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Abstract

A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that

an NP statement 𝑥 is true with a proof whose size is sublinear in the length of the traditional NP

witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants

to prove after seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed

how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions

(specifically, sub-exponentially-secure indistinguishability obfuscation, sub-exponentially-secure one-

way functions, and polynomial hardness of discrete log).

We consider the batch setting where the prover wants to prove a collection of𝑇 statements𝑥1, . . . , 𝑥𝑇
and its goal is to construct a proof whose size is sublinear in both the size of a single witness and the

number of instances 𝑇 . In this setting, existing constructions either require the size of the public pa-

rameters to scale linearly with𝑇 (and thus, can only support an a priori bounded number of instances),

or only provide non-adaptive soundness, or have proof size that scales linearly with the size of a sin-

gle NP witness. In this work, we give two approaches for batching adaptively-sound SNARGs for NP,

and in particular, show that under the same set of assumptions as those underlying the Waters-Wu

adaptively-sound SNARG, we can obtain an adaptively-sound SNARG for batch NP where the size of

the proof is poly(𝜆) and the size of the CRS is poly(𝜆 + |𝐶 |), where 𝜆 is a security parameter and |𝐶 | is
the size of the circuit that computes the associated NP relation.

Our first approach builds directly on top of the Waters-Wu construction and relies on indistin-

guishability obfuscation and a homomorphic re-randomizable one-way function. Our second approach

shows how to combine ideas from the Waters-Wu SNARG with the chaining-based approach by Garg,

Sheridan, Waters, and Wu (TCC 2022) to obtain a SNARG for batch NP.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP allow an efficient prover to convince a verifier that

an NP statement 𝑥 (with associated witness 𝑤 ) is true with a proof whose size scales with 𝑜 ( |𝑥 | + |𝑤 |).
The main security requirement is computational soundness which says that a computationally-bounded

prover should not be able to convince a verifier of a false statement. SNARGs were first constructed in the

random oracle model [Kil92,Mic94]. Many works have subsequently shown how to construct SNARGs in

the plain model assuming the prover and the verifier have access to a common reference string (CRS).

Until recently, SNARGs for NP in the CRS model have either relied on non-falsifiable cryptographic as-

sumptions (c.f., [Gro10,BCCT12,DFH12,Lip13,GGPR13,BCI
+
13,BCPR14,BISW17,BCC

+
17,ACL

+
22,CLM23]

and the references therein) or satisfied the weaker notion of non-adaptive soundness [SW14], where sound-

ness only holds against an adversary that declares its false statement before seeing the CRS. In contrast,

the standard or “adaptive” notion of soundness allows the malicious prover to choose the statement after
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seeing the CRS. Very recently, several works gave the first adaptively-sound SNARGs for NP using in-

distinguishability obfuscation (𝑖O) and either a sub-exponentially-secure re-randomizable one-way func-

tion [WW24a] or a sub-exponentially-secure lossy function [WZ24].
1

Moreover, in the designated-verifier
model where a secret key is needed to verify proofs, the work of [MPV24] shows that the original Sahai-

Waters scheme (based on 𝑖O and one-way functions) [SW14] is also adaptively sound. In conjunction with

constructions of 𝑖O from falsifiable cryptographic assumptions [JLS21,JLS22], these works provide the first

adaptively-sound SNARGs for NP from falsifiable assumptions.

Batch arguments. Existing constructions of adaptively-sound SNARGs for NP focus on the single-

statement setting where the prover constructs a proof for a single statement. In many settings (e.g., incre-

mentally verifiable computation [Val08] or proof-carrying data [CT10]), a prover might have a batch of 𝑇

(possibly correlated) statements 𝑥1, . . . , 𝑥𝑇 that it wants to prove to the verifier, and the goal is to construct

a single short proof (whose size is sublinear in 𝑇 and in the size of the associated NP relation) of all 𝑇

statements. There are two main approaches to constructing batch arguments:

• Using BARGs for NP: Non-interactive batch arguments (BARGs) for NP [KPY19, CJJ21, KVZ21,

CJJ22] provide one possible approach. Namely, a BARG for NP allows a prover to prepare a proof

on 𝑇 statements with a proof whose size scales sublinearly (ideally, polylogarithmically) with the

number of statements𝑇 . Moreover, many recent works have shown how to construct BARGs for NP

from a broad range of cryptographic assumptions [CJJ21, KVZ21, CJJ22, WW22, HJKS22, DGKV22,

PP22, CGJ
+
23, KLV23, KLVW23]. However, in these existing constructions, the size of the proof

grows with the size of the circuit that decides a single statement, and the goal is to amortize the

proof size across the number of statements. Allowing the proof size to grow with the size of the NP

relation avoids black-box separations that pertain to SNARGs for NP [GW11]. In this work, we are

interested in batching SNARG proofs, where the size of the proof is sublinear in both the number

of statements and size of the circuit computing the NP relation; such arguments are said to be fully
succinct [GSWW22]. The previous work of [GSWW22] showed how to construct fully succinct

BARGs for NP using 𝑖O and one-way functions, but the construction only achieved non-adaptive

soundness.

• Using SNARGs for NP: Another approach to constructing a fully succinct SNARG for a batch

language is to view the batch statement (𝑥1, . . . , 𝑥𝑇 ) as a single NP statement for a product language

(i.e., the statement (𝑥1, . . . , 𝑥𝑇 ) is in the language if for each 𝑖 ∈ [𝑇 ], there exists a valid witness

𝑤𝑖 for 𝑥𝑖 ), and then use a SNARG for NP to prove the product language. This approach achieves

adaptive soundness if we instantiate the underlying SNARG with an adaptively-sound SNARG for

NP [WW24a, WZ24]. However, the size of the CRS in existing adaptively-sound SNARGs [WW24a,

WZ24] grows polynomially with the size of the NP relation circuit. Thus, if we directly apply an

existing adaptively-sound SNARG for NP to a batch language, the NP relation circuit would take all

𝑇 statements as input, and the size of the CRS scales polynomially with 𝑇 . This means the CRS is

large and moreover, there is an a priori bound on the number of statements that can be batched. In

this work, our goal is to support aggregating an arbitrary polynomial number of (adaptively-sound)

proofs on NP statements.

1
A subsequent work [WW24b] also shows how to construct an adaptively-sound SNARG using 𝑖O and sub-exponentially-secure

one-way functions without any additional algebraic assumptions.
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Why not compose? If we settle for non-adaptive soundness, the work of [GSWW22] shows that we can

construct a fully succinct SNARG for batch languages by composing a standard (somewhere-extractable)

BARG for NP with a SNARG for NP. Namely, a proof on statements (𝑥1, . . . , 𝑥𝑇 ) is a BARG proof that

there exists SNARG proofs 𝜋1, . . . , 𝜋𝑇 for the statements 𝑥1, . . . , 𝑥𝑇 . In this case, the NP relation associated

with the BARG is the SNARG verification circuit, which is small by construction. Moreover, if the BARG is

somewhere extractable [CJJ22]
2

and the SNARG is non-adaptively sound, then it is straightforward to show

that the composed scheme satisfies non-adaptive soundness. While we can replace the underlying SNARG

in this composition with an adaptively-sound construction, we are not able to prove adaptive soundness

for the composition. The issue is that if we rely on somewhere extractability for the BARG, then the re-

duction needs to “know” the index of the false statement and program it into the CRS; this is not possible

when the statements are adaptively chosen.

Alternatively, we could consider a reduction algorithm that guesses the index of the false statement.

Since the index is computationally hidden from the malicious prover, the hope would be that a prover

that consistently chooses statements (𝑥1, . . . , 𝑥𝑇 ) that evades the guess (i.e., where the index of the false

statement is different from the guessed index) must be breaking index hiding of the somewhere extractable

BARG. The problem is that checking whether the adversary successfully evaded the guess (and thus, broke

index hiding) is not an efficient procedure (it requires deciding the underlying NP statement). We could

handle this by complexity leveraging and relying on a super-polynomial time reduction that is able to de-

cide the underlying NP relation. However, if we do so, then the size of the resulting BARG starts scaling

with the size of the NP relation, and the resulting construction is no longer succinct.

This work. In this work, we show how to construct adaptively-sound SNARGs for batch languages with

almost no overhead compared to the single-statement setting. Specifically, we show how to leverage the

adaptively-sound SNARG for NP from [WW24a] to obtain an adaptively-sound SNARG for batch lan-

guages with only polylogarithmic additive overhead in the number of statements 𝑇 . We summarize our

instantiation in the following (informal) theorem:

Theorem 1.1 (Informal). Let 𝜆 be a security parameter. Assuming (1) the polynomial hardness of computing
discrete logs in a prime-order group, (2) the existence of a sub-exponentially-secure indistinguishability obfus-
cation scheme for Boolean circuits, and (3) the existence of a sub-exponentially-secure one-way function, there
exists an adaptively-sound SNARG for batch NP with the following properties:

• Preprocessing SNARG: Let𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1} be the circuit that computes the NP relation
(where 𝑛 is the statement size and 𝑣 is the witness size). The size of the common reference string for
proving up to 𝑇 ≤ 2

𝜆 statements is poly(𝜆 + |𝐶 |).

• Proof size: A proof on a batch of 𝑇 ≤ 2
𝜆 statements (𝑥1, . . . , 𝑥𝑇 ) has size poly(𝜆).

Additionally, the SNARG is perfect zero-knowledge.

TheGentry-Wichs separation. The classic result of Gentry and Wichs [GW11] gives a barrier for con-

structing adaptively-sound SNARGs for NP from falsifiable assumptions where the running time of the

reduction is insufficient to decide the underlying NP language. Consequently, existing constructions of

2
A BARG is somewhere extractable if the CRS can be programmed on a (hidden) index 𝑖 ∈ [𝑇 ]. Then, given a valid BARG proof

𝜋 on a batch of statements (𝑥1, . . . , 𝑥𝑇 ), there is an efficient extraction algorithm that recovers a witness 𝑤𝑖 for 𝑥𝑖 . The special

index 𝑖 is computationally hidden by the CRS. Somewhere extractable BARGs can be constructed from most number-theoretic

assumptions [CJJ21, KVZ21, CJJ22, WW22, HJKS22, DGKV22, PP22, CGJ
+

23, KLV23, KLVW23].
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adaptively-sound SNARGs for NP [WW24a, WZ24, MPV24] all rely on complexity leveraging and super-

polynomial-time security reductions. In these constructions, the cost of the complexity leveraging is in-

curred in the size of the CRS. In the setting of batch NP, the time it takes to decide a batch of𝑇 statements

(𝑥1, . . . , 𝑥𝑇 ) is only a factor of 𝑇 greater than the time it takes to decide a single statement. As such, ob-

taining an adaptively-sound SNARG for batch NP would only increase the running time of the reduction

algorithm by a factor of𝑇 . In this case, the size of the CRS (or the proof) would only need to increase by a

factor of log𝑇 . In contrast, for a general NP relation where the statements and witnesses are a factor of 𝑇

longer, the reduction may have to run in time that is greater by a factor 2
𝑇

to decide the larger language,

which would lead to a CRS that is larger by a factor of poly(𝑇 ) rather than poly(log𝑇 ).

1.1 Technical Overview

We begin by describing the Waters-Wu [WW24a] adaptively-sound SNARG for NP based on indistin-

guishability obfuscation (𝑖O) and re-randomizable one-way functions. Throughout, we consider the lan-

guage of Boolean circuit satisfiability, where the Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}𝑣 → {0, 1} is fixed ahead

of time (i.e., part of the CRS). A statement 𝑥 ∈ {0, 1}𝑛 is true if there exists a witness 𝑤 ∈ {0, 1}𝑣 such that

𝐶 (𝑥,𝑤) = 1.

Building blocks. In addition to 𝑖O, the [WW24a] construction requires a puncturable pseudorandom

function (PRF) [BW13, KPTZ13, BGI14], and a re-randomizable one-way function:

• In a puncturable PRF F(𝑘, ·), the holder of the secret key 𝑘 can “puncture” the key at an input point 𝑥∗

to create a punctured key 𝑘 (𝑥
∗ )

. The punctured key 𝑘 (𝑥
∗ )

can be used to evaluate F(𝑘, 𝑥) on all points

𝑥 ≠ 𝑥∗. However, the value F(𝑘, 𝑥∗) at the punctured point remains pseudorandom even given the

punctured key 𝑘 (𝑥
∗ )

.

• The second ingredient they require is a re-randomizable one-way function (OWF) 𝑓 . This is a OWF

equipped with a statistical re-randomization algorithm that takes as input a OWF challenge𝑦base and

produces a fresh challenge 𝑦 (sampled uniformly at random from the challenge space of the OWF).

Moreover, given the re-randomization randomness together with a solution to the re-randomized

statement, there is an efficient algorithm for recovering a solution to the original OWF challenge

𝑦base. In other words, the re-randomization can be viewed as a (perfect) random self-reducibility

property on the OWF.

TheWaters-Wu construction. In the Waters-Wu construction, the CRS consists of two obfuscated pro-

grams: (1) a “solution-generator” programGenSol used to construct proofs; and (2) a “challenge-generator”

program GenChall used to verify proofs. The solution-generator GenSol has the circuit 𝐶 (for the NP re-

lation) together with three puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1 hard-wired inside.

The solution-generator program takes as input a bit𝑏 ∈ {0, 1}, a statement 𝑥 , and a witness𝑤 . It checks

that 𝑏 ≠ F(𝑘sel, 𝑥) and 𝐶 (𝑥,𝑤) = 1. If so, it outputs the solution F(𝑘𝑏, 𝑥); the proof is the pair (𝑏, F(𝑘𝑏, 𝑥)).
Next, the challenge-generator program takes as input a bit 𝑏 and a statement 𝑥 and outputs the challenge

𝑦𝑏 = 𝑓 (F(𝑘𝑏, 𝑥)). To verify a proof 𝜋 = (𝑏, 𝑧) on a statement 𝑥 , the verification algorithm first runs the

challenge-generator program on input (𝑏, 𝑥) to obtain a challenge 𝑦. Then it checks that 𝑓 (𝑧) = 𝑦.

The idea is that the solution-generator program only outputs one of the two possible solutions associ-

ated with each statement 𝑥 . Moreover, which one it chooses is determined pseudorandomly by evaluating

the selector PRF F(𝑘sel, 𝑥). We will refer to the challenge 𝑦𝑏 associated with 𝑏 = F(𝑘sel, 𝑥) as the “on-path”

challenge for 𝑥 and the challenge 𝑦𝑏 associated with 𝑏 = 1 − F(𝑘sel, 𝑥) as the “off-path” challenge for 𝑥 .
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In the Waters-Wu construction, the GenSol program is constructed so it only provides solutions to the

off-path challenge and never generates a solution to an on-path challenge. Then, in the proof of adaptive

soundness, [WW24a] show how to replace the on-path challenge for every statement with a re-randomized

challenge of a one-way function. The hope is that if the malicious prover ever produces a proof for a false

statement 𝑥 that corresponds to the on-path challenge, then it successfully breaks the one-way function.

Finally, the [WW24a] analysis appeals to the fact that for a false statement 𝑥 , the value of the selector

PRF F(𝑘sel, 𝑥) is computationally unpredictable to the adversary; as such, with probability close to 1/2, the

prover provides a solution to the on-path challenge, which completes the adaptive soundness analysis. We

now give the formal description of the GenSol and GenChall programs:
3

GenSol(𝑏, 𝑥,𝑤)
• If 𝐶 (𝑥,𝑤) = 0, output ⊥.

• If 𝑏 = F(𝑘sel, 𝑥), output ⊥.

• Output 𝑧 = F(𝑘𝑏, 𝑥).

GenChall(𝑏, 𝑥)
• Output 𝑦 = 𝑓 (F(𝑘𝑏, 𝑥)).

To construct a proof for a statement 𝑥 and witness 𝑤 , the prover simply runs the (obfuscated) GenSol
program on input (0, 𝑥,𝑤) and input (1, 𝑥,𝑤). GenSol will output ⊥ on one of these inputs, and an OWF

preimage 𝑧 = F(𝑘𝑏, 𝑥) on the other. The proof 𝜋 = (𝑏, 𝑧) consists of the bit 𝑏 and the preimage 𝑧. To check

the proof 𝜋 , the verifier simply runs the (obfuscated) GenChall program on input (𝑏, 𝑥). GenChall will

output a OWF challenge 𝑦 = 𝑓 (F(𝑘𝑏, 𝑥)), and the verifier checks that 𝑓 (𝑧) = 𝑦.

We now sketch the proof of soundness from [WW24a]. As mentioned above, the proof proceeds in

a sequence of hybrid experiments. First, they argue that with probability 1/2, the malicious prover will

output an on-path solution as its proof; this is because for a false statement 𝑥 , it is unable to predict the

value of F(𝑘sel, 𝑥). Next, they gradually replace the on-path challenge for every statement program with

a re-randomized one-way function challenge. This way, a solution to any on-path challenge implies a so-

lution to the original one-way function challenge. Since the GenSol program never outputs an on-path

solution, this does not affect completeness. However, if the prover ever produces an on-path solution, then

it successfully inverts the one-way function and adaptive soundness follows. We now sketch the sequence

of hybrids from [WW24a]:

• Hyb
0
: This is the real adaptive soundness game. The challenger outputs 1 only if the adversary A

produces an accepting proof 𝜋 = (𝑏, 𝑧) for a false statement 𝑥 : namely, 𝑓 (𝑧) = 𝑦 = GenChall(𝑏, 𝑥).

• Hyb
1
: After the adversary A outputs its proof 𝜋 = (𝑏, 𝑧), the challenger additionally checks that

𝑏 = F(𝑘sel, 𝑥), or in other words, that A output a solution to the on-path challenge. This can only

reduceA’s success probability by a factor of 2, since the value of F(𝑘sel, 𝑥) is computationally hidden

from the adversary for every false statement 𝑥 (by puncturing security). Formally, [WW24a] show

this by considering an exponential sequence of hybrids, one for each false statement 𝑥∗. In Hyb(𝑥
∗ )

1
,

the challenger punctures 𝑘sel at 𝑥∗ and hard-wires the punctured key 𝑘
(𝑥∗ )
sel in GenSol instead of 𝑘sel:

3
Note that the original Waters-Wu construction did not require GenSol and GenChall to take the bit 𝑏 ∈ {0, 1} as input. Instead,

GenSol computed𝑏 = F(𝑘sel, 𝑥) and outputted 𝑧 = F(𝑘𝑏 , 𝑥) whileGenChall outputted 𝑓 (F(𝑘0, 𝑥)) and 𝑓 (F(𝑘1, 𝑥)). The adaptation

here is equivalent to the original Waters-Wu construction and the updated syntax will be conducive when extending to batch NP.
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GenSol(𝑥
∗ ) (𝑏, 𝑥,𝑤)

– If 𝐶 (𝑥,𝑤) = 0, output ⊥.

– If 𝑏 = F(𝑘 (𝑥
∗ )

sel , 𝑥), output ⊥.

– Output 𝑧 = F(𝑘𝑏, 𝑥).

GenChall(𝑏, 𝑥)
– Output 𝑦 = 𝑓 (F(𝑘𝑏, 𝑥)).

When 𝑥∗ is a false statement, GenSol(𝑥
∗ )

still computes the same functionality asGenSol: both imme-

diately reject, since there does not exist a 𝑤 such that 𝐶 (𝑥∗,𝑤) = 1. Thus, GenSol(𝑥
∗ )

does not need

to evaluate F(𝑘sel, 𝑥∗). Now, by puncturing security, the value of F(𝑘sel, 𝑥∗) is pseudorandom even

given 𝑘
(𝑥∗ )
sel . Thus, if the adversary outputs a proof 𝜋 = (𝑏, 𝑧) for 𝑥∗, with probability 1/2 − negl(𝜆),

it will be the case that F(𝑘sel, 𝑥∗) = 𝑏.

• Hyb
2
: In this experiment, the challenger stops checking whether or not 𝑥 is false; observe that this

can only increase the adversary’s success probability. In addition, the challenger samples a random

OWF challenge 𝑦base ← 𝑓 (𝑟 ) for uniform 𝑟 along with a puncturable PRF key 𝑘rerand that will be

used to re-randomize 𝑦base. The challenger now modifies GenChall to output a re-randomization

of 𝑦base on (𝑏, 𝑥) whenever 𝑏 = F(𝑘sel, 𝑥). In other words, the on-path challenges are now replaced

by a re-randomized instance of 𝑦base. To argue that this is computationally indistinguishable from

the previous hybrid, the [WW24a] reduction again steps through an exponential number of hybrids,

one for each statement 𝑥∗. Planting the re-randomized challenge is then an exercise in punctured

programming [SW14]. The key observation is that the GenSol program never evaluates F(𝑘𝑏, 𝑥∗) for

𝑏 = F(𝑘sel, 𝑥∗). We can then appeal to punctured pseudorandomness of F(𝑘𝑏, 𝑥∗) to conclude that the

challenge 𝑦𝑏 is computationally indistinguishable from a fresh one-way function challenge, which

is in turn statistically indistinguishable from a re-randomized instance.

In Hyb
2
, algorithm A can only succeed if it provides a solution to a re-randomized one-way function

instance. But this means that A also inverts the original one-way function challenge, which completes

the proof of adaptive security. Observe that here, polynomial security of the one-way function already

suffices. Importantly, this final step is the only step in the analysis that relies on one-wayness. Thus, the

proof 𝜋 remains succinct despite the use of an exponential number of hybrids in the previous steps. The

exponential sequence of hybrids require blowing up the security parameters for the 𝑖O and puncturable

PRF schemes, but this only affects the length of the CRS and not the proof.

1.1.1 Batching SNARGs Using Homomorphic One-Way Functions

We now show how to extend the Waters-Wu scheme to the batch setting. Recall that in this setting, the

prover has a collection of 𝑇 statements 𝑥1, . . . , 𝑥𝑇 and its goal is to prove that all 𝑇 statements are true. If

we directly modify the GenSol and GenChall programs above to take in all 𝑇 statements, then the result-

ing CRS would have size that scales linearly with 𝑇 , and moreover, the scheme would only support an a

priori bounded number of statements. Our goal is to obtain a construction without this limitation. Our

first approach relies on a homomorphic re-randomizable one-way function while our second approach (see

Section 1.1.2) uses a chaining-based approach that does not rely on any homomorphic properties on the

re-randomizable one-way function.

Homomorphic re-randomizable one-way functions. As described above, the Waters-Wu construc-

tion [WW24a] uses a re-randomizable one-way function. Specifically, they show two instantiations of the
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re-randomizable one-way function: the first is based on the hardness of discrete log while the second is

based on factoring. In this work, we will consider the construction based on discrete log. To recall, letG be

a group of prime-order 𝑝 and let 𝑔 be a generator of G. The one-way function 𝑓 : Z𝑝 → G is then defined

to be the mapping 𝑧 ↦→ 𝑔𝑧 . The re-randomizable algorithm takes an instance 𝑦 = 𝑔𝑧 and samples a random

𝑟
r← Z𝑝 and outputs 𝑦 · 𝑔𝑟 = 𝑔𝑧+𝑟 . Our first observation is that this one-way function is homomorphic:

𝑓 (𝑧1 + 𝑧2) = 𝑔𝑧1+𝑧2 = 𝑔𝑧1 · 𝑔𝑧2 = 𝑓 (𝑧1) · 𝑓 (𝑧2) .

In the context of the Waters-Wu SNARG, the values 𝑧 would correspond to the preimages in the proof

𝜋 . Suppose now that we have 𝑇 proofs (𝑏1, 𝑧1), . . . , (𝑏𝑇 , 𝑧𝑇 ) on 𝑇 different statements 𝑥1, . . . , 𝑥𝑇 . Then a

natural approach to obtain a batch proof on all 𝑇 statements is to compute 𝑧 =
∑

𝑖∈[𝑇 ] 𝑧𝑖 ∈ Z𝑝 . Then,

𝑓 (𝑧) = 𝑓
©­«
∑︁
𝑖∈[𝑇 ]

𝑧𝑖
ª®¬ =

∏
𝑖∈[𝑇 ]

𝑓 (𝑧𝑖) =
∏
𝑖∈[𝑇 ]

𝑦𝑖,𝑏𝑖 ,

where 𝑦𝑖,𝑏𝑖 = GenChall(𝑏𝑖 , 𝑥𝑖) is the challenge bit associated with statement 𝑖 . Now, if the verifier knew

the bits 𝑏1, . . . , 𝑏𝑇 , it can compute 𝑦𝑖,𝑏𝑖 = GenChall(𝑏𝑖 , 𝑥𝑖) and then 𝑦 =
∏

𝑖∈[𝑇 ] 𝑦𝑖,𝑏𝑖 ∈ G. Then, the veri-

fication algorithm would simply boil down to checking that 𝑦 = 𝑓 (𝑧). In this case, the prover just needs

to provide the aggregated preimage 𝑧 rather than the individual preimages (𝑧1, . . . , 𝑧𝑇 ). The problem with

this basic approach is that the verifier does not know the individual bits 𝑏𝑖 ∈ {0, 1}. While the prover can

certainly include the bits 𝑏𝑖 for each statement as part of the proof, this means the size of the proof is now

𝑇 + poly(𝜆), which no longer meets our succinctness requirement. Note that if 𝑇 = 𝑂 (log 𝜆), the verifier

can try all the possible values for 𝑏1, . . . , 𝑏𝑇 , but this approach does not work for general 𝑇 .

Using a large alphabet. We solve this problem by increasing the alphabet size. Namely, instead of hav-

ing two challenges, suppose instead we had 𝑇 + 1 challenges (i.e., the selector PRF F(𝑘sel, ·) now outputs

an element of the set {1, 2, . . . ,𝑇 + 1}) and correspondingly, 𝑇 + 1 PRF keys 𝑘1, . . . , 𝑘𝑇+1 used to generate

the challenges. In the batch setting, the on-path challenge is a function of both the statement 𝑥𝑖 and the

index 𝑖 ∈ [𝑇 ] (i.e., the 𝑗 th challenge is 𝑧 = PRF(𝑘 𝑗 , (𝑥𝑖 , 𝑖))). For each statement-index pair (𝑥𝑖 , 𝑖), there

is a single “on-path” challenge index 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)) ∈ [𝑇 + 1] for which the GenSol program will not

provide a preimage and𝑇 off-path challenges for which the GenSol program will provide preimages (given

a valid witness for 𝑥𝑖 ). This means that for any batch of 𝑇 statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ), there always exists

some index 𝑗 ∈ [𝑇 + 1] for which 𝑗 ≠ F(𝑘sel, (𝑖, 𝑥𝑖)) for all 𝑖 ∈ [𝑇 ]. Since the same index 𝑗 can now be

shared across all𝑇 statements, the prover only needs to communicate the single index (of length𝑂 (log𝑇 ))
as part of its proof. Concretely, the programs in the CRS (where the re-randomizable one-way function is

instantiated with the discrete log construction) are now defined as follows:

GenSol(𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖)
• If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

• If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

• Output 𝑧 = F(𝑘 𝑗 , (𝑥𝑖 , 𝑖)).

GenChall(𝑖, 𝑗, 𝑥𝑖)

• Output 𝑦 = 𝑔F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) )
.

Our scheme now operates as follows:

• Proof generation: To construct a proof on 𝑥1, . . . , 𝑥𝑇 (using witnesses 𝑤1, . . . ,𝑤𝑇 ), the prover first

finds an index 𝑗 ∈ [𝑇 + 1] where 𝑧𝑖 = GenSol(𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖) ≠ ⊥ for all 𝑖 ∈ [𝑇 ]. Then it computes the

aggregated proof 𝑧 =
∑

𝑖∈[𝑇 ] 𝑧𝑖 and outputs the proof 𝜋 = ( 𝑗, 𝑧).
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• Proof verification: To verify the proof, the verifier computes the challenge 𝑦𝑖 = GenChall(𝑖, 𝑗, 𝑥𝑖)
for each 𝑖 ∈ [𝑇 ] and then computes the aggregated challenge 𝑦 =

∏
𝑖∈[𝑇 ] 𝑦𝑖 . Finally, the verifier

checks that 𝑔𝑧 = 𝑦.

As written, theGenSol andGenChall programs would require us to hard-wire all𝑇 +1 PRF keys𝑘1, . . . , 𝑘𝑇+1
into the GenSol and GenChall programs. Consequently, the size of the CRS now grows with 𝑇 , which is

no better than directly applying [WW24a] to the batch language. To get around this, we derive the keys

𝑘 𝑗 for 𝑗 ∈ [𝑇 + 1] from another (puncturable) PRF. The modified programs are defined as follows:

GenSol(𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖)
• If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

• If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

• Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
• Output 𝑧 = F(𝑘 𝑗 , (𝑥𝑖 , 𝑖)).

GenChall(𝑖, 𝑗, 𝑥𝑖)
• Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
• Output 𝑦 = 𝑔F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) )

.

To argue adaptive soundness, we adopt a strategy similar to that used in [WW24a]:

• We start by arguing that with non-negligible probability, the adaptive soundness adversary outputs

a tuple of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and an accepting proof 𝜋 = ( 𝑗, 𝑧) where 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗))
for some 𝑖∗ ∈ [𝑇 ]. In other words, the adversary gives a proof for an on-path challenge. This step is

the analog of the transition between Hyb
0

and Hyb
1

in the above sketch of the [WW24a] reduction.

This argument relies on the fact that if 𝑥𝑖∗ is a false instance, the value of F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) is compu-

tationally indistinguishable from a random index in [𝑇 + 1]. Thus, whenever the adversary outputs

a tuple ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) that contains a false instance 𝑥𝑖∗ together with a proof 𝜋 = ( 𝑗, 𝑧), then

with probability roughly 1/(𝑇 + 1), the adversary’s index 𝑗 satisfies 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)). The formal

argument relies on 𝑖O security and security of the puncturable PRF.

If the adversary breaks adaptive soundness with advantage 𝜀, then the above argument shows that

with probability roughly 𝜀/(𝑇 + 1), the adversary outputs ®𝑥 and 𝜋 = ( 𝑗, 𝑧) where 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗))
for some 𝑖∗ ∈ [𝑇 ]. We can now move to an experiment where the challenger guesses the index

𝑖∗ r← [𝑇 ] and the adversary is only considered successful if it breaks adaptive soundness and more-

over, the index 𝑗 it outputs satisfies 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)). Over the randomness of 𝑖∗, we conclude

that the adversary will win this modified experiment with probability 𝜀/(𝑇 (𝑇 + 1)), which remains

non-negligible since the number of instances 𝑇 is always polynomially-bounded.

• At this point, the adversary wins only if it outputs a proof 𝜋 = ( 𝑗, 𝑧) where 𝑗 = PRF(𝑘sel, (𝑥𝑖∗, 𝑖∗)).
Similar to the analysis in [WW24a], the reduction algorithm now modifies the GenChall program

to output a re-randomized one-way function challenge (derived from a single base instance 𝑦base) as

the on-path challenge for every statement 𝑥∗ at index 𝑖∗:

GenSol(𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖)
– If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

– If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– Output 𝑧 = F(𝑘 𝑗 , (𝑥𝑖 , 𝑖)).

GenChall(𝑖, 𝑗, 𝑥𝑖)
– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output

𝑦 = 𝑦base · 𝑔F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) )
.

– Otherwise, output 𝑦 = 𝑔F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) )
.
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This is the analog of the transition between Hyb
1

and Hyb
2

in the above sketch of the [WW24a]

reduction and relies on the fact that for all instances 𝑥∗, the GenSol program never needs to evaluate

F(𝑘 𝑗 , (𝑥∗, 𝑖∗)) where 𝑗 = F(𝑘sel, (𝑥∗, 𝑖∗)). Thus, we can rely on 𝑖O security and punctured pseudoran-

domness to replace the challenge 𝑔PRF(𝑘 𝑗 ,(𝑥∗,𝑖∗ ) )
with a re-randomized instance 𝑦base · 𝑔PRF(𝑘 𝑗 ,(𝑥∗,𝑖∗ ) )

.

Now, suppose the adversary is successful in the final experiment: namely, the adversary constructs a valid

proof 𝜋 = ( 𝑗, 𝑧) on ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝑗 = PRF(𝑘sel, (𝑥𝑖∗, 𝑖∗)) is the on-path challenge index. We claim

that we can use any such adversary to solve the discrete log problem. Let (𝑔, ℎ) where ℎ = 𝑔𝛼 be the

discrete log challenge. The reduction algorithm samples all of the PRF keys itself and uses the discrete log

challenge ℎ as the base instance 𝑦base = ℎ that it embeds into GenChall. Suppose the adversary constructs

a valid proof 𝜋 = ( 𝑗, 𝑧) on ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝑗 = PRF(𝑘sel, (𝑥𝑖∗, 𝑖∗)). Then, the following hold:

• For each 𝑖 ∈ [𝑇 ] \ {𝑖∗}, GenChall(𝑖, 𝑗, 𝑥𝑖) outputs 𝑦𝑖 = 𝑔F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) )
.

• Since 𝑗 = PRF(𝑘sel, (𝑥𝑖∗, 𝑖∗)),GenChall(𝑖∗, 𝑗, 𝑥𝑖) outputs the re-randomized instance𝑦𝑖∗ = ℎ·𝑔F(𝑘 𝑗 ,(𝑥𝑖∗ ,𝑖∗ ) ) .

• If 𝑧 ∈ Z𝑝 is a valid proof, then it must be the case that

𝑔𝑧 =
∏
𝑖∈[𝑇 ]

𝑦𝑖 = ℎ · 𝑔
∑

𝑖∈ [𝑇 ] F(𝑘 𝑗 ,(𝑥𝑖 ,𝑖 ) ) .

Writing ℎ = 𝑔𝛼 , this means

𝛼 = 𝑧 −
∑︁
𝑖∈[𝑇 ]

𝐹 (𝑘 𝑗 , (𝑥𝑖 , 𝑖)) . (1.1)

If the adversary outputs a valid proof 𝑧, then the reduction algorithm is able to recover the discrete log

𝛼 of the challenge instance ℎ, which complete the proof. Note that the reduction algorithm chose all of

the PRF keys, so it is able to compute all terms in Eq. (1.1). We give the formal description and analysis of

this scheme in Section 4. There, we describe our construction with respect to an arbitrary homomorphic

re-randomizable one-way function (as opposed to just the discrete log version illustrated above).

Parameter sizes. The size of the programs in the CRS in the above construction is poly(𝜆 + |𝐶 | + log𝑇 ).
Thus, setting 𝑇 = 2

𝜆
allows us to support any a priori unbounded polynomial number of statements. This

gives the first adaptively-sound SNARG for batch NP (that supports an unbounded number of statements)

with full succinctness from standard falsifiable assumptions.

1.1.2 Batching SNARGs via a Chaining Approach and Re-randomizable PRGs

Thus far, we have demonstrated how to extend the Waters-Wu SNARG to support batching by relying

on the homomorphic structure of the one-way function. In this work, we also give a second approach to

support batching that does not assume any homomorphic properties on the output SNARG. Instead, our

construction relies on a re-randomizable pseudorandom generator (PRG).

The chaining template from [GSWW22]. We follow a similar template as the general aggregation

approach from [GSWW22]. The work of [GSWW22] constructs a non-adaptively-sound SNARG for batch

NP by adapting the non-adaptively-sound SNARG for NP by Sahai and Waters [SW14]. Specifically, they

describe a “chaining” approach where the prover program (in the CRS) takes as input a hash digest dig of

the statements (𝑥1, . . . , 𝑥𝑇 ), a proof 𝜋𝑖−1 on the first 𝑖−1 statements, the next statement 𝑥𝑖 , and an associated
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witness 𝑤𝑖 , together with an opening of 𝑥𝑖 with respect to the digest dig. The prover checks that 𝜋𝑖−1 is a

valid proof on the digest dig, that dig opens to 𝑥𝑖 at position 𝑖 , and that 𝑤𝑖 is a valid witness for 𝑥𝑖 . If all

of these properties hold, then the program outputs a proof for the first 𝑖 statements (with respect to dig).

To prove non-adaptive soundness, the idea in [GSWW22] is to first identify the index 𝑖 ∈ [𝑇 ] of a false
statement, and use punctured programming to argue that there does not exist any accepting proofs on the

first 𝑖 statements. This step relies on the fact that there are no witnesses for the false statement 𝑥𝑖 . Then,

they show that if there does not exist an accepting proof for index 𝑖 , there also does not exist an accepting

proof for index 𝑖 + 1. This proceeds until the final hybrid where they argue that there does not exist any

proof for index 𝑇 , at which point non-adaptive soundness holds.

The challenge with adaptive soundness. Unlike the single-statement setting, in the chaining ap-

proach, it is no longer sufficient to argue that an accepting proof of a false statement is computationally

hard to find. This is because the obfuscated prover program (i.e., the analog of GenSol) is first checking

the proof on the first 𝑖 − 1 statements when deciding whether to generate a proof for the first 𝑖 statements

or not. If there exists a valid proof on the first 𝑖 − 1 statements, then this program does not output ⊥ on

all inputs with index 𝑖 (e.g., consider the setting where statement 𝑥𝑖 is true). As a result, we cannot argue

that there does not exist a proof on the first 𝑖 statements. In contrast, if we can argue that there are no

accepting proofs on the first 𝑖 − 1 statements, then we can leverage 𝑖O security to argue that there are also

no accepting proofs on the first 𝑖 statements (since the obfuscated prover program never accepts a proof

on the first 𝑖 − 1 statements, it would never output a proof for the first 𝑖 statements).

In the Waters-Wu approach, they showed that if an adversary could construct a proof of a false state-

ment, then the adversary can also invert the one-way function. Notably, this is a computational property,

and the previous analysis can only rule out an adversary finding an accepting proof efficiently. Conse-

quently, this is insufficient to implement the chaining approach from [GSWW22] as proofs of false state-

ments do exist (but are hard to find). The work of [GSWW22] leverages an (expanding) pseudorandom

generator to check the proofs instead of using a one-way function precisely to move to a hybrid where

proofs on false statements no longer exist.

Re-randomizable PRGs. In Section 6, we show how to use a similar chaining strategy together with the

Waters-Wu approach to obtain an adaptively-sound SNARG for batch NP. For the reasons outlined above,

our approach requires a way to rule out the existence of proofs on false statements. To do so, we rely on the

stronger notion of a re-randomizable PRG instead of a re-randomizable OWF. In a re-randomizable PRG

G : {0, 1}𝜆 → {0, 1}𝑡 , there is an algorithm that takes a string 𝑦base ∈ {0, 1}𝑡 and re-randomizes it to a new

string 𝑦 ∈ {0, 1}𝑡 with the following properties:

• If 𝑦base is the in the image of the PRG (i.e., 𝑦base = PRG(𝑠) for some 𝑠 ∈ {0, 1}𝜆), then the re-

randomized value 𝑦 is distributed according to G(𝑠) for a fresh seed 𝑠
r← {0, 1}𝜆 .

• If 𝑦base is not in the image of the PRG, then the re-randomized value 𝑦 is distributed according to a

random value 𝑦
r← {0, 1}𝑡 \

{
PRG(𝑠) : 𝑠 ∈ {0, 1}𝜆

}
.

We can construct a re-randomizable PRF from the decisional Diffie-Hellman (DDH) assumption. In par-

ticular, we work over a group G of prime order 𝑝 and generator 𝑔, and define the public parameters to

be (𝑔, ℎ) where ℎ
r← G. Then, we define the generator G : Z∗𝑝 → G × G as the mapping 𝑥 ↦→ (𝑔𝑥 , ℎ𝑥 ).

Pseudorandomness follows directly from the DDH assumption, and the re-randomization follows via the

DDH random self-reduction that maps (𝑢, 𝑣) ↦→ (𝑢𝑟 , 𝑣𝑟 ) where 𝑟
r← Z∗𝑝 .
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The chaining approach using re-randomizable PRGs. In our chaining-based approach for aggre-

gating adaptively-sound SNARGs, we replace the GenSol and GenChall programs from [WW24a] with a

proof aggregation program AggProof and a proof verification program VerProof with the following syntax:

• The proof aggregation program AggProof outputs a proof for a digest dig and index 𝑖 if it is given a

valid proof on dig and index 𝑖 − 1, a valid statement-witness pair (𝑥𝑖 ,𝑤𝑖), and a proof that dig opens

to statement 𝑥𝑖 at index 𝑖 .

• The proof verification program VerProof only accepts a proof ( 𝑗, 𝑧) for the digest dig and index 𝑖 if

G(𝑧) = G(F(𝑘 𝑗 , (dig, 𝑖))). Importantly, note that the proof just consists of the index 𝑗 and the solu-

tion 𝑧; it does not contain the digest dig (which is at least as long as a single statement). The verifier

computes the digest dig from the statements at verification time.

Importantly, we have replaced the re-randomizable one-way function 𝑓 with a re-randomizable PRG. If we

instantiate this template with the adaptively-sound construction with 𝑇 + 1 challenges, the CRS consists

of obfuscations of the following programs:

AggProof (𝑖, 𝑗, dig, 𝑥,𝑤, 𝜎, 𝑧𝑖−1)
• If 𝐶 (𝑥,𝑤) = 0, output ⊥.

• If 𝜎 does not open dig to 𝑥 at index 𝑖 , output ⊥.

• If 𝑗 = F(𝑘sel, (𝑥, 𝑖)), output ⊥.

• If 𝑖 ≠ 1 and VerProof ( 𝑗, dig, 𝑖 − 1, 𝑧𝑖−1) = 0,

output ⊥.

• Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
• Output 𝑧 = F(𝑘 𝑗 , (dig, 𝑖)).

VerProof (𝑖, 𝑗, dig, 𝑧𝑖)
• Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
• If G(𝑧𝑖 ) = G(F(𝑘 𝑗 , (dig, 𝑖))), output 1. Otherwise,

output 0.

To construct a proof on statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) with associated witnesses (𝑤1, . . . ,𝑤𝑇 ), the prover

proceeds as follows:

• It start by computing a digest dig of the statements (𝑥1, . . . , 𝑥𝑇 ). Let 𝜎1, . . . , 𝜎𝑇 be the associated local

openings of dig to the statements 𝑥1, . . . , 𝑥𝑇 , respectively.

• For each 𝑗 ∈ [𝑇 + 1], the prover initializes 𝑧0 = ⊥. Then, for each 𝑖 = 1, . . . ,𝑇 , it computes

𝑧𝑖 ← AggProof (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1). If 𝑧1, . . . , 𝑧𝑇 ≠ ⊥, then the prover outputs the proof ( 𝑗, 𝑧𝑇 ).
Otherwise, it retries with the next value of 𝑗 .

For each statement-index pair (𝑥𝑖 , 𝑖), there is exactly one index 𝑗 where AggProof outputs ⊥. Thus, there

exists at least one index 𝑗 ∈ [𝑇 + 1] where the prover succeeds in constructing a proof ( 𝑗, 𝑧𝑇 ). To check

a proof 𝜋 = ( 𝑗, 𝑧) for a batch of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ), the verifier computes the digest dig of

(𝑥1, . . . , 𝑥𝑇 ) and outputs VerProof (𝑇, 𝑗, dig, 𝑧).

Arguing adaptive soundness. We now give a sketch of the adaptive soundness proof:

• Suppose we have an adversary A that can break adaptive soundness with advantage 𝜀. This means

that A outputs a vector of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and a proof 𝜋 = ( 𝑗, 𝑧) such that 𝜋 is a valid

proof and moreover, there exists some index 𝑖∗ ∈ [𝑇 ] where 𝑥𝑖∗ is a false instance.

• Our proof of adaptive soundness steps through a sequence of hybrid experiments. In the initial

sequence, the challenger starts by sampling an index 𝑖∗ r← [𝑇 ] and we declare the adversary
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to be successful only if it outputs a valid proof 𝜋 = ( 𝑗, 𝑧) on a vector of statements ®𝑥 where

𝑗 = PRF(𝑘sel, (𝑥𝑖∗, 𝑖∗)). As in the construction from Section 1.1.1, this corresponds to a proof for an

“on-path” challenge. To argue this, we use the fact that if 𝑥𝑖∗ is a false statement, then the AggProof
program never needs to compute F(𝑘sel, (𝑥𝑖∗, 𝑖∗)). Correspondingly, we can rely on puncturing secu-

rity of F(𝑘sel, ·) to conclude that the value of F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) is pseudorandom from the perspective

of the adversary. Then the following hold:

– Conditioned on 𝑥𝑖∗ being a false statement, with probability negligibly close to 𝜀/(𝑇 + 1), the

adversary wins the adaptive soundness game and outputs an index 𝑗 where 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).
– The reduction samples 𝑖∗ r← [𝑇 ] and a successful adversary must choose ®𝑥 that contains at

least one false instance, so 𝑥𝑖∗ is a false instance with probability at least 1/𝑇 .
4

Putting these pieces together, we conclude that the adversary wins the adaptive soundness game and

outputs an index 𝑗 where 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) with probability that is negligibly close to 𝜀/(𝑇 (𝑇 +1)).

• We are now ready to begin the chaining argument. Our analysis proceeds in a sequence of hybrids

indexed by 𝑡 = 𝑖∗, 𝑖∗ + 1, . . . ,𝑇 . In Hyb𝑡 , we modify the verification program VerProof ( 𝑗, dig, 𝑖, 𝑧𝑖) to

always output 0 when 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) and 𝑖∗ ≤ 𝑖 ≤ 𝑡 (irrespective of dig or 𝑧𝑖 ). In the final hybrid

Hyb𝑇 , the VerProof program always outputs 0 if 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) and 𝑖 = 𝑇 . Correspondingly, the

challenger in this final hybrid also always outputs 0, which completes the proof.

The wrinkle with this strategy is that we cannot embed the instance 𝑥𝑖∗ into the VerProof program.

This is because the adaptive adversary chooses the instance 𝑥𝑖∗ after seeing the CRS (which contains

the obfuscated version of VerProof). To carry out this strategy, we need to augment VerProof with

a mechanism to determine 𝑥𝑖∗ from the inputs. In this case, we leverage the digest dig and assume

that the underlying hash function is somewhere extractable at 𝑖∗. Namely, there is an Extract(td, dig)
algorithm that takes as input a trapdoor td and a digest dig and outputs a value 𝑥𝑖∗ with the property

that the only valid opening for dig at index 𝑖∗ is to the value 𝑥𝑖∗ . We then inductively show that the

following invariant holds for all 𝑡 = 𝑖∗, 𝑖∗ + 1, . . . ,𝑇 :

– VerProof ( 𝑗, dig, 𝑖, 𝑧𝑖) outputs 0 for all dig and 𝑧𝑖 when 𝑗 = 𝑗∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑡 , where 𝑗∗ =

F(𝑘sel, (Extract(td, dig), 𝑖∗)).

The base case corresponds to showing that the invariant holds when 𝑡 = 𝑖∗. To argue this, we replace

the obfuscation of AggProof in the CRS with an obfuscation of the modified program AggProof𝑖∗,𝑖∗
(and leave VerProof unchanged):

AggProof𝑖∗,𝑖∗ (𝑖, 𝑗, dig, 𝑥,𝑤, 𝜎, 𝑧𝑖−1)

– If 𝐶 (𝑥,𝑤) = 0, output ⊥.

– If 𝜎 does not open dig to 𝑥 at index 𝑖 , output⊥.

– Compute 𝑗∗ = F(𝑘sel, (Extract(td, dig), 𝑖∗)). If

𝑖 = 𝑖∗ and 𝑗 = 𝑗∗, output ⊥.

– If 𝑗 = F(𝑘sel, (𝑥, 𝑖)), output ⊥.

– If 𝑖 ≠ 1 and VerProof ( 𝑗, dig, 𝑖 − 1, 𝑧𝑖−1) = 0,

output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– Output 𝑧 = F(𝑘 𝑗 , (dig, 𝑖)).

VerProof (𝑖, 𝑗, dig, 𝑧𝑖)
– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– If G(𝑧𝑖 ) = G(F(𝑘 𝑗 , (dig, 𝑖))), output 1. Other-

wise, output 0.

4
In the proof of Theorem 6.4, we provide the “most-likely” index 𝑖∗ where the adversary cheats as non-uniform advice. This is

analogous to guessing the cheating index.
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The somewhere extractability property of the hash function ensures that AggProof𝑖∗,𝑖∗ has the same

input/output behavior as AggProof. Namely, the only inputs (𝑖, 𝑗, dig, 𝑥,𝑤, 𝜎, 𝑧𝑖−1) where the two

programs could differ are those where 𝑖 = 𝑖∗ and 𝜎 opens to 𝑥 at index 𝑖∗. Since 𝜎 can be opened

to 𝑥 at 𝑖∗, and the hash function is extractable at 𝑖∗, this means that Extract(td, dig) = 𝑥 . The addi-

tional condition introduced in AggProof𝑖∗,𝑖∗ is simply checking if 𝑗 = F(𝑘sel, (𝑥, 𝑖∗)), which is already

checked in the original program AggProof. As such, the obfuscations of AggProof𝑖∗,𝑖∗ and AggProof
are computationally indistinguishable by 𝑖O security.

Next we modify the verification program to reject on dig and 𝑧𝑖 when 𝑖 = 𝑖∗ and 𝑗 = 𝑗∗. This

corresponds to the base case for the chaining analysis:

AggProof𝑖∗,𝑖∗ (𝑖, 𝑗, dig, 𝑥,𝑤, 𝜎, 𝑧𝑖−1)

– If 𝐶 (𝑥,𝑤) = 0, output ⊥.

– If 𝜎 does not open dig to 𝑥 at index 𝑖 , output⊥.

– Compute 𝑗∗ = F(𝑘sel, (Extract(td, dig), 𝑖∗)). If

𝑖 = 𝑖∗ and 𝑗 = 𝑗∗, output ⊥.

– If 𝑗 = F(𝑘sel, (𝑥, 𝑖)), output ⊥.

– If 𝑖 ≠ 1 and VerProof𝑖∗,𝑖∗ ( 𝑗, dig, 𝑖 − 1, 𝑧𝑖−1) = 0,

output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– Output 𝑧 = F(𝑘 𝑗 , (dig, 𝑖)).

VerProof𝑖∗,𝑖∗ (𝑖, 𝑗, dig, 𝑧𝑖)
– Let 𝑗∗ = F(𝑘sel, (Extract(td, dig), 𝑖∗)).
– If 𝑖 = 𝑖∗ and 𝑗 = 𝑗∗, output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– If G(𝑧𝑖 ) = G(F(𝑘 𝑗 , (dig, 𝑖))), output 1. Other-

wise, output 0.

We argue this via the following sequence of steps:

– By construction, AggProof𝑖∗,𝑖∗ does not compute PRF(𝑘 𝑗∗, (dig, 𝑖∗)) for all choices of dig. This

is because when 𝑖 = 𝑖∗ and 𝑗 = 𝑗∗, the AggProof𝑖∗,𝑖∗ program always outputs ⊥.

– We now appeal to (punctured) pseudorandomness of PRF(𝑘 𝑗∗, ·) and 𝑖O security to replace all
of the PRG outputs G(PRF(𝑘 𝑗∗, (dig, 𝑖∗))) with a re-randomized instance derived from a single

challenge 𝑦base (where the re-randomization randomness is obtained by evaluating a PRF with

𝑘 𝑗∗ ). Formally, we implement this with an exponential number of hybrids (one for each dig)

and iteratively replace G(PRF(𝑘 𝑗∗, (dig, 𝑖∗))) with the re-randomized instance.

– Then, we appeal to pseudorandomness of the PRG to replace 𝑦base with a random instance.

If the PRG is (sufficiently) expanding, then with overwhelming probability, the value of 𝑦base
is no longer in the image of the PRG. In this case, all of the re-randomized challenges (asso-

ciated with each (dig, 𝑖∗) pair) are no longer in the image of the PRG, and as such, there no

longer exists 𝑧 that satisfies the verification requirement for any choice of (dig, 𝑖∗). This means

the verification program outputs 0 on all inputs (𝑖, 𝑗, dig, 𝑧𝑖) where 𝑖 = 𝑖∗ and 𝑗 = 𝑗∗. This is

precisely the behavior of VerProof𝑖∗,𝑖∗ , and the claim holds by 𝑖O security.

Having established the base case, the inductive step proceeds similarly. We define a sequence of

hybrid experiments Hyb𝑡 where 𝑡 = 𝑖∗, 𝑖∗ + 1, . . . ,𝑇 where in Hyb𝑡 , the CRS contains obfuscations of

the programs:
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AggProof𝑖∗,𝑡 (𝑖, 𝑗, dig, 𝑥,𝑤, 𝜎, 𝑧𝑖−1)

– If 𝐶 (𝑥,𝑤) = 0, output ⊥.

– If 𝜎 does not open dig to 𝑥 at index 𝑖 , output⊥.

– Compute 𝑗∗ = F(𝑘sel, (Extract(td, dig), 𝑖∗)). If

𝑖 = 𝑖∗ and 𝑗 = 𝑗∗, output ⊥.

– If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

– If 𝑖 ≠ 1 and VerProof𝑖∗,𝑡 ( 𝑗, dig, 𝑖 − 1, 𝑧𝑖−1) = 0,

output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– Output 𝑧 = F(𝑘 𝑗 , (dig, 𝑖)).

VerProof𝑖∗,𝑡 (𝑖, 𝑗, dig, 𝑧𝑖)
– Let 𝑗∗ = F(𝑘sel, (Extract(td, dig), 𝑖∗)).
– If 𝑖∗ ≤ 𝑖 ≤ 𝑡 and 𝑗 = 𝑗∗, output ⊥.

– Compute 𝑘 𝑗 ← F(𝑘, 𝑗).
– If G(𝑧𝑖 ) = G(F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))), output 1. Other-

wise, output 0.

We can move from Hyb𝑡 to Hyb𝑡+1 using a similar argument as used to establish the base case:

– By construction, AggProof𝑖∗,𝑡 does not compute PRF(𝑘 𝑗∗, (dig, 𝑡 +1)) for all choices of dig. This

is because VerProof𝑖∗,𝑡 (𝑖, 𝑗, dig, 𝑧𝑖) outputs 0 when 𝑖 = 𝑡 and 𝑗 = 𝑗∗.

– As in the base case, we next appeal to (punctured) pseudorandomness of PRF(𝑘 𝑗∗, ·) and 𝑖O se-

curity to replace all of the PRG outputs G(PRF(𝑘 𝑗∗, (dig, 𝑡 +1))) with a re-randomized instance

derived from a single challenge 𝑦base.

– Then, we appeal to pseudorandomness of the PRG to replace𝑦base with a random instance. This

means the verification program outputs 0 on all inputs (𝑖, 𝑗, dig, 𝑧𝑖) where 𝑗 = 𝑗∗ and 𝑖∗ ≤ 𝑖 ≤
𝑡 + 1. But this is precisely the behavior of VerProof𝑖∗,𝑡+1, and the claim holds by 𝑖O security.

We provide the formal description in Section 6 (specifically, see the proof of Theorem 6.4).

Potential extensions and open problems. While this construction does not achieve better properties

than our above approach relying on homomorphic re-randomizable one-way functions, it provides an al-

ternative approach for constructing adaptively-sound SNARGs for batch NP. We believe these techniques

are of independent interest, and may be amenable to generalizing beyond batch NP (e.g., to monotone-

policy batch NP [BBK
+
23, NWW24]). We leave this as an intriguing open problem.

The homomorphic aggregation approach critically assumes that the proofs themselves are algebraic

objects and satisfy some homomorphism. While initial constructions such as [WW24a, WZ24] have this

property, it is not true of all adaptively-sound SNARGs (e.g., the very recent work [WW24b]). The chaining

approach does not rely on any assumption about the structure of the proofs themselves, and thus, could

plausibly be based on unstructured assumptions (similar to how [WW24b] constructs a SNARG for NP).

2 Preliminaries

Throughout this work, we write 𝜆 to denote the security parameter. We write poly(𝜆) to denote a fixed
polynomial in the security parameter 𝜆. We say a function 𝑓 (𝜆) is negligible in 𝜆 if 𝑓 (𝜆) = 𝑜 (𝜆−𝑐) for all

constants 𝑐 ∈ N and denote this by writing 𝑓 (𝜆) = negl(𝜆). When 𝑥,𝑦 ∈ {0, 1}𝑛 , we will view 𝑥 and 𝑦 as

both bit-strings of length 𝑛 as well as the binary representation of an integer between 0 and 2
𝑛 − 1. We

write “𝑥 ≤ 𝑦” to refer to the comparison of the integer representations of 𝑥 and 𝑦. We say an algorithm

is efficient if it runs in probabilistic polynomial time in the length of its input. For a function 𝑓 : X → Y,

we write Im(𝑓 ) to denote the image of 𝑓 . For a finite set 𝑆 , we write 𝑥
r← 𝑆 to denote that 𝑥 is sampled

uniformly at random from 𝑆 .
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Sub-exponential hardness. Our construction will rely on sub-exponential hardness assumptions, so

we will formulate some of our security definitions using (𝑡, 𝜀)-notation. Generally, we say that a primitive

is (𝑡, 𝜀)-secure if, for all adversariesA running in time at most 𝑡 (𝜆) ·poly(𝜆), there exists 𝜆A ∈ N such that

for all 𝜆 ≥ 𝜆A , the adversary’s advantage is bounded by 𝜀 (𝜆). We say a primitive is polynomially secure

if it is (1, negl(𝜆))-secure for some negligible function negl(·).

2.1 Cryptographic Building Blocks

We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI
+
01]). An indistinguishability obfuscator for Boolean

circuits is an efficient algorithm 𝑖O(·, ·, ·) with the following properties:

• Correctness. For any security parameter 𝜆 ∈ N, circuit size parameter 𝑠 ∈ N, Boolean circuit 𝐶 of

size at most 𝑠 , and input 𝑥 ,

Pr[𝐶 (𝑥) = 𝐶 (𝑥) : 𝐶 ← 𝑖O(1𝜆, 1𝑠 ,𝐶)] = 1.

• Security. For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the program indistinguishability

game between an adversary A and a challenger as follows:

– On input security parameter 1
𝜆
,A outputs a size parameter 1

𝑠
and two Boolean circuits𝐶0,𝐶1

of size at most 𝑠 .

– If there exists an input 𝑥 such that 𝐶0(𝑥) ≠ 𝐶1(𝑥), then the challenger halts with output ⊥.

Otherwise, the challenger replies with 𝑖O(1𝜆, 1𝑠 ,𝐶𝑏).
– A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that 𝑖O is (𝑡, 𝜀)-secure if for all adversaries A running in time at most 𝑡 (𝜆) · poly(𝜆), there

exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , we have that

iOAdvA (𝜆) B |Pr[𝑏′ = 1 : 𝑏 = 1] − Pr[𝑏′ = 1 : 𝑏 = 0] | ≤ 𝜀 (𝜆) .

Definition 2.2 (Puncturable PRF [BW13,KPTZ13,BGI14]). A puncturable pseudorandom function consists

of a tuple of efficient algorithms ΠPPRF = (Setup, Eval, Puncture) with the following syntax:

• Setup(1𝜆, 1ℓin, 1ℓout) → 𝑘 : On input security parameter 1
𝜆
, input length 1

ℓin
, and output length 1

ℓout
,

the randomized setup algorithm outputs a key 𝑘 . We assume that the key 𝑘 contains an implicit

description of ℓin and ℓout.

• Eval(𝑘, 𝑥) → 𝑦: On input the key 𝑘 and a point 𝑥 ∈ {0, 1}ℓin , the deterministic evaluation algorithm

outputs a value 𝑦 ∈ {0, 1}ℓout .

• Puncture(𝑘, 𝑥∗) → 𝑘 (𝑥
∗ )

: On input key 𝑘 and point 𝑥∗ ∈ {0, 1}ℓin , the puncturing algorithm outputs

a punctured key 𝑘 (𝑥
∗ )

. We assume that the punctured key 𝑘 (𝑥
∗ )

also contains an implicit description

of ℓin and ℓout.

We require that ΠPPRF satisfy the following properties:

15



• Punctured correctness. For all 𝜆, ℓin, ℓout ∈ N, and all distinct points 𝑥 ≠ 𝑥∗ ∈ {0, 1}ℓin ,

Pr

[
Eval(𝑘, 𝑥) = Eval(𝑘 (𝑥∗ ) , 𝑥) :

𝑘 ← Setup(1𝜆, 1ℓin, 1ℓout)
𝑘 (𝑥

∗ ) ← Puncture(𝑘, 𝑥∗)

]
= 1.

• Puncturing security. For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the (selective)

puncturing security game between an adversary A and a challenger as follows:

– On input security parameter 1
𝜆
, A outputs the input length 1

ℓin
, the output length 1

ℓout
, and

commits to a point 𝑥∗ ∈ {0, 1}ℓin .

– The challenger samples the PRF key 𝑘 ← Setup(1𝜆, 1ℓin, 1ℓout). Then, it computes and gives the

punctured key 𝑘 (𝑥
∗ ) ← Puncture(𝑘, 𝑥∗) to A.

– If 𝑏 = 0, the challenger sends𝑦∗ ← Eval(𝑘, 𝑥∗) toA. If 𝑏 = 1, then it sends𝑦∗ r← {0, 1}ℓout toA.

– A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satisfes (𝑡, 𝜀)-puncturing security if for all adversariesA running in time at most

𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , it holds that

PPRFAdvA (𝜆) B |Pr[𝑏′ = 1 : 𝑏 = 1] − Pr[𝑏′ = 1 : 𝑏 = 0] | ≤ 𝜀 (𝜆) .

Definition 2.3 (Somewhere Extractable Hash Family [HW15,CJJ22]). A somewhere extractable hash fam-

ily consists of a tuple of efficient algorithms ΠSEH = (Setup, SetupTD,Hash,Open,Verify, Extract) with the

following syntax:

• Setup(1𝜆, 1ℓ ) → hk: On input security parameter 1
𝜆

and block size 1
ℓ
, the setup algorithm outputs

a hash key hk.

• SetupTD(1𝜆, 1ℓ , 𝑖) → (hk, td): On input security parameter 1
𝜆
, block size 1

ℓ
, and index 𝑖 ∈ [2𝜆], the

trapdoor setup algorithm outputs a hash key hk and an extraction trapdoor td.

• Hash(hk, (𝑥1, . . . , 𝑥𝑡 )) → dig: On input hash key hk and ordered list of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ ,
the hash algorithm outputs a hash value dig.

• Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) → 𝜎 : On input hash key hk, ordered list of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and

index 𝑖 ∈ [𝑡], the opening algorithm outputs an opening 𝜎 .

• Verify(hk, dig, 𝑖, 𝑥, 𝜎) → 𝑏: On input hash key hk, hash value dig, index 𝑖 , string 𝑥 ∈ {0, 1}ℓ , and

opening 𝜎 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Extract(td, dig) → 𝑥 : On input extraction trapdoor td and hash value dig, the extraction algorithm

outputs a value 𝑥 ∈ {0, 1}ℓ .

We require that ΠSEH satisfy the following properties:

• Opening completeness. For any 𝜆, ℓ, 𝑡 ∈ N with 𝑡 ≤ 2
𝜆
, any 𝑖 ∈ [𝑡], and any 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ ,

Pr

Verify(hk, dig, 𝑖, 𝑥𝑖 , 𝜎) = 1 :

hk← Setup(1𝜆, 1ℓ )
dig = Hash(hk, (𝑥1, . . . , 𝑥𝑡 ))
𝜎 = Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖)

 = 1.
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• Succinctness. There exists a fixed polynomial 𝑝 such that the lengths of the hash values dig output

by Hash and the lengths of the openings 𝜎 output by Open in the completeness experiment satisfy

|dig|, |𝜎 | = 𝑝 (𝜆, ℓ).

• Index hiding. For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the index-hiding security

game between an adversary A and a challenger as follows:

– On input security parameter 1
𝜆
, algorithmA outputs the block length 1

ℓ
and an index 𝑖 ∈ [2𝜆].

– If 𝑏 = 0, the challenger samples hk ← Setup(1𝜆, 1ℓ ). If 𝑏 = 1, the challenger samples

(hk, td) ← SetupTD(1𝜆, 1ℓ , 𝑖)The challenger sends hk to A.

– A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSEH satisfies (𝑡, 𝜀)-index-hiding security if for all adversariesA running in time 𝑡 (𝜆) ·
poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

SEHAdvA (𝜆) B |Pr[𝑏′ = 1 : 𝑏 = 1] − Pr[𝑏′ = 1 : 𝑏 = 0] | ≤ 𝜀 (𝜆) .

• Extraction correctness. For any 𝜆, ℓ, 𝑡 ∈ N with 𝑡 ≤ 2
𝜆
, any 𝑖 ∈ [𝑡], any 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ ,

Pr

[
𝑥𝑖 ≠ Extract(td, dig) :

(hk, td) ← SetupTD(1𝜆, 1ℓ , 𝑖)
dig = Hash(hk, (𝑥1, . . . , 𝑥𝑡 ))

]
= 0.

• Statistically binding. For any 𝜆, ℓ, 𝑡 ∈ N with 𝑡 ≤ 2
𝜆
, any 𝑖 ∈ [𝑡],

Pr

[
∃dig, 𝑥, 𝜎 : 𝑥 ≠ Extract(td, dig)
∧ Verify(hk, dig, 𝑖, 𝑥, 𝜎) = 1

: (hk, td) ← SetupTD(1𝜆, 1ℓ , 𝑖)
]
= 0.

2.2 Batch Arguments for NP

We now formally define the notion of a batch argument for NP. We start with the definition of the NP-

complete language of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). We define the Boolean circuit satisfiability languageLSAT as follows:

LSAT = {(𝐶, 𝑥) | ∃𝑤 ∈ {0, 1}𝑣 s.t. 𝐶 (𝑥,𝑤) = 1}

where 𝐶 is a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1} and 𝑥 ∈ {0, 1}𝑛 is a statement.

Definition 2.5 (Non-interactive Batch Argument for NP). A non-interactive batch argument (BARG) for

the Boolean circuit satisfiability languageLSAT is a tuple of efficient algorithms ΠBARG = (Setup, P,V) with

the following syntax:

• Setup(1𝜆,𝑇 ,𝐶) → crs: On input security parameter 1
𝜆
, batch size𝑇 , and Boolean circuit𝐶 , the setup

algorithm outputs a common reference string crs.

• P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )) → 𝜋 : On input common reference string crs, statements 𝑥1, . . . , 𝑥𝑇 ,

and witnesses 𝑤1, . . . ,𝑤𝑇 , the prover algorithm outputs a proof 𝜋 .

• V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) → 𝑏: On input common reference string crs, statements 𝑥1, . . . , 𝑥𝑇 , and proof

𝜋 , the verifier algorithm outputs a bit 𝑏 ∈ {0, 1}.
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We require that ΠBARG satisfy the following properties:

• Completeness. For any security parameter 𝜆 ∈ N, polynomials 𝑛 = 𝑛(𝜆), 𝑣 = 𝑣 (𝜆),𝑇 = 𝑇 (𝜆),
Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1} of poly(𝜆) size, and statements 𝑥1, . . . , 𝑥𝑇 ∈ {0, 1}𝑛 and

witnesses 𝑤1, . . . ,𝑤𝑇 ∈ {0, 1}𝑣 such that 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑇 ], it holds that

Pr

[
V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1 :

crs← Setup(1𝜆,𝑇 ,𝐶)
𝜋 ← P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 ))

]
= 1.

• Succinctness. There exists a universal polynomial 𝑝 such that in the completeness experiment

above, we have that |𝜋 | = 𝑝 (𝜆, log𝑇, |𝐶 |). We say the proof is fully succinct if we have that |𝜋 | =
𝑝 (𝜆, log𝑇, log |𝐶 |).5

• Adaptive soundness. For a security parameter 𝜆, we define the adaptive soundness game between

an adversary A and a challenger as follows:

– On input security parameter 1
𝜆
,A starts by outputting a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}𝑣 →

{0, 1} and a number of instances 𝑇 .

– The challenger replies with crs← Setup(1𝜆,𝑇 ,𝐶).
– A outputs statements 𝑥1, . . . , 𝑥𝑇 ∈ {0, 1}𝑛 and a proof 𝜋 .

– The output of the experiment is 𝑏 = 1 if there exists some 𝑖 ∈ [𝑇 ] such that (𝐶, 𝑥𝑖) ∉ LSAT and

Verify(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1 and 𝑏 = 0 otherwise.

We say that ΠBARG is adaptively sound if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] ≤ negl(𝜆) in the adaptive soundness game.

Remark 2.6 (Supporting Arbitrary Batch Size). In our definition, the Setup algorithm needs to take the

batch size 𝑇 as input (in binary). Note that this restriction can be generically removed using a standard

“powers-of-two” construction, where we generate a CRS for every value of 𝑇 = 2
𝑖

for 𝑖 ∈ [𝜆]. This is still

efficient as the size of each CRS depends only polylogarithmically on the batch size, and padding to the

next power of two only incurs constant overhead.

Remark 2.7 (Fast Verification). Definition 2.5 only requires that the size of the proof be short and does

not impose any requirements on the running time of the verification algorithm. Since the size of the CRS

in an adaptively-sound SNARG can scale with the circuit size |𝐶 |, this means the verification time may also

scale polynomially with |𝐶 |. By the same approach described in [WW24a, Remark 2.7], we can compose

the SNARG with a RAM delegation scheme (e.g., [CJJ22, KVZ21, KLVW23]) to obtain a SNARG for batch

NP where the verification time is poly(𝜆,𝑇 , 𝑛, log |𝐶 |), where 𝑛 is the length of a single statement.

Zero-knowledge. We also define a zero-knowledge property which essentially requires that the proof

𝜋 for a batch of statements (𝑥1, . . . , 𝑥𝑇 ) leak nothing more about (𝑥1, . . . , 𝑥𝑇 ) other than the fact that all of

the statements are true.

Definition 2.8 (Perfect Zero-Knowledge). A BARG ΠBARG = (Setup, P,V) for the Boolean circuit satisfia-

bility languageLSAT satisfies perfect zero-knowledge if there exists an efficient simulatorS = (S0,S1) such

that for any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1} and any tuple of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and

witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝑇 ) such that𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑇 ], the following distributions are identical:{
(crs, ®𝑥, 𝜋) :

crs← Setup(1𝜆,𝑇 ,𝐶)
𝜋 ← P(crs, ®𝑥, ®𝑤)

}
≡
{
(crs, ®𝑥, 𝜋) :

(crs, st) ← S0(1𝜆,𝑇 ,𝐶)
𝜋 ← S1(st, ®𝑥)

}
.

5
This is the notion of succinctness that our constructions achieve.
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2.3 Cryptographic Assumptions in Pairing-Free Groups

Our constructions will rely on the hardness of the discrete log and decisional Diffie-Hellman (DDH) as-

sumptions in (pairing-free) groups. We recall the notion of a prime-order group along with the formal

description of the assumptions below.

Notation. For a positive integer 𝑝 > 1, we write Z𝑝 to denote the set of integers {0, . . . , 𝑝 − 1}. We write

Z∗𝑝 to denote the multiplicative group of integers modulo 𝑝 .

Definition 2.9 (Prime-Order Group Generator). Let 𝜆 be a security parameter. A prime-order group gen-

erator is an efficient algorithm GroupGen that takes as input security parameter 1
𝜆

and outputs the de-

scription G = (G, 𝑝, 𝑔) of a group G of prime order 𝑝 = 2
Θ(𝜆)

and generated by 𝑔 ∈ G. Moreover, we

require that the group operation in G be efficiently computable.

Definition 2.10 (Discrete Log Assumption). Let GroupGen be a prime-order group generator. We say

that the discrete log assumption holds with respect to GroupGen if for all efficient adversaries A, there

exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N,

Pr[A(1𝜆,G, 𝑔𝑥 ) = 𝑥 : G = (G, 𝑝, 𝑔) ← GroupGen(1𝜆), 𝑥 r← Z𝑝] ≤ negl(𝜆) .

Definition 2.11 (Decisional Diffie-Hellman Assumption). For a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and

a prime-order group generator GroupGen, we define the decisional Diffie-Hellman (DDH) security game

between an adversary A and a challenger as follows:

• The challenger starts by sampling G = (G, 𝑔, 𝑝) ← GroupGen(1𝜆) and 𝑥,𝑦
r← Z∗𝑝 .

• If 𝑏 = 0, the challenger computes 𝑧 = 𝑥𝑦 ∈ Z∗𝑝 . If 𝑏 = 1, the challenger samples 𝑧
r← Z∗𝑝 .

6

• The challenger then sends (G, 𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) to A.

• A outputs a bit 𝑏′, which is the output of the experiment.

We say that the DDH assumption holds with respect to GroupGen if for all efficient adversaries A, there

exists 𝜆A ∈ N such that for all security parameters 𝜆 ≥ 𝜆A , it holds that

DDHAdvA (𝜆) B | Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the DDH security game.

3 Homomorphic Re-randomizable One-Way Functions

In this section, we introduce the notion of a homomorphic re-randomizable OWF, which is one of the

main building blocks we use in our construction of an adaptive fully succinct BARG in Section 4. Then, in

Section 3.1, we show how to construct a homomorphic re-randomizable OWF from discrete log.

Definition 3.1 (Homomorphic Re-randomizable OWF). A homomorphic re-randomizable OWF is a tuple

of efficient algorithms ΠOWF = (Setup, GenInstance, Rerandomize, Verify, InHom, OutHom,

RecoverSolution) with the following syntax:

6
For convenience, we define the DDH assumption as sampling the exponents 𝑥,𝑦, 𝑧 uniformly from Z∗𝑝 as opposed to Z𝑝 . When

𝑝 = 2
Ω (𝜆)

, the uniform distribution over Z∗𝑝 and Z𝑝 for prime 𝑝 is statistically indistinguishable.
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• Setup(1𝜆, 1𝑚) → crs : On input security parameter 1
𝜆

and re-randomization parameter 1
𝑚

, the

setup algorithm outputs a common reference string crs. We assume that the crs contains an implicit

description of the input spaceZ and the output space Y.

• GenInstance(crs) → (𝑦, 𝑧) : On input common reference string crs, the instance-generation algo-

rithm outputs challenge 𝑦 ∈ Y together with a preimage 𝑧 ∈ Z.

• Rerandomize(crs, 𝑦) → 𝑦′ : On input common reference string crs and challenge 𝑦 ∈ Y, the ran-

domization algorithm outputs a new challenge 𝑦′ ∈ Y.

• Verify(crs, 𝑦, 𝑧) → 0/1. On input common reference string crs, challenge 𝑦 ∈ Y, and preimage

𝑧 ∈ Z, the verification algorithm outputs 0 or 1.

• RecoverSolution(crs, 𝑧′, 𝑟 ) → 𝑧 : On input common reference string crs, preimage 𝑧′ ∈ Z, and

randomness 𝑟 , the preimage recovery algorithm outputs a new preimage 𝑧 ∈ Z.

• InHom(crs, (𝑧1, . . . , 𝑧ℓ )) → 𝑧: On input common reference string crs and preimages 𝑧1, . . . , 𝑧ℓ ∈ Z,

the input homomorphism algorithm outputs a new preimage 𝑧 ∈ Z.

• OutHom(crs, (𝑦1, . . . , 𝑦ℓ )) → 𝑦: On input common reference string crs and challenges 𝑦1, . . . , 𝑦ℓ ∈
Y, the output homomorphism algorithm outputs a new challenge 𝑦 ∈ Y.

We require that ΠOWF satisfy the following properties:

• Correctness. For all 𝜆,𝑚 ∈ N, all crs in the support of Setup(1𝜆, 1𝑚), and all (𝑦, 𝑧) in the support of

GenInstance(crs), we have that Verify(crs, 𝑦, 𝑧) = 1.

• Homomorphism. For all 𝜆,𝑚 ∈ N, all crs in the support of Setup(1𝜆, 1𝑚), all 𝑧1, . . . , 𝑧ℓ ∈ Z, and

all 𝑦1, . . . , 𝑦ℓ ∈ Y such that Verify(crs, 𝑦𝑖 , 𝑧𝑖) = 1 for all 𝑖 ∈ [ℓ], we have that

Verify(crs,OutHom(crs, (𝑦1, . . . , 𝑦ℓ )), InHom(crs, (𝑧1, . . . , 𝑧ℓ ))) = 1.

Further, InHom has a corresponding inversion algorithm InHom−1
such that for all crs in the support

of Setup(1𝜆, 1𝑚), for all preimages 𝑧, 𝑧′ ∈ Z and challenges 𝑦,𝑦′ ∈ Y, if

Verify(crs,OutHom(crs, (𝑦,𝑦′)), 𝑧) = 1 and Verify(crs, 𝑦′, 𝑧′) = 1,

then

Verify(crs, 𝑦, InHom−1(crs, (𝑧, 𝑧′))) = 1.

• One-wayness. For a security parameter 𝜆, a re-randomization parameter𝑚, and a bit 𝑏 ∈ {0, 1}, we

define the one-wayness security game between an adversary A and a challenger as follows:

– The challenger samples crs← Setup(1𝜆, 1𝑚) and (𝑦, 𝑧) ← GenInstance(crs) and sends (crs, 𝑦)
to A.

– Algorithm A sends a preimage 𝑧′ to the challenger.

– The challenger outputs a bit 𝑏′ ← Verify(crs, 𝑦, 𝑧′).
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We say that ΠOWF is (𝑡, 𝜀)-one-way if for all polynomials 𝑚 = 𝑚(𝜆) and all adversaries A running

in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all security parameters 𝜆 ≥ 𝜆A , it

holds that

PRGAdvA (𝜆) B Pr[𝑏′ = 1] ≤ 𝜀 (𝜆)

in the one-wayness security game.

• Re-randomization correctness. For all 𝜆 ∈ N, all polynomials 𝑚 =𝑚(𝜆), all crs in the support of

Setup(1𝜆, 1𝑚), all preimages 𝑧′ ∈ Z, all 𝑦 ∈ Y, and all randomness 𝑟 where

Verify(crs,Rerandomize(crs, 𝑦; 𝑟 ), 𝑧′) = 1

we have that

Verify(crs, 𝑦,RecoverSolution(crs, 𝑧′, 𝑟 )) = 1.

• Re-randomization security. For a security parameter 𝜆, a re-randomization parameter𝑚, and a bit

𝑏 ∈ {0, 1}, we define the re-randomization security game between an adversaryA and a challenger

as follows:

– The challenger samples crs← Setup(1𝜆, 1𝑚) and (𝑦base, 𝑧base) ← GenInstance(crs).
– If 𝑏 = 0, the challenger samples (𝑦∗, 𝑧∗) ← GenInstance(crs). If 𝑏 = 1, the challenger samples

𝑦∗ ← Rerandomize(crs, 𝑦base).
– The challenger then sends (crs, 𝑦base, 𝑦∗) to A.

– A outputs a bit 𝑏′, which is the output of the experiment.

We say that ΠOWF satisfies (𝑡, 𝜀)-re-randomization security if for all polynomials 𝑚 = 𝑚(𝜆) and all

adversaries A running in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all security

parameters 𝜆 ≥ 𝜆A , it holds that

RerandAdvA (𝜆) B | Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the re-randomization security game.

• Succinctness. There exists a polynomial poly(·) such that for all 𝜆,𝑚 ∈ N, all crs in the support of

Setup(1𝜆, 1𝑚), and all 𝑧 ∈ Z, it holds that |𝑧 | ≤ poly(𝜆 + log𝑚).

3.1 Constructing Homomorphic Re-randomizable OWFs

In this section, we show that the construction of a re-randomizable OWF from discrete log [WW24a,

Construction 5.3] is a homomorphic re-randomizable OWF. Though we do not formalize it in this work,

the second construction of a re-randomizable OWF in [WW24a] based on computing modular square

roots (i.e., the function 𝑓 (𝑧) = 𝑧2
mod 𝑁 where 𝑁 = 𝑝𝑞 is an RSA modulus) is also homomorphic, as

𝑓 (𝑧0𝑧1) = (𝑧0𝑧1)2 = 𝑧2

0
𝑧2

1
= 𝑓 (𝑧0) 𝑓 (𝑧1) mod 𝑁 . We start by recalling the discrete-log-based construction

from [WW24a], with the addition of the InHom and OutHom algorithms for the homomorphism property.

For simplicity, we describe the scheme with additive blinding rather than multiplicative blinding:

Construction 3.2 (Homomorphic Re-randomizable OWF). Let GroupGen be a prime-order group gen-

erator. We construct a homomorphic re-randomizable OWF ΠOWF = (Setup,GenInstance,Rerandomize,
InHom,OutHom,RecoverSolution) as follows:
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• Setup(1𝜆, 1𝑚): On input security parameter 1
𝜆

and re-randomization parameter 1
𝑚

, the setup algo-

rithm samples (G, 𝑝, 𝑔) ← GroupGen(1𝜆) and outputs crs = (G, 𝑝, 𝑔). The domain of the OWF is

Z = Z∗𝑝 and the range is Y = G.

• GenInstance(crs) → (𝑦, 𝑧): On input common reference string crs = (G, 𝑝, 𝑔), the instance genera-

tion algorithm samples 𝑧
r← Z∗𝑝 , computes 𝑦 = 𝑔𝑧 , and outputs (𝑦, 𝑧).

• Rerandomize(crs, 𝑦) → 𝑦′: On input common reference string crs = (G, 𝑝, 𝑔) and challenge 𝑦 ∈ G,

the randomization algorithm samples 𝑟
r← Z∗𝑝 and outputs 𝑦 · 𝑔𝑟 ∈ G.

• Verify(crs, 𝑦, 𝑧) → 0/1: On input common reference string crs = (G, 𝑝, 𝑔), challenge 𝑦 ∈ G, and

preimage 𝑧 ∈ Z∗𝑝 , the verification algorithm outputs 1 if 𝑦 = 𝑔𝑧 and 0 otherwise.

• RecoverSolution(crs, 𝑧′, 𝑟 ) → 𝑧: On input common reference string crs, preimage 𝑧′ ∈ Z∗𝑝 , and

randomness 𝑟 ∈ Z∗𝑝 , the preimage recovery algorithm outputs 𝑧′ − 𝑟 ∈ Z∗𝑝 .

• InHom(crs, (𝑧1, . . . , 𝑧ℓ )) → 𝑧: On input common reference string crs and preimages 𝑧1, . . . , 𝑧ℓ ∈ Z∗𝑝 ,

the input homomorphism outputs

∑
𝑖∈[ℓ ] 𝑧𝑖 ∈ Z∗𝑝 .

• OutHom(crs, (𝑦1, . . . , 𝑦ℓ )) → 𝑦: On input common reference string crs and challenges𝑦1, . . . , 𝑦ℓ ∈ G,

the output homomorphism outputs

∏
𝑖∈[ℓ ] 𝑦𝑖 ∈ G.

We refer to [WW24a, §5.1] for the proofs of the correctness, one-wayness, re-randomization correctness,

re-randomization security, and succinctness properties. Here, we show the homomorphism property.

Theorem 3.3 (Homomorphism). Construction 3.2 satisfies homomorphism.

Proof. Take any crs = (G, 𝑝, 𝑔) in the support of GroupGen(1𝜆), and any 𝑧1, . . . , 𝑧ℓ ∈ Z𝑝 , 𝑦1, . . . , 𝑦ℓ ∈ G
where Verify(crs, 𝑦𝑖 , 𝑧𝑖) = 1 for all 𝑖 ∈ [ℓ]. By construction of Verify, this means that 𝑦𝑖 = 𝑔𝑧𝑖 for all 𝑖 ∈ [ℓ].
Then

𝑔InHom(crs,(𝑧1,...,𝑧ℓ ) ) = 𝑔
∑

𝑖∈ [ℓ ] 𝑧𝑖 =
∏
𝑖∈[ℓ ]

𝑔𝑧𝑖 =
∏
𝑖∈[ℓ ]

𝑦𝑖 = OutHom(crs, (𝑦1, . . . , 𝑦ℓ )) .

Thus

Verify(crs,OutHom(crs, (𝑦1, . . . , 𝑦ℓ )), InHom(crs, (𝑧1, . . . , 𝑧ℓ ))) = 1,

as required. Next, define the inversion algorithm InHom−1(crs, 𝑧, 𝑧′) = 𝑧 − 𝑧′. Take any 𝑧, 𝑧′ ∈ Z∗𝑝 and

𝑦,𝑦′ ∈ G, where Verify(crs,OutHom(crs, (𝑦,𝑦′)), 𝑧) = 1 and Verify(crs, 𝑦′, 𝑧′) = 1. This means

𝑔𝑧 = OutHom(crs, 𝑦,𝑦′) = 𝑦𝑦′ and 𝑔𝑧
′
= 𝑦′.

Then,

𝑔InHom
−1 (crs,𝑧,𝑧′ ) = 𝑔𝑧−𝑧

′
=
𝑦𝑦′

𝑦′
= 𝑦,

and Verify(crs, 𝑦, InHom−1(crs, (𝑧, 𝑧′))) = 1 as desired. □
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4 SNARG for Batch NP from Homomorphic Re-randomizable OWFs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishabil-

ity obfuscation together with a homomorphic re-randomizable OWF. Our construction follows a similar

template as the construction from [WW24a].

Construction 4.1 (Adaptive Batch Argument for NP). Let 𝜆 be a security parameter. We construct a BARG

scheme that supports NP languages with an arbitrary polynomial number 𝑇 = 𝑇 (𝜆) < 2
𝜆

of instances of

length 𝑛 = 𝑛(𝜆). Our construction will leverage sub-exponential hardness of the below primitives (except

for one-wayness of ΠOWF). Our construction relies on the following primitives:

• Let 𝑖O be an indistinguishability obfuscation scheme for Boolean circuits.

• Let ΠPPRF = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key 𝑘 and an input 𝑥 , we will

write F(𝑘, 𝑥) to denote F.Eval(𝑘, 𝑥).

• Let ΠOWF = (OWF.Setup, OWF.GenInstance, OWF.Rerandomize, OWF.Verify,
OWF.RecoverSolution,OWF.InHom,OWF.OutHom) be a homomorphic re-randomizable one-way

function.

We will describe how to define the polynomials 𝜆obf, 𝜆PRF, and 𝑚 in the security analysis. We construct a

fully succinct non-interactive batch argument ΠBARG = (Gen, P,V) for NP as follows:

• Setup(1𝜆,𝑇 ,𝐶): On input security parameter 1
𝜆
, batch size 𝑇 , and Boolean circuit 𝐶 : {0, 1}𝑛 ×

{0, 1}𝑣 → {0, 1}, the setup algorithm does the following:

– Sample OWF parameters crs𝑓 ← OWF.Setup(1𝜆, 1𝑚).
– Let 𝑡 = log(𝑇 + 1). Let 𝜌 be a bound on the number of bits of randomness the sampling algo-

rithm OWF.GenInstance(crs𝑓 ) takes. Let 𝜏 be the number of bits of randomness that the setup

algorithm F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ) takes.

– Sample a “selector” PPRF key 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝑡 ).
– Sample a “key generator” PPRF key 𝑘 ← F.Setup(1𝜆PRF, 1𝑡 , 1𝜏 ).
– Define the GenSol program with the OWF parameters crs𝑓 , circuit 𝐶 , and PPRF keys 𝑘, 𝑘sel

hard-coded:

GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel] (𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , statement 𝑥𝑖 , witness 𝑤𝑖

1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

3: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
4: Compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑧.

– Define the GenChall program with the OWF parameters crs𝑓 and PPRF key 𝑘 hard-coded:
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GenChall[crs𝑓 , 𝑘] (𝑖, 𝑗, 𝑥𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , statement 𝑥𝑖

1: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
2: Compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑦.

– Let 𝑠 = 𝑠 (𝜆, 𝑛, |𝐶 |) be the maximum size of the GenChall and GenSol programs as well as those

appearing in the security analysis.

– Construct the obfuscated programs

ObfGenChall← 𝑖O(1𝜆obf , 1𝑠 ,GenChall[crs𝑓 , 𝑘])

and

ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel]) .

– Output crs = (crs𝑓 ,ObfGenChall,ObfGenSol).

• P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )): On input crs = (crs𝑓 ,ObfGenChall,ObfGenSol), the statements

𝑥1, . . . , 𝑥𝑇 , and the witnesses 𝑤1, . . . ,𝑤𝑇 , the prover algorithm proceeds as follows.

– Initialize 𝑖 = 1, 𝑗 = 1. Then, while 𝑖 ≤ 𝑇 :

∗ Compute 𝑧𝑖 ← ObfGenSol(𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖).
∗ If 𝑧𝑖 = ⊥, set 𝑖 = 1, 𝑗 = 𝑗 + 1. Otherwise, set 𝑖 = 𝑖 + 1.

– Compute 𝑧 = OWF.InHom(crs𝑓 , (𝑧1, . . . , 𝑧𝑇 )) and output ( 𝑗, 𝑧).

• V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋): On input crs = (crs𝑓 ,ObfGenChall,ObfGenSol), the statements 𝑥1, . . . , 𝑥𝑇 ,

and the proof 𝜋 = ( 𝑗, 𝑧), the verification algorithm proceeds as follows:

– For each 𝑖 ∈ [𝑇 ], compute 𝑦𝑖 ← ObfGenChall(𝑖, 𝑗, 𝑥𝑖).
– Compute 𝑦 = OWF.OutHom(crs𝑓 , (𝑦1, . . . , 𝑦𝑇 )) and output OWF.Verify(crs𝑓 , 𝑦, 𝑧).

Theorem 4.2 (Completeness). Suppose 𝑖O is correct and ΠOWF satisfies homomorphism. Then Construc-
tion 4.1 is complete.

Proof. Take any security parameter 𝜆 ∈ N, any Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}𝑣 → {0, 1}, any𝑇 ≤ 2
𝜆
, and

any statements (𝑥1, . . . , 𝑥𝑇 ) and witnesses (𝑤1, . . . ,𝑤𝑇 ) such that 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑇 ]. Let crs =

(crs𝑓 ,ObfGenSol,ObfGenChall) ← Setup(1𝜆,𝐶,𝑇 ) and 𝜋 = ( 𝑗, 𝑧) ← P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )).
Consider the output of V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋):

• By construction, ObfGenSol is an obfuscation of the program GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel], where

𝑘sel ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝑡 ) and 𝑘 ← F.Setup(1𝜆PRF, 1𝑡 , 1𝜏 ) .

Algorithm P obtains ( 𝑗, 𝑧1), . . . , ( 𝑗, 𝑧𝑇 ) by evaluating ObfGenSol on inputs (𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖). By correct-

ness of 𝑖O and the definition of GenSol, this means that 𝑧𝑖 was generated by computing (𝑦𝑖 , 𝑧𝑖) ←
OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) for all 𝑖 ∈ [𝑇 ]. Note that an index 𝑗 ∈ [𝑇 + 1] always exists,

because for each index 𝑖 , there is just a single index 𝑗𝑖 = F(𝑘sel, (𝑥𝑖 , 𝑖)) where the GenSol program

outputs ⊥. Since there are at most 𝑇 instances, there are at most 𝑇 indices 𝑗 ∈ [𝑇 + 1] that fail, or

equivalently, there must exist at least one index 𝑗 ∈ [𝑇 + 1] where 𝑗 ≠ F(𝑘sel, (𝑥𝑖 , 𝑖)) for all 𝑖 ∈ [𝑇 ].
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• By construction, ObfGenChall is an obfuscation of the program GenChall[crs𝑓 , 𝑘] where crs𝑓 ←
OWF.Setup(1𝜆, 1𝑚). Algorithm V computes the instance 𝑦𝑖 ← ObfGenChall(𝑖, 𝑗, 𝑥𝑖), which was

generated by computing (𝑦𝑖 , 𝑧𝑖) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) for all 𝑖 ∈ [𝑇 ]. By correct-

ness of 𝑖O and correctness of OWF, this means that OWF.Verify(crs𝑓 , 𝑦𝑖 , 𝑧𝑖) = 1 for all 𝑖 ∈ [𝑇 ].

• Finally, algorithm P computes 𝑧 = OWF.InHom(crs𝑓 , (𝑧1, . . . , 𝑧𝑇 )) and algorithm V computes 𝑦 =

OWF.OutHom(crs𝑓 , (𝑦1, . . . , 𝑦𝑇 )). By homomorphism of ΠOWF, we have OWF.Verify(crs𝑓 , 𝑦, 𝑧) = 1.

Thus V outputs 1 with probability 1. □

Theorem 4.3 (Succinctness). Suppose ΠOWF is succinct. Then Construction 4.1 is succinct.

Proof. A proof ( 𝑗, 𝑧) in Construction 4.1 consists of a selection symbol 𝑗 ∈ [𝑇 + 1] and a OWF preimage

𝑧. Since ΠOWF is succinct, there is a fixed polynomial 𝑝 such that |𝑧 | ≤ 𝑝 (𝜆 + log𝑚). Since𝑚(𝜆, 𝑛) in Con-

struction 4.1 is a fixed polynomial in the security parameter 𝜆 and the statement length𝑛 and the statement

length is always upper-bounded by the circuit size, it follows that |𝜋 | ≤ poly(𝜆 + log |𝐶 |) + log𝑇 . □

Theorem 4.4 (Adaptive Soundness). Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure, ΠPPRF satisfies punctured correct-

ness and (1, 2−𝜆
𝜀PRF
PRF )-puncturing security, and ΠOWF satisfies re-randomization correctness, (1, negl(𝜆))-one-

wayness, and (1, 2−𝑚𝜀𝑚 )-re-randomization security for constants 𝜀obf, 𝜀PRF, 𝜀𝑚 ∈ (0, 1) and security parame-
ters 𝜆obf = (𝜆 + 𝑛)1/𝜀obf , 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF,𝑚 = (𝜆 + 𝑛)1/𝜀𝑚 . Then Construction 4.1 is adaptively sound.

Proof. Our proof follows a similar structure as the proof of [WW24a, Theorem 4.3]. Let A be an efficient

adversary that succeeds in the adaptive soundness game against Construction 4.1 with (non-negligible)

probability 𝜀 (𝜆). We first claim that without loss of generality, we can assume that for every security pa-

rameter 𝜆,A always outputs a circuit𝐶 with statements of a fixed length 𝑛 = 𝑛(𝜆) and witnesses of a fixed

length 𝑣 = 𝑣 (𝜆) and a fixed batch size𝑇 = 𝑇 (𝜆). Formally, sinceA is a polynomial-time algorithm,A(1𝜆)
outputs a Boolean circuit of size at most 𝑠max(𝜆) = poly(𝜆) and a maximum batch size 𝑇max(𝜆) = poly(𝜆).
This in turn defines maximum statement and witness lengths 𝑛max(𝜆), 𝑣max(𝜆) ≤ 𝑠max(𝜆). In an execution

of the adaptive soundness game, let E𝑛′,𝑣′,𝑇 ′ be the event that A outputs a circuit 𝐶 with statements of

length 𝑛′ and witnesses of length 𝑣 ′ and batch size 𝑇 ′. Then

Pr[A wins the soundness game] =
∑︁

𝑛′∈[𝑛max ]
𝑣′∈[𝑣max ]
𝑇 ′∈[𝑇max ]

Pr[A wins the soundness game ∧ E𝑛′,𝑣′,𝑇 ′] .

Thus there must exist some (𝑛, 𝑣,𝑇 ) ∈ [𝑛max] × [𝑣max] × [𝑇max] such that such that

Pr[A(1𝜆) wins the soundness game ∧ E𝑛,𝑣,𝑇 ] ≥
𝜀 (𝜆)

𝑛max · 𝑣max ·𝑇max

.

For each security parameter 𝜆, define 𝑛 = 𝑛(𝜆), 𝑣 = 𝑣 (𝜆), and 𝑇 = 𝑇 (𝜆) to be the smallest values

such that the above equation holds. We now construct a new (non-uniform) adversary A′ that func-

tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and

a fixed batch size. Namely, A′ takes as input the security parameter 1
𝜆

and the non-uniform advice

𝑛 = 𝑛(𝜆), 𝑣 = 𝑣 (𝜆),𝑇 = 𝑇 (𝜆). A′ runs (𝐶′,𝑇 ′) ← A(1𝜆). If 𝐶′ does not have statements of length 𝑛
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and witnesses of length 𝑣 or 𝑇 ′ ≠ 𝑇 , then A′ aborts. Otherwise, A′ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

Pr[A′(1𝜆) wins the soundness game] = Pr[A(1𝜆) wins the soundness game ∧ E𝑛,𝑣,𝑇 ]

≥ 𝜀 (𝜆)
𝑛max · 𝑣max ·𝑇max

.

Thus A′ still has a non-negligible success probability in the soundness game. For the remainder of this

proof, we will assume the adversary always outputs a circuit𝐶 with statements of length 𝑛 and witnesses

of length 𝑣 and batch size 𝑇 . We now define a sequence of hybrid experiments:

Hyb
0
: This is the real adaptive soundness experiment.

• Adversary A, on input 1
𝜆
, starts by outputting a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1},

and the batch size 𝑇 .

• The challenger samples crs← Setup(1𝜆,𝑇 ,𝐶) and gives crs to A.

• Adversary A outputs a batch of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and a proof 𝜋 = ( 𝑗, 𝑧).
• The challenger outputs 1 if and only if for some 𝑖 ∈ [𝑇 ], (𝐶, 𝑥𝑖) ∉ LSAT and V(crs, ®𝑥, 𝜋) = 1.

Hyb
1
: Same asHyb

0
except the challenger samples 𝑖∗ r← [𝑇 ] and outputs 1 if and only if (𝐶, 𝑥𝑖∗) ∉ LSAT

and V(crs, ®𝑥, 𝜋)) = 1.

Hyb
2
: Same as Hyb

1
except the challenger additionally checks that 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗))

Hyb
3
: Same as Hyb

2
except the challenger stops checking that (𝐶, 𝑥𝑖∗) ∉ LSAT.

Hyb
4
: Same as Hyb

3
except the challenger changes how it defines the GenChall program. During

setup, the challenger additionally samples

• (𝑦base, 𝑧base) ← OWF.GenInstance(crs𝑓 )
• 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜇)

where 𝜇 is a bound on the number of bits of randomness the OWF.Rerandomize algorithm takes. It

defines GenChall′ as follows:

GenChall′ [crs𝑓 , 𝑘, 𝑘sel, 𝑖∗, 𝑘rerand, 𝑦base] (𝑖, 𝑗, 𝑥𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , statement 𝑥𝑖

1: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
2: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥𝑖 , 𝑖))).
3: Else: compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑦.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with the adversary A. We

now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 4.5. Pr[Hyb
1
(A) = 1] ≥ 1

𝑇
Pr[Hyb

0
(A) = 1].
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Proof. Suppose the output in Hyb
0

is 1. This means there exists some index 𝑖 ∈ [𝑇 ] where (𝐶, 𝑥𝑖∗) ∉ LSAT.

Since the challenger samples 𝑖∗ r← [𝑇 ] independently of the common reference string (and thus, the view

of the adversary), with probability at least 1/𝑇 , it will also be the case that (𝐶, 𝑥𝑖∗) ∉ LSAT, in which case

the output in Hyb
1

is also 1. □

Lemma 4.6. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure and ΠPPRF satisfies punctured correctness and (1, 2−𝜆

𝜀PRF
PRF )-

puncturing security for constants 𝜀obf, 𝜀PRF ∈ (0, 1) and security parameters 𝜆obf = (𝜆 + 𝑛)1/𝜀obf , 𝜆PRF =

(𝜆 + 𝑛)1/𝜀PRF . Then

Pr[Hyb
2
(A) = 1] ≥ 1

𝑇 + 1

Pr[Hyb
1
(A) = 1] − 2

−Ω (𝜆) .

Proof. Consider an execution of Hyb
1

or Hyb
2
. For a fixed 𝑥∗ ∈ {0, 1}𝑛 , let E𝑥∗ be the event thatA outputs

®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) such that 𝑥𝑖∗ = 𝑥∗. By definition, we can now write

Pr[Hyb
1
(A) = 1] =

∑︁
𝑥∗∈{0,1}𝑛

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗]

Pr[Hyb
2
(A) = 1] =

∑︁
𝑥∗∈{0,1}𝑛

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] .

(4.1)

To prove the lemma, we show that for all 𝑥∗ ∈ {0, 1}𝑛 ,

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] ≥

1

𝑇 + 1

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗] −

𝑂 (𝑇 )
2
𝜆+𝑛 . (4.2)

If Eq. (4.2) holds, then

Pr[Hyb
2
(A) = 1] =

∑︁
𝑥∗∈{0,1}𝑛

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗]

≥
∑︁

𝑥∗∈{0,1}𝑛

(
1

𝑇 + 1

Pr[Hyb
1
(A) ∧ E𝑥∗] −

𝑂 (𝑇 )
2
𝜆+𝑛

)
≥ 1

𝑇 + 1

Pr[Hyb
1
(A) = 1] − 𝑂 (𝑇 )

2
𝜆

,

which proves the claim since 𝑇 = poly(𝜆). We now show Eq. (4.2) holds. Fix any 𝑥∗ ∈ {0, 1}𝑛 . If

(𝐶, 𝑥∗) ∈ LSAT, then

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] = 0 = Pr[Hyb

1
(A) = 1 ∧ E𝑥∗],

so Eq. (4.2) holds. Thus we only need to consider the case where (𝐶, 𝑥∗) ∉ LSAT. We proceed by defining

a sequence of intermediate hybrids.

Hyb
1

(𝑥∗ )
,0

: Same as Hyb
1

except the challenger additionally checks that 𝑥𝑖∗ = 𝑥∗ (i.e., that E𝑥∗ occurred).

Hyb
1

(𝑥∗ )
,1

: Same as Hyb
1

(𝑥∗ )
,0

except the challenger does the following. It first computes a punctured key

𝑘
(𝑥∗,𝑖∗ )
sel ← F.Puncture(𝑘sel, (𝑥∗, 𝑖∗)) and defines a modified version of GenSol which additionally has

𝑖∗, 𝑥∗ hard-coded as follows:

GenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥
∗,𝑖∗ )

sel , 𝑖∗, 𝑥∗] (𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , statement 𝑥𝑖 , witness 𝑤𝑖

1: If 𝑖 = 𝑖∗ and 𝑥𝑖 = 𝑥∗, output ⊥.
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2: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

3: If 𝑗 = F(𝑘 (𝑥
∗,𝑖∗ )

sel , (𝑥𝑖 , 𝑖)), output ⊥.

4: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
5: Compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑧.

Hyb
1

(𝑥∗ )
,2

: Same as Hyb
1

(𝑥∗ )
,1

except that after A outputs ( ®𝑥, 𝜋) where ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧), the

challenger samples 𝑗 ′ r← [𝑇 + 1] and additionally checks that 𝑗 = 𝑗 ′.

Hyb
1

(𝑥∗ )
,3

: Same as Hyb
1

(𝑥∗ )
,2

except the challenger replaces the check 𝑗 = 𝑗 ′ with an updated check

𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

Hyb
1

(𝑥∗ )
,4

: Same as Hyb
1

(𝑥∗ )
,3

except the challenger reverts to obfuscating GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel] instead of

GenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥
∗,𝑖∗ )

sel , 𝑖∗, 𝑥∗].

By definition,

Pr[Hyb
1

(𝑥∗ )
,0
(A) = 1] = Pr[Hyb

1
(A) = 1 ∧ E𝑥∗]

Pr[Hyb
1

(𝑥∗ )
,4
(A) = 1] = Pr[Hyb

2
(A) = 1 ∧ E𝑥∗] .

(4.3)

We now consider each pair of adjacent distributions.

Claim 4.7. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter 𝜆obf = (𝜆 +

𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
1

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,0
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. We first show thatGenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel] inHyb
1

(𝑥∗ )
,0

andGenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥
∗,𝑖∗ )

sel , 𝑖∗, 𝑥∗] inHyb
1

(𝑥∗ )
,1

compute identical functionalities. For a particular input (𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖) consider the following cases:

Case 1. If 𝑖 ≠ 𝑖∗ or 𝑥𝑖 ≠ 𝑥∗, the two programs behave identically except that the latter is using 𝑘
(𝑥∗,𝑖∗ )
sel ,

so by punctured correctness, they have the same output.

Case 2. If 𝑖 = 𝑖∗ and 𝑥𝑖 = 𝑥∗, GenSol′ immediately rejects. Since (𝐶, 𝑥∗) ∉ LSAT, it follows that

𝐶 (𝑥∗,𝑤𝑖) = 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, so GenSol also rejects.

The claim now follows from 𝑖O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that

for all 𝜆 ∈ Λ, we have that | Pr[Hyb
1

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,0
(A)] | > 1/2𝜆+𝑛 . Let ΛB = {(𝜆 + 𝑛)1/𝜀obf |

𝜆 ∈ ΛA}. Since 𝑛 is non-negative, ΛB is also an infinite set.

We define an efficient algorithm B which plays the 𝑖O security game with 𝜆obf = (𝜆 + 𝑛)1/𝜀obf by run-

ningA with security parameter 𝜆. For each value of 𝜆obf ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA
to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we pick

the largest such 𝜆; note that since 𝜀obf < 1 and 𝑛 > 0, it will always be the case that 𝜆 < 𝜆obf).

Algorithm B[𝑥∗]

Inputs: 1
𝜆obf from 𝑖O challenger, 1

𝜆
as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ ← [𝑇 ] and crs𝑓 , 𝑘sel, 𝑘 . Then compute ObfGenChall as in Setup.
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3: Compute 𝑘
(𝑥∗,𝑖∗ )
sel ← F.Puncture(𝑘sel, (𝑥∗, 𝑖∗)).

4: Construct challenge programs GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel] and GenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥
∗,𝑖∗ )

sel , 𝑖∗, 𝑥∗] and

send to the 𝑖O challenger. The challenger replies with an obfuscated program ObfGenSol.

5: Let crs = (crs𝑓 ,ObfGenChall,ObfGenSol).

6: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

7: Output 1 if and only if 𝑥∗ = 𝑥𝑖∗ and V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1.

If the 𝑖O challenger obfuscates GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel], then B perfectly simulates Hyb
1

(𝑥∗ )
,0

and outputs 1

with probability Pr[Hyb
1

(𝑥∗ )
,0
(A) = 1]. If the 𝑖O challenger obfuscates GenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑖∗, 𝑥∗],

then B perfectly simulates Hyb
1

(𝑥∗ )
,1

and outputs 1 with probability Pr[Hyb
1

(𝑥∗ )
,1
(A) = 1]. Thus by 𝑖O

security we have that

| Pr[Hyb
1

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,0
(A) = 1] | = iOAdvB (𝜆obf) ≤ 1/2𝜆

𝜀obf
obf = 1/2𝜆+𝑛 ≤ 1/2𝜆+𝑛 . □

Claim 4.8. Pr[Hyb
1

(𝑥∗ )
,2
(A) = 1] ≥ 1

𝑇+1 Pr[Hyb
1

(𝑥∗ )
,1
(A) = 1].

Proof. The challenger samples 𝑗 ′ r← [𝑇 + 1] after A outputs ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧)). □

Claim 4.9. Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constant 𝜀PRF ∈ (0, 1) and security

parameter 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF . Then

| Pr[Hyb
1

(𝑥∗ )
,3
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,2
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb
1

(𝑥∗ )
,3
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,2
(A)] | > 1/2𝜆+𝑛 .

Let ΛB = {(𝜆 + 𝑛)1/𝜀PRF | 𝜆 ∈ ΛA}. Since 𝑛 is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF by running A
with security parameter 𝜆. For each value of 𝜆PRF ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B
as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆PRF, we pick the

largest such 𝜆; note that since 𝜀PRF < 1 and 𝑛 > 0, it will always be the case that 𝜆 < 𝜆PRF).

Algorithm B[𝑥∗]

Inputs: 1
𝜆PRF

from PPRF challenger, 1
𝜆

as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ r← [𝑇 ], and crs𝑓 , 𝑘sel as in Setup. Compute ObfGenChall as in Setup.

3: Send input length 1
𝑛
, output length 1

𝑡
, and punctured point (𝑥∗, 𝑖∗) to the PPRF challenger. The

PPRF challenger replies with the punctured key 𝑘
(𝑥∗,𝑖∗ )
sel and challenge value 𝑗 ′ ∈ {0, 1}𝑡 .

4: Compute ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol′ [crs𝑓 ,𝐶, 𝑘, 𝑘 (𝑥
∗,𝑖∗ )

sel , 𝑖∗, 𝑥∗]).

5: Let crs = (crs𝑓 ,ObfGenSol,ObfGenChall).
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6: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

7: Output 1 if and only if 𝑥∗ = 𝑥𝑖∗ , V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1, and 𝑗 = 𝑗 ′.

If the PPRF challenger samples 𝑗 ′ r← {0, 1}𝑡 , then B perfectly simulates Hyb
1

(𝑥∗ )
,2

and outputs 1 with prob-

ability Pr[Hyb
1

(𝑥∗ )
,2
(A) = 1]. If the PPRF challenger computes 𝑗 ′ ← F(𝑘sel, (𝑥∗, 𝑖∗)) then B perfectly sim-

ulates Hyb
1

(𝑥∗ )
,3

and outputs 1 with probability Pr[Hyb
1

(𝑥∗ )
,3
(A) = 1]. Thus by PPRF security we have that

| Pr[Hyb
1

(𝑥∗ )
,3
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,2
(A) = 1] | = PPRFAdvB (𝜆PRF) ≤ 1/2𝜆

𝜀PRF
PRF = 1/2𝜆+𝑛 ≤ 1/2𝜆+𝑛 . □

Claim 4.10. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter 𝜆obf =

(𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
1

(𝑥∗ )
,4
(A) = 1] − Pr[Hyb

1

(𝑥∗ )
,3
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.7. □

Combining Claims 4.7 to 4.10, we have that

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗] = Pr[Hyb(𝑥

∗ )
1,0
(A) = 1] by Eq. (4.3)

≤ Pr[Hyb(𝑥
∗ )

1,1
(A) = 1] + 1

2
𝜆+𝑛 by Claim 4.7

≤ (𝑇 + 1) · Pr[Hyb(𝑥
∗ )

1,2
(A) = 1] + 1

2
𝜆+𝑛 by Claim 4.8

≤ (𝑇 + 1) ·
(

Pr[Hyb(𝑥
∗ )

1,3
(A) = 1] + 1

2
𝜆+𝑛

)
+ 1

2
𝜆+𝑛 by Claim 4.9

≤ (𝑇 + 1) ·
(

Pr[Hyb(𝑥
∗ )

1,4
(A) = 1] + 2

2
𝜆+𝑛

)
+ 1

2
𝜆+𝑛 by Claim 4.10

= (𝑇 + 1) · Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] +

2𝑇 + 3

2
𝜆+𝑛 by Eq. (4.3).

Thus, Eq. (4.2) holds for the case where (𝐶, 𝑥∗) ∉ LSAT. This proves Lemma 4.6. □

Lemma 4.11. Pr[Hyb
3
(A) = 1] ≥ Pr[Hyb

2
(A) = 1].

Proof. The conditions for outputting 1 in Hyb
3

are a strict subset of those for outputting 1 in Hyb
2
. □

Lemma 4.12. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure, the punctured PRF ΠPPRF satisfies punctured correctness

and (1, 2−𝜆
𝜀PRF
PRF )-puncturing security, and ΠOWF satisfies re-randomization correctness and (1, negl(𝜆))-one-

wayness and (1, 2−𝑚𝜀𝑚 )-re-randomization security for constants 𝜀obf, 𝜀PRF, 𝜀𝑚 ∈ (0, 1) and security parameters
𝜆obf = (𝜆 + 𝑛)1/𝜀obf , 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF,𝑚 = (𝜆 + 𝑛)1/𝜀𝑚 . Then

Pr[Hyb
4
(A) = 1] ≥ Pr[Hyb

3
(A) = 1] − 2

−Ω (𝜆) .

Proof. We proceed by defining a sequence of intermediate hybrids for each value of 𝑥∗ ∈ {0, 1}𝑛 .

Hyb
3

(𝑥∗ )
,1

: Same as Hyb
3

except the challenger computes
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• 𝑗∗ ← F(𝑘sel, (𝑥∗, 𝑖∗));
• 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗∗));
• 𝑘 ( 𝑗

∗ ) ← F.Puncture(𝑘, 𝑗∗);
• (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗∗, (𝑥∗, 𝑖∗)));
• (𝑦base, 𝑧base) ← OWF.GenInstance(crs𝑓 );
• 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜇).

Here, 𝜇 is a bound on the number of bits of randomness the OWF.Rerandomize algorithm takes. The

challenger then defines a modified version of GenChall as follows:

GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗∗, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, 𝑥

∗, 𝑦∗, 𝑦base] (𝑖, 𝑗, 𝑥𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , statement 𝑥𝑖

1: If 𝑗 = 𝑗∗ : let 𝑘 𝑗 = 𝑘 𝑗∗ . Otherwise, compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘 ( 𝑗∗ ) , 𝑗)).
2: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)):

• If 𝑥𝑖 < 𝑥∗: output OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥𝑖 , 𝑖))).
• If 𝑥𝑖 = 𝑥∗: output 𝑦∗.

• If 𝑥𝑖 > 𝑥∗: compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑦.

Otherwise, compute (𝑦, 𝑧) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) and output 𝑦.

Hyb
3

(𝑥∗ )
,2

: Same as Hyb
3

(𝑥∗ )
,1

except the challenger samples 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ) instead of com-

puting 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗∗)).

Hyb
3

(𝑥∗ )
,3

: Same as Hyb
3

(𝑥∗ )
,2

except the challenger additionally computes

• 𝑘
(𝑥∗,𝑖∗ )
𝑗∗ ← F.Puncture(𝑘 𝑗∗, (𝑥∗, 𝑖∗))

• 𝑘
(𝑥∗,𝑖∗ )
rerand ← F.Puncture(𝑘rerand, (𝑥∗, 𝑖∗))

and uses the punctured keys in place of 𝑘 𝑗∗, 𝑘rerand.

Hyb
3

(𝑥∗ )
,4

: Same as Hyb
3

(𝑥∗ )
,3

except the challenger samples (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ) instead of

computing (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗∗, (𝑥∗, 𝑖∗))).

Hyb
3

(𝑥∗ )
,5

: Same as Hyb
3

(𝑥∗ )
,4

except the challenger samples 𝑦∗ ← OWF.Rerandomize(crs𝑓 , 𝑦base).

Hyb
3

(𝑥∗ )
,6

: Same as Hyb
3

(𝑥∗ )
,5

except the challenger computes

𝑦∗ ← OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥∗, 𝑖∗))).

Hyb
3

(𝑥∗ )
,7

: Same as Hyb
3

(𝑥∗ )
,6

except the challenger reverts to using unpunctured keys 𝑘 𝑗∗, 𝑘rerand instead of

punctured keys 𝑘
(𝑥∗,𝑖∗ )
𝑗∗ , 𝑘

(𝑥∗,𝑖∗ )
rerand .

Hyb
3

(𝑥∗ )
,8

: Same asHyb
3

(𝑥∗ )
,7

except the challenger reverts to computing𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗∗))
instead of sampling 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ).

31



We now consider each pair of adjacent distributions.

Claim 4.13. Fix any 𝑥∗ ∈ {0, 1}𝑛 \ {0𝑛}. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and

security parameter 𝜆obf = (𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb(𝑥

∗−1)
3,8

(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb(𝑥

∗−1)
3,8

(A) = 1] | > 1/2𝜆+𝑛 .

Let ΛB = {(𝜆 + 𝑛)1/𝜀obf | 𝜆 ∈ ΛA}. Since 𝑛 is non-negative, ΛB is also an infinite set. We define an effi-

cient algorithm B which plays the 𝑖O security game with 𝜆obf = (𝜆 + 𝑛)1/𝜀obf by running A with security

parameter 𝜆. For each value of 𝜆obf ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B as non-uniform

advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we pick the largest such 𝜆; note

that since 𝜀obf < 1 and 𝑛 > 0, it will always be the case that 𝜆 < 𝜆obf).

Algorithm B[𝑥∗]

Inputs: 1
𝜆obf from 𝑖O challenger, 1

𝜆
as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ ← [𝑇 ], and crs𝑓 , 𝑘sel, 𝑘 as in Setup.

3: Compute (𝑦base, 𝑧base) ← OWF.GenInstance(crs𝑓 ) and 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜇).

4: Compute 𝑗 ′ ← F(𝑘sel, (𝑥∗ − 1, 𝑖∗)).

5: Compute 𝑘 ( 𝑗
′ ) ← F.Puncture(𝑘, 𝑗 ′), and 𝑘 𝑗 ′ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗 ′)).

6: Compute 𝑦′ ← OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥∗ − 1, 𝑖∗))).

7: Compute 𝑗∗ ← F(𝑘sel, (𝑥∗, 𝑖∗)).

8: Compute 𝑘 ( 𝑗
∗ ) ← F.Puncture(𝑘, 𝑗∗), and 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗∗)).

9: Compute (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗∗, (𝑥∗, 𝑖∗))).

10: Compute ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol[crs𝑓 ,𝐶, 𝑘sel, 𝑘]).

11: Construct challenge programs GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗 ′, 𝑘 ( 𝑗
′ ) , 𝑘 𝑗 ′, 𝑘rerand, 𝑥

∗ − 1, 𝑦′, 𝑦base] and

GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗∗, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, 𝑥

∗, 𝑦∗, 𝑦base] and send to the 𝑖O challenger. The 𝑖O
challenger replies with an obfuscated program ObfGenChall.

12: Let crs = (crs𝑓 ,ObfGenSol,ObfGenChall).

13: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

14: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

We first show that

𝑉 B GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗 ′, 𝑘 ( 𝑗
′ ) , 𝑘 𝑗 ′, 𝑘rerand, 𝑥

∗ − 1, 𝑦′, 𝑦base]
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which is computed as in Hyb(𝑥
∗−1)

3,8
and

𝑉 ′ B GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗∗, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, 𝑥

∗, 𝑦∗, 𝑦base]

which is computed as in Hyb
3

(𝑥∗ )
,1

compute identical functionalities. For a particular input (𝑖, 𝑗, 𝑥𝑖) consider

the following cases:

Case 1. If 𝑖 ≠ 𝑖∗ or 𝑥𝑖 > 𝑥∗ or 𝑗 ≠ F(𝑘sel, (𝑥𝑖 , 𝑖)), the two programs behave identically except 𝑉 may

be using hard-coded key 𝑘 𝑗 ′ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗 ′)) and𝑉 ′ may be using hard-coded key

𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗∗)). Both programs compute

(𝑦𝑖 , 𝑧𝑖) = OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖)))

and output 𝑦𝑖 .

Case 2. If 𝑖 = 𝑖∗ and 𝑥𝑖 < 𝑥∗ − 1 and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), both programs output

𝑦𝑖 = OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥𝑖 , 𝑖))).

Case 3. If 𝑖 = 𝑖∗ and 𝑥𝑖 = 𝑥∗ − 1 and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)) = 𝑗 ′, the two programs behave identically except

𝑉 uses the hard-coded value 𝑦′ = OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥∗ − 1, 𝑖∗))).

Case 4. If 𝑖 = 𝑖∗ and 𝑥𝑖 = 𝑥∗ and 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)) = 𝑗∗, the two programs behave identically except 𝑉 ′

uses the hard-coded value 𝑦∗ where (𝑦∗, 𝑧∗) = OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗∗, (𝑥∗, 𝑖∗))).
We conclude that the two programs output identical functionality. If the 𝑖O challenger obfuscates𝑉 , then

B perfectly simulates Hyb(𝑥
∗−1)

3,8
and outputs 1 with probability Pr[Hyb(𝑥

∗−1)
3,8

(A) = 1]. If the 𝑖O challenger

obfuscates 𝑉 ′, then B perfectly simulates Hyb
3

(𝑥∗ )
,1

and outputs 1 with probability Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1].

Thus by 𝑖O security we have that

| Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb′ (𝑥

∗−1)
3,8

(A) = 1] | = iOAdvB (𝜆obf) ≤ 1/2𝜆
𝜀obf
obf = 1/2𝜆+𝑛 . □

Claim 4.14. Fix 𝑥∗ = 0
𝑛 . Suppose 𝑖O is (1, 2−𝜆

𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter

𝜆obf = (𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.13. □

Claim 4.15. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF . Then

| Pr[Hyb
3

(𝑥∗ )
,2
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,1
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb
3

(𝑥∗ )
,2
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,1
(A)] | > 1/2𝜆+𝑛 .

Let ΛB = {(𝜆 + 𝑛)1/𝜀PRF | 𝜆 ∈ ΛA}. Since 𝑛 is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF by running A
with security parameter 𝜆. For each value of 𝜆PRF ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B
as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆PRF, we pick the

largest such 𝜆; note that since 𝜀PRF < 1 and 𝑛 > 0, it will always be the case that 𝜆 < 𝜆PRF).

33



Algorithm B[𝑥∗]

Inputs: 1
𝜆PRF

from PPRF challenger, 1
𝜆

as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ ← [𝑇 ], and crs𝑓 , 𝑘sel as in Setup.

3: Compute 𝑗∗ ← F(𝑘sel, (𝑥∗, 𝑖∗)).

4: Send input length 1
𝑡
, output length 1

𝜏
, and punctured point 𝑗∗ to the PPRF challenger. The

PPRF challenger replies with the punctured key 𝑘 ( 𝑗
∗ )

and challenge value 𝑟 ∈ {0, 1}𝑡 .

5: Compute 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; 𝑟 ).

6: Compute (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗∗, (dig∗, 𝑑))) and

(𝑦base, 𝑧base) ← OWF.GenInstance(crs𝑓 ).

7: Sample the re-randommization key 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝜆, 1𝜇).

8: Compute ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel]).

9: ComputeObfGenChall← 𝑖O(1𝜆obf , 1𝑠 ,GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗∗, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, 𝑥

∗, 𝑦∗, 𝑦base]).

10: Let crs = (crs𝑓 ,ObfGenSol,ObfGenChall).

11: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

12: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

If the PPRF challenger samples 𝑟
r← {0, 1}𝜌 , then B perfectly simulates Hyb

3

(𝑥∗ )
,2

and outputs 1 with prob-

ability Pr[Hyb
3

(𝑥∗ )
,2
(A) = 1]. If the PPRF challenger computes 𝑟 ← F(𝑘, ( 𝑗∗)) then B perfectly simulates

Hyb
3

(𝑥∗ )
,1

and outputs 1 with probability Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1]. Thus by PPRF security we have that

| Pr[Hyb
3

(𝑥∗ )
,1
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,2
(A) = 1] | = PPRFAdvB (𝜆PRF) ≤ 1/2𝜆

𝜀PRF
PRF = 1/2𝜆+𝑛 . □

Claim 4.16. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security

parameter 𝜆obf = (𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
3

(𝑥∗ )
,3
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,2
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.13. □

Claim 4.17. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF . Then

| Pr[Hyb
3

(𝑥∗ )
,4
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,3
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.15. □
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Claim 4.18. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose ΠOWF satisfies (1, 2−𝑚
𝜀𝑚 )-re-randomization security for constant

𝜀𝑚 ∈ (0, 1) and re-randomization parameter𝑚 = (𝜆 + 𝑛)1/𝜀𝑚 . Then

| Pr[Hyb
3

(𝑥∗ )
,5
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,4
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb
3

(𝑥∗ )
,5
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,4
(A)] | > 1/2𝜆+𝑛 .

Let 𝑚(𝜆) = (𝜆 + 𝑛)1/𝜀𝑚 . We define an efficient algorithm B which plays the re-randomization security

game with𝑚 = (𝜆 + 𝑛)1/𝜀𝑚 by running A with security parameter 𝜆.

Algorithm B[𝑥∗]

Inputs: crs𝑓 ← OWF.Setup(1𝜆, 1𝑚), 𝑦base, 𝑦∗ from re-randomization challenger

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ r← [𝑇 ], and 𝑘, 𝑘sel as in Setup.

3: Compute 𝑗∗ ← F(𝑘sel, (𝑥∗, 𝑖∗)) and 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ).

4: Compute 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝜆, 1𝜇).

5: Compute the punctured keys 𝑘 ( 𝑗
∗ ) ← F.Puncture(𝑘, 𝑗∗), 𝑘 (𝑥

∗,𝑖∗ )
𝑗∗ ← F.Puncture(𝑘 𝑗∗, (𝑥∗, 𝑖∗)) as

well as the re-randomization key 𝑘
(𝑥∗,𝑖∗ )
rerand ← F.Puncture(𝑘rerand, (𝑥∗, 𝑖∗)).

6: Compute ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel]).

7: ComputeObfGenChall← 𝑖O(1𝜆obf , 1𝑠 ,GenChall′′ [crs𝑓 , 𝑘sel, 𝑖∗, 𝑗∗, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, 𝑥

∗, 𝑦∗, 𝑦base]).

8: Let crs = (crs𝑓 ,ObfGenSol,ObfGenChall).

9: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

10: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

If the re-randomization challenger samples (𝑦∗, 𝑧∗) ← OWF.GenInstance(crs𝑓 ), then B perfectly simu-

lates Hyb
3

(𝑥∗ )
,4

and outputs 1 with probability Pr[Hyb
3

(𝑥∗ )
,4
(A) = 1]. If the re-randomization challenger

computes (𝑦∗, 𝑧∗) ← OWF.Rerandomize(crs𝑓 , 𝑦base) then B perfectly simulates Hyb
3

(𝑥∗ )
,5

and outputs 1

with probability Pr[Hyb
3

(𝑥∗ )
,5
(A) = 1]. Thus by re-randomization security we have that

| Pr[Hyb
3

(𝑥∗ )
,5
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,4
(A) = 1] | = RerandAdvB (𝑚) ≤ 1/2𝑚𝜀

𝑚 = 1/2𝜆+𝑛 . □

Claim 4.19. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF . Then

| Pr[Hyb
3

(𝑥∗ )
,6
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,5
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.15. □
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Claim 4.20. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security

parameter 𝜆obf = (𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
3

(𝑥∗ )
,7
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,6
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.13. □

Claim 4.21. Fix any 𝑥∗ ∈ {0, 1}𝑛 . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF . Then

| Pr[Hyb
3

(𝑥∗ )
,8
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,7
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.15. □

Claim 4.22. Fix 𝑥∗ = 1
𝑛 . Suppose 𝑖O is (1, 2−𝜆

𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter

𝜆obf = (𝜆 + 𝑛)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
4
(A) = 1] − Pr[Hyb

3

(𝑥∗ )
,8
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 4.13. □

Proof of Lemma 4.12. We now return to the proof of Lemma 4.12. By Claims 4.7 to 4.10, and the triangle

inequality, we can now write��
Pr[Hyb

4
(A) = 1] − Pr[Hyb

3
(A) = 1]

��
≤

��
Pr[Hyb

4
(A) = 1] − Pr[Hyb(1

𝑛 )
3,8
(A) = 1]

��
+

∑︁
𝑥∈{0,1}𝑛

8∑︁
ℓ=2

��
Pr[Hyb(𝑥 )

3,ℓ
(A) = 1] − Pr[Hyb(𝑥 )

3,ℓ−1
(A) = 1]

��
+

∑︁
𝑥∈{0,1}𝑛\{0𝑛 }

��
Pr[Hyb(𝑥 )

3,1
(A) = 1] − Pr[Hyb(𝑥−1)

3,8
(A) = 1]

��
+
��
Pr[Hyb(0

𝑛 )
3,1
(A) = 1] − Pr[Hyb

3
(A) = 1]

��
≤ 1

2
Ω (𝜆)︸︷︷︸

Claim 4.22

+ 2
𝑛 · 𝑂 (1)

2
𝜆+𝑛︸     ︷︷     ︸

Claims 4.15 to 4.21

+ 2
𝑛 · 1

2
𝜆+𝑛︸    ︷︷    ︸

Claim 4.13

+ 1

2
𝜆+𝑛︸︷︷︸

Claim 4.14

,

which is bounded by a negligible function. Lemma 4.12 holds. □

Lemma 4.23. Suppose that ΠOWF satisfies re-randomization correctness, homomorphism, and (1, negl(𝜆))-
one-wayness. Then Pr[Hyb

4
(A) = 1] ≤ negl(𝜆) .

Proof. We define an efficient algorithm B which plays the one-wayness security game with security pa-

rameter 𝜆 and re-randomization parameter𝑚 =𝑚(𝜆, 𝑛):

Algorithm B

Inputs: crs𝑓 ← OWF.Setup(1𝜆, 1𝑚) and 𝑦base from the challenger where the challenger samples

(𝑦base, 𝑧base) ← OWF.GenInstance(crs𝑓 )
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1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample 𝑖∗ r← [𝑇 ], and 𝑘, 𝑘sel as in Setup.

3: Compute 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜇).

4: Compute ObfGenSol← 𝑖O(1𝜆obf , 1𝑠 ,GenSol[crs𝑓 ,𝐶, 𝑘, 𝑘sel]).

5: Compute ObfGenChall← 𝑖O(1𝜆obf , 1𝑠 ,GenChall′ [crs𝑓 , 𝑘, 𝑘sel, 𝑖∗, 𝑘rerand, 𝑦base]).

6: Let crs = (crs𝑓 ,ObfGenSol,ObfGenChall).

7: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

8: For each 𝑖 ∈ [𝑇 ], compute (𝑦𝑖 , 𝑧𝑖) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))).

9: Compute 𝑧∗ ← OWF.InHom(crs𝑓 , {𝑧𝑖}𝑖∈[𝑇 ]\{𝑖∗}).

10: Compute 𝑧𝑖∗ ← OWF.InHom−1(crs𝑓 , 𝑧, 𝑧∗).

11: Send 𝑧base ← OWF.RecoverSolution(crs𝑓 , 𝑧𝑖∗, F(𝑘rerand, (𝑥𝑖∗, 𝑖∗))) to challenger.

Let 𝑦𝑖∗ = OWF.Rerandomize(crs𝑓 , 𝑦base; F(𝑘rerand, (𝑥𝑖∗, 𝑖∗))). Similarly, let

𝑦∗ = OWF.OutHom(crs𝑓 , {ObfGenChall(𝑖, 𝑗, 𝑥𝑖)}𝑖∈[𝑇 ]\{𝑖∗}).

Recall that Hyb
4
(A) = 1 only if V(crs, ®𝑥, 𝜋) = 1. This means

OWF.Verify(crs𝑓 ,OWF.OutHom(𝑦∗, 𝑦𝑖∗), 𝑧) = 1.

Next note that for all 𝑖 ≠ 𝑖∗, we have

OWF.Verify(crs𝑓 ,ObfGenChall(𝑖, 𝑗, 𝑥𝑖), 𝑧𝑖) = 1,

so by homomorphism of ΠOWF, we have OWF.Verify(crs𝑓 , 𝑦∗, 𝑧∗) = 1. Since 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)), we have

ObfGenChall(𝑖∗, 𝑗, 𝑥𝑖∗) = 𝑦𝑖∗ . Then by (reverse) homomorphism of ΠOWF, we have

OWF.Verify(crs𝑓 , 𝑦∗, 𝑧∗) = 1.

Lastly, by re-randomization correctness of ΠOWF, we have that OWF.Verify(crs𝑓 , 𝑦base, 𝑧base) = 1. Com-

bining the above, we conclude

Pr[Hyb
4
(A) = 1] ≤ Pr[OWF.Verify(crs𝑓 , 𝑦base, 𝑧base) = 1] = OWFAdvB (𝜆) ≤ negl(𝜆). □

Proof of Theorem 4.4. Combining Lemmas 4.5, 4.6, 4.11, and 4.12, we have for all sufficiently-large

𝜆 ∈ N,

Pr[Hyb
4
(A) = 1] ≥ 1

𝑇 (𝑇 + 1) · Pr[Hyb
0
(A) = 1] − 2

−Ω (𝜆) .

By Lemma 4.23, we have Pr[Hyb
4
= 1] = negl(𝜆). We conclude that

Pr[Hyb
0
(A) = 1] ≤ 𝑇 · (𝑇 + 1) · negl(𝜆) + 2

−Ω (𝜆) ,

which remains negligible since 𝑇 = poly(𝜆). Finally Hyb
0

corresponds to the real adaptive soundness

security game, so Theorem 4.4 holds. □
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Theorem 4.24 (Perfect Zero-Knowledge). Suppose 𝑖O is correct. Then Construction 4.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

• S0(1𝜆,𝑇 ,𝐶): On input the security parameter 𝜆, a batch size 𝑇 , and a Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}𝑣 → {0, 1}, the simulator samples the common reference string crs ← Setup(1𝜆,𝑇 ,𝐶) exactly

as in the real scheme. Let crs𝑓 , 𝑘sel, 𝑘 be the underlying OWF parameters and PPRF keys sampled in

Setup. The simulator outputs the crs along with the state st = (crs𝑓 , 𝑘sel, 𝑘).

• S1(st, (𝑥1, . . . , 𝑥𝑇 )): On input the state st = (crs𝑓 , 𝑘sel, 𝑘) and statements (𝑥1, . . . , 𝑥𝑇 ), the simulator

computes 𝑗𝑖 ← F(𝑘sel, (𝑥𝑖 , 𝑖)) and selects the smallest 𝑗 ∈ [𝑇 +1] such that 𝑗 ≠ 𝑗𝑖 for all 𝑖 ∈ [𝑇 ]. It then

computes 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜌 ; F(𝑘, 𝑗)) and (𝑦𝑖 , 𝑧𝑖) ← OWF.GenInstance(crs𝑓 , F(𝑘 𝑗 , (𝑥𝑖 , 𝑖)))
for all 𝑖 . The simulator outputs 𝜋 = ( 𝑗,OWF.InHom(crs𝑓 , (𝑧1, . . . , 𝑧𝑇 ))).

Take any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1}, batch size 𝑇 , and statements 𝑥1, . . . , 𝑥𝑇 and wit-

nesses 𝑤1, . . . ,𝑤𝑇 such that 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑇 ]. First, observe that the common reference string

crs output by S0(1𝜆,𝑇 ,𝐶) is distributed identically to Setup(1𝜆,𝑇 ,𝐶). It now suffices to consider the proof.

By construction, the proof 𝜋 = ( 𝑗, 𝑧) output by P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )) is obtained by evalu-

ating ObfGenSol on inputs (𝑖, 𝑗, 𝑥𝑖 ,𝑤𝑖). By correctness of 𝑖O and the definition of GenSol and P, this

means that 𝑗 is the smallest value in [𝑇 + 1] such that 𝑗 ≠ F(𝑘sel, (𝑥𝑖 , 𝑖)) for all 𝑖 ∈ [𝑇 ], and that 𝑧𝑖 was

generated by computing (𝑦𝑖 , 𝑧𝑖) ← OWF.GenInstance(crs𝑓 ; F(𝑘 𝑗 , (𝑥𝑖 , 𝑖))) for all 𝑖 . Finally, P computes

𝑧 = OWF.InHom(crs𝑓 , (𝑧1, . . . , 𝑧𝑇 )). Thus the proof output by S1(st, (𝑥1, . . . , 𝑥𝑇 )) is distributed identically

to 𝜋 . □

5 Re-randomizable Pseudorandom Generators

In this section, we introduce the notion of a re-randomizable pseudorandom generator (PRG), which is one

of the main building blocks we use in our alternative construction of an adaptively-sound fully succinct

BARG in Section 6. Then, in Section 5.1, we show how to construct a re-randomizable PRG from DDH.

Definition 5.1 (Re-randomizable PRG). A re-randomizable pseudorandom generator (PRG) is a tuple of

efficient algorithms ΠRPRG = (Setup,GenSeed, Eval,Rerandomize) with the following syntax:

• Setup(1𝜆, 1𝑚) → crs : On input security parameter 1
𝜆

and re-randomization parameter 1
𝑚

, the setup

algorithm outputs a common reference string crs. We assume that the crs contains an implicit de-

scription of the seed space Z and the output space Y, and that elements of Z can be represented

by bit-strings of length ℓ𝑧 and elements of Y can be represented by bit-strings of length ℓ𝑦 .

• GenSeed(crs) → 𝑧 : On input common reference string crs, the seed-generation algorithm outputs

a seed 𝑧 ∈ Z.

• Eval(crs, 𝑧) → 𝑦. On input common reference string crs and seed 𝑧 ∈ Z, the deterministic evaluation

algorithm outputs 𝑦 ∈ Y.

• Rerandomize(crs, 𝑦) → 𝑦′ : On input common reference string crs and instance 𝑦 ∈ Y, the re-

randomization algorithm outputs a new instance 𝑦′ ∈ Y.

We require that ΠRPRG satisfy the following properties:
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• Succinctness and expansion. There exists a fixed polynomial poly(·) such that for all 𝜆,𝑚 ∈ N,

and all crs in the support of Setup(1𝜆, 1𝑚), it holds that the seed length satisfies ℓ𝑧 ≤ poly(𝜆 + log𝑚).
In addition, the size of the output space satisfies |Y| ≥ 2

Ω (𝜆) · |Z|.

• Pseudorandomness. For a security parameter 𝜆, a re-randomization parameter 𝑚, and a bit 𝑏 ∈
{0, 1}, we define the pseudorandomness security game between an adversaryA and a challenger as

follows:

– The challenger samples crs← Setup(1𝜆, 1𝑚).
– If 𝑏 = 0, the challenger samples 𝑧 ← GenSeed(crs) and computes 𝑦 ← Eval(crs, 𝑧). If 𝑏 = 1,

the challenger samples 𝑦
r← Y.

– The challenger then sends (crs, 𝑦) to A.

– A outputs a bit 𝑏′, which is the output of the experiment.

We say that ΠRPRG is (𝑡, 𝜀)-pseudorandom if for all polynomials 𝑚 = 𝑚(𝜆) and all adversaries A
running in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all security parameters

𝜆 ≥ 𝜆A , it holds that

PRGAdvA (𝜆) B | Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the pseudorandomness security game.

• Re-randomization correctness. For all security parameters 𝜆, all 𝑚 =𝑚(𝜆) all crs in the support

of Setup(1𝜆, 1𝑚), all 𝑦 ∈ Y, and all 𝑦′ in the support of Rerandomize(crs, 𝑦), either

– 𝑦,𝑦′ are both in the image of Eval(crs, ·); or

– 𝑦,𝑦′ are both not in the image of Eval(crs, ·).

• Re-randomization security. For a security parameter 𝜆, a re-randomization parameter𝑚, and a bit

𝑏 ∈ {0, 1}, we define the re-randomization security game between an adversaryA and a challenger

as follows:

– The challenger samples crs ← Setup(1𝜆, 1𝑚), 𝑧base ← GenSeed(crs), and computes 𝑦base ←
Eval(crs, 𝑧base).

– If 𝑏 = 0, the challenger samples 𝑧∗ ← GenSeed(crs) and computes 𝑦∗ ← Eval(crs, 𝑧∗). If 𝑏 = 1,

the challenger samples 𝑦∗ ← Rerandomize(crs, 𝑦base).
– The challenger then sends (crs, 𝑦base, 𝑦∗) to A.

– A outputs a bit 𝑏′, which is the output of the experiment.

We say that ΠRPRG satisfies (𝑡, 𝜀)-re-randomization security if for all polynomials 𝑚 =𝑚(𝜆) and all

adversaries A running in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all security

parameters 𝜆 ≥ 𝜆A , it holds that

RerandAdvA (𝜆) B | Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the re-randomization security game.
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5.1 Constructing Re-randomizable PRGs

In this section, we show how to construct a re-randomizable PRG from the decisional Diffie-Hellman as-

sumption.

Construction 5.2 (Re-randomizable PRG). LetGroupGen be a prime-order group generator. We construct

a re-randomizable PRG ΠRPRG = (Setup,GenSeed, Eval,Rerandomize) as follows:

• Setup(1𝜆, 1𝑚): On input security parameter 1
𝜆

and re-randomization parameter 1
𝑚

, the setup algo-

rithm samples (G, 𝑝, 𝑔) ← GroupGen(1𝜆), 𝑥 r← Z∗𝑝 , and outputs crs = (G, 𝑝, 𝑔, ℎ) where ℎ = 𝑔𝑥 . The

seed space isZ = Z∗𝑝 and the output space is Y = (G \ {1})2.

• GenSeed(crs): On input common reference string crs = (G, 𝑝, 𝑔, ℎ), the seed generation algorithm

samples and outputs 𝑧
r← Z∗𝑝 .

• Eval(crs, 𝑧): On input common reference string crs = (G, 𝑝, 𝑔, ℎ) and seed 𝑧 ∈ Z∗𝑝 , the evaluation

algorithm outputs (𝑔𝑧, ℎ𝑧) ∈ Y.

• Rerandomize(crs, 𝑦): On input common reference string crs and instance𝑦 = (𝑦1, 𝑦2), the re-randomization

algorithm samples 𝑟
r← Z∗𝑝 and outputs (𝑦𝑟

1
, 𝑦𝑟

2
) ∈ Y.

Theorem 5.3 (Succinctness and Expansion). Construction 5.2 satisfies succinctness and expansion.

Proof. For (G, 𝑝, 𝑔) ← GroupGen(1𝜆), we have that 𝑝 is a 𝜆-bit prime. Thus a seed 𝑧 ∈ Z∗𝑝 can be described

by a string of length at most ℓ𝑧 = 𝜆. Next, an instance 𝑦 = (𝑔𝑧, ℎ𝑧) consists of two group elements and thus

|Y| = (𝑝 − 1)2 > 2
Ω (𝜆) · |Z∗𝑝 |, since 𝑝 = 2

Ω (𝜆)
. □

Theorem 5.4 (Pseudorandomness). Suppose the decisional Diffie-Hellman assumption holds with respect to
GroupGen. Then Construction 5.2 satisfies pseudorandomness.

Proof. Let A be an efficient adversary for the pseudorandomness game against Construction 5.2. We use

A to construct an adversary B for the DDH problem:

Algorithm B

Inputs: ((G, 𝑝, 𝑔), 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) from the DDH challenger

1: Let crs = (G, 𝑝, 𝑔, ℎ) where ℎ = 𝑔𝛼 and 𝑦 = (𝑔𝛽 , 𝑔𝛾 ).

2: Run 𝑏′ ← A(crs, 𝑦).

3: Send 𝑏′ to challenger.

Note that if 𝑏 = 0 (i.e., 𝛾 = 𝛼𝛽 for uniform 𝛼, 𝛽
r← Z∗𝑝 ), then 𝑔𝛾 = 𝑔𝛼𝛽 = ℎ𝛽 so 𝑦 = (𝑔𝛽 , ℎ𝛽 ). If 𝑏 = 1 (i.e.,

𝛽,𝛾
r← Z∗𝑝 ), then 𝑦 = (𝑔𝛽 , 𝑔𝛾 ) is uniform over (G \ {1})2. Thus,

PRGAdvA (𝜆) ≤ DDHAdvB (𝜆) ≤ negl(𝜆). □

Theorem 5.5 (Re-randomization Correctness). Construction 5.2 satisfies re-randomization correctness.

Proof. Take any 𝜆,𝑚 ∈ N, any crs = (G, 𝑝, 𝑔, ℎ = 𝑔𝑥 ) in the support of Setup(1𝜆, 1𝑚), any 𝑦 ∈ Y, and any

𝑦′ in the support of Rerandomize(crs, 𝑦). We show that 𝑦 is in the support of Eval(crs, ·) if and only if 𝑦′

is in the support of Eval(crs, ·).
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• For the forward direction, suppose 𝑦 = (𝑦1, 𝑦2) = Eval(crs, 𝑧) for some seed 𝑧 ∈ Z∗𝑝 . Then 𝑦1 = 𝑔𝑧

and 𝑦2 = ℎ𝑧 . We have that for some 𝑟 ∈ Z∗𝑝 , 𝑦′ = (𝑦𝑟
1
, 𝑦𝑟

2
) = (𝑔𝑟𝑧, ℎ𝑟𝑧), so 𝑦′ = Eval(crs, 𝑟𝑧).

• For the reverse direction, suppose 𝑦′ = (𝑦′
1
, 𝑦′

2
) = Eval(crs, 𝑧) for some 𝑧 ∈ Z∗𝑝 . Then 𝑦′

1
= 𝑔𝑧 and

𝑦′
2
= ℎ𝑧 . Since 𝑦′ = Rerandomize(crs, 𝑦), and by construction of Rerandomize, there exists 𝑟 ∈ Z∗𝑝

such that

𝑦 =
(
(𝑦′

1
)𝑟 −1

, (𝑦′
2
)𝑟 −1 )

=
(
𝑔𝑟
−1𝑧, ℎ𝑟

−1𝑧
)
.

Thus 𝑦 = Eval(crs, 𝑟−1𝑧), as required.

We conclude that either 𝑦,𝑦′ are both in the image of Eval(crs, ·) or they are both not in the image of

Eval(crs, ·). □

Theorem 5.6 (Re-randomization Security). Construction 5.2 satisfies perfect re-randomizable security. For
all polynomials𝑚 =𝑚(𝜆) and all adversaries A, RerandAdvA (𝜆) = 0.

Proof. Take any polynomial 𝑚 =𝑚(𝜆). Let crs = (G, 𝑝, 𝑔, ℎ) ← Setup(1𝜆, 1𝑚) where ℎ = 𝑔𝑥 . By construc-

tion of GenSeed, we have that a fresh instance Eval(crs, 𝑧∗) = (𝑔𝑧∗, ℎ𝑧∗) is uniformly distributed over the set

{(𝑔𝑧, ℎ𝑧) | 𝑧 ∈ Z∗𝑝 }. By construction of Rerandomize, we have that a re-randomized instance𝑦′ = (𝑦𝑟
1
, 𝑦𝑟

2
) =

(𝑔𝑟𝑧, ℎ𝑟𝑧) is still uniformly distributed over the set {(𝑔𝑧, ℎ𝑧) | 𝑧 ∈ Z∗𝑝 }, since 𝑟𝑧 is uniformly distributed

over Z∗𝑝 . Note that this proof uses the fact that the exponents are sampled from Z∗𝑝 (rather than Z𝑝 ). □

6 SNARG for Batch NP from Re-randomizable PRGs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishability

obfuscation together with a re-randomizable PRG. As described in Section 1.1, this construction builds on

the chaining approach from [GSWW22]. We give the construction below:

Construction 6.1 (Adaptive Batch Argument for NP). Let 𝜆 be a security parameter. We construct a BARG

scheme that supports NP languages with an arbitrary polynomial number 𝑇 = 𝑇 (𝜆) < 2
𝜆

of instances of

length 𝑛 = 𝑛(𝜆). Our construction will leverage sub-exponential hardness of the following primitives (ex-

cept for pseudorandomness of the re-randomizable PRG ΠRPRG). Our construction relies on the following

primitives:

• Let 𝑖O be an indistinguishability obfuscator for Boolean circuits.

• LetΠSEH = (H.Setup,H.Hash,H.Open,H.Verify,H.Extract) be a somewhere-extractable hash family.

• Let ΠPPRF = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key 𝑘 and an input 𝑥 , we will

write F(𝑘, 𝑥) to denote F.Eval(𝑘, 𝑥).

• Let ΠRPRG = (PRG.Setup, PRG.GenSeed, PRG.Eval, PRG.Rerandomize) be a re-randomizable PRG.

We will describe how to define the polynomials 𝜆SEH, 𝜆obf, 𝜆PRF, and𝑚 in the security analysis. We construct

a fully succinct non-interactive batch argument ΠBARG = (Gen, P,V) for NP as follows:

• Setup(1𝜆,𝑇 ,𝐶): On input security parameter 1
𝜆
, batch size 𝑇 , and Boolean circuit 𝐶 : {0, 1}𝑛 ×

{0, 1}𝑣 → {0, 1}, the setup algorithm does the following:

– Sample PRG parameters crsG ← PRG.Setup(1𝜆, 1𝑚).
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– Sample an SEH hash key hk← H.Setup(1𝜆SEH, 1𝑛).
– Let 𝑡 = log(𝑇 +1). Let 𝑛′ be the output length of H.Hash(hk, ·). Let 𝜌 be a bound on the number

of bits of randomness the PRG.GenSeed(crsG) algorithm takes. Let 𝜏 be the number of bits of

randomness the F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ) algorithm takes.

– Sample a “selector” PPRF key 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝑡 ).
– Sample a “key generator” PPRF key 𝑘 ← F.Setup(1𝜆PRF, 1𝑡 , 1𝜏 ).
– Define the VerProof program with the PRG parameters crsG and PPRF key 𝑘 hard-coded:

VerProof [crsG, 𝑘] (𝑖, 𝑗, dig, 𝑧𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, proof 𝑧𝑖

1: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
2: Compute 𝑧 ← PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).
3: Output 1 if PRG.Eval(crsG, 𝑧𝑖) = PRG.Eval(crsG, 𝑧) and 0 otherwise.

– Define the AggProof program (which has the code for VerProof replicated inside) with the

circuit 𝐶 , PRG parameters crsG, SEH hash key hk, and PPRF keys 𝑘sel, 𝑘 hard-coded:

AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 ,

prior proof 𝑧𝑖−1

1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

3: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

4: If 𝑖 ≠ 1 and VerProof [crsG, 𝑘] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0, output ⊥.

5: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
6: Output 𝑧𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).

– Let 𝑠 = 𝑠 (𝜆, 𝑛, |𝐶 |) be the maximum size of the AggProof and VerProof programs as well as

those appearing in the security analysis.

– Construct the obfuscated programs

ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘])

and

ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,VerProof [crsG, 𝑘]) .

– Output crs = (hk, crsG,ObfAggProof,ObfVerProof).

• P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )): On input crs = (hk, crsG,ObfAggProof,ObfVerProof), statements

𝑥1, . . . , 𝑥𝑇 ∈ {0, 1}𝑛 , and witnesses 𝑤1, . . . ,𝑤𝑇 ∈ {0, 1}𝑣 , the prover algorithm proceeds as follows:

– Compute dig← H.Hash(hk, (𝑥1, . . . , 𝑥𝑇 )).
– Initialize 𝑖 = 1, 𝑗 = 1 and 𝑧0 = ∅.
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– While 𝑖 ≤ 𝑇 :

∗ Compute 𝜎𝑖 ← H.Open(hk, (𝑥1, . . . , 𝑥𝑇 ), 𝑖).
∗ Compute 𝑧𝑖 ← ObfAggProof (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1).
∗ If 𝑧𝑖 = ⊥, set 𝑖 = 1 and 𝑗 = 𝑗 + 1. Otherwise, set 𝑖 = 𝑖 + 1.

– Output 𝜋 = ( 𝑗, 𝑧𝑇 ).

• V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋): On input crs = (hk, crsG,ObfAggProof,ObfVerProof), statements 𝑥1, . . . , 𝑥𝑇 ∈
{0, 1}𝑛 , and the proof 𝜋 = ( 𝑗, 𝑧𝑇 ), the verification algorithm proceeds as follows:

– If 𝑗 ∉ [𝑇 + 1], then output 0.

– Otherwise, compute dig← H.Hash(hk, (𝑥1, . . . , 𝑥𝑇 )) and output ObfVerProof (𝑇, 𝑗, dig, 𝑧𝑇 ).

Theorem 6.2 (Completeness). Suppose 𝑖O is correct and ΠSEH satisfies opening completeness. Then Con-
struction 6.1 is complete.

Proof. Take any security parameter 𝜆 ∈ N, any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1}, any 𝑇 ≤
2
𝜆
, and any collection of statements (𝑥1, . . . , 𝑥𝑇 ) and witnesses (𝑤1, . . . ,𝑤𝑇 ) where 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for

all 𝑖 ∈ [𝑇 ]. Let crs = (hk, crsG,ObfAggProof,ObfVerProof) ← Setup(1𝜆,𝐶,𝑇 ) and 𝜋 = ( 𝑗, 𝑧𝑇 ) ←
P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )). Consider the output of V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋):

• By construction, ObfAggProof is an obfuscation of the program AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘], where

crsG ← G.Setup(1𝜆, 1𝑚)
hk← H.Setup(1𝜆SEH, 1𝑛)
𝑘sel ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝑡 )
𝑘 ← F.Setup(1𝜆PRF, 1𝑡 , 1𝜏 ) .

• Let dig = H.Hash(hk, (𝑥1, . . . , 𝑥𝑇 )) and 𝜎𝑖 ← H.Open(hk, (𝑥1, . . . , 𝑥𝑇 ), 𝑖) for all 𝑖 ∈ [𝑇 ]. By com-

pleteness of ΠSEH, we have that for all 𝑖 ∈ [𝑇 ],

H.Verify(hk, dig, 𝑖, 𝑥𝑖 , 𝜎𝑖) = 1.

• Let 𝑗∗ ∈ [𝑇 + 1] be the smallest index where F(𝑘sel, (𝑥𝑖 , 𝑖)) ≠ 𝑗∗ for all 𝑖 ∈ [𝑇 ]. By correctness of 𝑖O
and the definition of AggProof, it must be the case that 𝑗 ≥ 𝑗∗.

• Let 𝑧∗
1
, . . . , 𝑧∗

𝑇
be the intermediate proofs obtained by P through evaluating ObfAggProof on inputs

(𝑖, 𝑗∗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1). By construction, it follows that𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 andH.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) =
1 and 𝑗∗ ≠ F(𝑘sel, (𝑥𝑖 , 𝑖)).

• We now claim that by correctness of 𝑖O and the definition ofAggProof, this means that for all 𝑖 ∈ [𝑇 ],
it holds that

VerProof [crsG, 𝑘] (𝑖, 𝑗∗, dig, 𝑧∗𝑖 ) = 1. (6.1)

Consider the case where 𝑖 = 1. In this case, AggProof outputs

𝑧1 = PRG.GenSeed(crsG; 𝐹 (𝑘 𝑗∗, (dig, 1))).
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Correspondingly, this means

PRG.Eval(crsG, 𝑧1) = PRG.Eval(crsG, PRG.GenSeed(crsG; 𝐹 (𝑘 𝑗∗, (dig, 1)))),

which precisely coincides with the verification conditionVerProof (1, 𝑗∗, dig, 𝑧∗
1
). Thus, Eq. (6.1) holds

when 𝑖 = 1. For the inductive step, take 𝑖 > 1 and suppose VerProof (𝑖 − 1, 𝑗, dig, 𝑧∗𝑖−1
) = 1. Then,

AggProof outputs

𝑧∗𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig, 𝑖))).
As in the base case, this means VerProof (𝑖, 𝑗∗, dig, 𝑧∗𝑖 ) = 1 and so by induction on 𝑖 , we have that

Eq. (6.1) holds for all 𝑖 ∈ [𝑇 ]. In this case, algorithm P outputs the proof 𝜋 = ( 𝑗∗, 𝑧∗
𝑇
) = ( 𝑗, 𝑧𝑇 ).

• By construction, ObfVerProof is an obfuscation of the program VerProof [crsG, 𝑘]. The verification

algorithm V computes dig = H.Hash(hk, (𝑥1, . . . , 𝑥𝑇 )) and outputs 𝑏 ← ObfVerProof (𝑇, 𝑗, dig, 𝑧𝑇 ).
By correctness of 𝑖O, the definition of VerProof [crsG, 𝑘], and Eq. (6.1), 𝑏 = 1 and completeness

holds. □

Theorem 6.3 (Succinctness). Suppose ΠSEH and ΠRPRG are succinct. Then Construction 6.1 is succinct.

Proof. A proof ( 𝑗, 𝑧𝑇 ) in Construction 6.1 consists of a selection symbol 𝑗 ∈ [𝑇 + 1] and a PRG seed

𝑧𝑇 . By construction, there is a fixed polynomial poly(·) such that |𝑧 | ≤ poly(𝜆 + log𝑚). In Construc-

tion 6.1, 𝑚(𝜆, 𝑛′) is a fixed polynomial in the security parameter 𝜆 and 𝑛′, which is the output length

of H.Hash(hk, ·) for hk ← H.Setup(1𝜆SEH, 1𝑛) where 𝜆SEH is a fixed polynomial in the witness length

𝑣 and 𝜆. By succinctness of ΠSEH, we have that 𝑛′ is a fixed polynomial in 𝜆, 𝑛, and 𝑣 . The state-

ment length and witness length are always upper-bounded by the circuit size, so it follows that |𝜋 | ≤
poly(𝜆 + log |𝐶 |) + log𝑇 . □

Theorem 6.4 (Adaptive Soundness). Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure, ΠSEH satisfies statistical binding and

(2𝜆
𝜀SEH
SEH , negl(𝜆SEH))-index hiding security, ΠPPRF satisfies punctured correctness and (1, 2−𝜆

𝜀PRF
PRF )-puncturing

security, ΠRPRG is expanding and (1, negl(𝜆))-pseudorandomness and (1, 2−𝑚𝜀𝑚 )-re-randomization security
for constants (𝜀SEH, 𝜀obf, 𝜀PRF, 𝜀𝑚) ∈ (0, 1) and security parameters 𝜆SEH = (𝑣 + 𝜔 (log 𝜆))1/𝜀SEH, 𝜆obf = (𝜆 +
𝑛′)1/𝜀obf , 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF,𝑚 = (𝜆 + 𝑛′)1/𝜀𝑚 where 𝑛′ is the length of H.Hash(H.Setup(1𝜆SEH, 1𝑛), ·). Then
Construction 6.1 satisfies adaptive soundness.

Proof. Let A be an efficient adversary that succeeds in the adaptive soundness game against Construc-

tion 6.1 with (non-negligible) probability 𝜀 (𝜆). We first claim that without loss of generality, we can as-

sume that for every security parameter 𝜆, A always outputs a circuit 𝐶 with statements of a fixed length

𝑛 = 𝑛(𝜆) and witnesses of a fixed length 𝑣 = 𝑣 (𝜆) and a fixed batch size 𝑇 = 𝑇 (𝜆). Formally, since A
is a polynomial-time algorithm, A(1𝜆) outputs a Boolean circuit of size at most 𝑠max(𝜆) = poly(𝜆) and

a maximum batch size 𝑇max(𝜆) = poly(𝜆). This in turn defines maximum statement and witness lengths

𝑛max(𝜆), 𝑣max(𝜆) ≤ 𝑠max(𝜆). In an execution of the adaptive soundness game, let E𝑛′,𝑣′,𝑇 ′ be the event that

A outputs a circuit 𝐶 with statements of length 𝑛′ and witnesses of length 𝑣 ′ and batch size 𝑇 ′. Then

Pr[A wins the soundness game] =
∑︁

𝑛′∈[𝑛max ]
𝑣′∈[𝑣max ]
𝑇 ′∈[𝑇max ]

Pr[A wins the soundness game ∧ E𝑛′,𝑣′,𝑇 ′] .

Thus there must exist some (𝑛, 𝑣,𝑇 ) ∈ [𝑛max] × [𝑣max] × [𝑇max] such that such that

Pr[A(1𝜆) wins the soundness game ∧ E𝑛,𝑣,𝑇 ] ≥
𝜀 (𝜆)

𝑛max · 𝑣max ·𝑇max

.
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For each security parameter 𝜆, define 𝑛 = 𝑛(𝜆), 𝑣 = 𝑣 (𝜆), and 𝑇 = 𝑇 (𝜆) to be the smallest values

such that the above equation holds. We now construct a new (non-uniform) adversary A′ that func-

tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and

a fixed batch size. Namely, A′ takes as input the security parameter 1
𝜆

and the non-uniform advice

𝑛 = 𝑛(𝜆), 𝑣 = 𝑣 (𝜆),𝑇 = 𝑇 (𝜆). A′ runs (𝐶′,𝑇 ′) ← A(1𝜆). If 𝐶′ does not have statements of length 𝑛

and witnesses of length 𝑣 or 𝑇 ′ ≠ 𝑇 , then A′ aborts. Otherwise, A′ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

𝜀′ = Pr[A′(1𝜆) wins the soundness game]

= Pr[A(1𝜆) wins the soundness game ∧ E𝑛,𝑣,𝑇 ] ≥
𝜀 (𝜆)

𝑛max · 𝑣max ·𝑇max

.

Thus A′ still has a non-negligible success probability 𝜀′ in the soundness game. Furthermore, we note

that without loss of generality there exists some index 𝑖∗ = 𝑖∗(𝜆) ∈ [𝑇 ] such that A′ cheats on index 𝑖∗,
with probability at least 𝜀′/𝑇 . In other words, in the adaptive soundness game, algorithm A′ outputs a

batch of statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and an accepting proof 𝜋 , and moreover, instance 𝑥𝑖∗ is false. Since

𝑇 = poly(𝜆), and 𝜀′ is non-negligible, we have that 𝜀′/𝑇 remains non-negligible. Thus, for the remainder of

this proof, we will declare the adversary successful if it wins the adaptive soundness game by outputting

an accepting proof on ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) where 𝑥𝑖∗ is a false instance for a fixed index 𝑖∗. As argued here,

every adversary that breaks adaptive soundness implies an adversary that succeeds in this “fixed-index”

variant for some index 𝑖∗. The index 𝑖∗ will be provided as non-uniform advice to all of our reduction

algorithms. We now define our sequence of hybrid experiments.

Hyb
0

: This is the real adaptive soundness experiment with a fixed index 𝑖∗.

• Adversary A, on input 1
𝜆
, starts by outputting a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1},

and the batch size 𝑇 .

• The challenger samples crs← Setup(1𝜆,𝑇 ,𝐶) and gives crs to A.

• Adversary A outputs statements ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and a proof 𝜋 = ( 𝑗, 𝑧).
• The challenger outputs 1 if and only if (𝐶, 𝑥𝑖∗) ∉ LSAT and V(crs, ®𝑥, 𝜋) = 1.

Hyb
1

: Same as Hyb
0

except the challenger samples (hk, td) ← H.SetupTD(1𝜆, 1𝑛, 𝑖∗).

Hyb
2

: Same as Hyb
1

except the challenger additionally checks that 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)). Specifically, if

𝑗 ≠ F(𝑘sel, (𝑥𝑖∗, 𝑖∗)), then the challenger outputs 0.

Hyb
3

: Same as Hyb
2

except the challenger stops checking that (𝐶, 𝑥𝑖∗) ∉ LSAT.

Hyb
4

: Same as Hyb
3

except the challenger defines a modified version of AggProof which additionally

has td, 𝑖∗ hard-coded as follows:

AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 , prior

proof 𝑧𝑖−1

1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

3: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output ⊥.
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4: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

5: If 𝑖 ≠ 1 and VerProof [crsG, 𝑘] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0, output ⊥.

6: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
7: Output 𝑧𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗]) .

Hyb
5,𝑑 : For 𝑑 ∈ [𝑇 ] : Hyb

5,𝑑 is the same as Hyb
4

except the challenger defines a modified version of

VerProof which additionally has 𝑘sel, td, 𝑖∗, and 𝑑 hard-coded as follows:

VerProof′ [crsG, 𝑘, 𝑘sel, td, 𝑖∗, 𝑑] (𝑖, 𝑗, dig, 𝑧𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, proof 𝑧𝑖

1: If 𝑖∗ ≤ 𝑖 ≤ 𝑑 and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output 0.

2: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
3: Compute 𝑧 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).
4: Output 1 if PRG.Eval(crsG, 𝑧𝑖) = PRG.Eval(crsG, 𝑧) and 0 otherwise.

The challenger also uses VerProof′ [crsG, 𝑘, 𝑘sel, td, 𝑖∗, 𝑑] in place of VerProof [crsG, 𝑘] in the proof

aggregation program. Specifically, in this experiment, the challenger defines a modified version of

AggProof as follows:

AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗, 𝑑] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 , prior

proof 𝑧𝑖−1

1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

3: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output ⊥.

4: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

5: If 𝑖 ≠ 1 and VerProof′ [crsG, 𝑘, 𝑘sel, td, 𝑖∗, 𝑑] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0, output ⊥.

6: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
7: Output 𝑧𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗, 𝑑])

and

ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,VerProof′ [crsG, 𝑘, 𝑘sel, td, 𝑖∗, 𝑑]) .

46



We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with the adversary A. We

now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 6.5. Suppose ΠSEH satisfies (2𝜆
𝜀SEH
SEH , negl(𝜆SEH))-index hiding security for constant 𝜀SEH ∈ (0, 1) and

security parameter 𝜆SEH = (𝑣 (𝜆) + 𝜔 (log 𝜆))1/𝜀SEH . Then

| Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1] | ≤ negl(𝜆) .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A)] | > 𝛿 (𝜆).

Let ΛB = {(𝑣 (𝜆) + 𝜔 (log 𝜆))1/𝜀SEH | 𝜆 ∈ ΛA}. Since 𝑣 is non-negative, ΛB is also an infinite set. We define

a 2
𝜆
𝜀SEH
SEH -time algorithm B which plays the index-hiding security game with 𝜆SEH = (𝑣 +𝜔 (log 𝜆))1/𝜀SEH by

running A with security parameter 𝜆. For each value of 𝜆SEH ∈ ΛB , we provide the associated value of

𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆SEH,

we pick the largest such 𝜆; note that since 𝜀SEH < 1 and 𝑣 > 0, it will always be the case that 𝜆 < 𝜆SEH).

Algorithm B

Inputs: 1
𝜆SEH

from index-hiding challenger, 1
𝜆

and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Send the block size 1
𝑛

and the index 𝑖∗ to the index-hiding challenger. The index-hiding chal-

lenger replies with the hash key hk.

3: Sample crsG, 𝑘sel, 𝑘 and compute ObfAggProof,ObfVerProof as in Setup.

4: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

5: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

6: Output 1 if and only if (𝐶, 𝑥𝑖∗) ∉ LSAT and V(crs, ®𝑥, 𝜋) = 1.

Algorithm B has to check all possible witnesses for 𝑥𝑖∗ , so it runs in time 2
𝑣 · poly(𝜆) ≤ 2

𝑣+𝜔 (log𝜆) =

2
𝜆
𝜀SEH
SEH . If the index-hiding challenger sampled hk ← H.Setup(1𝜆SEH, 1𝑛), then B perfectly simulates Hyb

0

and outputs 1 with probability Pr[Hyb
0
(A) = 1]. If the index-hiding challenger sampled (hk, td) ←

H.SetupTD(1𝜆SEH, 1𝑛, 𝑖∗), thenB perfectly simulatesHyb
1

and outputs 1 with probability Pr[Hyb
1
(A) = 1].

Thus by index-hiding security we have that

| Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = SEHAdvB (𝜆SEH) ≤ negl(𝜆SEH) = negl(𝜆)

for sufficiently large 𝜆SEH. □

Lemma 6.6. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure, ΠSEH satisfies statistical binding, and ΠPPRF satisfies punctured

correctness and (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants (𝜀obf, 𝜀PRF) ∈ (0, 1) and security parameters

𝜆obf = (𝜆 + 𝑛′)1/𝜀obf , 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then

Pr[Hyb
2
(A) = 1] ≥ 1

𝑇 + 1

Pr[Hyb
1
(A) = 1] − 2

−Ω (𝜆) .
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Proof. Consider an execution of Hyb
1

or Hyb
2
. For a fixed 𝑥∗ ∈ {0, 1}𝑛 , let E𝑥∗ be the event thatA outputs

(𝑥1, . . . , 𝑥𝑇 ) such that 𝑥𝑖∗ = 𝑥∗. By definition, we can now write

Pr[Hyb
1
(A) = 1] =

∑︁
𝑥∗∈{0,1}𝑛

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗]

Pr[Hyb
2
(A) = 1] =

∑︁
𝑥∗∈{0,1}𝑛

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] .

(6.2)

To prove the lemma, we show that for all 𝑥∗ ∈ {0, 1}𝑛 ,

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] ≥

1

𝑇 + 1

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗] −

𝑂 (𝑇 )
2
𝜆+𝑛 . (6.3)

By a similar argument as in the proof of Lemma 4.6, this suffices to prove the claim. Fix any 𝑥∗ ∈ {0, 1}𝑛 .

If (𝐶, 𝑥∗) ∈ LSAT, then

Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] = 0 = Pr[Hyb

1
(A) = 1 ∧ E𝑥∗] . (6.4)

In this case, Eq. (6.3) holds. Thus, we only need to consider the case where (𝐶, 𝑥∗) ∉ LSAT. We proceed by

defining a sequence of intermediate hybrids.

Hyb(𝑥
∗ )

1,0
: Same as Hyb

1
except the challenger additionally checks that 𝑥𝑖∗ = 𝑥∗ (i.e., that E𝑥∗ occurred).

Hyb(𝑥
∗ )

1,1
: Same as Hyb(𝑥

∗ )
1,0

except the challenger does the following. It computes

𝑘
(𝑥∗,𝑖∗ )
sel ← F.Puncture(𝑘sel, (𝑥∗, 𝑖∗))

and defines a modified version of AggProof which additionally has 𝑥∗ hard-coded as follows:

AggProof
1
[𝐶, crsG, hk, 𝑘, td, 𝑖∗, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑥∗] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 , proof

𝑧𝑖−1

1: If 𝑖 = 𝑖∗ and H.Extract(td, dig) = 𝑥∗, output ⊥.

2: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

3: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

4: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

5: If 𝑖 ≠ 1 and VerProof [crsG, 𝑘] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0, output ⊥.

6: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
7: Output 𝑧𝑖 = F(𝑘 𝑗 , (dig, 𝑖)).

Hyb(𝑥
∗ )

1,2
: Same as Hyb(𝑥

∗ )
1,1

except that after A outputs ( ®𝑥, 𝜋) where ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧)), the

challenger samples 𝑗 ′ r← [𝑇 + 1] and additionally checks that 𝑗 = 𝑗 ′.

Hyb(𝑥
∗ )

1,3
: Same as Hyb(𝑥

∗ )
1,2

except the challenger instead checks that 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).
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Hyb(𝑥
∗ )

1,4
: Same as Hyb(𝑥

∗ )
1,3

except the challenger reverts to obfuscating AggProof instead of AggProof
1
.

By definition,

Pr[Hyb(𝑥
∗ )

1,0
(A) = 1] = Pr[Hyb

1
(A) = 1 ∧ E𝑥∗]

Pr[Hyb(𝑥
∗ )

1,4
(A) = 1] = Pr[Hyb

2
(A) = 1 ∧ E𝑥∗] .

(6.5)

We now consider each pair of adjacent distributions.

Claim 6.7. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter 𝜆obf = (𝜆 +

𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb(𝑥
∗ )

1,1
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,0
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. We first show that AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘] in Hyb(𝑥
∗ )

1,0
and AggProof

1
[𝐶, crsG, hk, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑘] in

Hyb(𝑥
∗ )

1,1
compute identical functionalities. For a particular input (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1) consider the fol-

lowing cases:

Case 1. Suppose 𝑖 ≠ 𝑖∗. In this case, the two programs behave identically except that the latter is using

𝑘
(𝑥∗,𝑖∗ )
sel , so by punctured correctness, the two programs compute identical functionality.

Case 2. Suppose 𝑥𝑖 = 𝑥∗. By assumption, (𝐶, 𝑥∗) ∉ LSAT, so there does not exist a witness 𝑤𝑖 such that

𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, so both programs reject.

Case 3. Suppose 𝑖 = 𝑖∗, 𝑥𝑖 ≠ 𝑥∗, and H.Extract(td, dig) ≠ 𝑥∗. Like the first case, the two programs be-

have identically except that the latter is using 𝑘
(𝑥∗,𝑖∗ )
sel , so by punctured correctness, the two programs

compute identical functionality.

Case 4. Suppose 𝑖 = 𝑖∗, 𝑥𝑖 ≠ 𝑥∗, and H.Extract(td, dig) = 𝑥∗. In this case AggProof
1

immediately out-

puts ⊥. By statistical binding of ΠSEH, since dig extracts to 𝑥∗ at position 𝑖 , there does not exist an

opening 𝜎𝑖 such that H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 1 whenever 𝑥𝑖 ≠ 𝑥∗. As such, AggProof also rejects.

The claim now follows from 𝑖O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that

for all 𝜆 ∈ Λ,

| Pr[Hyb(𝑥
∗ )

1,1
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,0
(A)] | > 1/2𝜆+𝑛′ .

Let ΛB = {(𝜆 + 𝑛′)1/𝜀obf | 𝜆 ∈ ΛA}. Since 𝑛′ is non-negative, ΛB is also an infinite set. We define an effi-

cient algorithm B which plays the 𝑖O security game with 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf by runningA with security

parameter 𝜆. For each value of 𝜆obf ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B as non-uniform

advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we pick the largest such 𝜆; note

that since 𝜀obf < 1 and 𝑛′ > 0, it will always be the case that 𝜆 < 𝜆obf).

Algorithm B[𝑥∗]

Inputs: 1
𝜆obf from 𝑖O challenger, 1

𝜆
and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample (hk, td) ← H.SetupTD(1𝜆, 1𝑛, 𝑖∗).

3: Sample crsG, 𝑘sel, 𝑘 and compute ObfVerProof as in Setup.
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4: Compute 𝑘
(𝑥∗,𝑖∗ )
sel ← F.Puncture(𝑘sel, (𝑥∗, 𝑖∗)).

5: Construct the challenge programs

AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘] and AggProof
1
[𝐶, crsG, hk, 𝑘, td, 𝑖∗, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑥∗]

and send them to the 𝑖O challenger. The 𝑖O challenger replies with an obfuscated program

ObfAggProof.

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

8: Output 1 if and only if 𝑥∗ = 𝑥𝑖∗ and V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1.

If the 𝑖O challenger obfuscates AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘], then algorithm B perfectly simulates Hyb(𝑥
∗ )

1,0

and outputs 1 with probability Pr[Hyb(𝑥
∗ )

1,0
(A) = 1]. Alternatively, if the 𝑖O challenger obfuscates the pro-

gram AggProof
1
[𝐶, crsG, hk, 𝑘, td, 𝑖∗, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑥∗], then algorithm B perfectly simulates Hyb(𝑥

∗ )
1,1

and outputs

1 with probability Pr[Hyb(𝑥
∗ )

1,1
(A) = 1]. Thus by 𝑖O security we have that

| Pr[Hyb(𝑥
∗ )

1,1
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,0
(A) = 1] | = iOAdvB (𝜆obf) ≤ 1/2𝜆

𝜀obf
obf = 1/2𝜆+𝑛′ ≤ 1/2𝜆+𝑛 . □

Claim 6.8. Pr[Hyb(𝑥
∗ )

1,2
(A) = 1] ≥ 1

𝑇+1 Pr[Hyb(𝑥
∗ )

1,1
(A) = 1].

Proof. The challenger samples the index 𝑗 ′ r← [𝑇 + 1] afterA outputs ( ®𝑥, 𝜋), where 𝜋 = ( 𝑗, 𝑧). The output

in Hyb(𝑥
∗ )

1,1
(A) is 1 only if 𝑗 ∈ [𝑇 + 1]. Thus, with probability at least

1

𝑇+1 , it will be the case that 𝑗 ′ = 𝑗 . In

this case, the output in Hyb(𝑥
∗ )

1,2
(A) is also 1 and the claim holds. □

Claim 6.9. Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants 𝜀PRF ∈ (0, 1) and security

parameter 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then | Pr[Hyb(𝑥
∗ )

1,3
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,2
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb(𝑥
∗ )

1,3
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,2
(A)] | > 1/2𝜆+𝑛′ .

Let ΛB = {(𝜆 + 𝑛′)1/𝜀PRF | 𝜆 ∈ ΛA}. Since 𝑛′ is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF by running A
with security parameter 𝜆. For each value of 𝜆PRF ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B
as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆PRF, we pick the

largest such 𝜆; note that since 𝜀PRF < 1 and 𝑛′ > 0, it will always be the case that 𝜆 < 𝜆PRF).

Algorithm B[𝑥∗]

Inputs: 1
𝜆PRF

from PPRF challenger, 1
𝜆

and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample (hk, td) ← H.SetupTD(1𝜆, 1𝑛, 𝑖∗), and crsG, 𝑘sel as in Setup.
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3: Compute ObfVerProof as in Setup.

4: Send input length 1
𝑛
, output length 1

𝑡
, and punctured point (𝑥∗, 𝑖∗) to the PPRF challenger. The

PPRF challenger replies with the punctured key 𝑘
(𝑥∗,𝑖∗ )
sel and a challenge value 𝑗 ′ ∈ {0, 1}𝑡 .

5: Compute ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof
1
[𝐶, crsG, hk, 𝑘, td, 𝑖∗, 𝑘 (𝑥

∗,𝑖∗ )
sel , 𝑥∗]).

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

8: Output 1 if and only if 𝑥∗ = 𝑥𝑖∗ , V(crs, ®𝑥, 𝜋) = 1, and 𝑗 = 𝑗 ′.

If the PPRF challenger samples 𝑗 ′ r← {0, 1}𝑡 , then B perfectly simulates Hyb(𝑥
∗ )

1,2
and outputs 1 with prob-

ability Pr[Hyb(𝑥
∗ )

1,2
(A) = 1]. If the PPRF challenger computes 𝑗 ′ ← F(𝑘sel, (𝑥∗, 𝑖∗)) then B perfectly simu-

lates Hyb(𝑥
∗ )

1,3
and outputs 1 with probability Pr[Hyb(𝑥

∗ )
1,3
(A) = 1]. Thus by PPRF security we have that

| Pr[Hyb(𝑥
∗ )

1,3
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,2
(A) = 1] | = PPRFAdvB (𝜆PRF) ≤ 1/2𝜆

𝜀PRF
PRF = 1/2𝜆+𝑛′ ≤ 1/2𝜆+𝑛 . □

Claim 6.10. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter 𝜆obf =

(𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then,

| Pr[Hyb(𝑥
∗ )

1,4
(A) = 1] − Pr[Hyb(𝑥

∗ )
1,3
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by an analogous argument as Claim 6.7. □

Combining Claims 6.7 to 6.10, we conclude that

Pr[Hyb
1
(A) = 1 ∧ E𝑥∗] = Pr[Hyb(𝑥

∗ )
1,0
(A) = 1] by Eq. (6.5)

≤ Pr[Hyb(𝑥
∗ )

1,1
(A) = 1] + 1

2
𝜆+𝑛 by Claim 6.7

≤ (𝑇 + 1) · Pr[Hyb(𝑥
∗ )

1,2
(A) = 1] + 1

2
𝜆+𝑛 by Claim 6.8

≤ (𝑇 + 1) ·
(

Pr[Hyb(𝑥
∗ )

1,3
(A) = 1] + 1

2
𝜆+𝑛

)
+ 1

2
𝜆+𝑛 by Claim 6.9

≤ (𝑇 + 1) ·
(

Pr[Hyb(𝑥
∗ )

1,4
(A) = 1] + 2

2
𝜆+𝑛

)
+ 1

2
𝜆+𝑛 by Claim 6.10

= (𝑇 + 1) · Pr[Hyb
2
(A) = 1 ∧ E𝑥∗] +

2𝑇 + 3

2
𝜆+𝑛 by Eq. (6.5).

Thus Eq. (6.3) holds for all 𝑥∗ where (𝐶, 𝑥∗) ∉ LSAT. Combined with Eq. (6.4), this means Eq. (6.3) holds for

all 𝑥∗ ∈ {0, 1}𝑛 . This proves Lemma 6.6. □

Lemma 6.11. Pr[Hyb
3
(A) = 1] ≥ Pr[Hyb

2
(A) = 1].

Proof. The conditions for outputting 1 in Hyb
3

are a strict subset of those for outputting 1 in Hyb
2
. □

Lemma 6.12. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter 𝜆obf =

(𝜆 + 𝑛′)1/𝜀obf and ΠSEH satisfies statistical binding. Then��
Pr[Hyb

4
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� ≤ 1/2𝜆 .
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Proof. We first show that AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘] in Hyb
2

and AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗] in

Hyb
4

compute identical functionalities. For a particular input (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1), consider the follow-

ing cases:

Case 1. If 𝑖 ≠ 𝑖∗, then the two programs behave identically.

Case 2. If 𝑖 = 𝑖∗ and H.Extract(td, dig) = 𝑥𝑖 , then the condition 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) in

AggProof′ is equivalent to checking 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)) and outputting ⊥ if this condition holds. This

is the same condition in AggProof, so the output of both programs is ⊥ in this case.

Case 3. If 𝑖 = 𝑖∗ and H.Extract(td, dig) ≠ 𝑥𝑖 , then by statistical binding of ΠSEH, there does not exist an

opening 𝜎𝑖 where H.Verify(hk, dig, 𝑥𝑖 , 𝑖∗, 𝜎𝑖) = 1. In this case, both programs reject.

The claim now follows from 𝑖O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that

for all 𝜆 ∈ Λ, we have that

| Pr[Hyb
4
(A) = 1] − Pr[Hyb

3
(A)] | > 1/2𝜆 .

Let ΛB = {(𝜆 + 𝑛′)1/𝜀obf | 𝜆 ∈ ΛA}. ΛB is also an infinite set. We define an efficient algorithm B which

plays the 𝑖O security game with 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf by running A with security parameter 𝜆. For each

value of 𝜆obf ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B as non-uniform advice (if there are

multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we pick the largest such 𝜆; note that since 𝜀obf < 1

and 𝑛′ > 0, it will always be the case that 𝜆 < 𝜆obf).

Algorithm B

Inputs: 1
𝜆obf from 𝑖O challenger, 1

𝜆
and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample (hk, td) ← H.SetupTD(1𝜆, 1𝑛, 𝑖∗).

3: Sample crsG, 𝑘sel, 𝑘 and compute ObfVerProof as in Setup.

4: Construct the challenge programs

AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘] and AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗]

and send them to the 𝑖O challenger. The 𝑖O challenger replies with the obfuscated program

ObfAggProof.

5: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

6: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

7: Output 1 if and only if 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)) and V(crs, (𝑥1, . . . , 𝑥𝑇 ), 𝜋) = 1.

If the 𝑖O challenger obfuscates AggProof [𝐶, crsG, hk, 𝑘sel, 𝑘], then B perfectly simulates Hyb
3

and outputs

1 with probability Pr[Hyb
3
(A) = 1]. If the 𝑖O challenger obfuscates AggProof′ [𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗],

then B perfectly simulates Hyb
4

and outputs 1 with probability Pr[Hyb
4
(A) = 1]. Thus by 𝑖O security

we have that

| Pr[Hyb
4
(A) = 1] − Pr[Hyb

3
(A) = 1] | = iOAdvB (𝜆obf) ≤ 1/2𝜆

𝜀obf
obf = 1/2𝜆+𝑛′ ≤ 1/2𝜆 . □
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Lemma6.13. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure,ΠPPRF satisfies punctured correctness and (1, 2−𝜆

𝜀PRF
PRF )-puncturing

security,ΠRPRG is expanding, satisfies (1, negl(𝜆))-pseudorandomness, and (1, 2−𝑚𝜀𝑚 )-re-randomization secu-
rity for constants (𝜀obf, 𝜀PRF, 𝜀𝑚) ∈ (0, 1) and security parameters 𝜆obf = (𝜆+𝑛′)1/𝜀obf , 𝜆PRF = (𝜆+𝑛′)1/𝜀PRF,𝑚 =

(𝜆 + 𝑛′)1/𝜀𝑚 . Then for all 𝑑 ∈ [𝑇 ],

Pr[Hyb
5,𝑑 (A) = 1] ≥ Pr[Hyb

5,𝑑−1
(A) = 1] − negl(𝜆) .

where for notational convenience we define Hyb
5,0 := Hyb

4
.

Proof. We proceed by defining a sequence of intermediate hybrids for each value of dig∗ ∈ {0, 1}𝑛′ .

Hyb(dig
∗ )

5,𝑑,1
: Same as Hyb(dig

∗−1)
5,𝑑,8

(or Hyb
5,𝑑−1

if dig∗ = 0
𝑛′

) except the challenger computes

• 𝑗∗ ← F(𝑘sel, (H.Extract(td, dig∗), 𝑖∗))
• 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗∗))
• 𝑘 ( 𝑗

∗ ) ← F.Puncture(𝑘, 𝑗∗)
• 𝑦∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig∗, 𝑑))))
• 𝑦base ← PRG.Eval(crsG, PRG.GenSeed(crsG))
• 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛′+𝜆, 1𝜇)

where 𝜇 is a bound on the number of bits of randomness the PRG.Rerandomize algorithm takes.

Then, the challenger defines the following modified version of VerProof′ as follows:

VerProof2 [crsG, 𝑘sel, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] (𝑖, 𝑗, dig, 𝑧𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, proof 𝑧𝑖

1: If 𝑖∗ ≤ 𝑖 < 𝑑 and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output 0.

2: If 𝑗 = 𝑗∗ : let 𝑘 𝑗 = 𝑘 𝑗∗ .

3: Else: compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘 ( 𝑗∗ ) , 𝑗)).
4: If 𝑖∗ ≤ 𝑖 = 𝑑 and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)):

• If dig < dig∗ : compute 𝑦𝑖 ← PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig, 𝑖)))
• If dig = dig∗ : let 𝑦𝑖 = 𝑦∗.

• If dig > dig∗ : compute 𝑦𝑖 ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖)))).

5: Else: Compute 𝑦𝑖 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖)))).
6: Output 1 if PRG.Eval(crsG, 𝑧𝑖) = 𝑦𝑖 and 0 otherwise.

The challenger also uses VerProof2 [crsG, 𝑘sel, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] in place of

VerProof′ [crsG, 𝑘, 𝑘sel, td, 𝑖∗, 𝑑] in the proof aggregation program. Specifically, in this experiment,

the challenger defines a modified version of AggProof′ as follows:

AggProof
2
[𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗

∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 , prior

proof 𝑧𝑖−1
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1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

3: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output ⊥.

4: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

5: If VerProof2 [crsG, 𝑘sel, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0

and 𝑖 ≠ 1, output ⊥.

6: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
7: Output 𝑧𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof
2
[𝐶, crsG, hk, 𝑘sel, 𝑘, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗

∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base])

and

ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,VerProof2 [crsG, 𝑘sel, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base]).

Hyb(dig
∗ )

5,𝑑,2
: Same as Hyb(dig

∗ )
5,𝑑,1

except the challenger samples 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆) instead of com-

puting 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗∗)).

Hyb(dig
∗ )

5,𝑑,3
: Same as Hyb(dig

∗ )
5,𝑑,2

except the challenger additionally computes

• 𝑘
(dig∗,𝑑 )
𝑗∗ ← F.Puncture(𝑘 𝑗∗, (dig∗, 𝑑))

• 𝑘
(dig∗,𝑑 )
rerand ← F.Puncture(𝑘rerand, (dig∗, 𝑑))

and uses the punctured keys in place of 𝑘 𝑗∗, 𝑘rerand.

Hyb(dig
∗ )

5,𝑑,4
: Same as Hyb(dig

∗ )
5,𝑑,3

except the challenger samples 𝑦∗ ← PRG.Eval(PRG.GenSeed(crsG)) instead

of computing 𝑦∗ = PRG.Eval(PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig∗, 𝑑)))).

Hyb(dig
∗ )

5,𝑑,5
: Same as Hyb(dig

∗ )
5,𝑑,4

except the challenger samples 𝑦∗ ← PRG.Rerandomize(crsG, 𝑦base).

Hyb(dig
∗ )

5,𝑑,6
: Same as Hyb(dig

∗ )
5,𝑑,5

except the challenger computes

𝑦∗ ← PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig∗, 𝑑))).

Hyb(dig
∗ )

5,𝑑,7
: Same as Hyb(dig

∗ )
5,𝑑,6

except the challenger reverts to using unpunctured keys 𝑘 𝑗∗, 𝑘rerand in place

of the punctured keys 𝑘
(dig∗,𝑑 )
𝑗∗ , 𝑘

(dig∗,𝑑 )
rerand .

Hyb(dig
∗ )

5,𝑑,8
: Same as Hyb(dig

∗ )
5,𝑑,7

except the challenger reverts to computing

𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗∗))

instead of sampling 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆).

54



We also define two more intermediate hybrids:

Hyb
5,𝑑,9 : Same as Hyb(1

𝑛′ )
5,𝑑,8

except the challenger reverts to using the unpunctured key 𝑘 in place of the

punctured key 𝑘 ( 𝑗
∗ )

and defines a modified version of VerProof2 as follows:

VerProof3 [crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base] (𝑖, 𝑗, dig, 𝑧𝑖)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, proof 𝑧𝑖

1: Compute 𝑥∗
𝑖∗ ← H.Extract(td, dig).

2: If 𝑖∗ ≤ 𝑖 < 𝑑 and 𝑗 = F(𝑘sel, (𝑥∗𝑖∗, 𝑖∗)), output 0.

3: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
4: If 𝑖∗ ≤ 𝑖 = 𝑑 and 𝑗 = F(𝑘sel, (𝑥∗𝑖∗, 𝑖∗)), compute

𝑦𝑖 ← PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig, 𝑖))).
5: Else: Compute 𝑦𝑖 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖)))).
6: Output 1 if PRG.Eval(crsG, 𝑧𝑖) = 𝑦𝑖 and 0 otherwise.

The challenger also uses VerProof3 [crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base] in place of the verification pro-

gramVerProof2 [crsG, 𝑘sel, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] in the proof aggregation program.

Specifically, in this experiment, the challenger defines a modified version of AggProof
2

as follows:

AggProof
3
[𝐶, crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base] (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖−1)

Inputs: index 𝑖 , selection symbol 𝑗 , hash value dig, statement 𝑥𝑖 , witness 𝑤𝑖 , opening 𝜎𝑖 , prior

proof 𝑧𝑖−1

1: If 𝐶 (𝑥𝑖 ,𝑤𝑖) = 0, output ⊥.

2: If H.Verify(hk, dig, 𝑥𝑖 , 𝑖, 𝜎𝑖) = 0, output ⊥.

3: If 𝑖 = 𝑖∗ and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)), output ⊥.

4: If 𝑗 = F(𝑘sel, (𝑥𝑖 , 𝑖)), output ⊥.

5: If 𝑖 ≠ 1 and VerProof3 [crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base] (𝑖 − 1, 𝑗, dig, 𝑧𝑖−1) = 0, output ⊥.

6: Compute 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜌 ; F(𝑘, 𝑗)).
7: Output 𝑧𝑖 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof
3
[𝐶, crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base])

and

ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,VerProof3 [crsG, td, 𝑖∗, 𝑑, 𝑘, 𝑘sel, 𝑘rerand, 𝑦base]) .

Hyb
5,𝑑,10

: Same as Hyb
5,𝑑,9 except the challenger samples 𝑦base

r← Y (where Y is the output space im-

plicitly defined by crsG).

We now consider each pair of adjacent distributions.
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Claim 6.14. Fix any dig∗ ∈ {0, 1}𝑛′ \ {0𝑛′}. Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and

security parameter 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗−1)
5,𝑑,8

(A) = 1] | ≤ 2/2𝜆+𝑛′ .

Proof. To complete the proof, we first introduce an intermediate hybrid:

iHyb(dig
∗ )

5,𝑑,1
: Same as Hyb(dig

∗ )
5,𝑑,1

except the challenger defines AggProof as in Hyb(dig
∗−1)

5,𝑑,8
.

Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[iHyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,1
(A)] | > 1/2𝜆+𝑛′ .

Let ΛB = {(𝜆 + 𝑛′)1/𝜀obf | 𝜆 ∈ ΛA}. Since 𝑛′ is non-negative, ΛB is also an infinite set. We define an effi-

cient algorithm B which plays the 𝑖O security game with 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf by runningA with security

parameter 𝜆. For each value of 𝜆obf ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B as non-uniform

advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we pick the largest such 𝜆; note

that since 𝜀obf < 1 and 𝑛′ > 0, it will always be the case that 𝜆 < 𝜆obf).

Algorithm B[𝑑, dig∗]

Inputs: 1
𝜆obf from 𝑖O challenger, 1

𝜆
and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample (hk, td) ← H.SetupTD(1𝜆, 1𝑛, 𝑖∗), and crsG, 𝑘sel as in Setup.

3: Sample 𝑦base ← PRG.Eval(crsG, PRG.GenSeed(crsG)), and 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛′+𝜆, 1𝜇).

4: Compute 𝑗 ′ ← F(𝑘sel, (H.Extract(td, dig∗ − 1), 𝑖∗)).

5: Compute 𝑘 ( 𝑗
′ ) ← F.Puncture(𝑘, 𝑗 ′), and 𝑘 𝑗 ′ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗 ′)).

6: Compute 𝑦′ ← PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig∗ − 1, 𝑑))).

7: Compute 𝑗∗ ← F(𝑘sel, (H.Extract(td, dig∗), 𝑖∗)).

8: Compute 𝑘 ( 𝑗
∗ ) ← F.Puncture(𝑘, 𝑗∗), and 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗∗)).

9: Compute 𝑦∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig∗, 𝑑)))).

10: Construct the obfuscated program ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 , 𝑃) where

𝑃 B AggProof
2
[𝐶, crsG, hk, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗

′ ) , 𝑘sel, 𝑘 𝑗 ′, 𝑘rerand, dig∗ − 1, 𝑗 ′, 𝑦′, 𝑦base] .

11: Construct the following two challenge programs:

• 𝑉 B VerProof2 [𝐶, crsG, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
′ ) , 𝑘sel, 𝑘 𝑗 ′, 𝑘rerand, dig∗ − 1, 𝑗 ′, 𝑦′, 𝑦base]

• 𝑉 ′ B VerProof2 [𝐶, crsG, td, 𝑖∗, 𝑑, 𝑘 ( 𝑗
∗ ) , 𝑘sel, 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base]

and send (𝑉 ,𝑉 ′) to the 𝑖O challenger. The 𝑖O challenger replies with the obfuscated program

ObfVerProof.
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12: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

13: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

14: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

We first show that the program𝑉 computed as in Hyb(dig
∗−1)

5,𝑑,8
and the program𝑉 ′ computed as in Hyb(dig

∗ )
5,𝑑,1

compute identical functionalities. For a particular input (𝑖, 𝑗, dig, 𝑧𝑖) consider the following cases:

Case 1. If 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) and 𝑖∗ ≤ 𝑖 < 𝑑 , both programs output 0.

Case 2. If dig < dig∗ − 1 and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) and 𝑖∗ ≤ 𝑖 = 𝑑 , then both programs

compute 𝑦𝑖 as

𝑦𝑖 = PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig, 𝑖))).

The remaining logic in the two programs is identical.

Case 3. If dig = dig∗ − 1 and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) = 𝑗 ′ and 𝑖∗ ≤ 𝑖 = 𝑑 , the two programs

behave identically except 𝑉 uses the hard-coded value

𝑦′ = PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig∗ − 1, 𝑑))).

Case 4. If dig = dig∗ and 𝑗 = F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) = 𝑗∗ and 𝑖∗ ≤ 𝑖 = 𝑑 , the two programs

behave identically except 𝑉 ′ uses the hard-coded value

𝑦∗ = PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig∗, 𝑑)))).

Case 5. If dig > dig∗ or 𝑗 ≠ F(𝑘sel, (H.Extract(td, dig), 𝑖∗)) or 𝑖∗ > 𝑖 or 𝑖 > 𝑑 , the two programs be-

have identically except 𝑉 may be using the hard-coded key 𝑘 𝑗 ′ = F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗 ′))
and 𝑉 ′ may be using the hard-coded key 𝑘 𝑗∗ = F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; F(𝑘, 𝑗∗)). Both compute

𝑦𝑖 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig, 𝑖)))) in an identical manner.

We conclude that the two programs output identical functionality. If the 𝑖O challenger obfuscates𝑉 , thenB
perfectly simulatesHyb(dig

∗−1)
5,𝑑,8

and outputs 1 with probability Pr[Hyb(dig
∗−1)

5,𝑑,8
(A) = 1]. If the 𝑖O challenger

obfuscates𝑉 ′, then B perfectly simulates iHyb(dig
∗ )

5,𝑑,1
and outputs 1 with probability Pr[iHyb(dig

∗ )
5,𝑑,1
(A) = 1].

Thus by 𝑖O security we have that

| Pr[iHyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗−1)
5,𝑑,8

(A) = 1] | = iOAdvB (𝜆obf) ≤ 1/2𝜆
𝜀obf
obf = 1/2𝜆+𝑛′ .

By an analogous argument (where the reduction algorithm obtains ObfAggProof from the 𝑖O challenger),

we can show that for all sufficiently large 𝜆 ∈ N,

| Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[iHyb(dig

∗ )
5,𝑑,1
(A)] | ≤ 1/2𝜆+𝑛′ .

Thus by combining the above two relations, we conclude that

| Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗−1)
5,𝑑,8

(A)] | ≤ 2/2𝜆+𝑛′ . □
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Claim 6.15. Let dig∗ = 0
𝑛′ . Suppose 𝑖O is (1, 2−𝜆

𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter

𝜆obf = (𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb

5,𝑑−1
(A) = 1] | ≤ 2/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.14. □

Claim 6.16. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then

| Pr[Hyb(dig
∗ )

5,𝑑,2
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,1
(A) = 1] | ≤ 1/2𝜆+𝑛′ .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb(dig
∗ )

5,𝑑,2
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,1
(A)] | > 1/2𝜆+𝑛′ .

Let ΛB = {(𝜆 + 𝑛′)1/𝜀PRF | 𝜆 ∈ ΛA}. Since 𝑛′ is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF by running A
with security parameter 𝜆. For each value of 𝜆PRF ∈ ΛB , we provide the associated value of 𝜆 ∈ ΛA to B
as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆PRF, we pick the

largest such 𝜆; note that since 𝜀PRF < 1 and 𝑛′ > 0, it will always be the case that 𝜆 < 𝜆PRF).

Algorithm B[𝑑, dig∗]

Inputs: 1
𝜆PRF

from PPRF challenger, 1
𝜆

and 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample hk← H.SetupTD(1𝜆, 1𝑛, 𝑖∗), and crsG, 𝑘sel as in Setup.

3: Compute 𝑗∗ ← F(𝑘sel, (dig∗, 𝑖∗))

4: Send input length 1
𝑡
, output length 1

𝜏
, and punctured point 𝑗∗ to the PPRF challenger. The

PPRF challenger replies with the punctured key 𝑘 ( 𝑗
∗ )

and the challenge value 𝑟 ∈ {0, 1}𝑡 from

PPRF challenger.

5: Compute 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆 ; 𝑟 ).

6: Compute 𝑦∗ = PRG.Eval(crsG, PRG.GenSeed(crsG; F(𝑘 𝑗∗, (dig∗, 𝑑)))).

7: Sample 𝑦base ← PRG.Eval(crsG, PRG.GenSeed(crsG)).

8: Compute 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛′+𝜆, 1𝜇).

9: Compute ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 , 𝑃) where

𝑃 B AggProof
2
[𝐶, crsG, hk, td, 𝑖∗, 𝑘sel, 𝑘 ( 𝑗

∗ ) , 𝑑, 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] .

10: Compute ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,𝑉 ) where

𝑉 B VerProof2 [𝐶, crsG, td, 𝑖∗, 𝑘 ( 𝑗
∗ ) , 𝑑, 𝑘sel, 𝑘 𝑗∗, 𝑘rerand, dig∗, 𝑗∗, 𝑦∗, 𝑦base] .
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11: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

12: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

13: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)).

We consider the two possibilities for the behavior for the PPRF challenger:

• If the PPRF challenger samples 𝑟
r← {0, 1}𝜌 , then B perfectly simulates Hyb(dig

∗ )
5,𝑑,2

and outputs 1 with

probability Pr[Hyb(dig
∗ )

5,𝑑,2
(A) = 1].

• If the PPRF challenger computes 𝑟 ← F(𝑘, ( 𝑗∗)) then B perfectly simulates Hyb(dig
∗ )

5,𝑑,1
and outputs 1

with probability Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1].

Thus by PPRF security, we have that

| Pr[Hyb(dig
∗ )

5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,2
(A) = 1] | = PPRFAdvB (𝜆PRF) ≤ 1/2𝜆

𝜀PRF
PRF = 1/2𝜆+𝑛′ . □

Claim 6.17. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security

parameter 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb(dig
∗ )

5,𝑑,3
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,2
(A) = 1] | ≤ 2/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.14. □

Claim 6.18. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then

| Pr[Hyb(dig
∗ )

5,𝑑,4
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,3
(A) = 1] | ≤ 1/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.16. □

Claim 6.19. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose ΠRPRG satisfies (1, 2−𝑚𝜀𝑚 )-re-randomization security for con-
stant 𝜀𝑚 ∈ (0, 1) and re-randomization parameter𝑚 = (𝜆 + 𝑛′)1/𝜀𝑚 . Then

| Pr[Hyb(dig
∗ )

5,𝑑,5
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,4
(A) = 1] | ≤ 1/2𝜆+𝑛′ .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ Λ,

| Pr[Hyb(dig
∗ )

5,𝑑,5
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,4
(A)] | > 1/2𝜆+𝑛′ .

Let 𝑚(𝜆) = (𝜆 + 𝑛)1/𝜀𝑚 . We define an efficient algorithm B which plays the re-randomization security

game with𝑚 = (𝜆 + 𝑛′)1/𝜀𝑚 by running A with security parameter 𝜆.

Algorithm B[𝑑, dig∗]

Inputs: crsG ← G.Setup(1𝜆, 1𝑚), 𝑦base, 𝑦∗ from re-randomization challenger, 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample hk← H.SetupTD(1𝜆, 1𝑛, 𝑖∗), and 𝑘sel as in Setup.

3: Compute 𝑗∗ ← F(𝑘sel, (dig∗, 𝑖∗)) and 𝑘 𝑗∗ ← F.Setup(1𝜆PRF, 1𝑛′+𝑡 , 1𝜆).
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4: Compute 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛′+𝜆, 1𝜇).

5: Compute 𝑘 ( 𝑗
∗ ) ← F.Puncture(𝑘, 𝑗∗), 𝑘 (dig

∗,𝑑 )
𝑗∗ ← F.Puncture(𝑘 𝑗∗, (dig∗, 𝑑)), and 𝑘

(dig∗,𝑑 )
rerand ←

F.Puncture(𝑘rerand, (dig∗, 𝑑)).

6: Compute ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 , 𝑃) where

𝑃 B AggProof
2
[𝐶, crsG, hk, 𝑘sel, 𝑘 ( 𝑗

∗ ) , 𝑖∗, 𝑑, 𝑘
(dig∗,𝑑 )
𝑗∗ , 𝑘

(dig∗,𝑑 )
rerand , dig∗, 𝑗∗, 𝑦∗, 𝑦base]) .

7: Compute ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,𝑉 where

𝑉 B VerProof2 [𝐶, crsG, hk, 𝑘 ( 𝑗
∗ ) , 𝑖∗, 𝑑, 𝑘sel, 𝑘

(dig∗,𝑑 )
𝑗∗ , 𝑘

(dig∗,𝑑 )
rerand , dig∗, 𝑗∗, 𝑦∗, 𝑦base]) .

8: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

9: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

10: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (H.Hash(hk, ®𝑥), 𝑖∗)).

If the re-randomization challenger samples 𝑦∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG)), then B perfectly

simulates Hyb(dig
∗ )

5,𝑑,4
and outputs 1 with probability Pr[Hyb(dig

∗ )
5,𝑑,4
(A) = 1]. If the re-randomization chal-

lenger samples 𝑦∗ ← PRG.Rerandomize(crsG, 𝑦base), then B perfectly simulates Hyb(dig
∗ )

5,𝑑,5
and outputs 1

with probability Pr[Hyb(dig
∗ )

5,𝑑,5
(A) = 1]. Thus by re-randomization security we have that

| Pr[Hyb(dig
∗ )

5,𝑑,5
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,4
(A) = 1] | = RerandAdvB (𝑚) ≤ 1/2𝑚𝜀

𝑚 = 1/2𝜆+𝑛′ . □

Claim 6.20. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then

| Pr[Hyb(dig
∗ )

5,𝑑,6
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,5
(A) = 1] | ≤ 1/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.16. □

Claim 6.21. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose 𝑖O is (1, 2−𝜆
𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security

parameter 𝜆obf = (𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb(dig
∗ )

5,𝑑,7
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,6
(A) = 1] | ≤ 2/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.14. □

Claim 6.22. Fix any dig∗ ∈ {0, 1}𝑛′ . Suppose ΠPPRF satisfies (1, 2−𝜆
𝜀PRF
PRF )-puncturing security for constants

𝜀PRF ∈ (0, 1) and security parameter 𝜆PRF = (𝜆 + 𝑛′)1/𝜀PRF . Then

| Pr[Hyb(dig
∗ )

5,𝑑,8
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,7
(A) = 1] | ≤ 1/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.16. □
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Claim 6.23. Fix dig∗ = 1
𝑛′ . Suppose 𝑖O is (1, 2−𝜆

𝜀obf
obf )-secure for constant 𝜀obf ∈ (0, 1) and security parameter

𝜆obf = (𝜆 + 𝑛′)1/𝜀obf and ΠPPRF satisfies punctured correctness. Then

| Pr[Hyb
5,𝑑,9(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,8
(A) = 1] | ≤ 2/2𝜆+𝑛′ .

Proof. This follows by an analogous argument as Claim 6.14. □

Claim 6.24. Suppose that ΠRPRG is (1, negl(𝜆))-pseudorandom. Then

| Pr[Hyb
5,𝑑,10
(A) = 1] − Pr[Hyb

5,𝑑,9(A) = 1] | ≤ negl(𝜆) .

Proof. We define an efficient algorithm B which plays the pseudorandomness security game with security

parameter 𝜆 by running A with security parameter 𝜆.

Algorithm B[𝑑]

Inputs: crsG ← G.Setup(1𝜆, 1𝑚 (𝜆) ), 𝑦base from challenger, 𝑖∗ as non-uniform advice

1: Run (𝐶,𝑇 ) ← A(1𝜆).

2: Sample hk← H.SetupTD(1𝜆, 1𝑛, 𝑖∗), and 𝑘sel as in Setup.

3: Compute 𝑘rerand ← F.Setup(1𝜆PRF, 1𝑛′+𝜆, 1𝜇).

4: Compute ObfAggProof ← 𝑖O(1𝜆obf , 1𝑠 ,AggProof
3
[𝐶, crsG, hk, 𝑘sel, 𝑘, 𝑖∗, 𝑑, 𝑘rerand, 𝑦base]).

5: Compute ObfVerProof ← 𝑖O(1𝜆obf , 1𝑠 ,VerProof3 [𝐶, crsG, hk, 𝑘sel, 𝑘, 𝑖∗, 𝑑, 𝑘rerand, 𝑦base]).

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®𝑥, 𝜋) ← A(crs) and parse ®𝑥 = (𝑥1, . . . , 𝑥𝑇 ) and 𝜋 = ( 𝑗, 𝑧).

8: Output 1 if and only if V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (H.Hash(hk, ®𝑥), 𝑖∗)).

If the challenger samples𝑦base ← PRG.Eval(crsG, PRG.GenSeed(crsG)), thenB perfectly simulatesHyb
5,𝑑,9

and outputs 1 with probability Pr[Hyb
5,𝑑,9(A) = 1]. If the challenger samples𝑦base uniformly fromY, then

B perfectly simulates Hyb
5,𝑑,10

and outputs 1 with probability Pr[Hyb
5,𝑑,10
(A) = 1]. Thus we have that

| Pr[Hyb
5,𝑑,10
(A) = 1] − Pr[Hyb

5,𝑑,9(A) = 1] | ≤ negl(𝜆) . □

Claim 6.25. Suppose that ΠRPRG satisfies correctness and re-randomization correctness and is expanding.
Then

| Pr[Hyb
5,𝑑 (A) = 1] − Pr[Hyb

5,𝑑,10
(A) = 1] | ≤ 1/2Ω (𝜆) .

Proof. We show that with overwhelming probability over the choice of 𝑦base, the programs

AggProof
3
[𝐶, crsG, hk, 𝑘sel, 𝑘, 𝑖∗, 𝑑, 𝑘rerand, 𝑦base]) and VerProof3 [crsG, 𝑘sel, 𝑘, 𝑖∗, 𝑑, 𝑘rerand, 𝑦base])

which the challenger obfuscates in Hyb
5,𝑑,10

and

AggProof′ [𝐶, crsG, hk, 𝑘, 𝑖∗, 𝑑] and VerProof′ [crsG, 𝑘, 𝑖∗, 𝑑]

which the challenger obfuscates in Hyb
5,𝑑 compute identical functionalities, respectively.
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Theverificationprograms. We first considerVerProof3 andVerProof′. For a particular input (𝑖, 𝑗, dig, 𝑧𝑖),
consider the following cases:

Case 1. If 𝑖 ≠ 𝑑 or 𝑗 ≠ F(𝑘sel, (dig, 𝑖)), then VerProof3 and VerProof′ behave identically.

Case 2. If 𝑖 = 𝑑 and 𝑗 = F(𝑘sel, (dig, 𝑖)), then VerProof′ always outputs 0. Consider the behavior in

VerProof3. By construction, VerProof3 first computes

𝑦𝑖 = PRG.Rerandomize(crsG, 𝑦base; F(𝑘rerand, (dig, 𝑖)))

and outputs 1 if and only if PRG.Eval(crsG, 𝑧𝑖) = 𝑦𝑖 . Note that by re-randomization correctness, this

never occurs if 𝑦base is not in the image of PRG.Eval(crsG, ·).

Since |Y| ≥ 2
Ω (𝜆) · |Z| and 𝑦base

r← Y, we have that

Pr[∃𝑧 ∈ Z : PRG.Eval(crsG, 𝑧) = 𝑦base] ≤ 1/2Ω (𝜆) .

so with probability 1−1/2Ω (𝜆) , VerProof3 andVerProof′ also behave identically for all inputs which fall into

case 2. In other words, with overwhelming probability over the choice of 𝑦base, VerProof3 and VerProof′

compute identical functionality.

The proof-aggregation programs. Next, we consider the proof-aggregation programs AggProof
3

and

AggProof′. The only difference between these is that AggProof
3

calls VerProof3 while AggProof′ calls

VerProof′. By our above argument, the verification programs VerProof3 and VerProof′ compute identical

functionality, so the same extends to AggProof
3

and AggProof′. The claim now follows by 𝑖O security,

using an analogous argument as in 6.14. □

Proof of Lemma 6.13. We now return to the proof of Lemma 6.13. By Claims 6.14 to 6.25 and the

triangle inequality, we can now write��
Pr[Hyb

5,𝑑 (A) = 1] − Pr[Hyb
5,𝑑−1
(A) = 1]

��
≤

��
Pr[Hyb

5,𝑑 (A) = 1] − Pr[Hyb
5,𝑑,10
(A) = 1]

��
+
��
Pr[Hyb

5,𝑑,10
(A) = 1] − Pr[Hyb

5,𝑑,9(A) = 1]
��

+
��
Pr[Hyb

5,𝑑,9(A) = 1] − Pr[Hyb(1
𝑛′ )

5,𝑑,8
(A) = 1]

��
+

∑︁
dig∗∈{0,1}𝑛′

8∑︁
ℓ=2

��
Pr[Hyb(dig

∗ )
5,𝑑,ℓ
(A) = 1] − Pr[Hyb(dig

∗ )
5,𝑑,ℓ−1

(A) = 1]
��

+
∑︁

dig∗∈{0,1}𝑛′\{0𝑛′ }

��
Pr[Hyb(dig

∗ )
5,𝑑,1
(A) = 1] − Pr[Hyb(dig

∗−1)
5,𝑑,8

(A) = 1]
��

+
��
Pr[Hyb(0

𝑛′ )
5,𝑑,1
(A) = 1] − Pr[Hyb

5,𝑑−1
(A) = 1]

��
≤ 1

2
Ω (𝜆)︸︷︷︸

Claim 6.25

+ negl(𝜆)︸  ︷︷  ︸
Claim 6.24

+ 2

2
𝜆+𝑛′︸︷︷︸

Claim 6.23

+ 2
𝑛′ · 𝑂 (1)

2
𝜆+𝑛′︸      ︷︷      ︸

Claims 6.16 to 6.22

+ 2
𝑛′ · 2

2
𝜆+𝑛′︸      ︷︷      ︸

Claim 6.14

+ 2

2
𝜆+𝑛′︸︷︷︸

Claim 6.15

,

which is bounded by a negligible function. Lemma 6.13 holds. □
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Lemma 6.26. Pr[Hyb
5,𝑇 (A) = 1] = 0.

Proof. In Hyb
5,𝑇 , the program VerProof, and thus ObfVerProof, and thus V, outputs 0 on all inputs where

𝑖 = 𝑇 and 𝑗 = F(𝑘sel, (𝑥∗𝑖∗, 𝑖∗)), where 𝑥∗
𝑖∗ ← H.Extract(td,H.Hash( ®𝑥)). By extraction correctness of ΠSEH, it

cannot be the case that V(crs, ®𝑥, 𝜋) = 1 and 𝑗 = F(𝑘sel, (𝑥𝑖∗, 𝑖∗)). Therefore the challenger in this experiment

always outputs 0. □

Proof of Theorem 6.4. Theorem 6.4 now follows from Lemmas 6.5, 6.6, and 6.11 to 6.13. Specifically,

there exist negligible functions 𝛿1, 𝛿2, 𝛿3 such that

Pr[Hyb
0
(A) = 1] ≤ Pr[Hyb

1
(A) = 1] + 𝛿1(𝜆) by Lemma 6.5

≤ (𝑇 + 1) · Pr[Hyb
2
(A) = 1] + 𝛿1(𝜆) + 𝛿2(𝜆) by Lemma 6.6

≤ (𝑇 + 1) · Pr[Hyb
3
(A) = 1] + 𝛿1(𝜆) + 𝛿2(𝜆) by Lemma 6.11

≤ (𝑇 + 1)
(
Pr[Hyb

4
(A) = 1] + 1

2
𝜆

)
+ 𝛿1(𝜆) + 𝛿2(𝜆) by Lemma 6.12

≤ (𝑇 + 1)
(
Pr[Hyb

5,𝑇 (A) = 1] +𝑇 · 𝛿3(𝜆)
)
+ 𝑇 + 1

2
𝜆
+ 𝛿1(𝜆) + 𝛿2(𝜆) by Lemma 6.13,

where we have used the fact that Hyb
5,0 ≡ Hyb

4
. By Lemma 6.26, we have that Pr[Hyb

5,𝑇 (A) = 1] = 0.

Since𝑇 = poly(𝜆) and 𝛿1, 𝛿2, 𝛿3 = negl(𝜆), we conclude that Pr[Hyb
0
(A) = 1] = negl(𝜆), which completes

the proof of adaptive soundness. □

Theorem 6.27 (Perfect Zero-Knowledge). Suppose 𝑖O is correct. Then Construction 6.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

• S0(1𝜆,𝑇 ,𝐶): On input the security parameter 1
𝜆
, the batch size𝑇 , and the Boolean circuit𝐶 : {0, 1}𝑛×

{0, 1}𝑣 → {0, 1}, the simulator samples the common reference string crs ← Setup(1𝜆,𝑇 ,𝐶) exactly

as in the real scheme. Let hk, crsG, 𝑘sel, 𝑘 be the underlying hash key, PRG parameters and PPRF keys

sampled in Setup. The simulator outputs the crs along with the state st = (hk, crsG, 𝑘sel, 𝑘).

• S1(st, (𝑥1, . . . , 𝑥𝑇 )): On input the state st = (hk, crsG, 𝑘sel, 𝑘) and statements (𝑥1, . . . , 𝑥𝑇 ), the simu-

lator computes 𝑗𝑖 ← F(𝑘sel, (𝑥𝑖 , 𝑖)) and selects the smallest 𝑗 ∈ [𝑇 + 1] such that 𝑗 ≠ 𝑗𝑖 for all 𝑖 ∈ [𝑇 ].
It then computes 𝑘 𝑗 ← F.Setup(1𝜆PRF, 1𝑛+𝑡 , 1𝜆 ; F(𝑘, 𝑗)) and 𝑧𝑇 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig,𝑇 ))).
The simulator outputs 𝜋 = ( 𝑗, 𝑧𝑇 ).

Take any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑣 → {0, 1}, batch size 𝑇 , and statements 𝑥1, . . . , 𝑥𝑇 and wit-

nesses 𝑤1, . . . ,𝑤𝑇 such that 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑇 ]. First, observe that the common reference string

crs output by S0(1𝜆,𝑇 ,𝐶) is distributed identically to Setup(1𝜆,𝑇 ,𝐶). It now suffices to consider the proof.

By construction, the proof 𝜋 = ( 𝑗, 𝑧𝑇 ) output by P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )) is obtained by evaluat-

ing ObfAggProof on inputs (𝑖, 𝑗, dig, 𝑥𝑖 ,𝑤𝑖 , 𝜎𝑖 , 𝑧𝑖+1). By correctness of 𝑖O and the definition of AggProof
and P, this means that 𝑗 is the smallest value in [𝑇 + 1] such that 𝑗 ≠ F(𝑘sel, (𝑥𝑖 , 𝑖)) for all 𝑖 ∈ [𝑇 ] and

that 𝑧𝑇 = PRG.GenSeed(crsG; F(𝑘 𝑗 , (dig,𝑇 ))). Thus the proof 𝜋 = ( 𝑗, 𝑧𝑇 ) output by S1(st, (𝑥1, . . . , 𝑥𝑇 )) is

distributed identically to P(crs, (𝑥1, . . . , 𝑥𝑇 ), (𝑤1, . . . ,𝑤𝑇 )). □
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