent rows, we say that the inconsistency pattern of W is

“regular,” and can be checked using a pairwise consistency test.

Regularity-inducing permutations. To leverage the pairwise consistency check, we require that

the assignment matrix W has a regular inconsistency structure that is amenable to a pairwise

consistency check. To ensure this, we introduce the notion of a regularity-inducing permutation. Our

construction relies on the observation that the assignment matrix W is consistent with a replication

structure A if and only if Π(W) is consistent with Π(A), where Π is an arbitrary permutation

over the entries of a t-by-q matrix. Thus, if we want to check consistency of W with respect to

A, it suffices to check consistency of Π(W) with respect to Π(A). Then, we say that a specific

permutation Π is regularity-inducing with respect to a replication structure A if whenever W has

many pairs of inconsistent rows with respect to A (e.g., W is a set of accepting witnesses to a false

statement), then Π(W) has many inconsistencies in pairs of adjacent rows with respect to Π(A). In

other words, a regularity-inducing permutation shuffles the entries of the assignment matrix such that

any inconsistency pattern in W maps to a regular inconsistency pattern according to the replication

structure Π(A). In the construction, instead of performing the pairwise consistency test on W,

which can have an arbitrary inconsistency pattern, we perform it on Π(W), which has a regular

inconsistency pattern. We define the notion more formally in Section 5.3.2 and show how to construct

regularity-inducing permutations in Section 5.3.4.

Decomposing the permutation. Suppose Π is a regularity-inducing permutation for the repli-

cation structure A associated with the circuits C1, . . . , Ct from the robust decomposition of C.

Robustness ensures that for any false statement x′, for all collections of witnesses {wi} where

Ci(xi,wi) = 1 for all i, and x = inp(x′), the permuted assignment matrix Π(W) has inconsistencies

in Ω(t) pairs of adjacent rows with respect to Π(A). This can be detected with probability 1− 2−Ω(t)

by performing a pairwise consistency test on the matrix W′ = Π(W). The problem, however, is

CHAPTER 5. QUASI-OPTIMAL SNARGS 116

that the verifier only has oracle access to 〈wi, ·〉, and it is unclear how to efficiently perform the

pairwise consistency test on the permuted matrix W′ given just oracle access to the rows wi of

the unpermuted matrix. Our solution here is to introduce another set of t linear MIP provers for

each row w′i of W′ = Π(W). Thus, the verifier has oracle access to both the rows of the original

assignment matrix W, which it uses to check satisfiability of Ci(xi, ·), as well as the rows of the

permuted assignment matrix W′, which it uses to check consistency of the assignments in W. The

verifier accepts only if both sets of checks pass. The problem with this basic approach is that there

is no reason the prover chooses the matrix W′ so as to satisfy the relation W′ = Π(W). Thus, to

ensure soundness from this approach, the verifier needs a mechanism to also check that W′ = Π(W),

given oracle access to the rows of W and W′.

To facilitate this check, we decompose the permutation Π into a sequence of α permutations

(Π1, . . . ,Πα) where Π = Πα ◦ · · · ◦Π1. Moreover, each of the intermediate permutations Πi has the

property that they themselves can be decomposed into t/2 independent permutations, each of which

only permutes entries that appear in 2 distinct rows of the matrix. This “2-locality” property on

permutations is amenable to the linear MIP model, and we show in Construction 5.29 a way for

the verifier to efficiently check that two matrices W and W′ (approximately) satisfy the relation

W = Πi(W
′), where Πi is 2-locally decomposable. To complete the construction, we have the

prover provide not just the matrix W and its permutation W′, but all of the intermediate matrices

Wi = (Πi ◦ Πi−1 ◦ · · · ◦ Π1)(W) for all i = 1, . . . , α. Since each of the intermediate permutations

applied are 2-locally decomposable, there is an efficient procedure for the prover to check each relation

Wi = Πi(Wi−1), where we write W0 = W to denote the original assignment matrix. If each of the

intermediate permutations are correctly implemented, then the verifier is assured that W′ = Π(W),

and it can apply the pairwise consistency check on W′ to complete the verification process. We use

a Beneš network to implement the decomposition. This ensures that the number of intermediate

permutations required is only logarithmic in t, so introducing these additional steps only incurs

logarithmic overhead, and does not compromise quasi-optimality of the resulting construction.

Randomized permutation decompositions. There is one additional complication in that the

intermediate consistency checks W′ ?
= Πi(W) are imperfect. They only ensure that most of the

rows in W′ agree with the corresponding rows in Πi(W). What this means is that when the prover

crafts its sequence of permuted assignment matrices W = W0,W1, . . . ,Wα, it is able to “correct”

a small number of inconsistencies that appear in W in each step. Thus, we must ensure that for

the particular inconsistency pattern that appears in W, the prover is not able to find a sequence

of matrices W1, . . . ,Wα, where each of them approximately implements the correct permutation

at each step, but at the end, is able to correct all of the inconsistencies in W. To achieve this, we

rely on a randomized permutation decomposition, where the verifier samples a random sequence of

intermediate permutations Π1, . . . ,Πα that collectively implement the target regularity-inducing

permutation Π. There are a number of technicalities that arise in the construction and its analysis,

CHAPTER 5. QUASI-OPTIMAL SNARGS 117

and we refer to Section 5.3.4 for the full description.

Putting the pieces together. To summarize, our quasi-optimal linear MIP for circuit satisfiability

consists of two key components. First, we apply a robust decomposition to the circuit to obtain

many constraints with the property that for a false statement, a malicious prover either cannot

satisfy most of the constraints, or if it does satisfy all of the constraints, it must have used an

assignment with many inconsistencies. The second key ingredient we introduce is an efficient way to

check if there are many inconsistencies in the prover’s assignments in the linear MIP model. Our

construction here relies on first constructing a regularity-inducing permutation to enable a simple

method for consistency checking, and then using a randomized permutation decomposition to enforce

the consistency check. We give the formal description and analysis in Section 5.3.

5.2 Main Ingredients

In this section, we provide a brief overview of the two main ingredients we require in our quasi-optimal

SNARG construction: linear multi-prover interactive proofs (Section 5.2.1) and routing networks

(Section 5.2.2).

5.2.1 Linear MIPs

Our construction of quasi-optimal SNARGs relies on much of the same underlying infrastructure

of linear proof systems described in Section 4.3. In this section, we further extend these notions

and recall the definition of of a linear multi-prover interactive proof (linear MIP) introduced by

Ishai et al. [IKO07]. Afterwards, we introduce the notion of a quasi-optimal linear MIP.

Definition 5.1 (Linear MIPs [IKO07, adapted]). Let R be a binary relation, F be a finite field,

P = (P1, . . . , P`) be a tuple of ` prover algorithms, and V be an oracle verifier algorithm. Then, the

pair (P,V) is an (input-oblivious) k-query linear multi-prover interactive proof (MIP) with ` provers

for R over F with soundness error ε and query length d if it satisfies the following requirements:

• Syntax: Each prover algorithm Pi (for i ∈ [`]) takes as input a statement x and a witness w

and outputs a vector πi ∈ Fd. We write P(x,w) to denote the tuple (P1(x,w), . . . , P`(x,w)).

The verification algorithm Vπ1,...,π` = (Q,D) consists of an input-oblivious probabilistic query-

generation algorithm Q and a deterministic decision algorithm D. The query algorithm Q
generates a tuple of query matrices Q1, . . . ,Q` ∈ Fd×k and some additional state information

st. The decision algorithm D takes as input the statement x, the verification state st, and the

prover responses y1, . . . ,y` where each yi = QT
i πi ∈ Fk, and either “accepts” (with output 1)

or “rejects” (with output 0).

CHAPTER 5. QUASI-OPTIMAL SNARGS 118

• Completeness: For every (x,w) ∈ R, and setting πi ← Pi(x,w) for all i ∈ [`], we have that

Vπ1,...,π`(x) accepts with probability 1.

• Soundness: For every x /∈ L, and all proof vectors (π∗1, . . . ,π
∗
`) where each π∗i ∈ Fd, the

probability that Vπ∗1 ,...,π
∗
` (x) accepts is at most ε. As in Definition 4.2, we can define a

corresponding notion of soundness against affine provers where soundness holds against provers

who each implement a different affine strategy (π∗i ,b
∗
i) ∈ Fd × Fk.

Similar to Definition 4.2, we can replace the soundness property with a stronger knowledge property.

Definition 5.2 (Quasi-Optimal Linear MIPs). Let λ be a security parameter, and C be an arithmetic

circuit of size s over a finite field F. A k-query linear MIP (P,V) with ` provers for RC with soundness

error 2−λ is quasi-optimal if the prover P = (P1, . . . , P`) can be implemented by an arithmetic circuit

of size Õ(s) + poly(λ, log s), where the Õ(·) notation is suppressing terms that are polylogarithmic in

s and λ.

Remark 5.3 (Existing Linear PCP Construction). We can view the linear PCP constructions by

Bitansky et al. [BCI+13] as well as Construction 4.5 from Section 4.3.1 as a linear MIP with a

single prover. However, when viewed as linear MIPs, these constructions are not quasi-optimal for

arithmetic circuit satisfiability over a polynomial-size field (i.e., for Boolean circuit satisfiability). To

provide soundness error 2−λ, the aforementioned linear PCP constructions either embed the circuit

satisfiability instance inside a field of size 2Ω(λ), or have query complexity O(λ). In both cases, the

prover complexity becomes Ω(λs) + poly(λ, log s). Thus, the existing SNARG constructions are not

quasi-optimal for Boolean circuit satisfiability.

5.2.2 Routing Networks

Our quasi-optimal linear MIP construction in Section 5.3 relies on an efficient method for checking

whether two matrices W,W′ ∈ Ft×q satisfy W = Π(W′) where Π is an arbitrary permutation over

the entries of a t-by-q matrix. We begin by stating a lemma from [GHS12] that states that an

arbitrary permutation Π over the entries of a t-by-q matrix can be decomposed into the composition

of a small number of permutations, where each permutation implements a row-wise permutation or a

column-wise permutation of the matrix entries.

Definition 5.4 (Matrix Permutations). Fix integers t, q and let Π be a permutation over the entries

of a t-by-q matrix. We say that Π is row-wise restricted if Π only permutes elements within the rows

of the matrix (that is, the permutation only changes the column, and not the row, of each element).

Similarly, we say that Π is column-wise restricted if Π only permutes elements within the columns of

the matrix.

Lemma 5.5 ([GHS12, Lemma 1]). Fix positive integers t, q ∈ N, and let Π be a permutation over

the entries of a t-by-q matrix. Then, there exist permutations Π1,Π2,Π3 such that Π = Π3 ◦Π2 ◦Π1,

CHAPTER 5. QUASI-OPTIMAL SNARGS 119

Figure 5.1: A Beneš network over 8 = 23 nodes (beneš3).

where Π1 and Π3 are row-wise restricted, and Π2 is column-wise restricted. Moreover, there is an

efficient algorithm to compute Π1,Π2,Π3 given Π.

Beneš networks. A Beneš permutation network [Ben64] is a special graph that can model all

permutations Π on a collection of m = 2d elements. We give the precise definition below, and then

state an elementary property on the structure of Beneš networks. We show an example of a Beneš

network in Figure 5.1.

Definition 5.6 (Beneš Network [Ben64]). For a non-negative integer d, a d-dimensional Beneš

network, denoted benešd, is a directed graph with 2d + 1 layers (labeled 0, . . . , 2d). Each layer

contains m = 2d nodes (labeled 0, . . . , 2d − 1), and edges only go from nodes in layer i− 1 to nodes

in layer i for i ∈ [2d]. The first layer (layer 0) is the input layer and the final layer (layer 2d) is the

output layer. The graph structure is defined recursively as follows:

• A 0-dimensional Beneš network beneš0 consists of a single node.

• A d-dimensional Beneš network benešd consists of an input layer (with 2d nodes) that feeds

into two stacked benešd−1 networks, which feed into an output layer. The edge configuration

of the input and output layers are then defined as follows, for i = 0, . . . , 2d−1 − 1:

– Input edges: There is an edge from the ith input of benešd to the ith input of each of

the benešd−1 networks. There is also an edge from the (i+ 2d−1)
th

input of benešd to

the ith input of each of the benešd−1 networks.

– Output edges: There is an edge from the ith output of each of the benešd−1 networks

to the ith output of benešd. There is also an edge from the ith output of each benešd−1

network to the (i+ 2d−1)
th

output of the benešd network.

Fact 5.7 (Structure of Beneš Networks). Fix a positive integer d ∈ N, and let S =
{

0, . . . , 2d − 1
}

.

Then, a benešd network has the following structural properties:

CHAPTER 5. QUASI-OPTIMAL SNARGS 120

• For j ∈ {0, . . . , d}, we can partition the nodes in layer j into `j = 2d−j disjoint sets

S
(j)
0 , . . . , S

(j)
`j−1 ⊆ S, each containing 2j nodes, with the following properties:

– For k ∈
{

0, . . . , 2d−j − 1
}

, S
(j)
k contains all indices i ∈ S where the least-significant d− j

bits of i is equal to k.

– For all nodes is, it ∈ S(j)
k for some k, there is a unique path of length j from the iths input

node to the itht node in layer j of benešd.

– For any two nodes is ∈ S(j)
k , it ∈ S(j)

k′ where k 6= k′, there are no paths from the iths input

node to the itht node in layer j of benešd.

• For j ∈ {d, . . . , 2d}, we can partition the nodes in layer j into `j = 2j−d disjoint sets

S
(j)
0 , . . . , S

(j)
`−1 ⊆ S, each containing 22d−j nodes, with the following properties:

– For k ∈
{

0, . . . , 2j−d − 1
}

, S
(j)
k contains all indices i ∈ S where the least-significant j − d

bits of i is equal to k.

– For all nodes is, it ∈ S(j)
k for some k, there is a unique path of length j from the iths node

in layer j to the itht output node in benešd.

– For all nodes is ∈ S(j)
k , it ∈ S(j)

k′ where k 6= k′, there are no paths from the iths node in

layer j to the itht output node of benešd.

A key property of Beneš networks is that they are rearrangeable: any permutation Π on m = 2d

values can be mapped to a set of 2d node-disjoint paths in a d-dimensional Beneš network benešd where

the ith path maps from input i to output Π(i). We state the following fact from [Wak68, OTW71].

Fact 5.8 (Rearrangeability of Beneš Networks [Wak68, OTW71]). Let d ∈ N be a positive integer

and let S =
{

0, . . . , 2d − 1
}

. For all permutations Π: S → S there exists a set of 2d node-disjoint

paths from each input node i ∈ S in benešd to its corresponding output node Π(i). Moreover, these

paths can be computed in time O(d · 2d). We say that the paths P implement the permutation Π.

Randomized routing in Beneš networks. Fact 5.8 states that we can route any permutation Π

on [2d] elements using a d-dimensional Beneš network. In our construction, we will use the following

procedure to randomize the routing configuration.

Construction 5.9 (Randomized Routing). Let d ∈ N be a positive integer and S =
{

0, . . . , 2d − 1
}

.

For a permutation Π: S → S on S, let P be a collection of node-disjoint paths in benešd that

routes each input node i ∈ S to its corresponding output node Π(i). Namely, for each i ∈ S and

j ∈ {0, . . . , 2d}, let P[i, j] be the value of node i in layer j of the benešd network. We construct a

new collection of paths P ′ as follows:

1. Initialize P ′ ← P. Then for j ∈ [d] and k = 0, . . . , 2j−1 − 1, do the following:

CHAPTER 5. QUASI-OPTIMAL SNARGS 121

(a) Choose a random bit bj,k
r←− {0, 1}.

(b) For i ∈ S, let i1i2 · · · id be the binary representation of i. Then, if bj,k = 1, for all nodes

i ∈ S where i1i2 · · · ij−1 = k and ij = 0, swap the values P ′[i, j′] and P ′[i+ 2d−j , j′], for

all j′ = j, . . . , d− j.

2. Output the randomized collection of paths P ′.

At a high level, Construction 5.9 takes a set of paths P implementing a specific permutation

Π in a benešd network and produces a new set of paths P ′ in benešd that implement the same

permutation. The procedure relies on the recursive structure of the Beneš network. For example, in

the first layer of a benešd network, the input nodes are partitioned into two disjoint sets, one of

which is routed using the top benešd−1 network, and the other is routed using the bottom benešd−1

network. The randomization procedure in Construction 5.9 maintains the same partitioning of input

nodes, but each partition is either routed using the top benešd−1 network or the bottom benešd−1

network with equal probability. This process is then iteratively applied to permute the routing

configuration for each of the benešd−1 networks in the first layer, and so on. We state the formal

correctness guarantee in the following lemma:

Lemma 5.10. Let d ∈ N be a positive integer, S =
{

0, . . . , 2d − 1
}

, and Π: S → S be a permutation

on S. Let P be a collection of node-disjoint paths in benešd that implements the permutation

Π. Then, the new collection of paths P ′ obtained by applying the randomized routing procedure in

Construction 5.9 to P is also a collection of node-disjoint paths in benešd that implements the same

permutation Π.

For any sequence of paths P implementing a permutation Π in a benešd network, the set P ′ of

randomized paths output by Construction 5.9 has the property that if we consider the path of any

single input node i ∈
{

0, . . . , 2d − 1
}

to Π(i) in P ′, its path is distributed uniformly over all of the

2d possible paths from i to Π(i) in benešd. We state the precise guarantee in the following lemma:

Lemma 5.11. Let d ∈ N be a positive integer, S =
{

0, . . . , 2d − 1
}

, and Π: S → S be a permutation

on S. Let P be a collection of node-disjoint paths in benešd that implements Π, and let P ′ be

the set of randomized paths output by Construction 5.9 applied to P. For a node i ∈ S, let

i = i0, i1, . . . , i2d = Π(i) denote the path of i in P ′. Then the following holds:

• For j ∈ {0, . . . , d}, let S
(j)
0 , . . . , S

(j)
`j−1 be the partition of the nodes in layer j from Fact 5.7.

Let k ∈ {0, . . . , `j − 1} such that i ∈ S(j)
k . Then, for all i′ ∈ S(j)

k , Pr[ij = i′] = 1/
∣∣S(j)
k

∣∣ = 1/2j.

• For j ∈ {d, . . . , 2d}, let S
(j)
0 , . . . , S

(j)
`j−1 be the partition of the nodes in layer j from Fact 5.7.

Let k ∈ {0, . . . , `j − 1} such that Π(i) ∈ S(j)
k . Then, for all i′ ∈ S(j)

k , Pr[ij = i′] = 1/
∣∣S(j)
k

∣∣ =

1/22d−j.

In both cases, the probability is taken over the random coins in the randomization algorithm (Con-

struction 5.9).

CHAPTER 5. QUASI-OPTIMAL SNARGS 122

Permutations from Beneš networks. We can view a collection of paths in a Beneš network

as providing a systematic decomposition of an arbitrary permutation Π on t = 2d elements into

a sequence of ` = O(log t) permutations Π1, . . . ,Π`, where each Π1, . . . ,Π` can be expressed as a

product of disjoint 2-cycles, and Π = Π` ◦· · ·◦Π1. More precisely, we can associate values x0, . . . , xt−1

with the input nodes of the benešd network (e.g., value xi with the ith input node). Given a path

from an input node to an output node, we associate the value of the input node with every node along

the path. Then, any collection of t node-disjoint paths P from input nodes to output nodes induces

an assignment to every node in the network. Now, for any permutation Π on t values x0, . . . , xt−1,

we define Π1, . . . ,Π` so that (Πi ◦ · · · ◦Π1)(x0, . . . , xt−1) gives the values of the nodes in layer i+ 1

of benešd on input x0, . . . , xt−1 and paths determined by P. The structure of the Beneš network

ensures that each of the Π1, . . . ,Π` is a product of disjoint 2-cycles. We say that permutations with

this property (generalized to permutations over the entries of a matrix) are 2-locally decomposable

(Definition 5.12). We give a more precise description of this decomposition in Construction 5.13. We

formalize two properties satisfied by the decomposition in Lemma 5.14.

Definition 5.12 (2-Local Decomposability). Fix an even integer t ∈ N, an integer q ∈ N, and set

t′ = t/2. Let Π be a permutation on the entries of a t-by-q matrix. We say that Π is 2-locally

decomposable if there exists a partition {j1, j2} , . . . , {jt′−1, jt′} of [t] and permutations Π1, . . . ,Πt′

over 2-by-q matrices such that for all matrices W ∈ Fq×t, we have that Ŵ = Π(W) if and only if for

all i ∈ [t′],

Ŵ[j2i,j2i+1] = Πi

(
W[j2i,j2i+1]

)
.

In other words, a permutation Π is 2-locally decomposable if Π can be written as a composition of

t′ = t/2 disjoint permutations that each operate on exactly two rows of the matrix.

Construction 5.13 (Randomized 2-Local Decomposition). Let t, q ∈ N be integers where t = 2d

for some d ∈ N. Let Π be an arbitrary column-wise restricted permutation on the entries of a

t-by-q matrix. The randomized 2-local decomposition of Π is a sequence of 2d matrices Π1, . . . ,Π2d

constructed as follows:

• For each column i ∈ [q], let Pi be a collection of paths in a benešd network that implements

the permutation Π on the entries in column i. Let P ′i be the output of the randomized routing

procedure in Construction 5.9 applied to Pi.

• For j ∈ [2d], we take Πj to be a column-wise restricted permutation on t-by-q matrices. We

write Π
(i)
j to denote the permutation Πj implements on column i ∈ [q]. We define Π1, . . . ,Π2d

so that for all i ∈ [q] and j ∈ [2d], (Π
(i)
j ◦ · · · ◦Π

(i)
1)(x0, . . . , xt−1) gives the values of the nodes

in layer j of a benešd network on input (x0, . . . , xt−1) and using paths defined by P ′i.

Lemma 5.14. Let t, q ∈ N be integers where t = 2d for some d ∈ N. Let Π be an arbitrary column-

wise restricted permutation on the entries of a t-by-q matrix, and let (Π1, . . . ,Π2d) be the randomized

CHAPTER 5. QUASI-OPTIMAL SNARGS 123

2-local decomposition of Π from Construction 5.13. The local decomposition satisfies the following

properties:

• Each Π1, . . . ,Π2d is a column-wise restricted and 2-locally decomposable.

• Π = Π2d ◦ · · · ◦Π1.

Proof. The first property follows immediately from the structure of Beneš networks, and the second

follows by construction.

5.3 Quasi-Optimal Linear MIPs

In this section, we present our core information-theoretic construction of a linear MIP with quasi-

optimal prover complexity. We refer to Section 5.1 for a high-level overview of the construction. In

Sections 5.3.1 and 5.3.2, we introduce the key building blocks underlying our construction. We give

the full construction of our quasi-optimal linear MIP in Section 5.3.3. We show how to instantiate

our core building blocks in Section 5.3.4.

5.3.1 Robust Decomposition for Circuit Satisfiability

In this section, we formally define our notion of a robust decomposition of an arithmetic circuit.

We then show how to instantiate the robust decomposition by combining the MPC-in-the-head

paradigm [IKOS07] with robust MPC protocols with polylogarithmic overhead [DIK10]. We refer

to the technical overview in Section 5.1 for a high-level description of how we implement our

decomposition.

Definition 5.15 (Quasi-Optimal Robust Decomposition). Let C : Fn′ ×Fm′ → Fh′ be an arithmetic

circuit of size s over a finite field F, RC be its associated relation, and LC ⊆ Fn′ be its associated

language. A (t, δ)-robust decomposition of C consists of the following components:

• A collection of functions f1, . . . , ft where each function fi : Fn × Fm → {0, 1} can be computed

by an arithmetic circuit Ci of size Õ(s/t) + poly(t, log s). Note that a function fi may only

depend on a (fixed) subset of its input variables; in this case, its associated arithmetic circuit

Ci only needs to take the (fixed) subset of dependent variables as input.

• An efficiently-computable mapping inp : Fn′ → Fn that maps between a statement x′ ∈ Fn′ for

C to a statement x ∈ Fn for f1, . . . , ft.

• An efficiently-computable mapping wit : Fn′×Fm′ → Fm that maps between a statement-witness

pair (x′,w′) ∈ Fn′ × Fm′ to C to a witness w ∈ Fm for f1, . . . , ft.

Moreover, the decomposition must satisfy the following properties:

CHAPTER 5. QUASI-OPTIMAL SNARGS 124

• Completeness: For all (x′,w′) ∈ RC , if we set x = inp(x′) and w = wit(x′,w′), then

fi(x,w) = 1 for all i ∈ [t].

• δ-Robustness: For all statements x′ /∈ LC , if we set x = inp(x′), then it holds that for all

w ∈ Fm, the set of indices Sw = {i ∈ [t] : fi(x,w) = 1} satisfies |Sw| < δt. In other words, any

single witness w can only simultaneously satisfy at most a δ-fraction of the constraints.

• Efficiency: The mappings inp and wit can be computed by an arithmetic circuit of size

Õ(s) + poly(t, log s).

Instantiating the robust decomposition. We now show how to instantiate our robust decompo-

sition using secure multiparty computation (MPC) protocols with polylogarithmic overhead [DIK10].

Our decomposition follows the “MPC-in-the-head” paradigm of Ishai et al. [IKOS07]. In Remark 5.22,

we discuss some of the similarities between our robust circuit decomposition and the duality between

traditional PCPs and constraint satisfaction problems.

MPC preliminaries. We begin by reviewing some standard MPC definitions [Gol04, Can00]. Let t

be the number of players, denoted P1, . . . , Pt. We assume that all players communicate synchronously

over secure point-to-point channels. We model the functionality f computed by the t parties as an

arithmetic circuit C over a finite field F. In this section, it suffices to consider functionalities whose

outputs consists of a single field element F. We assume each party Pi has a common input x ∈ Fn

and a local input wi ∈ Fm.

We specify a t-party MPC protocol Π by its next-message function. In particular, on input a party

index i ∈ [t], the public input x, the party’s local input wi and randomness ri, and the messages

Pi received (m1, . . . ,mj) in the first j rounds of the protocol execution, Π(i, s,wi, ri, (m1, . . . ,mj))

outputs a set of t− 1 messages that Pi sends to each of the other parties in round j + 1. The view of

a party Pi, denoted viewi, in the protocol execution consists of its local input wi, randomness ri, and

all of the messages that Pi both sends and receives2 during the execution of Π. At the end of the

protocol execution (or if Π signals an early termination), each party Pi also computes some output

(as a function of its local state). We say that a pair of views viewi and viewj for two distinct parties

Pi and Pj is consistent (with respect to Π and the public input x) if the set of messages sent by Pi

(in viewi) are identical to the messages Pj receives (in viewj). We now define the correctness and

robustness requirement we require in our construction.

Definition 5.16 (Correctness). An MPC protocol Π realizes a deterministic t-party functionality

f(x,w1, . . . ,wn) with perfect correctness if on all inputs x,w1, . . . ,wn, the probability (taken over

each party’s randomness) that the output of some player Pi is different from the output of f is 0.

2Typically, one defines the view of a party to only consist of the messages it receives during the computation. In our
setting, it will be useful to also include the messages the party sends as part of the view, even though those messages
can be computed implicitly from the other components in the view.

CHAPTER 5. QUASI-OPTIMAL SNARGS 125

Definition 5.17 (δ-Robustness). An MPC protocol Π realizes a deterministic t-party functionality

with perfect δ-robustness if it is perfectly correct in the presence of a semi-honest adversary (as

in Definition 5.16), and furthermore, for any adversary that corrupts up to δt parties, and for any

input (x,w1, . . . ,wt), the following robustness property holds: if there are no inputs (w′1, . . . ,w
′
t)

where f(x,w′1, . . . ,w
′
t) = 1, then the probability (taken over each party’s randomness) that some

uncorrupted party outputs 1 in an execution of Π where the inputs of the honest parties are consistent

with (x,w1, . . . ,wt) is 0.

Note that in our settings, we do not require an additional privacy property from the MPC protocol.

With this in mind, we now present our robust decomposition for an arithmetic circuit C.

Construction 5.18 (Robust Decomposition via MPC). Let δ > 0 be a constant and t ∈ N be an

integer. Let C : Fn′ × Fm′ → Fh′ be an arithmetic circuit, and Πf be a t-party MPC protocol for the

t+ 1-input function

f(x,w1, . . . ,wn) =

1 if C(x,w1‖w2‖ · · · ‖wn) = 0h
′

0 otherwise
(5.2)

where each wi is a vector of dimension O(m′/t). Our (t, δ)-robust decomposition (f1, . . . , ft, inp,wit)

of C is then defined as follows:

• The input encoding function inp : Fn′ → Fn, where n′ = n, is the identity function.

• The witness encoding function wit takes as input a statement x′ ∈ Fn′ and a witness w′ ∈ Fm′

and simulates an execution of Πf on inputs x′ and w′1, . . . ,w
′
t where w′ = w′1‖w′2‖ · · · ‖w′t.

Let view1, . . . , viewt be the views of each of the t parties in the simulated MPC protocol. The

output of the witness encoding functions is a new witness w = (view1, . . . , viewt) consisting of

the views of the t parties in the execution of Πf .

• Each of the constraint functions fi for i ∈ [t] takes as input the statement x ∈ Fn and the

witness w = (view1, . . . , viewt) and outputs 1 if the following conditions hold:

– The output of party Pi (as determined by viewi) is 1 (indicating an accepting output).

– The view viewi of party Pi is consistent with an honest evaluation of Πf (with respect

to the global input x′). Recall that viewi includes not only the local state of party Pi

and the set of messages Pi receives from the other parties during the protocol execution,

but also the messages Pi sends to each of the other parties during the protocol execution.

This step verifies that the messages Pi sends and its output are consistent with those that

would be computed assuming an honest evaluation of Πf .

– The messages sent by party Pi (as specified in viewi) are consistent with the messages

each of the other parties Pj receives (as specified in viewj).

CHAPTER 5. QUASI-OPTIMAL SNARGS 126

In particular, each fi only needs to read the components of the statement x that party Pi needs

to read during the protocol execution. In addition, fi only needs to read the components of w

that pertain to party Pi: namely, viewi and the components of viewj (for all j 6= i) containing

the messages Pj received from Pi.

Theorem 5.19. Let δ > 0 be a constant and t ∈ N be an integer. Let C : Fn′ × Fm′ → Fh′ be

an arithmetic circuit, and let Πf be a perfectly δ-robust t-party MPC protocol for the function in

Eq. (5.2). Then, the decomposition (f1, . . . , ft, inp,wit) in Construction 5.18 is (t, 1− δ)-robust.

Proof. We show completeness and robustness separately.

Completeness. If (x′,w′) ∈ RC , then by perfect correctness of Πf , each of the honest parties will

output 1. Moreover, in an honest protocol execution, all of the views viewi for i ∈ [t] are internally

and pairwise consistent.

Robustness. To show that the decomposition is (1 − δ)-robust, we need to show that for a

statement x′ /∈ LC , there is no setting of view w = (view1, . . . , viewt) that can satisfy more than

a (1− δ)-fraction of the constraints fi. Our argument here is similar to the soundness analysis of

the zero-knowledge proof systems from MPC in [IKOS07, Theorem 4.1]. At a high-level, suppose

that all inconsistencies (if any) among the views view1, . . . , viewt can be resolved by eliminating at

most δt views. In this case, the protocol execution defined by (view1, . . . , viewt) can be realized by

an adversary that corrupts at most δt parties. But since Πf is perfectly δ-robust, on input x′, all of

the uncorrupted parties will output 0. In this case, there are at most δt corrupted parties, so there

are at least (1− δ)t honest parties Pi where the output is 0, and correspondingly, fi(x,w) = 0 for

those parties. Conversely, if there are more than δt views that are inconsistent, then for any viewi

that has an inconsistency, fi(x,w) = 0.

More formally, for a collection of views w = (view1, . . . , viewt), we say that the view of party Pi

for i ∈ [t] is “bad” if viewi is either inconsistent with an honest evaluation of Πf on input x, or if

there is a discrepancy between an outgoing message from Pi in viewi and an incoming message for

Pj (from Pi) in viewj . Let B ⊆ [t] be the subset of “bad” parties. We consider two cases:

• If |B| < δt, then consider a protocol execution of Πf where the adversary corrupts the set

of parties B and behaves in a way so that the view of any party Pj for j /∈ B is viewj . By

construction of the set B, this means that the views between any two parties i, j ∈ [t] \B are

mutually consistent with an honest execution of Πf on input x′. Thus, since Πf is perfectly

δ-robust, the output of all parties Pj , where j /∈ B will be 0. Equivalently, for all j ∈ [t] \B,

fj(x,w) = 0, so there are at most (1− δ)t indices i where fi(x,w) = 1.

• If |B| ≥ δt, then for all i ∈ B, fi(x,w) = 0. This means that there are at most (1− δ)t indices

i ∈ [t] \B where fi(x,w) = 1, and the claim follows.

CHAPTER 5. QUASI-OPTIMAL SNARGS 127

Fact 5.20 ([DIK10]). Let t ∈ N be an integer. For any constant 0 < δ < 1/3 and arithmetic circuit

C(x,w1, . . . ,wt) on t + 1 inputs with width Ω(t), there exists a t-party MPC protocol Π which

computes C with perfect δ-robustness and where the total computational complexity is

|C| · polylog(t, |C|) + poly(t, log |C|) · depth(C)2

Corollary 5.21. Fix an integer t ∈ N. Then, for any constant 0 < δ < 1/3, there exists a

quasi-optimal (t, 1− δ)-robust decomposition for any arithmetic circuit C : Fn×Fm → Fh of size Ω(t).

Proof. We instantiate Construction 5.18 using the information-theoretic MPC protocol from Fact 5.20.

To obtain the required asymptotics, we make the following observations:

• First, we need to construct an arithmetic circuit that implements the functionality in Eq. (5.2).

We construct the circuit C ′ : Fn × Fm → {0, 1} from C as follows. Circuit C ′ first evaluates C

on (x,w) and then projects the h outputs of C onto {0, 1} (mapping 0 to 0 and all non-zero

elements in F to 1). Projecting each element can be done with a circuit of size and depth

O(log |F|). Finally C ′ computes the Boolean and on the negation of each of the projected output

bits. When F is polynomial-sized (e.g., |F| = O(|C|)), this transformation only adds logarithmic

overhead to C. In particular, depth(C ′) = depth(C) +O(log |F|) and |C ′| = |C|+O(h · log |F|).

• For proof verification, we can also assume without loss of generality that the circuit C has

constant depth. In particular, for verifying that (x,w) is a satisfying input to C, we can always

construct a new circuit of size |C| which takes as input the statement x and the value of each

wire in C(x,w). The new circuit then simply checks that every wire is correctly computed, and

that the output value of C(x,w) is 0h
′
. Coupled with the transformation from the previous

step, we conclude that checking satisfiability of an arithmetic circuit C can always be reduced

to checking satisfiability of a related circuit C ′ of size O(|C| log |C|) and depth O(log |C|).
Invoking Fact 5.20 on the circuit C ′, we conclude that the inp and wit encoding functions satisfy

the efficiency requirements of Definition 5.15.

• Moreover, when simulating an execution of the MPC protocol from Fact 5.20, we uniformly

distribute the inputs (i.e., the bits of the witness) across the t parties. This ensures that the

computational costs are distributed evenly across all t parties, and so the local computational

complexity of each party becomes

|C| /t · polylog(t, |C|) + poly(t, log |C|).

Since each fi is verifying integrity of viewi, we conclude that each fi can be computed by a

circuit of size Õ(|C| /t) + poly(t, log |C|).

CHAPTER 5. QUASI-OPTIMAL SNARGS 128

Remark 5.22 (Robust Decomposition and Quasilinear PCPs). Our robust decomposition essentially

provides a way to convert a circuit satisfiability instance into checking satisfiability of a collection of

smaller constraint functions defined over a common set of variables. This is reminiscent of viewing

a traditional PCP (for a circuit satisfiability instance) as a constraint satisfaction problem (CSP),

where each constraint in the CSP reads a small number of bits of the PCP. Thus, another potential

way of obtaining a quasi-optimal robust decomposition is to use quasilinear PCPs [Din06, BS08].

Specifically, we view the PCP as a CSP instance; an encoding of a statement-witness pair corresponds

to an assignment to the variables in the CSP, and the constraint functions in the robust decomposition

simply implement the constraints of the CSP. However, with traditional PCPs, the variables on

which each constraint depends varies with the statement being proved. One of the requirements of

our robust decomposition is that each constraint only depends on a fixed subset of the bits of the

encoded statement and witness, irrespective of the statement being proved. Thus, it is not clear how

to leverage traditional PCPs to implement our robust decomposition.

In contrast, our MPC-based robust decomposition satisfies this input-independence property.

Specifically, the components of the encoded statement-witness pair read by the ith constraint just

correspond to the view of the ith party in the simulated MPC protocol, which is always a fixed subset

of the encoded statement-witness pair, and independent of the statement being proved. It is an

interesting problem to construct an input-independent quasilinear PCP, which may in turn yield

another approach for realizing our robust decomposition primitive.

5.3.2 Consistency Checking

As described in Section 5.1, in our linear MIP construction, we first apply a robust decomposition

to the input circuit C to obtain smaller arithmetic circuits C1, . . . , Ct, each of which depends on

some subset of the components of a witness w ∈ Fm. The proof then consists of a collection of

systematic linear PCP proofs π1, . . . ,πt that C1, . . . , Ct are individually satisfiable. The second

ingredient we require is a way for the verifier to check that the prover uses a consistent witness to

construct the proofs π1, . . . ,πt. In this section, we formally introduce the building blocks we use for

the consistency check. We refer to Section 5.1.1 for an overview of our methods. First, we introduce

a notion of a “systematic” linear PCP that enables these types of consistency checks (using linear

queries).

Systematic linear PCPs. Recall from Section 5.1 that our linear MIP for checking satisfiability of

a circuit C begins by applying a robust decomposition to the circuit C. The MIP proof is comprised

of linear PCP proofs π1, . . . ,πt to show that each of the circuits C1(x1, ·), . . . , Ct(xt, ·) in the robust

decomposition of C is satisfiable. Here, xi denotes the bits of the statement x that circuit Ci reads.

To provide soundness, the verifier needs to perform a sequence of consistency checks to ensure that

the proofs π1, . . . ,πt are consistent with some witness w. To facilitate this, we require that the

CHAPTER 5. QUASI-OPTIMAL SNARGS 129

underlying linear PCPs are systematic: namely, each proof πi contains a copy of some witness wi

where (xi,wi) ∈ RCi . The consistency check then affirms that the witnesses w1, . . . ,wt associated

with π1, . . . ,πt are mutually consistent. We give the formal definition of a systematic linear PCP

below, and then describe one such instantiation by Ben-Sasson et al. [BCG+13, Appendix E].

Definition 5.23 (Systematic Linear PCPs). Let (P,V) be an input-oblivious k-query linear PCP for

a relation RC where C : Fn × Fm → Fh. We say that (P,V) is systematic if the following conditions

hold:

• On input a statement-witness pair (x,w) ∈ Fn × Fm the prover’s output of P(x,w) has the

form π = [w,p] ∈ Fd, for some p ∈ Fd−m. In other words, the witness is included as part of

the linear PCP proof vector.

• On input a statement x and given oracle access to a proof π∗ = [w∗,p∗], the knowledge

extractor Eπ∗(x) outputs w∗.

Fact 5.24 ([BCG+13, Claim E.3]). Let C : Fn × Fm → Fh be an arithmetic circuit of size s over a

finite field F where |F| > s. There exists a systematic input-oblivious 5-query linear PCP (P,V) for

RC over F with knowledge error O(s/ |F|) and query length O(s). Moreover, letting V = (Q,D), the

prover and verifier algorithms satisfy the following properties:

• the prover algorithm P is an arithmetic circuit of size Õ(s);

• the query-generation algorithm Q is an arithmetic circuit of size O(s);

• the decision algorithm D is an arithmetic circuit of size O(n).

Replication structures. Next, we introduce the notion of a replication structure induced by the

decomposition C1, . . . , Ct, and define what it means for a collection of assignments to the circuit

C1, . . . , Ct to be consistent.

Definition 5.25 (Replication Structures and Inconsistency Matrices). Fix integers m, t, q ∈ N. A

replication structure is a matrix A ∈ [m]t×q. We say that a matrix W ∈ Ft×q is consistent with

respect to a replication structure A if for all i1, i2 ∈ [t] and j1, j2 ∈ [q], whenever Ai1,j1 = Ai2,j2 ,

Wi1,j1 = Wi2,j2 . If there is a pair of indices (i1, j1) and (i2, j2) where this relation does not hold,

then we say that there is an inconsistency in W (with respect to A) at locations (i1, j1) and (i2, j2).

For a replication structure A ∈ [m]t×q and a matrix of values W ∈ Ft×q, we define the inconsistency

matrix B ∈ {0, 1}t×q where Bi,j = 1 if and only if there is an inconsistency in W at location (i, j)

with respect to the replication structure A. In the subsequent analysis, we will sometimes refer to

an arbitrary inconsistency matrix B ∈ {0, 1}t×q (independent of any particular set of values W or

replication structure A).

Definition 5.26 (Consistent Inputs to Circuits). Let C1, . . . , Ct be a collection of circuits where

each Ci : Fm → Fh only depends on at most q ≤ m components of an input vector w ∈ Fm. For each

CHAPTER 5. QUASI-OPTIMAL SNARGS 130

i ∈ [t], let a
(i)
1 , . . . , a

(i)
q ∈ [m] be the indices of the q components of the input w on which Ci depends.

The replication structure of C1, . . . , Ct is the matrix A ∈ [m]t×q, where the ith row of A is the vector

a
(i)
1 , . . . , a

(i)
q (namely, the subset of indices on which Ci depends). We say that a collection of inputs

w1, . . . ,wt ∈ Fq to C1, . . . , Ct is consistent if the assignment matrix W, where the ith row of W is

wi for i ∈ [t], is consistent with respect to the replication structure A.

To simplify the analysis, we introduce the notion of an inconsistency graph for an assignment

matrix W ∈ Ft×q with respect to a replication structure A ∈ [m]t×q. At a high level, the inconsistency

graph of W with respect to A is a graph with t nodes, one for each row of W, and there is an edge

between two nodes i, j ∈ [t] if assignments wi and wj (in rows i and j of W, respectively) contain

an inconsistent assignment with respect to A.

Definition 5.27 (Inconsistency Graph). Fix positive integers m, t, q ∈ N and take a replication

structure A ∈ [m]t×q. For any assignment matrix W ∈ Ft×q, we define the inconsistency graph

GW,A of W with respect to A as follows:

• Graph GW,A is an undirected graph with t nodes, with labels in [t]. We associate node i ∈ [t]

with the ith row of A.

• Graph GW,A has an edge between nodes i1 and i2 if there exists j1, j2 ∈ [q] such that

Ai1,j1 = Ai2,j2 but Wi1,j1 6= Wi2,j2 . In other words, there is an edge in GW,A whenever there

is an inconsistency in the assignments to rows i1 and i2 in W (with respect to the replication

structure A).

Definition 5.28 (Regular Matchings). Fix integers m, t, q ∈ N where t is even, and take any

replication structure A ∈ [m]t×q and assignment matrix W ∈ Ft×q. We say that the inconsistency

graph GW,A contains a regular matching of size s if GW,A contains a matching3 M of size s, where

each edge (v1, v2) ∈M satisfies (v1, v2) = (2i− 1, 2i) for some i ∈ [t/2]. In other words, all matched

edges are between nodes corresponding to adjacent rows in W.

Having defined these notions, we can reformulate the guarantees provided by the (t, δ)-robust

decomposition (Definition 5.15). For a constant δ > 0, let (f1, . . . , ft, inp,wit) be a (t, δ)-robust

decomposition of a circuit C. Let A be the replication structure of the circuits C1, . . . , Ct computing

f1, . . . , ft. Take any statement x′ /∈ LC , and consider any collection of witnesses w1, . . . ,wt where

Ci(xi,wi) = 1 for all i ∈ [t]. As usual, xi denotes the bits of x = inp(x′) that Ci reads. Robustness

of the decomposition ensures that no single w can be used to simultaneously satisfy more than a

δ-fraction of the constraints. In particular, this means that there must exist Ω(t) pairs of witnesses

wi and wj which are inconsistent. Equivalently, we say that the inconsistency graph GW,A contains

a matching of size Ω(t). We prove this statement formally in Lemma 5.51.

3For a graph G with n nodes, labeled with the integers 1, . . . , n, a matching M is a set of edges (i, k) ∈ [n]× [n] with
no common vertices.

CHAPTER 5. QUASI-OPTIMAL SNARGS 131

Approximate consistency check. By relying on the robust decomposition, it suffices to construct

a protocol where the verifier can detect whether the inconsistency graph GW,A of the prover’s assign-

ments W with respect to a replication structure A contains a large matching. To facilitate this, we

first describe an algorithm to check whether two assignment matrices W,W′ ∈ Ft×q (approximately)

satisfy the relation W′ = Π(W) in the linear MIP model, where Π is a 2-locally decomposable

permutation. This primitive can then be used directly to detect whether an inconsistency graph

GW,A contains a regular matching (Corollary 5.32). Subsequently, we show how to permute the

entries in W according to a permutation Π′ so as to convert an arbitrary matching in GW,A into a

regular matching in GΠ′(W),Π′(A). Our construction of the approximate consistency check is a direct

generalization of the pairwise consistency check procedure described in Section 5.1.1.

Construction 5.29 (Approximate Consistency Check). Fix an even integer t ∈ N, and let P1, . . . , Pt,

P ′1, . . . , P
′
t be a collection of 2 · t provers in a linear MIP system. For i ∈ [t], let πi ∈ Fd be the proof

vector associated with prover Pi and π′i ∈ Fd be the proof vector associated with prover P ′i . We can

associate a matrix W ∈ Ft×d with provers (P1, . . . , Pt), where the ith row of W is πi. Similarly, we

associate a matrix W′ with provers (P ′1, . . . , P
′
t). Let Π be a 2-locally decomposable permutation on

the entries of a t-by-d matrix. Then, we describe the following linear MIP verification procedure for

checking that W′ ≈ Π(W).

• Verifier’s query algorithm: The verifier chooses a random matrix R
r←− Ft×d, and sets

R′ ← Π(R). Let ri and r′i denote the ith row of R and R′, respectively. The query algorithm

outputs the query ri for prover Pi and the query r′i to prover P ′i .

• Verifier’s decision algorithm: Since Π is 2-locally decomposable, we can decompose Π into

t′ = t/2 independent permutations, Π1, . . . ,Πt′ , where each Πi only operates on a pair of rows

(j2i−1, j2i), for all i ∈ [t′]. Given responses yi = 〈πi, ri〉 ∈ F and y′i = 〈π′i, r′i〉 ∈ F for i ∈ [t],

the verifier checks that the relation

yj2i−1 + yj2i
?
= y′j2i−1

+ y′j2i ,

for all i ∈ [t′]. The verifier accepts if the relations hold for all i ∈ [t′]. Otherwise, it rejects.

By construction, we see that if W′ = Π(W), then the verifier always accepts.

Lemma 5.30 (Consistency Check Soundness). Define t, Π, W, and W′ as in Construction 5.29.

Then, if the matrix W′ disagrees with Π(W) on κ rows, the verifier in Construction 5.29 will reject

with probability at least 1− 2−Ω(κ).

Proof. Consider the event where W′ disagrees with Ŵ = Π(W) on κ rows. We show that the

probability of the verifier accepting in this case is bounded by 2−Ω(κ). In the linear MIP model, the

CHAPTER 5. QUASI-OPTIMAL SNARGS 132

verifier’s decision algorithm corresponds to checking the following relation:

〈
πj2i , rj2i

〉
+
〈
πj2i+1

, rj2i+1

〉 ?
=
〈
π′j2i , r

′
j2i

〉
+
〈
π′j2i+1

, r′j2i+1

〉
. (5.3)

By assumption, there are at least κ/2 indices i ∈ [t] where W′
[j2i−1,j2i]

6= Ŵ[j2i−1,j2i]. By the

Schwartz-Zippel lemma (Lemma 2.2), for the indices i ∈ [t] where W′
[j2i,j2i+1] 6= Ŵ[j2i,j2i+1], the

relation in Eq. (5.3) holds with probability at most 1/ |F| (over the randomness used to sample rj2i−1

and rj2i) Since there are at least κ/2 such indices, the probability that Eq. (5.3) holds for all i ∈ [t′]

is at most (1/ |F|)κ/2 = 2−Ω(κ). Hence, the verifier rejects with probability 1− 2−Ω(κ).

The approximate consistency check from Construction 5.29 immediately gives a way to check

whether an inconsistency graph GW,A contains a regular matching of size Ω(t). To show this, it

suffices to exhibit a 2-locally decomposable permutation Π where the assignment matrix W is

consistent on adjacent pairs of rows if and only if W = Π(W). The construction can be viewed as

composing many copies of the global consistency check permutation used in [Gro09] (and described

in Section 5.1.1), each applied to a pair of adjacent rows. We give the construction below.

Construction 5.31 (Pairwise Consistency in Adjacent Rows). Fix integers m, t, q ∈ N with t even,

and let A ∈ [m]t×q be a replication structure. Let t′ = t/2. For each i ∈ [t′], let Πi be a permutation

over 2-by-q matrices such that Πi splits into a disjoint set of Hamiltonian cycles based on the entries

of A[2i−1,2i]. Define a permutation Π on t-by-q matrices where the action of Π on rows 2i− 1 and

2i is given by Πi for all i ∈ [t′]. By construction, the permutation Π is 2-locally decomposable,

and moreover, W ∈ Ft×q is pairwise consistent on adjacent rows with respect to A if and only if

W = Π(W).

Corollary 5.32. Fix integers m, t, q ∈ N with t even. Let A ∈ [m]t×q be a replication structure,

and Π be the pairwise consistency test permutation for A from Construction 5.31. Then, for any

assignment matrix W ∈ Ft×q where the inconsistency graph GW,A contains a regular matching of size

Ω(t), the verifier Construction 5.29 will reject the relation W
?
= Π(W) with probability 1− 2−Ω(t).

Proof. Since GW,A contains a regular matching of size Ω(t), there are inconsistencies in Ω(t) pairs of

adjacent rows of W. By construction of Π, this means that W and Π(W) differ on Ω(t) rows. The

claim then follows by Lemma 5.30.

Regularity-inducing permutations. Recall that our objective in the consistency check is to

give an algorithm that detects whether an inconsistency graph GW,A contains a matching of size

Ω(t). Corollary 5.32 gives a way to detect if the inconsistency graph GW,A contains a regular

matching of size Ω(t) with soundness error 2−Ω(t). Thus, to perform the consistency check, we

first construct a permutation Π on W such that whenever GW,A contain a matching of size Ω(t),

the inconsistency graph GΠ(W),Π(A) contains a regular matching of similar size Ω(t). We say that

CHAPTER 5. QUASI-OPTIMAL SNARGS 133

such permutations are regularity-inducing. While we are not able to construct a single permutation

Π that is regularity-inducing for all assignment matrices W, we are able to construct a family of

permutations (Π1, . . . ,Πz) for a fixed replication structure A such that for all assignment matrices

W ∈ Ft×q, there is at least one β ∈ [z] where GΠβ(W),Πβ(A) contains a regular matching of size Ω(t).

Definition 5.33 (Regularity-Inducing Permutations). Fix integers m, t, q ∈ N, and let A ∈ [m]t×q

be a replication structure. Let Π be a permutation on t-by-q matrices and W ∈ Ft×q be a matrix

such that the inconsistency graph GW,A contains a matching M of size s. We say that Π is ρ-

regularity-inducing for W with respect to A if the inconsistency graph GΠ(W),Π(A) contains a regular

matching M ′ of size at least s/ρ. Moreover, there is a one-to-one correspondence between the edges

in M ′ and a subset of the edges in M (as determined by Π). We say that (Π1, . . . ,Πz) is a collection

of ρ-regularity-inducing permutations with respect to a replication structure A if for all W ∈ Ft×q,
there exists β ∈ [z] such that Πβ is ρ-regularity-inducing for W.

In this work, we will construct regularity-inducing permutations where ρ = O(1). To simplify

the following description, we will implicitly assume that ρ = O(1). Given an assignment matrix W

and a collection of ρ-regularity-inducing permutations (Π1, . . . ,Πz) for a replication structure A, we

can affirm that the inconsistency graph GW,A does not contain a matching of size Ω(t) by checking

that each of the graphs GΠβ(W),Πβ(A) does not contain a regular matching of size Ω(t/ρ) = Ω(t) for

all β ∈ [z] and assuming ρ = O(1). By Corollary 5.32, each of these checks can be implemented in

the linear MIP model using Construction 5.29. However, to apply the protocol in Construction 5.29

to Πβ(W), the verifier requires oracle access to the individual rows of Πβ(W). Thus, in the linear

MIP construction, in addition to providing oracle access to the rows of the assignment matrix W, we

also provide the verifier oracle access to the rows of Πβ(W) for all β ∈ [z]. Of course, a malicious

MIP prover may provide the rows of a different matrix W′ ∈ Ft×q (so as to pass the consistency

check). Thus, the final ingredient we require is a way for the verifier to check that two matrices

W,W′ ∈ Ft×q satisfy the relation W′ = Πβ(W). Note that Construction 5.29 does not directly

apply because the permutation Πβ is not necessarily 2-locally decomposable.

Decomposing the permutation. To complete the description, we now describe a way for the

verifier to check that two matrices W,W′ ∈ Ft×q satisfy the relation W′ = Π(W), for an arbitrary

permutation Π. We assume that the verifier is given oracle access to the rows of W and W′ in the

linear MIP model. Construction 5.29 provides a way to check the relation whenever Π is 2-locally

decomposable, so a natural starting point is to decompose the permutation Π into a sequence of 2-

locally-decomposable permutations Π1, . . . ,Πα, where Π = Πα ◦ · · · ◦Π1. This is possible, for instance,

by first applying Lemma 5.5 and Construction 5.9 to Π. Then, the linear MIP proof consists of the

initial and final matrices W and W′, as well as the intermediate matrices Wi = (Πi ◦ · · · ◦Π1)(W).

The linear MIP proof would consist of the rows of all of the matrices W = W0,W1, . . . ,Wα = W′,

and the verifier would apply Construction 5.29 to check that for all ` ∈ [α], Wi = Πi(Wi−1).

CHAPTER 5. QUASI-OPTIMAL SNARGS 134

While this general approach seems sound, there is a subtle problem. The soundness guarantee for

the consistency check in Construction 5.29 only states that on input W,W′ and a permutation Π,

the verifier will only reject with probability 1− 2Ω(t) when W′ and Π(W) differ on Ω(t) rows. This

means that a malicious prover can provide a sequence of matrices W,W1, . . . ,Wα where each W`

differs from Π`(W`−1) on a small number of rows (e.g., o(t) rows), and in doing so, correct all of the

inconsistent assignments that appear in the final matrix Wα.

Randomizing the decomposition. Abstractly, we can view the problem as follows. Let B ∈
{0, 1}t×q be the inconsistency matrix for W with respect to A (Definition 5.25). In other words,

Bi,j = 1 whenever Wi,j encodes a value that is inconsistent with another assignment elsewhere in

W. Since GW,A contains a matching of size Ω(t), we know that there are at least Ω(t) rows in B that

contain a 1. The permutation Π is chosen so that Π(W) has a regular matching of size Ω(t) with

respect to Π(A). In particular, this means that the permuted inconsistency matrix Π(B) contains a

1 in Ω(t) adjacent pairs of rows.

Consider the sequence of matrices W1, . . . ,Wα chosen by the prover. Using the approximate

pairwise consistency check, we can ensure that Wi agrees with Πi(Wi−1) on all but some κ1 rows.

Now suppose that there exists some ` ∈ [α] where B` = (Π` ◦ · · · ◦ Π1)(B) has the property that

all of the locations with a 1 in B appear in just κ1 rows of B`. If this happens, then the malicious

prover can construct W1, . . . ,W`−1 honestly, and then choose W` such that W` = Π`(W`−1) on

all rows where B` does not contain a 1, and set the values in the rows where B` does contain a 1

to be consistent with the other rows of W. Notably, all the entries in W` are now consistent, and

moreover, W` differs from Π`(W`−1) on at most κ1 rows (and so, will not be detected with high

probability by the pairwise consistency check). This means that from the verifier’s perspective, the

final matrix Π(W) has no inconsistencies, and thus, the verifier’s final pairwise consistency check

passes with probability 1 (even though the original inconsistency graph GW,A contains a matching

of size Ω(t)). Thus, we require a stronger property on the permutation decomposition. It is not

sufficient that there is a matching of size Ω(t) in the starting and ending configurations W and W′.

Rather, we need that the size of the matching in every step of the decomposition cannot shrink by

too much, or equivalently, the intermediate permutations Π1, . . . ,Πα cannot “concentrate” all of the

inconsistencies in W into a small number of rows (which the malicious prover can fix without being

detected). We say permutation decompositions with this property are non-concentrating. We now

formally define the notion of a non-concentrating permutation decomposition and what it means for

a collection of permutation sequences to be non-concentrating.

Definition 5.34 (Non-Concentrating Permutations). Fix positive integers t, q ∈ N, and let Γ =

(Π1, . . . ,Πα) be a sequence of permutations over t-by-q matrices. Let B ∈ {0, 1}t×q be an inconsistency

matrix. For ` ∈ [α], define B` = (Π` ◦ · · · ◦ Π1)(B). We say that Γ is a sequence of (κ1, κ2)-non-

concentrating permutations with respect to B if for all ` ∈ [α], the inconsistency matrix B` has the

CHAPTER 5. QUASI-OPTIMAL SNARGS 135

property that no subset of κ1 rows contains more than κ2 inconsistencies (indices where the value is 1).

Next, we say a collection of permutation sequences Γ(1), . . . ,Γ(γ) where each Γ(j) =
(
Π

(j)
1 , . . . ,Π

(j)
α

)
is (κ1, κ2)-non-concentrating for a set B ⊆ {0, 1}t×q of inconsistency matrices if for all B ∈ B, there

is some j ∈ [γ] such that Γ(j) is (κ1, κ2)-non-concentrating with respect to B.

Putting the pieces together. To summarize, the goal of the consistency check is to decide

whether the inconsistency graph GW,A of some assignment matrix W with respect to a replication

structure A contains a matching of size Ω(t). Our strategy relies on the following:

• Let (Π1, . . . ,Πz) be a collection of regularity-inducing permutations with respect to A.

• For each β ∈ [z], let Γ
(1)
β , . . . ,Γ

(γ)
β be a collection of non-concentrating permutations that

implement Πβ , where Γ
(j)
β = (Π

(j)
β,1, . . . ,Π

(j)
β,α) for all j ∈ [γ], and each of the intermediate

permutations Π
(j)
β,` are 2-locally decomposable for all j ∈ [γ], β ∈ [z], and ` ∈ [α].

The proof then consists of the initial assignment matrix W in addition to all of the intermediate

matrices W
(j)
β,` = Π

(j)
β,`(W

(j)
β,`−1), where we define W

(j)
β,0 = W for all j ∈ [γ], β ∈ [z]. The verifier

checks consistency of all of the intermediate matrices using Construction 5.29, and applies a pairwise

consistency test (Construction 5.31) to each of W
(j)
β,α for all j ∈ [γ] and β ∈ [z]. The soundness

argument then proceeds roughly as follows:

• Since (Π1, . . . ,Πz) is regularity-inducing, there is some β ∈ [z] where GΠβ(W),Πβ(A) contains a

regular matching.

• Since Γ
(1)
β , . . . ,Γ

(γ)
β is a collection of non-concentrating permutations that implement Πβ ,

and all of the intermediate consistency checks pass, then there must be some j ∈ [γ] such

that G
W

(j)
β,α,Πβ(A)

contains a regular matching of size Ω(t). The verifier then rejects with

exponentially-small probability (in t) by soundness of the pairwise consistency test.

Finally, in our concrete instantiation (described in Section 5.3.4), we show how to construct our

collection of regularity-inducing permutations and non-concentrating permutations sequences where

z = O(1), γ = O(log3 t), α = Θ(log t). For this setting of parameters, the overall consistency check

only incurs polylogarithmic overhead to the prover complexity and the proof size. In Section 5.3.3,

we give the formal description and analysis of our linear MIP construction.

5.3.3 Quasi-Optimal Linear MIP Construction

In this section, we describe our quasi-optimal linear MIP for circuit satisfiability. We give our

construction (Construction 5.35) but defer the security theorem (Theorem 5.50) and analysis to

Section 5.3.5. By instantiating Construction 5.35 with the appropriate primitives (described in

Sections 5.3.1 and 5.3.4), we obtain the first quasi-optimal linear MIP (Theorem 5.36).

CHAPTER 5. QUASI-OPTIMAL SNARGS 136

Construction 5.35 (Linear MIP). Fix parameters t, δ, k, ε, d, ρ, κ1, κ2, and let C be an arithmetic

circuit of size s over a finite field F. The construction relies on the following ingredients:

• Let (f1, . . . , ft, inp,wit) be a quasi-optimal (t, δ)-robust decomposition of C. Let Ci be the

arithmetic circuit that computes each constraint fi : Fn × Fm → {0, 1}.

• Let (P1,V1), . . . , (Pt,Vt) be k-query systematic linear PCP systems for circuits C1, . . . , Ct,

respectively, with knowledge error ε and query length d.

• Let A ∈ [m]t×q be the replication structure of C1, . . . , Ct (where q is a bound on the number of

indices in a witness w ∈ Fm on which each circuit depends). Let Π1, . . . ,Πz be a collection of

ρ-regularity-inducing permutations on t-by-q matrices with respect to the replication structure

A (Definition 5.33).

• For β ∈ [z], let Bβ ⊆ {0, 1}t×q be the set of inconsistency patterns where B and Πβ(B) have at

most one inconsistency in each row. Let Γ
(1)
β , . . . ,Γ

(γ)
β be a collection of permutation sequences

implementing Πβ that is (κ1, κ2)-non-concentrating for Bβ (Definition 5.34). In particular, each

Γ
(j)
β is a sequence of α permutations

(
Π

(j)
β,1, . . . ,Π

(j)
β,α

)
, where each intermediate permutation

Π
(j)
β,` is 2-locally decomposable.

The linear MIP with t · (1 + αγz) provers and query length d is defined as follows:

• Syntax: The linear MIP consists of t · (1 +αγz) provers. We label the provers as Pi and P
(j)
β,`,i

for i ∈ [t], j ∈ [γ], β ∈ [z], and ` ∈ [α]. To simplify the description, we will often pack the proof

vectors from different provers into the rows of a matrix (as in Construction 5.29). To recall,

when we say we associate a matrix Ŵ ∈ Ft×d with provers (P1, . . . , Pt), we mean that the ith

row of Ŵ is the proof vector assigned to prover Pi for all i ∈ [t]. Similarly, when we say the

verifier distributes a query matrix Q ∈ Ft×d to provers (P1, . . . , Pt), we mean that it submits

the ith row of Q as a query to Pi for all i ∈ [t].

• Prover’s algorithm: On input the statement x′ ∈ Fn′ and witness w′ ∈ Fm′ , the prover

prepares the proof vectors as follows:

– Linear PCP proofs. First, the prover computes x← inp(x′) and w← wit(x′,w′). For

each i ∈ [t], it computes a proof πi ← Pi(xi,wi), where xi and wi denote the bits of the

statement x and witness w on which circuit Ci depends, respectively. Since (Pi,Vi) is

a systematic linear PCP, we can write πi = [wi,pi] where wi ∈ Fq and pi ∈ Fd−q. For

i ∈ [t], the prover associates the vector πi with Pi.

– Consistency proofs. Let W ∈ Ft×q be the matrix where the ith row is the vector wi.

Now, for all j ∈ [γ], β ∈ [z], and ` ∈ [α], let W
(j)
β,` =

(
Π

(j)
β,` ◦Π

(j)
β,`−1 ◦ · · · ◦Π

(j)
β,1

)
(W). Let

Ŵ
(j)
β,` =

[
W

(j)
β,`, 0

t×(d−q)]. The prover associates Ŵ
(j)
β,` with provers (P

(j)
β,`,1, . . . , P

(j)
β,`,t).

CHAPTER 5. QUASI-OPTIMAL SNARGS 137

• Verifier’s query algorithm: To simplify the description, we will sometimes state the query

vectors the verifier submits to each prover Pi and P
(j)
β,`,i rather than the explicit query matrices.

The verifier’s queries are constructed as follows:

– Linear PCP queries. For i ∈ [t], the verifier invokes the query generation algorithm

Qi for each of the underlying linear PCP instances (Pi,Vi) to obtain a query matrix

Qi ∈ Fd×k and some state information sti. The verifier gives Qi to prover Pi, and saves

the state st = (st1, . . . , stt).

– Routing consistency queries. For all j ∈ [γ], β ∈ [z], and ` ∈ [α], the verifier invokes

the query generation algorithm of Construction 5.29 on permutation Π
(j)
β,` to obtain

two query matrices R
(j)
β,` and S

(j)
β,` ∈ Ft×q. The verifier pads the matrices to obtain

R̂
(j)
β,` =

[
R

(j)
β,`, 0

t×(d−q)] and Ŝ
(j)
β,` =

[
S

(j)
β,`, 0

t×(d−q)]. There are two cases:

∗ If ` = 1, the verifier distributes the queries R̂
(j)
β,` to provers (P1, . . . , Pt).

∗ If ` > 1, the verifier distributes the queries R̂
(j)
β,` to provers

(
P

(j)
β,`−1,1, . . . , P

(j)
β,`−1,t

)
.

In addition, the verifier distributes the queries Ŝ
(j)
β,` to provers

(
P

(j)
β,`,1, . . . , P

(j)
β,`,t

)
. Intu-

itively, the verifier is applying the approximate consistency check from Construction 5.29

to every permutation Π
(j)
β,`.

– Pairwise consistency queries. For each β ∈ [z], let Aβ = Πβ(A), and let Π′β be the

pairwise consistency test matrix for Aβ (Construction 5.31). The verifier invokes the

query generation algorithm of Construction 5.29 on permutation Π′β to obtain two query

matrices Rβ and Sβ ∈ Ft×q. It pads the matrices to obtain R̂β = [Rβ , 0
t×(d−q)] and

Ŝβ = [Sβ , 0
t×(d−q)]. Next, it distributes R̂β and Ŝβ to (P

(j)
β,α,1, . . . , P

(j)
β,α,t) for all j ∈ [γ].

In this step, the verifier is checking pairwise consistency of the permuted assignment

matrices W
(j)
β,α for all j ∈ [γ] and β ∈ [z].

In total, the verifier makes a total of k + αγz queries to each prover Pi for i ∈ [t]. It makes

O(1) queries to the other provers.

• Verifier’s decision algorithm: First, the verifier computes the statement x← inp(x′). For

i ∈ [t], let xi denote the bits of x on which circuit Ci depends. The verifier processes the

responses from each set of queries as follows:

– Linear PCP queries. For i ∈ [t], let yi ∈ Fk be the response of prover Pi to the

linear PCP queries. For i ∈ [t], the verifier invokes the decision algorithm Di for each of

the underlying linear PCP instances (Pi,Vi) on the state sti, the statement xi, and the

response yi. It rejects the proof if Di(sti,xi,yi) = 0 for any i ∈ [t].

– Consistency queries. For each set of routing consistency query responses (for checking

consistency of the intermediate permutations Π
(j)
β,`), and for each set of pairwise consistency

CHAPTER 5. QUASI-OPTIMAL SNARGS 138

query responses (for checking consistency of the final configurations Π′β), the verifier applies

the decision algorithm from Construction 5.29, and rejects if any check fails.

If all of the checks pass, then the verifier accepts the proof.

Instantiating the construction. We defer the security analysis of Construction 5.35 to Sec-

tion 5.3.5. In Section 5.3.4, we show how to instantiate the regularity-inducing permutations and

the non-concentrating permutation sequences needed to apply Construction 5.35. Combining Con-

struction 5.35 with these concrete instantiations (as well as our robust decomposition primitive from

Section 5.3.1), we obtain a quasi-optimal linear MIP. We state the formal theorem below, and give

the proof in Section 5.3.5.

Theorem 5.36 (Quasi-Optimal Linear MIP). Fix a security parameter λ. Let C : Fn × Fm → Fh be

an arithmetic circuit of size s over a poly(λ)-size finite field F where |F| > s. Then, there exists an

input-oblivious k-query linear MIP (P,V) with ` = Õ(λ) provers for RC with soundness error 2−λ,

query length Õ(s/λ) + poly(λ, log s), and k = polylog(λ). Moreover, letting V = (Q,D), the prover

and verifier algorithms satisfy the following properties:

• the prover algorithm P is an arithmetic circuit of size Õ(s) + poly(λ, log s);

• the query-generation algorithm Q is an arithmetic circuit of size Õ(s) + poly(λ, log s);

• the decision algorithm D is an arithmetic circuit of size Õ(λn).

Remark 5.37 (Soundness Against Affine Provers). To leverage our linear MIP to construct a

SNARG, we require that the linear MIP provide soundness against affine provers. We note that

Construction 5.35 inherits this property as long as the underlying linear PCPs and approximate

consistency check primitives provide soundness against affine strategies. It is straightforward to see

that Construction 5.29 remains sound even against affine adversarial strategies. Moreover, we can

apply the transformation from Bitansky et al. [BCI+13, Construction 3.1] to existing linear PCPs to

obtain linear PCPs with soundness against affine provers. Specifically, Bitansky et al. show how

to take a k-query linear PCP over a finite field F with soundness error ε against linear provers to

obtain a (k + 1)-query linear PCP over F with soundness error (ε+ 1/ |F|) against affine provers by

introducing an additional consistency check. In fact, the construction in [BCI+13] provides even

stronger soundness guarantees, but those will not be needed in this work. Note that neither of these

modifications increase the asymptotic complexity of Construction 5.35.

5.3.4 Constructing Randomized Permutation Decompositions

In this section, we show how to instantiate the underlying building blocks we require for performing

our consistency checks. First, we construct a regularity-inducing permutation assuming that every

CHAPTER 5. QUASI-OPTIMAL SNARGS 139

value in the replication structure A appears at most twice. This assumption is satisfied, for instance,

by the replication structure of our robust decomposition based on MPC from Section 5.3.1.

Construction 5.38 (Regularity-Inducing Permutations). Fix integers m, t, q ∈ N, with t even, and

let A ∈ [m]t×q be a replication structure where every value in A appears at most twice. We construct

permutations Π1,Π2 over the entries of A as follows:

• First, we partition A into t′ = t/2 blocks, each containing a pair of rows: for i ∈ [t′], let

Ai = A[2(i−1)+1,2i].

• We construct matrices A(1),A(2) ∈ [m]t×q as follows. For each block i ∈ [t′], we associate with

it two sets of values S
(1)
i , S

(2)
i ⊆ [m]. For j ∈ {1, 2}, S(j)

i is the set of values that appear in the

jth row of Ai, but not in any previous set S
(j)
i′ where i′ < i. Matrix A(j) is then constructed

as follows:

1. Initialize all values in A(j) with ⊥ to denote an “unassigned” position.

2. Let A
(j)
i = A

(j)
[2(i−1)+1,2i] denote the ith block of A(j). Let v1, . . . , vd ∈ [m] be the elements

in S
(j)
i where d ≤ q. Then, for k ∈ [d], let cvk be the total number of times vk appears in

A. Set the first cvk entries of column k of A
(j)
i to the value vk.

3. For all remaining values that appear in A but not A(j), assign them arbitrarily to any

unassigned position in A(j).

• By construction, each A(j) is a permutation of the entries in A. Output the permutations

Π1,Π2 where A(1) = Π1(A) and A(2) = Π2(A).

Lemma 5.39. Fix integers m, t, q ∈ N, with t even, and let A ∈ [m]t×q be a replication structure

where every entry appears at most twice. Let Π1,Π2 be the permutations of A from Construction 5.38.

Then, (Π1,Π2) is a collection of 2-regularity-inducing permutations (Definition 5.33) with respect to

A.

Proof. Set t′ = t/2, and for i ∈ [t′], let Si = {2(i− 1) + 1, 2i}. Let M be the matching in GW,A of

size s. Take any edge (i1, i2) ∈M , and define i′1, i
′
2 ∈ [t′] so that i1 ∈ Si′1 and i2 ∈ Si′2 . Without loss

of generality, suppose i′1 ≤ i′2. This means that there exists j1, j2 ∈ [q] where Ai1,j1 = Ai2,j2 , but

Wi1,j1 6= Wi2,j2 . Let v = Ai1,j1 ∈ [m]. Since each entry in A appears at most twice, the first block

in A that contains v is i′1. We consider two cases:

• Suppose i1 = 1 mod 2. This means that v ∈ S(1)
i′1

in Construction 5.38. Thus, Π1 maps entries

in positions (i1, j1) and (i2, j2) to some column in rows i1 and i1 + 1. Thus, GW1,A1 contains

an inconsistency in rows (i1, i1 + 1) ∈ Si′1 .

• Suppose i1 = 0 mod 2. By an analogous argument as that used in the previous case, we

conclude that GW2,A2 contains an inconsistency in rows (i1 − 1, i1) ∈ Si′1 .

CHAPTER 5. QUASI-OPTIMAL SNARGS 140

The above analysis shows that each edge (i1, i2) ∈ M either contributes an edge (i1, i1 + 1) ∈ Si′1
to GW1,A1 or contribute an edge (i1 − 1, i1) ∈ Si′1 to GW2,A2 . In other words, each edge (i1, i2)

contributes a single edge to a regular matching in GW1,A1
or GW2,A2

Since |M | ≥ s, we conclude

that at least one of the graphs GW1,A1
,GW2,A2

must contain a regular matching of size at least s/2.

Moreover, the correspondence between the edges in the regular matching for graphs GW1,A1 and

GW2,A2 and the edges in M is immediate from the above analysis.

Randomized permutation decomposition. Next, we show how to construct a sequence of

non-concentrating 2-locally decomposable permutations. Recall that a non-concentrating sequence of

permutations Γ implementing a permutation Π is an ordered set of permutations (Π1, . . . ,Πα) such

that if we start with any inconsistency matrix B ∈ {0, 1}t×q where both B and Π(B) have at most

one inconsistency in each row, then the positions of the inconsistencies in the intermediate matrices

B` = Π`(B`−1) and B0 = B do not concentrate in a small number of rows. We begin by giving a

high-level outline of how we sample such sequences for a target permutation Π.

• First, we apply Lemma 5.5 to Π to obtain three permutations Π1,Π2,Π3 where Π1 and Π3 are

row-wise restricted and Π2 is column-wise restricted. Moreover, the decomposition satisfies

Π = Π3 ◦Π2 ◦Π1.

• Next, we randomize the first row-rise restricted permutation Π1. Our randomization procedure

exploits the observation that if two entries j1, j2 in the same row have the same target column

(under Π), then we can swap the entries j1 and j2 under Π1 and undo the swap in Π3. We

describe this procedure in Construction 5.40. Then, we show in Theorem 5.42 that as long

as there are many entries in each row of Π that map to the same column, this randomization

procedure distributes the inconsistencies in B across many columns.

• After randomizing Π1, we apply the randomized 2-local decomposition from Construction 5.9

based on randomized routing in a Beneš network to Π2 to obtain a (randomized) sequence of

2-local permutations implementing Π2. We show in Theorem 5.43 that over the randomness used

to sample the randomized 2-local decomposition, the inconsistencies in B do not concentrate in

a small number of rows. Intuitively, this follows from the fact that the inconsistencies in B are

distributed across many columns (from the row-wise shuffling procedure in the previous step),

and the fact that each column is independently randomized in Construction 5.9. We can then

show that the probability that the inconsistencies across many columns concentrate in a small

number of rows is exponentially small.

• Theorems 5.42 and 5.43 show that for a fixed inconsistency pattern B, the probability that

the inconsistencies in B concentrate in a small number of rows is exponentially small. Here,

the probability is taken over the randomness used to sample the row-wise and column-wise

decompositions. To construct a collection of permutation sequences Γ(1), . . . ,Γ(γ) such that for

CHAPTER 5. QUASI-OPTIMAL SNARGS 141

all inconsistency patterns B, there is a non-concentrating sequence, we simply sample many

independent sequences Γ(j). In Theorem 5.48, we show that if we sample γ = O(log3 t) such

sequences, then with probability 1− 2−Ω(t), for all inconsistency patterns B that contain at

most one inconsistency in each row, at least one of the sequences Γ(j) will be non-concentrating.

We give the overall construction in Construction 5.47.

Construction 5.40 (Row-Wise Random Permutation Decomposition). Fix positive integers t, q ∈ N.

Let Π be a permutation over the entries of a t-by-q matrix. The row-wise random permutation

decomposition (Π1,Π2,Π3) is then defined as follows:

• First let (Π̂1, Π̂2, Π̂3) be the decomposition of Π from Lemma 5.5. In particular, Π̂1 and Π̂3

are row-wise restricted permutations and Π̂2 is a column-wise restricted permutation.

• Since Π̂1 is a row-wise restricted permutation, we can decompose it into a product of t

independent permutations Π̂
(1)
1 , . . . , Π̂

(t)
1 , where the ith permutation Π̂

(i)
1 : [q]→ [q] is applied

to the ith row of the matrix. Similarly, we can express Π̂2 as a product of q independent

permutations Π̂
(1)
2 , . . . , Π̂

(q)
2 , where each Π̂

(j)
2 : [t] → [t] is applied to the jth column of the

matrix.

• For each i ∈ [t], define the vector ĉ(i) ∈ [t]q, where for all j ∈ [q], ĉ
(i)
j is the permuted

row-index of the (i, j)
th

entry of the matrix under Π̂2 ◦ Π̂1. Specifically, ĉ
(i)
j = Π̂

(Π̂
(i)
1 (j))

2 (i).

Then, define sets T̂
(i)
1 , . . . , T̂

(i)
t ⊆ [q] where T̂

(i)
β is the set of indices j ∈ [q] where ĉ

(i)
j = β.

Clearly, T̂
(i)
1 , . . . , T̂

(i)
t form a partition for [q]. For each β ∈ [t], sample a random permutation

π
(i)
β : [q]→ [q] that randomly permutes the indices in T̂

(i)
β and leaves the other indices unchanged.

Define Π
(i)
1 = π

(i)
q ◦ · · · ◦ π(i)

1 ◦ Π̂
(i)
1 and Π1 to be the row-wise restricted permutation where its

action on row i is given by Π
(i)
1 .

• Let Π2 = Π̂2 and choose Π3 such that Π = Π3 ◦Π2 ◦Π1.

Lemma 5.41. Fix positive integers t, q ∈ N and let Π be a permutation over the entries of a

t-by-q matrix. Let (Π1,Π2,Π3) be the row-wise random permutation decomposition of Π from

Construction 5.40. Then, Π = Π3 ◦ Π2 ◦ Π1, both Π1 and Π3 are row-wise restricted, and Π2 is

column-wise restricted.

Proof. By construction, Π = Π3 ◦ Π2 ◦ Π1. Let Π̂1, Π̂2, Π̂3 be the permutations used to construct

Π1,Π2,Π3 in Construction 5.40. Since Π̂1 is row-wise restricted and permutation Π̂2 is column-wise

restricted, Π1 and Π2 are by construction row-wise restricted and column-wise restricted, respectively.

It suffices to show that Π3 is row-wise restricted.

Take any entry (i, j) ∈ [t]× [q], and let (it, jt) be its image under permutation Π. Let (i1, j1) =

Π1(i, j) and (i2, j2) = Π2(i1, j1). We show that i2 = it, or equivalently, after applying Π2 ◦Π1, every

entry (i, j) ends up in the same row as Π(i, j). In this case, the permutation Π3 only needs to changes

the column of each entry, and the claim follows. We show this in a sequence of steps.

CHAPTER 5. QUASI-OPTIMAL SNARGS 142

• Let (i′1, j
′
1) = Π̂1(i, j) and (i′2, j

′
2) = Π̂2(i′1, j

′
1) = Π2(i′1, j

′
1), since Π2 = Π̂2.

• For j ∈ [q], let Π
(j)
2 : [t]→ [t] be the permutation Π2 implements on the jth column. In addition,

let Π
(i)
1 , Π̂

(i)
1 : [q]× [q] be the permutations Π1 and Π̂1 implement on ith row, respectively.

• Since Π1, Π̂1, and Π̂3 are row-wise restricted, i′1 = i = i1 and i′2 = it. Moreover, by definition,

i′2 = Π
(j′1)
2 (i), i2 = Π

(j1)
2 (i), j′1 = Π̂

(i)
1 (j), and j1 = Π

(i)
1 (j).

• By construction,

j1 = Π
(i)
1 (j) =

(
π(i)
q ◦ · · · ◦ π

(i)
1

)(
Π̂

(i)
1 (j)

)
=
(
π(i)
q ◦ · · · ◦ π

(i)
1

)
(j′1).

By design, each π
(i)
β for β ∈ [q] only permutes indices j ∈ [q] where Π̂

(Π̂
(i)
1 (j))

2 (i) = β. In

particular, this means that if j1 =
(
π

(i)
q ◦ · · · ◦ π(i)

1

)
(j′1), it must be the case that i′2 = Π̂

(j′1)
2 (i) =

Π̂
(j1)
2 (i) = i2. Since i′2 = it, this means that i2 = it, which complete the proof.

Theorem 5.42 (No-Concentration in Columns). Fix integers t, q ∈ N, where q = poly(t), and let Π

be a permutation over the entries of a t-by-q matrix. Define the following quantities:

• Let (Π1,Π2,Π3) be the row-wise random permutation decomposition of Π from Construction 5.40.

• Let B ∈ {0, 1}t×q be an inconsistency matrix with z inconsistencies at indices (i1, j1), . . . , (iz, jz) ∈
[t]× [q]. In particular, Biβ ,jβ = 1 for all β ∈ [z].

• Let (i′1, j
′
1), . . . , (i′z, j

′
z) be the positions of the inconsistencies in Π1(B).

Suppose that the following condition holds:

• Condition 1: All of the i1, . . . , iz are distinct. Namely, each row of B contains at most one

inconsistency.

• Condition 2: For every pair of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] such that

Π(i1, j) is in row i2.

For a set S ⊆ [q] of column indices, let nS denote the number of indices β ∈ [z] where j′β ∈ S. Then,

for every constant ccol > 0, there exists a constant scol > 0 such that with probability 1− 2−Ω(t/ log t)

(taken over the randomness used to sample Π), the following condition holds: for all sets S ⊆ [q]

where |S| ≤ scol · t/ log2 t, we have that nS < ccol · t/ log t.

Proof. Let ccol > 0 be any constant, and fix a constant scol > 0. Let S ⊆ [q] be a set where

|S| ≤ scol · t/ log2 t. Suppose Conditions 1 and 2 hold and consider the event where nS ≥ ccol · t/ log t.

We first show that this event happens with probability 2−k·ccol·t/ log t for some constant k > 0

(independent of scol), where the probability is taken over the randomness used to sample Π1 in

Construction 5.40.

CHAPTER 5. QUASI-OPTIMAL SNARGS 143

• First, let Π̂2 be the column-wise restricted permutation from Construction 5.40, and for

j ∈ [q], let Π̂
(j)
2 : [t] → [t] be the permutation Π̂2 implements on column j. By Condition 2

and the fact that Π̂1 and Π̂3 are both row-wise restricted, this means that for all pairs

of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] where Π̂
(j)
2 (i1) = i2. This means

that for each row i ∈ [t], the sets T̂
(i)
1 , . . . , T̂

(i)
t in Construction 5.40 all contain at least t

elements. Thus, over the randomness used to sample Π1, for any inconsistency (iβ , jβ), the

value of j′β is uniformly random over a set of size at least t. This means that for all β ∈ [z],

Pr[j′β ∈ S] ≤ |S| /t = O(1/ log2 t) since |S| = O(t/ log2 t). In particular, for all β ∈ [z] (and

sufficiently large t), Pr[j′β ∈ S] ≤ ccol/(2 log t)

• For β ∈ [z], let Xβ be an indicator random variable for the event j′β ∈ S. From the above

analysis, we have that Pr[Xβ = 1] ≤ ccol/(2 log t). Moreover, Π1 is composed of t independent

row permutations, and there is only one inconsistency in each row of B (Condition 1), so the

variables X1, . . . , Xz are all independent. By definition, nS =
∑
β∈[z]Xβ , so by a Chernoff

bound,

Pr[nS ≥ ccol · t/ log t] ≤ 2−k·ccol·(t/ log t),

where k > 0 is a constant.

To conclude the proof, we apply a union over all sets S ⊆ [q] of size scol · t/ log2 t. The number of

such sets is bounded by (
q

scol · t/ log2 t

)
≤ qscol·t/ log2 t ≤ 2k

′·scol·(t/ log t),

for some constant k′ > 0 (independent of scol) since q = poly(t). The claim follows by taking

scol < k/k′ · ccol.

Theorem 5.43 (No-Concentration in Rows). Fix positive integers m, t, q ∈ N where t = 2d for some

d ∈ N, and q = poly(t). Then, define the following quantities:

• Let Π be a column-wise restricted permutation over the entries of a t-by-q matrix, and

Π1, . . . ,Π2d be a randomized 2-local decomposition of Π from Construction 5.13.

• Let B ∈ {0, 1}t×q be an inconsistency matrix with z = Ω(t) inconsistencies at locations

(i1, j1), . . . , (iz, jz) ∈ [t]× [q]. In other words, Bi1,j1 = · · · = Biz,jz = 1.

• For ` ∈ [2d], let (i
(`)
1 , j

(`)
1), . . . , (i

(`)
z , j

(`)
z) be the positions (i1, j1), . . . , (iz, jz) permuted according

to the permutation Π` ◦ · · · ◦Π1.

• For a subset S ⊆ [t] of row indices, let n
(`)
S =

∣∣{β ∈ [z] : i
(`)
β ∈ S

}∣∣. In words, n
(`)
S is the

number of inconsistencies in (Π` ◦ · · · ◦Π1)(B) that fall into the rows identified by S.

CHAPTER 5. QUASI-OPTIMAL SNARGS 144

Suppose that the following conditions hold:

• Condition 1: All of the i1, . . . , iz are distinct. Similarly, i
(2d)
1 , . . . , i

(2d)
z are also all distinct.

Namely, each row of B and Π(B) contain at most one inconsistency. In particular, z ≤ t.

• Condition 2: For every constant ccol > 0, there exists a constant scol > 0 such that the

following holds: for all sets S ⊆ [q] of column indices where |S| ≤ scol · t/ log2 t, the number of

indices β ∈ [z] where jβ ∈ S is less than ccol · t/ log t.

Then, for all constants crow > 0 and srow > 0, with probability 1− 2−Ω(t/ log2 t) (taken over the choice

of randomness in sampling the 2-local decomposition of Π), the following holds: for all indices ` ∈ [2d]

and sets S ⊆ [t] where |S| ≤ srow · t/ log5 t, it holds that n
(`)
S < crow · t/ log t.

Proof. Fix constants crow, srow > 0, a set S ⊆ [t] where |S| ≤ srow · t/ log5 t and an index ` ∈ [2d].

Suppose that Conditions 1 and 2 hold, and consider the event where n
(`)
S ≥ crow · t/ log t. We now

show that this event occurs with probability 2−Ω(t/ log2 t). We first analyze the case where ` ≤ d. The

` > d case is analogous. First, by appealing to Condition 2, we argue that the inconsistencies in B

must be distributed across many columns.

Claim 5.44. Let scol > 0 be the constant from Condition 2 for the case where ccol = crow. Then,

there exists a set T ⊆ [q] of column indices where |T | ≥ (scol/2) · t/ log2 t satisfying the following

properties:

• For all j ∈ T , the number of indices β ∈ [z] where jβ = j is at most 2/scol · log2 t. That is, the

jth column of B contains at most (2/scol) · log2 t inconsistencies.

• For all j ∈ T , there is at least one β ∈ [z] where i
(`)
β ∈ S and j

(`)
β = j. That is, after applying

Π1, . . . ,Π` to B, there is an inconsistency in row i and column j of the resulting matrix.

Proof. Let T̂ =
{
j

(`)
β : β ∈ [z] and i

(`)
β ∈ S

}
be the set of column indices of the inconsistencies whose

row indices fall into set S in layer `. Our argument proceeds in two steps:

• Since Π1, . . . ,Π` are column-wise restricted, it follows that j
(`)
β = jβ for all β ∈ [z]. By

assumption, n
(`)
S ≥ crow · t/ log t. This means that

∣∣T̂ ∣∣ > scol · t/ log2 t, since otherwise, T̂ is a

set with at most scol · t/ log2 t indices that contains crow · t/ log t = ccol · t/ log t indices from the

multiset {j1, . . . , jz}. This violates Condition 2.

• Define T ⊆ T̂ to be the set of indices j ∈ T̂ where the jth column of B contains fewer than

(2/scol)·log2 t inconsistencies. By construction, the set T satisfies both of the required properties.

It suffices to argue that |T | ≥ (scol/2) · t/ log2 t. Suppose otherwise. From above, we know that∣∣T̂ ∣∣ > scol · t/ log2 t, and so if |T | < (scol/2) · t/ log2 t, there are more than (scol/2) · t/ log2 t

columns in B that contain 2/scol · log2 t inconsistencies, which means that B contains more

than t inconsistencies, which is a contradiction. Thus, |T | ≥ (scol/2) · t/ log2 t, and the claim

follows.

CHAPTER 5. QUASI-OPTIMAL SNARGS 145

In the following, we take scol > 0 to be the constant from Claim 5.44. Now, since the permuta-

tions Π1, . . . ,Π2d are generated according to Construction 5.13, the entries in each column of the

inconsistency matrix are routed using independent benešd networks (each of which implements the

permutation Π on its respective column). This means that in layer `, we can partition the t rows of

W into r = 2d−` disjoint subsets R1, . . . , Rr, each containing 2` rows, such that the permutation

Π` ◦ · · · ◦Π1 factors into the product of r independent permutations, each operating on one of the

subsets R1, . . . , Rr (Fact 5.7). Let w = |S| and w1, . . . , wr be the number of rows of S that fall into

each of the subsets R1, . . . , Rr, respectively. We now show that there are not many blocks in B

where a large fraction of the rows within those blocks contain an inconsistency.

Claim 5.45. For any constant ε > 0 (and sufficiently large t), there are at most (scol/4) · t/ log2 t

rows i ∈ [t] where i ∈ Rk for some k ∈ [r] where wk/2
` > ε/ log2 t.

Proof. Suppose there are (scol/4) · t/ log2 t = (scol/4)(r · 2`)/ log2 t rows i where i ∈ Rk and wk/2
` >

ε/ log2 t. Since each block contains 2` rows, this means there are at least (scol/4) · r/ log2 t blocks

k ∈ [r] where wk/2
` > ε/ log2 t. But now,

w =
∑
k∈[r]

wk > (scol/4)(r/ log2 t)(2` · ε/ log2 t) = ε · (scol/4) · t/ log4 t = Θ(t/ log4 t).

This is a contradiction since w = |S| = O(t/ log5 t).

Let T be the set of column indices from Claim 5.44 where for all j ∈ T , the jth column in B

contains at most 2/scol · log2 t inconsistencies. To complete the proof, we first say that a column

j ∈ T is “good” if for all (iβ , jβ) where jβ = j, then iβ ∈ Rk for some k where wk/2
` < scol/(4 log2 t).

Otherwise, we say the column is “bad.” By Condition 1, each row has at most one inconsistency,

and by Claim 5.45, the number of rows where iβ ∈ Rk for some k where wk/2
` > scol/(4 log2 t)

is at most (scol/4) · t/ log2 t. Thus, there can be at most (scol/4) · t/ log2 t “bad” columns. Since

|T | ≥ (scol/2) · t/ log2 t, we conclude that there are at least (scol/4) · t/ log2 t “good” columns in T .

We now show the following claim:

Claim 5.46. If j ∈ T is a “good” column, then the probability that there exists β ∈ [z] where j
(`)
β = j

and i
(`)
β ∈ S is at most 1/2. Here, the probability is taken over the randomness used to sample the

routing configuration for column j.

Proof. Take any inconsistency (iβ , jβ) where jβ = j. Set k ∈ [r] so that iβ ∈ Rk. By Lemma 5.11,

over the choice of the randomness used to sample the routing configuration for column j, the

distribution of i
(`)
β is uniform over Rk. Therefore, Pr[i

(`)
β ∈ S] = wk/2

` < scol/(4 log2 t), since j is a

“good” column. Finally, since j ∈ T , column j contains at most (2/scol) · log2 t inconsistencies. By

a union bound, the probability that there exists β ∈ [z] where jβ = j and i
(`)
β ∈ S is bounded by

1/2.

CHAPTER 5. QUASI-OPTIMAL SNARGS 146

From above, there are at least (scol/4) · t/ log2 t “good” columns in T . Moreover, for every

j ∈ T , there is a β ∈ [z] where i
(`)
β ∈ S and j

(`)
β = j. Since Construction 5.13 samples the routing

configuration for each of the columns of Π randomly and independently, we conclude from Claim 5.46

that

Pr[∀j ∈ T : i
(`)
β ∈ S and j

(`)
β = j] ≤ 2−(scol/4)·t/ log2 t = 2−Ω(t/ log2 t),

where the probability is taken over the randomness used to sample the decomposition Π. Corre-

spondingly, this implies that the probability that n
(`)
S ≥ crow · t/ log t is bounded by 2−Ω(t/ log2 t).

To conclude the proof, we apply a union over all sets S ⊆ [q] of size s = O(t/ log5 t) and all

indices ` ∈ [2d]. The number of such sets is bounded by qs ≤ 2O(t/ log4 t) since q = poly(t). Moreover,

d = log t, so by a union bound, the probability that there exists S ⊆ [t] of size |S| ≤ s and ` ∈ [2d]

where n
(`)
S ≥ crow · t/ log t is 2−Ω(t/ log2 t). The claim follows.

Construction 5.47 (Randomized Permutation Decomposition). Fix positive integers t, q, γ ∈ N
where t = 2d for some d ∈ N, and q, γ = poly(t). Let Π be a permutation over the entries of a

t-by-q matrix. The randomized permutation decomposition of Π is a collection of γ sequences of

permutations Γ(1), . . . ,Γ(γ) where each Γ(i) =
(
Π

(1)
1 ,Π

(1)
2,1, . . . ,Π

(1)
2,2d,Π

(1)
3

)
is a sequence of α = 2d+ 2

2-locally decomposable permutations on the entries of a t-by-q matrix. We construct each sequence

Γ(i) as follows:

• For each i ∈ [γ], apply the row-wise random permutation decomposition from Construction 5.40

to Π to obtain permutations (Π
(i)
1 ,Π

(i)
2 ,Π

(i)
3).

• For each i ∈ [γ], apply the randomized 2-local decomposition from Construction 5.9 to Π
(i)
2 to

obtain Π
(i)
2,1, . . . ,Π

(i)
2,2d.

By construction, each permutation sequence Γ(i) implements Π in the following sense: Π = Π
(i)
3 ◦

Π
(i)
2,2d ◦ · · · ◦Π

(i)
2,1 ◦Π

(i)
1 .

Theorem 5.48 (Randomized Permutation Decomposition). Fix positive integers t, q, γ ∈ N where

t = 2d for some d ∈ N and q = poly(t). Then, define the following quantities:

• Let Π be a permutation over t-by-q matrices where for every pair of rows i1, i2 ∈ [t], there are

at least t indices j ∈ [q] such that Π(i1, j) is in row i2.

• Let Γ(1), . . . ,Γ(γ) be the collection of permutation sequences obtained by applying Construc-

tion 5.47 to Π. In particular, Γ(j) =
(
Π

(j)
1 ,Π

(j)
2,1, . . . ,Π

(j)
2,2d,Π

(j)
3

)
for all j ∈ [γ].

• Let B ⊆ {0, 1}t×q be the set of inconsistency patterns B where B and Π(B) have at most one

inconsistency in each row.

Let c1, c2 > 0 be arbitrary constants, and let κ1 = c1 · t/ log5 t and κ2 = c2 · t/ log t. Then, there exists

γ = O(log3 t) such that with probability 1−2−Ω(t) over the choice of randomness in Construction 5.47,

CHAPTER 5. QUASI-OPTIMAL SNARGS 147

the collection of permutation sequences Γ(1), . . . ,Γ(γ) implementing Π is (κ1, κ2)-non-concentrating

for B (Definition 5.34).

Proof. We use a union bound. Let B ∈ B be an inconsistency matrix with z inconsistencies at indices

(i1, k1), . . . , (iz, kz). Consider the probability (over the randomness used by Construction 5.47) that

the sequence Γ(j) =
(
Π

(j)
1 ,Π

(j)
2,1, . . . ,Π

(j)
2,2d,Π

(j)
3

)
is (κ1, κ2)-concentrating for B.

• For β ∈ [z], let kβ,1 denote the column index of (iβ , kβ) after applying the first permutation

Π
(j)
1 . By Theorem 5.42, for all constants ccol > 0, there exists a constant scol > 0 such that with

probability 1− 2−Ω(t/ log t), the following holds: for all sets S ⊆ [q] where |S| ≤ scol · t/ log2 t,

the number of indices β ∈ [z] where kβ,1 ∈ S is less than ccol · t/ log t.

• For β ∈ [z] and ` ∈ [2d], let iβ,2,` denote the row index of (iβ , kβ) after applying the sequence

of permutations Π
(j)
2,` ◦ · · · ◦ Π

(j)
2,1 ◦ Π

(j)
1 . By Theorem 5.43, with probability 1 − 2−Ω(t/ log2 t),

the following holds: for all indices ` ∈ [2d] and all sets S ⊆ [t] where |S| ≤ c1 · t/ log5 t,

the number of indices β ∈ [z] where iβ,2,` ∈ S is less than c2 · t/ log t. In other words, with

probability 1 − 2−Ω(t/ log2 t), no subset of κ1 rows in Π
(j)
2,` ◦ · · · ◦ Π

(j)
2,1 ◦ Π

(j)
1 (B) contain more

than κ2 inconsistencies.

• By assumption, B has at most 1 inconsistency in each row. Thus, no subset of κ1 rows

can contain κ2 inconsistencies (for sufficiently large t). Since Π
(j)
1 is a row-wise restricted

permutation, Π
(j)
1 (B) also contains at most 1 inconsistency in each row. Finally, by assumption

Π(B) contains at most 1 inconsistency in each row, so no subset of κ1 rows of Π(B) can contain

κ2 inconsistencies.

By the above analysis, the probability that Γ(j) is not (κ1, κ2)-non-concentrating for B is bounded by

2−Ω(t/ log2 t). Since Construction 5.47 samples all of the permutation sequences Γ(j) independently, the

probability that Γ(j) is not (κ1, κ2)-non-concentrating for B for all j ∈ [γ] is bounded by 2−Ω(γt/ log2 t).

Concretely, let 2−c
′
1·γt/ log2 t where c′1 > 0 is a constant be a bound on the probability that Γ(j) is not

(κ1, κ2)-non-concentrating for B for all j ∈ [γ]

To complete the analysis, we use a union bound to bound the probability that Γ(1), . . . ,Γ(γ) is

not (κ1, κ2)-non-concentrating for the set B. First, we have |B| ≤ (q + 1)t, since B only contains

inconsistency matrices with at most one inconsistency in each row. Since q = poly(t), this means that

|B| ≤ 2c
′
2·t log t for some constant c′2 > 0. By the union bound, the probability that there exists B ∈ B

for which Γ(1), . . . ,Γ(γ) is not (κ1, κ2)-non-concentrating for B is at most 2c
′
2·t log t−c′1·γt/ log2 t. Setting

γ = 2·c′2/c′1 log3 t = O(log3 t), this probability becomes 2−c
′
2·t log t = 2−Ω(t). Thus, with probability 1−

2−Ω(t), the collection of permutation sequences Γ(1), . . . ,Γ(γ) is (κ1, κ2)-non-concentrating for B.

Remark 5.49 (Padding the Linear PCPs). Theorem 5.48 requires that the permutation Π over

t-by-q matrices has the property that for every pair of rows i1, i2 ∈ [t], there are at least Ω(t) indices

j ∈ [q], where Π(i1, j) is in row i2. In the quasi-optimal linear MIP construction (Construction 5.35),

CHAPTER 5. QUASI-OPTIMAL SNARGS 148

the permutations Π on which we apply the randomized permutation decomposition may not natively

satisfy this property. This problem can be addressed by defining a new permutation Π′ that operates

on t-by-(q + t2) matrices as follows:

• For all i ∈ [t] and j ≤ q, Π′(i, j) := Π(i, j).

• For all i ∈ [t] and j > q, Π′(i, j) := (i+ j mod t, j).

This construction ensures that for all pairs of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] such

that Π′(i1, j) is in row i2, while preserving the operation of Π in the leftmost t-by-q block of the

matrix. In Construction 5.35, we would thus pad the assignment matrices W accordingly (with a

q-by-t2 block of 0’s that are used only for the consistency checks). Padding the assignment matrices

in this way increases the query dimension of the linear MIP in Construction 5.35 from Õ(s/t) to

Õ(s/t) + t2, thus increasing the overall prover overhead by an additive factor of poly(t) = poly(λ).

5.3.5 Quasi-Optimal Linear MIP Analysis

In this section, we give the formal security analysis of our linear MIP from Section 5.3.3 (Construc-

tion 5.35). First, we state and prove the main theorem on the properties satisfied by Construction 5.35.

We conclude by giving the proof of Theorem 5.36.

Theorem 5.50. Let λ be a security parameter, and let C be an arithmetic circuit over F. Then,

define parameters t, δ, k, ε, d, κ1, κ2, α, γ, z as in Construction 5.35. Suppose δ > 0 is a constant,

ε ≤ 1/poly(λ), and α · κ2 < (1− δ)/(8ρ) · t. Then, Construction 5.35 is an input-oblivious (k+αγz)-

query linear MIP for the language LC of arithmetic circuit satisfiability with t · (1 + αγz) provers

and soundness error 2−Ω(t/ρ) + α · 2−Ω(κ1).

Proof. We show completeness and soundness of the linear MIP separately.

Completeness. Completeness follows from completeness of the underlying linear PCP systems

and completeness of the consistency check procedure (Construction 5.29).

Soundness. Take any x /∈ LC , and consider the probability (taken over the randomness of query

generation) that there exists a proof that the verifier accepts. For i ∈ [t], let yi = QT
i πi denote

the responses the verifier obtains from prover Pi on its linear PCP query Qi. We appeal to the

soundness of the underlying linear PCP instances to argue that with probability 1− 2−Ω(t), if the

verifier accepts all of the linear PCP queries responses, then the inconsistency graph GW,A contains

a matching of size Ω(t). Recall that W is the matrix with rows w1, . . . ,wt.

Lemma 5.51. For any x /∈ LC , it holds that for all proofs π1, . . . ,πt ∈ Fd to the underlying linear

PCP instances (P1,V1), . . . , (Pt,Vt), with probability 1− 2−Ω(t), one of the following conditions hold:

CHAPTER 5. QUASI-OPTIMAL SNARGS 149

• There is an i ∈ [t] such that Vi rejects πi.

• If for all i ∈ [t], Vi accepts πi = [wi,pi], then the inconsistency graph GW,A contains a

matching of size
(

1−δ
2

)
· t2 = Ω(t).

Here the probability is taken over the random coins used to generate the queries for the underlying

linear PCP instances (P1,V1), . . . , (Pt,Vt).

Proof. To show the lemma, consider the event where for all i ∈ [t], Vi accepts πi = [wi,pi], but there

are fewer than
(

1−δ
2

)
· t2 mutually disjoint pairs of indices i, i′ ∈ [t] where wi and wi′ correspond

to inconsistent assignments. We argue that this event occurs with probability 2−Ω(t) over the

choice of the verifier’s randomness. Let wi1 , . . . ,wi` be a subset of (w1, . . . ,wt) that represents

a consistent assignment to the shared inputs in Ci1 , . . . , Ci` . There are at most
(

1−δ
2

)
· t2 disjoint

pairs of witnesses that are inconsistent, so there must exist a consistent subset of witnesses of size

` ≥ t−
(

1−δ
2

)
· t =

(
1+δ

2

)
· t. Let w ∈ Fm be an assignment that is consistent with wi1 , . . . ,wi` .

Now, since x /∈ LC , by δ-robustness of the decomposition (f1, . . . , ft, inp,wit), at most δ · t of the

constraints f1(x,w), . . . , ft(x,w) can be satisfied. This means that there are at least `−δt ≥
(

1−δ
2

)
·t

indices j ∈ [`] where fij (x,w) = 0, or equivalently, Cij (xij ,wij) = 0. Since each of the linear PCP

systems used to verify Ci are systematic and have knowledge error at most ε, the probability that Vi
accepts πi when Ci(xi,wi) = 0 is at most ε. The linear PCP instances are independent, so

Pr[∀i ∈ [t] : Vπi
i (xi) = 1] ≤ ε(1−δ)/2·t = 2−Ω(t),

since there are at least (1− δ)/2 · t indices i where C(xi,wi) = 0. Thus, with probability 1− 2−Ω(t),

there are at least
(

1−δ
2

)
· t2 mutually disjoint pairs of indices where wi and wi′ are inconsistent. Each

disjoint pairs of indices contributes an edge to a matching in GW,A, and the claim follows.

Thus, for a false statement x /∈ LC , with probability 1 − 2−Ω(t), either the verifier rejects the

proof or there is a matching of size
(

1−δ
4

)
· t in the inconsistency graph GW,A. We now show that

if there exists such a matching, then at least one of the consistency checks fails with probability

1− α · 2−Ω(κ1) − 2−Ω(t/ρ).

Lemma 5.52. Suppose there exists a matching of size
(

1−δ
4

)
· t in GW,A. Then, at least one of the

consistency checks fails with probability 1− α · 2−Ω(κ1) − 2−Ω(t/ρ).

Proof. Suppose there exists a matching of size
(

1−δ
4

)
· t in GW,A. Since (Π1, . . . ,Πz) is a collection

of ρ-regularity-inducing permutations, there exists some β ∈ [z] where the inconsistency graph of

Wβ = Πβ(W) with respect to Aβ = Πβ(A) contains a regular matching of size s =
(

1−δ
4ρ

)
· t. Let

M be the regular matching of size s in GWβ ,Aβ
. For each edge (i1, i2) ∈ M , we associate with it

two indices j1, j2 ∈ [q] where Wβ [i1, j1] 6= Wβ [i2, j2] but Aβ [i1, j1] = Aβ [i2, j2]. Note that j1, j2

always exists by definition of GWβ ,Aβ
. Define the inconsistency matrix Bβ ∈ {0, 1}t×q where for each

CHAPTER 5. QUASI-OPTIMAL SNARGS 150

(i1, i2) ∈M , Bβ [i1, j1] = 1 = Bβ [i2, j2]. All other values in Bβ are set to 0. Let B = Π−1
β (Bβ). By

construction, Bβ has at most a single 1 in each row, and moreover, since each edge in M corresponds

to an edge in a matching of the inconsistency graph GW,A, matrix B also has at most a single 1 in

each row. Note that even through W and Wβ may have more inconsistent assignments than those

indicated in B and Bβ , it is not necessary to consider them in the analysis.

By construction, B and Πβ(B) have at most one inconsistency in each row (where an inconsistency

is an entry with value 1). This means that B ∈ Bβ . Next, since Γ
(1)
β , . . . ,Γ

(γ)
β is a collection of

permutation sequences that is non-concentrating for Bβ , there exists some j ∈ [γ] where Γ
(j)
β =(

Π
(j)
β,1, . . . ,Π

(j)
β,α

)
is non-concentrating for B. For all ` ∈ [α], let B` = Π

(j)
β,`(B`−1) where B0 = B.

The non-concentration property states that no subset of κ1 rows of B` contains κ2 inconsistencies.

Consider now the sequence of consistency checks the verifier performs for the permutations

Π
(j)
β,1, . . . ,Π

(j)
β,α. By construction of the consistency check queries, the verifier’s behavior precisely

corresponds to performing the approximate consistency check procedure in Construction 5.29 to

verify the following relations:

W
(j)
β,1 ≈ Π

(j)
β,1(W) and W

(j)
β,` ≈ Π

(j)
β,`(W

(j)
β,`−1) for all 1 < ` ≤ α.

Consider the first relation. By construction, the inconsistency matrix B encodes the positions of s

pairs of inconsistent assignments in W, and the matrix B1 encodes the (permuted) positions of the

same s pairs of inconsistent assignments in Π
(j)
β,1(W). We now argue that W

(j)
β,1 contains at least s−κ2

pairs of inconsistent assignments, except with probability 2−Ω(κ1). This follows immediately from the

assumption that Γ
(j)
β is (κ1, κ2)-non-concentrating (Definition 5.34) and soundness of the consistency

check (Lemma 5.30). In particular, by soundness of the consistency check, with probability 1−2−Ω(κ1)

(over the randomness of the query generation algorithm), matrices W
(j)
β,1 and Π

(j)
β,1(W) can differ on

at most κ1 rows. But since Γ
(j)
β is (κ1, κ2)-non-concentrating, no subset of κ1 rows of B1 contains

κ2 inconsistencies. We conclude that W
(j)
β,1 must contain at least s− κ2 pairs of inconsistent rows.

Applying this argument α times, once for each permutation Π
(j)
β,` for ` ∈ [α], we conclude that with

probability at least 1−α · 2−Ω(κ1), the number of pairs of inconsistent rows in the final matrix W
(j)
β,α

is at least

s− α · κ2 =

(
1− δ

4ρ

)
· t− α · κ2 ≤

(
1− δ

8ρ

)
· t.

Finally, Bα = Πβ(B) is the inconsistency matrix derived from a regular matching. Thus, if the final

matrix W
(j)
β,α contains at least

(
1−δ
8ρ

)
· t pairs of inconsistent rows according to the inconsistency

pattern Bα, then Πβ′(W
(j)
β,α) and W

(j)
β,α differs on at least

(
1−δ
8ρ

)
· t pairs of adjacent rows. But then,

by Corollary 5.32, the probability that the verifier accepts is at most 2−Ω(t/ρ). Putting everything

together, the probability that the verifier accepts is bounded by α · 2−Ω(κ1) + 2−Ω(t/ρ), and the claim

follows.

Combining Lemmas 5.51 and 5.52, we conclude that the verifier accepts a proof of a false statement

CHAPTER 5. QUASI-OPTIMAL SNARGS 151

x /∈ LC with probability at most α · 2−Ω(κ1) + 2−Ω(t/ρ).

Proof of Theorem 5.36. First, we describe how we instantiate each of the primitives in Con-

struction 5.35:

• We instantiate the (t, δ)-robust decomposition using the construction from Corollary 5.21,

where t = Θ(λ), and δ > 0 is a constant. Let (f1, . . . , ft, inp,wit) be the robust decomposition

of C, and let C1, . . . , Ct be the arithmetic circuits that compute f1, . . . , ft, respectively. Each

of the circuits Ci can be computed by an arithmetic circuit of size Õ(s/t) + poly(t, log s).

• We use the k-query linear PCP from Fact 5.24 to instantiate each of the linear PCP (Pi,Vi)
instances for Ci for all i ∈ [t]. In this case, ε = 1/poly(λ), k = O(1), and the query length is

d = Õ(s/t) + poly(t, log s).

• We use Construction 5.38 to instantiate the regularity-inducing permutations. In this case,

ρ = O(1) and z = O(1).

• We use Construction 5.47 to instantiate the non-concentrating sequence of permutations,

where we set κ1 = t/ log5 t and κ2 = c · t/ log t, where the constant c is chosen so that

κ2 · (log t+ 2) < 1−δ
8ρ · t. In this case, α = log t+ 2 = Θ(log t) and γ = O(log3 t).

Note that in order to argue that the sequences of permutations output by Construction 5.47 is

non-concentrating (Theorem 5.48), we may additionally need to pad the query (and proof) vectors

with an extra t2 = O(λ2) components (Remark 5.49). Putting everything together then, we have the

following:

• The number of provers in the linear MIP system is t · (1 + αγz) = t · polylog(t) = Õ(λ).

• The query length is determined by the query length d of the underlying linear PCP instances

(and any extra padding from Remark 5.49). Thus, the query length is Õ(s/λ) + poly(λ, log s).

• The total number of queries is k + αγz. Since k = O(1), α = Θ(log t), γ = O(log3 t), and

z = O(1), the total number of queries is k +O(log4 t) = polylog(λ).

• The prover’s computation can be broken down as follows. First, the robust encoding x← inp(x′)

and w ← wit(x′,w′) can be computed by an arithmetic circuit of size Õ(s) + poly(t, log s).

From Fact 5.24, each of the underlying linear PCP proofs can be computed by a circuit of size

Õ(s/t) + poly(t, log s). Thus, all t proofs for each of the underlying linear PCP instances can

be constructed by a circuit of size Õ(s) + poly(t, log s). Finally, permuting the entries in an

assignment matrix (of size Õ(s) + t2) can be performed also by a circuit of size Õ(s) + poly(t).

There are a total of αγz = polylog(t) such permutations, which adds another polylogarithmic

overhead to the overall prover complexity. Summing together the different contributions and

CHAPTER 5. QUASI-OPTIMAL SNARGS 152

noting that t = Θ(λ), we conclude that the prover’s algorithm can be computed by a circuit of

size Õ(s) + poly(λ, log s).

• The query-generation procedure can be broken down as follows. From Fact 5.24, generating

the queries for the underlying linear PCP instance requires a circuit of size Õ(s/t). There are

t instances, so generating all of the queries requires a circuit of size Õ(s). To perform the

consistency checks, the query-generation algorithm additionally generates αγz = polylog(t)

random matrices, each of size Õ(s) + poly(t). Thus, the overall algorithm can be modeled by a

circuit of size Õ(s) + poly(λ, log s).

• The verifier’s decision algorithm consists of checking t independent linear PCP instances, which

can be computed by a circuit of size at most O(tn) (Fact 5.24). In addition, the decision

algorithm needs to perform O(αγz) = polylog(t) consistency checks (Construction 5.29), each

of which requires computing t linear relations. This incurs an additive cost of Õ(t). Thus, the

overall cost is bounded by Õ(λn).

• Finally, by Theorem 5.50, for this particular choice of parameters, the overall construction

achieves soundness error

α · 2−Ω(κ1) + 2−Ω(t/ρ) = (log t+ 2) · 2−Ω(t/ log5 t) + 2−Ω(t) = 2−Ω(λ/ polylog(λ)).

We can amplify the soundness to 2−λ by parallel repetition. Since we only require polylog(λ)

parallel instances, this introduces an additional polylog(λ) overhead to the prover complexity

and the proof size. Thus, the resulting construction remains quasi-optimal.

5.4 Quasi-Optimal SNARGs

In this section, we formally introduce the notion of a quasi-optimal SNARG. Next, in Section 5.4.3,

we show how to compile a linear MIP into a designated-verifier SNARG in the preprocessing model

using a generalization of linear-only vector encryption (Section 5.4.2) to rings. Combined with our

quasi-optimal linear MIP from Section 5.3, this yields a quasi-optimal designated-verifier SNARG for

Boolean circuit satisfiability in the preprocessing model.

5.4.1 Defining Quasi-Optimality

In this section, we formally define our notion of a quasi-optimal SNARG. In Remark 5.55, we also

describe a heuristic approach for instantiating quasi-optimal SNARGs.

Definition 5.53 (Quasi-Optimal SNARG). Let ΠSNARG = (Setup,Prove,Verify) be a SNARG (Defi-

nition 4.1) for a family of Boolean circuits C = {Cn}n∈N. Then, ΠSNARG is quasi-optimal if it achieves

2−λ soundness error against provers of size 2λ and satisfies the following properties:

CHAPTER 5. QUASI-OPTIMAL SNARGS 153

• Prover Complexity: The running time of Prove is Õ(|Cn|) + poly(λ, log |Cn|).

• Succinctness: The length of the proof output by Prove is Õ(λ).

Next, in Lemma 5.54, we show that our notion of quasi-optimality is tight in the following sense:

assuming NP does not have succinct proofs, any argument system for NP that provides soundness

error 2−λ must have proofs of length Ω(λ). .

Lemma 5.54. Let C = {Cn}n∈N be a family of Boolean circuits for some language L =
⋃
n∈N LCn ,

where Cn : {0, 1}n × {0, 1}m(n) → {0, 1} for all n ∈ N. Fix a soundness parameter ρ and a security

parameter λ. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for C with soundness 2−ρ against

provers of size poly(λ). If LCn 6⊆ DTIME(2o(n)), then the length `(ρ) of an argument in ΠSNARG is

Ω(ρ).

Proof. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for L with soundness error 2−ρ against

provers of size poly(λ) and argument length `(ρ) ≤ cρ for all constants c > 0. Let 1/2δ denote

the probability that there exists a statement x /∈ LCn and a proof π such that Verify(τ,x,π) = 1,

where (σ, τ) ← Setup(1λ, 1n), and the probability is taken over the coins of the Setup algorithm.

Since ΠSNARG has soundness error 2−ρ, it follows that 2−(δ+`) ≤ 2−ρ. Otherwise, a prover with x

hard-wired inside it can guess π and break soundness with probability 2−(δ+`). Equivalently, this

means that δ + ` ≥ ρ. Since ` ≤ cρ for all c > 0, this means that δ = Ω(ρ). We use ΠSNARG to

construct a proof system for L by concatenating 2 ·n/δ instances of ΠSNARG. The length of the proofs

in this new system is then 2 · n`/δ = o(n), which is succinct. Moreover, for any false statement

x ∈ {0, 1}n, the probability that there exists a proof π that causes the verifier to accept is now

(1/2δ)(2n/δ) = 1/22n. Taking a union bound over all 2n possible statements, the probability that

there exists any false statement with a proof that convinces the verifier is at most 2−n. This yields a

succinct proof system for L with soundness error 2−n, which contradicts the assumption that L does

not have succinct proofs. Thus, there must exist some constant c > 0 such that ` > cρ, from which

we conclude that ` = Ω(ρ).

Remark 5.55 (Heuristic Construction of Quasi-Optimal SNARGs). One approach for constructing

a quasi-optimal SNARG is to compose a SNARG that provides quasi-optimal prover complexity

with one that is quasi-optimally succinct. To prove that C(x,w) = 1, the prover first constructs a

proof π for the statement using the “inner” SNARG that provides quasi-optimal prover complexity.

Then, the prover uses the “outer” SNARG that is quasi-optimally succinct to prove that it knows a

proof π of the statement x under the inner SNARG. The additional cost of generating this second

proof is proportional to the size of the verifier for the inner proof system, which is polylogarithmic

in the size of C. Thus, this composition is quasi-optimal. Note that to show soundness of the

composition, we additionally require that both SNARGs satisfies a knowledge property (namely, that

they are SNARKs). However, to our knowledge, the only candidate SNARK with quasi-optimal

CHAPTER 5. QUASI-OPTIMAL SNARGS 154

prover efficiency is Micali’s CS proofs [Mic00] in the random oracle model. Thus, composing CS

proofs with a quasi-optimally succinct SNARK (e.g., the constructions from [GGPR13, BCI+13] or

the one from Section 4.4.2) can only yield a construction whose security is heuristic. This is because

the prover in the outer SNARK needs access to the circuit description of the verification algorithm

of the inner SNARK (in order to prove knowledge of an accepting proof π), but the verification

algorithm in the inner SNARK necessarily makes random oracle queries.

5.4.2 Linear-Only Vector Encryption over Rings

In Chapter 4, we showed how to compile linear PCPs into preprocessing SNARGs (Construction 4.14)

using linear-only vector encryption (Definition 4.10). In this chapter, we further refine this method-

ology and show how to compile linear MIPs into preprocessing SNARGs using linear-only vector

encryption over rings. Specifically, a vector encryption encryption over a ring R is an encryption

scheme where the message space Rk is a vector of ring elements, where k here denotes the dimension

of the vector. In our constructions, the ring R = Fp[x]/Φm(x) is a polynomial ring (where Φm(x)

here denote the mth cyclotomic polynomial), and the parameters m and p are chosen so that R splits

into ` = ϕ(m) isomorphic copies of Fp. We now introduce the schema adapted from Definition 4.9:

Definition 5.56 (Vector Encryption Scheme over R). Fix a ring R. A secret-key vector encryption

scheme over Rk is a tuple of algorithms Πvenc = (KeyGen,Encrypt,Decrypt) with the following

properties:

• KeyGen(1λ, 1k)→ sk: On input the security parameter λ and the dimension k of the message

space, the key-generation algorithm outputs a secret key sk.

• Encrypt(sk,v)→ ct: On input the secret key sk and a vector v ∈ Rk, the encryption algorithm

outputs a ciphertext ct.

• Decrypt(sk, ct) → Rk ∪ {⊥}: On input the secret key sk and a ciphertext ct, the decryption

algorithm either outputs a vector v ∈ Rk or a special symbol ⊥ (to denote an invalid ciphertext).

We can view Definition 4.9 of vector encryption over Z∗p as a special case of vector encryption over

rings where R = Z∗p. We can define correctness, CPA-security (Definition 2.1), linear targeted

malleability (Definition 4.11), and linear-only (Definition 4.10) for vector encryption schemes over

rings analogously.

Vector encryption over polynomial rings. We now describe a candidate linear-only vector

encryption over a polynomial ring R. One such candidate is the natural generalization of Construc-

tion 4.23 to the ring LWE setting. Ring LWE analogs of Regev encryption have been used previously

for optimizing FHE [BGV12, GHS12, GHS12]. We describe the construction for encrypting vectors

CHAPTER 5. QUASI-OPTIMAL SNARGS 155

below, as well as the conjecture we require to instantiate our quasi-optimal SNARG candidate

(Conjecture 5.58). We note that Conjecture 5.58 is the natural generalization of Conjecture 4.24.

Construction 5.57 (Linear-Only Vector Encryption over Rings). Fix a security parameter λ, lattice

parameters m, q = poly(λ), an error distribution χ, and a cyclotomic polynomial ring R = Z[x]/Φm(x).

Let k be the plaintext dimension, and let Rp = Zp[x]/Φm(x) be the plaintext ring. The ciphertext

ring is then Rq = Zq[x]/Φm(x).

• Setup(1λ, 1k)→ sk: Choose ā
r←− Rq, s

r←− Rkq , and ē← χk. Define a ∈ R(1+k)
q as follows:

a =

[
ā

ās + ē

]
,

Output the secret key sk = (a, s).

• Encrypt(sk,v) → c: To encrypt a vector v ∈ Rkp , choose r
r←− R2 and output the ciphertext

c ∈ R(1+k)
q where

c = ar +

[
0

bq/pe · v

]
.

• Decrypt(sk, c) → v: Let c1 denote the first component of c and let c̄ ∈ Rkq be the last k

components of c. Compute and output [[c̄− c1s]q]p.

Conjecture 5.58 (Linear Targeted Malleability of Construction 5.57). The vector encryption

scheme Πvenc from Construction 5.57 satisfies exponentially-strong linear targeted malleability

(Definition 4.11).

5.4.3 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

In this section, we show how to combine a linear MIPs with linear-only vector encryption over rings

to obtain a quasi-optimal SNARG. We give our construction and state our security analysis below.

The security proofs follow by the same argument as that used in [BCI+13, §6] and Section 4.4.2.

Construction 5.59 (SNARG from Linear MIP). Fix a prime p and let C = {Cn}n∈N be a family

of arithmetic circuits over Fp. Let RC be the relation associated with C. Let (P,V) be an input-

oblivious k-query linear MIP with ` provers and query length d for the relation RC . Write the verifier

algorithm as V = (Q,D), where Q is a query-generation algorithm and D is a decision algorithm. Let

Πvenc = (KeyGen,Encrypt,Decrypt) be a secret-key vector encryption scheme over Rk where R ∼= F`p.
Our single-theorem, designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing

model for RC is given below:

• Setup(1λ, 1n)→ (σ, τ): On input the security parameter λ and the circuit family parameter n,

the setup algorithm does the following:

CHAPTER 5. QUASI-OPTIMAL SNARGS 156

1. Invoke the query-generation algorithm Q for the linear MIP to obtain a tuple of query

matrices Q1, . . . ,Q` ∈ Fd×kp and state information st.

2. Generate a secret key sk← KeyGen(1λ, 1`) for the vector encryption scheme.

3. Pack the ` query matrices Q1, . . . ,Q` into a single query matrix Q ∈ Rd×k (recall that

the ring R splits into ` isomorphic copies of Fp).

4. Encrypt each row of Q (an element of Rk) using the vector encryption scheme. In other

words, for i ∈ [d], let qi ∈ Rd be the ith row of Q. In this step, the setup algorithm

computes ciphertexts cti ← Encrypt(sk,qi).

5. Output the common reference string σ = (ct1, . . . , ctd) and the verification state τ =

(sk, st).

• Prove(σ,x,w)→ π. On input the common reference string σ = (ct1, . . . , ctd), a statement x,

and a witness w, the prover’s algorithm works as follows:

1. For each i ∈ [`], invoke the linear MIP prover algorithm Pi on input x and w to obtain a

proof πi ← Pi(x,w) ∈ Fdp.

2. Pack the ` proof vectors π1, . . . ,π` ∈ Fdp into a single proof vector π ∈ Rd. Then, viewing

the ciphertexts ct1, . . . , ctm as vector encryptions of the rows of the query matrix Q ∈ Rd×k,

homomorphically compute an encryption of the matrix-vector product QTπ ∈ Rk. In

particular, the prover homomorphically computes the sum ct′ =
∑
i∈d πi · cti.

3. Output the proof ct′.

• Verify(τ,x,π)→ {0, 1}: On input the verification state τ = (sk, st), the statement x, and the

proof π = ct′, the verifier does the following:

1. Decrypt the proof ct′ using the secret key sk to obtain the prover’s responses y ←
Decrypt(sk, ct′). If y = ⊥, the verifier terminates with output 0.

2. The verifier decomposes y ∈ Rk into vectors y1, . . . ,y` ∈ Fkp. It then invokes the linear

MIP decision algorithm D on the statement x, the responses y1, . . . ,y`, and the verification

state st and outputs D(st,x,y1, . . . ,y`).

Theorem 5.60 ([BCI+13, Lemma 6.3, adapted]). Fix a security parameter λ and a prime p. Let

C = {Cn}n∈N be a family of arithmetic circuits over Fp, RC be the relation associated with C, and

(P,V) be a k-query linear MIP with ` provers, query length d, and soundness error ε(λ) against

affine provers for the relation RC. Let Πvenc = (KeyGen,Encrypt,Decrypt) be a vector encryption

scheme over a ring R ∼= F`p with linear targeted malleability (Definition 4.11). Then, applying

Construction 5.59 to (P,V) and Πvenc yields a non-adaptive designated-verifier preprocessing SNARG

with soundness error 2 · ε(λ) + negl(λ).

CHAPTER 5. QUASI-OPTIMAL SNARGS 157

Theorem 5.61 ([BCI+13, Lemma 6.2, adapted]). Fix a security parameter λ and a prime p. Let

C = {Cn}n∈N be a family of arithmetic circuits over Fp, RC be the relation associated with C, and

(P,V) be a k-query linear MIP with ` provers, query length d, and soundness error ε(λ) against

affine provers for the relation RC. Let Πvenc = (KeyGen,Encrypt,Decrypt) be a linear-only vector

encryption scheme (Definition 4.10). Then, applying Construction 5.59 to (P,V) and Πvenc yields an

adaptive designated-verifier preprocessing SNARG with soundness error ε(λ) + negl(λ).

Instantiating the construction. To conclude this section, we show that combining the candidate

vector encryption scheme Πvenc over polynomial rings Rk, where R ∼= F`p (Construction 5.57) with our

quasi-optimal linear MIP construction from Theorem 5.36 yields a quasi-optimal SNARG from linear-

only vector encryption. We first note that the vector encryption scheme Πvenc from Construction 5.57

has the following properties:

• When k = polylog(λ), ` = Õ(λ), and |F| = poly(λ), each ciphertext encrypting an element of

Rk has length Õ(λ).

• Scalar multiplication and homomorphic addition of two ciphertexts can be performed in time

Õ(λ).

When we apply Construction 5.59 to the linear MIP from Theorem 5.36 and Πvenc, the prover

complexity and proof sizes are then as follows (targeting soundness error 2−λ):

• Prover complexity: The SNARG prover first invokes the underlying linear MIP prover to

obtain proofs π1, . . . ,π` for each of the ` = Õ(λ) provers. From Theorem 5.36, this step

requires time Õ(s) + poly(λ, log s), where s is the size of the circuit. To construct the proof,

the prover has to perform d homomorphic operations, where d = Õ(s/λ) + poly(λ, log s) is the

query length of the construction from Theorem 5.36. Since each homomorphic operation can

be computed in Õ(λ) time, the overall prover complexity is Õ(s) + poly(λ, log s).

• Proof size: The proof in Construction 5.59 consists of a single ciphertext, which for our

parameter settings, have length Õ(λ).

From this analysis, we obtain the following quasi-optimal SNARG instantiation:

Corollary 5.62 (Quasi-Optimal SNARGs). Let C = {Cn}n∈N be a family of Boolean circuits. Under

Conjecture 5.58, there exists a non-adaptive designated-verifier quasi-optimal SNARG (Definition 5.53)

for the relation RC in the preprocessing model.

Remark 5.63 (Adaptively-Secure Quasi-Optimal SNARGs). We can apply the same sparsification

technique from Remark 4.29 to Construction 5.57 to obtain a vector encryption scheme that plausibly

satisfies the stronger property of linear-only vector encryption (Definition 4.10). In conjunction

with Construction 5.59 and Theorem 4.17, this yields an adaptive designated-verifier quasi-optimal

SNARG for Boolean circuit satisfiability in the preprocessing model.

CHAPTER 5. QUASI-OPTIMAL SNARGS 158

Construction 5.59 gives a construction of a single-theorem SNARG from any linear MIP system. In

the following remark, we highlight some of the challenges in extending our construction to provide

multi-theorem security.

Remark 5.64 (Difficulties in Constructing Multi-Theorem Quasi-Optimal SNARGs). Construc-

tion 5.59 gives a construction of a single-theorem SNARG from any linear MIP system. The work of

Bitansky et al. [BCI+13] as well as our construction from Chapter 4 (Theorem 4.22) show how to

construct multi-theorem designated-verifier SNARGs by relying on a stronger notion of soundness at

the linear PCP level coupled with a stronger interactive linear-only encryption assumption. While

we could rely on the same type of cryptographic assumption as in Chapter 4, our linear MIP from

Section 5.3 does not satisfy the notion of “reusable” or “strong” soundness from Definition 4.4. To

recall, strong soundness says that for all proofs, the probability that the verifier accepts or that it

rejects is negligibly close to 1 (where the probability is taken over the randomness used to generate

the queries). In particular, whether the verifier decides to accept or reject should be uncorrelated with

the randomness associated with its secret verification state. In our linear MIP model, we operate over

a polynomial-size field, so a prover making a local change will cause the verifier’s decision procedure

to change with noticeable probability. This reveals information about the secret verification state,

which can enable the malicious prover to break soundness. We leave it as an open problem to

construct a quasi-optimal linear MIP that provides strong soundness. Such a primitive would be

useful in constructing a quasi-optimal multi-theorem SNARGs.

5.5 Chapter Summary

In this chapter, we showed how to extend the framework from Chapter 4 to obtain the first candidate

construction of a quasi-optimal SNARG from linear-only vector encryption over rings. To conclude,

we provide a concrete comparison of our new lattice-based SNARG candidates from both Sections 4.5

and 5.4 to existing SNARGs for Boolean circuit satisfiability. The same results extend to SNARGs

for arithmetic circuit satisfiability over polynomial-size fields. Among SNARGs with quasi-optimal

succinctness (proof size Õ(λ)), our construction based on standard lattices (Construction 4.14) achieves

the same prover efficiency as the current state-of-the-art (GGPR [GGPR13] and BCIOP [BCI+13]).

Our construction based on ideal lattices (Construction 5.59) is the first candidate SNARG from a

concrete hardness assumption that achieves quasi-optimality. Moreover, both of our candidates are

lattice-based, and thus, plausibly resist quantum attacks. We conclude with two interesting open

problems.

Multi-theorem quasi-optimal SNARG. Can we build a multi-theorem quasi-optimal SNARG?

In the case of Construction 4.14 from Chapter 4, we can achieve multi-theorem security by making a

stronger cryptographic assumption (Section 4.4.3, Theorem 4.22). We currently do not know how to

CHAPTER 5. QUASI-OPTIMAL SNARGS 159

Construction Type∗
Prover Proof

Assumption
Complexity Size

CS Proofs [Mic00] PV Õ(s+ λ2) Õ(λ2) Random Oracle

Groth [Gro10] PV Õ(s2λ+ sλ2) Õ(λ) Knowledge

GGPR [GGPR13] PV Õ(sλ) Õ(λ) of Exponent

BCIOP [BCI+13]† (Paillier) DV Õ(sλ3) Õ(λ3)
Linear-Only

BCIOP [BCI+13]† (Pairing) PV Õ(sλ) Õ(λ)
Encryption

BCIOP [BCI+13]‡ (Regev)‡ DV Õ(sλ2) Õ(λ2)

Const. 4.14 (Corollary 4.25) DV Õ(sλ) Õ(λ) Linear-Only

Const. 5.59 (Corollary 5.62) DV Õ(s) Õ(λ) Vector Encryption

∗We write “PV” to denote public verifiability and “DV” for designated verifiability.
†Instantiated using a linear PCP based on quadratic span programs [GGPR13].
‡Based on a direct instantiation of [BCI+13] using Regev-based encryption.

Table 5.1: Asymptotic performance of different SNARG systems for Boolean circuit
satisfiability. Here, s is the size of the circuit and λ is a security parameter guaranteeing
2−λ soundness error against provers of size 2λ. All of the schemes can be converted
into an argument of knowledge (i.e., a SNARK)—in some cases, this requires a stronger
cryptographic assumption.

construct a multi-theorem quasi-optimal SNARG (Remark 5.64).

Publicly-verifiable SNARGs from lattices. Our new lattice-based SNARG candidates from

Chapter 4 as well as this chapter are all secure in the designated-verifier model. Can we build

publicly-verifiable SNARGs from lattices? Note that this question is interesting even independently

of the (orthogonal) goal of obtaining quasi-optimality.

Zero-knowledge SNARGs from lattices. Can we build zero-knowledge SNARGs from lattices

with the same (or better) asymptotic complexity as the pairing-based candidates? While we can

apply the general techniques from Bitansky et al. [BCI+13] to our SNARG constructions to obtain a

lattice-based zero-knowledge SNARG, the resulting SNARGs are much longer. In particular, to apply

the Bitansky et al. approach, we need a circuit-private homomorphic encryption scheme. While we

can use Gentry’s “noise flooding” [Gen09a] technique to achieve this, doing so increases the length of

the proofs by a multiplicative factor proportional to the statistical security parameter. As a result,

the resulting SNARGs are much longer, and in particular, not quasi-optimally succinct.

Chapter 6

The Power of Optimally-Laconic

Arguments

In this chapter, we explore what happens when we push succinctness to the limit in the context of

argument systems. In particular, we consider the notion of an optimally-succinct argument, and show

an intriguing connection between optimally-succinct arguments and powerful forms of encryption

(i.e., witness encryption [GGSW13]). In fact, our results extends to the setting of two-round laconic

arguments (i.e., two-round argument systems where the total communication from the prover to the

verifier is succinct—the communication from the verifier to the prover can be long).

Optimally-laconic arguments and SNARGs. In Chapters 4 and 5, we constructed SNARGs

that achieved soundness error 2−λ against provers of size 2λ, where λ was a concrete security

parameter. But in general, it is not essential to tie the soundness error to the security parameter,

and we can ask the question of what is the minimal proof length needed to achieve soundness error

2−ρ (against 2−λ bounded provers). Here, ρ is a separate soundness parameter.

Lemma 5.54 shows that assuming NP does not have succinct proof systems, achieving 2−ρ

soundness error requires proofs of length Ω(ρ). Thus, when ρ = Ω(λ), many existing SNARG

candidates (c.f., Table 5.1) are quasi-optimally succinct. However, if we are satisfied with soundness

error ρ = o(λ) against 2λ-bounded provers, the size of the proof for all of the construction in Table 5.1

remains Ω(λ)—this is needed to ensure security against an adversary of size 2λ. A natural question

to ask is whether there exist SNARGs where the proof length achieves the lower bound of Ω(ρ) for

providing ρ bits of soundness. Taken to the extreme, we ask whether there exists a 1-bit SNARG with

soundness error 1/2 + negl(λ). Observe that a 1-bit SNARG implies an optimally-succinct SNARG

for all soundness parameters ρ: namely, to build a SNARG with soundness error 2−ρ, concatenate ρ

independent instances of a 1-bit SNARG. This question of constructing optimally-succinct SNARGs

160

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 161

is interesting even independently of the goal of minimizing prover complexity.

More broadly, we can view a quasi-optimally succinct SNARG in the preprocessing model as a

two-round interactive argument system with a maximally laconic prover. In the setting of (two-round)

laconic argument systems, the verifier is allowed to send an arbitrarily long string (namely, the CRS)

that can depend on the statement being proved, and the goal is to minimize the number of bits the

prover communicates to the verifier. An optimally-succinct SNARG implies a an optimally-succinct

two-round laconic argument. Similarly, a quasi-optimal SNARG implies a quasi-optimal two-round

laconic argument (for an analogous notion of quasi-optimality).

Constructing laconic arguments. In Section 6.1, we show that the designated-verifier ana-

log of the Sahai-Waters [SW14] construction of NIZK proofs from indistinguishability obfusca-

tion [BGI+01, GGH+13] and one-way functions is a 1-bit SNARG. Then, in Section 6.1.3, we show

that in the interactive two-round setting, we can construct 1-bit laconic arguments from witness

encryption [GGSW13]. We do not know how to build 1-bit SNARGs and 1-bit laconic arguments for

general NP languages from weaker assumptions,1 and leave this as an open problem.

The power of optimally-laconic arguments. Finally, we show an intriguing connection be-

tween 1-bit laconic arguments and a variant of witness encryption. Briefly, a witness encryption

scheme [GGSW13] allows anyone to encrypt a message m with respect to a statement x in an NP

language; then, anyone who holds a witness w for x is able to decrypt the ciphertext. In Section 6.2,

we show that a 1-bit laconic argument (or SNARG) for a cryptographically-hard2 language L implies

a relaxed form of witness encryption for L where semantic security holds for messages encrypted

to a random false instance (as opposed to an arbitrary false instance in the standard definition).

While this is a relaxation of the usual notion of witness encryption, it already suffices to realize some

of the powerful applications of witness encryption described in [GGSW13]. This implication thus

demonstrates the power of optimally-laconic arguments, as well as some of the potential challenges

in constructing them from simple assumptions.

Our construction of witness encryption from 1-bit arguments relies on the observation that for a

(random) false statement x, any computationally-bounded prover can only produce a valid proof

π ∈ {0, 1} with probability that is negligibly close to 1/2. Thus, the proof π can be used to hide

the message m in a witness encryption scheme (when encrypting to the statement x). Here, we

implicitly assume that a (random) statement x has exactly one accepting proof—this assumption

holds for any cryptographically-hard language. Essentially, our construction shows how to leverage

the soundness property of a proof system to obtain a secrecy property in an encryption scheme.

Previously, Applebaum et al. [AIK10] showed how to leverage secrecy to obtain soundness, so in

1Note that for some special languages such as graph non-isomorphism, we do have 1-bit laconic arguments [Gol01].
2Here, we say a language is cryptographically-hard if there exists a distribution over yes instances that is computationally
indistinguishable from a distribution of no instances for the language.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 162

some sense, we can view our construction as a dual of their secrecy-to-soundness construction. The

recent work of Berman et al. [BDRV17] also showed how to obtain public-key encryption from

laconic zero-knowledge arguments. While their construction relies on the additional assumption of

zero-knowledge, their construction does not require the argument system be optimally laconic.

We can also view a 1-bit argument for a cryptographically-hard language as a “predictable

argument” (c.f., [FNV17]). A predictable argument is one where there is exactly one accepting

proof for any statement. Faonio et al. [FNV17] show that any predictable argument gives a witness

encryption scheme. In this work, we show that soundness alone suffices for this transformation,

provided we make suitable restrictions on the underlying language. We discuss this in greater detail

in Remark 6.15.

6.1 Optimally-Succinct SNARGs and Laconic Arguments

Recall that a “1-bit SNARG” is a SNARG that achieves soundness error 1/2 + negl(λ) with just a

single bit of proof. In this section, we show that a variant of the Sahai-Waters NIZK construction

from indistinguishability obfuscation (and one-way functions) [SW14] can be used to construct a

1-bit SNARG. As discussed at the beginning of this chapter, we can also view a 1-bit SNARG as a

1-bit laconic interactive argument system. Thus, our results also gives the first 1-bit laconic argument

system for NP assuming indistinguishability obfuscation and one-way functions (Section 6.1.2). Then,

in Section 6.1.3, we show that in the interactive setting, we can also build 1-bit laconic arguments

from witness encryption.

6.1.1 Indistinguishability Obfuscation and Puncturable PRFs

In this section, we review the definitions of indistinguishability obfuscation and puncturable PRFs.

Definition 6.1 (Indistinguishability Obfuscation [BGI+01, GGH+13]). An indistinguishability

obfuscator iO for a circuit family C = {Cλ}λ∈N is a uniform and efficient algorithm satisfying the

following requirements:

• Correctness. For all λ ∈ N, all circuits C ∈ Cλ, and all inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

• Indistinguishability. For all λ ∈ N, and any two circuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for

all inputs x, then for all efficient adversaries A, we have that

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| = negl(λ).

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 163

Definition 6.2 (Puncturable PRFs [BW13, KPTZ13, BGI14]). A puncturable pseudorandom

function with key-space K, domain X , and range Y is an efficiently computable function F : K×X → Y
with three additional algorithms (F.Setup,F.Puncture,F.Eval) defined as follows:

• F.Setup(1λ)→ k: On input the security parameter λ, the setup algorithm outputs a PRF key

k ∈ K.

• F.Puncture(k, x∗) → kx∗ : On input the PRF key k ∈ K and a point x∗ ∈ X , the puncture

algorithm outputs a punctured key kx∗ .

• F.Eval(kx∗ , x)→ y: On input a punctured key kx∗ , the evaluation algorithm outputs a value

y ∈ Y ∪ {⊥}.

Moreover F satisfies the following properties:

• Correctness: For all x∗ ∈ X and x 6= x∗, and letting k ← F.Setup(1λ), kx∗ ← F.Puncture(k, x∗),

we have that

Pr[F.Eval(kx∗ , x) = F(k, x)] = 1.

• Pseudorandom at punctured points: For all efficient adversaries A = (A1,A2), and letting

k ← F.Setup(1λ), (st, x∗)← AF(k,·)
1 (1λ), kx∗ ← F.Puncture(k, x∗), and y

r←− Y, we have that∣∣∣Pr
[
AF(k,·)

2 (st, kx∗ ,F(k, x∗))
]
− Pr

[
AF(k,·)

2 (st, kx∗ , y)
]∣∣∣ = negl(λ),

provided that A1 and A2 do not query F(k, ·) on the challenge point x∗.

6.1.2 1-Bit SNARGs from Indistinguishability Obfuscation

In this section, we show how to construct 1-bit SNARGs from indistinguishability obfuscation (iO).

Our construction is essentially the Sahai-Water NIZK [SW14] specialized to the designated-verifier

setting. The CRS is an obfuscated program that takes as input a statement x and a witness w, and

outputs a 1-bit PRF on x if C(x,w) = 1, and ⊥ otherwise. The PRF key is hard-coded inside the

obfuscated program. The secret verification key is the PRF key. We can essentially view the CRS as

an obfuscated program that checks whether (x,w) is a satisfying assignment, and if so, outputs a

1-bit message authenticated code (MAC) on the statement x. We now give the construction and its

security analysis.

Construction 6.3 (1-Bit SNARG from iO). Let C = {Cn}n∈N be a family of Boolean circuits,

where each Cn : {0, 1}n×{0, 1}m(n) → {0, 1} for all n ∈ N. Let RC be the associated relation and LC
be the associated language. Let Fn : Kn × {0, 1}n → {0, 1} be a puncturable PRF family (indexed by

a parameter n). We construct a 1-bit designated-verifier SNARG ΠSNARG = (KeyGen,Prove,Verify)

in the preprocessing model for RC as follows:

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 164

• Setup(1λ, 1n): The setup algorithm samples a puncturable PRF key k ← Fn.Setup(1λ), and

constructs the obfuscated program P ← iO(Prove[Cn, k]),3 where the program Prove[Cn, k] is

defined as follows:

Constants: a circuit Cn : {0, 1}n × {0, 1}m(n) → {0, 1} and a key k for Fn

On input x ∈ {0, 1}n,w ∈ {0, 1}m(n):

1. If C(x,w) = 1, then output Fn(k,x). Otherwise, output ⊥.

Figure 6.1: The program Prove[Cn, k].

The setup algorithm outputs the common reference string σ = P and the verification state

τ = k.

• Prove(σ,x,w)→ π: On input the common reference string σ = P a statement x ∈ {0, 1}n and

a witness w ∈ {0, 1}m, the prover runs P on (x,w) to obtain a proof π ← P (x,w) and outputs

π ∈ {0, 1}.

• Verify(τ,x, π)→ {0, 1}: On input the secret verification state τ = k, a statement x ∈ {0, 1}n,

and a proof π ∈ {0, 1}, the verifier outputs 1 if π = Fn.Eval(k,x), and 0 otherwise.

Theorem 6.4. Suppose Fn is a family of puncturable PRFs and iO is an indistinguishability

obfuscator. Then, Construction 6.3 is a non-adaptive designated-verifier 1-bit SNARG for C =

{Cn}n∈N in the preprocessing model. In particular, ΠSNARG achieves soundness error 1/2 + negl(λ)

against polynomial-time bounded provers.4

Proof. Completeness of the construction follows immediately by correctness of the indistinguishability

obfuscator, so it suffices to show soundness. Take any statement x∗ /∈ LCn . We show that no

efficient prover can produce a proof π∗ ∈ {0, 1} where Verify(τ,x∗, π∗) = 1 except with probability

1/2 + negl(λ) over the randomness used to sample (σ, τ)← Setup(1λ, 1n). Our proof follows the same

structure as the corresponding proof in [SW14, Theorem 9]. In particular, we define a sequence of

hybrid arguments:

• Hyb0: This is the real game, where the challenger generates (σ, τ)← Setup(1λ, 1n), and gives

σ to the prover. The prover outputs π∗ ∈ {0, 1}. The output of the experiment is 1 if

Verify(τ,x∗,π∗) = 1, and 0 otherwise.

3Note that we pad the program Prove[Cn, k] to the maximum size of any program that appears in the proof of
Theorem 6.4.

4If we make the stronger assumption that the underlying primitives (the indistinguishability obfuscator and the
puncturable PRF family) are secure against subexponential-time adversaries, then we correspondingly achieve
soundness error 1/2 + negl(λ) against all subexponential-time provers.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 165

• Hyb1: This is the same game as Hyb0, except during the setup algorithm, the challenger

first computes kx∗ ← Fn.Puncture(k,x∗). When constructing the obfuscated program P , the

challenger replaces the invocation Fn(k,x) with Fn.Eval(kx∗ ,x).

• Hyb2: This is the same game as Hyb1, except in the verification procedure, the challenger

samples b
r←− {0, 1} and accept if π∗ = b.

We now argue that each pair of consecutive hybrid experiments is computationally indistinguishable.

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable by security of iO and correctness

of the puncturable PRF family. In particular, by correctness of the puncturable PRF, Fn(k, ·)
and Fn.Eval(kx∗ , ·) agree on all inputs x ∈ {0, 1}n where x 6= x∗. Moreover, the programs P in

Hyb0 and Hyb1 never needs to evaluate the PRF at x∗, since by assumption, for all w ∈ {0, 1}m,

C(x∗,w) = 0. This means that the outputs of P in Hyb0 and Hyb1 are identical on all inputs

(x,w). Indistinguishability then follows by security of iO.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable by security of the punctured

PRF. Concretely, suppose there is an adversary A that can distinguish the outputs of Hyb2

and Hyb3. We can build an adversary B that breaks the puncturing security of Fn as follows.

Algorithm B submits x∗ as the punctured point to the puncturing security challenger and

receives a punctured key kx∗ and a challenge value y ∈ {0, 1}. Algorithm B constructs the

obfuscated program P as in Hyb1 and Hyb2 using the punctured key kx∗ , and gives σ = P

to adversary A. At the end of the experiment, after A output π∗ ∈ {0, 1}, B outputs 1 if

y = π∗ and 0 otherwise. By construction, B perfectly simulates the output distribution of Hyb1

if y = Fn(k,x∗) is pseudorandom and the output distribution of Hyb2 if y is truly random.

We conclude that by puncturing security of Fn, hybrids Hyb1 and Hyb2 are computationally

indistinguishable.

To conclude the proof, we note that the output distribution of Hyb2 is 1 with probability 1/2 (since

y is uniform and independent of the prover’s view). Since Hyb0 and Hyb2 are computationally

indistinguishable, this means that the output of Hyb0 is 1 with probability at most 1/2 + negl(λ).

We conclude that ΠSNARG provides soundness error 1/2 + negl(λ).

Remark 6.5 (Additional Properties). By the same argument in [SW14, Theorem 8], the 1-bit

SNARG in Construction 6.3 is perfect zero-knowledge. Moreover, by a standard hybrid argument,

we can show that it is non-adaptively reusable in the following sense. For any set of statements

x1, . . . ,xk /∈ LCn , the probability that a malicious prover can produce proofs π1, . . . ,πk such that

V(τ,xi,πi) = 1 for all i ∈ [k] and (σ, τ)← Setup(1λ, 1n) is bounded by 1/2k + negl(λ).

Remark 6.6 (Adaptivity via VBB Obfuscation). If we replace the indistinguishability obfuscator

in Construction 6.3 with a VBB obfuscator [BGI+01], then it is straightforward to prove that the

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 166

resulting construction is adaptively sound. We leave it as an open problem to construct adaptively

sound 1-bit SNARGs without relying on such strong forms of obfuscation.

6.1.3 1-Bit Laconic Arguments and Witness Encryption

A 1-bit SNARG immediately implies a 2-round laconic argument where the prover communicates just

a single bit. Namely, in the first round, the verifier runs the setup algorithm for the 1-bit SNARG,

and sends the CRS to the prover. The prover’s response consists of the 1-bit SNARG proof for the

statement. Thus, Theorem 6.4 shows that assuming the existence of indistinguishability obfuscation

and one-way functions, there exists a 1-bit laconic argument for NP.

While we do not know of alternative constructions of 1-bit SNARGs from weaker assumptions,

such constructions are possible in the interactive setting. Importantly, in the interactive setting,

the verifier’s initial message (i.e., the Setup algorithm) can depend on the statement x, while in

the standard non-interactive setting, the setup algorithm (that generates the CRS) is independent

of the statement. We now show how to construct a 2-round laconic argument for NP from any

semantically-secure witness encryption scheme for NP [GGSW13]. Recall that in a witness encryption

scheme for an NP relation R (and associated language L), the encrypter can encrypt a message

m with respect to a statement x. Then, anyone who knows a witness w such that (x,w) ∈ R is

able to decrypt. The security guarantee states that ciphertexts encrypted to a statement x /∈ L are

semantically secure. We review the definition of witness encryption below, and then describe our

2-round laconic argument construction from witness encryption.

Definition 6.7 (Witness Encryption [GGSW13]). A witness encryption for an NP language L (with

corresponding NP relation R) is a tuple of algorithms ΠWE = (Encrypt,Decrypt) with the following

properties:

• Encrypt(1λ,x,m) → ct: On input the security parameter λ, a statement x and a message

m ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Decrypt(ct,w) → m′: On input a ciphertext ct and a witness w, the decryption algorithm

outputs a message m′ ∈ {0, 1} ∪ {⊥}.

Moreover, ΠWE must satisfy the following properties:

• Correctness: For all messages m ∈ {0, 1}, and any statement-witness pair (x,w) where

R(x,w) = 1, it follows that

Pr[Decrypt(Encrypt(1λ,x,m),w) = m] = 1.

• Semantic Security: For all efficient adversaries A, and all statements x /∈ L,

∣∣Pr[A(Encrypt(1λ,x, 0)) = 1]− Pr[A(Encrypt(1λ,x, 1)) = 1]
∣∣ = negl(λ). (6.1)

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 167

Remark 6.8 (Equivalent Security Notion). In our analysis, it will often be easier to work with the

following equivalent notion of security for witness encryption:

• Unguessable: For all efficient adversaries A, and all statements x /∈ L,∣∣∣∣Pr[m
r←− {0, 1} : A(Encrypt(1λ,x,m)) = m]− 1

2

∣∣∣∣ = negl(λ). (6.2)

To see the equivalence, take any adversary A. Without loss of generality, assume that A always

outputs a bit. Let p0 = Pr[A(Encrypt(1λ,x, 0)) = 0] and p1 = Pr[A(Encrypt(1λ,x, 1)) = 1]. Then, the

guessing advantage (Eq. (6.2)) of A is |(1− p0 − p1)/2|, and the distinguishing advantage (Eq. (6.1))

of A is |1− p0 − p1|. In particular, this means that if the guessing advantage of A is ε, then the

distinguishing advantage of A is 2ε.

Construction 6.9 (1-Bit Laconic Argument for NP from Witness Encryption). Let L be an NP

language, and let ΠWE = (Encrypt,Decrypt) be a witness encryption scheme for L. We construct an

interactive 1-bit laconic argument system Πarg = (Setup,Prove,Verify) for L as follows:5

• Setup(1λ,x)→ (σx, τx): On input the security parameter λ and a statement x, the setup algo-

rithm chooses a random messagem
r←− {0, 1} and computes the ciphertext ct← Encrypt(1λ,x,m).

It outputs the initial message σx = ct and the verification state τx = m.

• Prove(σx,w)→ π: On input the verifier’s initial message σx = ct and a witness w, the prover

computes m′ ← Decrypt(ct,w), and outputs the proof π = m′.

• Verify(τx, π)→ {0, 1}: On input the verification state τ = m and the proof π = m′, the verifier

outputs 1 if m = m′, and 0 otherwise.

Theorem 6.10 (Laconic Arguments from Witness Encryption). Let L be an NP language. If ΠWE

is a witness encryption scheme for L, then Construction 6.9 is a 1-bit laconic argument for L.

Proof. Completeness follows from correctness of the witness encryption scheme. Soundness follows

from security of the witness encryption scheme. Namely, if x /∈ L, then ct is a semantically-secure

encryption of the message m ∈ {0, 1}. Since m is sampled uniformly at random, the probability that

the adversary outputs m′ where m′ = m is at most 1/2 + negl(λ).

This construction shows that any witness encryption for a language L yields a 1-bit laconic

interactive argument system for the same language L. It is unclear how to leverage this construction

to construct a 1-bit preprocessing SNARG (critically, the verifier’s message is not oblivious, and

depends on the underlying statement). We leave it as an open construction to construct 1-bit

SNARGs from witness encryption or other weaker assumptions. Along those same lines, it is also

interesting to construct 1-bit laconic interactive arguments from weaker assumptions.

5We use the same schema as a SNARG (Definition 4.1) to describe our 2-round interactive argument. The main
difference is that the verifier’s first message (i.e., the output of the Setup algorithm) can depend on the statement x.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 168

6.2 Witness Encryption from 1-Bit Laconic Arguments

In Section 6.1.3, we showed how to use witness encryption for NP to build a 1-bit laconic argument

for NP. In this section, we show that a variant of the converse holds: namely, a 1-bit argument

system for a “cryptographically-hard” language implies a relaxed notion of witness encryption for the

same language. While the notion of witness encryption we obtain is weaker than the traditional one,

we show that it still suffices for instantiating some of the main applications of witness encryption

(c.f., Section 6.2.1). In our weaker variant of witness encryption (Definition 6.11), semantic security

is only required to hold when encrypting to a randomly sampled statement x /∈ L rather than any

statement x /∈ L.

Our results in this section are conceptually similar to those of Faonio et al. [FNV17], who

previously showed how to construct witness encryption from any predictable argument system. In

our setting, we do not impose any additional restriction on the underlying argument system. Instead,

we show that for a class of “cryptographically-hard” languages, soundness of an optimally laconic

argument alone already implies a “predictability” property, which suffices to give our relaxed variant of

witness encryption We discuss the connection between our 1-bit arguments for cryptographically-hard

languages and the notion of predictable arguments from [FNV17] in greater detail in Remark 6.15.

We now formally introduce our “distributional notion” of witness encryption and then show how to

realize it from any 1-bit laconic argument system.

Definition 6.11 (Distributional Witness Encryption). Fix a parameter n ∈ N. Let L ⊆ {0, 1}n be

an NP language, and let D be a probability distribution over {0, 1}n \ L. A distributional witness

encryption scheme for L with respect to D is a tuple of algorithms ΠWE = (Encrypt,Decrypt) with

the same properties and requirements as Definition 6.7, except the semantic security requirement is

replaced by a weaker D-semantic security requirement:

• D-Semantic Security: For all efficient adversaries A and x← D

∣∣Pr[A(Encrypt(1λ,x, 0)) = 1]− Pr[A(Encrypt(1λ,x, 1)) = 1]
∣∣ = negl(λ),

where the probability is taken over the randomness of sampling x, the encryption randomness,

as well as the adversary’s randomness.

As described in Remark 6.8, we can replace D-semantic security with an equivalent notion of

D-unguessability.

Construction 6.12 (Distributional Witness Encryption from Laconic Argument System). Fix a

parameter n. Let L ⊆ {0, 1}n be an NP language and let D be a distribution over {0, 1}n \ L. Let

Πarg = (Setup,Prove,Verify) be a 1-bit laconic argument for L. We construct a distributional witness

encryption scheme ΠWE = (Encrypt,Decrypt) for L with respect to D as follows:

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 169

• Encrypt(1λ,x,m): On input the security parameter λ, a statement x, and a message m ∈ {0, 1},
the encryption algorithm samples parameters (σx, τx) ← Setup(1λ,x), and computes α0 ←
Verify(τx, 0) and α1 ← Verify(τx, 1). Then, it does the following:

– If α0 = 1 = α1, then the encryption algorithm outputs the message m in the clear.

– If α0 = 0 = α1, then the encryption algorithm outputs ⊥.

– Otherwise, the encryption algorithm outputs (σx,m ⊕ b) where b ∈ {0, 1} is such that

αb = 1.

• Decrypt(ct,w)→ {0, 1}∪⊥. If ct = 0, ct = 1, or ct = ⊥, then the decryption algorithm outputs

ct. Otherwise, it parses ct = (σx, β), computes b← Prove(σx,w), and outputs β ⊕ b.

Next, we show that Construction 6.12 gives a distributional witness encryption scheme for

any language that is “cryptographically-hard.” Intuitively, we say that an NP language L is

cryptographically-hard if there exists a distribution Dyes over yes instances that is computationally

indistinguishable from a distribution Dno of no instances.

Definition 6.13 (Cryptographically-Hard Language). Let L ⊆ {0, 1}n be an NP language. We say

that L is a cryptographically-hard language if there exists distributions Dyes over L and Dno over

{0, 1}n \ L such that Dyes
c
≈ Dno.

Theorem 6.14 (Distributional Witness Encryption from Laconic Argument System). Fix a security

parameter λ and let L ⊆ {0, 1}n(λ) be an NP language, and suppose that L is cryptographically-

hard (Definition 6.13). Let Dyes and Dno be the distributions over yes instances and no instances,

respectively, for L from Definition 6.13. Assume moreover that Πarg is a 1-bit laconic argument for L.

Then, ΠWE from Construction 6.12 is a distributional witness encryption scheme for L with respect

to Dno.

Proof. We show correctness and security separately.

Correctness. Take any statement x ∈ L and any witness w where R(x,w) = 1. We show that

Pr[Decrypt(Encrypt(1λ,x,m),w) = m] = 1.

Let ct← Encrypt(1λ,x,m), and (σx, τx) be the parameters sampled by the encryption algorithm. By

perfect completeness of Πarg, if b← Prove(σx,x,w), then Verify(τx, b) = 1. We consider two possible

scenarios:

• Suppose Verify(τx, 1− b) = 1. In this case, ct = m, and the decryption algorithm also outputs

m. Correctness holds.

• Suppose Verify(τx, 1 − b) = 0. In this case, ct = (σx,m ⊕ b), and the decryption algorithm

outputs (m⊕ b)⊕ b = m.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 170

Security. By assumption, Dyes
c
≈ Dno. Now, we show that

Pr[x← Dno; (σx, τx)← Setup(1λ,x) : Verify(τx, 0) = Verify(τx, 1)] = negl(λ).

We consider the two possibilities separately:

• Suppose Verify(τx, 0) = 0 = Verify(τx, 1) with probability ε. This implies that Dyes and Dno are

distinguishable with the same advantage ε. Specifically, on input an instance x, the distinguisher

samples (σx, τx)← Setup(1λ,x) and outputs 1 if Verify(τx, 0) = 0 = Verify(τx, 1). If x← Dyes,

then x ∈ L and by perfect completeness of Πarg, the distinguisher outputs 1 with probability 0.

Conversely, if x← Dno, then by assumption, the distinguisher outputs 1 with probability ε.

• Suppose Verify(x, 0) = 1 = Verify(x, 1) with probability ε. Then, we can construct an adversary

that breaks soundness of Πarg with advantage 1/2 + ε/2− negl(λ). Consider the adversary that

samples a statement x← Dno and outputs a random bit b
r←− {0, 1} as its proof. We compute

the probability that Verify(τx, b) = 1, where (σx, τx)← Setup(1λ,x). From the first case, we

have that Verify(τx, 0) = 0 = Verify(τx, 1) with negligible probability. Thus, with probability

1− negl(λ), at least one of b ∈ {0, 1} is a valid proof for x. The probability that the guessing

adversary succeeds in breaking soundness is then

Pr[Verify(τx, b) = 1] ≥ ε+
1

2
(1− ε− negl(λ)) =

1

2
+
ε

2
− negl(λ).

This contradicts soundness of Πarg.

We conclude that with overwhelming probability over the choice of x and the Setup randomness,

there is exactly one proof b ∈ {0, 1} such that Verify(τx, b) = 1. To show the claim, suppose there

exists an efficient adversary A whose guessing advantage (Eq. (6.2)) is ε. Without loss of generality,

suppose that given an encryption of m
r←− {0, 1}, adversary A outputs m with probability at least

1/2 + ε (if A outputs m with probability less than 1/2− ε, we can consider an adversary that runs

A and outputs the complement of A’s output). We use A to construct an adversary B that breaks

soundness of Πarg with probability 1/2 + ε. Algorithm B works as follows:

1. At the beginning of the game, algorithm B samples a statement x← Dno and gives x to the

challenger for the soundness game. It receives a common reference string σx from the soundness

challenger.

2. Algorithm B samples a random bit β
r←− {0, 1} and sends (σx, β) to the guessing adversary A.

3. When A outputs a guess m ∈ {0, 1}, B submits m⊕ β as its proof.

First, we argue that B correctly simulates the unguessability game for adversary A. From above,

we have that with overwhelming probability (over the choice of x and the randomness in the Setup

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 171

algorithm), Verify(τx, 0) 6= Verify(τx, 1). Let b ∈ {0, 1} be such that Verify(τx, b) = 1. In this case, a

valid ciphertext for a message m consists of the tuple (σx, b⊕m). In the unguessability game, the

message m is sampled uniformly at random, and so the bit b⊕m is also uniformly random. This is

precisely the distribution B simulates in the reduction.

By assumption A is able to guess the message with probability at least 1/2 + ε. In particular,

this means that the bit m output by A satisfies m = β ⊕ b where Verify(τx, b) = 1. But in this case,

b = m⊕ β, and algorithm B has produced an accepting proof for the statement x. We conclude that

if A has guessing advantage ε, then B breaks soundness with advantage 1/2 + ε.

Remark 6.15 (1-Bit Arguments and Predictable Arguments). We can interpret the first step in

our soundness proof of Theorem 6.14 as showing that a 1-bit argument for a cryptographically-hard

language is essentially a predictable argument (c.f., [FNV17]). Specifically, we show that for a

randomly-sampled statement x, there is exactly one proof that the verifier accepts. Previously,

Faonio et al. [FNV17] showed that any predictable argument for a language L implies a witness

encryption for the same language. Since our arguments are predictable (for a randomly-sampled

instance) when the underlying language is cryptographically-hard, we obtain the distributional variant

of witness encryption for cryptographically-hard languages.

6.2.1 Distributional Witness Encryption to Public-Key Encryption

Although 1-bit laconic arguments only suffice for constructing a weaker distributional variant of

witness encryption, this variant still suffices to instantiate some of the applications of witness

encryption from [GGSW13]. In this section, we recall the construction of public-key encryption from

witness encryption from [GGSW13, §4.1] and show how we can instantiate it using a distributional

witness encryption scheme for the same language. In particular, this means that a 1-bit SNARG, and

more generally, a 1-bit laconic argument implies a public-key encryption scheme where the complexity

of the key-generation algorithm is independent of the complexity of the underlying argument system.

Key-generation in this scheme only requires a single evaluation of a pseudorandom generator. The

only public-key encryption schemes that have this property rely on witness encryption (or stronger

assumptions). This provides some evidence on the difficulty of realizing optimally laconic arguments

from simpler assumptions.

Construction 6.16 (Public Key Encryption from Witness Encryption [GGSW13, §4.1]). Fix a

security parameter λ and letG : {0, 1}λ → {0, 1}2λ be a length-doubling PRG. Define the language L ⊂
{0, 1}2λ as L =

{
y ∈ {0, 1}2λ : y = G(x) for some x ∈ {0, 1}λ

}
. Let ΠWE = (WE.Encrypt,WE.Decrypt)

be a witness encryption scheme for L. We define the public key encryption scheme ΠPKE =

(KeyGen,Encrypt,Decrypt) as follows:

• KeyGen(1λ) → (pk, sk): On input the security parameter λ, the key-generation algorithm

samples a seed s
r←− {0, 1}λ, computes t← G(s), and outputs pk = (λ, t) and sk = s.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 172

• Encrypt(pk,m): On input the public key pk = (λ, t) and a message m ∈ {0, 1}, the encryption

algorithm outputs the ciphertext ct←WE.Encrypt(1λ, t,m).

• Decrypt(sk, ct): On input the secret key sk = s and a ciphertext ct, the decryption algorithm

outputs WE.Decrypt(ct, s).

Theorem 6.17. Fix a security parameter λ and let G : {0, 1}λ → {0, 1}2λ be a length-doubling PRG.

Define the language L ⊂ {0, 1}2λ as in Construction 6.16. Let Dno be the uniform distribution over

{0, 1}2λ \ L. If ΠWE is a witness encryption scheme for L with respect to Dno and G is a secure

PRG, then ΠPKE from Construction 6.16 is a semantically-secure PKE scheme.

Proof. The proof is essentially identical to the corresponding proof in [GGSW13, Appendix A.1]. We

give the formal hybrid argument below:

• Hyb0: This is the semantic security game where the challenger samples (pk, sk)← KeyGen(1λ)

and responds to the adversary’s query with Encrypt(pk,m0).

• Hyb1: Same as Hyb0 except instead of setting pk = (λ, t) where t = G(s) and s
r←− {0, 1}λ, the

challenger samples t
r←− {0, 1}2λ. Hybrids Hyb0 and Hyb1 are computationally indistinguishable

by PRG security of G.

• Hyb2: Same as Hyb1, except the challenger samples t
r←− {0, 1}2λ \ L. Hyb1 and Hyb2 are

statistically indistinguishable.

• Hyb3: Same as Hyb2 except the challenger encrypts message m1 when responding to the adver-

sary’s challenge. Hybrids Hyb2 and Hyb3 are computationally indistinguishable by distributional

semantic security of ΠWE.

• Hyb4: Same as Hyb3 except the challenger samples t
r←− {0, 1}2λ. Hybrids Hyb3 and Hyb4 are

statistically indistinguishable.

• Hyb5: Same as Hyb4 except the challenger sets t = G(s) where s
r←− {0, 1}λ. This is the

semantic security game where the challenger samples (pk, sk) ← KeyGen(1λ) and respond

to the adversary’s query with Encrypt(pk,m1). Hybrids Hyb4 and Hyb5 are computationally

indistinguishable by PRG security of G.

To instantiate Construction 6.16 from a 1-bit laconic argument for NP (or more specifically, for

the language L in Construction 6.16), it suffices to show that there exists a distribution Dyes over L
such that Dyes

c
≈ Dno, where Dno is the distribution from Construction 6.16. This follows from PRG

security. Specifically, let Dyes be the distribution {s r←− {0, 1}λ : G(s)}. By PRG security, Dyes is

computationally indistinguishable from the uniform distribution over {0, 1}2λ. Finally, the uniform

distribution over {0, 1}2λ is statistically indistinguishable from Dno and the claim follows. Thus, a

1-bit laconic argument for NP implies a public-key encryption scheme where the complexity of the

key-generation algorithm is independent of the complexity of the witness encryption scheme.

CHAPTER 6. THE POWER OF OPTIMALLY-LACONIC ARGUMENTS 173

6.3 Chapter Summary

In this chapter, we introduced and studied 1-bit laconic arguments, and more specifically, 1-bit

SNARGs (namely, SNARGs that provide soundness error 1/2 + negl(λ) with 1-bit of proof). We

then showed how to construct 1-bit SNARGs from indistinguishability obfuscation by adapting

the Sahai-Waters NIZK construction from indistinguishability obfuscation [SW14]. Furthermore,

in the interactive setting, we showed how to obtain a 1-bit laconic argument from the (plausibly

weaker) primitive of witness encryption. In fact, we demonstrated that this is (almost) a two-way

implication as 1-bit laconic arguments imply a relaxed form of witness encryption. This latter

connection suggests that building 1-bit laconic arguments from simpler assumptions is likely to be

difficult. Nonetheless, we leave this as an interesting open problem and another potential route for

realizing witness encryption from standard assumptions.

Chapter 7

Conclusions

Proof systems play an important role in the construction of numerous cryptographic protocols. Beyond

that, they are also a fundamental notion in theoretical computer science. In this thesis, we studied two

important properties of (non-interactive) proof systems: zero-knowledge and succinctness. Although

numerous constructions of non-interactive proofs systems satisfying zero-knowledge or succinctness (or

even both) have been proposed since the seminal work of Goldwasser, Micali, and Rackoff [GMR85],

the prior construction all relied on the random oracle heuristic, number-theoretic and group-theoretic

assumptions (e.g., factoring, pairings), or heavyweight tools like indistinguishability obfuscation.

A major class of cryptographic assumptions missing from this list is the class of lattice-based

assumptions.

In this thesis, we filled in some of these gaps by constructing the first non-interactive zero-knowledge

argument in the preprocessing model as well as the first (quasi-optimal) succinct non-interactive

argument from lattice-based assumptions. To briefly recall, we showed how to build multi-theorem

NIZK arguments (and proofs) for all of NP in a preprocessing model using context-hiding homomorphic

signatures (which can in turn be instantiated from standard lattice assumptions). In the preprocessing

model, there is a trusted setup that generates proving and verification keys (used to construct and

verify proofs, respectively). The main challenge in the preprocessing model was to construct a scheme

that is multi-theorem secure: namely, the proving and verification keys could be reused to generate

or to verify multiple proofs without compromising either soundness or zero-knowledge. While our

lattice-based NIZK argument system operates in the weaker preprocessing model (rather than the

more traditional CRS model), we are hopeful that our techniques will provide a useful stepping

stone towards resolving the open problem of constructing NIZK proofs (or arguments) for NP from

standard lattice assumptions.

With respect to succinct arguments, this thesis built upon and extended the general framework

of Bitansky et al. [BCI+13] to obtain the first candidate SNARGs from lattice-based assumptions.

Our techniques gave the first quasi-optimally succinct SNARG from lattice assumptions, and further

174

CHAPTER 7. CONCLUSIONS 175

extension of our techniques yielded the first quasi-optimal SNARG from concrete assumptions over

ideal lattices—namely, a SNARG that simultaneously minimizes the prover complexity as well as the

proof size. Finally, we explored what happens when we push succinctness to the limit and consider

a “1-bit SNARG.” Here, we demonstrated an intriguing connection between 1-bit SNARGs and a

relaxed variant of witness encryption.

Our work on constructing lattice-based SNARGs leaves open several direction for future research.

First, all of the lattice-based SNARG candidates we introduced in this work are designated-verifier

(i.e., a secret verification key is needed to verify the proofs). Can we build a publicly-verifiable

SNARG from lattice assumptions? Can we build zero-knowledge SNARGs while preserving quasi-

optimal succinctness from lattice assumptions? Finally, what is the concrete efficiency of these new

lattice-based SNARGs, and how do they compare against their pairing-based counterparts [PHGR13,

BCG+13]?1

1A preliminary implementation of our lattice-based SNARG candidate from Chapter 4 is currently available here:
https://github.com/dwu4/lattice-snarg.

https://github.com/dwu4/lattice-snarg

Bibliography

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard

model. In EUROCRYPT, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed

dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, 2010.

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted

stores. In ACM CCS, 2007.

[ABC+15] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent

Waters. Computing on authenticated data. J. Cryptology, 28(2), 2015.

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many

signatures. In EUROCRYPT, 2001.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic

primitives and circular-secure encryption based on hard learning problems. In CRYPTO,

2009.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako

Ohkubo. Structure-preserving signatures and commitments to group elements. In

CRYPTO, 2010.

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in

bilinear groups for modular protocol design. IACR Cryptology ePrint Archive, 2010,

2010.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:

Efficient verification via secure computation. In ICALP, 2010.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,

and Daniel Wichs. Multiparty computation with low communication, computation and

interaction via threshold FHE. In EUROCRYPT, 2012.

176

BIBLIOGRAPHY 177

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomor-

phic identification protocols. In ASIACRYPT, 2009.

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures in

the standard model. In PKC, 2011.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. In FOCS, 1992.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally composable non-

committing blind signatures. In ASIACRYPT, 2009.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In

STACS, 2009.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In

CRYPTO, 2014.

[APSD18] Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and old) proof

systems for lattice problems. In PKC, 2018.

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems

over lattices revisited. In PKC, 2018.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive

proofs and their efficiency benefits. In CRYPTO, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of

knowledge. J. Comput. Syst. Sci., 37(2), 1988.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad

Rubinstein, and Eran Tromer. The hunting of the SNARK. J. Cryptology, 30(4), 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable

collision resistance to succinct non-interactive arguments of knowledge, and back again.

In ITCS, 2012.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,

Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical, quantum-

secure key exchange from LWE. IACR Cryptology ePrint Archive, 2016, 2016.

BIBLIOGRAPHY 178

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.

SNARKs for C: verifying program executions succinctly and in zero knowledge. In

CRYPTO, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.

In IEEE SP, 2014.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

Succinct non-interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable

one-way functions. In STOC, 2014.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-

interactive zero knowledge for a von Neumann architecture. In USENIX Security

Symposium, 2014.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive

zero-knowledge. SIAM J. Comput., 20(6), 1991.

[BDRV17] Itay Berman, Akshay Degwekar, Ron Rothblum, and Prashant Nalini Vasudevan. From

laconic zero-knowledge to public-key cryptography. Electronic Colloquium on Computa-

tional Complexity (ECCC), 2017, 2017.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO,

1991.

[Ben64] Václad E Beneš. Optimal rearrangeable multistage connecting networks. Bell Labs

Technical Journal, 43(4), 1964.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.

In CRYPTO, 2001.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial

functions. In EUROCRYPT, 2011.

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary

fields and new tools for lattice-based signatures. In PKC, 2011.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,

Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures

revisited. In PKC, 2009.

BIBLIOGRAPHY 179

[BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing a linear

subspace: Signature schemes for network coding. In PKC, 2009.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-

tions in polylogarithmic time. In STOC, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its

applications. In STOC, 1988.

[BFR13a] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of compu-

tation on outsourced data. In ACM CCS, 2013.

[BFR+13b] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.

Blumberg, and Michael Walfish. Verifying computations with state. In ACM SIGOPS

24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,

November 3-6, 2013, 2013.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,

Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic

encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT,

2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.

Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,

2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom

functions. In PKC, 2014.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure

computation under DDH. In CRYPTO, 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic

encryption without bootstrapping. In ITCS, 2012.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-np have short interactive

proofs? Inf. Process. Lett., 25(2), 1987.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and

their application to more efficient obfuscation. In EUROCRYPT, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via

linear multi-prover interactive proofs. In EUROCRYPT, 2018.

BIBLIOGRAPHY 180

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable prfs from

standard lattice assumptions. In EUROCRYPT, 2017.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity

problem, and the statistical query model. In STOC, 2000.

[BKW17] Dan Boneh, Sam Kim, and David J. Wu. Constrained keys for invertible pseudorandom

functions. In TCC, 2017.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In ACM CCS,

2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors. In STOC, 2013.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The

one-more-rsa-inversion problems and the security of chaum’s blind signature scheme. J.

Cryptology, 16(3), 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based

on the gap-diffie-hellman-group signature scheme. In PKC, 2003.

[BP04a] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In

TCC, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round

zero-knowledge protocols. In CRYPTO, 2004.

[BP04c] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption

without random oracles. In ASIACRYPT, 2004.

[Bra00] Stefan A. Brands. Rethinking public key infrastructures and digital certificates: building

in privacy. MIT Press, 2000.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.

Comput., 38(2), 2008.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryption

for restricted computations. In ITCS, 2012.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private

constrained prfs (and more) from LWE. In TCC, 2017.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In

ITCS, 2014.

BIBLIOGRAPHY 181

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from

standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In

TCC, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-

tions. In ASIACRYPT, 2013.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.

Cryptology, 13(1), 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In

CSFW, 2004.

[Cat14] Dario Catalano. Homomorphic signatures and message authentication codes. In SCN,

2014.

[CC17a] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from LWE. In

EUROCRYPT, 2017.

[CC17b] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive

zero-knowledge proofs of knowledge. IACR Cryptology ePrint Archive, 2017, 2017.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and

correlation intractability from strong KDM-secure encryption. In EUROCRYPT, 2018.

[CD04] Ronald Cramer and Ivan Damg̊ard. Secret-key zero-knowlegde and non-interactive

verifiable exponentiation. In TCC, 2004.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits.

In EUROCRYPT, 2013.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing

homomorphic macs for arithmetic circuits. In PKC, 2014.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,

Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable compu-

tation. In IEEE SP, 2015.

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures

in the standard model. In PKC, 2012.

BIBLIOGRAPHY 182

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with

efficient verification for polynomial functions. In CRYPTO, 2014.

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without random

oracles. In PKC, 2015.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to

delegate a lattice basis. In EUROCRYPT, 2010.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures

without random oracles. In SCN, 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable

two-party and multi-party secure computation. In STOC, 2002.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information

retrieval with polylogarithmic communication. In EUROCRYPT, 1999.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified compu-

tation with streaming interactive proofs. In ITCS, 2012.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In

ASIACRYPT, 2011.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, 2003.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive

chosen ciphertext secure public-key encryption. In EUROCRYPT, 2002.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext

attacks. In CRYPTO, 1991.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-

knowledge with proprocessing. In EUROCRYPT, 1992.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and

Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, 2001.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span

programs with applications to succinct NIZK arguments. In ASIACRYPT, 2014.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with

low communication. In TCC, 2012.

BIBLIOGRAPHY 183

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from

homomorphic encryption. In TCC, 2006.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computa-

tion and the computational overhead of cryptography. In EUROCRYPT, 2010.

[Din06] Irit Dinur. The PCP theorem by gap amplification. In STOC, 2006.

[DMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge

proof systems. In CRYPTO, 1987.

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge

with preprocessing. In CRYPTO, 1988.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-

tation from somewhat homomorphic encryption. In CRYPTO, 2012.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness

amplification. In TCC, 2009.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approx-

imating clique is almost np-complete (preliminary version). In FOCS, 1991.

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Slamanig. Practical

round-optimal blind signatures in the standard model from weaker assumptions. In SCN,

2016.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal

blind signatures in the standard model. In CRYPTO, 2015.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference

string model. In CRYPTO, 2006.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge

proofs based on a single random string. In FOCS, 1990.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homo-

morphic authenticators. In ASIACRYPT, 2016.

[FNV17] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of

knowledge. In PKC, 2017.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A

generic framework. In PKC, 2012.

BIBLIOGRAPHY 184

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In CRYPTO, 1986.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups and an application to

round-optimal blind signatures. IACR Cryptology ePrint Archive, 2009, 2009.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,

2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent

Waters. Candidate indistinguishability obfuscation and functional encryption for all

circuits. In FOCS, 2013.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.

Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge

proofs. J. Cryptology, 28(4), 2015.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.

In FOCS, 1984.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span

programs and succinct nizks without PCPs. In EUROCRYPT, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its

applications. In STOC, 2013.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with bounded

communication. Inf. Process. Lett., 67(4), 1998.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with

polylog overhead. In EUROCRYPT, 2012.

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network

coding over the integers. In PKC, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:

interactive proofs for muggles. In STOC, 2008.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing

from learning with errors. In STOC, 2018.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of

interactive proof-systems (extended abstract). In STOC, 1985.

crypto.stanford.edu/craig

BIBLIOGRAPHY 185

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements

in zero-knowledge, and a methodology of cryptographic protocol design. In CRYPTO,

1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A

completeness theorem for protocols with honest majority. In STOC, 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof

systems. J. Cryptology, 7(1), 1994.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.

Cambridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.

Cambridge University Press, 2004.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge

for NP. In EUROCRYPT, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive

zero-knowledge. J. ACM, 59(3), 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices

and new cryptographic constructions. In STOC, 2008.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size

group signatures. In ASIACRYPT, 2006.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO,

2009.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-

ACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT,

2016.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh.

Round optimal blind signatures. In CRYPTO, 2011.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.

In EUROCRYPT, 2008.

[GS12] Essam Ghadafi and Nigel P. Smart. Efficient two-move blind signatures in the common

reference string model. In ISC, 2012.

BIBLIOGRAPHY 186

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation

from minimal assumptions. In EUROCRYPT, 2018.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO,

2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient

ABE for branching programs. In ASIACRYPT, 2015.

[GVW01] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a

laconic prover. In ICALP, 2001.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption

for circuits. In STOC, 2013.

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for

circuits from LWE. In CRYPTO, 2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic

signatures from standard lattices. In STOC, 2015.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all

falsifiable assumptions. In STOC, 2011.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In

ASIACRYPT, 2013.

[HK16] Lucjan Hanzlik and Kamil Kluczniak. A short paper on blind signatures from knowledge

assumptions. In Financial Cryptography, 2016.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short

PCPs. In CCC, 2007.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from

secure multiparty computation. In STOC, 2007.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with

no honest majority. In TCC, 2009.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS, 2000.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with

applications to cryptography and lattices. In CRYPTO, 2015.

BIBLIOGRAPHY 187

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC, 1992.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge proofs.

In CRYPTO, 1989.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.

Delegatable pseudorandom functions and applications. In ACM CCS, 2013.

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with

preprocessing for LOGSNP. In FOCS, 2006.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-

based authenticated key exchange from lattices. In ASIACRYPT, 2009.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard

lattice assumptions. In CRYPTO, 2017.

[KW18] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In

CRYPTO, 2018.

[KZ06] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without random

oracles. In SCN, 2006.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods

for interactive proof systems. In FOCS, 1990.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In TCC, 2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs

and linear error-correcting codes. In ASIACRYPT, 2013.

[Lip16] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In

AFRICACRYPT, 2016.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge

proofs of knowledge for the ISIS problem, and applications. In PKC, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation

in the presence of malicious adversaries. In EUROCRYPT, 2007.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based

encryption. In CT-RSA, 2011.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe and

applications in traitor tracing. In CRYPTO, 2014.

BIBLIOGRAPHY 188

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs.

In CRYPTO, 1990.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad

class of distributions. In PKC, 2015.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4), 2000.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications

to ajtai’s connection factor. SIAM J. Comput., 34(1), 2004.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical Cryptology,

2(4), 2008.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity

of LWE search-to-decision reductions. In CRYPTO, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,

smaller. In EUROCRYPT, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.

In CRYPTO, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on

gaussian measures. SIAM J. Comput., 37(1), 2007.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum

Cryptography, 2009.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key

FHE. In EUROCRYPT, 2016.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. In FOCS, 1997.

[OTW71] D.C. Opferman and N.T. Tsao-Wu. On a class of rearrangeable switching networks part

I: Control algorithm. Bell Labs Technical Journal, 50(5), 1971.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In EUROCRYPT, 1999.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In

STOC, 2009.

BIBLIOGRAPHY 189

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical

Computer Science, 10(4), 2016.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly

practical verifiable computation. In IEEE SP, 2013.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In EURO-

CRYPT, 1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and

blind signatures. J. Cryptology, 13(3), 2000.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming prfs, the LWE

way. In PKC, 2018.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge

proofs for lattice problems. In CRYPTO, 2008.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and

composable oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.

In STOC, 2005.

[RSS18] Ron D. Rothblum, Adam Sealfon, and Katerina Sotiraki. Towards non-interactive

zero-knowledge for NP from LWE. IACR Cryptology ePrint Archive, 2018, 2018.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, 2010.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

J. ACM, 27(4), 1980.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO,

1989.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical

algorithms and solving subset sum problems. Math. Program., 66, 1994.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, 1990.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.

In FOCS, 1994.

[SMBW12] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish.

Making argument systems for outsourced computation practical (sometimes). In NDSS,

2012.

BIBLIOGRAPHY 190

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without

interaction. In FOCS, 1992.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,

and Michael Walfish. Taking proof-based verified computation a few steps closer to

practicality. In USENIX Security Symposium, 2012.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASIACRYPT,

2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable

encryption, and more. In STOC, 2014.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, 2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable

computation with massively parallel interactive proofs. In HotCloud, 2012.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid

architecture for interactive verifiable computation. In IEEE SP, 2013.

[Wak68] Abraham Waksman. A permutation network. Journal of the ACM (JACM), 15(1), 1968.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting

them. Commun. ACM, 58(2), 2015.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In ICALP, 2005.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael

Walfish. Efficient RAM and control flow in verifiable outsourced computation. In NDSS,

2015.

[XXW13] Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from ring-lwe. In CANS,

2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, 1979.

[ZY17] Jiang Zhang and Yu Yu. Two-round PAKE from approximate SPH and instantiations

from lattices. In ASIACRYPT, 2017.

	Abstract
	Acknowledgments
	Introduction
	Non-Interactive Zero-Knowledge Arguments
	Succinct Non-Interactive Arguments
	Why Lattices?
	Works Contained in this Thesis

	Preliminaries
	Background on Lattice-Based Cryptography

	Non-Interactive Zero-Knowledge Arguments
	Construction Overview
	Additional Related Work

	Homomorphic Signatures
	Selectively-Secure Homomorphic Signatures
	From Selective Security to Adaptive Security

	Preprocessing NIZKs from Homomorphic Signatures
	Blind Homomorphic Signatures
	The Universal Composability Framework
	The Blind Homomorphic Signature Functionality
	Constructing Blind Homomorphic Signatures

	Universally-Composable Preprocessing NIZKs
	Applications to MPC

	Proofs from this Chapter
	Proof of Theorem 3.26
	Proof of Theorem 3.36
	Proof of Theorem 3.40

	Chapter Summary

	Succinct Non-Interactive Arguments (SNARGs)
	Summary of Results and Technical Overview
	Succinct Non-Interactive Arguments
	Linear PCPs
	Constructing Linear PCPs with Strong Soundness

	SNARGs from Linear-Only Vector Encryption
	Linear-Only Vector Encryption
	From Linear-Only Vector Encryption to Preprocessing SNARGs
	Multi-Theorem Designated-Verifier SNARGs

	Constructing Lattice-Based SNARGs
	The Peikert-Vaikuntanathan-Waters Encryption Scheme
	Our Lattice-Based SNARG Candidate

	Chapter Summary

	Quasi-Optimal SNARGs
	Quasi-Optimal Linear MIP Construction Overview
	Consistency Checking

	Main Ingredients
	Linear MIPs
	Routing Networks

	Quasi-Optimal Linear MIPs
	Robust Decomposition for Circuit Satisfiability
	Consistency Checking
	Quasi-Optimal Linear MIP Construction
	Constructing Randomized Permutation Decompositions
	Quasi-Optimal Linear MIP Analysis

	Quasi-Optimal SNARGs
	Defining Quasi-Optimality
	Linear-Only Vector Encryption over Rings
	Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

	Chapter Summary

	The Power of Optimally-Laconic Arguments
	Optimally-Succinct SNARGs and Laconic Arguments
	Indistinguishability Obfuscation and Puncturable PRFs
	1-Bit SNARGs from Indistinguishability Obfuscation
	1-Bit Laconic Arguments and Witness Encryption

	Witness Encryption from 1-Bit Laconic Arguments
	Distributional Witness Encryption to Public-Key Encryption

	Chapter Summary

	Conclusions
	Bibliography

