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Abstract

Threshold cryptography is a standard technique for distributing trust by splitting cryptographic keys into

multiple shares held by different parties. The classic model of threshold cryptography assumes either that a trusted
dealer distributes the shares to the different parties (and in doing so, also knows the overall secret) or that the users

participate in an interactive distributed key-generation protocol to derive their individual shares. In recent years,

several works have proposed a new model where users can independently choose a public key, and there is a public

and deterministic function that derives the joint public key associated with a group of users from their individual

keys. Schemes with this silent (i.e., non-interactive) setup procedure allow us to take advantage of the utility of

threshold cryptography without needing to rely on a trusted dealer or an expensive interactive setup phase.

Existing works have primarily focused on threshold policies. This includes notions like threshold signatures (resp.,

encryption) with silent setup (where only quorums with at least 𝑇 users can sign (resp., decrypt) a message) and

distributed broadcast encryption (a special case of threshold encryption where the threshold is 1). Currently, construc-

tions that support general threshold policies either rely on strong tools such as indistinguishability obfuscation andwit-

ness encryption, or analyze security in idealizedmodels like the generic bilinear groupmodel. The use of idealizedmod-

els is due to the reliance on techniques for constructing succinct non-interactive arguments of knowledge (SNARKs).

In this work, we introduce a new pairing-based approach for constructing threshold signatures and encryption

schemes with silent setup. On the one hand, our techniques directly allow us to support expressive policies like mono-

tone Boolean formulas in addition to thresholds. On the other hand, we only rely on basic algebraic tools (i.e., a simple

cross-term cancellation strategy), which yields constructions with shorter signatures and ciphertexts compared to

previous pairing-based constructions. As an added bonus, we can also prove (static) security under𝑞-type assumptions

in the plain model. Concretely, the signature size in our distributed threshold signature scheme is 3 group elements

and the ciphertext size in our distributed threshold encryption scheme is 4 group elements (together with a short tag).

1 Introduction

Threshold cryptography [Des87, Fra89, DF89, DDFY94] is a general paradigm for distributing trust in cryptography.

For instance, in a threshold signature scheme, there is a distributed signing process where at least 𝑇 out of 𝑁 par-

ticipants must come together to produce a signature on a message. Similarly, in threshold encryption, a group of

at least 𝑇 out of 𝑁 parties must come together in order to decrypt a ciphertext. In the classic setting of threshold

cryptography, there is a central authority (also called a trusted dealer) that generates shares of the signing key (or

decryption key) and issues the individual shares to the different participants. The trusted dealer in this case would also

know the “master” signing key (or decryption key) for the underlying system. One way to remove the central trusted

authority is to have individual parties run an interactive distributed key-generation protocol to jointly derive their

individual shares. While the distributed key-generation protocol ensures that no single entity knows the master secret

key for the cryptosystem, the protocol itself often requires high communication or computational costs [TCZ
+
20].

Moreover, when the universe of users in the threshold policy is dynamic or we want to support more general policies

beyond thresholds (e.g., a signing or decryption policy described by a Boolean formula), we often need to re-run the

distributed key-generation protocol each time the set of users or the policy changes.
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Distributed cryptography. A natural question then is whether users can independently and non-interactively
generate their public and private keys (for either a signature scheme or an encryption scheme) and then simply

publish their public key to a directory. For instance, in a distributed monotone-policy signature scheme, we want

the ability to take a tuple of verification keys (vk1, . . . , vk𝑁 ) for an arbitrary set of 𝑁 users along with a signing

policy 𝜑 and aggregate them into a succinct verification key vk𝜑 for the set of users and the policy. Individual users

can generate “partial signatures” on messages of their choosing using their individual signing key (as in a vanilla

digital signature scheme). Moreover, given a collection of signatures {𝜎𝑖 }𝑖∈𝑆 on a message𝑚 from a set of parties

𝑆 ⊆ [𝑁 ] that satisfy the policy 𝜑 , there is a public aggregation algorithm that outputs an aggregate signature 𝜎agg
on the message𝑚. Both the verification key vk𝜑 and the aggregate signature 𝜎agg should be short (i.e. have size that

is independent of the number of users 𝑁 or the complexity of the policy 𝜑). Security says that any unauthorized set

of users 𝑆 cannot produce a signature on any message𝑚 that verifies with respect to vk𝜑 . When specialized to the

setting of threshold policies, this is the notion of threshold signatures with silent setup [MRV
+
21, DCX

+
23, GJM

+
24].

We can consider an analogous notion for the case of encryption. In this case, we want the ability to take a tuple of

public keys (pk
1
, . . . , pk𝑁 ) for an arbitrary set of 𝑁 users along with a decryption policy 𝜑 and aggregate them into a

succinct encryption key ek𝜑 associated with the set of users and the policy. Anyone can encrypt a message with respect

to ek𝜑 with a ciphertext whose size is independent of 𝑁 or the complexity of the policy 𝜑 . Thereafter, any subset of

users 𝑆 ⊆ [𝑁 ] who satisfies the decryption policy 𝜑 and use their secret keys to generate a “partial decryption” 𝜎 . It is

possible to recover the message given partial decryptions 𝜎𝑖 for a set of users 𝑆 ⊆ [𝑁 ] that satisfy the policy 𝜑 . When

𝜑 is a threshold policy, this corresponds to threshold encryption with silent setup [GKPW24] and for more general

policies, it is called distributed monotone-policy encryption [DJWW25]. An important special case of threshold

encryption with silent setup is the setting of distributed (or flexible) broadcast encryption [WQZD10, BZ14, FWW23].

This corresponds to the setting where the decryption policy 𝜑 is a threshold policy with threshold 1.

Constructing distributed cryptography. Thus far, much of the work on constructing distributed cryptographic

notions have centered on the special case of distributed broadcast encryption, and currently, we have many realizations

from pairing-based assumptions [WQZD10, KMW23], lattice-based assumptions [CW24, CHW25, WW25], or general

tools such as indistinguishability obfuscation [BZ14] and witness encryption [FWW23]. However, distributed broad-

cast encryption corresponds to the special case where the set of decryptors has size 1. Generalizing beyond distributed

broadcast encryption has been challenging, and existing constructions have either relied on strong tools such as

indistinguishability obfuscation or witness encryption [RSY21, ADM
+
24, DJWW25] or idealized models such as the

random oracle model [MRV
+
21] or the algebraic/generic group model [DCX

+
23, GJM

+
24, GKPW24, BCF

+
25]. The

latter constructions in idealized models all rely on techniques from succinct non-interactive arguments of knowledge

(SNARKs) and it seems challenging to prove security of these schemes in the plain model. Such a scheme must

minimally overcome barriers such as [GW11] and moreover, if witness extraction is essential to the security analysis,

then idealized models are necessary to extract a witness from a succinct proof. Moreover, the use of SNARKs introduces

additional complexity and computational costs to the scheme itself. Finally, existing constructions only consider

simple policies such as (weighted) threshold policies [RSY21, MRV
+
21, DCX

+
23, ADM

+
24, GJM

+
24, GKPW24] or

policy families that can be computed by a read-once bounded-space Turing machine [DJWW25].

This work. In this work, we introduce a new approach for constructing distributed monotone-policy signatures

and encryption schemes from pairings. Our approach is “low tech” and directly leverages the algebraic structure of the

Boneh-Boyen signature and identity-based encryption (IBE) scheme [BB04a].
1
We achieve two main sets of results:

• Distributed monotone-policy signatures: First, we obtain a distributed monotone-policy signature scheme

that supports any policy family captured by a linear secret sharing scheme (e.g., this include threshold poli-

cies [Sha79] as well as monotone Boolean formulas [BL88]) where the aggregate signature just consists of

3 group elements (1 more than a vanilla Boneh-Boyen signature). This is ≈ 3× shorter than the pairing-based

scheme from [DCX
+
23, GJM

+
24] and in fact, exactly matches the level of succinctness obtained using the most

succinct pairing-based SNARK for NP [Gro16]; see Table 1 for a comparison. All of these prior constructions

rely on SNARK machinery whereas our construction avoids it altogether.

1
Throughout this work, whenever we refer to the “Boneh-Boyen signature scheme,” we specifically mean the signature scheme derived from

the identity-based encryption (IBE) scheme in [BB04a], and not the short signature scheme from [BB04b].
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Scheme Policy Assumption |crs| |vk| |vk𝜑 | |𝜎 | |𝜎agg | AD
no

ro

Generic (SNARK)
∗

Boolean circuit generic group 𝑁 1 1 |G| 3|G| ✓ ✓†

Generic (BARG)
∗

Boolean circuit 𝑘-Lin 𝑁 1 1 |G| poly(𝜆) |G| ✗ ✓†

Cor. 3.19 Boolean formula
‡ 𝑞-type 𝑁 2 𝑁 1 2|G| 3|G| ✗ ✓

[GJM
+
24] weighted threshold generic group 𝑁 𝑁 1 |G| 9|G| + 5|F| ✓ ✗

[DCX
+
23] weighted threshold algebraic group 𝑁 𝑁 1 |G| 8|G| ✓ ✗

Cor. 5.6 threshold 𝑞-type 𝑁 log𝑁 𝑁 log𝑁 2|G| 3|G| ✗ ✓

∗
These refer to generic constructions either based on SNARKs and instantiated with the pairing-based scheme of [Gro16] or based on

monotone-policy batch arguments (BARG) [BBK
+
23, BCJP24] and instantiated with the pairing-based monotone-policy BARG obtained

via [WW22, KLVW23, NWW24]. We report metrics based on applying these techniques with the signature scheme from [BLS01]. Note

that difference choices of the underlying proof systems and signature scheme will yield different asymptotics; we picked the options that

minimizes the signature sizes. We refer to Section 1.3 for more details on these generic approaches.

†
As written, these instantiations do rely on the random oracle for the [BLS01] signature scheme. However, we could alternatively instantiate

the underlying signature scheme with a construction that does not rely on random oracles. For instance, an instantiation with the [BB04b]

signature scheme would yield a construction without random oracles and where the size of a user’s individual signature 𝜎 is |G | + |F | .
The other metrics are unaffected.

‡
Assuming a monotone Boolean formula of size at most 𝑁 (and each variable appears once).

Table 1: Comparison of our distributed monotone-policy signature scheme with previous constructions. For each

scheme, we report the policy family the scheme supports (assumed to be monotone), the underlying cryptographic

assumption on which they rely, the sizes of the common reference string crs, an individual user’s verification key vk (in-
cluding the aggregation hint), the aggregate verification key vk𝜑 associated with a policy, a user’s individual signature

𝜎 , the final aggregated signature 𝜎agg, as well as whether the scheme is proven to be adaptively secure (AD), and if the

scheme can be instantiated without relying on the random oracle heuristic (
no

ro
). We assume each scheme is instantiated

to support a policy over 𝑁 users (this is a restriction on the number of inputs to 𝜑 , not the number of users that can

join the system). We suppress poly(𝜆) factors when reporting parameter sizes, except when reporting signature sizes,

in which case, we give the exact breakdown in terms of the number of group elements (G) and number of field elements

(F). All of the threshold schemes support dynamic thresholds where the threshold can be chosen at verification time.

• Distributed monotone-policy encryption: The same techniques also give a distributed monotone-policy

encryption scheme for the same policy family where the ciphertext size consists of 4 group elements together

with a 𝜆-bit tag. The previous scheme of [GKPW24] needed 10 group elements. Other constructions of distributed

monotone-policy encryption relied on strong tools like obfuscation or witness encryption [RSY21, ADM
+
24,

DJWW25]; see Table 2.

In both cases, the direct algebraic approach we take enables (1) shorter signatures (or ciphertexts) and reduced

computational costs compared to previous pairing-based constructions; (2) support for general policy families (beyond

threshold policies); and (3) a security reduction in the plain model. In particular, we prove static security of our

schemes from a 𝑞-type assumption in the plain model, where 𝑞 roughly grows with the bound 𝑁 on the maximum

number of users associated with a policy. The proof strategy relies on a standard partitioning strategy. Beyond the

functionality, computational assumption, and efficiency improvements achieved by our construction, we believe an

important conceptual message of this work is highlighting the versatility of classic pairing-based techniques for

realizing distributed cryptography without needing to bring in more complex machinery such as SNARKs, witness

encryption, or indistinguishability obfuscation.

1.1 Our Results

In this work, we put forward a new approach for building distributed monotone-policy signatures and encryption

from pairings. Our approach is general and allows us to support any policy family that can be described by a linear

secret sharing scheme (which includes threshold policies as a special case). We start with a summary of our main

results and follow with a technical overview of our approach in Section 1.2.
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Distributed monotone-policy signatures. Our first result is a construction of a distributed monotone-policy
signature scheme; this is a generalization of threshold signatures with silent setup to more general signing policies

𝜑 . Here, we provide two sets of results (one for general policies and one tailored for threshold policies):

• General policies: Our first result (Corollary 3.19) is a construction of distributed monotone-policy signatures

that can support arbitrary monotone Boolean formulas. To support a Boolean formula with up to 𝑁 users (and

size 𝑁 ), we require a CRS of size 𝑂 (𝑁 2). Each user’s public key has size 𝑂 (𝑁 ) and the aggregate verification

key contains 6 group elements. A user’s individual signature consists of just 2 group elements and the final

aggregate signature contains 3 group elements. Verifying the final signature requires just 3 pairing operations.

Security relies on a 𝑞-type assumption over prime-order pairing groups (where 𝑞 = 𝑂 (𝑁 )).

More broadly, our scheme supports any monotone policy that can be described by a linear secret sharing scheme.

An example of a policy in this class is a conjunction of thresholds. In this example, we partition the signers

into 𝑘 different groups, and the aggregation policy is the aggregator must have signatures from a majority of

users from each group. This naturally captures settings where multiple quorums must independently sign off

on a policy or directive; for instance, this is the case in many legislative bodies where bills must be passed by

majorities in two different bodies before they become law.

• Threshold policies: For the special case of threshold policies, we can adapt our construction (Corollary 5.6)

to obtain one where the CRS size is 𝑂 (𝑁 log𝑁 ) and the aggregate verification key contains 𝑂 (log𝑁 ) group
elements. The sizes of each user’s individual signature and the aggregate signature are unchanged. More-

over, like [DCX
+
23, GJM

+
24] this scheme supports dynamic thresholds, where the threshold can be chosen

at verification time (rather than fixed at preprocessing time).

Previously, the works of [DCX
+
23, GJM

+
24] show how to construct a threshold signature with silent setup using

pairings. Their scheme relies on a combination of an aggregate signature scheme (i.e., [BLS01]) together with a

specialized SNARK (e.g., inner product arguments or the Plonk proof system [GWC19]). Signature aggregation in

these schemes essentially corresponds to running the aggregation algorithm of an underlying aggregate signature

scheme and then giving a SNARK proof that the aggregation was performed correctly. Likewise, verification requires

checking the SNARK proof together with running the verification algorithm of the underlying aggregate signature

scheme. The use of SNARKs has a number of consequences in terms of functionality, efficiency, and security:

• Support for weighted thresholds: An appealing feature of [DCX
+
23, GJM

+
24] is they support weighted

thresholds. In contrast, our scheme only supports unweighted thresholds, and we leave as an open problem

how to extend our techniques to support weighted thresholds with minimal overhead.

• Longer signatures: Because the aggregate signature contains a SNARK proof, signatures in [DCX
+
23, GJM

+
24]

are longer (see Table 1). In our scheme, the aggregate signature contains just 3 group elements. Concretely,

if we instantiate our scheme over the standard BLS-381 pairing curve [BLS02] (see Remark 5.7), we obtain a

scheme where the aggregate signature is 192 bytes. This is 2.8–3× shorter than previous schemes based on

aggregate signatures and SNARKs (536 bytes in the case of [DCX
+
23] and 592 bytes in the case of [GJM

+
24]).

Moreover, we believe the concrete aggregation and verification costs will be higher for the SNARK-based

schemes due to the need to generate and validate the SNARK proof (on top of the costs of the underlying

aggregate signature scheme). The performance of our scheme is comparable to that of a plain pairing-based

multi-signature (specifically, the [LOS
+
06] multi-signature based on the Boneh-Boyen signature scheme).

• Idealized models: Due to the extensive reliance on SNARK techniques, the security analysis in [DCX
+
23,

GJM
+
24] critically relies on the generic (or algebraic) bilinear group model [Sho97, BBG05, FKL18]. In contrast,

we are able to prove security from a 𝑞-type assumption in the plain model. On the flip side, working in the

generic group model allows previous works to argue adaptive security. Note that this itself is not unexpected,

as working in idealized models often enables direct proofs of adaptive security even when no such proofs are

known in the plain model (see [RW22] for an example in the setting of attribute-based encryption).

A key conceptual contribution of our work is we show how to directly extend the classic Boneh-Boyen signature

scheme [BB04a] into a distributed monotone-policy signature scheme. We take a simple algebraic approach that avoids
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Scheme Policy Assumption |crs| |pk| |ek𝜑 | |ct| |𝜎 | AD
no

ro

[DJWW25]
∗ 𝑆-space read-once TM 𝑖O + SSB 1 1 – 2

𝑆
1 ✗ ✓

Cor. 4.9 Boolean formula
† 𝑞-type 𝑁 2 𝑁 1 3|G| + |G𝑇 | + |F| 2|G| ✗ ✓

[RSY21]
∗

threshold 𝑖O + OWF – 1 – 1 1 ✗ ✓

[ADM
+
24]
∗

threshold 𝑖O + SSB – 1 – 1 1 ✗ ✓

[GJM
+
24] weighted threshold generic group 𝑁 𝑁 1 9|G| + |G𝑇 | |G| ✓ ✗

Cor. 5.15 threshold 𝑞-type 𝑁 log𝑁 𝑁 log𝑁 3|G| + |G𝑇 | + |F| 2|G| ✗ ✓

∗
These schemes operate in a model where the encryption algorithm take the set of public keys as input, and do not define a separate

preprocessing phase to produce an aggregate encryption key ek𝜑 .
†
Assuming a monotone Boolean formula of size at most 𝑁 (and each variable appears once).

Table 2: Comparison of our distributed monotone-policy encryption scheme with prior results. For each scheme, we

report the policy family the scheme supports (assumed to be monotone), the underlying cryptographic assumption

on which they rely, the sizes of the common reference string crs, an individual user’s public key pk (including the
aggregation hint), the aggregate encryption key ek𝜑 associated with a policy, a ciphertext ct, and a partial decryption

𝜎 , as well as whether the scheme is proven to be adaptively secure (AD), and whether the scheme can be instantiated

without relying on the random oracle heuristic (
no

ro
). We assume each scheme is instantiated to support policies over

a maximum of 𝑁 users (this is a restriction on the number of inputs to 𝜑 , not the number of users that can join

the system). We suppress poly(𝜆) factors when reporting parameter sizes, except when reporting the ciphertext

size and the partial decryption size for a pairing-based construction, in which case, we give the exact breakdown
in terms of the number of base group elements (G), target group elements (G𝑇 ), and the number of field elements

(F). We write TM to denote a Turing machine, 𝑖O to denote indistinguishability obfuscation [BGI
+
01], OWF to denote

a one-way function, and SSB to denote a somewhere-statistically-binding hash function [HW15]. The threshold

schemes all support dynamic thresholds where the threshold is specified at encryption time.

SNARKmachinery and instead relies on a simple “cross-term cancellation” strategy. This is a common strategy that has

featured in numerous pairing-based constructions, including vector commitments [CF13], batch arguments [WW22],

(distributed) broadcast encryption [BGW05, KMW23], and (registered) attribute-based encryption [Wat11, HLWW23].

We provide a concrete comparison with previous approaches in Table 1.

Distributed monotone-policy encryption. The same techniques we use to obtain our distributed monotone-

policy signature scheme immediately gives a distributed monotone-policy encryption scheme for the same policy

family. This is unsurprising given that the Boneh-Boyen signature scheme was derived from the Boneh-Boyen

identity-based encryption (IBE) scheme.
2
Previously, constructions of distributed monotone-policy encryption for

policies beyond threshold policies required strong tools like indistinguishability obfuscation or witness encryp-

tion [ADM
+
24, DJWW25]. Even for the special case of threshold policies [GKPW24], security relies on the generic

bilinear group model and makes use of techniques from proof systems (e.g., sumchecks and low-degree checks). As was

the case with our signature scheme, our approach gives a direct algebraic instantiation that avoids any additional ma-

chinery. We provide a comparison with previous constructions in Table 2. Finally, we also note that we can view our dis-

tributed monotone-policy encryption scheme as a “signature-based witness encryption scheme” [DHMW23, ADM
+
24],

where the associated signature scheme is the Boneh-Boyen signature scheme (see Remark 4.8).

Application to flexible broadcast encryption. An immediate consequence of our distributed monotone-policy

encryption scheme is a new construction of flexible broadcast encryption [FWW23]. Flexible broadcast encryption is a

generalization of distributed broadcast encryption [WQZD10, BZ14] where users can post their public keys to a public

key directory. Thereafter, anyone can encrypt a message to an arbitrary subset of recipients with a short ciphertext.

2
In fact, our distributed monotone-policy scheme is technically a distributed monotone-policy IBE scheme (see Remark 5.16) and can be viewed

as a distributed version of the threshold Boneh-Boyen IBE scheme from [BBH06].

5



Distributed broadcast encryption schemes have an additional restriction where each user’s public key is bound to an

index, and moreover, the broadcaster can only encrypt to a set of public keys that occupy distinct indices. Thus, some

degree of coordination is necessary among users when generating their public key. Flexible broadcast encryption

eliminates this constraint and allows the broadcaster to encrypt to any collection of public keys. Previously, the

work of [GLWW23] gives a generic approach to lift a distributed broadcast encryption scheme to a flexible scheme

with 𝜔 (log 𝜆) overhead in the size of user public keys. On the other hand, the work of [GKPW24] gives the first

direct construction, but relies on the generic group model. Our work gives a new construction of flexible broadcast

encryption in the plain model where the size of each user’s public key and the size of the ciphertext is essentially

the same as the best pairing-based distributed broadcast encryption scheme [KMW23] (see Remark 5.17 for the

breakdown). Both our scheme and [KMW23] achieve selective security from 𝑞-type assumptions in the plain model.

An open problem: weighted thresholds. A notable feature of previous constructions of threshold signatures

(as well as encryption) with silent setup [DCX
+
23, GJM

+
24, GKPW24] is they support weighted threshold policies.

The schemes we present in this work support unweighted threshold policies. While there is a generic approach to

support weighted thresholds via share virtualization, this incurs an overhead proportional to the magnitude of the

weights. An interesting open problem is to design a distributed monotone-policy signature (and encryption) scheme

that supports weighted thresholds with the same efficiency as our current constructions.

1.2 Technical Overview

In this section, we provide a general overview of our main constructions. We start by describing the basic syntax

of a distributed monotone-policy signature scheme:

• Setup: In a distributed monotone-policy signature scheme, there is a common reference string crs that users
refer to when generating their individual verification key vk and signing key sk. Each user can generate their

keys independently of all other users. As in a standard signature scheme, users can sign messages using their

signing key sk and the resulting signatures verify with respect to their verification key vk.

• Preprocessing: Next, there is a preprocessing algorithm that takes the verification keys vk1, . . . , vk𝑁 for

an arbitrary set of users together with a signing policy 𝜑 . The preprocessing algorithm outputs a succinct

verification key vk𝜑 and an aggregation key ak𝜑 associated with the policy 𝜑 . The policy 𝜑 takes as input a

subset of users 𝑆 ⊆ [𝑁 ] and outputs 1 if the set is authorized and 0 if not. In this work, we focus exclusively on

monotone policies (i.e., if 𝜑 (𝑆) = 1, then 𝜑 (𝑇 ) = 1 for all supersets 𝑇 ⊇ 𝑆).

• Signature aggregation: Given a collection of signatures {𝜎𝑖 }𝑖∈𝑆 on a common message𝑚 that satisfy the

aggregation policy (e.g., 𝜑 (𝑆) = 1), the aggregation algorithm uses the aggregation key ak𝜑 to publicly derive

an aggregate signature 𝜎agg on𝑚 that verifies with respect to the aggregated verification key vk𝜑 .

The security and succinctness requirements on a distributed monotone-policy signature scheme are as follows:

• Security: The security requirement is the usual notion of unforgeability for aggregate signatures [BGLS03].

The requirement essentially says that an efficient adversary who chooses the signing keys for an unauthorized
set of users 𝑆 (i.e., a set 𝑆 ⊆ [𝑁 ] where 𝜑 (𝑆) = 0) cannot produce a valid signature on a message𝑚∗ that verifies
with respect to vk𝜑 . As usual, the adversary can also request signatures on non-challenge messages𝑚 ≠𝑚∗

from the honest users.

• Succinctness: The efficiency requirement is that the size of the aggregated verification key vk𝜑 and the size

of the aggregate signature 𝜎agg be succinct. Namely, their size should be independent of the number of users

in the set 𝑆 , the total number of users 𝑁 , or the complexity of the policy 𝜑 . Similarly, the running time of the

verification algorithm should not depend on the number of users 𝑁 or the complexity of the policy 𝜑 .

We provide the formal syntax and security requirements in Definition 3.1.

Since we do not allow the verification time to grow with the description length of the policy, the aggregation

policy must be fixed at preprocessing time (and the policy 𝜑 is succinctly embedded into the aggregated verification
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key vk𝜑 ). For certain policy families, the policies have a short description (e.g., threshold policies). In such settings,

we can consider a dynamic setting where the preprocessing algorithm only takes as input the verification keys

vk1, . . . , vk𝑁 of the users and the policy is determined at verification time. This is the standard setting for the special

case of threshold policies [DCX
+
23, GKPW24]. Our main construction in this work applies for general policies 𝜑 , so

we fix the policy at preprocessing time. However, if we focus specifically on threshold policies, it is straightforward

to adapt our scheme to support dynamic policies. We provide more discussion in Remark 3.2.

Starting point: Boneh-Boyen signatures. Our starting point is the Boneh-Boyen pairing-based signature

scheme [BB04a] (derived from the Boneh-Boyen IBE scheme). We start by recalling the construction when in-

stantiated over a prime-order symmetric pairing group. First, a symmetric pairing group consists of two cyclic

groups G and G𝑇 , each of prime order 𝑝 , and equipped with an efficiently-computable non-degenerate bilinear map

𝑒 : G ×G→ G𝑇 . In particular, for all 𝑔 ∈ G and 𝑎, 𝑏 ∈ Z𝑝 , it holds that 𝑒 (𝑔𝑎, 𝑔𝑏) = 𝑒 (𝑔,𝑔)𝑎𝑏 . In the following, we write

𝑔 to denote a generator of G. We now recall the Boneh-Boyen signature scheme:

• Key-generation: The key-generation algorithm samples two group elements 𝑢, 𝑣
r← G and an exponent

𝛼
r← Z𝑝 . The verification key is vk = (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼 ) and the signing key is sk = 𝛼 .

• Signing: A signature on a message 𝑚 ∈ Z𝑝 is a pair 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚ℎ)𝑟 ), where 𝑟 r← Z𝑝 is the signing

randomness.

• Verification: To verify a signature 𝜎 = (𝜎1, 𝜎2) on𝑚 with respect to verification key vk = (𝑢,ℎ,𝐴), the verifier
checks the following relation:

𝐴
?

=
𝑒 (𝑔, 𝜎2)
𝑒 (𝜎1, 𝑢𝑚ℎ)

. (1.1)

Correctness follows from bilinearity:

𝑒 (𝑔, 𝜎2) = 𝑒 (𝑔,𝑔𝛼 (𝑢𝑚ℎ)𝑟 ) = 𝑒 (𝑔,𝑔)𝛼 · 𝑒 (𝑔, (𝑢𝑚ℎ)𝑟 ) = 𝐴 · 𝑒 (𝑔𝑟 , 𝑢𝑚ℎ) = 𝐴 · 𝑒 (𝜎1, 𝑢𝑚ℎ).

It is easy to derive a threshold version of the Boneh-Boyen signature scheme by secret sharing the signing key 𝛼 ∈ Z𝑝 .
Specifically, let (𝛼1, . . . , 𝛼𝑁 ) be an additive secret sharing of 𝛼 (i.e., 𝛼 =

∑
ℓ∈[𝑁 ] 𝛼ℓ ). User ℓ holds skℓ = 𝛼ℓ . The public

verification key for the signature scheme is vk = (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼 ). A “partial signature” from User ℓ on a message𝑚

is a Boneh-Boyen signature with skℓ = 𝛼ℓ : namely, 𝜎ℓ = (𝑔𝑟ℓ , 𝑔𝛼ℓ (𝑢𝑚ℎ)𝑟ℓ ), where 𝑟ℓ r← Z𝑝 . Given 𝑁 partial signatures

𝜎1 = (𝜎1,1, 𝜎1,2), . . . , 𝜎𝑁 = (𝜎𝑁,1, 𝜎𝑁,2) from the 𝑁 users, the aggregate signature 𝜎agg on𝑚 is simply the product

𝜎agg =
©­«

∏
ℓ∈[𝑁 ]

𝜎ℓ,1 ,
∏
ℓ∈[𝑁 ]

𝜎ℓ,2
ª®¬ =

©­«
∏
ℓ∈[𝑁 ]

𝑔𝑟ℓ ,
∏
ℓ∈[𝑁 ]

𝑔𝛼ℓ (𝑢𝑚ℎ)𝑟ℓ ª®¬ =

(
𝑔
∑

ℓ ∈ [𝑁 ] 𝑟ℓ , 𝑔
∑

ℓ ∈ [𝑁 ] 𝛼ℓ (𝑢𝑚ℎ)
∑

ℓ ∈ [𝑁 ] 𝑟ℓ
)
.

Since

∑
ℓ∈[𝑁 ] 𝛼ℓ = 𝛼 , 𝜎agg is a Boneh-Boyen signature on𝑚 with respect to the verification key vk = (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼 )

and randomness

∑
ℓ∈[𝑁 ] 𝑟ℓ . This aggregation property is the basis of the [LOS

+
06] multi-signature.

This approach directly extends to support any policy family that can be described by a linear secret sharing

scheme [Bei96]. Formally, a linear secret sharing scheme for a policy over 𝑁 parties consists of a “share-generating”

matrix M ∈ Z𝑁×𝑊𝑝 where User ℓ is associated with the ℓ th row mT
ℓ of M.

3
Next, to secret share a value 𝛼 ∈ Z𝑝 , the

dealer samples a vector s r← Z𝑊𝑞 where 𝑠1 = 𝛼 and computes the shares 𝜶 = Ms ∈ Z𝑁𝑝 . The ℓ th user’s share is 𝛼ℓ = mT
ℓs.

The correctness property of a linear secret sharing scheme says that for any authorized set of parties 𝑆 ⊆ [𝑁 ], there
exists coefficients 𝜔ℓ ∈ Z𝑝 such that

∑
ℓ∈𝑆 𝜔ℓ𝛼ℓ = 𝛼 . General threshold policies (e.g., 𝑇 -out-of-𝑁 policies) [Sha79] and

monotone Boolean formulas [BL88, LW11] can all be described by a linear secret sharing scheme (see Remark 2.3).

It is easy to extend Boneh-Boyen signatures to any policy with a linear secret sharing scheme by secret sharing the

signing key 𝛼 according to the share-generation matrix M. Concretely, let 𝛼1, . . . , 𝛼𝑁 be the shares of 𝛼 under M. We

associate User ℓ with the signing key 𝛼ℓ . The verification key for the overall signature scheme is vk = (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼 ).
3
Technically, this is a special case of a “one-use” linear secret sharing scheme (see Definition 2.1). We refer to Remark 3.10 for discussion on

how to generalize to many-use linear secret sharing schemes.
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As before, a partial signature under User ℓ’s signing key is 𝜎ℓ = (𝑔𝑟ℓ , 𝑔𝛼ℓ (𝑢𝑚ℎ)𝑟ℓ ). Given a collection of partial

signatures {𝜎ℓ }ℓ∈𝑆 on a message𝑚 and an authorized set 𝑆 ⊆ [𝑁 ], the aggregator can combine them by computing

the linear reconstruction coefficients {𝜔ℓ }ℓ∈𝑆 where
∑
ℓ∈[𝑁 ] 𝜔ℓ𝛼ℓ = 𝛼 . The aggregate signature 𝜎agg on𝑚 is then

𝜎agg =

(∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
,
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,2

)
=

(∏
ℓ∈𝑆

𝑔
∑

ℓ ∈𝑆 𝜔ℓ𝑟ℓ .
∏
ℓ∈𝑆

𝑔
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ (𝑢𝑚ℎ)𝜔ℓ𝑟ℓ

)
= (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚ℎ)𝑟 ) , (1.2)

where 𝑟 =
∑
ℓ∈𝑆 𝜔ℓ𝑟ℓ . Once again, this is a Boneh-Boyen signature on 𝑚 with respect to the verification key

vk = (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼 ) and randomness 𝑟 .

Distributed monotone-policy signatures. While the above approach supports any policy family with a linear

secret sharing scheme, it is in the centralized model where a trusted dealer generates the signing key 𝛼 and distributes

the shares 𝛼1, . . . , 𝛼𝑁 to the 𝑁 parties. In the distributed setting, each user should have the ability to sample their

own share 𝛼𝑖
r← Z𝑝 (independently of other users). In this case, it will no longer be the case that any satisfying subset

of shares {𝛼ℓ }ℓ∈𝑆 would reconstruct to the same target 𝛼 =
∑
ℓ∈𝑆 𝜔ℓ𝛼ℓ . Nonetheless, we can still make use of the

aggregation structure from Eq. (1.2) as follows:

• The CRS will contain the group elements (𝑢,ℎ) of the Boneh-Boyen signature scheme.

• Each user independently samples their signing key skℓ = 𝛼ℓ
r← Z𝑝 and publishes vkℓ = 𝑒 (𝑔,𝑔)𝛼ℓ as their public

verification component. We can view (𝑢,ℎ, 𝑒 (𝑔,𝑔)𝛼ℓ ) as a Boneh-Boyen verification key for User ℓ .

• LetM be the share-generation matrix for a policy, and suppose that the aggregator has partial signatures {𝜎ℓ }ℓ∈𝑆
on a message𝑚 for an accepting set of users. Then, using Eq. (1.2), the aggregator can derive an aggregate

signature 𝜎agg = (𝜎agg,1, 𝜎agg,2) on𝑚 with respect to the aggregated verification key vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ
.

• The question is how the verifier checks 𝜎agg when it does not know the aggregated verification key vkagg =
𝑒 (𝑔,𝑔)

∑
ℓ ∈𝑆 𝜔ℓ𝛼ℓ

. In the centralized setting, the aggregated key always interpolates to the master verification

key 𝑒 (𝑔,𝑔)𝛼 as long as {𝜔ℓ }ℓ∈𝑆 is a valid collection of reconstruction coefficients. This is no longer the case

in the distributed setting since the 𝛼ℓ ’s are sampled independently. One approach is to have the the aggregator

include the aggregate verification key vkagg as part of the aggregate signature. Now, the verifier can validate

the aggregate signature as before using Eq. (1.1):

vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ ?

=
𝑒 (𝑔, 𝜎agg,2)
𝑒 (𝜎agg,1, 𝑢𝑚ℎ)

. (1.3)

• This basic approach gives too much power to the aggregator. Namely, it can always choose vkagg to satisfy

Eq. (1.3). Thus, for security we need to constrain the aggregator to only choose vkagg that correspond to an

aggregate verification key that is derived from an honest subset of verification keys {vkℓ }ℓ∈𝑆 . The general
blueprint from prior works [DCX

+
23, GJM

+
24] is to do the following:

– First, the preprocessing algorithm takes the verification keys (vk1, . . . , vk𝑁 ) for a group of 𝑁 users and

outputs a short digest. The digest is a succinct commitment to the users’ verification keys. The digest

is part of the verification key associated with the group of users.

– After the aggregator computes vkagg, it includes a SNARK proof that vkagg was correctly derived from

a subset {vkℓ }ℓ∈𝑆 of the verification keys (with respect to the digest) and moreover, the set 𝑆 satisfies the

aggregation policy 𝜑 .

– The overall aggregate signature now contains the aggregated verification key vkagg, the SNARK proof

𝜋 that vkagg was correctly computed, and finally, an aggregate signature 𝜎agg with respect to vkagg.

To verify the signature, the verifier first checks that vkagg is correctly computed (with respect to the digest)

and that 𝜎agg is a valid aggregate signature.
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The previous works rely on some type of SNARK to prove that vkagg is correctly constructed. This both introduces

extra complexity into the system and seemingly necessitates the use of idealized models (or knowledge assumptions)

in the security analysis. A main contribution in this work is an algebraic realization of the general template above

that fully avoids the need for SNARKs. In particular, we algebraically certify the validity of a purported aggregation

key using a cross-term strategy that has proven useful in many pairing-based cryptographic constructions. This leads

to a scheme with shorter aggregate signatures and allows us to prove security in the plain model.

In more detail, our goal is to design a mechanism that achieves two goals: (1) certify that an aggregated verification

key vkagg is correctly computed from {vkℓ }ℓ∈𝑆 ; and (2) the set 𝑆 satisfies the policy (defined by M). We describe each

of these mechanisms below:

• Commitment to the set of users: First, we need a mechanism for the aggregator to certify that the ag-

gregated verification key vkagg is correctly derived from a subset 𝑆 ⊆ [𝑁 ] of the verification keys vk1 =

𝑒 (𝑔,𝑔)𝛼1 , . . . , vk𝑁 = 𝑒 (𝑔,𝑔)𝛼𝑁 associated with the users in the policy. To do this, we first compute a succinct

(vector) commitment to (𝑔𝛼1 , . . . , 𝑔𝛼𝑁 ). Namely, the commitment is

𝑧 = 𝑔
∑

ℓ ∈ [𝑁 ] 𝑐ℓ𝛼ℓ ∈ G where 𝑐𝑖
r← Z∗𝑝 .

Note that the commitment 𝑧 is an element in the base group G, not the target group G𝑇 .4 The element 𝑧 is part

of the verification key associated with the group of users.

• Certifying an aggregate verification key. As before, the aggregate verification key associated with a subset

𝑆 ⊂ [𝑁 ] (and reconstruction coefficients {𝜔ℓ }ℓ∈𝑆 ) is vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ
. We can certify that vkagg is well-

formed using a pairing-check. Specifically, suppose we include the elements 𝑔1/𝑐ℓ for all ℓ ∈ [𝑁 ] as part of the
aggregation key. Then, the aggregator can compute∏

ℓ∈𝑆
𝑒 (𝑧, 𝑔𝜔ℓ /𝑐ℓ ) =

∏
ℓ∈𝑆

∏
𝑖∈[𝑁 ]

𝑒 (𝑔,𝑔)𝑐𝑖𝛼𝑖 ·𝜔ℓ /𝑐ℓ =
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑒 (𝑔,𝑔) (𝑐𝑖/𝑐ℓ )𝛼𝑖𝜔ℓ . (1.4)

Next, suppose the aggregation key also contains the cross-terms 𝑔𝑐𝑖𝛼𝑖/𝑐ℓ for all 𝑖 ≠ ℓ . Then the aggregator can

compute

𝛾1 =
∏
ℓ∈𝑆
(𝑔1/𝑐ℓ )𝜔ℓ

and 𝛾2 =
∏
ℓ∈𝑆

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

(𝑔 (𝑐𝑖𝛼𝑖/𝑐ℓ ) )𝜔ℓ . (1.5)

Then, Eq. (1.4) becomes

𝑒 (𝑧,𝛾1) =
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ · 𝑒 (𝑔,𝛾2) = vkagg · 𝑒 (𝑔,𝛾2).

We can view (𝛾1, 𝛾2) as a proof that vkagg is of the form vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ
with respect to some set 𝑆 ⊆ [𝑁 ]

and reconstruction coefficients {𝜔ℓ }ℓ∈𝑆 . It remains to show that this is a valid set of reconstruction coefficients.

• Policy check: The remaining ingredient is for the aggregator to certify that the set 𝑆 ⊆ [𝑁 ] and the recon-

struction coefficients {𝜔ℓ }ℓ∈𝑆 are valid (with respect to the share-generating matrix M). To do so, we also

embed shares of a random element 𝑠
r← Z𝑝 (with respect toM) in the digest 𝑧 and publish 𝑒 (𝑔,𝑔)𝑠 as part of

the verification key. Specifically, let 𝑠1, . . . , 𝑠𝑁 ∈ Z𝑝 be a secret sharing of 𝑠 with respect to M. Then, we define

𝑧 = 𝑔
∑

ℓ ∈ [𝑁 ] 𝑐ℓ (𝑠ℓ+𝛼ℓ ) . With this modification, Eq. (1.4) becomes∏
ℓ∈𝑆

𝑒 (𝑧, 𝑔𝜔ℓ /𝑐ℓ ) = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ · 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝑠ℓ ·
∏
ℓ∈𝑆

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑒 (𝑔,𝑔) (𝑐𝑖/𝑐ℓ ) (𝑠𝑖+𝛼𝑖 )𝜔ℓ

= vkagg · 𝑒 (𝑔,𝑔)𝑠 ·
∏
ℓ∈𝑆

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑒 (𝑔,𝑔) (𝑐𝑖/𝑐ℓ ) (𝑠𝑖+𝛼𝑖 )𝜔ℓ .
(1.6)

4
In the construction, the CRS will contain the elements 𝑔𝑐1 , . . . , 𝑔𝑐ℓ , and User ℓ will publish 𝑔𝑐𝑖𝛼ℓ for all 𝑖 ∈ [𝑁 ] as part of their aggregation
hint. The preprocessing algorithm can the use the components of the aggregation hint to construct the commitment 𝑧.
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The aggregation key will also include the cross-terms 𝑔𝑐𝑖𝑠𝑖/𝑐ℓ for all 𝑖 ≠ ℓ . Using the analogous relations as

Eq. (1.5), the aggregator can now compute 𝛾1, 𝛾2 ∈ G such that

𝑒 (𝑧,𝛾1) = vkagg · 𝑒 (𝑔,𝑔)𝑠 · 𝑒 (𝑔,𝛾2). (1.7)

We can now interpret (𝛾1, 𝛾2) as a proof that vkagg is of the form vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ
where 𝑆 ⊆ [𝑁 ] and

{𝜔ℓ }ℓ∈𝑆 is a set of satisfying reconstruction coefficients. Once vkagg has been certified, the verifier can just

check the original Boneh-Boyen aggregate signature (Eq. (1.2)). In the actual construction (described below),

we can collapse the signature to just three group elements. This is because the verification key vkagg can be

computed from (𝛾1, 𝛾2) using Eq. (1.7) so it does not need to be explicitly included as part of the aggregate

signature. Moreover, we can merge 𝛾2 with the component 𝜎agg,1 from the aggregate signature (since both of

these components are paired with 𝑔 in the verification relation).

We now describe the full construction:

• Common reference string: The common reference string consists of the following components:

– The public components (𝑢,ℎ) for a Boneh-Boyen signature scheme.

– The elements 𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 for all 𝑖 ∈ [𝑁 ] and the cross-terms 𝑔𝑐𝑖/𝑐 𝑗 for all 𝑖 ≠ 𝑗 . These are used by the

aggregator to certify the aggregate verification key.

– The elements 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 , 𝑔𝑐𝑖 s for all 𝑖 ∈ [𝑁 ], and the cross terms 𝑔𝑐𝑖 s/𝑐 𝑗 where s r← Z𝑊𝑝 and 𝑖 ≠ 𝑗 . This

is used to implement the policy check (specifically, if M is a share-generating matrix, then mT
ℓs is the ℓ

th

share of 𝑠1 with respect to M).

• User keys: Each user samples a Boneh-Boyen signing key 𝛼
r← Z𝑝 and their verification key is 𝑒 (𝑔,𝑔)𝛼 . Each

user also publishes an aggregation hint 𝑔𝑐𝑖𝛼 for all 𝑖 ∈ [𝑁 ] and 𝑔𝑐𝑖𝛼/𝑐 𝑗 for all 𝑖 ≠ 𝑗 . The user computes the

aggregation hint using the 𝑔𝑐𝑖 and 𝑔𝑐𝑖/𝑐 𝑗 from the CRS.

• Partial signatures: Partial signatures in our scheme are vanilla Boneh-Boyen signatures. Namely, to sign a

message𝑚 using signing key 𝛼 , the user samples 𝑟
r← Z𝑝 and outputs 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚ℎ)𝑟 ).

• Aggregate verification key: Suppose wewant to associate verification keys vk1, . . . , vk𝑁 with share-generating

matrix M. Write vkℓ = 𝑒 (𝑔,𝑔)𝛼ℓ . The aggregated verification key consists of the group element 𝑧 where

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐ℓ (m
T
ℓ s+𝛼ℓ ) , (1.8)

This can be computed using 𝑔𝑐ℓ s from the CRS and 𝑔𝑐ℓ𝛼ℓ from each user’s aggregation hint.

• Signature aggregation: Suppose the aggregator has a collection of signatures {𝜎ℓ }ℓ∈𝑆 on a message𝑚 for

a set 𝑆 ⊆ [𝑁 ] that satisfies the policy. Let {𝜔ℓ }ℓ∈𝑆 be the associated set of reconstruction coefficients. The

aggregate signature 𝜎agg then consists of the Boneh-Boyen aggregate signature with respect to the aggregate

verification key vkagg = 𝑒 (𝑔,𝑔)
∑

ℓ ∈𝑆 𝜔ℓ𝛼ℓ
together with the certificate (𝛾1, 𝛾2) that vkagg was correctly computed

(see Eq. (1.7)). As mentioned above, we can coalesce 𝛾2 with the Boneh-Boyen aggregate signature. Thus, the

aggregator computes

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎agg,2 =

∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,2
𝑤
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆
(𝑔1/𝑐ℓ )𝜔ℓ , (1.9)

where 𝑤ℓ =
∏
𝑖≠ℓ 𝑔

𝑐𝑖/𝑐ℓ (mT
𝑖
s+𝛼𝑖 )

are the cross-terms from Eq. (1.6). Note that the components of 𝑤ℓ can be

computed from the CRS and each user’s aggregation hint. The final aggregate signature is then 𝜎agg =

(𝜎agg,1, 𝜎agg,2, 𝜎agg,3).
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• Signature verification: The verification key associated with vk1, . . . , vk𝑁 and the policy M is the tuple

(𝑢,ℎ, 𝑧, 𝑒 (𝑔,𝑔)𝑠1 ). The verification relation is a combination of the vkagg validation check (Eq. (1.7)) with the

Boneh-Boyen aggregate signature verification (Eq. (1.3)):

𝑒 (𝑧, 𝜎agg,3)
𝑒 (𝑔,𝑔)𝑠1 =

𝑒 (𝑔, 𝜎agg,2)
𝑒 (𝜎agg,1, 𝑢𝑚ℎ)

. (1.10)

We provide the formal description in Section 3.1.

Proving security. Security of our scheme relies on a 𝑞-type assumption (where the size of the assumption scales

with the bound on the number of users 𝑁 appearing in a policy). Our assumption is a generalization of the standard

decisional bilinear Diffie-Hellman assumption [Jou00, BF01] which asserts that 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 is pseudorandom given

(𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑡 ), where 𝑎, 𝑏, 𝑡 r← Z𝑝 . In our setting, we define the 𝑁 -extended bilinear Diffie-Hellman assumption which

asserts that 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 is pseudorandom given(
𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 , 𝑔𝑡𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
,

where the exponents 𝑐1, . . . , 𝑐𝑁
r← Z∗𝑝 . We show that this assumption holds in the generic bilinear group model [Sho97,

BBG05] in Appendix A. For proving security of our signature scheme, it is more convenient to use a “search” version

of the assumption which stipulates that given(
𝑔,𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
, (1.11)

it is computationally infeasible to find 𝜏0, 𝜏1, . . . , 𝜏𝑁 ∈ G such that

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒 (𝑔, 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝑔𝑐𝑖 , 𝜏𝑖 ). (1.12)

This can be viewed as a souped-up version of the computational Diffie-Hellman assumption in G. It is not difficult

to show that the decisional assumption implies the search assumption (see Lemma 3.8). Our assumption formulation

is similar to the decisional parallel bilinear Diffie-Hellman exponent assumption from [Wat11] which was used to

construct ciphertext-policy attribute-based encryption.

We prove security of our distributed monotone-policy signature scheme from the 𝑁 -extended bilinear Diffie-

Hellman assumption against static adversaries. In this model, the adversary has to commit to the aggregation policyM,

the challenge message𝑚∗, and the set of corrupted users 𝑆 ⊆ [𝑁 ] at the beginning of the security game. Importantly,

however, the adversary can still choose the verification keys vkℓ for the corrupted users ℓ ∈ 𝑆 after seeing the common

reference string crs and the verification keys vkℓ for the honest users ℓ ∉ 𝑆 . This is essential for capturing “rogue

key” attacks [RY07, BDN18]. The adversary can also request signatures on any message𝑚 ≠𝑚∗ under the keys for
the honest users. For simplicity, we assume that the adversary can only choose keys that are in the support of the

honest key-generation algorithm; security against such “semi-malicious” adversaries can be lifted to security against

malicious adversaries using standard non-interactive zero-knowledge proofs of knowledge (c.f., [RY07]).

The security proof relies on a partitioning or a cancellation proof strategy where we program the challenge

message𝑚∗ into the public parameters and the challenge policy M into the verification keys of the honest users. We

provide a quick sketch of the general reduction strategy here:

• The reduction takes as input the challenge for the search 𝑁 -extended Diffie-Hellman assumption from Eq. (1.11).

The static adversary also commits to the policyM, the challenge message𝑚∗, and the indices C ⊆ [𝑁 ] of the
corrupted users.

• When generating the CRS, the reduction makes the following implicit assignments:

– The reduction sets 𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑐𝑖/𝑐 𝑗 in the CRS to be the corresponding terms from the challenge.
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– Next, the reduction algorithm implicitly sets s = s̃ + 𝑎𝑏 · w̃ where s̃ r← Z𝑊𝑝 is random and w̃ is a vector

where 𝑤̃1 = 1 and mT
ℓw̃ = 0 for all ℓ ∈ C. Such a vector w̃ always exists whenever C does not satisfy the

policy associated with M. Then the reduction computes 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏). It computes

the terms of the form 𝑔𝑐𝑖 s and 𝑔𝑐𝑖 s/𝑐 𝑗 using the 𝑔𝑎𝑏𝑐𝑖 and 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 terms from the challenge.

– To simulate the verification keys of the honest users ℓ ∈ [𝑁 ] \ C, the reduction algorithm implicitly sets

𝛼ℓ = 𝛼ℓ − 𝑎𝑏mT
ℓw̃, where 𝛼ℓ

r← Z𝑝 . The challenger can simulate the user’s verification key by computing

𝑒 (𝑔,𝑔)𝛼ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)mT
ℓ w̃. The reduction can simulate the components of the aggregation hint

𝑔𝑐𝑖𝛼ℓ and 𝑔𝑐𝑖𝛼ℓ /𝑐 𝑗 using the 𝑔𝑎𝑏𝑐𝑖 and 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 terms from the challenge.

– Finally, the reduction algorithm sets the Boneh-Boyen signature components as 𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and

ℎ = 𝑔
˜ℎ/(𝑔𝑏)𝑚∗ , where 𝑢̃, ˜ℎ r← Z𝑝 . This is the same programming strategy as in the original security proof

from [BB04a].

• To answer signing queries on a message𝑚 ≠𝑚∗ under a verification key vkℓ where ℓ ∉ C, the reduction uses

the classic Boneh-Boyen simulation strategy [BB04a]. Normally, a signature on𝑚 under vkℓ would be a pair

𝜎ℓ = (𝜎ℓ,1, 𝜎ℓ,2) = (𝑔𝑟 , 𝑔𝛼ℓ (𝑢𝑚ℎ)𝑟 ) = (𝑔𝑟 , 𝑔𝛼̃ℓ𝑔−𝑎𝑏m
T
ℓ w̃𝑔𝑟 (𝑢̃𝑚+

˜ℎ+𝑏 (𝑚−𝑚∗ ) ) ).

The trouble of course is that the reduction algorithm does not know 𝑔𝑎𝑏 . To simulate this, the reduction will

set the randomness 𝑟 so as to cancel out this problematic term. In particular, the reduction implicitly sets the

randomness 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃ where 𝑟

r← Z𝑝 . In this case, consider the exponent for 𝜎ℓ,2:

𝛼ℓ − 𝑎𝑏mT
ℓw̃ + 𝑟 (𝑢̃𝑚 + ˜ℎ + 𝑏 (𝑚 −𝑚∗)) = 𝛼ℓ + 𝑟 (𝑢̃𝑚 + ˜ℎ) + 𝑟𝑏 (𝑚 −𝑚∗).

Since the reduction knows the exponents 𝛼ℓ , 𝑢̃, ˜ℎ, 𝑟 as well as the messages 𝑚,𝑚∗, it can now simulate the

signature as

𝜎1 = 𝑔
𝑟 = 𝑔𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎2 = 𝑔
𝛼ℓ (𝑢𝑚ℎ)𝑟 = 𝑔𝛼̃ℓ · (𝑔𝑏)𝑟 (𝑚−𝑚∗ ) · 𝜎𝑢̃𝑚+ ˜ℎ

1
.

• At the end of the game, the adversary outputs the signing keys 𝛼ℓ ∈ Z𝑝 for the corrupted parties (recall that

we work in the semi-malicious model where the adversary must declare the randomness used to generate the

keys for the corrupted users) and an aggregate signature 𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3) on the message𝑚∗. If the
aggregator is successful, this means

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚
∗
ℎ) · 𝑒 (𝑧, 𝜎agg,3), (1.13)

where 𝑧 =
∏
ℓ∈[𝑁 ] 𝑔

𝑐ℓ (mT
ℓ s+𝛼ℓ ) . Now, for the parameters chosen by the reduction, we observe the following:

– 𝑠1 = 𝑠1 + 𝑎𝑏𝑤̃1 = 𝑠1 + 𝑎𝑏 since 𝑤̃1 = 1.

– 𝑢𝑚
∗
ℎ = 𝑔𝑚

∗ (𝑏+𝑢̃ )+ ˜ℎ−𝑚∗𝑏 = 𝑔𝑢̃𝑚
∗+ ˜ℎ

.

– For the corrupted users ℓ ∈ C, we have that mT
ℓw̃ = 0, which means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ),

where we define 𝛼ℓ = 𝛼ℓ .

– For the honest users ℓ ∈ [𝑁 ] ∉ C, the reduction sets 𝛼ℓ = 𝛼ℓ − 𝑎𝑏mT
ℓw̃ so

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ).

Observe then that we can rewrite Eq. (1.13) as

𝑒 (𝑔,𝑔)𝑎𝑏 · 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝜎agg,1, 𝑔𝑢̃𝑚
∗+ ˜ℎ) ·

∏
ℓ∈[𝑁 ]

𝑒 (𝑔𝑐ℓ , 𝜎m
T
ℓ s̃+𝛼̃ℓ

agg,3 ).

Since the reduction algorithm knows the exponents 𝑢̃, ˜ℎ, s̃, w̃, 𝛼ℓ ,mℓ ,𝑚
∗
, it can rearrange the above relation to

obtain a solution to Eq. (1.12).

We refer to the proof of Theorem 3.7 for the formal description.
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Reducing CRS size using powers. One drawback of the above distributed monotone-policy signature scheme

is the CRS has size 𝑂 (𝑁 2𝑊 ), where 𝑁 is the maximum number of users in the policy and𝑊 is the width of the

share-generating matrix associated with a policy. The quadratic dependence on 𝑁 is due to the cross terms 𝑔𝑐𝑖/𝑐 𝑗 in

the CRS. A standard approach to reduce the CRS size is to set 𝑐𝑖 = 𝑐
𝑖
. In this case, 𝑔𝑐𝑖/𝑐 𝑗 = 𝑔𝑐

𝑖− 𝑗
. Instead of publishing

𝑂 (𝑁 2) cross-terms in the CRS, we now only need 𝑂 (𝑁 ) such terms. Security in this case would reduce to a variant

of the 𝑁 -extended bilinear Diffie-Hellman assumption where the 𝑐𝑖 ’s are replaced by powers (see Assumption 3.12).
5

Using powers, we obtain a construction where the size of the CRS is 𝑂 (𝑁𝑊 ). We describe this construction and the

security analysis in Section 3.2. Note that for many policies of interest (including threshold policies),𝑊 = 𝑂 (𝑁 ), so
the overall CRS size is still quadratic. Later, we describe how to specialize our construction to the specific setting

of threshold policies to obtain a construction with a linear-size CRS.

Distributed monotone-policy encryption. The approach we described thus far immediately generalizes to a dis-

tributed monotone-policy encryption scheme [GKPW24, DJWW25]. In this setting, users can independently generate a

public/secret key-pair (pk, sk) and post the public key pk to a directory. Thereafter, an encrypter can encrypt to an arbi-
trary set of user public keys (pk

1
, . . . , pk𝑁 ) togetherwith an encryption policy. Only an authorized set of users can come

together and decrypt the ciphertext. To derive the encryption scheme from our signature scheme, we proceed as follows:

• Common reference string: The CRS is the same as that of the distributed monotone-policy signature scheme.

• User keys: User key generation is also the same as in the signature scheme. The public key is the verification

key while the secret key is the signing key.

• Aggregated encryption key: Given a set of users with public keys (pk
1
, . . . , pk𝑁 ) and an encryption policy

defined by a share-generating matrixM, the preprocessing algorithm constructs the aggregated verification

key 𝑧 as in Eq. (1.8). The public encryption key is then (𝑢,ℎ, 𝐵, 𝑧), where (𝑢,ℎ) is the Boneh-Boyen verification

key and 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 from the CRS.

• Ciphertext: To encrypt a message 𝜇 ∈ G𝑇 , the encrypter samples a tag 𝜏
r← Z𝑝 and encryption randomness

𝑡
r← Z𝑝 . The ciphertext is

ct = (𝜏 , 𝐵𝑡 · 𝜇 , 𝑔𝑡 , (𝑢𝜏ℎ)𝑡 , 𝑧𝑡 ),

• Partial decryption: The partial decryption from User ℓ on ct is simply a signature 𝜎ℓ on the tag 𝜏 .

• Decryption: Given the partial decryptions {𝜎𝑖 }𝑖∈𝑆 for an accepting subset 𝑆 ⊆ [𝑁 ], we can aggregate the

signatures on the tag 𝜏 to obtain an aggregate signature 𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3) that satisfies Eq. (1.10):

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 =
𝑒 (𝑧, 𝜎agg,3) · 𝑒 (𝜎agg,1, 𝑢𝜏ℎ)

𝑒 (𝑔, 𝜎agg,2)
.

By bilinearity, this means that

𝐵𝑡 =
𝑒 (𝑧𝑡 , 𝜎agg,3) · 𝑒 (𝜎agg,1, (𝑢𝜏ℎ)𝑡 )

𝑒 (𝑔𝑡 , 𝜎agg,2)
.

This immediately provides a mechanism to recover the message 𝜇 from ct and 𝜎agg.

The relationship between our encryption scheme and signature scheme is analogous to the relationship between the

Boneh-Boyen IBE scheme and the Boneh-Boyen signature scheme. Indeed, we can also view our encryption scheme

as a distributed version of the threshold Boneh-Boyen IBE scheme [BBH06] (see Remark 5.16). Here, the tags in the

ciphertext would correspond to the identity.

We can also view our scheme as a “signature-based witness encryption” scheme [DHMW23, GKPW24, ADM
+
24]

for the Boneh-Boyen signature scheme (see Remark 4.8). Namely, we can view our ciphertext as a witness encryp-

tion [GGSW13] of the message 𝜇 where the associated decryption key is an aggregate Boneh-Boyen signature on the

tag 𝜏 associated with the ciphertext. Security of our scheme relies on the same 𝑁 -extended bilinear Diffie-Hellman as-

sumption. We refer to Section 4 for the formal definition, construction, and analysis of our distributed monotone-policy

encryption scheme.

5
Technically, there are several additional modifications we need to make to obtain a viable assumption (see Remark 3.13).
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Specializing to threshold policies. Our construction of distributed monotone-policy signatures and encryption

capture threshold policies as a special case (since threshold policies can be described by a simple linear secret sharing

scheme). However, if we focus exclusively on the special case of threshold policies, we can obtain constructions that

have the following stronger functionality and efficiency properties:

• Quasi-linear-size CRS: Instantiating the constructions above for the case of threshold policies leads to a

scheme where the size of the CRS grows quadratically with the number of users (since the width𝑊 of the

share-generating matrix for a general threshold is𝑊 = 𝑁 ). For the special case of threshold policies, it suffices

to consider a scheme that only supports a single fixed policy which we hard-code into the CRS. This allows us

to obtain schemes where the size of the CRS scales quasi-linearly with the maximum number of parties 𝑁 .

• Dynamic thresholds: In the constructions thus far, we have considered the setting where the preprocessing

algorithm outputs a verification key or encryption key for a fixed policy M over a group of users. For the

special case of threshold policies, we can consider a more general notion where the threshold 𝑇 is determined

dynamically at verification time (in the setting of signatures) or at encryption time (in the setting of encryption).

A trivial way to achieve this is to have the preprocessing algorithm output a key for each of the 𝑁 possible

thresholds 𝑇 = 1, . . . , 𝑁 . The goal is to support dynamic thresholds without incurring an 𝑂 (𝑁 ) blowup in the

size of the verification or encryption key. Efficient support for dynamic thresholds is a key requirement of

the notion of threshold signatures with silent setup [DCX
+
23, GJM

+
24] and threshold encryption with silent

setup [GKPW24].

We now describe how we adapt our approach to support dynamic threshold policies with a quasi-linear-size CRS.

For ease of exposition, we describe our approach for the case of signatures, though the same approach works for

threshold encryption. As usual, let 𝑁 be the maximum number of users appearing in a policy.

• Fixing the policy as part of the CRS. In the distributed monotone-policy signature scheme, the preprocessed

verification key for a group of 𝑁 users (with secret keys 𝛼1, . . . , 𝛼𝑁 ) and a policy M is the element 𝑧 =∏
ℓ∈[𝑁 ] 𝑔

𝑐ℓ (mT
ℓ s+𝛼ℓ ) . In order to support an arbitrary policy, the CRS must include 𝑔𝑐𝑖 s, which leads to a CRS size

that is Ω(𝑁𝑊 ), where𝑊 is the width of the policy. Suppose instead however that the policy is known at setup

time. Then, the CRS could instead contain the precomputed component 𝑧0 =
∏
ℓ∈[𝑁 ] 𝑔

𝑐ℓmT
ℓ s. In this case, once

the group has been chosen, the preprocessing algorithm can compute

𝑧 = 𝑧0 ·
∏
ℓ∈[𝑁 ]

𝑔𝑐ℓ𝛼ℓ =
∏
ℓ∈[𝑁 ]

𝑔𝑐ℓ (m
T
ℓ s+𝛼ℓ ).

Similarly, the setup algorithm can also precompute the cross-terms𝑤ℓ,0 =
∏
𝑖≠ℓ 𝑔

𝑐𝑖mT
𝑖
s/𝑐ℓ

and include these as

part of the CRS; these are used to compute the𝑤ℓ terms in Eq. (1.9). With this modification, the size of the CRS

no longer depends on the width𝑊 of the share-generating matrix.

• Introducing dummy users. To support dynamic thresholds involving up to 𝑁 users, we generate the CRS for

a fixed 𝑁 -out-of-(2𝑁 − 1) policy. Specifically, let M ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generation matrix associated

with this threshold policy (see Eq. (2.1) for the explicit description). The first 𝑁 rows are associated with the 𝑁

users in the group (with signing keys 𝛼1, . . . , 𝛼𝑁 ), whereas the remaining 𝑁 − 1 rows correspond to dummy
users. The setup algorithm associates a random (and secret) signing key 𝛾ℓ

r← Z𝑝 with each dummy user

ℓ ∈ [𝑁 + 1, 2𝑁 − 1] and includes their verification key vkℓ = 𝑒 (𝑔,𝑔)𝛾ℓ as well as the dummy user’s aggregation

hint in the CRS (i.e., the values 𝑔𝑐𝑖𝛾ℓ and 𝑔𝑐𝑖𝛾ℓ /𝑐 𝑗 ) as part of the CRS. Now, take any 𝐾 ∈ [0, 𝑁 − 1] and suppose

the preprocessing algorithm computes the verification component as

𝑧 = 𝑧0 ·
∏
ℓ∈[𝑁 ]

𝑔𝑐ℓ𝛼ℓ ·
∏

ℓ∈[𝑁+1,𝑁+𝐾 ]
𝑔𝑐ℓ𝛾ℓ =

∏
ℓ∈[2𝑁−1]

𝑔𝑐ℓ (m
T
ℓ s+𝜁ℓ ) where 𝜁ℓ =


𝛼ℓ ℓ ∈ [𝑁 ]
𝛾ℓ ℓ ∈ [𝑁 + 1, 𝑁 + 𝐾]
0 ℓ > 𝑁 + 𝐾.

By definition, 𝑧 can be viewed as the verification key associated with the 2𝑁 − 1 users whose signing keys

are (𝛼1, . . . , 𝛼𝑁 , 𝛾𝑁+1, . . . , 𝛾𝑁+𝐾 , 0, . . . , 0). Essentially, the signing keys for the (𝑁 − 𝐾 − 1) users ℓ > 𝑁 + 𝐾 are
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public (and set to 0). This means the aggregator essentially gets signatures from these users for free. Since the

threshold is fixed to 𝑁 and (𝑁 −𝐾 − 1) signatures are given out for free, we can view 𝑧 as enforcing a threshold

policy for threshold 𝑇 = 𝑁 − (𝑁 − 𝐾 − 1) = 𝐾 + 1. Thus, for each threshold 𝑇 , the verifier itself can derive

the verification key 𝑧 associated with 𝑇 . To implement this, we include 𝑔𝑐ℓ𝛾ℓ in the verification key and have

the verifier compute the desired 𝑧 based on the threshold. Unfortunately, implementing this naïvely leads to a

verification key of size 𝑂 (𝑁 ) since we need an element for each dummy user.

• Coalescing dummy users using powers-of-two. Instead of giving out the keys for the dummy users 𝑔𝑐ℓ𝛾ℓ

individually (which leads to a verification key of size𝑂 (𝑁 )), we instead give out pre-multiplied sets. Specifically,

define the interval 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1] of size 2
𝑗
. For each interval, we precompute the element

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐𝑘𝛾𝑘 . For a threshold 𝑇 = 𝐾 + 1, the verifier needs to compute a verification key that includes

exactly 𝐾 dummy keys. This corresponds to taking a product of an appropriate subset of the 𝑦 𝑗 ’s (based on

the binary representation of 𝐾 ). By construction, we only need to publish ⌈log𝑁 ⌉ group elements to support

an arbitrary threshold 𝑇 ∈ [𝑁 ]. For correctness, we also need to give out the aggregation hints (i.e., cross

terms) associated with each set of dummy users. When the 𝑐𝑖 ’s are powers, this adds an additional 𝑂 (𝑁 log𝑁 )
elements to the CRS (the aggregation hint for each block of dummy users is 𝑂 (𝑁 )). This leads to a scheme that

supports dynamic thresholds with a quasi-linear-size CRS.

We provide the full description and analysis of our threshold signature scheme with silent setup in Section 5.1. Then, in

Section 5.2, we show how the same idea applies equally well to obtain a threshold encryption scheme with silent setup.

1.3 Additional Related Work

The goals of distributed monotone-policy signatures and distributed monotone-policy encryption are to remove trust

assumptions from advanced cryptographic notions. This has been the focus of a number of recent works studying

notions like registration-based encryption [GHMR18, GHM
+
19, GV20, CES21, GKMR23, DKL

+
23, FKdP23], registered

attribute-based encryption [HLWW23, FWW23, ZZGQ23, AT24, GLWW24, LWW25, CHW25, WW25, ZZC
+
25,

GHK
+
25], registered functional encryption [FFM

+
23, DPY24], and distributed broadcast encryption [WQZD10, BZ14,

KMW23, FWW23, GKPW24, CW24, CHW25, WW25].

Generic approaches for constructing distributed monotone-policy signatures. Earlier works [DCX
+
23,

GJM
+
24] observed a generic approach for constructing threshold signatures with silent setup (and more generally,

distributed monotone-policy signatures) using SNARKs for NP. The idea is simple: each user publishes their veri-

fication key, and the aggregated verification key for a set of verification key vk1, . . . , vk𝑁 is a vector commitment

com to (vk1, . . . , vk𝑁 ). Given a collection of signatures {𝜎𝑖 }𝑖∈𝑆 on a message𝑚 for some subset of users 𝑆 ⊆ [𝑁 ], the
aggregate signature is a SNARK proof of knowledge of the following:

• a set 𝑆 ⊆ [𝑁 ] where 𝜑 (𝑆) = 1; and

• for all 𝑖 ∈ 𝑆 , a verification key vk𝑖 and a signature 𝜎𝑖 such that 𝜎𝑖 is a valid message on𝑚 with respect to the

verification vk𝑖 and vk𝑖 is the 𝑖th verification key associated with the commitment com.

The drawback of using a general-purpose SNARK is that it relies on strong non-falsifiable assumptions or idealized

models, and moreover, introduces substantial concrete costs into the system (specifically, the aggregation cost is

expensive due to having to generate SNARK proofs). On the flip side, an appealing feature of these constructions is

they have very short aggregate signatures (e.g., just 3 group elements if we instantiate with [Gro16]). Previous works

on threshold signatures with silent setup [DCX
+
23, GJM

+
24] designed a specialized SNARK tailored to threshold

policies to obtain a scheme with faster aggregation, but in exchange, longer signatures.

The work of [BCJP24] effectively shows that one can replace the SNARK for NP in the above template with a

monotone-policy batch argument (BARG) [BBK
+
23] instead. In a monotone-policy BARG for an NP relation R and

a monotone predicate 𝜑 : {0, 1}𝑁 → {0, 1}, the prover can cerifty that it knows witnesses𝑤1, . . . ,𝑤𝑁 associated with

a batch of statements 𝑥1, . . . , 𝑥𝑁 such that 𝜑 (R(𝑥1,𝑤1), . . . ,R(𝑥𝑁 ,𝑤𝑁 )) = 1. The size of the proof scales polylogarith-

mically with the number of instances 𝑁 (and polynomially with the size of the Boolean circuit computing the relation
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R). Whereas a vanilla batch argument [BHK17, KPY19] requires the prover certify that all 𝑁 statements are true,

a monotone-policy batch argument only requires the prover to certify that a certain subset 𝑆 ⊆ [𝑁 ] of the statements

are true, so long as the subset 𝑆 satisfies the predicate 𝜑 . A line of recent work [BBK
+
23, NWW24, NWW25] has

shown how to build monotone-policy BARGs from most standard number-theoretic assumptions. In particular, this

approach provides another pairing-based approach for building distributed monotone-policy signatures. We include a

comparison of the asymptotics of this scheme to other schemes in Table 1. Notably, the size of the aggregate signature

in schemes following this template necessarily contains a poly(𝜆) number of group elements. In contrast, the schemes

we develop in this work have signatures that contain a constant number of group elements (in fact, the same signature

size as the scheme obtained via general-purpose SNARKs).

2 Preliminaries

We write 𝜆 to denote the security parameter. For an integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛}. For a set 𝑆 ,
we write 2

𝑆
to denote the power set of 𝑆 (i.e., the set containing all subsets of 𝑆). For a set 𝑆 , we write {𝑥𝑖 }𝑖∈𝑆 to denote

the set of tuples {(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝑆}; in other words, each index 𝑖 ∈ 𝑆 is mapped to a value 𝑥𝑖 . For a finite set 𝑆 , we write

𝑥
r← S to denote a uniform random sample from 𝑆 . For a distribution D, we write 𝑥 ← D to denote a sample from

D. For a randomized algorithm Alg, we write Alg(𝑥 ; 𝑟 ) to denote the output of Alg on input 𝑥 with randomness 𝑟 .

Wewrite poly(𝜆) to denote a function that is bounded by a fixed polynomial in 𝜆. Wewrite negl(𝜆) to denote a negli-
gible function (i.e., a function that is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N). We say an algorithm is efficient if it runs in probabilistic poly-

nomial time in the length of its input. We say two distributionsD0 = {D0,𝜆}𝜆∈N andD1 = {D1,𝜆}𝜆∈N are computation-

ally indistinguishable if for all efficient adversariesA, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D0,𝜆] − Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D1,𝜆] | = negl(𝜆).

We say that D0 and D1 are statistically indistinguishable if their statistical distance is bounded by negl(𝜆).

Linear secret sharing and access policies. Let 𝑆 be a set. An access policy over 𝑆 is a predicate 𝜑 : 2𝑆 → {0, 1}.
We say a set 𝑇 ⊆ 𝑆 is authorized if 𝜑 (𝑇 ) = 1. We say the policy is monotone if for all 𝑇1 ⊆ 𝑇2, whenever 𝜑 (𝑇1) = 1,

it holds that 𝜑 (𝑇2) = 1. Next, we recall the notion of a linear secret sharing scheme for a policy 𝜑 .

Definition 2.1 (Linear Secret Sharing Scheme [Bei96, adapted]). Let 𝑆 be a set and 𝜑 : 2𝑆 → {0, 1} be an access policy

over 𝑆 . A linear secret sharing scheme for 𝜑 over Z𝑝 is a pair (M, 𝜌), whereM ∈ Z𝑁×𝑊𝑝 is the share-generating matrix

and 𝜌 : [𝑁 ] → 𝑆 is a row-labeling function. We refer to𝑊 as the width of the share-generation matrix. The pair

(M, 𝜌) satisfy the following properties:

• Share generation: To share a secret 𝑠 ∈ Z𝑝 , sample 𝑣2, . . . , 𝑣𝑁
r← Z𝑝 and define the vector v = [𝑠, 𝑣2, . . . , 𝑣𝑁 ]T.

Then, u = Mv is the vector of shares where 𝑢𝑖 ∈ Z𝑝 belongs to party 𝜌 (𝑖) for each 𝑖 ∈ [𝑁 ].

• Share reconstruction: For every𝑇 ⊆ 𝑆 where 𝜑 (𝑇 ) = 1, there exists a vector 𝝎 ∈ Z𝑁𝑝 , where 𝜔𝑖 = 0 whenever

𝜌 (𝑖) ∉ 𝑇 such that 𝝎TM = eT
1
. Here, eT

1
= [1, 0, . . . , 0] is the first elementary basis vector.

• Perfect hiding for unauthorized sets: For every 𝑇 ⊆ 𝑆 where 𝜑 (𝑇 ) = 0, there exists a vector w̃ ∈ Z𝑁𝑝 such

that eT
1
w̃ = 1 and mT

𝑖 w̃ = 0 whenever 𝜌 (𝑖) ∈ 𝑇 , and mT
𝑖 denotes the 𝑖

th
row of M.

Definition 2.2 (One-Use Linear Secret Sharing Scheme). Let 𝜑 : 2𝑆 → {0, 1} be an access policy with an associated

linear secret sharing scheme (M, 𝜌) over Z𝑝 . We say 𝜑 is a one-use linear secret sharing scheme if the function 𝜌

is injective. Without loss of generality, when considering one-use linear secret sharing schemes, we take 𝑆 = [𝑁 ]
(and assume a canonical bijection from 𝑆 to [𝑁 ]), the share-generation matrix to beM ∈ Z𝑁×𝑊𝑝 , and the row-labeling

function 𝜌 : [𝑁 ] → [𝑁 ] to be the identity map. We say 𝜑 is 𝐾-use if every element of 𝑆 has at most 𝐾 preimages

under 𝜑 (i.e., each element of 𝑆 is associated with at most 𝐾 rows ofM).

Remark 2.3 (Policy Families with Linear Secret Sharing Schemes). We recall two important families of policies that

have linear secret sharing schemes.

16



• Monotone Boolean formulas: The work of [BL88] gives an implicit linear secret sharing scheme over any

field Z𝑝 for monotone Boolean formula policies. We refer to [LW11, Appendix G] for an explicit description

of the share-generating matrix. Moreover, if every variable appears at most once in the Boolean formula, then

the resulting linear secret sharing scheme is one-use.

• Threshold policies: The classic Shamir secret sharing [Sha79] for threshold policies can also be described

by a one-use linear secret sharing scheme over a field Z𝑝 where 𝑝 > 𝑁 (and 𝑁 is the number of parties). In this

case, the share-generation matrix corresponds to a Vandermonde matrix. Concretely, a 𝑇 -out-of-𝑁 threshold

policy can be described by the following share-generation matrix:

M =


1 𝜔1 𝜔2

1
· · · 𝜔𝑇−1

1

1 𝜔2 𝜔2

2
· · · 𝜔𝑇−1

2

...
...

...
. . .

...

1 𝜔𝑁 𝜔2

𝑁
· · · 𝜔𝑇−1

𝑁


∈ Z𝑁×𝑇𝑝 , (2.1)

where 𝜔1, . . . , 𝜔𝑁 ∈ Z𝑝 are distinct non-zero values. By default, we take 𝜔𝑖 = 𝑖 .

Prime order pairing groups. Next, we recall the notion of a prime-order pairing group.

Definition 2.4 (Prime-Order Bilinear Group). A symmetric prime-order bilinear group generator is an efficient

algorithm GroupGen that takes as input the security parameter 1
𝜆
and outputs the description G = (G,G𝑇 , 𝑝, 𝑒) of a

bilinear group where G, G𝑇 are cyclic groups of prime order 𝑝 ≥ 2
𝜆
and 𝑒 : G × G→ G𝑇 is a non-degenerate bilinear

map. The group operation in G and G𝑇 as well as the pairing 𝑒 must be efficiently-computable. Moreover, we assume

there is an efficient algorithm to sample a random element from G. Finally, there is a function 𝑝 (𝜆) such that for

all 𝜆 ∈ N, the GroupGen(1𝜆) algorithm outputs a group of prime order 𝑝 = 𝑝 (𝜆). In addition, there is an efficient

algorithm that takes as input 1
𝜆
and outputs 𝑝 (𝜆).

Vector notation. For a vector v = (𝑣1, . . . , 𝑣𝑛) and a group element 𝑔 ∈ G, we write 𝑔v ∈ G𝑛 to denote the vector of
group elements (𝑔𝑣1 , . . . , 𝑔𝑣𝑛 ). Given a vector u ∈ Z𝑛𝑝 and 𝑔v ∈ G𝑛 , we can efficiently compute 𝑔u

Tv
:=

∏
𝑖∈[𝑛] (𝑔𝑣𝑖 )𝑢𝑖 .

3 Distributed Monotone-Policy Signatures

In this section, we show how to construct a distributed monotone-policy signature scheme that supports any policy

family that has a one-use linear secret-sharing scheme (e.g., which includes threshold policies and monotone Boolean

formulas; see Remark 2.3).
6

Defining distributedmonotone-policy signatures. We start with the formal definition of a distributed monotone-

policy signature scheme. In this setting, users independently sample their own signing key sk𝑖 and verification key

vk𝑖 . The users can publish their verification keys to a public bulletin board. Thereafter, anyone can publicly aggregate

a set of verification keys {vk𝑖 }𝑖∈𝑆 together with an access policy 𝜑 : 2𝑆 → {0, 1} into an aggregation key ak𝜑 together

with a short verification key vk𝜑 . Given a message𝑚, a set of signatures {𝜎𝑖 }𝑖∈𝑇 where 𝜎𝑖 is a valid signature on𝑚

with respect to vk𝑖 for all 𝑖 ∈ 𝑇 and moreover, 𝜑 (𝑇 ) = 1, an aggregator can derive an aggregate signature 𝜎agg on

𝑚 that verifies with respect to vk𝜑 . Importantly, both the size of the aggregated verification key vk𝜑 as well as the

size of the aggregate signature 𝜎agg should be short (independent of the description size of the policy 𝜑). Our notion

generalizes the earlier notion of threshold signatures with silent setup [DCX
+
23, GJM

+
24], which corresponds to

the special case of (weighted) threshold policies.
7

A key feature in distributed monotone-policy signatures is that users choose their verification keys independently

of other users. Thus, when defining correctness and security for such a scheme, the most natural notion would require

6
As we discuss in Remark 3.10, we can relax the one-use restriction using standard virtualization techniques [LW11]. Virtualization increases

user public keys and the size of individual (pre-aggregated) signatures by a factor of 𝐾 where 𝐾 is a bound on the number of times a user’s

share appears in the policy. However, the final signature size is unaffected.

7
The work of [GJM

+
24] also describes an extension to general access policies using general-purpose SNARKs for NP.
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correctness and security to hold even if keys are adversarially-chosen. To simplify the exposition, in this work, we

give our definitions in a simpler semi-malicious model, where we require correctness and security to hold when all

of the user-chosen verification keys are in the support of the honest key-generation algorithm. This type of model

is sometimes referred to as the registered key model [RY07]. As we discuss more in Remark 3.2, it is straightforward

to upgrade a scheme with semi-malicious correctness and security to one that that is correct and secure against

adversarially-chosen keys using non-interactive zero-knowledge proofs [GMR85, BFM88].

Definition 3.1 (Distributed Monotone-Policy Signatures). Let 𝜆 be a security parameter and 𝜅 be a policy-family

parameter. Let Φ = {Φ𝜅 }𝜅∈N be a family of monotone policies. LetM = {M𝜆}𝜆∈N be a message space. A distributed

monotone-policy signature scheme for policy-space Φ and message-spaceM consists of a tuple of efficient algorithms

ΠDMPS = (Setup,KeyGen, Sign, PartialVerify, Preprocess,Aggregate,Verify) with the following syntax:

• Setup(1𝜆, 1𝜅) → crs: On input the security parameter 𝜆 and the policy-family parameter 𝜅 , the setup algorithm

outputs the common reference string crs.

• KeyGen(crs) → (vk, ht, sk): On input the common reference string crs, the key-generation algorithm outputs

the verification key vk, an aggregation hint ht, and a signing key sk.

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message𝑚 ∈ M, the signing algorithm outputs a partial

signature 𝜎 .

• PartialVerify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ M, and a signature 𝜎 , the partial-

verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ]) → (vk𝜑 , ak𝜑 ): On input the common reference string crs, a policy𝜑 : 2[𝑁 ] →
{0, 1}, and𝑁 verification keys vkℓ together with their aggregation hints htℓ , the preprocessing algorithm outputs

an aggregated verification key vk𝜑 and an aggregation key ak𝜑 . This algorithm is deterministic.

• Aggregate(ak𝜑 , {𝜎ℓ }ℓ∈𝑆 ) → 𝜎agg: On input the aggregation key ak𝜑 and a set of signatures 𝜎ℓ , the aggregation

algorithm outputs an aggregate signature 𝜎agg. This algorithm is deterministic.

• Verify(vk𝜑 ,𝑚, 𝜎agg) → 𝑏: On input an aggregate verification key vk𝜑 , a message𝑚 ∈ M, and an aggregate

signature 𝜎agg, the verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

We require ΠDMPS satisfy the following properties:

• Signing correctness: For all 𝜆, 𝜅 ∈ N and all messages𝑚 ∈ M𝜆 ,

Pr

PartialVerify(crs,𝑚, 𝜎) = 1 :

crs← Setup(1𝜆, 1𝜅)
(vk, ht, sk) ← KeyGen(crs)

𝜎 ← Sign(sk,𝑚)

 = 1.

• Aggregation correctness: For all 𝜆, 𝜅 ∈ N, all messages𝑚 ∈ M𝜆 , all policies𝜑 ∈ Φ𝜅 where𝜑 : 2[𝑁 ] → {0, 1}, all
sets 𝑆 ⊆ [𝑁 ] where𝜑 (𝑆) = 1, all crs in the support of Setup(1𝜆, 1𝜅), all {(vkℓ , htℓ , skℓ )}ℓ∈[𝑁 ] where (vkℓ , htℓ , skℓ )
is in the support of KeyGen(crs) for all ℓ ∈ [𝑁 ], and all signatures {𝜎ℓ }ℓ∈𝑆 where PartialVerify(crs,𝑚, 𝜎ℓ ) = 1

for all ℓ ∈ 𝑆 ,

Pr

[
Verify(vk𝜑 ,𝑚, 𝜎agg) = 1 :

(vk𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ])
𝜎agg ← Aggregate(ak𝜑 , {𝜎ℓ }ℓ∈𝑆 )

]
= 1.

• Static unforgeability: For a security parameter 𝜆 and an adversary A, we define the static unforgeability

game as follows:

1. On input the security parameter 1
𝜆
, algorithmA outputs the policy parameter 1

𝜅
together with a policy𝜑 ∈

Φ𝜅 . In addition, algorithmA commits to a set of corrupted users C ⊆ [𝑁 ] and a challengemessage𝑚∗ ∈ Z𝑝 .
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2. The challenger checks that 𝜑 (C) = 0. If not, the challenger halts with output 𝑏 = 0.

3. The challenger samples crs← Setup(1𝜆, 1𝜅). Then, for each index ℓ ∈ [𝑁 ] \ C, the challenger samples

a key (vkℓ , htℓ , skℓ ) ← KeyGen(crs). It gives crs together with {(vkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

4. Algorithm A can now make signing queries by specifying an index ℓ ∈ [𝑁 ] \ C and a message𝑚 ≠𝑚∗.
The challenger replies to each query with Sign(skℓ ,𝑚).

5. Once A is finished making queries, it specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to

generate the keys for each of the corrupted users ℓ ∈ C. The adversary also outputs its forgery 𝜎agg.

6. For each ℓ ∈ C, the challenger computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Then, it computes (vk𝜑 , ak𝜑 ) =
Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ]).8 The output of the experiment is 𝑏 = Verify(vk𝜑 ,𝑚∗, 𝜎agg).

We say ΠDMPS satisfies static unforgeability in the registered-key model if for all efficient adversaries A, there

exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the static unforgeability game

defined above. We say that ΠDMPS satisfies static unforgeability in the registered-key model for policies with

𝑁 = 𝑁 (𝜆) users if the above holds for all efficient adversaries A that outputs policies 𝜑 on exactly 𝑁 users.

• Succinctness: There exists a universal polynomial poly(·, ·) such that for all 𝜆, 𝜅 ∈ N, all crs in the support of

Setup(1𝜆, 1𝜅), all policies 𝜑 ∈ Φ𝜅 over 𝑁 = 𝑁 (𝜅) parties, all (vkℓ , htℓ , skℓ ) in the support of KeyGen(crs), and
setting (vk𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ]), the following hold:

– The size of the aggregated verification key vk𝜑 is poly(𝜆, log𝑁 ).
– The size of the aggregate signatures output by Aggregate(ak𝜑 , ·) is poly(𝜆, log𝑁 ).

Taken together, these two properties imply that the running time of Verify(vk𝜑 , ·, ·) is also poly(𝜆, log𝑁 ).

Remark 3.2 (Comparison with [GJM
+
24]). The work of [GJM

+
24] provide a formal definition of threshold signatures

with silent setup, which corresponds to the case of distributed monotone-policy signatures for threshold policies.

Our notion differs from the [GJM
+
24] in a few respects:

• Joint key-generation: For ease of exposition, we have a single key-generation algorithm KeyGen that outputs

the verification key vk and the aggregation hint ht. The syntax of [GJM+24] decompose this into a key-generation

algorithm (that outputs the verification key vk and the signing key sk) and a separate hint-generation algorithm

(that outputs the ht). This is purely a syntactic distinction and we choose to combine the algorithms for ease

of presentation.

• Policy-specific preprocessing: The work of [GJM
+
24] focuses on threshold policies. In the threshold setting,

it is natural to consider an extension where the verification keys are fixed at preprocessing time, but the desired

threshold is determined at verification time. This is often referred to as a dynamic policy. In Definition 3.1, the

policy 𝜑 is fixed at preprocessing time. This is inherent if we seek to support general policies while simul-

taneously requiring the running time of Verify to be polylogarithmic in the number of users (and thus, the

size of the policy). This is because if the policy 𝜑 is determined at verification time, the verification algorithm

necessarily needs to read the description of 𝜑 , which in general, can have size that is linear in the number of

users. Supporting dynamic policies while retaining fast verification is feasibly when the policies have a short

description, such as the case of threshold policies. Since our focus here is on supporting general policies while

retaining fast verification, we fix the policy at preprocessing time rather than verification time. In Section 5, we

show that if we restrict the policy family to the special case of threshold policies, then our techniques readily

extend to support dynamic thresholds (as in [DCX
+
23, GJM

+
24]).

• Semi-malicious security: As noted above, we consider a semi-malicious model where we assume all of the

users’ verification keys lie in the support of the honest KeyGen algorithm. The work of [GJM
+
24] consider the

setting where the keys can be arbitrarily chosen by an adversary and there is an efficient public algorithm to

determine whether a verification key (and associated aggregation hint) is well-formed or not. An easy way to

8
Note that because Preprocess is deterministic, the adversary can compute (vk𝜑 , ak𝜑 ) on its own.
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compile a scheme that is correct and/or secure is to have each user include a (simulation-sound) non-interactive

zero-knowledge (NIZK) proof of knowledge of their secret key as part of their verification key. As in [GJM
+
24],

the preprocessing algorithm can then effectively discard any keys that are invalid. Thus, this strategy allows us to

generically upgrade a scheme satisfying our semi-malicious security notions into one that allows the adversary

to choose its verification keys arbitrarily. For this reason, we elect to focus on the simpler semi-malicious

definition in this work. An analogous strategy was also taken in the recent work on registered multi-authority

registered ABE [LWW25] where the authors first design a scheme with semi-malicious keys and then transform

the scheme to support fully malicious key registration using simulation-sound NIZK proofs of knowledge.

• Static vs. adaptive security. In this work, we prove security of our schemes in a static security model where

the adversary has to declare the challenge policy and the set of corrupted users at the beginning of the game.

The work of [GJM
+
24] consider the stronger setting of adaptive security where the adversary can adaptively

corrupt users in the security game. Our current proof techniques are based on a partitioning argument (where

the challenge policy is programmed into the public parameters) which limits us to static security. The work

of [GJM
+
24] prove adaptive security of their scheme in the generic group model. We prove security from a

𝑞-type assumption in the plain model.

3.1 Constructing Distributed Monotone-Policy Signatures

In this section, we give our construction of a distributed monotone-policy signatures using pairing groups. Security

of our construction relies on a 𝑞-type assumption that we call the 𝑁 -extended bilinear Diffie-Hellman assumption

we use in this work. This assumption shares a similar structure as the decisional parallel bilinear Diffie-Hellman

exponent assumption from [Wat11]. We state the assumption below:

Assumption 3.3 (𝑁 -Extended Bilinear Diffie-Hellman). Let GroupGen be a prime-order bilinear group generator.

For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the distribution D𝑏,𝜆 as follows:

• Sample G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆), and sample a random generator 𝑔
r← G \ {1}. Next, sample

exponents 𝑎, 𝑏, 𝑡
r← Z𝑝 and 𝑐1, . . . , 𝑐𝑁

r← Z∗𝑝 and define

params =
(
1
𝜆,G, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 , 𝑔𝑡𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
.

• If 𝑏 = 0, let 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . If 𝑏 = 1, sample 𝑇
r← G𝑇 . Output (params,𝑇 ).

We say the decisional 𝑁 -extended bilinear Diffie-Hellman assumption holds with respect to GroupGen if the distri-

butions D0 = {D0,𝜆}𝜆∈N and D1 = {D1,𝜆}𝜆∈N are computationally indistinguishable.

In Appendix A.1 (Theorem A.3), we show that the 𝑁 -extended bilinear Diffie-Hellman assumption is hard in

the generic bilinear group model [Sho97, BBG05] for all 𝑁 = poly(𝜆) and against all adversaries making at most

𝑞 = poly(𝜆) generic group queries.

Distributed monotone-policy signature construction. We now give our construction of a distributed monotone-

policy signature scheme that supports any policy family that can be described by a one-use linear secret sharing

scheme (see Remark 2.3).

Construction 3.4 (Distributed Monotone-Policy Signatures). Let 𝜆 be a security parameter and 𝜅 be a policy-family

parameter. Let GroupGen be a prime-order bilinear group generator and let 𝑝 = 𝑝 (𝜆) be the order of the group
output by GroupGen. Let Φ = {Φ𝜅 }𝜅∈N be a family of monotone policies over 𝑁 = 𝑁 (𝜅) users and which may

be described by a one-use linear secret-sharing scheme with width𝑊 = 𝑊 (𝜅). We represent each policy 𝜑 ∈ Φ
with a matrix M ∈ Z𝑁×𝑊𝑝 , and write mT

𝑖 to denote the 𝑖th row of M. We construct a distributed monotone-policy

signature scheme ΠDMPS = (Setup,KeyGen, Sign, PartialVerify, Preprocess,Aggregate,Verify) for the policy family Φ
and message spaceM = {Z𝑝 (𝜆) }𝜆∈N as follows:
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• Setup(1𝜆, 1𝜅): On input the security parameter 𝜆 and the policy-family parameter𝜅 , the setup algorithm samples

G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆). Let 𝑁 = 𝑁 (𝜅) and𝑊 =𝑊 (𝜅). The setup algorithm samples 𝑔
r← G \ {1}.

𝑢,ℎ
r← G, 𝑐𝑖

r← Z∗𝑝 for all 𝑖 ∈ [𝑁 ], and s r← Z𝑊𝑝 . It computes 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 and outputs the common reference

string

crs =
(
G, 𝑔, 𝐵,𝑢, ℎ, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔 (𝑐𝑖/𝑐 𝑗 )s}𝑖≠𝑗∈[𝑁 ]

)
(3.1)

• KeyGen(crs): On input the common reference string crs (with components parsed according to Eq. (3.1)), the

key-generation algorithm samples 𝛼
r← Z𝑝 and computes

∀𝑖 ∈ [𝑁 ] : 𝑣𝑖 = (𝑔𝑐𝑖 )𝛼

∀𝑖 ≠ 𝑗 ∈ [𝑁 ] : 𝑤 ′𝑖, 𝑗 = (𝑔𝑐𝑖/𝑐 𝑗 )𝛼 .

The algorithm defines 𝐴 = 𝑒 (𝑔,𝑔)𝛼 and outputs

vk = (G, 𝑔,𝑢, ℎ,𝐴) and ht =
(
{𝑣𝑖 }𝑖∈[𝑁 ], {𝑤 ′𝑖, 𝑗 }𝑖≠𝑗∈[𝑁 ] ]

)
The algorithm outputs the verification key vk, the aggregation hint ht and the signing key sk = (vk, 𝛼).

• Sign(sk,𝑚): On input the signing key sk = (vk, 𝛼) where vk = (G, 𝑔,𝑢, ℎ,𝐴) and a message𝑚 ∈ Z𝑝 , the signing
algorithm samples 𝑟

r← Z𝑝 and outputs the partial signature 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚ℎ)𝑟 ).

• PartialVerify(vk,𝑚, 𝜎): On input a verification key vk = (G, 𝑔,𝑢, ℎ,𝐴), a message 𝑚 ∈ Z𝑝 , and a signature

𝜎 = (𝜎1, 𝜎2), the partial verification algorithm outputs 1 if

𝐴 · 𝑒 (𝜎1, 𝑢𝑚ℎ) = 𝑒 (𝑔, 𝜎2).

• Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ]): On input the common reference string crs (with components parsed ac-

cording to Eq. (3.1)), a policy 𝜑 = M ∈ Z𝑁×𝑊𝑝 , and a collection of verification keys vkℓ and hints htℓ =

({𝑣ℓ,𝑖 }𝑖∈[𝑁 ], {𝑤 ′ℓ,𝑖, 𝑗 }𝑖≠𝑗∈[𝑁 ]), the preprocessing algorithm computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣ℓ,ℓ .

Note that the preprocessing algorithm computes 𝑧 using knowledge of mT
ℓ and 𝑔

𝑐ℓ s
from crs. Then, for each

ℓ ∈ [𝑁 ], it computes

𝑤ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑤 ′𝑖,𝑖,ℓ · 𝑔m
T
𝑖
( (𝑐𝑖/𝑐ℓ ) )s,

using knowledge of mT
𝑖 and 𝑔

(𝑐𝑖/𝑐ℓ )s
from crs. Then, it sets

vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝐵, 𝑧) and ak𝜑 = (M, 𝑧, {𝑔1/𝑐ℓ ,𝑤ℓ }ℓ∈[𝑁 ]).

Finally, the preprocessing algorithm outputs the verification key vk𝜑 and the aggregation key ak𝜑 .

• Aggregate(ak𝜑 , {𝜎ℓ }ℓ∈𝑆 ): On input the aggregation key ak𝜑 = (M, 𝑧, {𝑔1/𝑐ℓ ,𝑤ℓ }ℓ∈[𝑁 ]), and a collection of

signatures 𝜎ℓ = (𝜎ℓ,1, 𝜎ℓ,2) for ℓ ∈ 𝑆 ⊆ [𝑁 ], the aggregation algorithm proceeds as follows:

– First, it checks if 𝑆 satisfies the policy M. If not, the aggregation algorithm outputs ⊥. Otherwise, let
𝝎 ∈ Z𝑁𝑝 be a reconstruction vector where 𝝎TM = eT

1
, and moreover, 𝜔ℓ = 0 for all ℓ ∈ [𝑁 ] \ 𝑆 .

– Compute

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎agg,2 =

∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,2
𝑤
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔1/𝑐ℓ

)𝜔ℓ ,

Output the signature 𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3).
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• Verify(vk𝜑 ,𝑚, 𝜎agg): On input the verification key vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝐵, 𝑧), a message𝑚 ∈ Z𝑝 , and a signature

𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3), the verification algorithm outputs 1 if

𝐵 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚ℎ) · 𝑒 (𝑧, 𝜎agg,3) (3.2)

If Eq. (3.2) does not hold, the verification algorithm outputs 0.

Theorem 3.5 (Signing Correctness). Construction 3.4 satisfies signing correctness.

Proof. Take any 𝜆, 𝜅 ∈ N and message 𝑚 ∈ Z𝑝 . Let crs ← Setup(1𝜆, 1𝜅), (vk, ht, sk) ← KeyGen(crs) and 𝜎 ←
Sign(sk,𝑚). By construction, we can write

crs =
(
G, 𝑔, 𝐵,𝑢, ℎ, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔 (𝑐𝑖/𝑐 𝑗 )s}𝑖≠𝑗∈[𝑁 ]

)
vk = (G, 𝑔,𝑢, ℎ,𝐴)
𝜎 = (𝜎1, 𝜎2) = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚ℎ)𝑟 ),

where G = (G,G𝑇 , 𝑝, 𝑒) and 𝐴 = 𝑒 (𝑔,𝑔)𝛼 . By bilinearity, we now have

𝑒 (𝑔, 𝜎2) = 𝑒 (𝑔,𝑔𝛼 (𝑢𝑚ℎ)𝑟 ) = 𝑒 (𝑔,𝑔)𝛼 · 𝑒 (𝑔𝑟 , 𝑢𝑚ℎ) = 𝐴 · 𝑒 (𝜎1, 𝑢𝑚ℎ).

We conclude that PartialVerify(vk,𝑚, 𝜎) outputs 1, as required. □

Theorem 3.6 (Aggregation Correctness). Construction 3.4 satisfies aggregation correctness.

Proof. Take any 𝜆, 𝜅 ∈ N, message𝑚 ∈ Z𝑝 , policy 𝜑 ∈ Φ𝜅 (with associated matrixM ∈ Z𝑁×𝑊𝑝 ), any set 𝑆 ⊆ [𝑁 ] where
𝜑 (𝑆) = 1, any crs in the support of Setup(1𝜆, 1𝜅), any {(vkℓ , htℓ , skℓ )}ℓ∈[𝑁 ] where (vkℓ , htℓ , skℓ ) is in the support of

KeyGen(crs) for all ℓ ∈ [𝑁 ], and any collection of signatures {𝜎ℓ }ℓ∈𝑆 where PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 .
By construction, we can now write

crs =
(
G, 𝑔, 𝐵,𝑢, ℎ, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔 (𝑐𝑖/𝑐 𝑗 )s}𝑖≠𝑗∈[𝑁 ]

)
vkℓ = (G, 𝑔,𝑢, ℎ,𝐴ℓ )
htℓ =

(
{𝑣ℓ,𝑖 }𝑖∈[𝑁 ], {𝑤 ′ℓ,𝑖, 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
𝜎ℓ = (𝜎ℓ,1, 𝜎ℓ,2),

where G = (G,G𝑇 , 𝑝, 𝑒) and 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 . By construction of KeyGen, we have for all 𝑖 ≠ 𝑗 ∈ [𝑁 ],

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼ℓ and 𝑣ℓ,𝑖 = 𝑔
𝛼ℓ𝑐𝑖

and 𝑤 ′ℓ,𝑖, 𝑗 = 𝑔
𝛼ℓ𝑐𝑖/𝑐 𝑗 .

Moreover, since PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 , this means

∀ℓ ∈ 𝑆 : 𝑒 (𝑔,𝑔)𝛼ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝑚ℎ) = 𝑒 (𝑔, 𝜎ℓ,2). (3.3)

Let

(vk𝜑 , ak𝜑 ) = Preprocess(crs,M, {(vkℓ , htℓ )}ℓ∈[𝑁 ])
𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3) = Aggregate(crs, ak𝜑 , {𝜎ℓ }ℓ∈𝑆 ).

By construction, the preprocessing algorithm first computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣ℓ,ℓ = 𝑔

𝑧
where 𝑧 =

∑︁
ℓ∈[𝑁 ]

𝑐ℓ (mT
ℓs + 𝛼ℓ ).

For each ℓ ∈ [𝑁 ], it also computes

𝑤ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑤 ′𝑖,𝑖,ℓ · 𝑔m
T
𝑖
( (𝑐𝑖/𝑐ℓ ) )s =

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑔𝑐𝑖/𝑐ℓ (m
T
𝑖
s+𝛼𝑖 )

(3.4)
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Then, it sets vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝐵, 𝑧). The aggregation algorithm starts by computing

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎agg,2 =

∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,2
𝑤
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔1/𝑐ℓ

)𝜔ℓ , (3.5)

By Eq. (3.3) and bilinearity, this means

𝑒 (𝜎agg,1, 𝑢𝑚ℎ) =
∏
ℓ∈𝑆

𝑒 (𝜎ℓ,1, 𝑢𝑚ℎ)𝜔ℓ =
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ
(3.6)

Let 𝜎̃agg,3 =
∑
ℓ∈𝑆 𝜔ℓ/𝑐ℓ . Then 𝜎agg,3 = 𝑔𝜎̃agg,3 . Next, 𝝎TM = eT

1
so∑︁

ℓ∈[𝑁 ]
𝜔ℓmT

ℓs = 𝝎TMs = eT
1
s = 𝑠1 .

Combined with the fact that 𝜔ℓ = 0 for all ℓ ∉ 𝑆 , we have

𝑧 · 𝜎̃agg,3 =
∑︁
ℓ∈[𝑁 ]

∑︁
𝑖∈[𝑁 ]

𝑐𝑖 (mT
𝑖 s + 𝛼𝑖 ) ·

𝜔ℓ

𝑐ℓ

=
∑︁
ℓ∈[𝑁 ]

𝜔ℓmT
ℓs +

∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 ) ·
𝑐𝑖

𝑐ℓ

)
= 𝑠1 +

∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 ) ·
𝑐𝑖

𝑐ℓ

)
By Eq. (3.4), this means

𝑒 (𝑧, 𝜎agg,3) = 𝑒 (𝑔,𝑔)𝑧𝜎̃agg,3 = 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑤ℓ )𝜔ℓ
(3.7)

Combining Eqs. (3.5) to (3.7), we have

𝐵 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎𝜔ℓ

ℓ,2
) ·

∏
ℓ∈𝑆

𝑒 (𝑔,𝑤ℓ )𝜔ℓ

= 𝑒 (𝜎agg,1, 𝑢𝑚ℎ) · 𝑒 (𝑧, 𝜎agg,3).

Correspondingly, Verify(vk𝜑 ,𝑚, 𝜎agg) = 1, as required. □

Theorem 3.7 (Static Unforgeability). Suppose the 𝑁 -extended bilinear Diffie-Hellman assumption (Assumption 3.3)
holds with respect to GroupGen. Then, Construction 3.4 satisfies static unforgeability in the registered key model for
policies with 𝑁 users.

Proof. To prove security, it will be more convenient to use the following search variant of the 𝑁 -extended bilinear

Diffie-Hellman assumption. We state the assumption and show that it is implied by the decisional 𝑁 -extended bilinear

Diffie-Hellman assumption below:

Lemma 3.8. Let 𝜆 be a security parameter. For an adversary A, define the search 𝑁 -extended bilinear Diffie-Hellman
experiment as follows:

1. The challenger samples G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and a random generator 𝑔 r← G \ {1}. The challenger
then samples exponents 𝑎, 𝑏 r← Z𝑝 and 𝑐1, . . . , 𝑐𝑁

r← Z∗𝑝 . Define

params =
(
1
𝜆,G, 𝑔, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
.
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2. On input params, algorithm A outputs 𝜏0, 𝜏1, . . . , 𝜏𝑁 ∈ G.

3. The output of the experiment is 𝑏 = 1 if

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒 (𝑔, 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝑔𝑐𝑖 , 𝜏𝑖 ).

Otherwise, the output is 0.

If the decisional 𝑁 -extended bilinear Diffie-Hellman assumption holds with respect to GroupGen, then for all efficient
adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the search
𝑁 -extended bilinear Diffie-Hellman experiment.

Proof. Suppose there exists an efficient adversary A that can solve the search 𝑁 -extended bilinear Diffie-Hellman

problemwith advantage 𝜀. We useA to construct an adversaryB for the decisional𝑁 -extended bilinear Diffie-Hellman

problem:

• On input (params,𝑇 ) where

params =
(
1
𝜆,G, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 , 𝑔𝑡𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
,

algorithm B runs algorithm A on the following input

params′ =
(
1
𝜆,G, 𝑔, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
.

• Algorithm B outputs 𝜏0, 𝜏1, . . . , 𝜏𝑁 ∈ G. Algorithm B first checks if

𝑒 (𝑔𝑎, 𝑔𝑏) = 𝑒 (𝑔, 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝑔𝑐𝑖 , 𝜏𝑖 ). (3.8)

If this does not hold, algorithm B outputs 0. Otherwise, algorithm B outputs 1 if and only if

𝑇 = 𝑒 (𝑔𝑡 , 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝑔𝑡𝑐𝑖 , 𝜏𝑖 ). (3.9)

By design, algorithm B perfectly simulates the parameters for the search 𝑁 -extended bilinear Diffie-Hellman problem.

Thus, with probability 𝜀, it will output 𝜏0, 𝜏1 . . . , 𝜏𝑁 that satisfy Eq. (3.8). We now compute the advantage of A.

• Suppose𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . If Eq. (3.8) holds, then Eq. (3.9) also holds. In this case, algorithmA outputs 1 whenever

Eq. (3.8) holds, which occurs with probability 𝜀.

• Suppose 𝑇
r← G𝑇 . Since the view of A is independent of 𝑇 , and moreover, the challenger samples 𝑡, 𝑐1, . . . , 𝑐𝑁

independently of 𝑇 , this means Eq. (3.9) holds with probability exactly 1/𝑝 . Thus, in this case, algorithm B
outputs 1 with probability at most 1/𝑝 .

We conclude that algorithmB distinguishes with advantage at least 𝜀−1/𝑝 ≥ 𝜀−2−𝜆 since 𝑝 > 2
𝜆
. The claim holds. □

Proof of Theorem 3.7. Suppose there exists an efficient adversary A that wins the static unforgeability game

for policies with 𝑁 users with non-negligible advantage 𝜀. We use A to construct a new adversary B that breaks

the search 𝑁 -extended bilinear Diffie-Hellman assumption from Lemma 3.8. In the following, we will use a tilde (e.g.,

𝑢̃, ˜ℎ) to denote exponents sampled by the reduction algorithm B. Algorithm B works as follows:

1. On input the challenge (
1
𝜆,G, 𝑔, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
,

algorithm B starts running algorithmA on 1
𝜆
. AlgorithmA outputs a policy family parameter 1

𝜅
and a policy

M ∈ Z𝑁×𝑊𝑝 . In addition, algorithm B specifies a set C ⊆ [𝑁 ] of corrupted indices and a challenge message

𝑚∗ ∈ Z𝑝 .
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2. Algorithm B first checks if C satisfies the policyM. If so, then it halts with output 0.

3. Otherwise, algorithm B constructs the common reference string crs as follows. First, it samples 𝑢̃, ˜ℎ
r← Z𝑝 and

sets

𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and ℎ = 𝑔
˜ℎ/(𝑔𝑏)𝑚∗ .

Since the set C ⊆ [𝑁 ] does not satisfy the policyM, there exists a vector w̃ ∈ Z𝑁𝑝 such that for all indices 𝑖 ∈ C,
mT
𝑖 w̃ = 0, wheremT

𝑖 denotes the 𝑖
th
row ofM, and eT

1
w̃ = 1. Algorithm B samples a vector s̃ r← Z𝑊𝑝 . Algorithm B

now implicitly sets s = s̃+𝑎𝑏 ·w̃. In particular, algorithmB constructs the s-dependent terms in the CRS as follows:

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏)𝑤̃1 = 𝑒 (𝑔,𝑔)𝑠1

𝑔𝑐𝑖 s = (𝑔𝑐𝑖 ) s̃ · (𝑔𝑎𝑏𝑐𝑖 )w̃

𝑔 (𝑐𝑖/𝑐 𝑗 )s = (𝑔𝑐𝑖/𝑐 𝑗 ) s̃ · (𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 )w̃ .

Algorithm B sets the common reference string to be

crs =
(
G, 𝑔, 𝐵,𝑢, ℎ, {𝑔𝑐𝑖 , 𝑔1/𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[𝑁 ], {𝑔𝑐𝑖/𝑐 𝑗 , 𝑔 (𝑐𝑖/𝑐 𝑗 )s}𝑖≠𝑗∈[𝑁 ]

)
.

4. Next, to simulate the honest verification keys, algorithm B starts by sampling 𝛼ℓ
r← Z𝑝 for each ℓ ∈ [𝑁 ] \ C.

Then, algorithm B implicitly sets the secret key for user ℓ to be 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Specifically, algorithm B

constructs the components of the verification key and the aggregation hint as follows:

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)−m
T
ℓ w̃

𝑣ℓ,𝑖 = (𝑔𝑐𝑖 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖 )−m
T
ℓ w̃

𝑤 ′ℓ,𝑖, 𝑗 = (𝑔𝑐𝑖/𝑐 𝑗 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖/𝑐 𝑗 )−m
T
ℓ w̃ .

Then, algorithm B sets

vkℓ = (G, 𝑔,𝑢, ℎ,𝐴ℓ ) and htℓ =
(
{𝑣ℓ,𝑖 }𝑖∈[𝑁 ], {𝑤 ′ℓ,𝑖, 𝑗 }𝑖≠𝑗

)
.

Algorithm B gives crs and {(vkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

5. Whenever algorithm A makes a signing query on an index ℓ ∈ [𝑁 ] \ C and a message𝑚 ≠𝑚∗, algorithm B
samples 𝑟

r← Z𝑝 and implicitly sets 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃. Then, it computes

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎2 = 𝑔
𝛼̃ℓ · (𝑔𝑏)𝑟 (𝑚−𝑚∗ ) · 𝜎𝑢̃𝑚+ ˜ℎ

1

and responds to A with the signature 𝜎 = (𝜎1, 𝜎2).

6. After A is finished making signing queries, it outputs the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used
to generate the keys for the corrupted users ℓ ∈ C. In addition, algorithm A outputs a signature 𝜎agg =

(𝜎agg,1, 𝜎agg,2, 𝜎agg,3).

7. For each ℓ ∈ C, algorithm B computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Algorithm B parses skℓ as skℓ =
(vkℓ , 𝛼ℓ ) for each ℓ ∈ C. Finally, algorithm B outputs (𝜏0, 𝜏, . . . , 𝜏𝑁 ) where

𝜏0 = 𝑔
−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 · 𝜎−1agg,2 and ∀𝑖 ∈ [𝑁 ] : 𝜏𝑖 = 𝜎

mT
𝑖
s̃+𝛼̃𝑖

agg,3 .

First, we argue that algorithm B correctly simulates the common reference string, the honest verification keys, and

the signatures. Consider first the components of the common reference string:
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• Algorithm B samples 𝑢̃, ˜ℎ
r← Z𝑝 so the distributions of 𝑢,ℎ are also uniform over G (and independent of all

other components in crs), exactly as in the real scheme.

• Algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃, where s̃ r← Z𝑁𝑝 . Thus, the distribution of s also coincides with its

distribution in the real scheme.

• Finally, the challenger samples 𝑐1, . . . , 𝑐𝑁
r← Z∗𝑝 , which matches the distribution in the real scheme.

We conclude that algorithm B constructs crs according to the same distribution as Setup(1𝜆, 1𝜅). We now consider

the distribution of the honest verification keys and signatures:

• Verification keys: Consider the honest verification keys vkℓ for ℓ ∈ [𝑁 ] \ C. By construction, the verification

keys vkℓ and hint components htℓ sampled by algorithm B coincide with those that would be output by

KeyGen(crs) with 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Since algorithm B samples 𝛼ℓ

r← Z𝑝 for all ℓ ∈ [𝑁 ] \ C, the verification
keys are also distributed exactly as in the real scheme.

• Signatures: Finally, consider the signing queries. Let ℓ ∈ [𝑁 ] \ C be the index and𝑚 ≠𝑚∗ be the message. We

claim that 𝜎 = (𝜎1, 𝜎2) is a signature with respect to signing key 𝛼ℓ and randomness 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃:

– By construction, algorithm B sets 𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃ = 𝑔𝑟 .

– In the real scheme, 𝜎2 = 𝑔
𝛼ℓ (𝑢𝑚ℎ)𝑟 . Substituting the expressions for 𝛼ℓ , 𝑢, ℎ, 𝑟 , we have

𝑔𝛼ℓ (𝑢𝑚ℎ)𝑟 = 𝑔𝛼̃ℓ−𝑎𝑏mT
ℓ w̃ (𝑔𝑏𝑚+𝑢̃𝑚𝑔 ˜ℎ−𝑎𝑚∗ )𝑟+𝑎 (𝑚−𝑚∗ )−1mT

ℓ w̃

= 𝑔𝛼̃ℓ (𝑔𝑢̃𝑚+ ˜ℎ)𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃𝑔−𝑎𝑏m

T
ℓ w̃𝑔𝑏 (𝑚−𝑚

∗ ) (𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃)

= 𝑔𝛼̃ℓ𝜎𝑢̃𝑚+
˜ℎ

1
𝑔𝑏 (𝑚−𝑚

∗ )𝑟 .

This is precisely how algorithm B constructs the signatures.

Since algorithmB samples 𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform and the signature is correctly constructed.

Thus, with probability 𝜀, algorithm A outputs a signature 𝜎agg = (𝜎agg,1, 𝜎agg,2, 𝜎agg,3) such that

Verify(vk𝜑 ,𝑚∗, 𝜎agg) = 1,

where vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝑒 (𝑔,𝑔)𝑠1 , 𝑧) and
𝑧 =

∏
ℓ∈[𝑁 ]

𝑔𝑐ℓm
T
ℓ s𝑣ℓ,ℓ .

We consider each component in this product separately:

• Suppose ℓ ∈ C. In this case, 𝑣ℓ,ℓ is output by KeyGen(crs; 𝜌ℓ ). Since skℓ = (vkℓ , 𝛼ℓ ), this means 𝑣ℓ,ℓ = 𝑔
𝑐ℓ 𝛼̃ℓ

. Since

ℓ ∈ C, mT
ℓw̃ = 0. This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ).

• Suppose ℓ ∈ [𝑁 ] \ C. In this case, 𝑣ℓ,ℓ = 𝑔
𝑐ℓ𝛼ℓ = 𝑔𝑐ℓ (𝛼̃ℓ−𝑎𝑏m

T
ℓ w̃) . This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ).

We conclude that

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐ℓm
T
ℓ s𝑣ℓ,ℓ =

∏
ℓ∈[𝑁 ]

𝑔𝑐ℓ (m
T
ℓ s̃+𝛼̃ℓ ) . (3.10)

Now, since verification passes, this means Eq. (3.2) holds so

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚
∗
ℎ) · 𝑒 (𝑧, 𝜎agg,3). (3.11)
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Recall that eT
1
w̃ = 1. This means 𝑠1 = eT

1
s = eT

1
s̃ + 𝑎𝑏eT

1
w̃ = 𝑠1 + 𝑎𝑏. In addition, 𝑢𝑚

∗
ℎ = 𝑔𝑏𝑚

∗+𝑢̃𝑚∗ · 𝑔 ˜ℎ/𝑔𝑏𝑚∗ = 𝑔𝑢̃𝑚∗+ ˜ℎ .
Combining with Eqs. (3.10) and (3.11), we thus have

𝑒 (𝑔,𝑔)𝑠1+𝑎𝑏 · 𝑒 (𝑔, 𝜎agg,2) = 𝑒 (𝜎agg,1, 𝑔𝑢̃𝑚
∗+ ˜ℎ) ·

∏
ℓ∈[𝑁 ]

𝑒 (𝑔𝑐ℓ (mT
ℓ s̃+𝛼̃ℓ ) , 𝜎agg,3).

Rearranging and using bilinearity, we have

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒
(
𝑔,𝑔−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 · 𝜎−1agg,2

)
·

∏
ℓ∈[𝑁 ]

𝑒 (𝑔𝑐ℓ , 𝜎m
T
ℓ s̃+𝛼̃ℓ

agg,3 )

= 𝑒 (𝑔, 𝜏0) ·
∏
ℓ∈[𝑁 ]

𝑒 (𝑔𝑐ℓ , 𝜏ℓ ).

We conclude that B breaks the search 𝑁 -extended bilinear Diffie-Hellman with the same advantage 𝜀. □

Remark 3.9 (Proving Well-Formedness of the Public Key). As noted in Remark 3.2, we can lift a signature scheme

with semi-malicious security to one with full security by having users attach a NIZK proof of knowledge of the secret

key associated with the verification key vk and aggregation hint ht. In the context of Construction 3.4, this boils down

to proving knowledge of discrete log: namely, that the user knows 𝛼 such that 𝐴 = 𝑒 (𝑔,𝑔)𝛼 , where 𝐴 is the group

element in the verification key. Note that well-formedness of the elements in the hint can be efficiently certified using

𝐴 together with the components in the common reference string. For instance, a hint ht =
(
{𝑣𝑖 }𝑖∈[𝑁 ], {𝑤 ′𝑖, 𝑗 }𝑖≠𝑗∈[𝑁 ]

)
associated with the verification key vk = (G, 𝑔,𝑢, ℎ,𝐴) is well-formed if and only if

∀𝑖 ∈ [𝑁 ] : 𝑒 (𝑣𝑖 , 𝑔1/𝑐𝑖 ) = 𝐴 and ∀𝑖 ≠ 𝑗 ∈ [𝑁 ] : 𝑒 (𝑤 ′𝑖, 𝑗 , 𝑔𝑐 𝑗 /𝑐𝑖 ) = 𝐴.

It is straightforward to prove knowledge of discrete log in the random oracle model (e.g., via a Schnorr proof [Sch89])

or if we work in the generic group model [Sho97].
9
In the plain model, we could use any general-purpose pairing-based

NIZK (e.g., [CHK03, GOS06, LPWW20]).

Remark 3.10 (SupportingMulti-Use Policies). Construction 3.4 gives a distributed monotone-policy signature scheme

for any policy family that can be expressed as a one-use linear secret sharing scheme. A straightforward way to extend

the scheme to support policies where each party is associated with multiple shares is to rely on virtualization [LW11].

Specifically, consider an LSSS policyM where each user is associated with at most 𝐾 rows. We can construct a dis-

tributed monotone-policy signature scheme for 𝐾-use LSSS policies at a cost of a factor of 𝐾 blowup in the size of the

common reference string, the size of the user’s verification key (and hint), the size of the partial signatures, and the size

of the aggregation key. The approach is for each user to generate 𝐾 verification keys, one associated with each of the

𝐾 possible shares that may be assigned to it. A partial signature now consists of 𝐾 partial signatures for the underlying

scheme, one for each of the user’s 𝐾 verification keys. Effectively, each user in the scheme functions as 𝐾 indepen-

dent “virtual” users in the underlying distributed monotone-policy signature scheme for one-use policies. While this

approach increases the size of the common reference string, the user public keys, the partial signatures, and the aggrega-

tion key by a factor of𝐾 , the size of the aggregated verification key and the size of the aggregate signature is unchanged.

Corollary 3.11 (Distributed Monotone-Policy Signatures from Pairings). Let 𝜆 be a security parameter. Suppose the
𝑁 -extended bilinear Diffie-Hellman assumption (Assumption 3.3) holds with respect to GroupGen for all polynomials
𝑁 = 𝑁 (𝜆). Let Φ = {Φ𝜅 }𝜅∈N be the class of policies that can be described by a 𝐾-use linear-secret sharing scheme with
𝑁 = 𝑁 (𝜅) users and width𝑊 =𝑊 (𝜅), where 𝑁,𝑊 are polynomially-bounded. Then, there exists a (statically-secure)
distributed monotone-policy signature scheme for Φ in the registered-key model with the following efficiency properties:

• CRS size: The CRS contains 𝑂 (𝐾2𝑁 2𝑊 ) group elements.

• User key size: A user’s verification key vk contains 3 + 𝐾 group elements and the aggregation hint ht contains
𝑂 (𝐾2𝑁 2) group elements. The first 3 group elements in each user’s verification key are fixed (i.e., group elements
from the common reference string). The number of user-specific group elements in each verification key is 𝐾 .

9
In fact, in the generic group model, the reduction algorithm can directly extract the discrete log associated with the user’s verification key,

and there is no need to include a NIZK proof of knowledge at all.
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• Partial signature size: A user’s partial signature 𝜎 contains 2𝐾 group elements.

• Aggregation key size: The size of an aggregation key ak𝜑 for a policy 𝜑 ∈ Φ contains 2𝐾𝑁 + 1 group elements.

• Aggregate verification key size:An aggregated verification key vk𝜑 for a policy𝜑 ∈ Φ contains 5 group elements.

• Aggregate signature size:An aggregate signature contains 3 group elements. The aggregate verification algorithm
requires performing 3 pairings (and 𝑂 (1) group operations).

3.2 Reducing the CRS Size Using Powers

To support monotone policies described by a (one-use) linear secret sharing scheme with up to 𝑁 rows and𝑊 columns,

Construction 3.4 requires a structured reference string containing 𝑂 (𝑁 2𝑊 ) group elements. The 𝑁 2
factor comes

from the “cross terms” 𝑐𝑖/𝑐 𝑗 in the CRS. A standard approach in pairing-based cryptography to reduce the size of the

CRS is to set 𝑐𝑖 = 𝑐
𝑖
for some secret value 𝑐 ∈ Z𝑝 . In this case 𝑐𝑖/𝑐 𝑗 = 𝑐𝑖− 𝑗 and multiple pairs of indices (𝑖, 𝑗) can share

the same cross term 𝑐𝑖− 𝑗 . Using powers, we obtain a construction where the CRS contains 𝑂 (𝑁𝑊 ) group elements.

We now describe the powers-variant of Assumption 3.3 we use for our construction:

Assumption 3.12 (𝑁 -Extended Bilinear Diffie-Hellman Exponent). Let GroupGen be a prime-order bilinear group

generator. For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the distribution D𝑏,𝜆 as follows:

• Sample G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and sample generators 𝑔,𝑔
r← G \ {1}. Sample exponents

𝑎, 𝑏, 𝑡
r← Z𝑝 and 𝑐

r← Z∗𝑝 and define

params =
(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}, {𝑔𝑡𝑐

𝑖 }𝑖∈[𝑁 ]
)
.

• If 𝑏 = 0, let 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . If 𝑏 = 1, sample 𝑇
r← G𝑇 . Output (params,𝑇 ).

We say the decisional 𝑁 -extended bilinear Diffie-Hellman exponent assumption holds with respect to GroupGen
if distributions D0 = {D0,𝜆}𝜆∈N and D1 = {D1,𝜆}𝜆∈N are computationally indistinguishable.

Remark 3.13 (Comparisonwith Assumption 3.3). Assumption 3.12 is essential the𝑁 -extended bilinear Diffie-Hellman

assumption (Assumption 3.3) obtained by setting the exponents 𝑐𝑖 to be powers 𝑐𝑖 = 𝑐
𝑖
. However, the basic version ob-

tained in this way is insecure since the adversary can choose three distinct indices 𝑖, 𝑗, 𝑘 where 𝑖− 𝑗+𝑘 = 0 and compute

𝑒 (𝑔𝑎𝑏𝑐𝑖− 𝑗 , 𝑔𝑡𝑐𝑘 ) = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡𝑐𝑖− 𝑗+𝑘 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 .

This yields a trivial distinguisher for the assumption. To prevent this type of check, we introduce a second generator 𝑔

and ask the adversary to distinguish between 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 and a random target group element. The important distinction

is the assumption now gives out 𝑔𝑎𝑏𝑐
𝑖

and 𝑔𝑡𝑐
𝑗

, which are both encoded with respect to the generator 𝑔. The adversarial

strategy describe above would now yield 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 , which is independent of the challenge 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . We note that our

approach is analogous to working over an asymmetric pairing group where 𝑔 is a generator of G1 and 𝑔 is a generator

of G2 (or vice versa) and the pairing satisfies 𝑒 : G1 × G2 → G𝑇 . In asymmetric groups, the adversary is not able to

pair 𝑔𝑎𝑏𝑐
𝑖

with 𝑔𝑡𝑐
𝑗

(since they would both be elements of G2). We show that this version of the assumption also holds

in the generic bilinear group model in Appendix A.2 (Theorem A.4).

Remark 3.14 (On the Use of Negative Powers). Assumption 3.12 (and correspondingly, Construction 3.15) gives out𝑔𝑐
𝑖

for 𝑖 ∈ [−𝑁, 𝑁 ]\{0}, which in particular includes negative powers of 𝑐 in the exponent. It is perhaps more customary to

consider an assumption that only gives out positive powers. For instance, the bilinear Diffie-Hellman exponent (BDHE)

assumption [BBG05] gives out 𝑔𝑐
𝑖

where 𝑖 ∈ [2𝑁 + 1] \ {𝑁 + 1}. When the generator 𝑔 is random, the version of the as-

sumption that includes negative powers and the version that only includes positive powers are equivalent via a change

of basis. In fact, when arguing security in the generic bilinear group model (see Appendix A.2), we first apply a change

of basis to obtain an equivalent assumption that only includes positive powers (and then appeal to standardmaster theo-

rems for hardness in the generic bilinear group model). We believe that the use of negative powers better highlights the

cancellation structure of our construction and opt for the more intuitive presentation. However, it is straightforward

(albeit notationally cumbersome) to describe our assumption and scheme with only positive powers in the exponent.
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Construction 3.15 (Distributed Monotone-Policy Signatures with Shorter CRS). Let 𝜆 be a security parameter and

𝜅 be a policy-family parameter. Let GroupGen be a prime-order bilinear group generator and let 𝑝 = 𝑝 (𝜆) be the
order of the group output by GroupGen. Let Φ = {Φ𝜅 }𝜅∈N be a family of monotone policies over 𝑁 = 𝑁 (𝜅) users and
which may be described by a one-use linear secret-sharing scheme with width𝑊 =𝑊 (𝜅). We represent each policy

𝜑 ∈ Φ with a matrixM ∈ Z𝑁×𝑊𝑝 and write mT
𝑖 to denote the 𝑖th row ofM. We construct a distributed monotone-policy

signature scheme ΠDMPS = (Setup,KeyGen, Sign, PartialVerify, Preprocess,Aggregate,Verify) for the policy family Φ
and message spaceM = {Z𝑝 (𝜆) }𝜆∈N as follows:

• Setup(1𝜆, 1𝜅): On input the security parameter 𝜆 and the policy-family parameter𝜅 , the setup algorithm samples

G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and 𝑔,𝑔 r← G \ {1}. Let 𝑁 = 𝑁 (𝜅) and𝑊 =𝑊 (𝜅). The setup algorithm

samples 𝑢, ˆℎ
r← G, 𝑐 r← Z∗𝑝 , and s r← Z𝑊𝑝 . It sets 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 . It outputs the common reference string

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
. (3.12)

• KeyGen(crs): On input the common reference string crs (with components parsed according to Eq. (3.12)), the

key-generation algorithm samples 𝛼
r← Z𝑝 and computes 𝑣 ′𝑖 = (𝑔𝑐

𝑖 )𝛼 for all 𝑖 ∈ [−𝑁, 𝑁 ] \ {0}. The algorithm
sets 𝐴 = 𝑒 (𝑔,𝑔)𝛼 and

vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and ht = {𝑣 ′𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}
The algorithm outputs the verification key vk, the aggregation hint ht and the signing key sk = (vk, 𝛼).

• Sign(sk,𝑚): On input the signing key sk = (vk, 𝛼) where vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and a message 𝑚 ∈ Z𝑝 , the
signing algorithm samples 𝑟

r← Z𝑝 and outputs the signature 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚 ˆℎ)𝑟 ).

• PartialVerify(vk,𝑚, 𝜎): On input a verification key vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a message𝑚 ∈ Z𝑝 , and a signature

𝜎 = (𝜎1, 𝜎̂2), the partial verification algorithm outputs 1 if

𝐴 · 𝑒 (𝜎1, 𝑢𝑚 ˆℎ) = 𝑒 (𝑔, 𝜎̂2).

• Preprocess(crs, 𝜑, {(vkℓ , htℓ )}ℓ∈[𝑁 ]): On input the common reference string crs (with components parsed

according to Eq. (3.12)), a policy 𝜑 = M ∈ Z𝑁×𝑊𝑝 , and a collection of verification keys vkℓ and hints

htℓ = {𝑣ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} , the preprocessing algorithm computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣ℓ,ℓ .

Then for each ℓ ∈ [𝑁 ], it computes

𝑣ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ · 𝑔m
T
𝑖
(𝑐𝑖−ℓ s) .

Both 𝑧 and 𝑣ℓ are computed using the policy mT
ℓ and the elements 𝑔𝑐

ℓ s
from the crs. Then, it sets

vk𝜑 = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧) and ak𝜑 = (M, 𝑧, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝑁 ]).

Finally, the preprocessing algorithm outputs the verification key vk𝜑 and the aggregation key ak𝜑 .

• Aggregate(ak𝜑 , {𝜎ℓ }ℓ∈𝑆 ): On input the the aggregation key ak𝜑 = (M, 𝑧, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝑁 ]), and a collection of

signatures 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2) for ℓ ∈ 𝑆 ⊆ [𝑁 ], the aggregation algorithm proceeds as follows:

– First, it checks if 𝑆 satisfies the policy M. If not, the aggregation algorithm outputs ⊥. Otherwise, let
𝝎 ∈ Z𝑁𝑝 be a reconstruction vector where 𝝎TM = eT

1
, and moreover, 𝜔ℓ = 0 for all ℓ ∈ [𝑁 ] \ 𝑆 .

– Compute

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎̂agg,2 =

∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
𝑣
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔𝑐
−ℓ )𝜔ℓ .

Output the signature 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3).
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• Verify(vk𝜑 ,𝑚, 𝜎agg): On input the verification key vk𝜑 = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧), a message𝑚 ∈ Z𝑝 , and a signature

𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3), the verification algorithm outputs 1 if

𝐵 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧). (3.13)

Otherwise, the verification algorithm outputs 0.

Correctness and security analysis. The correctness and security analysis for Construction 3.15 follow a very

similar structure as that for Construction 3.4. We state the relevant theorems below, and defer their formal proofs

to Appendix B.

Theorem 3.16 (Signing Correctness). Construction 3.15 satisfies signing correctness.

Theorem 3.17 (Aggregation Correctness). Construction 3.15 satisfies aggregation correctness.

Theorem 3.18 (Static Unforgeability). Suppose the 𝑁 -extended bilinear Diffie-Hellman exponent assumption (Assump-
tion 3.12) holds with respect to GroupGen. Then, Construction 3.15 satisfies static unforgeability in the registered-key
model for policies with 𝑁 users.

Extensions. Much like Construction 3.4, proving well-formedness of the verification key and the aggregation hint

in Construction 3.15 reduces to a NIZK proof of knowledge of the secret exponent 𝛼 such that 𝐴 = 𝑒 (𝑔,𝑔)𝛼 where

𝐴 is the component of the verification key. This can be done using the same techniques as described in Remark 3.9.

As was the case with Construction 3.4, the components in the aggregation hint can be efficiently validated using

the pairing (and the components of the CRS).

Similarly, using share virtualization (Remark 3.10), we can extend Construction 3.15 to support policies with a

𝐾-use linear secret sharing scheme. This increases the CRS size, the user verification key size, the partial signature

size, and the aggregation key size by a factor of 𝐾 , but does not affect the size of the aggregated verification key or

aggregated signature. We summarize the overall instantiation and its efficiency properties in the following corollary:

Corollary 3.19 (Distributed Monotone-Policy Signatures from Pairings). Let 𝜆 be a security parameter. Suppose the
𝑁 -extended bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds with respect to GroupGen for all poly-
nomials 𝑁 = 𝑁 (𝜆). Let Φ = {Φ𝜅 }𝜅∈N be the class of policies that can be described by a 𝐾-use linear-secret sharing scheme
with 𝑁 = 𝑁 (𝜅) users and width𝑊 =𝑊 (𝜅), where 𝑁,𝑊 are polynomially-bounded. Then, there exists a (statically-secure)
distributed monotone-policy signature scheme for Φ in the registered-key model with the following efficiency properties:

• CRS size: The CRS contains 𝑂 (𝐾𝑁𝑊 ) group elements.

• User key size: A user’s verification key vk contains 4 + 𝐾 group elements and the aggregation hint ht contains
𝐾 (2𝐾𝑁 − 1) group elements. The first 4 group elements in each user’s verification key are fixed (i.e., group elements
from the common reference string). The number of user-specific group elements in each verification key is 𝐾 .

• Partial signature size: A user’s partial signature 𝜎 contains 2𝐾 group elements.

• Aggregation key size: The size of an aggregation key ak𝜑 for a policy 𝜑 ∈ Φ contains 2𝐾𝑁 + 1 group elements.

• Aggregate verification key size:An aggregated verification key vk𝜑 for a policy𝜑 ∈ Φ contains 6 group elements.

• Aggregate signature size:An aggregate signature contains 3 group elements. The aggregate verification algorithm
requires performing 3 pairings (and 𝑂 (1) group operations).
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4 Distributed Monotone-Policy Encryption

Distributed monotone-policy encryption [GKPW24, ADM
+
24, DJWW25] is the analog of distributed monotone-policy

signatures in the encryption setting. Much like the signature case, users in this model choose their own individual

public and private keys and publish their public keys to a public-key directory. Thereafter, anyone can encrypt

a message to any subset of public keys and with respect to an arbitrary access policy. Any quorum of users that

satisfies the access policy can come together and decrypt (using their secret keys). In this section, we show that our

distributed monotone-policy signature scheme from Section 3 directly extends to yield a distributed monotone-policy

encryption scheme for the same underlying policy family. We start by introducing the formal definition below. Then,

in Remark 4.3, we compare our notion to related notions from prior work.

As in Section 3, we again formulate our correctness and security notions in the semi-malicious setting (i.e., the

registered key model) where we only require the properties to hold with respect to public keys that are in the support

of the honest key-generation algorithm. Using the same approach from Remark 3.2, we can compile a semi-malicious

scheme to one that is correct and secure against adversarially-chosen keys using (simulation-sound) non-interactive

zero-knowledge proofs. Thus, for ease of exposition, we exclusively focus on semi-malicious security in this paper.

Definition 4.1 (Distributed Monotone-Policy Encryption [GKPW24, DJWW25, adapted]). Let 𝜆 be a security param-

eter and 𝜅 be a policy-family parameter. Let Φ = {Φ𝜅 }𝜅∈N be a family of monotone policies. A tag-based distributed

monotone-policy encryption scheme for policy space Φ consists of a tuple of efficient algorithms ΠDMPE = (Setup,
KeyGen, Preprocess, Encrypt, PartialDec, PartialVerify,Decrypt) with the following syntax:

• Setup(1𝜆, 1𝜅) → crs: On input the security parameter 𝜆 and the policy-family parameter 𝜅, the setup algo-

rithm outputs the common reference string crs. We assume the common reference string implicitly includes

a description of the message spaceM and the tag space T for the encryption scheme.

• KeyGen(crs) → (pk, ht, sk): On input the common reference string crs, the key-generation algorithm outputs

a public key pk, an aggregation hint ht, and a secret key sk.

• Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]) → (ek𝜑 , ak𝜑 ): On input the common reference string crs, a policy𝜑 : 2[𝑁 ] →
{0, 1}, and 𝑁 public keys pkℓ together with their aggregation hints htℓ , the preprocessing algorithm outputs an

encryption key ek𝜑 and an aggregation key ak𝜑 . We assume that the encryption key ek𝜑 includes a description

of the message spaceM and the tag space T (from crs). This algorithm is deterministic.

• Encrypt(ek𝜑 , 𝜏,𝑚) → ct: On input an encryption key ek𝜑 , a tag 𝜏 ∈ T , and a message𝑚 ∈ M, the encryption

algorithm outputs a ciphertext ct.

• PartialDec(sk, 𝜏, ct) → 𝜎 : On input a secret key sk, a tag 𝜏 , and a ciphertext ct, the partial decryption algorithm

outputs a partial decryption 𝜎 .

• PartialVerify(pk, 𝜏, ct, 𝜎) → 𝑏: On input a public key pk, a tag 𝜏 , a ciphertext ct, and a partial decryption 𝜎 , the

partial-verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• Decrypt(ak𝜑 , ct, {𝜎ℓ }ℓ∈𝑆 ) → 𝑚: On input the aggregation key ak𝜑 , the ciphertext ct, and a set of partial de-

cryptions 𝜎ℓ , the decryption algorithm outputs a message𝑚 ∈ M (or a special symbol ⊥ to indicate decryption

failure). This algorithm is deterministic.

We require ΠDMPE to satisfy the following properties:

• Partial decryption correctness: For all 𝜆, 𝜅 ∈ N, all crs in the support of Setup(1𝜆, 1𝜅), all tags 𝜏 ∈ T , all mes-

sages𝑚 ∈ M (where T ,M denotes the tag space and message space defined by crs), all {(pkℓ , skℓ , htℓ )}ℓ∈[𝑁 ]
where (pkℓ , skℓ , htℓ ) is in the support of KeyGen(crs), all policies 𝜑 ∈ Φ𝜅 where 𝜑 : 2[𝑁 ] → {0, 1}, and all

indices 𝑖∗ ∈ [𝑁 ], it holds that

Pr

PartialVerify(pk𝑖∗ , 𝜏, ct, 𝜎𝑖∗ ) = 1 :

(ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ])
ct← Encrypt(ek𝜑 , 𝜏,𝑚)

𝜎𝑖∗ ← PartialDec(sk𝑖∗ , 𝜏, ct)

 = 1.
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• Aggregation correctness: For all 𝜆, 𝜅 ∈ N, all crs in the support of Setup(1𝜆, 1𝜅), all tags 𝜏 ∈ T , all messages

𝑚 ∈ M (where T ,M denotes the tag space and message space defined by crs), all {(pkℓ , skℓ , htℓ )}ℓ∈[𝑁 ] where
(pkℓ , skℓ , htℓ ) is in the support of KeyGen(crs), all policies 𝜑 ∈ Φ𝜅 , where 𝜑 : 2[𝑁 ] → {0, 1}, all sets 𝑆 ⊆ [𝑁 ]
where 𝜑 (𝑆) = 1, and setting (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]), and for all ciphertexts ct in the

support of Encrypt(ek𝜑 , 𝜏,𝑚), all partial decryptions {𝜎ℓ }ℓ∈𝑆 where for all ℓ ∈ 𝑆 , PartialVerify(pkℓ , 𝜏, ct, 𝜎ℓ ) = 1,

it holds that

Decrypt(ak𝜑 , ct, {𝜎ℓ }ℓ∈𝑆 ) =𝑚.

• Static tag-based CCA-security: For a security parameter 𝜆 and an adversaryA, we define the static tag-based

CCA-security game as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs the policy parameter 1

𝜅
together with a policy

𝜑 ∈ Φ𝜅 . In addition, algorithm A commits to a set of corrupted users C ⊆ [𝑁 ].
2. The challenger checks that 𝜑 (C) = 0. If not the challenger halts with output 𝑏′ = 0.

3. The challenger samples crs← Setup(1𝜆, 1𝜅). Then, for each index ℓ ∈ [𝑁 ] \ C, the challenger samples

a key (pkℓ , htℓ , skℓ ) ← KeyGen(crs). It gives crs together with {(pkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

4. Algorithm A now specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to generate the keys for

each of the corrupted users ℓ ∈ C.
5. For each ℓ ∈ C, the challenger computes (pkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). The challenger computes and

gives (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(ekℓ , htℓ )}ℓ∈[𝑁 ]) to the adversary A.

6. The adversary can now issue partial decryption queries by specifying an index ℓ ∈ [𝑁 ] \ C, a tag 𝜏 ∈ T ,
and a ciphertext ct. The challenger responds with PartialDec(skℓ , 𝜏, ct).

7. After A is finished making partial decryption queries, it outputs a pair of messages𝑚0,𝑚1 ∈ M. The

challenger samples a random tag 𝜏∗ r← T and responds with the challenge tag 𝜏∗ together with the

challenge ciphertext ct∗ ← Encrypt(ek𝜑 , 𝜏∗,𝑚𝑏).
8. Algorithm A can continue making partial decryption queries, except it is not allowed to query for a

decryption with tag 𝜏 = 𝜏∗. The challenger responds to each query as before. At the end of the experiment,

algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠDMPE satisfies static tag-based CCA-security in the registered-key model if for all efficient

adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆)

in the tag-based CCA-security game defined above. We say that ΠDMPE satisfies static tag-based CCA-security

in the registered-key model for policies with 𝑁 = 𝑁 (𝜆) users if the above holds for all efficient adversaries

A that outputs policies 𝜑 on exactly 𝑁 users.

• Succinctness: There exists a universal polynomial poly(·, ·) such that for all 𝜆, 𝜅 ∈ N, all crs in the support of

Setup(1𝜆, 1𝜅), all policies 𝜑 ∈ Φ𝜅 over 𝑁 = 𝑁 (𝜅) parties, all (pkℓ , htℓ , skℓ ) in the support of KeyGen(crs), and
setting (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]), the following hold:

– The size of the encryption key ek𝜑 and the size of the ciphertext output by Encrypt(ek𝜑 , ·, ·) is poly(𝜆, log𝑁 ).
– The size of the partial decryptions output by PartialDec(sk, ·, ·) is poly(𝜆, log𝑁 ).

Remark 4.2 (Tag-Based CCA-Security). Definition 4.1 defines a tag-based monotone-policy encryption scheme

where each ciphertext is associated with a tag 𝜏 . In the security game, the adversary is allowed to make decryption

queries on any ciphertext whose tag is distinct from the tag associated with the challenge ciphertext. This tag-based

notion allows us to easily interpolate between the CPA-security and CCA-security notions considered in prior

works [GKPW24, DJWW25]:
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• CPA-security: The default notion of security considered in [GKPW24, DJWW25] is CPA-security where the

adversary in the security game does not have the ability to request partial decryptions from honest users. A

scheme that satisfies tag-based CCA-security trivially implies one that is CPA-secure by simply taking the tag

to be a fixed value. Since the tag is a fixed value, we no longer need to explicitly include it as an input to the

underlying algorithms.

• CCA-security: Both [GKPW24, DJWW25] also consider a stronger CCA-security notion where the adversary is

allowed to request partial decryptions on any ciphertext other than the challenge ciphertext. It is straightforward

to upgrade a scheme that satisfies tag-based CCA-security into a scheme with full CCA-security using classic

transformations [CHK04, Kil06] (e.g., take the tag to be the verification key for a one-time signature scheme and

include a signature on the ciphertext under the tag). Both [GKPW24, DJWW25] rely on this general strategy (c.f.,

[GKPW24, §6.2] and [DJWW25, §B]) to obtain CCA-secure distributed monotone-policy encryption schemes.

In this work, we focus on the intermediate tag-based notion because (1) our schemes naturally support this; and

(2) it is sufficient for full CCA-security via standard techniques. At the same time, if CPA-security suffices for an

application, then the tag can be set to a fixed string and dropped from the construction altogether. In this setting,

the tag-based syntax does not introduce unnecessary overhead to the construction.

Remark 4.3 (Comparison with Related Notions). Our definition of distributed monotone-policy encryption (Defini-

tion 4.1) combines features from threshold encryptionwith silent setup [GKPW24] and its adaptation to general policies

from [DJWW25]. Here, we provide a comparison of the key differences between our definition and existing notions:

• Policy-specific preprocessing: Our definition generalizes threshold encryption with silent setup [GKPW24]

to general policies, but where the policy is fixed at preprocessing time. The work of [GKPW24] shows how to

support dynamic policies where the preprocessing algorithm takes as input the group of users, but the threshold

can be chosen dynamically at encryption time. For similar reasons as discussed in Remark 3.2, it is only possible

to support dynamic policies and fast encryption if we either allow preprocessing the policy in advance or if the

policy has a short description (as is the case for threshold policies). In Section 5.2, we show that our techniques

easily supports dynamic thresholds if we restrict our attention to threshold policies.

Alternatively, we can also consider a setting without preprocesisng where both the group of users and the

policy are specified at encryption time (and also provided to the decryption algorithm). In this setting, the

running time of encryption and decryption both scale with the number of users and the description length

of the policy, but the ciphertext size is still small. This setting essentially absorbs the Preprocess algorithm
into the Encrypt and Decrypt algorithms. This more lightweight syntax is proposed in [DJWW25] and can

be viewed as the direct generalization of distributed broadcast encryption [WQZD10, BZ14] to more general

policies. Distributed broadcast encryption is a special case of distributed monotone-policy encryption where

there is a single policy (a threshold policy with threshold set to 1).

• Semi-malicious security: Similar to the signature case, we work in the semi-malicious model. By the same

argument as in Remark 3.2, we can lift a scheme to the fully malicious model using simulation-sound NIZK

proofs of knowledge.

• Static vs. adaptive security: Similar to our distributed monotone-policy signature construction, we use a

partitioning strategy to prove security (from 𝑞-type assumptions in the plain model). This restricts us to static

security where the adversary must declare the set of corrupted users at the beginning of the security game.

The work of [GKPW24] (for threshold policies) consider adaptive corruptions, but their security analysis relies

on the generic group model.

Construction 4.4 (Distributed Monotone-Policy Encryption). Let 𝜆 be a security parameter and 𝜅 be a policy-family

parameter. Let GroupGen be a prime-order bilinear group generator and let 𝑝 = 𝑝 (𝜆) be the order of the group output

by GroupGen. Let Φ = {Φ𝜅 }𝜅∈N be a family of monotone policies over 𝑁 = 𝑁 (𝜅) users and which may be described

by a one-use linear secret-sharing scheme with width𝑊 =𝑊 (𝜅). We represent each policy 𝜑 ∈ Φ with a matrix

M ∈ Z𝑁×𝑊𝑝 , and write mT
𝑖 to denote the 𝑖th row of M. We construct a distributed monotone-policy encryption scheme

ΠDMPE = (Setup,KeyGen, Preprocess, Encrypt, PartialDec, PartialVerify,Decrypt) for the policy family Φ as follows:
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• Setup(1𝜆, 1𝜅): On input the security parameter 𝜆 and the policy-family parameter 𝜅, the setup algorithm pro-

ceeds exactly as in Construction 3.15. Namely, it samples G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and𝑔,𝑔 r← G\{1}.
Let 𝑁 = 𝑁 (𝜅) and𝑊 =𝑊 (𝜅). The setup algorithm samples𝑢, ˆℎ

r← G, 𝑐 r← Z∗𝑝 , and s
r← Z𝑊𝑝 . It sets 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 .

It outputs the common reference string

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
. (4.1)

The message space for the encryption scheme isM = G𝑇 and the tag space is T = Z𝑝 .

• KeyGen(crs): On input the common reference string crs (with components parsed according to Eq. (4.1)), the

key-generation algorithm samples 𝛼
r← Z𝑝 and computes 𝑣 ′𝑖 = (𝑔𝑐

𝑖 )𝛼 for all 𝑖 ∈ [−𝑁, 𝑁 ] \ {0}. The algorithm
sets 𝐴 = 𝑒 (𝑔,𝑔)𝛼 and

pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and ht = {𝑣 ′𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .
The algorithm outputs the public key pk, the aggregation hint ht, and the secret key sk = (pk, 𝛼).

• Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]): On input the common reference string crs (with components parsed accord-

ing to Eq. (4.1)), a policy 𝜑 = M ∈ Z𝑁×𝑊𝑝 , and a collection of public keys pkℓ and hints htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} ,
the preprocessing algorithm computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣 ′ℓ,ℓ ,

Then for each ℓ ∈ [𝑁 ], it computes

𝑣ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ · 𝑔m
T
𝑖
(𝑐𝑖−ℓ s) .

Both 𝑧 and 𝑣ℓ are computed using the policy mT
ℓ and the elements 𝑔𝑐

ℓ s
from the crs. Then, it sets

ek𝜑 = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧) and ak𝜑 = (M, 𝑧, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝑁 ]).

Finally, the preprocessing algorithm outputs the encryption key ek𝜑 and the aggregation key ak𝜑 .

• Encrypt(ek𝜑 , 𝜏,𝑚): On input an encryption key ek𝜑 = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧), a tag 𝜏 ∈ Z𝑝 , and a message𝑚 ∈ G𝑇 ,
the encryption algorithm samples a random exponent 𝑡

r← Z𝑝 . It outputs the ciphertext

ct = (𝜏,𝐶1, 𝑐2, 𝑐3, 𝑐4) =
(
𝜏 , 𝐵𝑡 ·𝑚 , 𝑔𝑡 , (𝑢𝜏 ˆℎ)𝑡 , 𝑧𝑡

)
.

• PartialDec(sk, 𝜏, ct): On input a secret key sk = (pk, 𝛼) where pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a tag 𝜏 ∈ Z𝑝 , and a

ciphertext ct, the partial decryption algorithm samples 𝑟
r← Z𝑝 and outputs 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝜏 ˆℎ)𝑟 ).

• PartialVerify(pk, 𝜏, ct, 𝜎): On input a key pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a tag 𝜏 ∈ Z𝑝 , a ciphertext ct = (𝜏 ′,𝐶1, 𝑐2, 𝑐3, 𝑐4),
and a partial decryption 𝜎 = (𝜎1, 𝜎̂2), the partial verification algorithm outputs 0 if 𝜏 ≠ 𝜏 ′. Otherwise, it outputs
1 if 𝐴 · 𝑒 (𝜎1, 𝑢𝜏 ˆℎ) = 𝑒 (𝑔, 𝜎̂2).

• Decrypt(ak𝜑 , 𝜏, ct, {𝜎ℓ }ℓ∈𝑆 ): On input the aggregation key ak𝜑 = (M, 𝑧, {𝑣ℓ }ℓ∈[𝑁 ]), a tag 𝜏 ∈ Z𝑝 , a ciphertext
ct = (𝜏 ′,𝐶1, 𝑐2, 𝑐3, 𝑐4), and a collection of partial decryptions 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2) for ℓ ∈ 𝑆 ⊆ [𝑁 ], the decryption
algorithm proceeds as follows:

1. First, it checks if 𝑆 satisfies the policyM. If not, the decryption algorithm outputs⊥. Otherwise, let 𝝎 ∈ Z𝑁𝑝
be a reconstruction vector where 𝝎TM = eT

1
, and moreover, 𝜔ℓ = 0 for all ℓ ∈ [𝑁 ] \ 𝑆 .

2. Compute the aggregated decryption components:

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎̂agg,2 =

∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
𝑣
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔𝑐
−ℓ )𝜔ℓ .

3. Output 𝐶1 · 𝑒 (𝜎agg,1, 𝑐3)−1 · 𝑒 (𝑐2, 𝜎̂agg,2) · 𝑒 (𝜎agg,3, 𝑐4)−1.
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Correctness and security analysis. The correctness and security analysis for Construction 4.4 follow a very

similar structure as that for Construction 3.4, just adapted to the setting of encryption. We state the relevant theorems

below, and defer their formal proofs to Appendix C.

Theorem 4.5 (Partial Decryption Correctness). Construction 4.4 satisfies partial decryption correctness.

Theorem 4.6 (Aggregation Correctness). Construction 4.4 satisfies aggregation correctness.

Theorem 4.7 (Static Tag-Based CCA-Security). Suppose the decisional 𝑁 -extended bilinear Diffie-Hellman expo-
nent assumption (Assumption 3.12) holds with respect to GroupGen. Then, Construction 4.4 satisfies static tag-based
CCA-security in the registered-key model for policies with 𝑁 users.

Remark 4.8 (Signature-Based Witness Encryption). We can also view Construction 4.4 as a signature-based witness

encryption scheme [DHMW23, ADM
+
24] for the Boneh-Boyen signature scheme. In a signature-based witness

encryption scheme, users encrypt to a tag 𝜏 , a collection of verification keys vk1, . . . , vk𝑁 and a policy 𝜑 . Decryption

is possible if one has a collection of valid signatures {𝜎𝑖 }𝑖∈𝑆 (with respect to {vk𝑖 }𝑖∈𝑆 ) where 𝜑 (𝑆) = 1. Previous

works [DHMW23, ADM
+
24] considered the setting for threshold policies. The work of [DHMW23] gives a con-

struction where the ciphertext size scales linearly with the number of users 𝑁 associated with the policy while the

subsequent works [GKPW24, ADM
+
24] give constructions with succinct ciphertexts for threshold policies either in

the generic group model [GKPW24] or using indistinguishability obfuscation [ADM
+
24]. Among these schemes, the

obfuscation-based construction of [ADM
+
24] also has short public keys. Our work gives a construction with succinct

ciphertexts from 𝑞-type assumptions in the plain model. However, the size of each user’s public key scales linearly

with 𝑁 (similar to [GKPW24]). We refer to Table 2 for a more detailed comparison.

Extensions. As was the case for our signature schemes from Section 3, we can lift our scheme from the semi-

malicious model to the fully malicious model using NIZKs proof of knowledge. As in Remark 3.9, it suffices to use a

NIZK proof of knowledge of discrete log (i.e., prove knowledge of 𝛼 such that 𝐴 = 𝑒 (𝑔,𝑔)𝛼 , where 𝐴 is the component

in the public key). The well-formedness of the aggregation hint can then be checked using the pairing and the

components of the CRS.

Similarly, using share virtualization (Remark 3.10), we can extend Construction 4.4 to support policies with a

𝐾-use linear secret sharing scheme. This increases the size of the common reference string, the user public key, the

aggregation key, and the partial decryptions by a factor of 𝐾 , but does not affect the size of the aggregated encryption

key or the ciphertexts. We summarize the overall instantiation and its efficiency properties in the following corollary:

Corollary 4.9 (Distributed Monotone-Policy Encryption from Pairings). Let 𝜆 be a security parameter. Suppose the
𝑁 -extended bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds with respect to GroupGen for all poly-
nomials 𝑁 = 𝑁 (𝜆). Let Φ = {Φ𝜅 }𝜅∈N be the class of policies that can be described by a 𝐾-use linear-secret sharing scheme
with 𝑁 = 𝑁 (𝜅) users and width𝑊 =𝑊 (𝜅), where 𝑁,𝑊 are polynomially-bounded. Then, there exists a (statically-secure)
distributed monotone-policy encryption scheme for Φ in the registered-key model with the following efficiency properties:

• CRS size: The CRS contains 𝑂 (𝐾𝑁𝑊 ) group elements.

• User key size: A user’s public key pk contains 4 + 𝐾 group elements and the aggregation hint ht contains
𝐾 (2𝐾𝑁 − 1) group elements. The first 4 group elements in each user’s verification key are fixed (i.e., group elements
from the common reference string). The number of user-specific group elements in each verification key is 𝐾 .

• Aggregation key size: The size of an aggregation key ak𝜑 for a policy 𝜑 ∈ Φ contains 2𝐾𝑁 + 1 group elements.

• Aggregate encryption key size: An aggregated encryption key ek𝜑 for a policy 𝜑 ∈ Φ contains 6 group elements.

• Ciphertext size: A ciphertext contains 4 group elements (excluding the tag).

• Partial decryption size: A user’s partial decryption 𝜎 contains 2𝐾 group elements.
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5 Supporting Threshold Policies with a Linear-Size CRS

Our construction of distributed monotone-policy signatures (Constructions 3.4 and 3.15) and encryption (Construc-

tion 4.4) capture threshold policies as a special case (using the fact that threshold policies have a linear secret sharing

scheme). However, if we restrict ourselves to the particular case of threshold policies, we can obtain constructions

that have the following stronger functionality and efficiency properties:

• Quasi-linear-size CRS: Instantiating Constructions 3.15 and 4.4 for the special case of threshold policies

leads to a construction whose CRS scales quadratically with the number of users associated with a policy. The

quadratic blow-up arises from the fact that the scheme can support any policy with a linear secret sharing

scheme over 𝑁 parties (and width at most 𝑁 ). As we show in this section (see Section 1.2 for an overview), to

support threshold policies, it suffices to consider a scheme that only supports a single fixed policy (which is

hard-coded into the CRS). This allows us to derive schemes where the size of the CRS scales quasi-linearly with

the maximum number of parties 𝑁 in with the policy.

• Dynamic thresholds: The constructions in Sections 3 and 4 considered a setting where the preprocessing

algorithm fixes a single policy 𝜑 . For the special case of threshold policies, we can consider a more general

notion where the threshold 𝑇 is determined dynamically either at verification time (in the setting of signatures)

or at encryption time (in the setting of encryption). In this section, we show how to extend our scheme to

support dynamic thresholds with only 𝑂 (log𝑁 ) overhead in the size of the verification or encryption key, and

no overhead in the size of the aggregate signature or the ciphertext.

Taken together, our resulting construction matches the syntax and efficiency requirements of threshold signatures

and threshold encryption with silent setup.

5.1 Threshold Signatures with Silent Setup

In this section, we show how to specialize Construction 3.15 to the setting of threshold policies and obtain a threshold

signature scheme with silent setup [DCX
+
23, GJM

+
24]. Like [DCX

+
23, GJM

+
24], our scheme supports dynamic

thresholds. As in Section 3, we focus on a simpler definition by working in the registered key model (where correctness

and security hold against semi-malicious adversaries) and consider a static notion of security where the adversary

has to declare the set of corrupted users upfront. We refer to Remark 3.2 for more discussion on these differences.

Definition 5.1 (Threshold Signatures with Silent Setup [GJM
+
24, adapted]). Let 𝜆 be a security parameter and

M = {M𝜆}𝜆∈N be the message space. A threshold signature scheme with silent setup over message spaceM consists

of a tuple of efficient algorithms ΠSTS = (Setup,KeyGen, Sign, PartialVerify, Preprocess,Aggregate,Verify) with the

following syntax:

• Setup(1𝜆, 1𝑁 ) → crs: On input the security parameter 𝜆, and a bound on the number of users in a quorum,

the setup algorithm outputs the common reference string crs.

• KeyGen(crs) → (vk, ht, sk): On input the common reference string crs, the key-generation algorithm outputs

the verification key vk, an aggregation hint ht, and a signing key sk.

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message𝑚 ∈ M, the signing algorithm outputs a signature 𝜎 .

• PartialVerify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ M, and a signature 𝜎 , the partial-

verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• Preprocess(crs, {(vkℓ , htℓ )}ℓ∈[𝐿]) → (vkagg, ak): On input the common reference string crs, a collection of 𝐿

verification keys vk1, . . . , vk𝐿 together with their aggregation hints ht1, . . . , ht𝐿 ,10 the preprocessing algorithm

outputs an aggregated verification key vkagg and an aggregation key ak. This algorithm is deterministic.

• Aggregate(ak, {𝜎ℓ }ℓ∈𝑆 ) → 𝜎agg: On input the aggregation key ak and a set of signatures 𝜎ℓ , the aggregation

algorithm outputs an aggregate signature 𝜎agg. This algorithm is deterministic.

10
Recall that { (vkℓ , htℓ ) }ℓ ∈ [𝐿] denotes an ordered set of verification keys and aggregation hints.
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• Verify(vkagg,𝑚, 𝜎agg,𝑇 ) → 𝑏: On input an aggregate verification key vkagg, a message𝑚 ∈ M, an aggregate sig-

nature 𝜎agg, and a threshold𝑇 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

We require ΠSTS satisfy the following properties:

• Signing correctness: For all 𝜆 ∈ N, 𝑁 ≤ 2
𝜆
, all messages𝑚 ∈ M𝜆 ,

Pr

PartialVerify(crs,𝑚, 𝜎) = 1 :

crs← Setup(1𝜆, 1𝑁 )
(vk, ht, sk) ← KeyGen(crs)

𝜎 ← Sign(sk,𝑚)

 = 1.

• Aggregation correctness: For all 𝜆 ∈ N, 𝑁 ≤ 2
𝜆
, all messages𝑚 ∈ M𝜆 , all 𝐿 ≤ 𝑁 , all crs in the support of

Setup(1𝜆, 1𝑁 ), all {(vkℓ , htℓ , skℓ )}ℓ∈[𝐿] where (vkℓ , htℓ , skℓ ) is in the support of KeyGen(crs) for all ℓ ∈ 𝐿, all
sets of signatures {𝜎ℓ }ℓ∈𝑆 where PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 , and all thresholds 𝑇 ≤ |𝑆 |,

Pr

[
Verify(vkagg,𝑚, 𝜎agg,𝑇 ) = 1 :

(vkagg, ak) = Preprocess(crs, {(vkℓ , htℓ )}ℓ∈[𝐿])
𝜎agg ← Aggregate(ak, {𝜎ℓ }ℓ∈𝑆 )

]
= 1.

• Static unforgeability: For a security parameter 𝜆 and an adversary A, we define the static unforgeability

game as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs the bound 1

𝑁
on the size of the quorum (where

𝑁 ≤ 2
𝜆
), the challenge quorum size 𝐿 ≤ 𝑁 , the indices of the corrupted users C ⊆ [𝐿], and a challenge

message𝑚∗ ∈ Z𝑝 .
2. The challenger samples crs← Setup(1𝜆, 1𝑁 ). Then, for each ℓ ∈ [𝑁 ] \ C, the challenger samples a key

(vkℓ , htℓ , skℓ ) ← KeyGen(crs). It gives crs and {(vkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

3. Algorithm A can now make signing queries by specifying an index ℓ ∈ [𝑁 ] \ C and a message𝑚 ≠𝑚∗.
The challenger replies to each query with Sign(skℓ ,𝑚).

4. Once A is finished making signing queries, it specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used
to generate the keys for each of the corrupted users ℓ ∈ C, the forgery 𝜎agg, and the threshold 𝑇 .

5. The challenger first checks that |C| < 𝑇 ≤ 𝐿 and outputs 0 if not. For each ℓ ∈ C, the challenger computes

(vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Next, the challenger computes

(vkagg, ak) = Preprocess(crs, {(vkℓ , htℓ )}ℓ∈[𝐿]).

The output of the experiment is 𝑏 = Verify(vkagg,𝑚∗, 𝜎agg,𝑇 ).

We say ΠSTS satisfies static unforgeability in the registered-key model if for all efficient adversaries A, there

exists a negligible function negl(·) such that for all 𝜆 ∈ N in the static unforgeability game defined above. We

say ΠSTS satisfies static unforgeability in the registered-key model where the bound on the quorum size is

𝑁 = 𝑁 (𝜆) if the above holds for all efficient adversaries A that declares 𝑁 to be the bound on the quorum size.

• Succinctness: There exists a universal polynomial poly(·, ·) such that for all 𝜆 ∈ N, all 𝑁 ≤ 2
𝜆
, all crs

in the support of Setup(1𝜆, 1𝑁 ), all 𝐿 ≤ 𝑁 , all (vkℓ , htℓ , skℓ ) in the support of KeyGen(crs), and setting

(vkagg, ak) = Preprocess(crs, {(vkℓ , htℓ )}ℓ∈[𝐿]), the following hold:

– The size of the aggregated verification key vkagg is poly(𝜆, log𝑁 ).
– The size of the aggregate signatures output by Aggregate(ak, ·) is poly(𝜆, log𝑁 ).

Taken together, these two properties imply that the running time of Verify(vkagg, ·, ·) is also poly(𝜆, log𝑁 ).

Construction 5.2 (Threshold Signatures with Silent Setup). Let 𝜆 be a security parameter and GroupGen be a prime-

order bilinear group generator. Let 𝑝 = 𝑝 (𝜆) be the order of the group output by GroupGen. For ease of exposition,
we make the following two simplifying assumptions in the following description. Note that both assumptions are

without loss of generality:
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• We assume that 𝑝 (𝜆) > 2
𝜆+1

. We can satisfy this requirement by taking any GroupGen′ algorithm that satisfies

Definition 2.4 and defining GroupGen(1𝜆) to output GroupGen′ (1𝜆+1). In particular, GroupGen′ (1𝜆+1) always
outputs a group of prime order 𝑝 where 𝑝 > 2

𝜆+1
.

• We assume that the bound 𝑁 = 2
𝑛
on the quorum size is always a power-of-two. If 𝑁 is not a power-of-two, we

can always pad the input to the next power-of-two with at most a 2× overhead. (As we discuss in Remark 5.8, we

can handle non-power-of-two𝑁 with no additional overhead, but this requires extra notation and special casing.)

We construct a threshold signature scheme with silent setup ΠSTS = (Setup,KeyGen, Sign, PartialVerify, Preprocess,
Aggregate,Verify) over message spaceM = {Z𝑝 (𝜆) }𝜆∈N as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and a bound on the quorum size 𝑁 = 2
𝑛 ≤ 2

𝜆
, the setup

algorithm proceeds as follows:

– Sample G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and 𝑔,𝑔 r← G \ {1}, 𝑢, ˆℎ r← G, 𝑐 r← Z∗𝑝 , and s r← Z𝑁𝑝 . Let
𝐵 = 𝑒 (𝑔,𝑔)𝑠1 .

– Let M ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generating matrix for an 𝑁 -out-of-(2𝑁 − 1) threshold policy from

Eq. (2.1). For ℓ ∈ [2𝑁 − 1], let mT
ℓ denote the ℓ

th
row of M. Then compute

𝑧0 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ,0 =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s .

– For each ℓ ∈ [𝑁 + 1, 2𝑁 − 1], sample 𝛾ℓ
r← Z𝑝 . For each 𝑗 ∈ [𝑛], define the set 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1].

Observe that

⋃
𝑗∈[𝑛] 𝑋 𝑗 = [𝑁 + 1, 2𝑁 − 1]. Then, for each 𝑗 ∈ [𝑛] and 𝑖 ∈ 𝐼 \ 𝑋 𝑗 , define

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

and 𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

For ease of notation, we define the interval 𝐼 = [−2𝑁 +1, 2𝑁 −1]. Finally, it outputs the common reference string

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
. (5.1)

• KeyGen(crs): On input the common reference string crs (with components parsed according to Eq. (5.1)), the

key-generation algorithm samples 𝛼
r← Z𝑝 and computes 𝑣 ′𝑖 = (𝑔𝑐

𝑖 )𝛼 for all 𝑖 ∈ 𝐼 \ {0}. The algorithm sets

𝐴 = 𝑒 (𝑔,𝑔)𝛼 and

vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and ht = {𝑣 ′𝑖 }𝑖∈𝐼\{0}
The algorithm outputs the verification key vk, the aggregation hint ht and the signing key sk = (vk, 𝛼).

• Sign(sk,𝑚): On input the signing key sk = (vk, 𝛼) where vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and a message 𝑚 ∈ Z𝑝 , the
signing algorithm samples 𝑟

r← Z𝑝 and outputs the signature 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚 ˆℎ)𝑟 ).

• PartialVerify(vk,𝑚, 𝜎): On input a verification key vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a message𝑚 ∈ Z𝑝 , and a signature

𝜎 = (𝜎1, 𝜎̂2), the partial verification algorithm outputs 1 if

𝐴 · 𝑒 (𝜎1, 𝑢𝑚 ˆℎ) = 𝑒 (𝑔, 𝜎̂2).

• Preprocess(crs, {(vkℓ , htℓ )}ℓ∈[𝐿]): On input the common reference string crs (with components parsed accord-

ing to Eq. (5.1)) and a collection of verification keys vkℓ and hints htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0} for ℓ ∈ [𝐿], where 𝐿 ≤ 𝑁 .
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Then it computes

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ = 𝑣ℓ,0 ·
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ .
(5.2)

Finally, the preprocessing algorithm outputs

vkagg = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛])
ak =

(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.

The preprocessing algorithm outputs the verification key vkagg and the aggregation key ak.

• Aggregate(crs, ak, {𝜎ℓ }ℓ∈𝑆 ): On input the aggregation key ak =
(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
, and a col-

lection of signatures 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2) for ℓ ∈ 𝑆 , the aggregation algorithm proceeds as follows:

– Let 𝑇 = 𝐿 − |𝑆 |. Write 𝑇 =
∑
𝑗∈[𝑛] 𝑏 𝑗 · 2𝑗−1 (i.e., 𝑏𝑛 · · ·𝑏1 is the binary representation of 𝑇 ).

– LetM ∈ Z2𝑁×𝑁
𝑝 be the share-generating matrix for an 𝑁 -out-of-(2𝑁 − 1) threshold policy from Eq. (2.1).

11

– Let 𝑆pad = 𝑆 ∪ [𝐿 + 1, 𝑁 ] ∪
⋃
𝑗 :𝑏 𝑗=1

𝑋 𝑗 , where 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1]. By construction, |𝑆pad | = 𝑁 . Let

𝝎 ∈ Z2𝑁−1
𝑝 be a reconstruction vector where 𝝎TM = eT

1
, and moreover, 𝜔ℓ = 0 for all ℓ ∉ 𝑆pad.

– Compute

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1

𝜎̂agg,2 =
∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
·

∏
ℓ∈𝑆pad

𝑣
𝜔ℓ

ℓ
·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝜏
𝜔ℓ

𝑗,ℓ

𝜎agg,3 =
∏
ℓ∈𝑆pad

(
𝑔𝑐
−ℓ )𝜔ℓ .

– Output the signature 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, |𝑆 |).

• Verify(vkagg,𝑚, 𝜎agg,𝑇 ): On input the verification key

vkagg = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛]),

a message𝑚 ∈ Z𝑝 , a signature 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, 𝐾) and a threshold𝑇 ∈ [𝐿], the verification algorithm

first checks that 𝐾 ≥ 𝑇 . If so, it computes 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1} such that

∑
𝑗∈[𝑛] 𝑏 𝑗2

𝑗−1 = 𝐿 − 𝐾 . If so, it checks

𝐵 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧) ·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ). (5.3)

Otherwise, the verification algorithm outputs 0.

Correctness and security analysis. The correctness and security analysis for Construction 5.2 follow a very

similar structure as that for Construction 3.15. We state the relevant theorems below, and defer their formal proofs

to Appendix D.

Theorem 5.3 (Signing Correctness). Construction 5.2 satisfies signing correctness.
11
For this to be well-defined, we require that 𝑝 > 2𝑁 − 1, which holds since 𝑁 ≤ 2

𝜆 < 𝑝/2.
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Theorem 5.4 (Aggregation Correctness). Construction 5.2 satisfies aggregation correctness.

Theorem 5.5 (Static Unforgeability). Take any polynomial 𝑁 = 𝑁 (𝜆) and suppose the (2𝑁 − 1)-extended bilinear
Diffie-Hellman exponent assumption (Assumption 3.12) holds with respect to GroupGen. Then, Construction 5.2 satisfies
static unforgeability in the registered-key model where the bound on the quorum size is 𝑁 .

Corollary 5.6 (Threshold Signature with Silent Setup). Let 𝜆 be a security parameter. Suppose the (2𝑁 − 1)-extended
bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds with respect to GroupGen for all polynomials
𝑁 = 𝑁 (𝜆). Then for every polynomial 𝑁 = 𝑁 (𝜆), there exists a threshold signature scheme with silent setup that supports
a quorum size of up to 𝑁 users with the following efficiency properties:

• CRS size: The CRS contains 𝑂 (𝑁 log𝑁 ) group elements.

• User key size: A user’s verification key vk contains 5 group elements and the aggregation hint ht contains 4𝑁 − 2
group elements. Note that 4 of the group elements in each user’s verification key are fixed (elements from the CRS);
only the remaining group element is user-specific. The preprocessing algorithm only needs the single user-specific ele-
ment (whereas verifying partial signatures requires the 4 fixed elements from the CRS and the user-specific element).

• Partial signature size: A user’s partial signature 𝜎 contains 2 group elements.

• Aggregation key size: The aggregation key ak contains 𝑂 (𝑁 log𝑁 ) group elements.

• Aggregate verification key size: The aggregate verification key vkagg contains 6 + ⌈log𝑁 ⌉ group elements (and
⌈log𝑁 ⌉ additional bits to encode the quorum size).

• Aggregate signature size: An aggregate signature contains 3 group elements and log𝑁 extra bits (to represent the
threshold). The aggregate verification algorithm requires performing 4 pairings (and 𝑂 (log𝑁 ) group operations).

Remark 5.7 (Instantiation over Asymmetric Groups). It is straightforward to adapt Construction 5.2 (as well as

Constructions 3.4 and 3.15) to work over asymmetric pairing groups (i.e., where the pairing 𝑒 : G1 × G2 → G𝑇 is

defined over two base groups G1 and G2). The approach is to assign each element of G in the construction to either

G1 or G2, subject to the restriction that the pairing is only defined on G1 × G2. In fact, Construction 5.2 already

decomposes naturally along these lines, where we can assign all the variables without hats (e.g., 𝑔) to G1 and the

variables with hats (e.g., 𝑔, ˆℎ,𝑢) to G2. With this instantiation, an aggregate signature in Construction 5.2 consists

of 2 G1 elements and 1 G2 element. Over a standard pairing curve at the 128-bit security level (e.g., BLS-381 [BLS02]),

this yields a scheme where the aggregate signatures are 192 bytes (48 bytes per G1 element and 96 bytes per G2

element). This is 2.8–3× shorter than the scheme of [DCX
+
23] (536 bytes) and of [GJM

+
24] (592 bytes).

Remark 5.8 (Non-Power-of-Two 𝑁 ). For ease of notation, Construction 5.2 assumes that the bound on the number

of users 𝑁 is a power of 2. While we can always pad 𝑁 to the next power of two with at most a 2× overhead in

the CRS and aggregation hint sizes, we can also avoid padding altogether. To see this, observe that correctness and

security of Construction 5.2 relies on the following two properties of the sets 𝑋1, . . . , 𝑋𝑛 :

• The sets 𝑋𝑖 are pairwise disjoint and
⋃
𝑖∈[𝑛] 𝑋𝑖 = [𝑁 + 1, 2𝑁 − 1].

• For all 𝐾 ∈ [𝑁 − 1], there is a collection of bits 𝑏1, . . . , 𝑏𝑛 such that |⋃𝑖:𝑏𝑖=1
𝑋𝑖 | = 𝐾 . The value 𝐾 essentially

corresponds to the number of “free” signatures the aggregator is using.

When 𝑁 is a power of 2, and the sets𝑋𝑖 are defined as in Construction 5.2, then the bits 𝑏1, . . . , 𝑏𝑛 precisely correspond

to the binary decomposition of 𝐾 . Constructing a set system that satisfies this property is straightforward even

when 𝑁 is not a power of 2. In this case, let 𝑛 = ⌈log𝑁 ⌉. Define 𝑋1, . . . , 𝑋𝑛−1 exactly as in Construction 5.2 and let

𝑋𝑛 = [𝑁 + 2𝑛−1, 2𝑁 − 1]. By construction, the first property is satisfied. For the second property, take any 𝐾 ∈ [𝑁 − 1],
and let 𝑏𝑛 · · ·𝑏1 be the binary representation of 𝐾 .

• If 𝑏𝑛 = 0, then |⋃𝑖:𝑏𝑖=1
𝑋𝑖 | = 𝐾 .

• If 𝑏𝑛 = 1, then define 𝑏′𝑛 = 1 and let 𝑏′𝑛−1 · · ·𝑏′1 be the binary representation of 𝐾 − |𝑋𝑛 |. Then, by construction

|⋃𝑖:𝑏′
𝑖
=1𝑋𝑖 | = 𝐾 .
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By defining the sets 𝑋𝑖 in this way, and deriving the bits 𝑏1, . . . , 𝑏𝑛 associated with a target value 𝐾 in the above

manner, we can adapt Construction 5.2 to support arbitrary 𝑁 without any additional overhead.

Remark 5.9 (Dynamic Policies, More Generally). The approach in Construction 5.2 for supporting dynamic policies

is to add dummy users in the policy, and allow the aggregator (and correspondingly, the verifier) the ability to decide

whether a group of dummy users are automatically included in the signing quorum (i.e., by zeroing our their signing

keys in the verification key) or automatically excluded (i.e., by including their signing key as part of the verification

key). This approach can also be applied to Constructions 3.4 and 3.15. Namely, when generating the verification key

for a share-generating matrix M, the preprocessing algorithm can always designate different (non-overlapping) sets

of rows of M as rows associated with dummy users (these correspond to the sets 𝑋1, . . . , 𝑋𝑛 in Construction 5.2). The

aggregator and the verifier in turn has the flexibility of deciding whether each preset group of dummy users are

automatically included or excluded in the signing quorum during signature aggregation and verification, respectively.

For each set of rows, the preprocessing algorithm would need to pre-compute the aggregated public key for the

block (i.e., the analog of the 𝑦 𝑗 in Construction 5.2) together with the cross terms (i.e., the analog of the 𝜏 𝑗,𝑖 in

Construction 5.2) and include those as part of the verification key and aggregation key, respectively.

5.2 Threshold Encryption with Silent Setup

Just like our distributed monotone-policy signature scheme (Construction 3.15) immediately yields a distributed

monotone-policy encryption scheme, our threshold signature scheme with silent setup (Construction 5.2) immediately

implies the analogous notion of threshold encryption with silent setup [GKPW24]. The transformation preserves the

functionality and efficiency properties of the underlying signature scheme (i.e., encrypting to dynamic thresholds and

having a quasi-linear-size CRS). We give the formal definition of a threshold encryption scheme with silent setup and

give our construction and security analysis below. As in Section 5.1, we give our definition in the registered-key model

(where correctness and security hold against semi-malicious adversaries) and consider a static notion of security.

As in Section 4, we consider a tag-based CCA-security notion which easily implies CPA-security (by setting the tag

to a fixed string) and CCA-security (by setting the tag to be the verification key for a one-time signature scheme).

Definition 5.10 (Threshold Encryption with Silent Setup [GKPW24, adapted]). Let 𝜆 be a security parameter. A

(tag-based) threshold encryption scheme with silent setup consists of a tuple of efficient algorithms ΠSTE = (Setup,
KeyGen, Preprocess, Encrypt, PartialDec, PartialVerify,Decrypt) with the following syntax:

• Setup(1𝜆, 1𝑁 ) → crs: On input the security parameter 𝜆 and a bound on the maximum number of users in a

quorum, the setup algorithm outputs the common reference string crs. We assume crs implicitly includes a

description of the message spaceM and the tag space T for the encryption scheme.

• KeyGen(crs) → (pk, ht, sk): On input the common reference string crs, the key-generation algorithm outputs

a public key pk, an aggregation hint ht, and a secret key sk.

• Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]) → (ek, ak): On input the common reference string crs, a collection of 𝐿 public
keys pk

1
, . . . , pk𝐿 together with their aggregation hints ht1, . . . , ht𝐿 , the preprocessing algorithm outputs an

encryption key ek and an aggregation key ak. This algorithm is deterministic. We assume ek also includes a

description of the message spaceM and tag space T (from crs).

• Encrypt(ek, 𝜏,𝑚,𝑇 ) → ct: On input an encryption key ek, a tag 𝜏 ∈ T , a message𝑚 ∈ M, and a threshold 𝑇 ,

the encryption algorithm outputs a ciphertext ct.

• PartialDec(sk, 𝜏, ct) → 𝜎 : On input a secret key sk, a tag 𝜏 , and a ciphertext ct, the partial decryption algorithm

outputs a partial decryption 𝜎 .

• PartialVerify(pk, 𝜏, ct, 𝜎) → 𝑏: On input a public key pk, a tag 𝜏 , a ciphertext ct, and a partial decryption 𝜎 , the

partial-verification algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• Decrypt(ak, ct, {𝜎ℓ }ℓ∈𝑆 ) →𝑚: On input the aggregation key ak, the ciphertext ct, and a set of partial decryp-

tions 𝜎ℓ , the decryption algorithm outputs a message𝑚 ∈ M (or a special symbol ⊥ to indicate decryption

failure). This algorithm is deterministic.
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We require ΠSTE satisfy the following properties:

• Partial decryption correctness: For all 𝜆 ∈ N, all𝑁 ≤ 2
𝜆
, all crs in the support of Setup(1𝜆, 1𝑁 ), all tags 𝜏 ∈ T ,

all messages𝑚 ∈ M (where T ,M denotes the tag space and message space defined by crs), all quorum sizes

𝐿 ≤ 𝑁 , any threshold 𝑇 ∈ [𝐿], all {(pkℓ , skℓ , htℓ )}ℓ∈[𝐿] where (pkℓ , skℓ , htℓ ) is in the support of KeyGen(crs),
and all indices 𝑖∗ ∈ [𝐿], it holds that

Pr

PartialVerify(pk𝑖∗ , 𝜏, ct, 𝜎𝑖∗ ) = 1 :

(ek, ak) = Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿])
ct← Encrypt(ek, 𝜏,𝑚,𝑇 )
𝜎𝑖∗ ← PartialDec(sk𝑖∗ , 𝜏, ct)

 = 1.

• Aggregation correctness: For all 𝜆 ∈ N, all 𝑁 ≤ 2
𝜆
, all crs in the support of Setup(1𝜆, 1𝑁 ), all tags 𝜏 ∈ T ,

all messages𝑚 ∈ M (where T ,M denotes the tag space and message space defined by crs), all quorum sizes

𝐿 ≤ 𝑁 , all {(pkℓ , skℓ , htℓ )}ℓ∈[𝐿] where (pkℓ , skℓ , htℓ ) is in the support ofKeyGen(crs), all subsets 𝑆 ⊆ [𝐿], and all
thresholds 1 ≤ 𝑇 ≤ |𝑆 |, and setting (ek, ak) = Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]), and for all ciphertexts ct in the

support of Encrypt(ek, 𝜏,𝑚,𝑇 ), all partial decryptions {𝜎ℓ }ℓ∈𝑆 where for all ℓ ∈ 𝑆 , PartialVerify(pkℓ , 𝜏, ct, 𝜎ℓ ) = 1,

we have

Decrypt(crs, ak, ct, {𝜎ℓ }ℓ∈𝑆 ) =𝑚.

• Static tag-based CCA-security: For a security parameter 𝜆 and an adversaryA, we define the static tag-based

CCA-security game as follows:

1. On input the security parameter 1
𝜆
, algorithm A outputs a bound 1

𝑁
on the size of the quorum (where

𝑁 ≤ 2
𝜆
), the challenge quorum size 𝐿 ≤ 𝑁 , the indices of the corrupted users C ⊆ [𝑁 ], and a challenge

message𝑚∗ ∈ Z𝑝 .
2. The challenger samples crs← Setup(1𝜆, 1𝑁 ). Then, for each index ℓ ∈ [𝐿] \ C, the challenger samples

a key (pkℓ , htℓ , skℓ ) ← KeyGen(crs). It gives crs together with {(pkℓ , htℓ )}ℓ∈[𝐿]\C to A.

3. Algorithm A now specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to generate the keys for

each of the corrupted users ℓ ∈ C.
4. For each ℓ ∈ C, the challenger computes (pkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). The challenger computes and

gives (ek, ak) = Preprocess(crs, {(ekℓ , htℓ )}ℓ∈[𝐿]) to the adversary A.

5. The adversary can now issue partial decryption queries by specifying an index ℓ ∈ [𝐿] \ C, a tag 𝜏 ∈ T ,
and a ciphertext ct. The challenger responds with PartialDec(skℓ , 𝜏, ct).

6. After A is finished making partial decryption queries, it outputs a pair of messages𝑚0,𝑚1 ∈ M along

with a threshold 𝑇 .

7. The challenger first checks that |C| < 𝑇 ≤ 𝐿. If not, the challenger outputs 0. Otherwise, it samples

a random tag 𝜏∗ r← T and responds with the challenge tag 𝜏∗ together with the challenge ciphertext

ct∗ ← Encrypt(ek, 𝜏∗,𝑚𝑏,𝑇 ).
8. Algorithm A can continue making partial decryption queries, except it is not allowed to query for a

decryption with tag 𝜏 = 𝜏∗. The challenger responds to each query as before. At the end of the experiment,

algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSTE satisfies static tag-based CCA-security if for all efficient adversariesA, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆)

in the tag-based CCA-security game defined above. We say ΠSTE satisfies static unforgeability in the registered-

key model where the bound on the quorum size is 𝑁 = 𝑁 (𝜆) if the above holds for all efficient adversaries

A that declares 𝑁 to be the bound on the quorum size.
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• Succinctness: There exists a universal polynomial poly(·, ·) such that for all 𝜆 ∈ N, all 𝑁 ≤ 2
𝜆
, all crs

in the support of Setup(1𝜆, 1𝑁 ), all 𝐿 ≤ 𝑁 , all (pkℓ , htℓ , skℓ ) in the support of KeyGen(crs), and setting

(ek, ak) = Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝑁 ]), the following hold:

– The size of the encryption key ek and the size of the ciphertext output by Encrypt(ek, ·, ·, ·) is poly(𝜆, log𝑁 ).
– The size of the partial decryptions output by PartialDec(sk, ·, ·) is poly(𝜆, log𝑁 ).

Construction 5.11 (Threshold Encryption with Silent Setup). Let 𝜆 be a security parameter andGroupGen be a prime-

order bilinear group generator. Let 𝑝 = 𝑝 (𝜆) be the order of the group output by GroupGen. As in Construction 5.2,

we make the following two simplifying assumptions:

• We assume that 𝑝 (𝜆) > 2
𝜆+1

.

• We assume that 𝑁 = 2
𝑛
is always a power of two.

As argued in Construction 5.2, both assumptions are without loss of generality. We construct a (tag-based) threshold

encryption scheme ΠSTE = (Setup,KeyGen, Preprocess, Encrypt, PartialDec, PartialVerify,Decrypt) as follows:

• Setup(1𝜆, 1𝑁 ): On input the security parameter 𝜆 and the bound on the quorum size 𝑁 = 2
𝑛 ≤ 2

𝜆
, the setup

algorithm proceeds exactly as in Construction 5.2:

– Sample G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆) and 𝑔,𝑔 r← G \ {1}, 𝑢, ˆℎ r← G, 𝑐 r← Z∗𝑝 , and s r← Z𝑁𝑝 . Let
𝐵 = 𝑒 (𝑔,𝑔)𝑠1 .

– Let M ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generating matrix for an 𝑁 -out-of-(2𝑁 − 1) threshold policy from

Eq. (2.1). For ℓ ∈ [2𝑁 − 1], let mT
ℓ denote the ℓ

th
row of M. Then compute

𝑧0 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ,0 =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s .

– For each ℓ ∈ [𝑁 + 1, 2𝑁 − 1], sample 𝛾ℓ
r← Z𝑝 . For each 𝑗 ∈ [𝑛], define the set 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1].

Then, for each 𝑗 ∈ [𝑛] and 𝑖 ∈ [−2𝑁 + 1, 2𝑁 − 1] \ 𝑋 𝑗 , define

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

and 𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

For ease of notation, we define the interval 𝐼 = [−2𝑁 +1, 2𝑁 −1]. Finally, it outputs the common reference string

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
. (5.4)

The message space for the encryption scheme isM = G𝑇 and the tag space is T = Z𝑝 .

• KeyGen(crs): On input the common reference string crs (with components parsed according to Eq. (5.4)), the

key-generation algorithm proceeds as in Construction 5.2. Namely, it samples 𝛼
r← Z𝑝 and computes 𝑣 ′𝑖 = (𝑔𝑐

𝑖 )𝛼
for all 𝑖 ∈ 𝐼 \ {0}. The algorithm sets 𝐴 = 𝑒 (𝑔,𝑔)𝛼 and

pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴) and ht = {𝑣 ′𝑖 }𝑖∈𝐼\{0} .

The algorithm outputs the public key pk, the aggregation hint ht, and the secret key sk = (pk, 𝛼).
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• Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]): On input the common reference string crs (with components parsed accord-

ing to Eq. (5.4)) and a collection of public keys pkℓ and hints htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0} , the preprocessing algorithm
proceeds as in Construction 5.2. Namely, it computes

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ = 𝑣ℓ,0 ·
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ .
(5.5)

Then, it sets

ek = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛])
ak =

(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.

The preprocessing algorithm outputs the encryption key ek and the aggregation key ak.

• Encrypt(ek, 𝜏,𝑚,𝑇 ): On input an encryption key ek = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛]), a tag 𝜏 ∈ Z𝑝 , a message

𝑚 ∈ G𝑇 , and a threshold 𝑇 ∈ [𝐿] the encryption algorithm proceeds as follows:

– Compute the binary decomposition 𝑏𝑛 · · ·𝑏1 ∈ {0, 1}𝑛 of 𝐿 −𝑇 : namely, 𝐿 −𝑇 =
∑
𝑗∈[𝑛] 𝑏 𝑗2

𝑗−1
.

– Sample a random exponent 𝑡
r← Z𝑝 .

Output the ciphertext

ct = (𝜏,𝑇 ,𝐶1, 𝑐2, 𝑐3, 𝑐4) =
(
𝜏 ,𝑇 , 𝐵𝑡 ·𝑚 , 𝑔𝑡 , (𝑢𝜏 ˆℎ)𝑡 , 𝑧𝑡 ∏𝑗∈[𝑛]:𝑏 𝑗=0 𝑦

𝑡
𝑗

)
.

• PartialDec(sk, 𝜏, ct): On input a secret key sk = (pk, 𝛼) where pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a tag 𝜏 ∈ Z𝑝 , and a

ciphertext ct, the partial decryption algorithm samples 𝑟
r← Z𝑝 and outputs 𝜎 = (𝑔𝑟 , 𝑔𝛼 (𝑢𝜏 ˆℎ)𝑟 ).

• PartialVerify(pk, 𝜏, ct, 𝜎): On input a key pk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴), a tag 𝜏 ∈ Z𝑝 , a ciphertext ct = (𝜏 ′,𝑇 ,𝐶1, 𝑐2, 𝑐3, 𝑐4),
and a partial decryption 𝜎 = (𝜎1, 𝜎̂2), the partial verification algorithm outputs 0 if 𝜏 ≠ 𝜏 ′. Otherwise, it outputs 1
if 𝐴 · 𝑒 (𝜎1, 𝑢𝜏 ˆℎ) = 𝑒 (𝑔, 𝜎̂2).

• Decrypt(ak, 𝜏, ct, {𝜎ℓ }ℓ∈𝑆 ): On input the aggregation key ak =
(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
, a tag 𝜏 ∈ Z𝑝 ,

a ciphertext ct = (𝜏 ′,𝑇 ,𝐶1, 𝑐2, 𝑐3, 𝑐4), and a collection of partial decryptions 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2) for ℓ ∈ 𝑆 ⊆ [𝑁 ], the
decryption algorithm proceeds as follows:

– If |𝑆 | ≤ 𝑇 , output ⊥. Otherwise, assume that |𝑆 | contains exactly 𝑇 elements (if 𝑆 has more than 𝑇 partial

decryptions, consider the restriction of 𝑆 to the first 𝑇 partial decryption in lexicographic order).

– Write 𝐿 −𝑇 =
∑
𝑗∈[𝑛] 𝑏 𝑗 · 2𝑗−1 (i.e., 𝑏𝑛 · · ·𝑏1 is the binary representation of 𝐿 −𝑇 ).

– LetM ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generatingmatrix for the𝑁 -out-of-(2𝑁−1) threshold policy from Eq. (2.1).

– Let 𝑆pad = 𝑆 ∪ [𝐿 + 1, 𝑁 ] ∪
⋃
𝑗∈[𝑛]:𝑏 𝑗=1𝑋 𝑗 , where 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1]. By construction,

|𝑆pad | = |𝑆 | + (𝑁 − 𝐿) +
∑︁

𝑗∈[𝑛]:𝑏 𝑗=1
2
𝑗−1 = 𝑇 + (𝑁 − 𝐿) + (𝐿 −𝑇 ) = 𝑁 .

Let 𝝎 ∈ Z2𝑁−1
𝑝 be a reconstruction vector where 𝝎TM = eT

1
, and moreover, 𝜔ℓ = 0 for all ℓ ∉ 𝑆pad.
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– Compute the aggregated decryption components:

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1

𝜎̂agg,2 =
∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
·

∏
ℓ∈𝑆pad

𝑣
𝜔ℓ

ℓ
·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝜏
𝜔ℓ

𝑗,ℓ

𝜎agg,3 =
∏
ℓ∈𝑆pad

(
𝑔𝑐
−ℓ )𝜔ℓ .

– Output 𝐶1 · 𝑒 (𝜎agg,1, 𝑐3)−1 · 𝑒 (𝑐2, 𝜎̂agg,2) · 𝑒 (𝜎agg,3, 𝑐4)−1.

Correctness and security analysis. The correctness and security analysis for Construction 5.11 follow a very

similar structure as that for Construction 5.2 adapted to the setting of encryption. We state the relevant theorems

below, and defer their formal proofs to Appendix E.

Theorem 5.12 (Partial Decryption Correctness). Construction 5.11 satisfies partial decryption correctness.

Theorem 5.13 (Aggregation Correctness). Construction 5.11 satisfies aggregation correctness.

Theorem 5.14 (Static Tag-Based CCA-Security). Suppose the decisional 𝑁 -extended bilinear Diffie-Hellman expo-
nent assumption (Assumption 3.12) holds with respect to GroupGen. Then, Construction 5.11 satisfies static tag-based
CCA-security in the registered-key model where the bound on the quorum size is 𝑁 .

Corollary 5.15 (Threshold Encryption with Silent Setup). Let 𝜆 be a security parameter. Suppose the (2𝑁 −1)-extended
bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds with respect to GroupGen for all polynomials
𝑁 = 𝑁 (𝜆). Then for every polynomial 𝑁 = 𝑁 (𝜆), there exists a threshold signature scheme with silent setup that supports
a quorum size of up to 𝑁 users with the following efficiency properties:

• CRS size: The CRS contains 𝑂 (𝑁 log𝑁 ) group elements.

• User key size: A user’s public key pk contains 5 group elements and the aggregation hint ht contains 4𝑁 − 2 group
elements. Note that 4 of the group elements in each user’s public key are fixed (elements from the CRS); only the
remaining group element is user-specific. The preprocessing algorithm only needs the single user-specific element
(whereas verifying partial decryptions requires the 4 fixed elements from the CRS and the user-specific element).

• Aggregation key size: The aggregation key ak contains 𝑂 (𝑁 log𝑁 ) group elements.

• Aggregate encryption key size: The aggregate encryption key ek contains 6 + ⌈log𝑁 ⌉ group elements.

• Ciphertext size: The ciphertext contains 4 group elements and log𝑁 + log𝑝 additional bits (to represent the
threshold and the tag).

• Partial decryption size: A user’s partial decryption 𝜎 contains 2 group elements.

Extensions. As discussed in Remark 4.2, we can generically lift Construction 5.11 to achieve full CCA-security by

setting the tag to be a verification key for a one-time signature scheme and signing the ciphertext (and only decrypt

ciphertexts with valid signatures). Similarly, if we only require CPA-security, then we can set the tag to a fixed value,

in which case, it no longer needs to be included as part of the ciphertext.

Using the technique from Remark 5.8, we can also modify Construction 5.11 to directly support quorum sizes

𝑁 that is not a power of 2 without padding. Similarly, the use of dummy users to support dynamic threshold policies

can also be applied to the distributed monotone-policy encryption scheme (Construction 4.4) in the same manner

as described in Remark 5.9. Namely, when encrypting to a policyM, we can allow the encrypter (and decrypter) to

decide whether each preset of dummy users are automatically included or excluded from the decryption quorum.
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Remark 5.16 (Distributed Threshold IBE). We note that we can also interpret Construction 5.11 as a distributed
threshold identity-based encryption (IBE) scheme. Recall that in a standard IBE scheme [Sha84, BF01], one can encrypt

a message with respect to an identity id and only a user who holds a secret key skid associated with id can decrypt.

In traditional IBE, a trusted key issuer generates the secret identity keys for each user. Similarly, in a threshold IBE

scheme [BBH06], a trusted dealer gives out shares of the IBE master secret key to different parties. Construction 5.11

essentially gives a distributed threshold IBE scheme. In this setting, each user can become a key-issuing authority

for an IBE scheme by sampling and publishing their public key. Then, one can encrypt a message respect to any

collection of IBE authorities, an identity id, and a threshold 𝑇 . In the context of Construction 5.11, the tag in the

ciphertext would be set to the identity id. To decrypt, one would need to collect at least 𝑇 secret keys for the identity

id from the collection of IBE authorities. Previously, the work of [BBH06] describe a threshold IBE scheme based

on the Boneh-Boyen IBE scheme. Construction 5.11 can be viewed as a distributed version of the [BBH06] scheme.

More generally, we can view Construction 4.4 from Section 4 as a distributed monotone-policy IBE scheme.

Remark 5.17 (Flexible Broadcast Encryption). Flexible broadcast encryption [FWW23] is a special case of threshold

encryption with silent setup where the threshold is always fixed to 1. Flexible broadcast encryption generalizes

distributed broadcast encryption [WQZD10, BZ14] in that it allows the encrypter to encrypt a message to an arbitrary

set of recipients (identified by their public keys); the notion of distributed broadcast encryption imposes an additional

restriction where users’ public keys are tied to a slot, and one can only encrypt to a collection of public keys that occupy

distinct slots. Previously, the work of [GLWW23] show how to generically lift any distributed broadcast encryption

scheme into a flexible scheme with 𝜔 (log 𝜆) blowup in the size of user public keys. Construction 5.11 gives a direct

construction of flexible broadcast encryption. Since the policy in distributed broadcast encryption is fixed and there is

no need to support dynamic thresholds, we can achieve this notion with a slimmed down version of Construction 5.11

where there are no dummy users and we take M to be the share-generating matrix for a 1-out-of-𝑁 threshold policy.

This yields a construction where the size of each user’s public key contains 2𝑁 group elements (excluding the

elements from the CRS) and the size of the ciphertext contains 4 group elements (excluding the tag). In the current best

pairing-based distributed broadcast encryption scheme [KMW23], user public keys contain 2𝑁 − 2 group elements

while ciphertexts contain 3 group elements, and security relies on a 𝑞-type assumption in the plain model. Our work

thus achieves the flexible notion where the public keys are larger by 2 group elements and the ciphertext size is larger

by a single group element. In both schemes, the size of the CRS contain 4𝑁 +𝑂 (1) group elements.
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A Generic Hardness of Extended Bilinear Diffie-Hellman Assumptions

In this section, we show that the extended bilinear Diffie-Hellman assumptions (Assumptions 3.3 and 3.12) hold in

the generic bilinear group model. In the generic bilinear group model [Sho97, BBG05], we model a generic symmetric

bilinear group of order 𝑝 with label space L as two random injective functions 𝜎, 𝜎𝑇 : Z𝑝 → L. In addition, algorithms

in the generic bilinear group model have access to the following three oracles:

• Base group evaluation: On input two labels ℓ1, ℓ2 ∈ L, the base group evaluation oracle first checks that ℓ1
and ℓ2 are in the image of 𝜎 . If so, it returns 𝜎 (𝜎−1 (ℓ1) + 𝜎−1 (ℓ2)). Otherwise, it outputs ⊥.

• Target group evaluation: On input two labels ℓ1, ℓ2 ∈ L, the target group evaluation oracle first checks that

ℓ1 and ℓ2 are in the image of 𝜎𝑇 . If so, it returns 𝜎𝑇 (𝜎−1𝑇 (ℓ1) + 𝜎−1𝑇 (ℓ2)). Otherwise, it outputs ⊥.

• Pairing oracle: On input two labels ℓ1, ℓ2 ∈ L, the pairing oracle first checks that ℓ1 and ℓ2 are in the image of

𝜎 . If so, it returns 𝜎𝑇 (𝜎−1 (ℓ1) · 𝜎−1 (ℓ2)). Otherwise, it outputs ⊥.

Thework of Boneh, Boyen, andGoh [BBG05] provide a set of sufficient conditions underwhich a cryptographic assump-

tion holds unconditionally in the generic bilinear group model. We recall a simplified version that suffices for our anal-

ysis below. We first define the notion of independence for polynomials and then give the general hardness statement.
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Definition A.1 (Independence of Polynomials). Let P = {𝑃𝑖 }𝑖∈[𝑘 ] be a collection of 𝑛-variate polynomials 𝑃𝑖 ∈
Z𝑝 [𝑋1, . . . , 𝑋𝑛].We say that a polynomial 𝑓 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] is dependent onP if there exist coefficients𝛼0, 𝛼1, . . . , 𝛼𝑘 ∈
Z𝑝 such that

𝑓 = 𝛼0 +
∑︁
𝑖∈[𝑘 ]

𝛼𝑘𝑃𝑘 .

We say 𝑓 is independent of P if 𝑓 is not dependent on P.

Theorem A.2 (Generic Hardness in Prime-Order Groups [BBG05, Theorem A.2, adapted]). Let 𝑝 be a prime, and
P = {𝑃𝑖 }𝑖∈[𝑘 ] be a collection of 𝑛-variate polynomials 𝑃𝑖 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛]. Let 𝑇 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛]. For an adversary
A and a bit 𝑏 ∈ {0, 1}, define the following distinguishing experiment in the generic bilinear group model of order 𝑝 :

• At the beginning of the game, the challenger samples 𝑥1, . . . , 𝑥𝑛
r← Z𝑝 . For each 𝑖 ∈ [𝑘], it computes ℓ𝑖 =

𝜎 (𝑃𝑖 (𝑥1, . . . , 𝑥𝑛)).

• If 𝑏 = 0, the challenger computes 𝜏 = 𝜎𝑇 (𝑇 (𝑥1, . . . , 𝑥𝑛)). If 𝑏 = 1, the challenger samples 𝑟 r← Z𝑝 and sets 𝜏 = 𝜎𝑇 (𝑟 ).

• The challenger gives (ℓ1, . . . , ℓ𝑘 , 𝜏) toA. AlgorithmA outputs a bit𝑏′ ∈ {0, 1}, which is the output of the experiment.

Let P2 = {𝑃𝑖𝑃 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}, and let 𝑑 be a bound on the total degree of the polynomials in P2 ∪ {𝑇 }. If 𝑇 is independent
of P2, then for all adversaries A that make at most 𝑞 queries to the generic bilinear group oracles, it holds that

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ (𝑞 + 𝑘 + 1)
2𝑑

𝑝

in the above distinguishing experiment.

A.1 Generic Hardness of Assumption 3.3

In this section, we show that for all 𝑁 = poly(𝜆), the 𝑁 -extended decisional bilinear Diffie-Hellman assumption

(Assumption 3.3) holds unconditionally in the generic bilinear group model.

Theorem A.3 (Generic Hardness of Assumption 3.3). Take 𝑁 ∈ N. LetA be any generic adversary for the 𝑁 -extended
decisional bilinear Diffie-Hellman assumption that makes at most 𝑞 generic group oracle queries. Then, the advantage
of A is at most 𝑂 (𝑞2𝑁 5)/𝑝 in the generic bilinear group model. In particular, the advantage of A is negligible for all
polynomials 𝑞, 𝑁 = poly(𝜆) and 𝑝 > 2

𝜔 (log𝜆) .

Proof. Fix a prime 𝑝 and a finite label space L ⊂ {0, 1}∗ of size at least 𝑝 . We define the following distributions:

• D0: Sample random injective functions 𝜎, 𝜎𝑇 : Z𝑝 → L. Sample 𝑎, 𝑏, 𝑠
r← Z𝑝 and 𝑟, 𝑐𝑖

r← Z∗𝑝 for all 𝑖 ∈ [𝑁 ]. In
the following, we will use implicit notation to denote group elements; specifically, we will write [𝑥]G to denote

𝜎 (𝑥) and [𝑥]G𝑇
to denote 𝜎𝑇 (𝑥). Let

params =
©­­«

[𝑟 ]G, [𝑟𝑎]G, [𝑟𝑏]G, [𝑟𝑠]G,{
[𝑟𝑐𝑖 ]G, [𝑟/𝑐𝑖 ]G, [𝑟𝑎𝑏𝑐𝑖 ]G, [𝑟𝑠𝑐𝑖 ]G

}
𝑖∈[𝑁 ]{

[𝑟𝑐𝑖/𝑐 𝑗 ]G, [𝑟𝑎𝑏𝑐𝑖/𝑐 𝑗 ]G
}
𝑖≠𝑗∈[𝑁 ]

ª®®¬ . (A.1)

Let𝑇 = [𝑟 2𝑎𝑏𝑠]G𝑇
. OutputA(params,𝑇 ). This corresponds to the pseudorandom distribution in Assumption 3.3

where [𝑟 ]G = 𝜎 (𝑟 ) represents the random generator 𝑔.

• D1: Same as D0, except the challenger samples 𝑟
r← Z∗𝑝 and sets 𝑟 = 𝑟

∏
ℓ∈[𝑁 ] 𝑐ℓ . Moreover, the challenger

constructs params as

params =
©­­«

[𝑟 ]G, [𝑟𝑎]G, [𝑟𝑏]G, [𝑟𝑠]G,{
[𝑟𝑐𝑖 ]G, [𝑟

∏
ℓ≠𝑖 𝑐𝑖 ]G, [𝑟𝑎𝑏𝑐𝑖 ]G, [𝑟𝑠𝑐𝑖 ]G

}
𝑖∈[𝑁 ]{

[𝑐𝑖𝑟
∏
ℓ≠𝑗 𝑐ℓ ]G, [𝑎𝑏𝑐𝑖𝑟

∏
ℓ≠𝑗 𝑐ℓ ]G

}
𝑖≠𝑗∈[𝑁 ]

ª®®¬ . (A.2)

The challenger sets 𝑇 = [𝑟𝑎𝑏𝑠]G𝑇
and the output is A(params,𝑇 ).
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• D2: Same as D1, except the challenger samples 𝑟, 𝑐1, . . . , 𝑐𝑁
r← Z𝑝 .

• D3: Same as D2, except the challenger samples 𝜏
r← Z𝑝 and sets 𝑇 = [𝜏]G𝑇

.

• D4: Same as D3, except the challenger samples 𝑟, 𝑐1, . . . , 𝑐𝑁
r← Z∗𝑝 .

• D5: Same asD4, except the challenger samples 𝑟
r← Z∗𝑝 and sets params according to Eq. (A.1). This corresponds

to the random distribution in Assumption 3.3.

We show that each pair of adjacent distributions are statistically indistinguishable in the generic bilinear group model:

• First, distributionsD0 andD1 are identical distributions. Specifically, in distributionD1, the challenger samples

𝑟
r← Z∗𝑝 and sets 𝑟 = 𝑟 ·∏ℓ∈[𝑁 ] 𝑐ℓ . Since 𝑐ℓ ∈ Z∗𝑝 is invertible, the distribution of 𝑟 remains uniform over Z∗𝑝 .

Moreover, the components in params are constructed exactly as in D0.

• The only difference between D1 and D2 is 𝑟, 𝑐𝑖
r← Z𝑝 in D1 and 𝑟, 𝑐𝑖

r← Z∗𝑝 in D2. Since the statistical distance

between the uniform distribution over Z𝑝 and the uniform distribution over Z∗𝑝 is 1/𝑝 , the statistical distance
between D1 and D2 is (𝑁 + 1)/𝑝 .

• Distributions D2 and D3 are statistically indistinguishable by Theorem A.2. To argue this, we first define a set

of polynomials P = {𝑃𝑖 }𝑖∈[𝑘 ] over the formal variables 𝑟, 𝑎, 𝑏, 𝑠, 𝑐1, . . . , 𝑐𝑁 , where the polynomials 𝑃𝑖 correspond

to the components in Eq. (A.2) and 𝑘 = 4 + 4𝑁 + 𝑁 (𝑁 − 1). By inspection, the polynomials in P have degree

at most 𝑁 + 4. The challenge polynomial 𝑇 = 𝑟 2𝑎𝑏𝑠 = 𝑟 2𝑎𝑏𝑠
∏
ℓ∈[𝑁 ] 𝑐

2

ℓ has degree 2𝑁 + 5.

To appeal to Theorem A.2, we need to argue that the polynomial𝑇 is independent of the polynomials P2
. Since

the elements of P2
and the polynomial 𝑇 all consist of a single monomial, it suffices to argue that 𝑇 ∉ P2

. Take

any 𝑃𝑖 , 𝑃 𝑗 ∈ P. We show that 𝑃𝑖𝑃 𝑗 ≠ 𝑇 .

– Suppose 𝑃𝑖 ∈ {𝑟, 𝑟𝑎, 𝑟𝑏, 𝑟𝑠}. Then 𝑃𝑖𝑃 𝑗 = 𝑇 only if 𝑃 𝑗 ∈ {𝑟𝑎𝑏𝑠, 𝑟𝑏𝑠, 𝑟𝑎𝑠, 𝑟𝑎𝑏}. None of these options are
contained in P so 𝑃𝑖𝑃 𝑗 ≠ 𝑇 .

– Suppose 𝑃𝑖 = {𝑟𝑐𝑖 , 𝑟𝑎𝑏𝑐𝑖 , 𝑟𝑠𝑐𝑖 } for some 𝑖 ∈ [𝑁 ]. Then 𝑃𝑖𝑃 𝑗 = 𝑇 only if

𝑃 𝑗 ∈
{
𝑎𝑏𝑠𝑟

∏
ℓ≠𝑖 𝑐ℓ , 𝑠𝑟

∏
ℓ≠𝑖 𝑐ℓ , 𝑎𝑏𝑟

∏
ℓ≠𝑖 𝑐ℓ

}
.

None of these options are contained in P, so 𝑃𝑖𝑃 𝑗 ≠ 𝑇 .
– Suppose 𝑃𝑖 = 𝑟

∏
ℓ≠𝑖 𝑐ℓ for some 𝑖 ∈ [𝑁 ]. Then 𝑃𝑖𝑃 𝑗 = 𝑇 only if 𝑃 𝑗 = 𝑟𝑎𝑏𝑠𝑐𝑖 ∉ P.

– Suppose 𝑃𝑖 = 𝑐𝑖𝑟
∏
ℓ≠𝑗 𝑐ℓ for some 𝑖 ≠ 𝑗 ∈ [𝑁 ]. Then, 𝑃𝑖𝑃 𝑗 = 𝑇 only if 𝑃 𝑗 = 𝑎𝑏𝑠𝑐 𝑗𝑟

∏
ℓ≠𝑖 𝑐𝑖 ∉ P.

– Suppose 𝑃𝑖 = 𝑎𝑏𝑐𝑖𝑟
∏
ℓ≠𝑗 𝑐ℓ for some 𝑖 ≠ 𝑗 ∈ [𝑁 ]. Then, 𝑃𝑖𝑃 𝑗 = 𝑇 only if 𝑃 𝑗 = 𝑠𝑐 𝑗𝑟

∏
ℓ≠𝑖 𝑐𝑖 ∉ P.

We conclude that the target polynomial 𝑇 is independent of P2
. By Theorem A.2, this means the statistical

distance between distributions D2 and D3 against a generic adversary A making at most 𝑞 generic group

queries is bounded by

(𝑞 + 𝑘 + 1)2 (2(𝑁 + 4))
𝑝

=
𝑂 (𝑞2𝑁 5)

𝑝
.

• The statistical distance between D3 and D4 is (𝑁 + 1)/𝑝 by the same argument used to compute the statistical

distance between D1 and D2.

• Finally, distributions D4 and D5 are identical experiments by the same argument used to analyze distributions

D0 and D1.

By a hybrid argument, we conclude that the statistical distance between D0 and D5 is bounded by 𝑂 (𝑞2𝑁 5)/𝑝 , as
desired. □
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A.2 Generic Hardness of Assumption 3.12

In this section, we show that for all 𝑁 = poly(𝜆), the 𝑁 -extended decisional bilinear Diffie-Hellman exponent

assumption (Assumption 3.12) also holds unconditionally in the generic bilinear group model.

Theorem A.4 (Generic Hardness of Assumption 3.12). Take 𝑁 ∈ N. LetA be any generic adversary for the 𝑁 -extended
decisional bilinear Diffie-Hellman assumption that makes at most 𝑞 generic group oracle queries. Then, the advantage
of A is at most 𝑂 (𝑞2𝑁 3)/𝑝 in the generic bilinear group model. In particular, the advantage of A is negligible for all
polynomials 𝑞, 𝑁 = poly(𝜆) and 𝑝 > 2

𝜔 (log𝜆) .

Proof. Similar to the proof of Theorem A.3, we proceed via a hybrid argument. Specifically, fix a prime 𝑝 and a finite

label space L ⊂ {0, 1}∗ of size at least 𝑝 . We now define the following distributions:

• D0: Sample random injective functions 𝜎, 𝜎𝑇 : Z𝑝 → L. Sample 𝑎, 𝑏, 𝑡
r← Z𝑝 and 𝑟, 𝑟, 𝑐

r← Z∗𝑝 for all 𝑖 ∈ [𝑁 ].
In the following, we will use implicit notation to denote group elements; specifically, we will write [𝑥]G to

denote 𝜎 (𝑥) and [𝑥]G𝑇
to denote 𝜎𝑇 (𝑥). Let

params =
(

[𝑟 ]G, [𝑟 ]G, [𝑟𝑎]G, [𝑟𝑎]G, [𝑟𝑏]G, [𝑟𝑡]G, [𝑟𝑡]G
{[𝑟𝑐𝑖 ]G, [𝑟𝑐𝑖 ]G, [𝑟𝑎𝑏𝑐𝑖 ]G}𝑖∈[−𝑁,𝑁 ]\{0} , {[𝑟𝑡𝑐𝑖 ]G}𝑖∈[𝑁 ]

)
. (A.3)

Let 𝑇 = [𝑟𝑟𝑎𝑏𝑡]G𝑇
. Output A(params,𝑇 ). This corresponds to the pseudorandom distribution in Assump-

tion 3.12 where [𝑟 ]G = 𝜎 (𝑟 ) and [𝑟 ]G = 𝜎 (𝑟 ) represent the random generators 𝑔 and 𝑔, respectively.

• D1: Same asD0, except the challenger samples 𝑠, 𝑠
r← Z∗𝑝 and sets 𝑟 = 𝑠𝑐

𝑁
and 𝑟 = 𝑠𝑐𝑁 . Moreover, the challenger

constructs params as

params =
(
[𝑠𝑐𝑁 ]G, [𝑠𝑐𝑁 ]G, [𝑠𝑎𝑐𝑁 ]G, [𝑠𝑎𝑐𝑁 ]G, [𝑠𝑏𝑐𝑁 ]G, [𝑠𝑡𝑐𝑁 ]G, [𝑠𝑡𝑐𝑁 ]G
{[𝑠𝑐𝑖 ]G, [𝑠𝑐𝑖 ]G, [𝑠𝑎𝑏𝑐𝑖 ]G}𝑖∈[0,2𝑁 ]\{𝑁 } , {[𝑠𝑡𝑐𝑖 ]G}𝑖∈[𝑁+1,2𝑁 ]

)
. (A.4)

The challenger sets 𝑇 = [𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 ]G𝑇
and the output is A(params,𝑇 ).

• D2: Same as D1, except the challenger samples 𝑠, 𝑠, 𝑐
r← Z𝑝 .

• D3: Same as D2, except the challenger samples 𝜏
r← Z𝑝 and sets 𝑇 = [𝜏]G𝑇

.

• D4: Same as D3, except the challenger samples 𝑠, 𝑠, 𝑐
r← Z∗𝑝 .

• D5: Same as D4, except the challenger samples 𝑟, 𝑟
r← Z∗𝑝 and sets params according to Eq. (A.3). This corre-

sponds to the random distribution in Assumption 3.12.

We now show that each pair of adjacent distributions are statistical indistinguishable in the generic bilinear group

model:

• DistributionsD0 andD1 are identical. Specifically, in distributionD1, the challenger samples 𝑠, 𝑠
r← Z𝑝 and sets

𝑟 = 𝑠𝑐𝑁 and 𝑟 = 𝑠𝑐𝑁 . Since 𝑐 ∈ Z∗𝑝 is invertible, the distribution of 𝑟, 𝑟 in D1 remain uniform. The components

in params are then constructed exactly as prescribed in D0.

• The only difference between D1 and D2 is the distributions of 𝑠 , 𝑠 , and 𝑐 . In D1, these are uniform over Z𝑝
whereas in D2, they are uniform over Z∗𝑝 . The statistical distance between the uniform distribution over Z𝑝
and that over Z∗𝑝 is 1/𝑝 , so the statistical distance between D1 and D2 is in turn 3/𝑝 .

• Distributions D2 and D3 are statistically indistinguishable by Theorem A.2. To argue this, we first define a

set of polynomials P = {𝑃𝑖 }𝑖∈[𝑘 ] over the formal variables 𝑠, 𝑠, 𝑐, 𝑎, 𝑏, 𝑡 , where the polynomials 𝑃𝑖 correspond

to the components in Eq. (A.4) and 𝑘 = 7𝑁 + 7. By inspection, the polynomials in P have degree at most 2𝑁 + 3.
The challenge polynomial 𝑇 = 𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 has degree 2𝑁 + 5.

To appeal to Theorem A.2, we need to argue that the polynomial 𝑇 is independent of the polynomials in P2
.

Since the elements of P2
and the polynomial 𝑇 all consist of a single monomial, it suffices to argue that 𝑇 ∉ P2

.

Take any 𝑃𝑖 , 𝑃 𝑗 ∈ P. We show that 𝑃𝑖𝑃 𝑗 ≠ 𝑇 .
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– Suppose 𝑃𝑖 ∈ {𝑠𝑐𝑁 , 𝑠𝑐𝑁 , 𝑠𝑎𝑐𝑁 , 𝑠𝑎𝑐𝑁 , 𝑠𝑏𝑐𝑁 , 𝑠𝑡𝑐𝑁 , 𝑠𝑡𝑐𝑁 }. Then 𝑃𝑖𝑃 𝑗 = 𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 only if

𝑃 𝑗 ∈ {𝑠𝑎𝑏𝑡𝑐𝑁 , 𝑠𝑎𝑏𝑡𝑐𝑁 , 𝑠𝑏𝑡𝑐𝑁 , 𝑠𝑏𝑡𝑐𝑁 , 𝑠𝑎𝑡𝑐𝑁 , 𝑠𝑎𝑏𝑐𝑁 , 𝑠𝑎𝑏𝑐𝑁 }.

By inspection, this means 𝑃 𝑗 ∉ P, as required.
– Suppose 𝑃𝑖 = {𝑠𝑐𝑖 , 𝑠𝑐𝑖 } for some 𝑖 ∈ [0, 2𝑁 ]\{𝑁 }. Then 𝑃𝑖𝑃 𝑗 = 𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 only if 𝑃 𝑗 ∈ {𝑠𝑎𝑏𝑡𝑐2𝑁−𝑖 , 𝑠𝑎𝑏𝑡𝑐2𝑁−𝑖 }.

This means 𝑃 𝑗 ∉ P.
– Suppose 𝑃𝑖 = 𝑠𝑎𝑏𝑐

𝑖
for some 𝑖 ∈ [0, 2𝑁 ] \ {𝑁 }. Then 𝑃𝑖𝑃 𝑗 = 𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 only if 𝑃 𝑗 = 𝑠𝑡𝑐

2𝑁−𝑖 ∉ P.
– Suppose 𝑃𝑖 = 𝑠𝑡𝑐

𝑖
for some 𝑖 ∈ [𝑁 + 1, 2𝑁 ]. Then 𝑃𝑖𝑃 𝑗 = 𝑠𝑠𝑎𝑏𝑡𝑐2𝑁 only if 𝑃 𝑗 = 𝑠𝑎𝑏𝑐

2𝑁−𝑖 ∉ P.

We conclude that the target polynomial 𝑇 is independent of P2
. By Theorem A.2, this means the statistical dis-

tance betweenD2 andD3 against a generic adversaryA making at most 𝑞 generic group queries is bounded by

(𝑞 + 𝑘 + 1)2 (2𝑁 + 5)
𝑝

=
𝑂 (𝑞2𝑁 3)

𝑝
.

• The statistical distance betweenD3 andD4 is 3/𝑝 by the same argument used to analyze the statistical distance

between D1 and D2.

• Distributions D4 and D5 are identical by the same argument used to analyze the distributions D0 and D1.

The theorem now follows by a hybrid argument. □

B Analysis of Construction 3.15 (Monotone-Policy Signature)

In this section, we give the correctness and security analysis of Construction 3.15. The proofs and analysis follow

a similar structure as the analogous properties for Construction 3.4.

B.1 Proof of Theorem 3.16 (Signing Correctness)

Take any 𝜆, 𝜅 ∈ N and message𝑚 ∈ Z𝑝 . Let crs← Setup(1𝜆, 1𝜅), (vk, ht, sk) ← KeyGen(crs) and 𝜎 ← Sign(sk,𝑚).
By construction, we can write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
vk = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴)
𝜎 = (𝜎1, 𝜎̂2) = (𝑔𝑟 , 𝑔𝛼 (𝑢𝑚 ˆℎ)𝑟 ),

where G = (G,G𝑇 , 𝑝, 𝑒) and 𝐴 = 𝑒 (𝑔,𝑔)𝛼 . By bilinearity, we now have

𝑒 (𝑔, 𝜎̂2) = 𝑒 (𝑔,𝑔𝛼 (𝑢𝑚 ˆℎ)𝑟 ) = 𝑒 (𝑔,𝑔)𝛼 · 𝑒 (𝑔𝑟 , 𝑢𝑚 ˆℎ) = 𝐴 · 𝑒 (𝜎1, 𝑢𝑚 ˆℎ).

We conclude that PartialVerify(vk,𝑚, 𝜎) outputs 1, as required. □

B.2 Proof of Theorem 3.17 (Aggregation Correctness)

Take any 𝜆, 𝜅 ∈ N, message𝑚 ∈ Z𝑝 , policy 𝜑 ∈ Φ𝜅 (with associated matrix M ∈ Z𝑁×𝑊𝑝 ), any set 𝑆 ⊆ [𝑁 ] where
𝜑 (𝑆) = 1, any crs in the support of Setup(1𝜆, 1𝜅), any {(vkℓ , htℓ , skℓ )}ℓ∈[𝑁 ] where (vkℓ , htℓ , skℓ ) is in the support of

KeyGen(crs) for all ℓ ∈ [𝑁 ], and any collection of signatures {𝜎ℓ }ℓ∈𝑆 where PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 .
By construction, we can now write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
vkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ )
htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}
𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2),
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where G = (G,G𝑇 , 𝑝, 𝑒), 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 , and 𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼ℓ . By construction of KeyGen, 𝑣 ′ℓ,𝑖 = 𝑔𝛼ℓ𝑐
𝑖

for all 𝑖 ∈
[−𝑁, 𝑁 ] \ {0}. Since PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 , this means

∀ℓ ∈ 𝑆 : 𝑒 (𝑔, 𝜎̂ℓ,2) = 𝐴ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ) = 𝑒 (𝑔,𝑔)𝛼ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ). (B.1)

Let

(vk𝜑 , ak𝜑 ) = Preprocess(crs,M, {(vkℓ , htℓ )}ℓ∈[𝑁 ])
𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3) = Aggregate(ak𝜑 , {𝜎ℓ }ℓ∈𝑆 ).

By construction, the preprocessing algorithm first computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣ℓ,ℓ = 𝑔

𝑧
where 𝑧 =

∑︁
ℓ∈[𝑁 ]

𝑐ℓ (mT
ℓs + 𝛼ℓ ).

For each ℓ ∈ [𝑁 ], it also computes

𝑣ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ · 𝑔𝑐
𝑖−ℓmT

𝑖
s =

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓ (mT

𝑖
s+𝛼𝑖 ) . (B.2)

Then, it sets vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝐵, 𝑧). The aggregation algorithm starts by computing:

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎̂agg,2 =

∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
𝑣
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔𝑐
−ℓ )𝜔ℓ . (B.3)

By Eq. (B.1) and bilinearity, this means

𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) =
∏
ℓ∈𝑆

𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ)𝜔ℓ =
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ
(B.4)

Let 𝜎̃agg,3 =
∑
ℓ∈𝑆 𝜔ℓ𝑐

−ℓ
. Then 𝜎agg,3 = 𝑔

𝜎̃agg,3
. Next, 𝝎TM = eT

1
so∑︁

ℓ∈[𝑁 ]
𝜔ℓmT

ℓs = 𝝎TMs = eT
1
s = 𝑠1 .

Combined with the fact that 𝜔ℓ = 0 for all ℓ ∉ 𝑆 , we have

𝑧 · 𝜎̃agg,3 =
∑︁
ℓ∈[𝑁 ]

∑︁
𝑖∈[𝑁 ]

𝑐𝑖 (mT
𝑖 s + 𝛼𝑖 ) · 𝜔ℓ𝑐−ℓ

=
∑︁
ℓ∈[𝑁 ]

𝜔ℓmT
ℓs +

∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 ) · 𝑐𝑖−ℓ
)

= 𝑠1 +
∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 )𝑐𝑖−ℓ
)

By Eq. (B.2), this means

𝑒 (𝜎agg,3, 𝑧) = 𝑒 (𝑔,𝑔)𝑧𝜎̃agg,3 = 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝑣ℓ )𝜔ℓ . (B.5)

Combining Eqs. (B.3) to (B.5), we have

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
) ·

∏
ℓ∈𝑆

𝑒 (𝑔, 𝑣ℓ )𝜔ℓ .

= 𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧).

Correspondingly, Verify(vk𝜑 ,𝑚, 𝜎agg) = 1, as required. □
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B.3 Proof of Theorem 3.18 (Static Unforgeability)

Similar to the proof of Theorem 3.7, it will be more convenient to use the following search variant of the 𝑁 -extended

bilinear Diffie-Hellman exponent assumption. We state the assumption and show that it is implied by the decisional

𝑁 -extended bilinear Diffie-Hellman exponent assumption below:

Lemma B.1. Let 𝜆 be a security parameter. For an adversary A, define the search 𝑁 -extended bilinear Diffie-Hellman
exponent experiment as follows:

1. The challenger samples G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆), 𝑔,𝑔 r← G \ {1}, 𝑎, 𝑏, 𝑡 r← Z𝑝 , and 𝑐
r← Z∗𝑝 . Define

params =
(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}

)
.

2. On input params, algorithm A outputs 𝜏0, 𝜏0, 𝜏1, . . . , 𝜏𝑁 ∈ G.

3. The output of the experiment is 𝑏 = 1 if

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒 (𝜏0, 𝑔) · 𝑒 (𝑔, 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝜏𝑖 , 𝑔𝑐
𝑖 ).

Otherwise, the output is 0.

If the decisional 𝑁 -extended bilinear Diffie-Hellman exponent assumption holds with respect to GroupGen, then for all
efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the
search 𝑁 -extended bilinear Diffie-Hellman exponent experiment.

Proof. Suppose there exists an efficient adversary A that can solve the search 𝑁 -extended bilinear Diffie-Hellman

exponent problem with advantage 𝜀. We use A to construct an adversary B for the decisional 𝑁 -extended bilinear

Diffie-Hellman exponent problem.

• On input (params,𝑇 ) where

params =
(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}, {𝑔𝑡𝑐

𝑖 }𝑖∈[𝑁 ]
)
.

algorithm B runs algorithm A on the following input

params′ =
(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}

)
.

• Algorithm B outputs 𝜏0, 𝜏0, 𝜏1, . . . , 𝜏𝑁 ∈ G. Algorithm B first checks if

𝑒 (𝑔𝑎, 𝑔𝑏) = 𝑒 (𝜏0, 𝑔) · 𝑒 (𝑔, 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝜏𝑖 , 𝑔𝑐
𝑖 ). (B.6)

If this does not hold, algorithm B outputs 0. Otherwise, algorithm B outputs 1 if and only if

𝑇 = 𝑒 (𝜏0, 𝑔𝑡 ) · 𝑒 (𝑔𝑡 , 𝜏0) ·
∏
𝑖∈[𝑁 ]

𝑒 (𝜏𝑖 , 𝑔𝑡𝑐
𝑖 ). (B.7)

Algorithm B perfectly simulates the parameters for the search 𝑁 -extended bilinear Diffie-Hellman exponent problem.

Thus, with probability 𝜀, it will output 𝜏0, 𝜏0, 𝜏1 . . . , 𝜏𝑁 that satisfy Eq. (B.6). We now compute the advantage of A:

• Suppose𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . If Eq. (B.6) holds, then Eq. (B.7) also holds. In this case, algorithmA outputs 1 whenever

Eq. (B.6) holds, which occurs with probability 𝜀.

• Suppose 𝑇
r← G𝑇 . Since the view of A is independent of 𝑇 , and moreover, the exponents 𝑡, 𝑐 are sampled

independently of 𝑇 , this means Eq. (B.7) holds with probability exactly 1/𝑝 . Thus, in this case, algorithm B
outputs 1 with probability at most 1/𝑝 .

We conclude that algorithmB distinguishes with advantage at least 𝜀−1/𝑝 ≥ 𝜀−2−𝜆 since 𝑝 > 2
𝜆
. The claim holds. □
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Proof of Theorem 3.18. Suppose there exists an efficient adversary A that wins the static unforgeability game

for policies with 𝑁 users with non-negligible advantage 𝜀. We use A to construct a new adversary B that breaks

the search 𝑁 -extended bilinear Diffie-Hellman exponent assumption from Lemma B.1. Our proof follows the same

structure as the proof of Theorem 3.7. In the following, we will use a tilde (e.g., 𝑢̃, ˜ℎ) to denote exponents sampled

by the reduction algorithm B. Algorithm B works as follows:

1. On input the challenge (
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}

)
,

algorithm B starts running algorithmA on 1
𝜆
. AlgorithmA outputs a policy family parameter 1

𝜅
and a policy

M ∈ Z𝑁×𝑊𝑝 . In addition, algorithm B specifies a set C ⊆ [𝑁 ] of corrupted indices and a challenge message

𝑚∗ ∈ Z𝑝 .

2. Algorithm B first checks if C satisfies the policyM. If so, then it halts with output 0.

3. Otherwise, algorithm B constructs the common reference string crs as follows. First, it samples 𝑢̃, ˜ℎ
r← Z𝑝 and

sets

𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and
ˆℎ = 𝑔

˜ℎ/(𝑔𝑏)𝑚∗ .
Since the set C ⊆ [𝑁 ] does not satisfy the policyM, there exists a vector w̃ ∈ Z𝑁𝑝 such that for all indices 𝑖 ∈ C,
mT
𝑖 w̃ = 0, wheremT

𝑖 denotes the 𝑖
th
row ofM, and eT

1
w̃ = 1. Algorithm B samples a vector s̃ r← Z𝑊𝑝 . Algorithm B

now implicitly sets s = s̃+𝑎𝑏 ·w̃. In particular, algorithmB constructs the s-dependent terms in the CRS as follows:

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏)𝑤̃1 = 𝑒 (𝑔,𝑔)𝑠1

𝑔𝑐
𝑖 s = (𝑔𝑐𝑖 ) s̃ · (𝑔𝑎𝑏𝑐𝑖 )w̃

Algorithm B sets the common reference string to be

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
.

4. Next, to simulate the honest verification keys, algorithm B starts by sampling 𝛼ℓ
r← Z𝑝 for each ℓ ∈ [𝑁 ] \ C.

Then, algorithm B implicitly sets the secret key for user ℓ to be 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Specifically, algorithm B

constructs the components of the verification key and the aggregation hint as follows:

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)−m
T
ℓ w̃ = 𝑒 (𝑔,𝑔)𝛼ℓ

𝑣 ′ℓ,𝑖 = (𝑔𝑐
𝑖 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖 )−mT

ℓ w̃

Then, algorithm B sets

vkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .

Algorithm B gives crs and {(vkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

5. Whenever algorithm A makes a signing query on an index ℓ ∈ [𝑁 ] \ C and a message𝑚 ≠𝑚∗, algorithm B
samples 𝑟

r← Z𝑝 and implicitly sets 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃. Then, it computes

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎̂1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎̂2 = 𝑔
𝛼̃ℓ · (𝑔𝑏)𝑟 (𝑚−𝑚∗ ) · 𝜎̂𝑢̃𝑚+ ˜ℎ

1
.

and responds to A with the signature 𝜎 = (𝜎1, 𝜎̂2).

6. After A is finished making signing queries, it outputs the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to gen-

erate the keys for the corrupted users ℓ ∈ C. Algorithm A also outputs a signature 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3).
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7. For each ℓ ∈ C, algorithm B computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Algorithm B parses skℓ = (vkℓ , 𝛼ℓ )
for each ℓ ∈ C. Finally, algorithm B outputs (𝜏0, 𝜏0, 𝜏, . . . , 𝜏𝑁 ) where

𝜏0 = 𝑔
−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 and 𝜏0 = 𝜎̂

−1
agg,2 and ∀𝑖 ∈ [𝑁 ] : 𝜏𝑖 = 𝜎

mT
𝑖
s̃+𝛼̃𝑖

agg,3 .

First, we argue that algorithm B correctly simulates the common reference string, the honest verification keys, and

the signatures. Consider first the components of the common reference string:

• Algorithm B samples 𝑢̃, ˜ℎ
r← Z𝑝 so the distributions of 𝑢, ˆℎ are also uniform over G (and independent of all

other components in crs), exactly as in the real scheme.

• Algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃, where s̃ r← Z𝑁𝑝 . Thus, the distribution of s also coincides with its

distribution in the real scheme.

• Finally, the challenger samples 𝑐
r← Z∗𝑝 , which matches the distribution in the real scheme.

We conclude that algorithm B constructs crs according to the same distribution as Setup(1𝜆, 1𝜅). We now consider

the honest verification keys and the signatures:

• Verification keys: Consider the honest verification keys vkℓ for ℓ ∈ [𝑁 ] \ C. By construction, the verification

keys vkℓ and hint components htℓ sampled by algorithm B coincide with those that would be output by

KeyGen(crs) with 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Since algorithm B samples 𝛼ℓ

r← Z𝑝 for all ℓ ∈ [𝑁 ] \ C, the verification
keys are also distributed exactly as in the real scheme.

• Signatures: Finally, consider the signing queries. Let ℓ ∈ [𝑁 ] \ C be the index and𝑚 ≠𝑚∗ be the message. We

claim that 𝜎 = (𝜎1, 𝜎̂2) is a signature with respect to signing key 𝛼ℓ and randomness 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃:

– By construction, algorithm B sets

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃ = 𝑔𝑟+𝑎 (𝑚−𝑚
∗ )−1mT

ℓ w̃ = 𝑔𝑟 .

By the same calculation, this means 𝜎̂1 = 𝑔
𝑟
.

– In the real scheme, 𝜎̂2 = 𝑔
𝛼ℓ (𝑢𝑚 ˆℎ)𝑟 . Substituting the expressions for 𝛼ℓ , 𝑢, ˆℎ, and 𝑟 , we have

𝑔𝛼ℓ (𝑢𝑚 ˆℎ)𝑟 = 𝑔 (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) (𝑔𝑏𝑚+𝑢̃𝑚𝑔 ˜ℎ−𝑏𝑚∗ )𝑟+𝑎 (𝑚−𝑚∗ )−1mT

ℓ w̃

= 𝑔𝛼̃ℓ (𝑔𝑢̃𝑚+ ˜ℎ)𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃𝑔−𝑎𝑏m

T
ℓ w̃𝑔𝑏 (𝑚−𝑚

∗ ) (𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃)

= 𝑔𝛼̃ℓ 𝜎̂𝑢̃𝑚+
˜ℎ

1
𝑔𝑏 (𝑚−𝑚

∗ )𝑟 .

This is precisely how algorithm B constructs the signatures.

Since algorithmB samples 𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform and the signature is correctly constructed.

Thus, with probability 𝜀, algorithmA outputs a signature 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3) such that Verify(vk𝜑 ,𝑚∗, 𝜎agg) =
1, where vk𝜑 = (G, 𝑔,𝑢, ℎ, 𝐵, 𝑧) and

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓmT

ℓ s𝑣ℓ,ℓ .

We consider each component in this product separately:

• Suppose ℓ ∈ C. In this case, 𝑣ℓ,ℓ is output by KeyGen(crs; 𝜌ℓ ). Since skℓ = (vkℓ , 𝛼ℓ ), this means 𝑣ℓ,ℓ = 𝑔
𝑐ℓ 𝛼̃ℓ

. Since

ℓ ∈ C, mT
ℓw̃ = 0. This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ).
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• Suppose ℓ ∈ [𝑁 ] \ C. In this case, 𝑣ℓ,ℓ = 𝑔
𝑐ℓ𝛼ℓ = 𝑔𝑐

ℓ (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) . This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ).

We conclude that

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓmT

ℓ s𝑣ℓ,ℓ =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓ (mT

ℓ s̃+𝛼̃ℓ ) . (B.8)

Now, since verification passes, this means Eq. (3.13) holds so

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧). (B.9)

Recall that eT
1
w̃ = 1. This means 𝑠1 = eT

1
s = eT

1
s̃ + 𝑎𝑏eT

1
w̃ = 𝑠1 + 𝑎𝑏. In addition, 𝑢𝑚

∗
ˆℎ = 𝑔𝑎𝑚

∗+𝑢̃𝑚∗ · 𝑔 ˜ℎ/𝑔𝑎𝑚∗ = 𝑔𝑢̃𝑚∗+ ˜ℎ .
Combining with Eqs. (B.8) and (B.9), we thus have

𝑒 (𝑔,𝑔)𝑠1+𝑎𝑏 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑔𝑢̃𝑚
∗+ ˜ℎ) ·

∏
ℓ∈[𝑁 ]

𝑒 (𝜎agg,3, 𝑔𝑐
ℓ (mT

ℓ s̃+𝛼̃ℓ ) ).

Rearranging and using bilinearity, we have

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒
(
𝑔−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 , 𝑔

)
· 𝑒

(
𝑔, 𝜎̂−1agg,2

)
·

∏
ℓ∈[𝑁 ]

𝑒 (𝜎m
T
ℓ s̃+𝛼̃ℓ

agg,3 , 𝑔𝑐
ℓ )

= 𝑒 (𝜏0, 𝑔) · 𝑒 (𝑔, 𝜏0) ·
∏
ℓ∈[𝑁 ]

𝑒 (𝜏ℓ , 𝑔𝑐
ℓ ).

We conclude that B breaks the search 𝑁 -extended bilinear Diffie-Hellman exponent assumption with the same

advantage 𝜀. □

C Analysis of Construction 4.4 (Monotone-Policy Encryption)

In this section, we give the correctness and security analysis of Construction 4.4. The proofs and analysis follow a

similar structure as the corresponding analysis for Construction 3.4.

C.1 Proof of Theorem 4.5 (Partial Decryption Correctness)

Take any 𝜆, 𝜅 ∈ N and any policy 𝜑 ∈ Φ𝜅 (with associated policy M ∈ Z𝑁×𝑊𝑝 ). Take any crs in the support of

Setup(1𝜆, 1𝜅). Then we can write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
.

Take any tag 𝜏 ∈ Z𝑝 and any message𝑚 ∈ G𝑇 . Take any collection {(pkℓ , htℓ , skℓ )}ℓ∈[𝑁 ] where (pkℓ , htℓ , skℓ ) is in
the support of KeyGen(crs) for all ℓ ∈ [𝑁 ]. This means

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝑒 (𝑔,𝑔)𝛼ℓ )

Let (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]) and ct← Encrypt(ek𝜑 , 𝜏,𝑚). Take any index 𝑖∗ ∈ [𝑁 ] and let

𝜎𝑖∗ ← PartialDec(sk𝑖∗ , 𝜏, ct). Then
𝜎𝑖∗ = (𝜎𝑖∗,1, 𝜎̂𝑖∗,2) = (𝑔𝑟 , 𝑔𝛼𝑖∗ (𝑢𝜏 ˆℎ)𝑟 ).

Consider now the relation checked by PartialVerify. By construction,

𝑒 (𝑔, 𝜎̂𝑖∗,2) = 𝑒 (𝑔,𝑔𝛼𝑖∗ (𝑢𝜏 ˆℎ)𝑟 ) = 𝑒 (𝑔,𝑔)𝛼𝑖∗𝑒 (𝑔𝑟 , 𝑢𝜏 ˆℎ) = 𝐴𝑖∗ · 𝑒 (𝜎𝑖∗,1, 𝑢𝜏 ˆℎ).

In this case, PartialVerify(pk𝑖∗ , 𝜏, ct, 𝜎𝑖∗ ) = 1. □
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C.2 Proof of Theorem 4.6 (Aggregation Correctness)

Take any 𝜆, 𝜅 ∈ N, any policy 𝜑 ∈ Φ𝜅 (with associated policy M ∈ Z𝑁×𝑊𝑝 ), and any set 𝑆 ⊆ [𝑁 ] where 𝜑 (𝑆) = 1. Take

any crs in the support of Setup(1𝜆, 1𝜅). Then we can write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
.

Take any tag 𝜏 ∈ Z𝑝 and any message𝑚 ∈ G𝑇 . Take any collection {(pkℓ , htℓ , skℓ )}ℓ∈[𝑁 ] where (pkℓ , htℓ , skℓ ) is in
the support of KeyGen(crs) for all ℓ ∈ [𝑁 ]. This means

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝑒 (𝑔,𝑔)𝛼ℓ )
htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .

By construction of KeyGen, 𝑣 ′ℓ,𝑖 = 𝑔
𝛼ℓ𝑐

𝑖

for all 𝑖 ∈ [−𝑁, 𝑁 ] \ {0}. Let (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]).
Specifically, the preprocessing algorithm computes

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣ℓ,ℓ = 𝑔

𝑧
where 𝑧 =

∑︁
ℓ∈[𝑁 ]

𝑐ℓ (mT
ℓs + 𝛼ℓ ).

Then, for all ℓ ∈ [𝑁 ], it computes

𝑣ℓ =
∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ · 𝑔𝑐
𝑖−ℓmT

𝑖
s =

∏
𝑖∈[𝑁 ]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓ (mT

𝑖
s+𝛼𝑖 ) . (C.1)

Finally, it sets ek𝜑 = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧) and ak𝜑 = (M, 𝑧, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝑁 ]). Let ct← Encrypt(ek𝜑 , 𝜏,𝑚). Then

ct = (𝜏,𝐶1, 𝑐2, 𝑐3, 𝑐4) = (𝜏, 𝐵𝑡 ·𝑚,𝑔𝑡 , (𝑢𝜏 ˆℎ)𝑡 , 𝑧𝑡 ).

Take any collection of partial decryptions {𝜎ℓ }ℓ∈𝑆 where for all ℓ ∈ 𝑆 , PartialVerify(pkℓ , 𝜏, ct, 𝜎ℓ ) = 1. By construction,

if we parse 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2), this means

∀ℓ ∈ 𝑆 : 𝑒 (𝑔, 𝜎̂ℓ,2) = 𝐴ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ) = 𝑒 (𝑔,𝑔)𝛼ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ). (C.2)

Consider now Decrypt(crs, ak𝜑 , ct, {𝜎ℓ }ℓ∈𝑆 ). First, the decryption algorithm computes the aggregated decryption

components:

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1
and 𝜎̂agg,2 =

∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
𝑣
𝜔ℓ

ℓ
and 𝜎agg,3 =

∏
ℓ∈𝑆

(
𝑔𝑐
−ℓ )𝜔ℓ . (C.3)

By Eq. (C.2) and bilinearity, this means

𝑒 (𝜎agg,1, 𝑐3) =
∏
ℓ∈𝑆

𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ)𝜔ℓ 𝑡 =
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ 𝑡
ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ 𝑡
(C.4)

Let 𝜎̃agg,3 =
∑
ℓ∈𝑆 𝜔ℓ𝑐

−ℓ
. Then 𝜎agg,3 = 𝑔

𝜎̃agg,3
. Next, 𝝎TM = eT

1
so

∑
ℓ∈[𝑁 ] 𝜔ℓmT

ℓs = 𝝎TMs = eT
1
s = 𝑠1. Combined with

the fact that 𝜔ℓ = 0 for all ℓ ∉ 𝑆 , we have

𝑧 · 𝜎̃agg,3 =
∑︁
ℓ∈[𝑁 ]

∑︁
𝑖∈[𝑁 ]

𝑐𝑖 (mT
𝑖 s + 𝛼𝑖 ) · 𝜔ℓ𝑐−ℓ

=
∑︁
ℓ∈[𝑁 ]

𝜔ℓmT
ℓs +

∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 ) · 𝑐𝑖−ℓ
)

= 𝑠1 +
∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆

∑︁
𝑖∈[𝑁 ]
𝑖≠ℓ

(
𝜔ℓ (mT

𝑖 s + 𝛼𝑖 )𝑐𝑖−ℓ
)
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Combined with Eq. (C.1), we thus have

𝑒 (𝜎agg,3, 𝑐4) = 𝑒 (𝜎agg,3, 𝑧𝑡 ) = 𝑒 (𝑔,𝑔)𝑧𝜎̃agg,3𝑡

= 𝑒 (𝑔,𝑔)𝑠1𝑡 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ 𝑡 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝑣ℓ )𝜔ℓ 𝑡 (C.5)

Combining Eqs. (C.3) to (C.5), we have

𝑒 (𝑔,𝑔)𝑠1𝑡 · 𝑒 (𝑐2, 𝜎̂agg,2) = 𝑒 (𝑔,𝑔)𝑠1𝑡 · 𝑒 (𝑔𝑡 , 𝜎̂agg,2)

= 𝑒 (𝑔,𝑔)𝑠1𝑡 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ 𝑡
ℓ,2
) ·

∏
ℓ∈𝑆

𝑒 (𝑔, 𝑣𝜔ℓ 𝑡
ℓ
)

= 𝑒 (𝜎agg,1, 𝑐3) · 𝑒 (𝜎agg,3, 𝑐4).

Finally, since 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 , we have

𝐶1 · 𝑒 (𝜎agg,1, 𝑐3)−1 · 𝑒 (𝑐2, 𝜎̂agg,2) · 𝑒 (𝜎agg,3, 𝑐4)−1 =𝑚 ·
𝑒 (𝑔,𝑔)𝑠1𝑡 · 𝑒 (𝑐2, 𝜎̂agg,2)
𝑒 (𝜎agg,1, 𝑐3) · 𝑒 (𝜎agg,3, 𝑐4)

=𝑚,

and decryption succeeds. □

C.3 Proof of Theorem 4.7 (Static Tag-Based CCA-Security)

We begin by defining a sequence of hybrid experiments. Each experiment is parameterized by a bit 𝑏 ∈ {0, 1}, and
implicitly, by an adversary A (outputting policies with 𝑁 users) and a security parameter 𝜆.

• Hyb(𝑏 )
0

: This is real tag-based CCA-security experiment with bit 𝑏 ∈ {0, 1}. For completeness, we recall the

game below:

1. On input the security parameter 1
𝜆
, algorithm A outputs the policy parameter 1

𝜅
together with a policy

𝜑 ∈ Φ𝜅 on 𝑁 users. In addition, algorithm A commits to a set of corrupted users C ⊆ [𝑁 ].
2. The challenger checks that 𝜑 (C) = 0. If not the challenger halts with output 𝑏′ = 0.

3. The challenger samples crs ← Setup(1𝜆, 1𝜅). Namely, it samples G = (G,G𝑇 , 𝑝, 𝑒) ← GroupGen(1𝜆),
generators 𝑔,𝑔

r← G \ {1}, and 𝑢, ˆℎ r← G, 𝑐 r← Z∗𝑝 , and s r← Z𝑊𝑝 . It sets 𝐵 = 𝑒 (𝑔,𝑔)𝑠1 and

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
.

Then, for each index ℓ ∈ [𝑁 ] \C, the challenger samples a key (pkℓ , htℓ , skℓ ) ← KeyGen(crs). Specifically,
it samples 𝛼ℓ

r← Z𝑝 and computes 𝑣 ′ℓ,𝑖 = (𝑔𝑐
𝑖 )𝛼ℓ for all 𝑖 ∈ [−𝑁, 𝑁 ] \ {0}. The algorithm sets𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼ℓ

and

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .

The challenger gives crs together with {(pkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

4. Algorithm A now specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to generate the keys for

each of the corrupted users ℓ ∈ C.
5. For each ℓ ∈ C, the challenger computes (pkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). The challenger responds with
(ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]).

6. Whenever A makes a partial decryption query on an index ℓ ∈ [𝑁 ] \ C, a tag 𝜏 ∈ Z𝑝 , and a ciphertext

ct, the challenger responds with PartialDec(skℓ , 𝜏, ct). Specifically, the challenger sample 𝑟
r← Z𝑝 and

responds with 𝜎 = (𝑔𝑟 , 𝑔𝛼ℓ (𝑢𝜏 ˆℎ)𝑟 ).
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7. After A is finished making partial decryption queries, it outputs a pair of messages𝑚0,𝑚1 ∈ G𝑇 . The
challenger samples a random tag 𝜏∗ r← Z𝑝 and responds with ct∗ ← Encrypt(ek𝜑 , 𝜏∗,𝑚𝑏). Specifically,
the challenger samples 𝑡

r← Z𝑝 and responds with the tag 𝜏∗ and the challenge ciphertext

ct∗ = (𝜏∗,𝐶∗
1
, 𝑐∗

2
, 𝑐∗

3
, 𝑐∗

4
) =

(
𝜏∗ , 𝐵𝑡 ·𝑚𝑏 , 𝑔

𝑡 , (𝑢𝜏∗ ˆℎ)𝑡 , 𝑧𝑡
)
,

where

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔m
T
ℓ (𝑐ℓ s)𝑣 ′ℓ,ℓ

and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .
8. Algorithm A can continue making partial decryption queries, except it is not allowed to make a decryp-

tion query with tag 𝜏 = 𝜏∗. The challenger responds to the queries exactly as before. At the end of the

experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

except the challenger samples the challenge tag 𝜏∗ r← Z𝑝 at the beginning of the

experiment. Then, if the adversary makes a partial decryption query on 𝜏∗ before it chooses the challenge
messages𝑚0,𝑚1, the challenger outputs 0.

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

except when constructing the challenge ciphertext, the challenger samples 𝐶∗
1

r← G𝑇 .
Notably, in this experiment, the adversary’s view is independent of the bit 𝑏 ∈ {0, 1}.

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of an execution of experiment Hyb𝑖 with
adversary A (and the implicit security parameter 𝜆). We now argue that each adjacent pair of experiments are

indistinguishable.

Lemma C.1. For all adversaries A making at most 𝑄 = 𝑄 (𝜆) partial decryption queries and all bits 𝑏 ∈ {0, 1}, we have
that ���Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1]

��� ≤ 𝑄/𝑝.
Proof. Take 𝑏 ∈ {0, 1}. By definition, the only difference between the two experiments is if in Hyb(𝑏 )

1
, algorithm A

makes a partial decryption query on the challenge tag 𝜏∗ before choosing the challenge messages. However, the view

of adversaryA in Hyb(𝑏 )
1

is independent of 𝜏∗ prior to the challenge phase. Since the challenger samples 𝜏∗ r← Z𝑝 and
the adversary makes at most 𝑄 partial decryption queries, the probability that A queries on 𝜏∗ is at most 𝑄/𝑝 . □

Lemma C.2. Suppose the decisional 𝑁 -extended bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds
with respect to GroupGen. Then, for all efficient adversariesA and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, ���Pr[Hyb(𝑏 )

1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1]

��� = negl(𝜆) .

Proof. Suppose there exists 𝑏 ∈ {0, 1} and an efficient adversary A where���Pr[Hyb(𝑏 )
1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1]

��� ≥ 𝜀
for some non-negligible 𝜀. We useA to construct an adversary B for the 𝑁 -extended bilinear Diffie-Hellman exponent

assumption. The proof follows a nearly identical structure as the proof of Theorem 3.18, just adapted to the setting

of monotone-policy encryption. As in previous proofs, we will use a tilde (e.g., 𝑢̃, ˜ℎ) to denote exponents sampled

by the reduction algorithm B. Algorithm B works as follows:

1. On input the challenge(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈[−𝑁,𝑁 ]\{0}, {𝑔𝑡𝑐

𝑖 }𝑖∈[𝑁 ],𝑇
)
,

where 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 or 𝑇 r← G𝑇 , algorithm B starts running algorithm A on input 1
𝜆
. Algorithm A outputs

the policy parameter 1
𝜅
together with a policy 𝜑 ∈ Φ𝜅 (over 𝑁 users). In addition, algorithm A commits to

a set of corrupted users C ⊆ [𝑁 ].
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2. Algorithm B checks that 𝜑 (C) = 0. If not the challenger halts with output 𝑏′ = 0.

3. Algorithm B now samples 𝜏∗ r← Z𝑝 . It constructs the components of the common reference string as follows.

First, it samples 𝑢̃, ˜ℎ
r← Z𝑝 and sets

𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and
ˆℎ = 𝑔

˜ℎ/(𝑔𝑏)𝜏∗ .

Since the set C ⊆ [𝑁 ] does not satisfy the policyM, there exists a vector w̃ ∈ Z𝑁𝑝 such that for all indices 𝑖 ∈ C,
mT
𝑖 w̃ = 0, wheremT

𝑖 denotes the 𝑖
th
row ofM, and eT

1
w̃ = 1. Algorithm B samples a vector s̃ r← Z𝑊𝑝 . Algorithm B

now implicitly sets s = s̃+𝑎𝑏 ·w̃. In particular, algorithmB constructs the s-dependent terms in the CRS as follows:

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏)𝑤̃1 = 𝑒 (𝑔,𝑔)𝑠1

𝑔𝑐
𝑖 s = (𝑔𝑐𝑖 ) s̃ · (𝑔𝑎𝑏𝑐𝑖 )w̃

Algorithm B sets the common reference string to be

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 s}𝑖∈[−𝑁,𝑁 ]\{0}

)
.

4. Next, to simulate the honest public keys, algorithm B starts by sampling 𝛼ℓ
r← Z𝑝 for each ℓ ∈ [𝑁 ] \ C. Then,

algorithm B implicitly sets the secret key for user ℓ to be 𝛼ℓ = 𝛼ℓ −𝑎𝑏 ·mT
ℓw̃. Specifically, algorithm B constructs

the components of the public key and the aggregation hint as follows:

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)−m
T
ℓ w̃ = 𝑒 (𝑔,𝑔)𝛼ℓ

𝑣 ′ℓ,𝑖 = (𝑔𝑐
𝑖 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖 )−mT

ℓ w̃

Then, algorithm B sets

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈[−𝑁,𝑁 ]\{0} .

Algorithm B gives crs and {(pkℓ , htℓ )}ℓ∈[𝑁 ]\C to A.

5. Algorithm A now specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to generate the keys for each

of the corrupted users ℓ ∈ C.

6. For each ℓ ∈ C, algorithm B computes (pkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). It parses skℓ = (pkℓ , 𝛼ℓ ) for some

𝛼ℓ ∈ Z𝑝 . Then, algorithm B responds with (ek𝜑 , ak𝜑 ) = Preprocess(crs, 𝜑, {(pkℓ , htℓ )}ℓ∈[𝑁 ]).

7. Whenever algorithm A makes a partial decryption query on an index ℓ ∈ [𝑁 ] \ C, a tag 𝜏 , and a ciphertext ct,
algorithm B first checks if 𝜏 = 𝜏∗. If so, then algorithm B halts with output 0. Otherwise, algorithm B samples

𝑟
r← Z𝑝 and implicitly sets 𝑟 = 𝑟 + 𝑎(𝜏 − 𝜏∗)−1mT

ℓw̃. Then, it computes

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃

𝜎̂1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃

𝜎̂2 = 𝑔
𝛼̃ℓ · (𝑔𝑏)𝑟 (𝜏−𝜏∗ ) · 𝜎̂𝑢̃𝜏+ ˜ℎ

1
.

and responds to A with the partial decryption 𝜎 = (𝜎1, 𝜎̂2).

8. After A is finished making partial decryption queries, it outputs a pair of messages𝑚0,𝑚1 ∈ G𝑇 . Algorithm
B replies to A with the tag 𝜏∗ and the challenge ciphertext

ct∗ = (𝜏∗,𝐶∗
1
, 𝑐∗

2
, 𝑐∗

3
, 𝑐∗

4
) = ©­«𝜏∗ , 𝑇 · 𝑒 (𝑔,𝑔𝑡 )𝑠1 ·𝑚𝑏 , 𝑔

𝑡 , (𝑔𝑡 )𝑢̃𝜏∗+ ˜ℎ ,
∏
ℓ∈[𝑁 ]

(𝑔𝑡𝑐ℓ )mT
ℓ s̃+𝛼̃ℓ ª®¬ .

63



9. Algorithm A can continue to make partial decryption queries on tags 𝜏 ≠ 𝜏∗. Algorithm B responds exactly

as described above.

10. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which algorithm B also outputs.

We first argue that algorithm B correctly simulates the common reference string, the honest public keys, and the

partial decryption queries for A. The analysis is nearly identical to that in the proof of Theorem 3.18. Consider the

components of the common reference string:

• Algorithm B samples 𝑢̃, ˜ℎ
r← Z𝑝 so the distributions of 𝑢, ˆℎ are also uniform over G (and independent of all

other components in crs), exactly as in Hyb(𝑏 )
1

and Hyb(𝑏 )
2

.

• Algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃, where s̃ r← Z𝑁𝑝 . Thus, the distribution of s also coincides with its

distribution in the real scheme.

• Finally, the challenger samples 𝑐
r← Z∗𝑝 , which matches the distribution in the real scheme.

We conclude that algorithm B constructs crs according to the distribution in Hyb(𝑏 )
1

and Hyb(𝑏 )
2

. We now consider

the public keys and the partial decryption queries.

• Public keys: Consider the honest public keys pkℓ for ℓ ∈ [𝑁 ] \C. By construction, the public keys pkℓ and hints
htℓ sampled by algorithm B coincide with those that would be output by KeyGen(crs) with 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT

ℓw̃.

Since algorithm B samples 𝛼ℓ
r← Z𝑝 for all ℓ ∈ [𝑁 ] \ C, the public keys are also distributed exactly as in the

real scheme.

• Partial decryption queries: Next, consider the partial decryption queries on tags 𝜏 ≠ 𝜏∗. Note that if A ever

makes a partial decryption query on tag 𝜏 = 𝜏∗, then algorithm B outputs 0, which matches the behavior in

Hyb(𝑏 )
1

and Hyb(𝑏 )
2

. Let ℓ ∈ [𝑁 ] \ C be the index and 𝜏 ∈ Z𝑝 be the tag associated with the partial decryption

query. We claim that 𝜎 = (𝜎1, 𝜎̂2) is a valid partial decryption with respect to signing key 𝛼ℓ and randomness

𝑟 = 𝑟 + 𝑎(𝜏 − 𝜏∗)−1mT
ℓw̃:

– By construction, algorithm B sets

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃ = 𝑔𝑟+𝑎 (𝜏−𝜏
∗ )−1mT

ℓ w̃ = 𝑔𝑟 .

By the same calculation, this means 𝜎̂1 = 𝑔
𝑟
.

– In Hyb(𝑏 )
1

and Hyb(𝑏 )
2

, the challenger would normally set 𝜎̂2 = 𝑔
𝛼ℓ (𝑢𝜏 ˆℎ)𝑟 . Substituting the expressions

for 𝛼ℓ , 𝑢, ˆℎ, and 𝑟 , we have

𝑔𝛼ℓ (𝑢𝜏 ˆℎ)𝑟 = 𝑔 (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) (𝑔𝑏𝜏+𝑢̃𝜏𝑔 ˜ℎ−𝑏𝜏∗ )𝑟+𝑎 (𝜏−𝜏∗ )−1mT

ℓ w̃

= 𝑔𝛼̃ℓ (𝑔𝑢̃𝜏+ ˜ℎ)𝑟+𝑎 (𝜏−𝜏∗ )−1mT
ℓ w̃𝑔−𝑎𝑏m

T
ℓ w̃𝑔𝑏 (𝜏−𝜏

∗ ) (𝑟+𝑎 (𝜏−𝜏∗ )−1mT
ℓ w̃)

= 𝑔𝛼̃ℓ 𝜎̂𝑢̃𝜏+
˜ℎ

1
𝑔𝑏 (𝜏−𝜏

∗ )𝑟 .

This is precisely how algorithm B constructs the partial decryptions.

Since algorithm B samples 𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform and the partial decryption is correctly

constructed.

Algorithm B constructs (ek𝜑 , ak𝜑 ) using the same procedure as in Hyb(𝑏 )
1

and Hyb(𝑏 )
2

. It suffices to consider the

components of the challenge ciphertext. We claim that ct∗ is an encryption of𝑚𝑏 with randomness 𝑡 according to

either the specification of Hyb(𝑏 )
1

or Hyb(𝑏 )
2

. We consider each component individually:

• Consider 𝐶∗
1
. Algorithm B sets 𝐶∗

1
= 𝑇 · 𝑒 (𝑔,𝑔𝑡 )𝑠1 . Recall that eT

1
w̃ = 1. This means

𝑠1 = eT
1
s = eT

1
s̃ + 𝑎𝑏eT

1
w̃ = 𝑠1 + 𝑎𝑏.

We now consider the two possibilities for the challenge element 𝑇 :
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– Suppose 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 . Then

𝐶∗
1
= 𝑇 · 𝑒 (𝑔,𝑔𝑡 )𝑠1 ·𝑚𝑏 = 𝑒 (𝑔,𝑔)𝑡 (𝑎𝑏+𝑠1 ) ·𝑚𝑏 = 𝑒 (𝑔,𝑔)𝑠1𝑡 ·𝑚𝑏 = 𝐵𝑡 ·𝑚𝑏 .

This is the distribution of 𝐶∗
1
in Hyb(𝑏 )

1
.

– Suppose 𝑇
r← G𝑇 . Then 𝐶1 is also distributed uniformly over G𝑇 . This is the distribution of 𝐶∗

1
in Hyb(𝑏 )

2
.

• Consider 𝑐∗
2
. Algorithm B sets 𝑐∗

2
= 𝑔𝑡 , which matches the behavior in Hyb(𝑏 )

1
and Hyb(𝑏 )

2
.

• Consider 𝑐∗
3
. Algorithm B sets 𝑐∗

3
= (𝑔𝑡 )𝑢̃𝜏∗+ ˜ℎ = (𝑢𝜏∗ ˆℎ)𝑡 since 𝑢𝜏∗ ˆℎ = 𝑔𝑏𝜏

∗+𝑢̃𝜏∗+ ˜ℎ−𝑏𝜏∗ = 𝑔𝑢̃𝜏
∗+ ˜ℎ

. This matches the

distribution in Hyb(𝑏 )
1

and Hyb(𝑏 )
2

.

• Consider 𝑐∗
4
. In the reduction, algorithm B sets

𝑐∗
4
=

∏
ℓ∈[𝑁 ]

(𝑔𝑡𝑐ℓ )mT
ℓ s̃+𝛼̃ℓ .

We show that 𝑐∗
4
= 𝑧𝑡 where

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓmT

ℓ s𝑣 ′ℓ,ℓ .

Then this would coincide with the distribution of 𝑐∗
4
in Hyb(𝑏 )

1
and Hyb(𝑏 )

2
. We consider each component in

𝑧 separately:

– Suppose ℓ ∈ C. In this case, 𝑣ℓ,ℓ is output by KeyGen(crs; 𝜌ℓ ). Since skℓ = (pkℓ , 𝛼ℓ ), this means 𝑣ℓ,ℓ = 𝑔
𝑐ℓ 𝛼̃ℓ

.

Since ℓ ∈ C, mT
ℓw̃ = 0. This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ).

– Suppose ℓ ∈ [𝑁 ] \ C. In this case, 𝑣ℓ,ℓ = 𝑔
𝑐ℓ𝛼ℓ = 𝑔𝑐

ℓ (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) . This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ).

Thus, we conclude that

𝑧 =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓmT

ℓ s𝑣 ′ℓ,ℓ =
∏
ℓ∈[𝑁 ]

𝑔𝑐
ℓ (mT

ℓ s̃+𝛼̃ℓ ) ,

and correspondingly, 𝑐∗
4
= 𝑧𝑡 , as required.

We conclude that if𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 , then algorithmB perfectly simulates an execution ofHyb(𝑏 )
1

forA. If𝑇
r← G𝑇 , then

algorithm B perfectly simulates an execution of Hyb(𝑏 )
2

forA. We conclude that B breaks the decisional 𝑁 -extended

bilinear Diffie-Hellman exponent assumption with the same advantage 𝜀. □

Lemma C.3. For all adversaries A, Pr[Hyb(0)
2
(A) = 1] = Pr[Hyb(1)

2
(A) = 1].

Proof. These are identical distributions by definition so the claim holds. □

Since A is computationally-bounded, it makes at most 𝑄 = poly(𝜆) partial decryption queries in the security game.

Since 𝑝 > 2
𝜆
, this means 𝑄/𝑝 = negl(𝜆). Theorem 4.7 now follows by combining Lemmas C.1 to C.3 and a standard

hybrid argument. □

D Analysis of Construction 5.2 (Threshold Signature)

In this section, we give the correctness and security analysis of Construction 5.2. The proofs and analysis follow a

similar structure as the corresponding analysis for Construction 3.15 in Appendix B.
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D.1 Proof of Theorem 5.3 (Signing Correctness)

The structure of the individual signatures in Construction 5.2 is identical to that of Construction 3.15. Signing

correctness follows by an analogous argument as that in the proof of Theorem 3.16. □

D.2 Proof of Theorem 5.4 (Aggregation Correctness)

This proof follows the same structure as the proof of Theorem 3.17. Specifically, take any 𝜆 ∈ N and 𝑁 = 2
𝑛 ≤ 2

𝜆 <

2
𝜆+1 ≤ 𝑝/2, any number 𝐿 ≤ 𝑁 , any message𝑚 ∈ Z𝑝 , any crs in the support of Setup(1𝜆, 1𝜅), any {(vkℓ , htℓ , skℓ )}ℓ∈[𝐿]
where (vkℓ , htℓ , skℓ ) is in the support of KeyGen(crs) for all ℓ ∈ [𝐿], any non-empty collection of signatures

{𝜎ℓ }ℓ∈𝑆 where PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 ⊆ [𝐿], and any threshold 𝑇 ≤ |𝑆 |. For each 𝑗 ∈ [𝑛], let
𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1]. By construction, we can now write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
vkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ )
htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0}
𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2),

where G = (G,G𝑇 , 𝑝, 𝑒),

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 , 𝑧0 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s , 𝑣ℓ,0 =

∏
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝑔𝑐
ℓ−𝑖mT

𝑖
s , 𝑦 𝑗 =

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘 , 𝜏 𝑗,𝑖 =

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 ,

and M ∈ Z2𝑁×𝑁
𝑞 is the share-generation matrix for an 𝑁 -out-of-(2𝑁 − 1) threshold policy (Eq. (2.1)). Next, by

construction of KeyGen,
𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼ℓ and 𝑣 ′ℓ,𝑖 = 𝑔

𝛼ℓ𝑐
𝑖

.

Since PartialVerify(crs,𝑚, 𝜎ℓ ) = 1 for all ℓ ∈ 𝑆 , this means

∀ℓ ∈ 𝑆 : 𝑒 (𝑔, 𝜎̂ℓ,2) = 𝐴ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ) = 𝑒 (𝑔,𝑔)𝛼ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ). (D.1)

Let

(vkagg, ak) = Preprocess(crs,M, {(vkℓ , htℓ )}ℓ∈[𝑁 ])
𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, |𝑆 |) = Aggregate(ak, {𝜎ℓ }ℓ∈𝑆 ).

By construction, the preprocessing algorithm computes

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑔𝑐
ℓ𝛼ℓ = 𝑔𝑧 where 𝑧 =

∑︁
ℓ∈[2𝑁−1]

𝑐ℓmT
ℓs +

∑︁
ℓ∈[𝐿]

𝑐ℓ𝛼ℓ .

Next, the preprocessing algorithm computes 𝑣ℓ according to Eq. (5.2). This means

𝑣ℓ = 𝑣ℓ,0 ·
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓ𝛼𝑖 . (D.2)

Then, it sets

vkagg = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛])
ak =

(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.
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Let 𝑏𝑛 · · ·𝑏1 be the binary representation of 𝐿− |𝑆 |. The aggregation algorithm defines 𝑆pad = 𝑆∪ [𝐿+1, 𝑁 ] ∪
⋃
𝑗 :𝑏 𝑗=1

𝑋 𝑗
and computes

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1

𝜎̂agg,2 =
∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
·

∏
ℓ∈𝑆pad

𝑣
𝜔ℓ

ℓ
·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝜏
𝜔ℓ

𝑗,ℓ

𝜎agg,3 =
∏
ℓ∈𝑆pad

(
𝑔𝑐
−ℓ )𝜔ℓ .

(D.3)

As in the proof of Theorem 3.17, by Eq. (D.1) and bilinearity, this means

𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) =
∏
ℓ∈𝑆

𝑒 (𝜎ℓ,1, 𝑢𝑚 ˆℎ)𝜔ℓ =
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ
(D.4)

Let 𝜎̃agg,3 =
∑
ℓ∈𝑆pad 𝜔ℓ𝑐

−ℓ
. Then 𝜎agg,3 = 𝑔

𝜎̃agg,3
. Next, 𝝎TM = eT

1
so∑︁

ℓ∈[2𝑁−1]
𝜔ℓmT

ℓs = 𝝎TMs = eT
1
s = 𝑠1.

Combined with the fact that 𝜔ℓ = 0 for all ℓ ∉ 𝑆pad, we have

𝑧 · 𝜎̃agg,3 =
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[2𝑁−1]

𝑐𝑖mT
𝑖 s · 𝜔ℓ𝑐−ℓ +

∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[𝐿]

𝑐𝑖𝛼𝑖 · 𝜔ℓ𝑐−ℓ

=
∑︁
ℓ∈𝑆pad

𝜔ℓmT
ℓs +

∑︁
ℓ∈𝑆pad∩[𝐿]

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝜔ℓ𝑐
𝑖−ℓmT

𝑖 s +
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝜔ℓ𝛼𝑖𝑐
𝑖−ℓ

= 𝑠1 +
∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆pad

𝜔ℓ

©­­­«
∑︁

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑐𝑖−ℓmT
𝑖 s +

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝑐𝑖−ℓ𝛼𝑖

ª®®®¬
Using the definition of 𝑣ℓ from Eq. (D.2), we have

𝑒 (𝜎agg,3, 𝑧) = 𝑒 (𝑔,𝑔)𝜎̃agg,3𝑧

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆pad

©­­­«
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑒 (𝑔,𝑔𝑐𝑖−ℓmT
𝑖
s)

∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑒 (𝑔,𝑔𝑐𝑖−ℓ𝛼𝑖 )
ª®®®¬
𝜔ℓ

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝑣𝜔ℓ

ℓ
).

(D.5)

Next, let 𝑦 𝑗 =
∑
𝑘∈𝑋 𝑗

𝑐𝑘𝛾𝑘 . In particular, 𝑦 𝑗 = 𝑔
𝑦̃ 𝑗
. Then,

𝑦 𝑗 · 𝜎̃agg,3 =
∑︁
ℓ∈𝑆pad

∑︁
𝑘∈𝑋 𝑗

𝑐𝑘𝛾𝑘 · 𝜔ℓ𝑐−ℓ =
∑︁
ℓ∈𝑆pad

∑︁
𝑘∈𝑋 𝑗

𝜔ℓ𝛾𝑘𝑐
𝑘−ℓ .

By construction, 𝑆pad contains 𝑋 𝑗 where 𝑏 𝑗 = 1. Moreover, the sets 𝑋1, . . . , 𝑋𝑛 are pairwise disjoint, so for all 𝑗 ∈ [𝑛]
where 𝑏 𝑗 = 0, 𝑆pad ∩ 𝑋 𝑗 = ∅. Thus,

∀𝑗 ∈ [𝑛] where 𝑏 𝑗 = 0 : 𝑒 (𝜎agg,3, 𝑦 𝑗 ) = 𝑒 (𝑔,𝑔) 𝑦̃ 𝑗 𝜎̃agg,3 =
∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝜏𝜔ℓ

𝑗,ℓ
). (D.6)
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Combining Eqs. (D.3) to (D.6), we have

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2)

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
) ·

∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝑣𝜔ℓ

ℓ
) ·

∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝜏𝜔ℓ

𝑗,ℓ
)

= 𝑒 (𝜎agg,3, 𝑧) ·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ) ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ

= 𝑒 (𝜎agg,1, 𝑢𝑚 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧) ·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ).

By assumption, |𝑆 | ≥ 𝑇 , so we conclude that Verify(vkagg,𝑚, 𝜎agg,𝑇 ) = 1, as required. □

D.3 Proof of Theorem 5.5 (Static Unforgeability)

We begin by defining two hybrid experiments. Each experiment is implicitly parameterized by an adversary A and

a security parameter 𝜆.

• Hyb
0
: This is the static unforgeability security game for the threshold signature scheme (from Definition 5.1).

• Hyb
1
: Same as Hyb

0
, except at the beginning of the security game, after the adversary commits to the quorum

size 𝐿, the challenger samples a random threshold𝑇 ∗ r← [|C| + 1, 𝐿]. At the end of the game, after the adversary

outputs its forgery 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, 𝐾), the challenger outputs 0 if 𝐾 ≠ 𝑇 ∗.

For an adversary A, we write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. We now

analyze the output distributions of the two hybrids.

Lemma D.1. For all efficient adversaries A, there exists a polynomial 𝑄 = 𝑄 (𝜆) such that Pr[Hyb
1
(A) = 1] =

1

𝑄
· Pr[Hyb

0
(A) = 1].

Proof. By construction, the adversary’s view of the two experiments is identically distributed. Suppose Hyb
0
(A)

outputs 1. This means that the adversary A outputs a threshold 𝐾 where 𝐾 ∈ [|C| + 1, 𝐿]. The challenger’s output in
Hyb

1
is 1 if and only ifHyb

0
(A) = 1 and𝑇 ∗ = 𝐾 . Since the challenger samples𝑇 ∗ r← [|C|+1, 𝐿] and𝑇 ∗ is independent

of the view of the adversary, the event 𝑇 ∗ = 𝐾 occurs with probability 1/(𝐿 − |C|). Thus, Pr[Hyb
1
(A) = 1] =

Pr[Hyb
0
(A) = 1]/(𝐿− |C|). SinceA is efficient, both 𝐿 and |C| are polynomially-bounded, and the claim follows. □

Lemma D.2. Suppose the (2𝑁 − 1)-extended bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds
with respect to GroupGen. Then, for all efficient adversaries A (outputting quorums of size 𝑁 ), there exists a negligible
function negl(·) such that for all 𝜆 ∈ N, we have Pr[Hyb

1
(A) = 1] = negl(𝜆).

Proof. Similar to the proof of Theorem 3.18, we will use the search (2𝑁 −1)-extended bilinear Diffie-Hellman exponent

assumption from Lemma B.1. Suppose there exists an efficient adversary A where Pr[Hyb
1
(A) = 1] ≥ 𝜀 for some

non-negligible 𝜀. We use A to construct an adversary B for the search (2𝑁 − 1)-extended bilinear Diffie-Hellman

assumption from Lemma B.1. As in the proof of Theorem 3.18, we use a tilde (e.g., 𝑢̃, ˜ℎ) to denote exponents sampled

by the reduction algorithm B. Algorithm B works as follows:

1. Let 𝐼 = [−2𝑁 + 1, 2𝑁 − 1]. On input the challenge(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈𝐼\{0}

)
,

algorithm B starts running algorithm A on 1
𝜆
. Algorithm A outputs the quorum size 𝐿 ≤ 𝑁 , the indices of

the corrupted users C ⊆ [𝑁 ] and a challenge message𝑚∗ ∈ Z𝑝 .
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2. Algorithm B starts by sampling the target threshold𝑇 ∗ r← [|C| +1, 𝐿]. Let 𝑏∗𝑛 · · ·𝑏∗1 be the binary representation
of 𝐿−𝑇 ∗ (namely, 𝐿−𝑇 ∗ = ∑

𝑗∈[𝑛] 𝑏
∗
𝑗 2
𝑗−1

). Let 𝑆∗pad = C∪[𝐿+1, 𝑁 ]∪
⋃
𝑗 :𝑏∗

𝑗
=1𝑋 𝑗 where𝑋 𝑗 = [𝑁 +2𝑗−1, 𝑁 +2𝑗 −1].

By construction,��𝑆∗pad�� = |C| + (𝑁 − 𝐿) + ∑︁
𝑗∈[𝑛]:𝑏∗

𝑗
=1

2
𝑗−1 = |C| + (𝑁 − 𝐿) + (𝐿 −𝑇 ∗) = 𝑁 + (|C| −𝑇 ∗) < 𝑁,

since 𝑇 ∗ > |C|. Let M ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generating matrix for the 𝑁 -out-of-(2𝑁 − 1) threshold policy

from Eq. (2.1). Since |𝑆∗pad | < 𝑁 , the set 𝑆∗pad does not satisfy the threshold policy defined byM. Thus, there exists

a vector w̃ ∈ Z𝑁𝑝 such that for all indices 𝑖 ∈ 𝑆∗pad, m
T
𝑖 w̃ = 0, where mT

𝑖 denotes the 𝑖
th
row ofM, and eT

1
w̃ = 1.

3. Algorithm B constructs the common reference string crs as follows. First, it samples 𝑢̃, ˜ℎ
r← Z𝑝 and sets

𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and
ˆℎ = 𝑔

˜ℎ/(𝑔𝑏)𝑚∗ .

Algorithm B samples a vector s̃ r← Z𝑁𝑝 . Algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃ and computes

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏)𝑤̃1 = 𝑒 (𝑔,𝑔)𝑠1 .

Next, algorithm B computes

𝑧0 =
∏

ℓ∈[2𝑁−1]

(
(𝑔𝑐ℓ )mT

ℓ s̃ · (𝑔𝑐ℓ𝑎𝑏)mT
ℓ w̃

)
=

∏
ℓ∈[2𝑁−1]

𝑔𝑐
ℓmT

ℓ s

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ,0 =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

(
(𝑔𝑐𝑖−ℓ )mT

𝑖
s̃ · (𝑔𝑐𝑖−ℓ𝑎𝑏)mT

𝑖
w̃
)
=

∏
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s .

Finally, for each ℓ ∈ [𝑁 + 1, 2𝑁 − 1], algorithm B samples 𝛾ℓ
r← Z𝑝 and implicitly sets

𝛾ℓ =

{
𝛾ℓ ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 1

𝛾ℓ − 𝑎𝑏 ·mT
ℓw̃ ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 0.

Specifically, algorithm B constructs 𝑦 𝑗 and 𝜏 𝑗,𝑖 for 𝑗 ∈ [𝑛] and 𝑖 ∈ 𝐼 \ 𝑋 𝑗 as follows:

• If 𝑏∗𝑗 = 1, then algorithm B sets

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

(𝑔𝑐𝑘 )𝛾𝑘 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

and 𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

(𝑔𝑐𝑘−𝑖 )𝛾𝑘 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

• If 𝑏∗𝑗 = 0, then algorithm B sets

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

(
(𝑔𝑐𝑘 )𝛾𝑘 · (𝑔𝑐𝑘𝑎𝑏)−mT

ℓ w̃
)
=

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

(
(𝑔𝑐𝑘−𝑖 )𝛾𝑘 · (𝑔𝑐𝑘−𝑖𝑎𝑏)−mT

ℓ w̃
)
=

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

Algorithm B sets the common reference string to be

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.
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4. Next, to simulate the honest verification keys, algorithm B starts by sampling 𝛼ℓ
r← Z𝑝 for each ℓ ∈ [𝐿] \ C.

Then, algorithm B implicitly sets the secret key for user ℓ to be 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Specifically, algorithm B

constructs the components of the verification key and the aggregation hint as follows:

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)−m
T
ℓ w̃ = 𝑒 (𝑔,𝑔)𝛼ℓ

𝑣 ′ℓ,𝑖 = (𝑔𝑐
𝑖 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖 )−mT

ℓ w̃ = (𝑔𝑐𝑖𝛼ℓ ).

Then, algorithm B sets

vkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0} .

Algorithm B gives crs and {(vkℓ , htℓ )}ℓ∈[𝐿]\C to A.

5. Whenever algorithm A makes a signing query on an index ℓ ∈ [𝐿] \ C and a message𝑚 ≠𝑚∗, algorithm B
samples 𝑟

r← Z𝑝 and implicitly sets 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃. Then, it computes

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎̂1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃

𝜎̂2 = 𝑔
𝛼̃ℓ · (𝑔𝑏)𝑟 (𝑚−𝑚∗ ) · 𝜎̂𝑢̃𝑚+ ˜ℎ

1
.

and responds to A with the signature 𝜎 = (𝜎1, 𝜎̂2).

6. After A is finished making signing queries, it outputs the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used
to generate the keys for each of the corrupted users ℓ ∈ C. Algorithm A also outputs a signature 𝜎agg =

(𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, 𝐾).

7. Algorithm B checks if 𝐾 = 𝑇 ∗. If not, algorithm B halts with output 0.

8. Otherwise, for each ℓ ∈ C, algorithm B computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Algorithm B parses

skℓ = (vkℓ , 𝛼ℓ ) for some 𝛼ℓ ∈ Z𝑝 . Finally, for all ℓ ∈ [2𝑁 − 1], algorithm B defines the exponent

˜𝜁ℓ =


𝛼ℓ ℓ ∈ [𝐿]
0 ℓ ∈ [𝐿 + 1, 𝑁 ] ∪⋃

𝑗∈[𝑛]:𝑏∗
𝑗
=1𝑋 𝑗

𝛾ℓ ℓ ∈ ⋃
𝑗∈[𝑛]:𝑏∗

𝑗
=0𝑋 𝑗 .

(D.7)

Then, algorithm B outputs (𝜏0, 𝜏0, 𝜏1, . . . , 𝜏2𝑁−1) where

𝜏0 = 𝑔
−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 and 𝜏0 = 𝜎̂

−1
agg,2 and ∀ℓ ∈ [2𝑁 − 1] : 𝜏ℓ = 𝜎

mT
ℓ s̃+ ˜𝜁ℓ

agg,3 .

Similar to the proof of Theorem 3.18, we first argue that algorithm B correctly simulates the common reference string,

the honest verification keys, and the signatures according to the specification of the real scheme (which coincides

with the distribution in Hyb
1
). Consider first the components of the common reference string:

• Algorithm B samples 𝑢̃, ˜ℎ
r← Z𝑝 so the distributions of 𝑢, ˆℎ are also uniform over G (and independent of all

other components in crs), exactly as in the real scheme.

• AlgorithmB implicitly sets s = s̃+𝑎𝑏 ·w̃, where s̃ r← Z𝑁𝑝 . Thus, the distribution of s also coincideswith its distribu-
tion in the real scheme. Correspondingly, the elements 𝐵, 𝑧0, and 𝑣ℓ,0 are distributed exactly as in the real scheme.

• For ℓ ∈ [𝑁 + 1, 2𝑁 − 1], algorithm B either sets 𝛾ℓ = 𝛾ℓ or 𝛾ℓ = 𝛾ℓ − 𝑎𝑏mT
ℓw̃, where 𝛾ℓ

r← Z𝑝 . This coincides
with the distribution of 𝛾ℓ in the real scheme. Hence, we conclude that the elements 𝑦 𝑗 and 𝜏 𝑗,𝑖 are distributed

exactly as in the real scheme.

• Finally, the challenger samples 𝑐
r← Z∗𝑝 , which matches the distribution in the real scheme.
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We conclude that algorithm B constructs crs according to the same distribution as Setup(1𝜆, 1𝜅). We now consider

the honest verification keys and the signatures:

• Verification keys: Consider the honest verification keys vkℓ for ℓ ∈ [𝐿] \ C. By construction, the verification

keys vkℓ and hint components htℓ sampled by algorithm B coincide with those that would be output by

KeyGen(crs) with 𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT
ℓw̃. Since algorithm B samples 𝛼ℓ

r← Z𝑝 for all ℓ ∈ [𝐿] \ C, the verification
keys are also distributed exactly as in the real scheme.

• Signatures: Next, consider the signing queries. Let ℓ ∈ [𝐿] \ C be the index and𝑚 ≠𝑚∗ be the message. We

claim that 𝜎 = (𝜎1, 𝜎̂2) is a signature with respect to signing key 𝛼ℓ and randomness 𝑟 = 𝑟 + 𝑎(𝑚 −𝑚∗)−1mT
ℓw̃:

– By construction, algorithm B sets

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝑚−𝑚∗ )−1mT

ℓ w̃ = 𝑔𝑟+𝑎 (𝑚−𝑚
∗ )−1mT

ℓ w̃ = 𝑔𝑟 .

By the same calculation, this means 𝜎̂1 = 𝑔
𝑟
.

– In the real scheme, 𝜎̂2 = 𝑔
𝛼ℓ (𝑢𝑚 ˆℎ)𝑟 . Substituting the expressions for 𝛼ℓ , 𝑢, ˆℎ, and 𝑟 , we have

𝑔𝛼ℓ (𝑢𝑚 ˆℎ)𝑟 = 𝑔 (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) (𝑔𝑏𝑚+𝑢̃𝑚𝑔 ˜ℎ−𝑏𝑚∗ )𝑟+𝑎 (𝑚−𝑚∗ )−1mT

ℓ w̃

= 𝑔𝛼̃ℓ (𝑔𝑢̃𝑚+ ˜ℎ)𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃𝑔−𝑎𝑏m

T
ℓ w̃𝑔𝑏 (𝑚−𝑚

∗ ) (𝑟+𝑎 (𝑚−𝑚∗ )−1mT
ℓ w̃)

= 𝑔𝛼̃ℓ 𝜎̂𝑢̃𝑚+
˜ℎ

1
𝑔𝑏 (𝑚−𝑚

∗ )𝑟 .

This is precisely how algorithm B constructs the signatures.

Since algorithmB samples 𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform and the signature is correctly constructed.

Thus, with probability 𝜀, algorithm A outputs a forgery 𝜎agg = (𝜎agg,1, 𝜎̂agg,2, 𝜎agg,3, 𝐾) and a threshold 𝑇 > |C| such
that 𝑇 = 𝐾 and Verify(vkagg,𝑚∗, 𝜎agg,𝑇 ) = 1, where vkagg = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛]) and

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ .

This means

𝑧 ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

𝑦 𝑗 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘 . (D.8)

We group the components of this product based on the terms that depend on 𝑐ℓ for all ℓ ∈ [2𝑁 − 1].

• Suppose ℓ ∈ C. In this case, 𝑣 ′ℓ,ℓ is output by KeyGen(crs; 𝜌ℓ ). Since skℓ = (vkℓ , 𝛼ℓ ), this means 𝑣 ′ℓ,ℓ = 𝑔
𝑐ℓ 𝛼̃ℓ

. Since

ℓ ∈ C ⊆ 𝑆∗pad, we have m
T
ℓw̃ = 0. This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ).

• Suppose ℓ ∈ [𝐿] \ C. In this case, 𝑣 ′ℓ,ℓ = 𝑔
𝑐ℓ𝛼ℓ = 𝑔𝑐

ℓ (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) . This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ).

• Suppose ℓ ∈ [𝐿 + 1, 𝑁 ]. Then, ℓ ∈ 𝑆∗pad, so as in the first case, mT
ℓw̃ = 0. This means

𝑐ℓmT
ℓs = 𝑐

ℓ (mT
ℓ (s̃ + 𝑎𝑏w̃)) = 𝑐ℓmT

ℓ s̃.

• Suppose ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 1. Then, ℓ ∈ 𝑆∗pad, so as in the previous case, mT
ℓw̃ = 0. This means

𝑐ℓmT
ℓs = 𝑐

ℓ (mT
ℓ (s̃ + 𝑎𝑏w̃)) = 𝑐ℓmT

ℓ s̃.
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• Suppose ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 0. In this case 𝛾ℓ = 𝛾ℓ − 𝑎𝑏 ·mT
ℓw̃. This means

𝑐ℓ (mT
ℓs + 𝛾ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛾ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛾ℓ ).

Taken altogether, we have that

𝑧 ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

𝑦 𝑗 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓ (mT
ℓ s̃+ ˜𝜁ℓ ) , (D.9)

where the exponents
˜𝜁ℓ are defined in Eq. (D.7). Now, since verification passes, this means Eq. (5.3) holds so

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑢𝑚
∗
ˆℎ) · 𝑒 (𝜎agg,3, 𝑧) ·

∏
𝑗∈[𝑛]
𝑏∗𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ). (D.10)

Recall that eT
1
w̃ = 1. This means 𝑠1 = eT

1
s = eT

1
s̃ + 𝑎𝑏eT

1
w̃ = 𝑠1 + 𝑎𝑏. In addition, 𝑢𝑚

∗
ˆℎ = 𝑔𝑎𝑚

∗+𝑢̃𝑚∗ · 𝑔 ˜ℎ/𝑔𝑎𝑚∗ = 𝑔𝑢̃𝑚∗+ ˜ℎ .
Combining with Eqs. (D.9) and (D.10), we have

𝑒 (𝑔,𝑔)𝑠1+𝑎𝑏 · 𝑒 (𝑔, 𝜎̂agg,2) = 𝑒 (𝜎agg,1, 𝑔𝑢̃𝑚
∗+ ˜ℎ) ·

∏
ℓ∈[2𝑁−1]

𝑒 (𝜎agg,3, 𝑔𝑐
ℓ (mT

ℓ s̃+ ˜𝜁ℓ ) )

Rearranging and using bilinearity, we have

𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒
(
𝑔−𝑠1 · 𝜎𝑢̃𝑚∗+ ˜ℎagg,1 , 𝑔

)
· 𝑒

(
𝑔, 𝜎̂−1agg,2

)
·

∏
ℓ∈[2𝑁−1]

𝑒 (𝜎m
T
ℓ s̃+ ˜𝜁ℓ

agg,3 , 𝑔𝑐
ℓ )

= 𝑒 (𝜏0, 𝑔) · 𝑒 (𝑔, 𝜏0) ·
∏

ℓ∈[2𝑁−1]
𝑒 (𝜏ℓ , 𝑔𝑐

ℓ ).

We conclude that B breaks the search (2𝑁 − 1)-extended bilinear Diffie-Hellman exponent assumption with the same

advantage 𝜀 and the claim holds. □

Combining Lemmas D.1 and D.2, we have that for all efficient adversaries A,

Pr[Hyb
0
(A) = 1] ≤ 𝑄 (𝜆) · Pr[Hyb

1
(A) = 1] = negl(𝜆),

since 𝑄 = 𝑄 (𝜆) is polynomially-bounded. Theorem 5.5 follows. □

E Analysis of Construction 5.11 (Threshold Encryption)

In this section, we give the correctness and security analysis of Construction 5.11. The proofs and analysis follow

a similar structure as the corresponding analysis for Construction 5.2 in Appendix D.

E.1 Proof of Theorem 5.12 (Partial Decryption Correctness)

This proof proceeds similarly to the proof of Theorem 4.5. Take any 𝜆 ∈ N, any 𝑁 ≤ 2
𝜆
, and any crs in the support

of Setup(1𝜆, 1𝑁 ). Then we can write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.

Take any tag 𝜏 ∈ Z𝑝 and any message 𝑚 ∈ G𝑇 . Take any quorum size 𝐿 ≤ 𝑁 , any threshold 𝑇 ∈ [𝐿], and any

collection {(pkℓ , htℓ , skℓ )}ℓ∈[𝐿] where (pkℓ , htℓ , skℓ ) is in the support of KeyGen(crs) for all ℓ ∈ [𝐿]. This means

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝑒 (𝑔,𝑔)𝛼ℓ )
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Let (ek, ak) = Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]) and ct ← Encrypt(ek, 𝜏,𝑚,𝑇 ). Take any index 𝑖∗ ∈ [𝐿] and let

𝜎𝑖∗ ← PartialDec(sk𝑖∗ , 𝜏, ct). Then
𝜎𝑖∗ = (𝜎𝑖∗,1, 𝜎̂𝑖∗,2) = (𝑔𝑟 , 𝑔𝛼𝑖∗ (𝑢𝜏 ˆℎ)𝑟 ).

Consider now the relation checked by PartialVerify. By construction,

𝑒 (𝑔, 𝜎̂𝑖∗,2) = 𝑒 (𝑔,𝑔𝛼𝑖∗ (𝑢𝜏 ˆℎ)𝑟 ) = 𝑒 (𝑔,𝑔)𝛼𝑖∗𝑒 (𝑔𝑟 , 𝑢𝜏 ˆℎ) = 𝐴𝑖∗ · 𝑒 (𝜎𝑖∗,1, 𝑢𝜏 ˆℎ).

In this case, PartialVerify(pk𝑖∗ , 𝜏, ct, 𝜎𝑖∗ ) = 1. □

E.2 Proof of Theorem 5.13 (Aggregation Correctness)

This proof is a combination of the proofs of Theorems 4.6 and 5.4. Take any 𝜆 ∈ N, any 𝑁 ≤ 2
𝜆
, and any crs in the

support of Setup(1𝜆, 1𝑁 ). Then we can write

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
,

where

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 , 𝑧0 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s , 𝑣ℓ,0 =

∏
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝑔𝑐
ℓ−𝑖mT

𝑖
s , 𝑦 𝑗 =

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘 , 𝜏 𝑗,𝑖 =

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

Take any tag 𝜏 ∈ Z𝑝 and any message 𝑚 ∈ G𝑇 . Take any quorum size 𝐿 ≤ 𝑁 , any threshold 𝑇 ∈ [𝐿], and any

collection {(pkℓ , htℓ , skℓ )}ℓ∈[𝐿] where (pkℓ , htℓ , skℓ ) is in the support of KeyGen(crs) for all ℓ ∈ [𝐿]. This means

pkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) = (G, 𝑔, 𝑔,𝑢, ˆℎ, 𝑒 (𝑔,𝑔)𝛼ℓ )
htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0},

where 𝑣 ′ℓ,𝑖 = 𝑔
𝛼ℓ𝑐

𝑖

. Let (ek, ak) = Preprocess(crs, {(pkℓ , htℓ )}ℓ∈[𝐿]). By definition, the preprocessing algorithm com-

putes

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑔𝑐
ℓ𝛼ℓ = 𝑔𝑧 where 𝑧 =

∑︁
ℓ∈[2𝑁−1]

𝑐ℓmT
ℓs +

∑︁
ℓ∈[𝐿]

𝑐ℓ𝛼ℓ

Next, the preprocessing algorithm computes 𝑣ℓ according to Eq. (5.5). This means

𝑣ℓ = 𝑣ℓ,0 ·
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑣 ′𝑖,𝑖−ℓ =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s
∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑔𝑐
𝑖−ℓ𝛼𝑖

(E.1)

Then, it sets

ek = (𝐿,G, 𝑔, 𝑔,𝑢, ˆℎ, 𝐵, 𝑧, {𝑦 𝑗 } 𝑗∈[𝑛])
ak =

(
𝐿, {𝑔𝑐−ℓ , 𝑣ℓ }ℓ∈[𝐿], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.

Take any ct in the support of Encrypt(ek, 𝜏,𝑚,𝑇 ). Then, we can write

ct = (𝜏,𝑇 ,𝐶1, 𝑐2, 𝑐3, 𝑐4) =
(
𝜏 ,𝑇 , 𝐵𝑡 ·𝑚 , 𝑔𝑡 , (𝑢𝜏 ˆℎ)𝑡 , 𝑧𝑡 ∏𝑗∈[𝑛]:𝑏 𝑗=0 𝑦

𝑡
𝑗

)
, (E.2)

where 𝐿 − 𝑇 =
∑
𝑗∈[𝑛] 𝑏 𝑗2

𝑗−1
. Take any set of partial decryptions {𝜎𝑖 }𝑖∈𝑆 where |𝑆 | ≥ 𝑇 where for all 𝑖 ∈ 𝑆 ,

PartialVerify(pk𝑖 , 𝜏, ct, 𝜎𝑖 ) = 1. By construction, if we parse 𝜎ℓ = (𝜎ℓ,1, 𝜎̂ℓ,2), this means

∀ℓ ∈ 𝑆 : 𝑒 (𝑔, 𝜎̂ℓ,2) = 𝐴ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ) = 𝑒 (𝑔,𝑔)𝛼ℓ · 𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ). (E.3)
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Consider now Decrypt(crs, ak, ct, {𝜎ℓ }ℓ∈𝑆 ). Without loss of generality, let |𝑆 | = 𝑇 (this is without loss of generality

since the behavior of Decrypt only depends on the first𝑇 partial decryptions in 𝑆). First, the decryption algorithm sets

𝑆pad = 𝑆 ∪ [𝐿 + 1, 𝑁 ] ∪
⋃

𝑗∈[𝑛]:𝑏 𝑗=1
𝑋 𝑗 .

Critically, these are the same bits 𝑏1, . . . , 𝑏𝑛 as computed by the Encrypt algorithm (specifically, 𝑏𝑛 · · ·𝑏1 is the binary
representation of 𝐿 −𝑇 ). Then it computes the aggregated decryption components:

𝜎agg,1 =
∏
ℓ∈𝑆

𝜎
𝜔ℓ

ℓ,1

𝜎̂agg,2 =
∏
ℓ∈𝑆

𝜎̂
𝜔ℓ

ℓ,2
·

∏
ℓ∈𝑆pad

𝑣
𝜔ℓ

ℓ
·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝜏
𝜔ℓ

𝑗,ℓ

𝜎agg,3 =
∏
ℓ∈𝑆pad

(
𝑔𝑐
−ℓ )𝜔ℓ .

(E.4)

The rest of this proof follows almost verbatim as the proof of Theorem 5.4.We include it here to provide a self-contained

exposition. First, by bilinearity, we have

𝑒 (𝜎agg,1, 𝑢𝜏 ˆℎ) =
∏
ℓ∈𝑆

𝑒 (𝜎ℓ,1, 𝑢𝜏 ˆℎ)𝜔ℓ =
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ
(E.5)

Let 𝜎̃agg,3 =
∑
ℓ∈𝑆pad 𝜔ℓ𝑐

−ℓ
. Then 𝜎agg,3 = 𝑔

𝜎̃agg,3
. Next, 𝝎TM = eT

1
so∑︁

ℓ∈[2𝑁−1]
𝜔ℓmT

ℓs = 𝝎TMs = eT
1
s = 𝑠1.

Combined with the fact that 𝜔ℓ = 0 for all ℓ ∉ 𝑆pad, we have

𝑧 · 𝜎̃agg,3 =
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[2𝑁−1]

𝑐𝑖mT
𝑖 s · 𝜔ℓ𝑐−ℓ +

∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[𝐿]

𝑐𝑖𝛼𝑖 · 𝜔ℓ𝑐−ℓ

=
∑︁
ℓ∈𝑆pad

𝜔ℓmT
ℓs +

∑︁
ℓ∈𝑆pad∩[𝐿]

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝜔ℓ𝑐
𝑖−ℓmT

𝑖 s +
∑︁
ℓ∈𝑆pad

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝜔ℓ𝛼𝑖𝑐
𝑖−ℓ

= 𝑠1 +
∑︁
ℓ∈𝑆

𝜔ℓ𝛼ℓ +
∑︁
ℓ∈𝑆pad

𝜔ℓ

©­­­«
∑︁

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑐𝑖−ℓmT
𝑖 s +

∑︁
𝑖∈[𝐿]
𝑖≠ℓ

𝑐𝑖−ℓ𝛼𝑖

ª®®®¬
Using the definition of 𝑣ℓ from Eq. (E.1), we have

𝑒 (𝜎agg,3, 𝑧) = 𝑒 (𝑔,𝑔)𝜎̃agg,3𝑧

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆pad

©­­­«
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

𝑒 (𝑔,𝑔𝑐𝑖−ℓmT
𝑖
s)

∏
𝑖∈[𝐿]
𝑖≠ℓ

𝑒 (𝑔,𝑔𝑐𝑖−ℓ𝛼𝑖 )
ª®®®¬
𝜔ℓ

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ ·
∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝑣𝜔ℓ

ℓ
).

(E.6)

Next, let 𝑦 𝑗 =
∑
𝑘∈𝑋 𝑗

𝑐𝑘𝛾𝑘 . In particular, 𝑦 𝑗 = 𝑔
𝑦̃ 𝑗
. Then,

𝑦 𝑗 · 𝜎̃agg,3 =
∑︁
ℓ∈𝑆pad

∑︁
𝑘∈𝑋 𝑗

𝑐𝑘𝛾𝑘 · 𝜔ℓ𝑐−ℓ =
∑︁
ℓ∈𝑆pad

∑︁
𝑘∈𝑋 𝑗

𝜔ℓ𝛾𝑘𝑐
𝑘−ℓ .
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By construction, 𝑆pad contains 𝑋 𝑗 where 𝑏 𝑗 = 1. Moreover, the sets 𝑋1, . . . , 𝑋𝑛 are pairwise disjoint, so for all 𝑗 ∈ [𝑛]
where 𝑏 𝑗 = 0, 𝑆pad ∩ 𝑋 𝑗 = ∅. Thus,

∀𝑗 ∈ [𝑛] where 𝑏 𝑗 = 0 : 𝑒 (𝜎agg,3, 𝑦 𝑗 ) = 𝑒 (𝑔,𝑔) 𝑦̃ 𝑗 𝜎̃agg,3 =
∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝜏𝜔ℓ

𝑗,ℓ
). (E.7)

Combining Eqs. (E.4) to (E.7), we have

𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2)

= 𝑒 (𝑔,𝑔)𝑠1 ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
) ·

∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝑣𝜔ℓ

ℓ
) ·

∏
𝑗∈[𝑛]
𝑏 𝑗=0

∏
ℓ∈𝑆pad

𝑒 (𝑔, 𝜏𝜔ℓ

𝑗,ℓ
)

= 𝑒 (𝜎agg,3, 𝑧) ·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ) ·
∏
ℓ∈𝑆

𝑒 (𝑔, 𝜎̂𝜔ℓ

ℓ,2
)

𝑒 (𝑔,𝑔)𝜔ℓ𝛼ℓ

= 𝑒 (𝜎agg,1, 𝑢𝜏 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧) ·
∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 ).

Combined with Eq. (E.2), this means

𝐶1 · 𝑒 (𝑐2, 𝜎̂agg,2) = 𝐵𝑡 ·𝑚 · 𝑒 (𝑔𝑡 , 𝜎̂agg,2)
=𝑚 ·

(
𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔, 𝜎̂agg,2)

)𝑡
=𝑚 ·

©­­­«𝑒 (𝜎agg,1, 𝑢
𝜏 ˆℎ) · 𝑒 (𝜎agg,3, 𝑧) ·

∏
𝑗∈[𝑛]
𝑏 𝑗=0

𝑒 (𝜎agg,3, 𝑦 𝑗 )
ª®®®¬
𝑡

=𝑚 · 𝑒 (𝜎agg,1, 𝑐3) · 𝑒 (𝜎agg,3, 𝑐4).

We conclude then that

Decrypt(crs, ak, ct, {𝜎ℓ }ℓ∈𝑆 ) = 𝐶1 · 𝑒 (𝜎agg,1, 𝑐3)−1 · 𝑒 (𝑐2, 𝜎̂agg,2) · 𝑒 (𝜎agg,3, 𝑐4)−1 =𝑚.

Aggregation correctness follows. □

E.3 Proof of Theorem 5.14 (Static Tag-Based CCA-Security)

This proof is a combination of the proofs of Theorems 4.7 and 5.5. As in the proof of Theorem 4.7, we begin by

defining a sequence of hybrid experiments. Each experiment is parameterized by a bit 𝑏 ∈ {0, 1}, and implicitly, by

an adversary A and a security parameter 𝜆.

• Hyb(𝑏 )
0

: This is the real tag-based CCA security experiment with bit 𝑏 ∈ {0, 1}.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except at the beginning of the security game, after the adversary commits to the

quorum size 𝐿, the challenger samples a random threshold 𝑇 ∗ r← [|C| + 1, 𝐿]. After algorithm A outputs its

desired threshold 𝑇 , the challenger outputs 0 if 𝑇 ≠ 𝑇 ∗.

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

, except the challenger sample the challenge tag 𝜏∗ r← Z𝑝 at the beginning of the

experiment. Then, if the adversary makes a partial decryption query on 𝜏∗ before it chooses the challenge
messages𝑚0,𝑚1, then the challenge outputs 0.

• Hyb(𝑏 )
3

: Same as Hyb(𝑏 )
2

, except when constructing the ciphertext, the challenger samples 𝐶∗
1

r← G𝑇 . Notably,
in this experiment, the adversary’s view is independent of the bit 𝑏 ∈ {0, 1}.

75



For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of an execution of experiment Hyb𝑖 with
adversary A (and the implicit security parameter 𝜆). We now argue that each adjacent pair of experiments are

indistinguishable.

Lemma E.1. For all efficient adversaries A, there exists a fixed polynomial 𝑄1 = 𝑄1 (𝜆) such that for all 𝑏 ∈ {0, 1},
Pr[Hyb(𝑏 )

1
(A) = 1] = 1

𝑄1

· Pr[Hyb(𝑏 )
0
(A) = 1].

Proof. This follows by the same argument as in the proof of Lemma D.1. Namely, the output in Hyb(𝑏 )
1

is 1 if and only

if the output in Hyb(𝑏 )
0

is 1 and 𝑇 ∗ = 𝑇 , where 𝑇 is the threshold chosen by A. By construction, the output in Hyb(𝑏 )
0

is 1 only if |C| < 𝑇 < 𝐿. The challenger in Hyb(𝑏 )
1

samples 𝑇 ∗ r← [|C| + 1, 𝐿], and moreover, the view of adversary

A is independent of 𝑇 ∗. Correspondingly, we conclude that

Pr[Hyb(𝑏 )
1
(A) = 1] = 1

𝐿 − |C| · Pr[Hyb
(𝑏 )
0
(A) = 1] .

Since the adversary A is efficient, both |C|, 𝐿 are polynomially-bounded, and the claim follows. Note that the value

of 𝑄1
:= 𝐿 − |C| is a function of the adversary A only, and importantly, does not depend on the bit 𝑏 ∈ {0, 1}. □

Lemma E.2. For all adversaries A making at most 𝑄2 = 𝑄2 (𝜆) partial decryption queries and all bits 𝑏 ∈ {0, 1}, we
have that ���Pr[Hyb(𝑏 )

1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1]

��� ≤ 𝑄2/𝑝.

Proof. This follows by the same argument as in the proof of Lemma C.2. □

Lemma E.3. Suppose the decisional 𝑁 -extended bilinear Diffie-Hellman exponent assumption (Assumption 3.12) holds
with respect to GroupGen. Then, for all efficient adversariesA and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, ���Pr[Hyb(𝑏 )

2
(A) = 1] − Pr[Hyb(𝑏 )

3
(A) = 1]

��� = negl(𝜆) .

Proof. This proof is a combination of the proofs of Lemmas C.2 and D.2. For completeness, we include the full

argument here. Suppose there exists 𝑏 ∈ {0, 1} and an efficient adversary A where���Pr[Hyb(𝑏 )
2
(A) = 1] − Pr[Hyb(𝑏 )

3
(A) = 1]

��� ≥ 𝜀
for some non-negligible 𝜀. We use A to construct an adversary B for the 𝑁 -extended bilinear Diffie-Hellman expo-

nent assumption. As in previous proofs, we will use a tilde (e.g., 𝑢̃, ˜ℎ) to denote exponents sampled by the reduction

algorithm B. Algorithm B works as follows:

1. Let 𝐼 = [−2𝑁 + 1, 2𝑁 − 1]. On input the challenge(
1
𝜆,G, 𝑔, 𝑔, 𝑔𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑡 , 𝑔𝑡 , {𝑔𝑐𝑖 , 𝑔𝑐𝑖 , 𝑔𝑎𝑏𝑐𝑖 }𝑖∈𝐼\{0}, {𝑔𝑡𝑐

𝑖 }𝑖∈[2𝑁−1], 𝑋
)
,

where 𝑋 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 or 𝑋 r← G𝑇 , algorithm B starts running algorithm A on 1
𝜆
. Algorithm A outputs the

quorum size 𝐿 ≤ 𝑁 and the indices of the corrupted users C ⊆ [𝐿].

2. Algorithm B starts by sampling the target threshold𝑇 ∗ r← [|C| +1, 𝐿]. Let 𝑏∗𝑛 · · ·𝑏∗1 be the binary representation
of 𝐿 −𝑇 ∗ (namely, 𝐿 −𝑇 ∗ = ∑

𝑗∈[𝑛] 𝑏
∗
𝑗 2
𝑗−1

). Let

𝑆∗pad = C ∪ [𝐿 + 1, 𝑁 ] ∪
⋃

𝑗∈[𝑛]:𝑏∗
𝑗
=1

𝑋 𝑗

where 𝑋 𝑗 = [𝑁 + 2𝑗−1, 𝑁 + 2𝑗 − 1]. By construction,��𝑆∗pad�� = |C| + (𝑁 − 𝐿) + ∑︁
𝑗∈[𝑛]:𝑏∗

𝑗
=1

2
𝑗−1 = |C| + (𝑁 − 𝐿) + (𝐿 −𝑇 ∗) = 𝑁 + (|C| −𝑇 ∗) < 𝑁,
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since 𝑇 ∗ > |C|. Let M ∈ Z(2𝑁−1)×𝑁𝑝 be the share-generating matrix for the 𝑁 -out-of-(2𝑁 − 1) threshold policy

from Eq. (2.1). Since |𝑆∗pad | < 𝑁 , the set 𝑆∗pad does not satisfy the threshold policy defined byM. Thus, there exists

a vector w̃ ∈ Z𝑁𝑝 such that for all indices 𝑖 ∈ 𝑆∗pad, m
T
𝑖 w̃ = 0, where mT

𝑖 denotes the 𝑖
th
row ofM, and eT

1
w̃ = 1.

3. Algorithm B constructs the common reference string crs as follows. First, it samples 𝑢̃, ˜ℎ
r← Z𝑝 and sets

𝑢 = (𝑔𝑏) · 𝑔𝑢̃ and
ˆℎ = 𝑔

˜ℎ/(𝑔𝑏)𝑚∗ .

Algorithm B samples a vector s̃ r← Z𝑁𝑝 . Algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃ and computes

𝐵 = 𝑒 (𝑔,𝑔)𝑠1 · 𝑒 (𝑔𝑎, 𝑔𝑏)𝑤̃1 = 𝑒 (𝑔,𝑔)𝑠1 .

Next, algorithm B computes

𝑧0 =
∏

ℓ∈[2𝑁−1]

(
(𝑔𝑐ℓ )mT

ℓ s̃ · (𝑔𝑐ℓ𝑎𝑏)mT
ℓ w̃

)
=

∏
ℓ∈[2𝑁−1]

𝑔𝑐
ℓmT

ℓ s

∀ℓ ∈ [2𝑁 − 1] : 𝑣ℓ,0 =
∏

𝑖∈[2𝑁−1]
𝑖≠ℓ

(
(𝑔𝑐𝑖−ℓ )mT

𝑖
s̃ · (𝑔𝑐𝑖−ℓ𝑎𝑏)mT

𝑖
w̃
)
=

∏
𝑖∈[2𝑁−1]

𝑖≠ℓ

𝑔𝑐
𝑖−ℓmT

𝑖
s

Finally, for each ℓ ∈ [𝑁 + 1, 2𝑁 − 1], algorithm B samples 𝛾ℓ
r← Z𝑝 and implicitly sets

𝛾ℓ =

{
𝛾ℓ ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 1

𝛾ℓ − 𝑎𝑏 ·mT
ℓw̃ ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 0.

Specifically, algorithm B constructs 𝑦 𝑗 and 𝜏 𝑗,𝑖 for 𝑗 ∈ [𝑛] and 𝑖 ∈ 𝐼 \ 𝑋 𝑗 as follows:

• If 𝑏∗𝑗 = 1, then algorithm B sets

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

(𝑔𝑐𝑘 )𝛾𝑘 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

and 𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

(𝑔𝑐𝑘−𝑖 )𝛾𝑘 =
∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

• If 𝑏∗𝑗 = 0, then algorithm B sets

𝑦 𝑗 =
∏
𝑘∈𝑋 𝑗

(
(𝑔𝑐𝑘 )𝛾𝑘 · (𝑔𝑐𝑘𝑎𝑏)−mT

ℓ w̃
)
=

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

𝜏 𝑗,𝑖 =
∏
𝑘∈𝑋 𝑗

(
(𝑔𝑐𝑘−𝑖 )𝛾𝑘 · (𝑔𝑐𝑘−𝑖𝑎𝑏)−mT

ℓ w̃
)
=

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘−𝑖𝛾𝑘 .

Algorithm B sets the common reference string to be

crs =
(
G, 𝑔, 𝑔, 𝐵,𝑢, ˆℎ, {𝑔𝑐𝑖 }𝑖∈𝐼\{0}, 𝑧0, {𝑣ℓ,0}ℓ∈[2𝑁−1], {𝑦 𝑗 } 𝑗∈[𝑛], {𝜏 𝑗,𝑖 } 𝑗∈[𝑛],𝑖∈𝐼\𝑋 𝑗

)
.

4. Next, to simulate the honest public keys, algorithm B starts by sampling 𝛼ℓ
r← Z𝑝 for each ℓ ∈ [𝐿] \ C. Then,

algorithm B implicitly sets the secret key for user ℓ to be 𝛼ℓ = 𝛼ℓ −𝑎𝑏 ·mT
ℓw̃. Specifically, algorithm B constructs

the components of the public key and the aggregation hint as follows:

𝐴ℓ = 𝑒 (𝑔,𝑔)𝛼̃ℓ · 𝑒 (𝑔𝑎, 𝑔𝑏)−m
T
ℓ w̃ = 𝑒 (𝑔,𝑔)𝛼ℓ

𝑣 ′ℓ,𝑖 = (𝑔𝑐
𝑖 )𝛼̃ℓ · (𝑔𝑎𝑏𝑐𝑖 )−mT

ℓ w̃ = (𝑔𝑐𝑖𝛼ℓ ).

Then, algorithm B sets

vkℓ = (G, 𝑔, 𝑔,𝑢, ˆℎ,𝐴ℓ ) and htℓ = {𝑣 ′ℓ,𝑖 }𝑖∈𝐼\{0} .
Algorithm B gives crs and {(pkℓ , htℓ )}ℓ∈[𝐿]\C to A.
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5. Algorithm A now specifies the key-generation randomness 𝜌ℓ ∈ {0, 1}∗ used to generate the keys for each

of the corrupted users ℓ ∈ C.

6. For each ℓ ∈ C, algorithm B computes (vkℓ , htℓ , skℓ ) ← KeyGen(crs; 𝜌ℓ ). Algorithm B parses skℓ = (vkℓ , 𝛼ℓ )
for some 𝛼ℓ ∈ Z𝑝 . Then it computes and gives (ek, ak) = Preprocess(crs, {(ekℓ , htℓ )}ℓ∈[𝐿]) to A.

7. Whenever algorithmA makes a partial decryption query on an index ℓ ∈ [𝐿] \ C a tag 𝜏 ∈ Z𝑝 , and a ciphertext
ct, algorithm B first checks if 𝜏 = 𝜏∗. If so, then algorithm B halts with output 0. Otherwise, algorithm B
samples 𝑟

r← Z𝑝 and implicitly sets 𝑟 = 𝑟 + 𝑎(𝜏 − 𝜏∗)−1mT
ℓw̃. Then, it computes

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃

𝜎̂1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃

𝜎̂2 = 𝑔
𝛼̃ℓ · (𝑔𝑏)𝑟 (𝜏−𝜏∗ ) · 𝜎̂𝑢̃𝜏+ ˜ℎ

1
.

and responds to A with the partial decryption 𝜎 = (𝜎1, 𝜎̂2).

8. AfterA is finished making partial decryption queries, it outputs a pair of messages𝑚0,𝑚1 ∈ G𝑇 and a threshold

𝑇 . Algorithm B outputs 0 if 𝑇 ≠ 𝑇 ∗. Otherwise, algorithm B defines the exponent
˜𝜁ℓ ∈ Z𝑝 for each ℓ ∈ [𝑁 ] as

˜𝜁ℓ =


𝛼ℓ ℓ ∈ [𝐿]
0 ℓ ∈ [𝐿 + 1, 𝑁 ] ∪⋃

𝑗∈[𝑛]:𝑏∗
𝑗
=1𝑋 𝑗

𝛾ℓ ℓ ∈ ⋃
𝑗∈[𝑛]:𝑏∗

𝑗
=0𝑋 𝑗 .

(E.8)

Algorithm B replies to A with the tag 𝜏∗ and the challenge ciphertext

ct∗ = (𝜏∗,𝐶∗
1
, 𝑐∗

2
, 𝑐∗

3
, 𝑐∗

4
) = ©­«𝜏∗ , 𝑇 ∗ , 𝑋 · 𝑒 (𝑔,𝑔𝑡 )𝑠1 ·𝑚𝑏 , 𝑔

𝑡 , (𝑔𝑡 )𝑢̃𝜏∗+ ˜ℎ ,
∏

ℓ∈[2𝑁−1]
(𝑔𝑡𝑐ℓ )mT

ℓ s̃+ ˜𝜁ℓ ª®¬ .
9. Algorithm A can continue to make partial decryption queries on tags 𝜏 ≠ 𝜏∗. Algorithm B responds exactly

as described above.

10. At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1}, which algorithm B also outputs.

Similar to the proofs of Lemmas C.2 and D.2, we first argue that algorithm B correctly simulates the common reference

string, the honest public keys, and the partial decryption queries of A according to the specification of the real

scheme (which coincides with the distribution in Hyb(𝑏 )
2

and Hyb(𝑏 )
3

). Consider first the components of the common

reference string:

• Algorithm B samples 𝑢̃, ˜ℎ
r← Z𝑝 so the distributions of 𝑢, ˆℎ are also uniform over G (and independent of all

other components in crs), exactly as in the real scheme.

• AlgorithmB implicitly sets s = s̃+𝑎𝑏 ·w̃, where s̃ r← Z𝑁𝑝 . Thus, the distribution of s also coincideswith its distribu-
tion in the real scheme. Correspondingly, the elements 𝐵, 𝑧0, and 𝑣ℓ,0 are distributed exactly as in the real scheme.

• For ℓ ∈ [𝑁 + 1, 2𝑁 − 1], algorithm B either sets 𝛾ℓ = 𝛾ℓ or 𝛾ℓ = 𝛾ℓ − 𝑎𝑏mT
ℓw̃, where 𝛾ℓ

r← Z𝑝 . This coincides
with the distribution of 𝛾ℓ in the real scheme. Hence, we conclude that the elements 𝑦 𝑗 and 𝜏 𝑗,𝑖 are distributed

exactly as in the real scheme.

• Finally, the challenger samples 𝑐
r← Z∗𝑝 , which matches the distribution in the real scheme.

We conclude that algorithm B constructs crs exactly according to the distribution in Hyb(𝑏 )
2

and Hyb(𝑏 )
3

. We now

consider the public keys and the partial decryption queries:
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• Public keys: Consider the honest public keys pkℓ for ℓ ∈ [𝐿] \ C. By construction, the public keys pkℓ and
hint components htℓ sampled by algorithm B coincide with those that would be output by KeyGen(crs) with
𝛼ℓ = 𝛼ℓ − 𝑎𝑏 ·mT

ℓw̃. Since algorithm B samples 𝛼ℓ
r← Z𝑝 for all ℓ ∈ [𝐿] \ C, the public keys are also distributed

exactly as in the real scheme.

• Partial decryption queries: Next, consider the partial decryption queries on tags 𝜏 ≠ 𝜏∗. Note that if algorithm
A ever makes a partial decryption query on 𝜏 = 𝜏∗, algorithm B outputs 0, which matches the behavior in

Hyb(𝑏 )
2

and Hyb(𝑏 )
3

. Let ℓ ∈ [𝐿] \ C be the index and 𝜏 ∈ Z𝑝 be the tag associated with the partial decryption

query. We claim that 𝜎 = (𝜎1, 𝜎̂2) is a partial decryption with respect to the secret key 𝛼ℓ and randomness

𝑟 = 𝑟 + 𝑎(𝜏 − 𝜏∗)−1mT
ℓw̃:

– By construction, algorithm B sets

𝜎1 = 𝑔
𝑟 · (𝑔𝑎) (𝜏−𝜏∗ )−1mT

ℓ w̃ = 𝑔𝑟+𝑎 (𝜏−𝜏
∗ )−1mT

ℓ w̃ = 𝑔𝑟 .

By the same calculation, this means 𝜎̂1 = 𝑔
𝑟
.

– In the real scheme, 𝜎̂2 = 𝑔
𝛼ℓ (𝑢𝜏 ˆℎ)𝑟 . Substituting the expressions for 𝛼ℓ , 𝑢, ˆℎ, and 𝑟 , we have

𝑔𝛼ℓ (𝑢𝜏 ˆℎ)𝑟 = 𝑔 (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) (𝑔𝑏𝜏+𝑢̃𝜏𝑔 ˜ℎ−𝑏𝜏∗ )𝑟+𝑎 (𝜏−𝜏∗ )−1mT

ℓ w̃

= 𝑔𝛼̃ℓ (𝑔𝑢̃𝜏+ ˜ℎ)𝑟+𝑎 (𝜏−𝜏∗ )−1mT
ℓ w̃𝑔−𝑎𝑏m

T
ℓ w̃𝑔𝑏 (𝜏−𝜏

∗ ) (𝑟+𝑎 (𝜏−𝜏∗ )−1mT
ℓ w̃)

= 𝑔𝛼̃ℓ 𝜎̂𝑢̃𝜏+
˜ℎ

1
𝑔𝑏 (𝜏−𝜏

∗ )𝑟 .

This is precisely how algorithm B constructs the partial decryptions.

Since algorithm B samples 𝑟
r← Z𝑝 , the distribution of 𝑟 is also uniform and the partial decryption is correctly

constructed.

Finally, algorithm B constructs (ek, ak) = Preprocess(crs, {(ekℓ , htℓ )}ℓ∈[𝐿]). This is the same procedure as in Hyb(𝑏 )
2

and Hyb(𝑏 )
3

. It suffices to reason about the distribution of the challenge ciphertext. We claim that ct∗ is an encryption

of𝑚𝑏 with randomness 𝑡 ∈ Z𝑝 according to either the specification of Hyb(𝑏 )
2

or Hyb(𝑏 )
3

. We consider each component

of the challenge ciphertext:

• Consider 𝐶∗
1
. In the reduction, algorithm B sets

𝐶∗
1
= 𝑋 · 𝑒 (𝑔,𝑔𝑡 )𝑠1 ·𝑚𝑏 .

When 𝑋 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 , then

𝐶∗
1
= 𝑒 (𝑔,𝑔) (𝑠1+𝑎𝑏 )𝑡 ·𝑚𝑏 = 𝑒 (𝑔,𝑔)𝑠1𝑡 ·𝑚𝑏 = 𝐵𝑡 ·𝑚𝑏,

since algorithm B implicitly sets s = s̃ + 𝑎𝑏 · w̃, and eT
1
w̃ = 1. This corresponds to the distribution of 𝐶∗

1
in

Hyb(𝑏 )
2

. Suppose instead that 𝑋
r← G𝑇 . This is the distribution of 𝐶∗

1
in Hyb(𝑏 )

3
.

• Consider 𝑐∗
2
. In the reduction, algorithm B sets 𝑐∗

2
= 𝑔𝑡 , which matches the behavior in Hyb(𝑏 )

2
and Hyb(𝑏 )

3
.

• Consider 𝑐∗
3
. In the reduction, algorithm B sets 𝑐∗

3
= (𝑔𝑡 )𝑢̃𝜏∗+ ˜ℎ = (𝑢𝜏∗ ˆℎ)𝑡 since 𝑢𝜏∗ ˆℎ = 𝑔𝑏𝜏

∗+𝑢̃𝜏∗+ ˜ℎ−𝑏𝜏∗ = 𝑔𝑢̃𝜏
∗+ ˜ℎ

.

This matches the distribution in Hyb(𝑏 )
2

and Hyb(𝑏 )
3

.

• Consider 𝑐∗
4
. In the reduction, algorithm B sets

𝑐∗
4
=

∏
ℓ∈[2𝑁−1]

(𝑔𝑡𝑐ℓ )mT
ℓ s̃+ ˜𝜁ℓ ,
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where the exponents
˜𝜁ℓ ∈ Z𝑝 are as defined in Eq. (E.8). We claim that 𝑐∗

4
= 𝑧𝑡

∏
𝑗∈[𝑛]:𝑏∗

𝑗
=0 𝑦

𝑡
𝑗 , where

𝑧 = 𝑧0 ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ

is as defined by the Preprocess. This means

𝑧 ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

𝑦 𝑗 =
∏

ℓ∈[2𝑁−1]
𝑔𝑐

ℓmT
ℓ s ·

∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘 . (E.9)

As in the proof of Lemma D.2, we consider the terms in this product grouped by the powers 𝑐ℓ . Then, we obtain

the same case analysis as before.

– If ℓ ∈ C, then 𝑣 ′ℓ,ℓ is output KeyGen(crs; 𝜌ℓ ). Since skℓ = (vkℓ , 𝛼ℓ ), this means 𝑣 ′ℓ,ℓ = 𝑔
𝑐ℓ 𝛼̃ℓ

. In addition,

since ℓ ∈ C ⊆ 𝑆∗pad, we have m
T
ℓw̃ = 0. This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ s̃ + ˜𝜁ℓ ).

– If ℓ ∈ [𝐿] \ C, then 𝑣 ′ℓ,ℓ = 𝑔𝑐
ℓ𝛼ℓ = 𝑔𝑐

ℓ (𝛼̃ℓ−𝑎𝑏mT
ℓ w̃) . This means

𝑐ℓ (mT
ℓs + 𝛼ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛼ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛼ℓ ) = 𝑐ℓ (mT
ℓ s̃ + ˜𝜁ℓ ) .

– Suppose ℓ ∈ [𝐿 + 1, 𝑁 ]. Then, ℓ ∈ 𝑆∗pad, so as in the first case, mT
ℓw̃ = 0. This means

𝑐ℓmT
ℓs = 𝑐

ℓ (mT
ℓ (s̃ + 𝑎𝑏w̃)) = 𝑐ℓmT

ℓ s̃ = 𝑐
ℓ (mT

ℓ s̃ + ˜𝜁ℓ ).

– Suppose ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 1. Then, ℓ ∈ 𝑆∗pad, so as in the previous case, mT
ℓw̃ = 0. This

means

𝑐ℓmT
ℓs = 𝑐

ℓ (mT
ℓ (s̃ + 𝑎𝑏w̃)) = 𝑐ℓmT

ℓ s̃ = 𝑐
ℓ (mT

ℓ s̃ + ˜𝜁ℓ ) .

– Suppose ℓ ∈ 𝑋 𝑗 for some 𝑗 ∈ [𝑛] where 𝑏∗𝑗 = 0. In this case 𝛾ℓ = 𝛾ℓ − 𝑎𝑏 ·mT
ℓw̃. This means

𝑐ℓ (mT
ℓs + 𝛾ℓ ) = 𝑐ℓ (mT

ℓ (s̃ + 𝑎𝑏w̃) + 𝛾ℓ − 𝑎𝑏mT
ℓw̃) = 𝑐ℓ (mT

ℓ s̃ + 𝛾ℓ ) = 𝑐ℓ (mT
ℓ s̃ + ˜𝜁ℓ ).

In combination with Eq. (E.9), we now have

𝑧𝑡 ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

𝑦𝑡𝑗 =

( ∏
ℓ∈[2𝑁−1]

𝑔𝑐
ℓmT

ℓ s ·
∏
ℓ∈[𝐿]

𝑣 ′ℓ,ℓ ·
∏
𝑗∈[𝑛]
𝑏∗𝑗=0

∏
𝑘∈𝑋 𝑗

𝑔𝑐
𝑘𝛾𝑘

)𝑡
=

∏
ℓ∈[2𝑁−1]

𝑔𝑡𝑐
ℓ (mT

ℓ s̃+ ˜𝜁ℓ ) = 𝑐∗
4
.

When𝑇 = 𝑇 ∗ (in which case, 𝑏∗𝑛 · · ·𝑏∗1 is the binary representation of 𝐿 −𝑇 ), this coincides with the distribution

of 𝑐∗
4
in Hyb(𝑏 )

2
and Hyb(𝑏 )

3
.

We conclude that if 𝑋 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑡 , then algorithm B simulates ct∗ according to the distribution in Hyb(𝑏 )
2

, whereas if

𝑋
r← G𝑇 , then algorithmB simulates ct∗ according to the distribution inHyb(𝑏 )

3
. Correspondingly, algorithmB breaks

the 𝑁 -extended bilinear Diffie-Hellman exponent assumption with the same advantage 𝜀 and the claim holds. □

Lemma E.4. For all adversaries A, Pr[Hyb(0)
3
(A) = 1] = Pr[Hyb(1)

3
(A) = 1].

Proof. These are identical distributions by definition so the claim holds. □
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Since A is computationally-bounded, it makes at most 𝑄2 = poly(𝜆) partial decryption queries in the security game.

Since 𝑝 > 2
𝜆
, this means 𝑄2/𝑝 = negl(𝜆). By Lemmas E.2 to E.4 and a hybrid argument, this means for all efficient

adversaries A, there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N,���Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1]

��� = negl(𝜆).

By Lemma E.1, this means ���Pr[Hyb(0)
0
(A) = 1] − Pr[Hyb(1)

0
(A) = 1]

��� = 𝑄1 (𝜆) · negl(𝜆).

Since𝑄1 is polynomially-bounded, we conclude thatHyb(0)
0
(A) andHyb(1)

1
(A) are computationally indistinguishable

and tag-based CCA-security follows. □
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