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Abstract

Witness encryption allows one to encrypt a message to an NP relation R and a statement 𝑥 . The corresponding

decryption key is any valid NP witness𝑤 . In a succinct witness encryption scheme, we require that the size of the

ciphertext be sublinear in the size of the NP relation. Currently, all realizations of succinct witness encryption for NP
rely on strong assumptions such as pseudorandom obfuscation, extractable witness encryption, or differing-inputs

obfuscation. Notably, none of these notions are known from standard assumptions.

In this work, we consider a relaxation of succinct witness encryption for NP to the setting of batch NP. In this

setting, one encrypts to anNP relation R together with 𝐾 statements 𝑥1, . . . , 𝑥𝐾 . In the basic version, one can decrypt

if they have a witness𝑤1, . . . ,𝑤𝐾 for all 𝐾 statements. The succinctness requirement is that the size of the ciphertext

should be sublinear in the number of instances𝐾 , but is allowed to growwith the size of theNP relation (i.e., the size of

a single instance). More generally, we can also impose a (monotone) policy 𝑃 : {0, 1}𝐾 → {0, 1} over the 𝐾 instances.

In this case, decryption is possible only if there exists𝑤1, . . . ,𝑤𝐾 such that 𝑃 (R(𝑥1,𝑤1), . . . ,R(𝑥𝐾 ,𝑤𝐾 )) = 1.

In this work, we initiate a systematic study of succinct witness encryption for batch languages. We start with two

simple constructions that support CNF andDNF policies based on plainwitness encryption in conjunctionwith a some-

where statistically sound batch argument forNP or a function-binding hash function. Then, using indistinguishability

obfuscation, we show how to support policies that can be computed by read-once bounded-space Turing machines.

The latter construction is in fact a unique witness map for monotone-policy batchNP, and as such, also gives a SNARG
for monotone-policy batch NP where the size of the common reference string is sublinear in the number of instances.

Finally, we demonstrate some immediate applications of succinct witness encryption for batch languages. We

construct new succinct computational secret sharing schemes for CNFs, DNFs, and weighted threshold policies. We

also show how to build distributed monotone-policy encryption, a notion that generalizes recent trustless primitives

like distributed broadcast encryption and threshold encryption with silent setup.

1 Introduction
In a witness encryption scheme (for NP) [GGSW13], a user can encrypt a message to an NP statement 𝑥 . Any-

one who knows an associated witness 𝑤 can decrypt the ciphertext and recover the message. If the statement

is false, then the message is computationally hidden. Witness encryption has been used to build a broad set of

cryptographic primitives such as public-key encryption and generalizations such as identity-based encryption,

attribute-based encryption, broadcast encryption [GGSW13, FWW23, WW24], oblivious transfer [BGI
+
17], laconic

arguments [FNV17, BISW18, LMP24], and null obfuscation [WZ17, GKW17].

The witness size barrier. In witness encryption, the size of the ciphertext generally scales with the size of the

NP witness. This is true for constructions based on indistinguishability obfuscation (𝑖O) [GGH+13], multilinear

maps [GGSW13, GLW14], and lattice-based assumptions [CVW18, Tsa22, VWW22]. At a high level, we can view a

witness encryption ciphertext as a program that takes an NP witness as input, checks if the witness is valid, and if so,

outputs the message. Since this program takes the NP witness as input, the ciphertext size in existing constructions of

witness encryption scale with the witness size (and more broadly, the size of the circuit computing the NP relation).
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A natural approach to overcome this witness-size dependency in the ciphertext size is to represent the NP relation

as a Turing machine, where the description length of the machine is independent of the witness size. For instance, the

ciphertext could be an obfuscated Turing machine that reads the witness and outputs the message if the witness is valid.

While we can build witness encryption in this way using 𝑖O for Turing machines [BGL
+
15, CHJV15, KLW15, GS18],

for general computations, the size of the obfuscated Turing machine still scales with the length of the input to the

machine. Thus, these approaches still run into the witness size barrier. Using differing-inputs obfuscation [ABG
+
13]

or extractable witness encryption [GKP
+
13], we can overcome this input-size barrier for 𝑖O for Turing machines.

However, neither of these notions are currently known from standard assumptions.

Succinct witness encryption. Very recently, Branco et al. [BDJ
+
25] introduced the notion of succinct witness

encryption where the size of the ciphertext is sublinear in the witness size. Moreover, they show how to overcome

the witness size barrier and construct succinct witness encryption for general NP relations from a notion called

pseudorandom obfuscation, which can be viewed as an ideal obfuscation for pseudorandom functions (i.e., the ob-

fuscated program is computationally independent of the input program). While [BDJ
+
25] shows the feasibility of

succinct witness encryption for NP, it relies on the new notion of pseudorandom obfuscation which we do not know

how to instantiate using standard assumptions. The only such instantiations from [BDJ
+
25, AKY24] is based on

learning with errors (LWE) together with the private-coin evasive LWE assumption. The work of [BDJ
+
25] also shows

that pseudorandom obfuscation for arbitrary pseudorandom functions is impossible. As such, the security of their

specific construction necessarily relies on a carefully-tailored formulation of private-coin evasive LWE. Moreover,

a sequence of recent works [VWW22, BÜW24, BDJ
+
25, AMYY25, HJL25, HHY25] have raised significant questions

on the plausibility of private-coin evasive LWE. Thus, a natural question to ask is whether we can build succinct

witness encryption from standard cryptographic assumptions.

1.1 Our Results
In this work, we conduct a systematic study of succinct witness encryption for subclasses of NP. Specifically, we
consider batch languages, where instead of encrypting to a single NP statement, one instead encrypts to a batch

of 𝐾 statements 𝑥1, . . . , 𝑥𝐾 . Decryption succeeds if one knows valid witnesses𝑤𝑖 for some subset of the statements.

The succinctness requirement is that the ciphertext scales sublinearly with the total number of statements 𝐾 , but

we do allow the ciphertext to scale with the size of a single witness. In some sense, this is the same type of relaxation

considered in the study of batch arguments (BARGs) for NP [BHK17], where the goal is to give a succinct proof of

a batch of statements with a proof whose size scales sublinearly with the number of instances.

The basic version of our notion requires the decrypter to know a witness for every statement in order to decrypt.

However, we can consider more general decryption policies such as a threshold policy where one needs to know 𝑡-out-

of-𝑛 witnesses in order to decrypt. Most generally, we consider monotone policies where the encryption algorithm

takes the statements 𝑥1, . . . , 𝑥𝐾 together with a monotone policy 𝑃 : {0, 1}𝐾 → {0, 1}, and decryption is successful only
if there exist witnesses𝑤1, . . . ,𝑤𝐾 such that 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1. Here𝐶 is the circuit that implements the

associated NP relation. This setting is the analog of monotone-policy batch arguments [BBK
+
23, NWW24, NWW25]

in the setting of succinct witness encryption.

The recent work of [ADM
+
24] considers a conceptually-similar notion of succinct witness encryption for batch

languages, but their work has two key restrictions. First they focus on witness encryption for a specific cryptographic
relation (namely, knowledge of a signature) and second, they only consider threshold policies. Their work gives a

construction from 𝑖O for Turing machines. In this work, our focus is on constructing succinct witness encryption

for batch NP and we also explore broader policy classes. We give constructions for simple policy families using plain

witness encryption and constructions for more expressive policies (e.g., monotone policies that can be computed

by read-once bounded-space Turing machines) using 𝑖O.

Constructions of succinct witness encryption. In this work, we provide three constructions of succinct witness

encryption for batch languages for different policy families. Our first two constructions support CNF and DNF policies

and are based on (plain) witness encryption. Our third construction relies on 𝑖O and supports any monotone policy

that can be computed by a read-once log-space Turing machine as well as policies like weighted thresholds (with

poly(𝜆)-bit weights). We summarize the key features of our constructions below:
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• Conjunctions of local predicates. Our first construction of succinct witness encryption supports conjunctions
of local monotone predicates. Specifically, consider a policy 𝑃 : {0, 1}𝐾 → {0, 1} of the form

𝑃 (𝛽1, . . . , 𝛽𝐾 ) := 𝑃1 ( ®𝛽𝑆1 ) ∧ · · · ∧ 𝑃𝑐 ( ®𝛽𝑆𝑐 ),

where each 𝑃𝑖 is a monotone predicate that depends on a subset 𝑆𝑖 ⊆ [𝐾] of the inputs, and we write
®𝛽𝑆𝑖 to

denote the subset of 𝛽1, . . . , 𝛽𝐾 indexed by 𝑆𝑖 . An encryption of a message 𝜇 with respect to a Boolean relation

𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, policy 𝑃 , and instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 has size |𝜇 | +poly(𝜆, |𝐶 |, 𝑠, log 𝑐), where
𝑠 is the size of the largest predicate 𝑃𝑖 . For instance, when each predicate 𝑃𝑖 depends on a constant number of

input variables, then 𝑠 = 𝑂 (1) and the size of the ciphertext is poly(𝜆, |𝐶 |, log |𝑃 |), which scales with the size of

a single instance and only polylogarithmically with the number of instances. This captures important special

cases where the predicate 𝑃 is a conjunction or a 3-CNF formula. We construct our succinct witness encryption

scheme for conjunctions of local predicates from plain witness encryption and a somewhere-statistically-sound
batch argument forNP (e.g., [WW22]; see Section 1.2 for a description of the somewhere-statistically-soundness

requirement).

• Disjunction of local predicates. We then consider the dual notion of succinct witness encryption for

disjunctions of local monotone predicates.
1
Specifically, our construction supports policies of the form

𝑃 (𝛽1, . . . , 𝛽𝐾 ) := 𝑃1 ( ®𝛽𝑆1 ) ∨ · · · ∨ 𝑃𝑐 ( ®𝛽𝑆𝑐 ),

where each 𝑃𝑖 is a monotone predicate that depends on a subset 𝑆𝑖 ⊆ [𝐾] of the inputs. An encryption of a

message 𝜇 with respect to a Boolean relation𝐶 , policy 𝑃 , and instances 𝑥1, . . . , 𝑥𝐾 has size |𝜇 |+poly(𝜆, |𝐶 |, 𝑠, log 𝑐),
where 𝑠 is the size of the largest predicate 𝑃𝑖 . Once again, the ciphertext size scales with the size of a single

instance and the size of the largest predicate, and only polylogarithmically with the number of predicates.

This constructions captures notions like DNF formulas as a special case. We construct our succinct witness

encryption scheme for disjunctions of local predicates from plain witness encryption and a function-binding

hash function [FWW23]; the latter can be built from any leveled homomorphic encryption scheme.

• Read-once bounded-space Turing machine policies from 𝑖O. Our final construction supports monotone

policies that can be computed by a read-once bounded-space Turing machine. Specifically, suppose 𝑃 : {0, 1}𝐾 →
{0, 1} is a policy that can be computed by a read-once Turingmachine with 𝑆-bits of space. Then an encryption of

a message 𝜇 with respect to a Boolean relation𝐶 , policy 𝑃 , and instances 𝑥1, . . . , 𝑥𝐾 has size |𝜇 | +poly(𝜆, |𝐶 |, 2𝑆 ).
Note that the size of the ciphertext scales exponentiallywith the space usage, so this scheme is tailored for policies

that can be computed by read-once Turing machines with 𝑂 (log 𝜆)-bits of space. For instance, this captures
policies such as threshold policies. Technically, our scheme is more general and can support monotone policies

computable by read-once Turing machines where the set of unreachable states has a compact description. For

instance, this allows our scheme to also support weighted threshold policies with 𝜆-bit weights (i.e., weights with
magnitude 2

𝜆
). Our construction here relies on 𝑖O for circuits together with somewhere-statistically-binding

(SSB) hash functions [HW15].

Succinct unique witness maps for monotone-policy batch NP. Our 𝑖O-based construction for read-once

bounded-space Turing machines is more general and in particular, gives a succinct unique witness map [CPW20]

for monotone-policy batch NP with respect to policies computable by read-once bounded-space Turing machines. A

unique witness map for anNP relation deterministically maps all witness for anNP statement onto a single “canonical”

witness. There is a public verification algorithm that decides whether a candidate witness is the canonical witness

for a statement. The soundness requirement is that for a false statement, an efficient adversary cannot produce a

witness that satisfies the verification relation. In this work, we show how to construct a succinct unique witness map

for monotone-policy batch NP where the policy can be computed by a read-once bounded-space Turing machine.

The succinctness requirement is that the size of the common reference string (CRS) for the unique witness map is

1
Technically, this construction only supports “trapdoor NP relations” (see Definition 4.11) where we assume there is an efficient algorithm that

can decide the instance with the help of a trapdoor. This is a subclass of NP, but one that suffices for the cryptographic applications of succinct

witness encryption we consider in this work (Section 6).
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sublinear in 𝐾 and and the size of the canonical witness for 𝐾 instances has size poly(𝜆, log𝐾). Notably, the size of
the canonical witness is fully succinct (independent of the size of the NP relation). A succinct unique witness map

for monotone-policy batch NP with policy family P immediately yields the following:

• A succinct witness encryption scheme for batch NP with policy family P (see Remark 5.3). This follows via

the same “or-proof with hard-core predicate” transformation in [CPW20] (who described the implication from

a unique witness map for NP to witness encryption for NP).

• A succinct non-interactive argument (SNARG) for monotone-policy batch NP with policy family P where

the size of the CRS is sublinear in the number of instances (see Remark 5.2). Previously, SNARGs for batch

NP with a sublinear-size CRS were only known for conjunction policies [GSWW22, DWW24]. Our work

gives the first construction that supports policies like weighted thresholds. Even without full succinctness (i.e.,
monotone-policy BARGs where the proof size can scale with the size of the NP relation and just needs to be

sublinear in the number of instances), previous constructions [BBK
+
23, NWW24, NWW25] also required a

CRS whose size scales linearly with the number of instances.

Applications of succinct witness encryption for batch languages. We then highlight two immediate applications

of succinct witness encryption for batch languages. The first is to succinct computational secret sharing [ABI
+
23]

and the second is a notion we call distributed monotone-policy encryption, which is a generalization of notions like

distributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM
+
24]:

Succinct computational secret sharing. In a succinct computational secret sharing scheme [ABI
+
23], a dealer

can share a secret with 𝐾 parties with respect to a monotone access policy 𝑃 . Thereafter, any subset of parties that

satisfies the access policy can come together and reconstruct the secret while the shares of any unauthorized set

of users should computationally hide the message. The succinctness requirement is that the size of each share should

be sublinear in the number of parties and the description size of 𝑃 . A succinct witness encryption scheme for batch

NP with policy family P immediately implies a computational secret sharing scheme for the same family P. Thus,
our work gives a succinct computational secret sharing scheme for monotone CNF and DNF formulas from plain

witness encryption (together with the LWE assumption) as well as for monotone policies computable by read-once

log-space Turing machines from 𝑖O (and SSB hash functions). Our construction for DNFs additionally assumes the

parties share a long, but reusable common random string, which can be compressed using a random oracle.

Previously, the works of [HIJ
+
16, BCG

+
19, ASY22] show how to use pseudorandom correlation generators based

on 𝑖O to build succinct computational secret sharing for general monotone policies in a setting where parties have

access to a long, reusable common random string (or alternatively, in the random oracle model). In the plain model,

the work of [ABI
+
23] shows how to construct succinct computational secret sharing for CNFs using either RSA or

𝑖O. For DNF policies, the work of [ABI
+
23] give a construction with a public share whose size is linear in the policy

size. Our constructions improve upon these approaches as follows:

• For 𝑘-CNF policies (with constant 𝑘), we give a construction based on witness encryption in the plain model.

This is the first construction that does not use 𝑖O or the RSA assumption.

• For 𝑘-DNF policies (for any constant 𝑘), we obtain a construction from witness encryption in the random

oracle model. Previous constructions either relied on 𝑖O in the random oracle model [HIJ
+
16, BCG

+
19, ASY22]

or on one-way functions but with a long (message-dependent) public share [ABI
+
23]. Strictly speaking, the

construction of [ABI
+
23] does not satisfy the standard succinctness requirement for succinct computational

secret sharing which requires all shares to be sublinear in the size of the policy.

• Using 𝑖O, we obtain the first succinct computational secret sharing scheme for weighted threshold policies

where the share size is poly(𝜆, log𝑊 ) in the plain model and𝑊 is the magnitude of the weights. Previously, this

was only known from 𝑖O in the random oracle model [HIJ
+
16, BCG

+
19, ASY22]. Technically, our construction

supports any policy family that can be computed by a read-once, log-space Turing machine.
2

2
The actual class we capture is more general (see Section 1.2), and includes weighted thresholds (which is not captured generically by a read-once,

log-space Turing machine when the weights are 𝜔 (log𝜆)-bits).
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Distributed monotone-policy encryption. Distributed monotone-policy encryption is a generalization of dis-

tributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM
+
24].

Specifically, in a threshold encryption scheme with silent setup, individual users each choose a public/secret key-pair

(pk𝑖 , sk𝑖 ). Each user publishes their public key pk𝑖 in a public key directory. Later on, an encrypter can select any

subset of public keys {pk𝑖 }𝑖∈𝑆 and a threshold 𝑡 ≤ |𝑆 | and encrypt a message 𝜇 to this set. The guarantee is that

any set of at least 𝑡 users in the set 𝑆 can decrypt and recover the message 𝜇, while any subset of less than 𝑡 users

are unable to do so. Moreover, the size of the ciphertext should be succinct (scaling independently of the size of the

number of public keys in 𝑆). Distributed broadcast encryption is the special case where the threshold 𝑡 = 1 (i.e., any

individual user in the set 𝑆 can decrypt).

Existing constructions of distributed monotone-policy encryption have thus far been limited to simple policies:

threshold encryption [GKPW24, ADM
+
24] or distributed broadcast encryption [BZ14, FWW23, KMW23, CW24,

CHW25, WW25b]. Using succinct witness encryption for batch languages, we immediately obtain the first con-

structions that can support more general policies including CNFs and DNFs from witness encryption, and weighted

thresholds and more from 𝑖O.

1.2 Technical Overview
We begin with an overview of our constructions and show how to use succinct witness encryption for batch languages

to realize other cryptographic primitives.

Succinct witness encryption for conjunctions. As a warm-up, we show how to construct succinct witness

encryption for conjunctions from plain witness encryption and a somewhere-statistically-sound batch argument

(BARG). In a somewhere-statistically-sound BARG for NP [WW22], a prover can prove a batch of 𝐾 NP statements

𝑥1, . . . , 𝑥𝐾 with a proof whose size scales sublinearly with 𝐾 . Moreover, the public parameters for the BARG can be

programmed with a special index 𝑖 such that the BARG is statistically sound on index 𝑖 . In other words, when the

CRS is binding on index 𝑖 , with overwhelming probability over the choice of 𝑖 , there does not exist3 an accepting

proof for any batch of instances (𝑥1, . . . , 𝑥𝐾 ) where 𝑥𝑖 is false. The special index 𝑖 is computationally hidden from the

view of the prover. In some sense, a BARG proof 𝜋 can be viewed as a “compressed” witness for the tuple (𝑥1, . . . , 𝑥𝐾 ).
We leverage this to construct a succinct witness encryption scheme for conjunctions:

• Suppose we want to encrypt a message 𝜇 to instances (𝑥1, . . . , 𝑥𝐾 ) for an NP relation R. We want decryption

to be possible only if the user knows a witness for all 𝐾 instances.

• We compress the instances by hashing them. Let h be a hash of (𝑥1, . . . , 𝑥𝐾 ). We assume that the hash function

supports local openings (i.e., it is possible to open h to any 𝑥𝑖 with an opening of size poly(𝜆, log𝐾, |𝑥𝑖 |)).

• The ciphertext is a witness encryption ciphertext for the NP relation that verifies a BARG proof on 𝐾 instances,

where the witness for instance 𝑖 consists of a purported statement 𝑥𝑖 , a local opening of 𝑥𝑖 with respect to the

hash h, and a witness 𝑤𝑖 for 𝑥𝑖 . The BARG relation would check the validity of the local opening to 𝑥𝑖 and

then check that R(𝑥𝑖 ,𝑤𝑖 ) = 1.

Correctness follows immediately from completeness of the BARG. Succinctness follows from succinctness of the

BARG and the hash function. Security relies on security of the underlying witness encryption scheme and somewhere-

statistical-soundness of the BARG. Specifically, we show that if any individual instance 𝑥𝑖 is false, then there does not

exist a BARG proof that verifies (with respect to the hash digest h). To argue this, we require that the hash function

be somewhere statistically binding [HW15] (namely, the hash key can be programmed at a hidden index 𝑖 such that

any hash h can only be opened to one particular value at position 𝑖) and the BARG to be somewhere statistically

sound. Then, we proceed as follows:

• Take any (𝑥1, . . . , 𝑥𝐾 ) where 𝑥𝑖 is false. First, we program the hash function to be statistically binding at index

𝑖 and similarly, we program the BARG to be somewhere statistically sound on index 𝑖 .

3
Other BARG constructions such as [CJJ21b, CGJ

+
23] only ensure somewhere computational soundness which stipulates that such proofs are

hard to find for an efficient adversary.
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• Let h be an SSB hash of (𝑥1, . . . , 𝑥𝐾 ). The encryption algorithm encrypts with respect to the honestly-computed

hash h. Since h is statistically binding on index 𝑖 , there does not exist a valid opening 𝜎𝑖 of h to any string

𝑥 ′𝑖 ≠ 𝑥𝑖 at index 𝑖 .

• Now, the 𝑖th instance of the BARG is false, since it consists of either an invalid local opening of h to some

𝑥 ′𝑖 ≠ 𝑥𝑖 , or a valid opening of h to the false statement 𝑥𝑖 . Since the BARG is statistically sound on index 𝑖 , there

does not exist an accepting BARG proof.

• Thus, the plain witness encryption scheme is being applied to a false statement (since a witness would be an

accepting BARG proof), so we can appeal to semantic security of the plain witness encryption scheme.

This immediately gives a succinct witness encryption for conjunctions. The construction naturally generalizes to

CNFs and conjunctions of local predicates, and we give the details in Section 4.1.

Succinct witness encryption for disjunctions. Next, we turn to the setting of disjunctions. Here, we show how

to combine plain witness encryption with a function-binding hash function [FWW23] to obtain a succinct witness

encryption scheme for disjunctions. Essentially, the function-binding hash function plays the role of the index BARG

for compressing the instances. Function-binding hash function (for disjunctions) generalize SSB hash functions by

(statistically) binding to a function of the input. Specifically, they have the following syntax:

• Like SSB hash functions, a user can use the hash key to compute a hash h of an input (𝑥1, . . . , 𝑥𝐾 ) and produce

a succinct local opening of 𝑥𝑖 with respect to the hash.

• Next, the hash key can be sampled to be function binding for a specific function 𝑔. Like [FWW23], we consider

disjunctions of the form

𝑓 (𝑥1, . . . , 𝑥𝐾 ) :=
∨
𝑖∈[𝐾 ]

𝑔(𝑥𝑖 ),

where 𝑔 is some predicate. The function binding property now states that if h is a hash of (𝑥∗
1
, . . . , 𝑥∗𝑛) where

𝑓 (𝑥∗
1
, . . . , 𝑥∗𝑛) = 0, then there does not exist an opening to any 𝑥𝑖∗ at any index 𝑖∗ ∈ [𝐾] where 𝑔(𝑥𝑖∗ ) = 1.

Moreover, the hash key hides the associated function 𝑓 .

To construct a succinct witness encryption scheme for disjunctions, we now proceed as follows:

• Suppose we want to encrypt 𝜇 to instances (𝑥1, . . . , 𝑥𝐾 ) with respect to an NP relation R. We want to support

decryption if the user know a witness𝑤𝑖 for any instance 𝑥𝑖 .

• The encrypter starts by computing a hash h of (𝑥1, . . . , 𝑥𝐾 ) using the function-binding hash function. Then, the

encrypter prepares a witness encryption of the message 𝜇 with respect to the NP relation that takes as input a

purported statement 𝑥𝑖 , an opening of 𝑥𝑖 with respect to the hash h, and a witness𝑤𝑖 for 𝑥𝑖 . The witness encryp-
tion simply checks that that the local opening is valid and that R(𝑥𝑖 ,𝑤𝑖 ) = 1. The size of the ciphertext grows

with the size of the verification circuit for the function-binding hash function and the size of the NP relation |R |.

Security of the above construction relies on the function-binding property of the hash function. Here, we will need

to additionally assume that the NP relation R is a “trapdoor NP relation:” namely, given some trapdoor information,

there is an efficient algorithm that decides membership in the NP language. Many cryptographic languages are

trapdoor NP relations (e.g., the set of strings that are encryptions of 1 under a public-key encryption scheme). As

we discuss later (see also Section 6), when using witness encryption to build other cryptographic primitives, it is

typically applied to a cryptographic language. Indeed, both of the applications we consider in this work (to succinct

computational secret sharing and to distributed monotone-policy encryption) can be instantiated from succinct

witness encryption for batch trapdoor NP relations.

To prove security of this construction, we start by fixing a false instance (𝑥1, . . . , 𝑥𝐾 ). Let 𝐶td be the trapdoor-

decision algorithm associated with R. Namely, 𝐶td (𝑥) = 1 if and only if there exists a witness𝑤 where R(𝑥,𝑤) = 1.

Since (𝑥1, . . . , 𝑥𝐾 ) is false, this means𝐶td (𝑥𝑖 ) = 0 for all 𝑖 ∈ [𝐾]. Suppose we now program the function-binding hash

function to be function-binding on the function 𝑓 (𝑥1, . . . , 𝑥𝐾 ) =
∨
𝑖∈[𝐾 ] 𝐶td (𝑥𝑖 ). Now, if h is a hash of (𝑥1, . . . , 𝑥𝐾 ), the

function-binding property says there cannot be any opening of h to a statement 𝑥𝑖 where𝐶td (𝑥𝑖 ) = 1. Correspondingly,
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the only openings that exist for h are to statements 𝑥𝑖 where R(𝑥𝑖 , 𝑤̃𝑖 ) = 0 for all 𝑤̃𝑖 . Thus, there does not exist a valid

witness for the witness encryption relation, and security follows from security of the witness encryption scheme.

Similar to our construction for conjunctions, this scheme readily generalizes to support disjunctions of arbitrary

local monotone predicates. We provide the full details and formal analysis in Section 4.2.

Unique witness maps for read-once Turing machines. Our main construction is a unique witness map based

on 𝑖O for monotone-policy batch NP that supports any policy that can be computed by a read-once bounded-space

Turing machine. For our applications, we require two types of succinctness: the common reference string for the

unique witness map must be sublinear in the number of instances 𝐾 , and the size of the canonical witness for a batch

of statements (𝑥1, . . . , 𝑥𝐾 ) should be poly(𝜆, log𝐾), and be essentially independent of the size of the NP relation or

the size of the associated policy. In our construction, the size of the public parameters will scale with 2
𝑆
where 𝑆

is the space usage of the Turing machine. As we see later, the size actually scales with the description length of the

set of unreachable states associated with the policy, which for certain policy families, is much smaller than 2
𝑆
. An

important example of this is the class of weighted thresholds (see Remark 5.7).

The common reference string (CRS) for our unique witness map consists of two (obfuscated) programs: (1) a

prover program that is used to map witnesses for a batch of 𝐾 statements together with an associated policy onto

a canonical witness; and (2) a verification program for verifying a canonical witness. Since we require the CRS size

to be sublinear in 𝐾 , we cannot publish an obfuscated program that reads all 𝐾 instances at once. Instead, similar

to [GSWW22, DWW24] (which consider SNARGs for batch NP with respect to conjunction policies), the prover

program reads one statement/witness at a time. After reading each statement/witness, it then outputs a representation

of its internal state together with a signature on it. The evaluator then invokes the prover program on the next

instance. More concretely, the programs behave as follows:

• First, we assume the NP relation (expressed as a Boolean circuit𝐶 that computes the NP relation) is hard-coded

in the prover and verification programs.

• We model a policy 𝑃 : {0, 1}𝐾 → {0, 1} as a read-once Turing machine with 𝑆 bits of space. Concretely, we

represent it as a tuple (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc), where Step𝑖 : {0, 1}𝑆 × {0, 1} → {0, 1}𝑆 is a Boolean circuit

that takes the current configuration and the next bit of the input and outputs the next state, 𝑐init ∈ {0, 1}𝑆
is the initial configuration, and 𝑐acc ∈ {0, 1}𝑆 is the accepting configuration. Let h be a hash on the tuple

((𝑥1, Step1), . . . , (𝑥𝐾 , Step𝐾 )).4

• To compute the canonical witness, the evaluator runs the obfuscated proving program 𝐾 times. On the 𝑖th

iteration, the evaluator passes in the hash h, the instance 𝑥𝑖 , the step function Step𝑖 together with an opening

for (𝑥𝑖 , Step𝑖 ) relative to h, the associated witness 𝑤𝑖 , the configuration 𝑐𝑖−1 from the first 𝑖 − 1 steps of the
evaluation (with 𝑐0 := 𝑐init), and a signature 𝜎𝑖−1 on (h, 𝑖 − 1, 𝑐𝑖−1).

• If the signature 𝜎𝑖−1 is valid, then the proving program computes the bit 𝛽𝑖 = 𝐶 (𝑥𝑖 ,𝑤𝑖 ) and the updated state

of the Turing machine 𝑐𝑖 = Step𝑖 (𝑐𝑖−1, 𝛽𝑖 ). It outputs a signature 𝜎𝑖 on (h, 𝑖, 𝑐𝑖 ).

• The canonical witness for the batch of 𝐾 statements is a signature on (h, 𝐾, 𝑐acc), where 𝑐acc is the accepting
configuration.

• The verification algorithm calls the obfuscated verification program which checks whether it was given a valid

signature on (h, 𝐾, 𝑐acc) or not.

For any tuple of statements (𝑥1, . . . , 𝑥𝐾 ) and policy 𝑃 , the canonical witness is a (deterministic) signature on (h, 𝐾, 𝑐acc).
This depends solely on the statements and the policy, and is independent of the witnesses used to derive the signature.

Thus, this constructive gives a unique witness map for batch instances.

Proving security of this construction is very delicate. Recall that the security requirement for a unique witness map

says that an efficient adversary cannot come up with a proof that passes verification for any tuple (𝑥1, . . . , 𝑥𝐾 ) that does
not satisfy the policy 𝑃 . The general approach we take combines the chaining approach from [GSWW22, DWW24]

4
In the actual construction (Construction 5.8), we separate these into two separate hashes in order to support a local evaluation property that

is useful for applications (see Remark 5.11). For ease of exposition in this overview, we describe things using a single hash.
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with the pebbling arguments from [GPSZ17, GS18]. Notably, the latter was used for analyzing 𝑖O for Turing machines.

We highlight some of the key features of our reduction and refer to Section 5 for the formal description:

• First, we consider selective security where the statements (𝑥1, . . . , 𝑥𝐾 ) and the monotone policy 𝑃 are fixed in

advance. Now, for each 𝑖 ∈ [𝐾], we define the set 𝑆𝑖 of reachable configurations after 𝑖 steps of 𝑃 . Specifically,
let 𝑆0 = {𝑐init} be the initial configuration. Then, for each 𝑖 ∈ [𝐾], 𝑆𝑖 contains all 𝑐𝑖 where 𝑐𝑖 = Step(𝑐𝑖−1, 0)
and 𝑐𝑖−1 ∈ 𝑆𝑖−1 (i.e., the states that are reachable by starting from a reachable state after 𝑖 − 1 steps and then

reading a 0). In addition, if the 𝑖th statement is true, then 𝑆𝑖 also contains all 𝑐𝑖 where 𝑐𝑖 = Step(𝑐𝑖−1, 1) where
𝑐𝑖−1 ∈ 𝑆𝑖−1 (i.e., the states that are reachable from a reachable state after 𝑖 steps and then reading a 1).

• Let h∗ be the hash on ((𝑥1, Step1) . . . , (𝑥𝐾 , Step𝐾 )). Our general strategy in the security proof is to propagate

the following invariant: at step 𝑖 of the computation, the only possible signatures on tuples of the form (h∗, 𝑖, 𝑐𝑖 )
are those where 𝑐𝑖 ∈ 𝑆𝑖 . Namely, signatures should only exist on reachable configurations. We show that if

the invariant holds for an index 𝑖 , then using punctured programming techniques [SW14], we can establish the

invariant for index 𝑖 + 1. To carry out this step, we need to embed within the obfuscated program a description

of the reachable states after the first 𝑖 states (i.e., a description of the set 𝑆𝑖 ). For this reason, the size of the

obfuscated program in our construction grows exponentially with the space of the Turing machine, limiting

us to log-space computations. However, in settings where the the sets 𝑆𝑖 have a compact description, then the

size of the programs only scales with the size of the compact description of 𝑆𝑖 . This captures important policies

families such as weighted threshold policies (see Remark 5.7).

• The next challenge comes from the need to “unpuncture.” Specifically, the way we establish our invariant

that signatures do not exist on any unreachable configuration is we “puncture” away the ability to generate

signatures on inputs of the form (h∗, 𝑖, 𝑐𝑖 ) for all 𝑐𝑖 ∉ 𝑆𝑖 . If we have to hard-code all of these inputs into the

program across all indices 𝑖 ∈ [𝐾], then the size of the program scales linearly with the number of instances,

which is precisely what we want to avoid. Thus, once we have established the invariant on an index 𝑖 , we need

a way to unpuncture previous points. We can model this unpuncturing step as a pebbling game [GPSZ17, GS18],

which provides a way to propagate our invariant while ensuring that at any point in time, we only need to

program in the sets 𝑆𝑖 for at most 𝑂 (log𝐾) indices. We refer to the proof of Theorem 5.13 for the full details.

• A second challenge that arises in our analysis is within the propagation step itself. Recall that on step 𝑖 , our goal

is to puncture away all signatures on inputs of the form (h∗, 𝑖, 𝑐𝑖 ) where 𝑐𝑖 ∉ 𝑆𝑖 . A natural approach would be

to step through each of the 2
𝑆
possible configurations one-by-one and leverage punctured programming (and

indeed, this is our overall proof strategy). This would result in 2
𝑆
hybrids in total, and if done naïvely, would

lead to signatures whose size now scales with the space-bound 𝑆 . Once again, this would no longer meet our

succinctness requirements. Thus, we need to design our hybrids so that the dependence on the space usage 𝑆 is

entirely absorbed by the programs in the common reference string and not in the size of the output signatures.

To support this, we use the randomization techniques developed recently in the context of constructing and

batching adaptively-sound SNARGs for NP from 𝑖O [DWW24, WW25a].

Taken together, we obtain a succinct witness map for batch languages from 𝑖O and SSB hash functions. The size

of the CRS scales with the description length of the set of reachable states for the Turing machine. Note that if

we directly use 𝑖O for Turing machines to build a unique witness map (i.e., read all 𝐾 statements/witnesses and

output a signature if the policy is satisfied), then the size of the CRS grows linearly with the number of instances

𝐾 (because the size of the obfuscated program in existing constructions of 𝑖O for Turing machines from standard

assumptions [BGL
+
15, CHJV15, KLW15, GS18] all grow with the input length). These approaches would in turn not

suffice for either of our applications to succinct witness encryption or for SNARGs for monotone-policy batch NPwith a

sublinear-size CRS. Our approach shows how to overcome this input-size barrier for a particular class of computations.

Application to succinct computational secret sharing. A succinct witness encryption scheme for a policy P
immediately gives a succinct computational secret sharing scheme for P. The construction is straightforward:

• Let pk be the public-key for a public-key encryption scheme. Suppose there are 𝐾 parties in the system.

Each party’s share consists of a pair (ct𝑖 , 𝑟𝑖 ) where ct𝑖 = Encrypt(pk, 1; 𝑟 ) is encryption of 1 under pk using

randomness 𝑟𝑖 .
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• Let Rpk (ct, 𝑟 ) be an NP relation that outputs 1 if ct = Encrypt(pk, 1; 𝑟 ). To share a message 𝜇 with respect to a

policy 𝑃 , the dealer publishes a witness encryption ciphertext with message 𝜇, statement (ct1, . . . , ct𝐾 ), policy
𝑃 , and Rpk as the associated NP relation.

Both the parties’ individual shares as well as the public information are succinct (the latter by succinctness of the

witness encryption scheme). Moreover, any set of users that satisfies the policy is able to decrypt and recover 𝜇.5

Security follows readily from security of the succinct witness encryption scheme. We refer to Section 6.1 for the full

details. An appealing feature of our construction is that the party’s individual shares are reusable. Whenever the dealer

wants to share a new message, it only needs to publish a short public share (i.e., the witness encryption ciphertext).

Application to distributed monotone-policy encryption. Our second application is to distributed monotone-

policy encryption. In this notion, users generate their own public keys pk and post them to a public-key directory.

Thereafter, one can encrypt to a collection of public keys {pk𝑖 }𝑖∈𝑆 together with a monotone policy 𝑃 (on the set 𝑆

of public keys). Any authorized set of users can pool their decryption keys to decrypt and learn the message. We can

construct a distributed monotone-policy encryption scheme in the same manner as our succinct computational secret

sharing construction. Namely, the public parameters for the monotone-policy encryption scheme will be the public

key pk for a public-key encryption scheme. Each user’s public key will be an encryption of 1 under pk and their

secret key is the associated encryption randomness. An encryption of a message 𝜇 to a set of public keys {pk𝑖 }𝑖∈𝑆
and access policy 𝑃 is precisely a succinct witness encryption of 𝜇 where the statement corresponds to {pk𝑖 }𝑖∈𝑆 and
the policy corresponds to 𝑃 . Correctness and security follow as in the case of succinct computational secret sharing.

In the basic version described here, users have to share their decryption keys in order to decrypt. We can also

consider a stronger model where instead of users exchanging secret keys to decrypt they instead publish a one-time

partial decryption of the message. This is standard in settings like multi-key homomorphic encryption [MW16] or

threshold encryption with silent setup [GKPW24, ADM
+
24]. Using similar techniques as in [GKPW24, ADM

+
24], we

can easily extend our construction to support this. Namely, we let each user’s long-term secret key be a signing key for

a digital signature scheme. Their public key is the associated verification key. Next, we associate a (random) tag with

each ciphertext. Instead of checking for possession of the associated decryption key, the witness encryption scheme

now checks that the decrypter provides a valid signature for a set of users that satisfy the access policy. The signatures

now serves as the “decryption key.” Security of the signature scheme ensures that the decryption hint for one

ciphertext does not help break semantic security of an unrelated ciphertext. We provide the full details in Appendix B.

2 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write

[𝑛] := {1, . . . , 𝑛}. We say a function 𝑓 (𝜆) is negligible if 𝑓 = 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N, and write negl(𝜆) to denote

a negligible function. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its

input. We write poly(𝜆) to denote a fixed function that is bounded by some polynomial in 𝜆. We model an efficient

non-uniform algorithm A as a pair of algorithms A = (A0,A1) where A0 is a (possibly unbounded) algorithm that

takes as input 1
𝜆
and outputs an advice string 𝜌𝜆 of polynomial length, and algorithm A1 is an efficient algorithm.

The output ofA on an input 𝑥 ∈ {0, 1}𝜆 is defined as first computing the advice string 𝜌𝜆 ← A0 (1𝜆) and then taking

the output to be A1 (𝜌𝜆, 𝑥). Throughout this work, we will consider efficient non-uniform adversaries.

Witness encryption. We now recall the notion of a witness encryption scheme for NP [GGSW13].

Definition 2.1 (Witness Encryption [GGSW13, adapted]). LetM be a message space. A witness encryption scheme

ΠWE for NP with message spaceM is a pair of efficient algorithms ΠWE = (Encrypt,Decrypt) with the following

syntax:

• Encrypt(1𝜆,𝐶, 𝜇) → ct: On input the security parameter 𝜆 ∈ N, a circuit 𝐶 : {0, 1}ℎ → {0, 1}, and a message

𝜇 ∈ M, the encryption algorithm outputs a ciphertext ct.

5
Technically, this requires that decryption is possible even if the users do not know the full statement (i.e., the public keys of all users in the

system). As we discuss in Sections 4 and 5, the schemes in this work support this “local” decryption property.
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• Decrypt(ct,𝐶,𝑤) → 𝜇: On input a ciphertext ct, a Boolean relation 𝐶 : {0, 1}ℎ → {0, 1}, a witness𝑤 ∈ {0, 1}ℎ ,
the decryption algorithm outputs a message 𝜇.

Moreover, we require that (Encrypt,Decrypt) satisfy the following two properties:

• Correctness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}ℎ → {0, 1}, all witnesses𝑤 ∈ {0, 1}ℎ where 𝐶 (𝑤) = 1,

and all messages 𝜇 ∈ M,

Pr[Decrypt(ct,𝐶,𝑤) = 𝜇 : ct← Encrypt(1𝜆,𝐶, 𝜇)] = 1.

• Semantic security: For a security parameter 𝜆 ∈ N, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the

semantic security game as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs a Boolean relation 𝐶 : {0, 1}ℎ → {0, 1} and a

pair of messages 𝜇0, 𝜇1 ∈ M.

– If there exists𝑤 ∈ {0, 1}ℎ such that 𝐶 (𝑤) = 1, then the challenger outputs 0. Otherwise, the challenger

responds with ct← Encrypt(1𝜆,𝐶, 𝜇𝑏).
– Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is also the output of the experiment.

The witness encryption scheme is semantically secure if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the semantic

security game.

2.1 Standard Cryptographic Notions
In this section, we recall the formal definitions of some standard cryptographic notions.

Digital signatures and public-key encryption. We begin with the standard notion of a (one-time) digital signature

scheme and a public-key encryption scheme.

Definition 2.2 (One-Time Digital Signature). A one-time digital signature scheme ΠOTS over a message space

M = {M𝜆}𝜆∈N is a triple of efficient algorithms ΠOTS = (KeyGen, Sign,Verify) with the following syntax:

• KeyGen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a verification

key vk and a signing key sk. We assume that sk and vk implicitly include a description of the security parameter

1
𝜆
.

• Sign(sk,𝑚) → 𝜎 : On input the signing key sk and a message𝑚 ∈ M𝜆 , the signing algorithm outputs a signature

𝜎 .

• Verify(vk,𝑚, 𝜎) → 𝑏: On input the verification key vk, a message𝑚, and a signature 𝜎 , the verification algorithm

outputs a bit 𝑏 ∈ {0, 1}.

We require ΠOTS satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ M𝜆 , we have

Pr

[
Verify(vk,𝑚, 𝜎) = 1 :

(vk, sk) ← KeyGen(1𝜆)
𝜎 ← Sign(sk,𝑚)

]
.

• One-time strong unforgeability: For a security parameter 𝜆, an adversary A, we define the one-time strong

unforgeability game as follows:

– The challenger begins by sampling (vk, sk) ← KeyGen(1𝜆) and gives vk to A.

– Algorithm A can make a signing query on a message 𝑚 ∈ M𝜆 . The challenger responds with 𝜎 ←
Sign(sk,𝑚∗).
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– Algorithm A outputs a forgery (𝑚∗, 𝜎∗).
– The challenger outputs 𝑏 = 1 if Verify(vk,𝑚∗, 𝜎∗) = 1 and in addition, if A made a signing query on the

message𝑚 to receive a signature 𝜎 , then (𝑚∗, 𝜎∗) ≠ (𝑚,𝜎). Otherwise, the challenger outputs 𝑏 = 0.

We say ΠOTS satisfies one-time strong unforgeability if for all existing adversaries A, there exists a negligible

function such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the above security game.

Definition 2.3 (Public-Key Encryption). A public-key encryption scheme ΠPKE is a triple of efficient algorithms

ΠPKE = (KeyGen, Encrypt,Decrypt) with the following syntax:

• KeyGen(1𝜆) → (pk, sk): On input a security parameter 𝜆, the key-generation algorithm outputs a public key

pk and a secret key sk.

• Encrypt(pk,𝑚) → ct: On input a public key pk and a message𝑚 ∈ {0, 1}, the encryption algorithm outputs

a ciphertext ct.

• Decrypt(sk, ct) →𝑚: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a message

𝑚 ∈ {0, 1}.

We require that ΠPKE satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all messages𝑚 ∈ {0, 1},

Pr

[
Decrypt(sk, ct) =𝑚 :

(pk, sk) ← KeyGen(1𝜆)
ct← Encrypt(pk,𝑚)

]
= 1.

• CPA-security: For a security parameter 𝜆, an adversary A and a bit 𝑏 ∈ {0, 1}, we define the CPA-security
game as follows:

6

– At the beginning of the game, the challenger samples (pk, sk) ← KeyGen(1𝜆) and gives (1𝜆, pk) to A.

– Algorithm A can now make adaptive queries on pairs of messages𝑚0,𝑚1 ∈ {0, 1}. On each query, the

challenger responds with ct𝑏 ← Encrypt(pk,𝑚𝑏).
– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPKE is CPA-secure if for all efficient adversaries A, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the CPA-security game.

Leveled homomorphic encryption. A leveled homomorphic encryption [Gen09] enables a bounded number of

homomorphic operations on encrypted inputs. We recall the formal definition below:

Definition 2.4 (Leveled Homomorphic Encryption). A public-key (leveled) homomorphic encryption scheme is a

tuple of efficient algorithms ΠLHE = (KeyGen, Encrypt, Eval,Decrypt) with the following syntax:

• KeyGen(1𝜆, 1𝑑 ) → (pk, sk): On input a security parameter 𝜆 and a depth bound 𝑑 , the key-generation algorithm

outputs a public key pk and a secret key sk.

• Encrypt(pk,𝑚) → ct: On input a public key pk and a message𝑚 ∈ {0, 1}, the encryption algorithm outputs

a ciphertext ct.

• Decrypt(sk, ct) →𝑚: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a message

𝑚 ∈ {0, 1}.

• Eval(pk,𝐶, {ct𝑖 }𝑖∈[ℓ ]) → ct′: On input a Boolean circuit 𝐶 : {0, 1}ℓ → {0, 1} and a collection of ℓ ciphertexts

ct1, . . . , ctℓ , the evaluation algorithm outputs a new ciphertext ct′. This algorithm is deterministic.

6
Note that we can equivalently define the simpler game where the adversary makes a single encryption query, which implies the multi-query

version via a standard hybrid argument. However, the multi-query definition is useful in our security proofs.
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We require that ΠLHE satisfy the following properties:

• Correctness: For all 𝜆, 𝑑 ∈ N, all Boolean circuits 𝐶 : {0, 1}ℓ → {0, 1} of depth at most 𝑑 , and all inputs

𝑥 ∈ {0, 1}ℓ ,

Pr

Decrypt(sk, ct′) = 𝐶 (𝑥) :
(pk, sk) ← KeyGen(1𝜆)

∀𝑖 ∈ [ℓ] : ct𝑖 ← Encrypt(pk, 𝑥𝑖 )
ct′ = Eval(pk,𝐶, {ct𝑖 }𝑖∈[ℓ ])

 = 1.

• Compactness: There exists a universal polynomial 𝑝 such that for all 𝜆, 𝑑 ∈ N, all Boolean circuits𝐶 : {0, 1}ℓ →
{0, 1} with depth at most 𝑑 , all (pk, sk) in the support of KeyGen(1𝜆, 1𝑑 ), all inputs 𝑥1, . . . , 𝑥ℓ ∈ {0, 1}, and all

ciphertexts ct𝑖 in the support of Encrypt(pk, 𝑥𝑖 ) for each 𝑖 ∈ [ℓ], it holds that

|pk| ≤ 𝑝 (𝜆, 𝑑) and |ct′ | ≤ 𝑝 (𝜆, 𝑑),

where ct′ = Eval(pk,𝐶, {ct𝑖 }𝑖∈[ℓ ]).

• CPA-security: For a security parameter 𝜆, an adversary A and a bit 𝑏 ∈ {0, 1}, we define the CPA-security
game as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs the depth bound 1

𝑑
. The challenger samples

(pk, sk) ← KeyGen(1𝜆, 1𝑑 , 1𝑠 ) and replies to A with pk.

– Algorithm A can now make adaptive queries on pairs of messages𝑚0,𝑚1 ∈ {0, 1}. On each query, the

challenger responds with ct𝑏 ← Encrypt(pk,𝑚𝑏).
– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠLHE is CPA-secure if for all efficient adversaries A, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the CPA-security game.

Remark 2.5 (Encrypting Longer Messages). We extend the encryption algorithm Encrypt to support arbitrary-

length messages𝑚 ∈ {0, 1}ℓ by encrypting bit-by-bit (i.e., for a message𝑚 = 𝑚1𝑚2 · · ·𝑚ℓ , Encrypt(pk,𝑚) outputs
(ct1, . . . , ctℓ ) where ct𝑖 ← Encrypt(pk,𝑚𝑖 )). Similarly, when considering CPA-security for longer messages, we allow

the adversary to submit arbitrary-length messages𝑚0,𝑚1 to the challenger, with the restriction that |𝑚0 | = |𝑚1 |.

Somewhere statistically binding hash functions. A somewhere statistically binding hash function [HW15] is

a hash function where the digest of an input 𝑥 ∈ {0, 1}ℓ statistically binds to the value of 𝑥𝑖 at some index 𝑖 ∈ [ℓ].
Moreover, the description of the hash function (i.e., the hash key) computationally hides the index 𝑖 . In the following

definition, we describe a variant that statistically binds to a set of indices (and where the size of the digest scales

linearly with the size of the set). We give the formal syntax below:

Definition 2.6 (Somewhere Statistically Binding Hash Function [HW15]). A somewhere statistically binding hash

function ΠSSB is a triple of efficient algorithms ΠSSB = (Setup,Hash,Verify) with the following syntax:

• Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max, 𝑆) → hk: On input a security parameter 𝜆, a block length ℓblk, a bound on the size of

the binding set 𝑘max, a bound on the number of blocks 𝑛max, and a set 𝑆 ⊆ [𝑛max] of size at most 𝑘max, the setup

algorithm outputs a hash key hk. We assume that hk (implicitly) contains a description of (1𝜆, 1ℓblk , 1𝑘max , 𝑛max).

• Hash(hk, (𝑥1, . . . , 𝑥𝑛)) → (h, 𝜋1, . . . , 𝜋𝑛): On input a hash key hk and a tuple of inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk
where 𝑛 ≤ 𝑛max, the hashing algorithm outputs a hash h together with openings 𝜋1, . . . , 𝜋𝑛 .

• Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) → 𝑏: On input a hash key hk, a hash h, an index 𝑖 ∈ [𝑛max], an input 𝑥𝑖 ∈ {0, 1}ℓblk , and
a proof 𝜋𝑖 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require that ΠSSB satisfy the following properties:
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• Correctness: For all 𝜆, ℓblk, 𝑘max, 𝑛max ∈ N, all input lengths 𝑛 ∈ [𝑛max], all inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk , all
indices 𝑖 ∈ [𝑛], and all sets 𝑆 ⊆ [𝑛max] of size at most 𝑘max, we have that

Pr

[
Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) = 1 :

hk← Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max, 𝑆)
(h, 𝜋1, . . . , 𝜋𝑛) ← Hash(hk, (𝑥1, . . . , 𝑥𝑛))

]
= 1.

• Set hiding: For a security parameter 𝜆, an adversaryA, and a bit 𝑏 ∈ {0, 1}, we define the set-hiding experiment

as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs the input length 1

ℓ
blk
, the bound 1

𝑘max
, the

number of blocks 𝑛max, and a set 𝑆 ⊆ [𝑛max] of size at most 𝑘max.

– If 𝑏 = 0, the challenger computes hk ← Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max,∅) and if 𝑏 = 1, it computes hk ←
Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max, 𝑆). The challenger gives hk to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satisfies set hiding if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the set hiding game.

• Somewhere statistically binding: We say a hash key hk is statistically binding for a set 𝑆 if there does not

exist values (h, 𝑖, 𝑥𝑖 , 𝑥 ′𝑖 , 𝜋𝑖 , 𝜋 ′𝑖 ) where

𝑖 ∈ 𝑆 and 𝑥𝑖 ≠ 𝑥
′
𝑖 and Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) = 1 = Verify(hk, h, 𝑖, 𝑥 ′𝑖 , 𝜋 ′𝑖 ).

We say that ΠSSB is somewhere statistically binding if for all polynomials ℓblk = ℓblk (𝜆), 𝑘max = 𝑘max (𝜆), and
𝑛max = 𝑛max (𝜆), there exists a negligible function negl(·) such that for all sets 𝑆 ⊆ [𝑛max] of size at most 𝑘max,

Pr

[
hk is statistically binding for 𝑆 : hk← Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max, 𝑆)

]
≥ 1 − negl(𝜆).

• Succinctness: There exists a universal polynomial 𝑝 such that for all 𝜆, ℓblk, 𝑘max, 𝑛max ∈ N, all sets 𝑆 ⊆ [𝑛max]
of size at most 𝑘max, all inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk where 𝑛 ≤ 𝑛max, all hash keys hk in the support

of Setup(1𝜆, 1ℓblk , 1𝑘max , 𝑛max, 𝑆), and all (h, 𝜋1, . . . , 𝜋𝑛) in the support of Hash(hk, (𝑥1, . . . , 𝑥𝑛)), it holds that
|hk|, |h|, |𝜋𝑖 | ≤ 𝑝 (𝜆, ℓblk, 𝑘max, log𝑛max) for all 𝑖 ∈ [𝑛].

Function-binding hash functions. Function-binding hash functions [FWW23] generalize somewhere-statistically

binding hash functions by statistically binding to a (computationally-hidden) function of the input. In this work,

we specialize our syntax to disjunctions of block functions, which is the primary family of function-binding hash

functions considered in [FWW23] and which suffice for our applications. Specifically, we consider hash functions

that bind to a disjunction of a function 𝑔:

𝑓 (𝑥1, . . . , 𝑥𝑛) :=
∨
𝑖∈[𝑛]

𝑔(𝑥𝑖 ).

Like somewhere statistically binding hash functions, a user can compute a hash of any input (𝑥1, . . . , 𝑥𝑛) and produce

a succinct local opening of 𝑥𝑖 with respect to the hash value. The function binding property (specifically, the statistical

disjunction binding property) then asserts that if one computes a hash of (𝑥∗
1
, . . . , 𝑥∗𝑛) where 𝑓 (𝑥∗1 , . . . , 𝑥∗𝑛) = 0, then

there does not exist an opening to any 𝑥𝑖∗ where 𝑔(𝑥𝑖∗ ) = 1 for all 𝑖∗. This is because for all values of 𝑥∗𝑖 ,

𝑓 (𝑥1, . . . 𝑥𝑖∗−1, 𝑥𝑖∗ , 𝑥𝑖∗+1, . . . , 𝑥𝑛) = 𝑔(𝑥𝑖∗ ) ∨
∨
𝑖≠𝑖∗

𝑔(𝑥𝑖 ) = 1 ≠ 𝑓 (𝑥∗
1
, . . . , 𝑥∗𝑛).

We now give the formal definition adapted from [FWW23].

Definition 2.7 (Function-Binding Hash Function for Disjunction of Block Functions [FWW23]). A function-binding

hash function ΠFBH for disjunctions of block functions is a triple of efficient algorithms ΠFBH = (Setup,Hash,Verify)
with the following syntax:
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• Setup(1𝜆, 1ℓblk , 1𝑑max , 1𝑠max , 𝑛max,𝐶) → hk: On input a security parameter 𝜆, a block length ℓblk, a depth bound

𝑑max, a size bound 𝑠max, a bound on the number of blocks 𝑛max, and a Boolean circuit 𝐶 : {0, 1}ℓblk → {0, 1} (or
a special symbol 𝐶 = ⊥), the setup algorithm outputs a hash key hk.

• Hash(hk, (𝑥1, . . . , 𝑥𝑛)) → (h, 𝜋1, . . . , 𝜋𝑛): On input a hash key hk and a collection of inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk
where 𝑛 ≤ 𝑛max, the hashing algorithm outputs a hash h together with openings 𝜋1, . . . , 𝜋𝑛 .

• Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) → 𝑏: On input a hash key hk, a hash h, an index 𝑖 ∈ [𝑛max], an input 𝑥𝑖 ∈ {0, 1}ℓblk , and
a proof 𝜋𝑖 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require that ΠFBH satisfy the following properties:

• Correctness: For all 𝜆, ℓblk, 𝑑max, 𝑠max, 𝑛max ∈ N, all input lengths 𝑛 ∈ [𝑛max], all inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk ,
all indices 𝑖 ∈ [𝑛], and all Boolean circuits 𝐶 : {0, 1}ℓblk → {0, 1} of depth at most 𝑑max and size at most 𝑠max

(or alternatively, 𝐶 = ⊥), we have that

Pr

[
Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) = 1 :

hk← Setup(1𝜆, 1ℓblk , 1𝑑max , 1𝑠max , 𝑛max,𝐶)
(h, 𝜋1, . . . , 𝜋𝑛) ← Hash(hk, (𝑥1, . . . , 𝑥𝑛))

]
• Function hiding: For a security parameter 𝜆, an adversaryA, and a bit𝑏 ∈ {0, 1}, we define the function-hiding
experiment as follows:

– On input the security parameter, algorithm A outputs the input length 1
ℓ
blk
, the bounds 1

𝑑max
, 1
𝑠max

, and

𝑛max, together with a Boolean circuit 𝐶 : {0, 1}ℓblk → {0, 1} of depth at most 𝑑max and size at most 𝑠max.

– If 𝑏 = 0, the challenger computes hk ← Setup(1𝜆, 1ℓblk , 1𝑑max
, 1

𝑠max , 𝑛max,⊥). If 𝑏 = 1, the challenger

computes hk← Setup(1𝜆, 1ℓblk , 1𝑑max , 1𝑠max , 𝑛max,𝐶). The challenger gives hk to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠFBH satisfies function hiding if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the function hiding game.

• Statistically disjunction binding: Fix parameters ℓblk, 𝑑max, 𝑠max, 𝑛max. We say a hash key hk is statistically-

disjunction-binding for a block function 𝐶 : {0, 1}ℓblk → {0, 1} if for all inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk where
𝑛 ≤ 𝑛max and 𝐶 (𝑥𝑖 ) = 0 for all 𝑖 ∈ [𝑛], and setting (h, 𝜋1, . . . , 𝜋𝑛) = Hash(hk, (𝑥1, . . . , 𝑥𝑛)), there does not exist
an opening (𝑖, 𝑥𝑖 , 𝜋𝑖 ) where

𝐶 (𝑥𝑖 ) = 1 and Verify(hk, h, 𝑖, 𝑥𝑖 , 𝜋𝑖 ).

We say that ΠFBH is statistically disjunction binding if for all polynomials ℓblk = ℓblk (𝜆), 𝑘max = 𝑘max (𝜆),
𝑠max = 𝑠max (𝜆), and 𝑛max = 𝑛max (𝜆), there exists a negligible function negl(·) such that for all Boolean circuits

𝐶 : {0, 1}ℓblk of depth at most 𝑑max and size at most 𝑠max,

Pr[hk is statistically-disjunction-binding for 𝐶 : hk← Setup(1𝜆, 1ℓblk , 1𝑑max , 1𝑠max , 𝑛max,𝐶)] ≥ 1 − negl(𝜆).

• Succinctness: There exists universal polynomials 𝑝1, 𝑝2 such that for all 𝜆, ℓblk, 𝑘max, 𝑑max, 𝑛max ∈ N, all Boolean
circuits 𝐶 : {0, 1}ℓblk → {0, 1} of depth at most 𝑑max and size at most 𝑠max (or alternatively, 𝐶 = ⊥), all inputs
𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓblk where 𝑛 ≤ 𝑛max, all hash keys hk in the support of Setup(1𝜆, 1ℓblk , 1𝑑max , 1𝑠max , 𝑛max,𝐶), and
all (h, 𝜋1, . . . , 𝜋𝑛) in the support of Hash(hk, (𝑥1, . . . , 𝑥𝑛)), it holds that

– |hk| ≤ 𝑝1 (𝜆, 𝑠max, log𝑛max).
– |h|, |𝜋𝑖 | ≤ 𝑝2 (𝜆, 𝑑max, log 𝑠max, log𝑛max).

Batch arguments for NP. A non-interactive batch argument (BARG) for NP [BHK17, CJJ21a, CJJ21b] allows a prover

to convince a verifier that a batch of 𝑘 NP statements 𝑥1, . . . , 𝑥𝑘 are true with a proof whose size scales sublinearly

with 𝑘 . In this work, we will consider the specific setting of an index BARG [CJJ21b], which corresponds to the special
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case of index languages (i.e., the batch language where the statements are simply the indices 1, 2, . . . , 𝑘). Moreover,

we consider the stronger notion of somewhere statistical soundness where there does not exist a valid proof 𝜋 with

respect to a CRS that is binding on index 𝑖 when statement 𝑖 is false. The [WW22] construction satisfies this stronger

notion of somewhere statistical soundness; other BARG constructions [CJJ21b, CGJ
+
23] have been shown to satisfy

a weaker computational version of this property. We review the formal definition below:

Definition 2.8 (Non-Interactive Batch Argument for Index Languages). An non-interactive batch argument for index

languages ΠBARG is a triple of efficient algorithms (Setup, Prove,Verify) with the following syntax:

• Setup(1𝜆, 1𝑘max , 1𝑠max ) → crs: On input the security parameter 𝜆 ∈ N, a bound on the number of instances

𝑘max ∈ N, and a bound on the circuit size 𝑠max ∈ N, the setup algorithm outputs a common reference string

crs. We assume that crs(implicitly) contain a description of (1𝜆, 𝑘max, 𝑠max).

• Prove(crs,𝐶, (𝑤1, . . . ,𝑤𝑘 )) → 𝜋 : On input the common reference string crs, a Boolean circuit 𝐶 of size at most

𝑠max, together with 𝑘 ≤ 𝑘max witnesses𝑤1, . . . ,𝑤𝑘 , the prove algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, 𝑘, 𝜋) → 𝑏: On input the common reference string crs, a Boolean circuit 𝐶 of size at most 𝑠max, an

integer 𝑘 ≤ 𝑘max, and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require that ΠBARG satisfy the following properties:

• Completeness: For all 𝜆, 𝑘max, 𝑠max ∈ N, all Boolean circuits𝐶 of size at most 𝑠max, all positive integers 𝑘 ≤ 𝑘max,

all witnesses𝑤1, . . . ,𝑤𝑘 where 𝐶 (𝑖,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑘], it holds that

Pr

[
Verify(crs,𝐶, 𝑘, 𝜋) = 1 :

crs← Setup(1𝜆, 1𝑘max , 1𝑠max )
𝜋 ← Prove(crs,𝐶, (𝑤1, . . . ,𝑤𝑘 ))

]
= 1.

• Somewhere statistical soundness: There exists an efficient algorithm Setup∗ with the following syntax:

– Setup∗ (1𝜆, 1𝑘max , 1𝑠max , 𝑖) → crs: On input the security parameter 𝜆 ∈ N, a bound on the number of instances

𝑘max ∈ N, a bound on the circuit size 𝑠max ∈ N, and an index 𝑖 ∈ [𝑘max], the setup algorithm outputs a

common reference string crs. We assume that the CRS (implicitly) contain a description of (1𝜆, 𝑘max, 𝑠max).

We additionally require the following properties:

– Mode indistinguishability: For a security parameter 𝜆, an adversary A, and a bit 𝑏 ∈ {0, 1}, we define
the mode indistinguishability game as follows:

∗ On input the security parameter 1
𝜆
, algorithm A outputs 1

𝑘max
and 1

𝑠max
and an index 𝑖 ∈ [𝑘max].

∗ If 𝑏 = 0, the challenger replies with crs← Setup(1𝜆, 1𝑘max , 1𝑠max ). If 𝑏 = 1, the challenger replies with

crs← Setup∗ (1𝜆, 1𝑘max , 1𝑠max , 𝑖).
∗ Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

We say that ΠBARG satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in
the mode indistinguishability game.

– Somewhere statistical soundness: We say that ΠBARG satisfies somewhere statistical soundness if

for all polynomials 𝑘max = 𝑘max (𝜆) and 𝑠max = 𝑠max (𝜆), there exists a negligible function negl(·) such
that for all 𝑖 ∈ [𝑘max], all Boolean circuits of size at most 𝑠max where 𝐶 (𝑖,𝑤) = 0 for all 𝑤 ∈ {0, 1}∗, all
𝑖 ≤ 𝑘 ≤ 𝑘max, and all 𝜆 ∈ N,

Pr[∃𝜋 : Verify(crs,𝐶, 𝑘, 𝜋) = 1 | crs← Setup∗ (crs, 1𝑘max , 1𝑠max , 𝑖)] = negl(𝜆).

• Succinctness: There exists a universal polynomial 𝑝 such that for all 𝜆, 𝑘max, 𝑠max ∈ N, all Boolean circuits 𝐶

of size at most 𝑠max, all positive integers 𝑘 ≤ 𝑘max, all witnesses 𝑤1, . . . ,𝑤𝑘 where 𝐶 (𝑖,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑘],
all crs in the support of Setup(1𝜆, 1𝑘max , 1𝑠max ) and all proofs 𝜋 in the support of Prove(crs,𝐶, (𝑤1, . . . ,𝑤𝑘 )), we
have that |crs| ≤ 𝑝 (𝜆, log 𝑠max, log𝑘max), and |𝜋 | ≤ 𝑝 (𝜆, |𝐶 |, log𝑘).
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Indistinguishability obfuscation. We recall the notion of an indistinguishability obfuscation scheme [BGI
+
01]:

Definition 2.9 (Indistinguishability Obfuscation [BGI
+
01]). An indistinguishability obfuscator for Boolean circuits

is an efficient algorithm 𝑖O(·, ·, ·) with the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, circuit size parameters 𝑠 ∈ N, all Boolean circuits 𝐶 of size

at most 𝑠 , and all inputs 𝑥 ,

Pr[𝐶′ (𝑥) = 𝐶 (𝑥) : 𝐶′ ← 𝑖O(1𝜆, 1𝑠 ,𝐶)] = 1.

• Security: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the program indistinguishability game

between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary outputs a size parameter 1

𝑠
and two Boolean circuits

𝐶0,𝐶1 of size at most 𝑠 .

– If there exists an input 𝑥 such that 𝐶0 (𝑥) ≠ 𝐶1 (𝑥), then the challenger halts with output ⊥. Otherwise,
the challenger replies with 𝑖O(1𝜆, 1𝑠 ,𝐶𝑏).

– The adversary A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that 𝑖O is secure if for all efficient adversaries A, there exists a negligible function negl(·) such that

for all 𝜆 ∈ N, we have that

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆)

in the above program indistinguishability game.

Puncturable PRFs and injective PRGs. Next, we recall the notion of a puncturable PRF [BW13, KPTZ13, BGI14]

and the notion of an injective PRG, which will be useful in combination with 𝑖O to obtain our succinct unique witness

map for batch languages in Section 5.

Definition 2.10 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists of a

tuple of efficient algorithms ΠPPRF = (KeyGen, Eval, Puncture) with the following syntax:

• KeyGen(1𝜆, 1ℓin , 1ℓout ) → 𝑘 : On input the security parameter 𝜆, an input length ℓin, and an output length ℓout,

the key-generation algorithm outputs a key 𝑘 . We assume that the key 𝑘 contains an implicit description of

ℓin and ℓout.

• Puncture(𝑘, 𝑥∗) → 𝑘 (𝑥
∗ )
: On input a key𝑘 and a point 𝑥∗ ∈ {0, 1}ℓin , the puncture algorithm outputs a punctured

key 𝑘 (𝑥
∗ )
. We assume the punctured key contains an implicit description of ℓin and ℓout.

• Eval(𝑘, 𝑥) → 𝑦: On input a key𝑘 and an input 𝑥 ∈ {0, 1}ℓin , the evaluation algorithm outputs a value𝑦 ∈ {0, 1}ℓout :

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For all 𝜆, ℓin, ℓout ∈ N, every input 𝑥 ∈ {0, 1}ℓin , and every 𝑥 ∈ {0, 1}ℓin \ {𝑥∗},

Pr

[
Eval(𝑘, 𝑥) = Eval(𝑘 (𝑥∗ ) , 𝑥) : 𝑘 ← KeyGen(1𝜆, 1ℓin , 1ℓout )

𝑘 (𝑥
∗ ) ← Puncture(𝑘, 𝑥∗)

]
= 1.

• Punctured pseudorandomness: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the (selective)

punctured pseudorandomness game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary A outputs the input length 1

ℓin
, the output length 1

ℓout
,

and commits to a challenge point 𝑥∗ ∈ {0, 1}ℓin .
– The challenger samples 𝑘 ← KeyGen(1𝜆, 1ℓin , 1ℓout ) and gives 𝑘 (𝑥

∗ ) ← Puncture(𝑘, 𝑥∗) to A.

– If 𝑏 = 0, the challenger gives 𝑦∗ = Eval(𝑘, 𝑥∗) to A. If 𝑏 = 1, then it gives 𝑦∗ r← {0, 1}ℓout to A.
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– At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satisfies punctured pseudorandomness if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆)

in the punctured pseudorandomness security game.

Definition 2.11 (Injective PRG). Let ℓ = ℓ (𝜆) be an input-length parameter and𝑚 =𝑚(𝜆) be an output length param-

eter. An injective pseudorandom generator (PRG) is an efficiently-computable injective function G : {0, 1}ℓ → {0, 1}𝑚
where for all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[A(1𝜆,G(𝑠)) = 1 : 𝑠
r← {0, 1}ℓ ] − Pr[A(1𝜆, 𝑡) = 1 : 𝑡

r← {0, 1}𝑚] | = negl(𝜆).

3 Succinct Witness Encryption for Batch Languages
We begin by introducing the notion of succinct witness encryption for batch languages. This is the main cryptographic

notion we consider in this work, and in Section 6, we show how it can be used to realize applications to computational

secret sharing and monotone-policy encryption.

Definition 3.1 (Succinct Witness Encryption for Batch Languages). LetM be a message space and P be a family

of policies. A succinct witness encryption scheme ΠWE for batch languages with message spaceM and policy family

P is a pair of efficient algorithms ΠWE = (Encrypt,Decrypt) with the following syntax:

• Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇) → ct: On input the security parameter 𝜆 ∈ N, a Boolean relation 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and a

message 𝜇, the encryption algorithm outputs a ciphertext ct.

• Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) → 𝜇: On input a ciphertext ct, a Boolean relation 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, statements (𝑥1, . . . , 𝑥𝐾 ) ∈ {0, 1}𝑛 , and
witnesses𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ , the decryption algorithm outputs a message 𝜇.

Moreover, we require that ΠWE satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all Boolean relations 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all
Boolean policies 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, all tuples of statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , all witnesses
𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ where 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, and all messages 𝜇 ∈ M,

Pr[Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) = 𝜇 :
ct← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇)] = 1.

• Semantic security: For a security parameter 𝜆 ∈ N, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the

semantic security game as follows:

– On input the security parameter 1
𝜆
, algorithmA outputs a Boolean relation𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, a

policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, a tuple of statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and a pair of messages

𝜇0, 𝜇1 ∈ M.

– If there exists𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ such that 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, then the challenger outputs

0. Otherwise, the challenger responds with the ciphertext ct← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇).
– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.
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The succinct witness encryption scheme for batch languages is semantically secure if for all efficient adversaries

A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆)

in the semantic security game.

• Succinctness: There exists a polynomial poly such that for all 𝜆 ∈ N, circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
policies 𝑃 ∈ P (on 𝑛-bit inputs), instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and messages 𝜇 ∈ M, the size of the ciphertext

ct output by ct← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇) satisfies |ct| ≤ 𝑜 ( |𝑃 |) · poly(𝜆, |𝐶 |, log𝐾).

Local decryption. In Definition 3.1, the decryption algorithm requires knowledge of all of the statements associated

with the ciphertext. When considering applications of succinct witness encryption to computational secret sharing

and monotone policy encryption, it will be important to consider a decryption algorithm that only requires knowledge

of a subset of statements that satisfy the policy (as opposed to all of the statements). Similar to the setting of batch

arguments [CJJ21b] and locally verifiable signatures, we can support this property by decomposing the decryption

algorithm into a preprocessing algorithm which takes as input the policy 𝑃 together with all of the statements and

outputs a short “hint” associated with each statement. The preprocessing algorithm only depends on the statement and

not the witnesses. Then, there is a local decryption algorithm that takes as input the ciphertext together with a subset of

statements and their associated hints and witnesses and outputs the message. Notably, the local decryption algorithm

only requires knowledge of the statements and hints that satisfy the policy. We define this property formally below:

Definition 3.2 (Local Decryption). A succinct witness encryption scheme ΠWE = (Encrypt,Decrypt) with message

spaceM and policy family P supports local decryption if there exist a pair of efficient algorithms (Preprocess,
DecryptLocal) with the following syntax:

• Preprocess(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) → (ht1, . . . , ht𝐾 ): On input a ciphertext ct, a Boolean relation 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a Boolean policy 𝑃 ∈ P, and the statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , the preprocessing algorithm

outputs a tuple of hints ht1, . . . , ht𝐾 . This algorithm is deterministic.

• DecryptLocal(ct,𝐶, 𝑃, {(𝑖, ht𝑖 ,𝑤𝑖 )}𝑖∈𝑆 ) → 𝜇: On input a ciphertext ct, a Boolean relation𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a Boolean policy 𝑃 ∈ P, and a collection of hints and witnesses (ht𝑖 ,𝑤𝑖 ) for 𝑖 ∈ 𝑆 , the local decryption
algorithm outputs a message 𝜇. This algorithm is also deterministic.

We require (Preprocess,DecryptLocal) satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all Boolean relations 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all Boolean
policies 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, all inputs 𝛽1, . . . , 𝛽𝐾 ∈ {0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1, all statements

𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , all witnesses 𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ where 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 where 𝛽1 = 1, and for all

messages 𝜇 ∈ M,

Pr

[
DecryptLocal(ct,𝐶, 𝑃, {(𝑖, ht𝑖 ,𝑤𝑖 )}𝑖∈[𝐾 ]:𝛽𝑖=1) = 𝜇

]
= 1,

where ct← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇) and (ht1, . . . , ht𝐾 ) = Preprocess(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) .

• Succinct hints: There exists a polynomial poly such that for all 𝜆 ∈ N, circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
policies 𝑃 ∈ P (on 𝑛-bit inputs), instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , messages 𝜇 ∈ M, and all ciphertexts ct in the

support of Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇), the hints (ht1, . . . , ht𝐾 ) = Preprocess(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) satisfy

∀𝑖 ∈ [𝐾] : |ht𝑖 | ≤ 𝑜 ( |𝑃 |) · poly(𝜆, |𝐶 |, log𝐾).

4 Succinct Witness Encryption for CNFs and DNFs
In this section, we show how to construct succinct witness encryption with succinct ciphertexts that support CNF

and DNF policies from witness encryption (in conjunction with either somewhere statistically sound batch arguments

for NP [WW22] or function-binding hash functions [FWW23]).
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4.1 Succinct Witness Encryption for CNF Policies
We start by constructing a succinct witness encryption scheme that supports CNF policies. The size of the ciphertext

scales with the maximum number of variables that can appear in a single clause but polylogarithmically in the total

number of clauses. For the particular setting where each clause contains a constant number of variables, the size

of the ciphertext (and public parameters) scale polylogarithmically with the description length of the CNF.

Construction 4.1 (Succinct Witness Encryption for CNF Policies). Let 𝜆 be a security parameter,M be a message

space, and P be the set of Boolean formulas in conjunctive normal form. Our construction relies on the following:

• Let ΠSSB = (SSB.Setup, SSB.Hash, SSB.Verify) be a somewhere statistically binding hash function.

• Let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a somewhere statistically sound index BARG.

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a witness encryption scheme with message spaceM.

We construct a succinct witness encryption scheme with message spaceM and policy space P as follows:

• Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇): On input the security parameter 𝜆, the Boolean relation𝐶 : {0, 1}𝑛 ×{0, 1}ℎ →
{0, 1}, the Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and the message

𝜇 ∈ M, the encryption algorithm proceeds as follows:

– Let 𝑐 be the number of clauses in 𝑃 and let 𝑡 ≤ 𝐾 be the maximum number of variables that appears in

any clause of 𝑃 .

– Sample hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾,∅). Let ℓcl = ℓcl (𝜆) be a bound on the description of a single

clause. Sample hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐,∅).
– Compute a hash of the instances

(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )).

– For 𝑖 ∈ [𝑐], let 𝑆𝑖 ⊆ [𝐾] denote the variables that appear in clause 𝑖 of 𝑃 (under a canonical ordering of

the variables). Compute a hash of the clauses (hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )).
– Define the index relation RClauseSAT:

Fixed values: hash keys hkinst, hkcl, a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and hashes hinst, hcl
Statement: index 𝑖 ∈ N
Witness: a set 𝑆 , an opening 𝜋cl, an index 𝑗 , anNP statement 𝑥 , an opening 𝜋inst, and anNPwitness𝑤

On input a statement 𝑖 ∈ N and a tuple (𝑆, 𝜋cl, 𝑗, 𝑥, 𝜋inst,𝑤), output 1 if the following conditions hold:

∗ SSB.Verify(hkcl, hcl, 𝑖, 𝑆, 𝜋cl) = 1.

∗ 𝑗 ∈ 𝑆 and SSB.Verify(hkinst, hinst, 𝑗, 𝑥, 𝜋inst) = 1 and 𝐶 (𝑥,𝑤) = 1.

Figure 1: The NP relation RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl]
– Let 𝑠 be the size of the Boolean circuit 𝐶ClauseSAT that computes

RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from Fig. 1. Sample crsBARG ← BARG.Setup(1𝜆, 1𝑐 , 1𝑠 ).
– Let 𝐶ValidBARG be the Boolean circuit that takes as input a BARG proof 𝜋 and outputs

BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

In particular, the values of crsBARG, 𝐶ClauseSAT, and 𝑐 are hard-wired in the circuit 𝐶ValidBARG. Compute the

ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇).
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Output the ciphertext ct = (crsBARG, hkinst, hkcl, ctWE).

• Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )): On input a ciphertext ct = (crsBARG, hkinst, hkcl, hinst, hcl, ctWE),
a Boolean relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, instances
𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and witnesses𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ , the decryption algorithm proceeds as follows:

– If 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 0, output ⊥.
– Otherwise, compute a hash of the instances (hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )).

Let 𝑐 be the number of clauses that appear in 𝑃 . For 𝑖 ∈ [𝑐], let 𝑆𝑖 ⊆ [𝐾] denote the variables that

appear in clause 𝑖 of 𝑃 (under a canonical ordering of the variables). Compute a hash of the clauses

(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )).
– Since 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1 and 𝑃 is a CNF, every clause of 𝑃 must contain a satisfied literal.

In other words, for every 𝑖 ∈ [𝑐], there exists an index 𝑗𝑖 ∈ 𝑆𝑖 where 𝐶 (𝑥 𝑗𝑖 ,𝑤 𝑗𝑖 ) = 1. Let 𝑗𝑖 be the smallest

such index and define𝑤BARG,𝑖 = (𝑆𝑖 , 𝜋cl,𝑖 , 𝑗𝑖 , 𝑥 𝑗𝑖 , 𝜋inst, 𝑗𝑖 ,𝑤 𝑗𝑖 ).
– Let𝐶ClauseSAT be the Boolean circuit that computes the NP relation RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from

Fig. 1. Construct a proof 𝜋BARG ← BARG.Prove(crsBARG,𝐶ClauseSAT, 𝑐, (𝑤BARG,1, . . . ,𝑤BARG,𝑐 )).
– Let𝐶ValidBARG be the circuit that takes as input a proof 𝜋 and outputsBARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

Output WE.Decrypt(ctWE,𝐶ValidBARG, 𝜋BARG).

Theorem 4.2 (Correctness). If ΠSSB and ΠWE are correct and ΠBARG is complete, then Construction 4.1 is correct.

Proof. Take any security parameter 𝜆 ∈ N, Boolean relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, any Boolean policy 𝑃 ∈ P
where 𝑃 : {0, 1}𝑛 → {0, 1}, any collection of statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 and witnesses𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ where
𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, and any message 𝜇 ∈ M. Let ct ← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1 . . . , 𝑥𝐾 ), 𝜇) and consider

Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) :

• By construction, ct = (crsBARG, hkinst, hkcl, ctWE).

• Let 𝑐 be the number of clauses in 𝑃 , and for 𝑖 ∈ [𝑐], let 𝑆𝑖 ⊆ [𝐾] be the variables that appear in the 𝑖th clause

of 𝑃 . Since 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1 and 𝑃 is a CNF, this means that for every 𝑖 ∈ [𝑐], there exists an
index 𝑗𝑖 ∈ 𝑆𝑖 such that 𝐶 (𝑥 𝑗𝑖 ,𝑤 𝑗𝑖 ) = 1. As in Encrypt and Decrypt, let 𝑗𝑖 be the smallest such index.

• Next, the ciphertext ct satisfies ct ← WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇) where 𝐶ValidBARG takes as input a BARG

proof 𝜋 and outputs BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

• By construction, hinst is a hash of the instances (𝑥1, . . . , 𝑥𝐾 ) under hkinst and hcl is a hash of the sets 𝑆1, . . . , 𝑆𝑐
under hkcl. The decryption algorithm first computes

(h′inst, 𝜋inst,1, . . . , 𝜋inst,𝑛) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))
(h′cl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )).

Since SSB.Hash is deterministic and Encrypt and Decrypt compute hkinst and hkcl (resp., hk′inst, hk
′
cl) using

identical procedures, this means hk′inst = hkinst and hk′cl = hkcl. For each 𝑖 ∈ [𝑐], consider the witness

𝑤BARG,𝑖 = (𝑆𝑖 , 𝜋cl,𝑖 , 𝑗 𝑗 , 𝑥 𝑗𝑖 , 𝜋inst, 𝑗𝑖 ,𝑤 𝑗𝑖 ) constructed by the decryption algorithm. By construction, 𝑆𝑖 is the 𝑖
th

clause of 𝑃 and 𝑗𝑖 ∈ 𝑆𝑖 . By correctness of ΠSSB, it holds that

SSB.Verify(hkcl, hcl, 𝑖, 𝑆𝑖 , 𝜋cl,𝑖 ) = 1 = SSB.Verify(hkinst, hinst, 𝑗𝑖 , 𝑥 𝑗𝑖 , 𝜋inst, 𝑗𝑖 ).

Moreover, 𝑗𝑖 ∈ 𝑆𝑖 and 𝐶 (𝑥 𝑗𝑖 ,𝑤 𝑗𝑖 ) = 1. Thus, for all 𝑖 ∈ [𝑐],

𝐶ClauseSAT (𝑖,𝑤BARG,𝑖 ) = RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] (𝑖,𝑤BARG,𝑖 ) = 1.

• By completeness of ΠBARG, this means that BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋BARG) = 1 when 𝜋BARG ←
BARG.Prove(crsBARG,𝐶ClauseSAT, 𝑐, (𝑤BARG,1, . . . ,𝑤BARG,𝑐 )).
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• Correspondingly, 𝐶ValidBARG (𝜋BARG) = 1 so by correctness of ΠWE, WE.Decrypt(ctWE, 𝜋BARG) = 𝜇.

Correctness holds. □

Theorem 4.3 (Semantic Security). Suppose ΠSSB satisfies correctness, set hiding, and somewhere statistical binding,
ΠBARG is somewhere extractable, and ΠWE satisfies semantic security. Then Construction 4.1 is semantically secure.

Proof. Let A = (A0,A1) be an efficient non-uniform adversary for the semantic security game. In particular, on

input the security parameter 1
𝜆
, algorithm A0 outputs a tuple (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1) together with some state

information stA (of polynomial size). Algorithm A1 takes as input the state stA and a ciphertext ct and outputs a

bit 𝑏′ ∈ {0, 1}. For each 𝑖 ∈ [𝐾], define the bit 𝛽𝑖 as follows:

𝛽𝑖 :=

{
1 ∃𝑤𝑖 ∈ {0, 1}ℎ : 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1

0 otherwise.
(4.1)

Our reduction algorithms will take the bits (𝛽1, . . . , 𝛽𝐾 ) along with stA as non-uniform advice. We now define a

sequence of hybrid experiments parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )
0

: This is the semantic security game with adversary A and bit 𝑏 ∈ {0, 1}:

– On input the security parameter 1
𝜆
, algorithm A0 (1𝜆) outputs (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1) and stA . For

each 𝑖 ∈ [𝐾], define the bits 𝛽𝑖 according to Eq. (4.1).

– If 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1, the challenger outputs 0. Otherwise, the challenger invokes 𝑏′ ← A1 (stA, ct) where
ct← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇𝑏). Specifically, the challenger constructs ct as follows:

∗ Let 𝑐 be the number of clauses in 𝑃 and let 𝑡 ≤ 𝐾 be the maximum number of variables that appears

in any clause of 𝑃 .

∗ The challenger samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾,∅) and hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐,∅),
where ℓcl = ℓcl (𝜆) is a bound on the description of a single clause.

∗ Let 𝑠 be the size of the circuit that computes RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from Fig. 1. The

challenger samples crsBARG ← BARG.Setup(1𝜆, 1𝑐 , 1𝑠 ).
∗ The challenger computes

(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))
(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )),

where 𝑆𝑖 ⊆ [𝐾] denotes the variables that appear in clause 𝑖 .

∗ Finally, the challenger computes the ciphertext ctWE ← WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇𝑏), where
𝐶ValidBARG is the circuit that takes 𝜋 as input and outputs BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

∗ The challenger sets ct = (crsBARG, hkinst, hkcl, ctWE).
– The output of the experiment is the bit 𝑏′ ∈ {0, 1}.

• Hyb(𝑏 )
1

: Suppose 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 0. Then, there exists an index 𝑖∗ ∈ [𝑐] such that for all 𝑗 ∈ 𝑆𝑖∗ , 𝛽 𝑗 = 0. Let 𝑖∗

be the first such index where this property holds. This experiment is the same as Hyb(𝑏 )
0

except the challenger

samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾, 𝑆𝑖∗ ).

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

except the challenger samples hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐, {𝑖∗}) .

• Hyb(𝑏 )
3

: Same as Hyb(𝑏 )
2

except the challenger sample crsBARG ← BARG.Setup∗ (1𝜆, 1𝑐 , 1𝑠 , 𝑖∗).

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an adversary A in experiment Hyb(𝑏 )

𝑖
. In our reduction

algorithms below, we will construct an efficient non-uniform adversary B = (B0,B1). In all cases, algorithm B0
behaves as follows:
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On input the security parameter 𝜆 ∈ N:

• Run (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA) ← A0 (1𝜆).
• For each 𝑖 ∈ [𝐾], compute 𝛽𝑖 according to Eq. (4.1).

• Output (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )).

Figure 2: The pre-processing algorithm B0
We now analyze each adjacent pair of hybrid experiments.

Lemma 4.4. If ΠSSB satisfies set hiding, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for
all 𝜆 ∈ N, | Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A = (A0,A1) to

construct an efficient non-uniform adversary B = (B0,B1) for the set-hiding security game. The behavior of B0 is
shown in Fig. 2. On input the non-uniform advice (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm B1 works
as follows:

1. On input the security parameter 1
𝜆
and the advice string (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm

B1 outputs 0 if 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1.

2. Otherwise, interpret 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and 𝑃 : {0, 1}𝐾 → {0, 1}. Let 𝑐 be the number of clauses in

𝑃 , 𝑡 ≤ 𝐾 be the maximum number of variables that appears in any clause of 𝑃 , and 𝑆𝑖 ⊆ [𝐾] be the variables
that appear in clause 𝑖 of 𝑃 . Let 𝑖∗ ∈ [𝑐] be the first index where for all 𝑗 ∈ 𝑆𝑖∗ , 𝛽 𝑗 = 0.

3. Algorithm B1 outputs the input length 1
𝑛
, the bound 1

𝑡
, the number of blocks 𝐾 , and the set 𝑆𝑖∗ . The challenger

replies with a hash key hkinst. Algorithm B1 then samples hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐,∅).

4. Algorithm B1 computes

(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))
(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )) .

Next, it samples crsBARG ← BARG.Setup(1𝜆, 1𝑐 , 1𝑠 ), where 𝑠 is the size of the circuit 𝐶ClauseSAT that com-

putes RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from Fig. 1. Finally, algorithm B constructs the ciphertext ctWE ←
WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇𝑏), where 𝐶ValidBARG is the Boolean circuit that takes as input a BARG proof 𝜋 and

outputs BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

5. Algorithm B sets ct = (crsBARG, hkinst, hkcl, ctWE) and outputs A2 (stA, ct).

If the challenger samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾,∅), then algorithm B simulates an execution of Hyb(𝑏 )
0

and outputs 1 with probability Pr[Hyb(𝑏 )
1
(A) = 1]. If the challenger samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾, 𝑆𝑖∗ ),

then algorithm B simulates an execution of Hyb(𝑏 )
1

and outputs 1 with probability Pr[Hyb(𝑏 )
1
(A) = 1]. We conclude

that algorithm B breaks set hiding with the same advantage 𝜀. □

Lemma 4.5. If ΠSSB satisfies set hiding, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for
all 𝜆 ∈ N, | Pr[Hyb(𝑏 )

1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1] | = negl(𝜆).

Proof. Follows by a similar argument as the proof of Lemma 4.4, except the reduction algorithm obtains the hash

key hkcl from the challenger instead of hkinst. □

Lemma 4.6. If ΠBARG satisfies somewhere statistical soundness (specifically, mode indistinguishability), then for all
𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(𝑏 )
2
(A) = 1] − Pr[Hyb(𝑏 )

3
(A) = 1] | = negl(𝜆).

22



Proof. Suppose | Pr[Hyb(𝑏 )
2
(A) = 1] − Pr[Hyb(𝑏 )

3
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A = (A0,A1) to

construct an efficient (non-uniform) adversary B = (B0,B1) for the mode indistinguishability game. The behavior

of B0 is shown in Fig. 2. On input the non-uniform advice (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm B1
works as follows:

1. On input the security parameter 1
𝜆
and the advice string (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm

B1 outputs 0 if 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1.

2. Otherwise, interpret 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and 𝑃 : {0, 1}𝐾 → {0, 1}. Let 𝑐 be the number of clauses in

𝑃 , 𝑡 ≤ 𝐾 be the maximum number of variables that appears in any clause of 𝑃 , and 𝑆𝑖 ⊆ [𝐾] be the variables
that appear in clause 𝑖 of 𝑃 . Let 𝑖∗ ∈ [𝑐] be the first index where for all 𝑗 ∈ 𝑆𝑖∗ , 𝛽 𝑗 = 0.

3. Algorithm B1 samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾, 𝑆𝑖∗ ) and hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐, {𝑖∗}).

4. Algorithm B1 computes

(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))
(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )) .

5. Algorithm B1 outputs the number of instances 1
𝑐
, the circuit size 1

𝑠
, and the index 𝑖∗ ∈ [𝑐]. The challenger re-

sponds with crsBARG. Here 𝑠 is the size of the circuit𝐶ClauseSAT that computes RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl]
from Fig. 1.

6. AlgorithmB1 constructs the ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇𝑏), where𝐶ValidBARG is the Boolean

circuit that takes as input a BARG proof 𝜋 and outputs BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

7. Algorithm B sets ct = (crsBARG, hkinst, hkcl, ctWE) and outputs A2 (stA, ct).

If the challenger samples crsBARG ← BARG.Setup(1𝜆, 1𝑐 , 1𝑠 ), algorithm B simulates an execution of Hyb(𝑏 )
2

and

outputs 1 with probability Pr[Hyb(𝑏 )
2
(A) = 1]. If the challenger samples crsBARG ← BARG.Setup∗ (1𝜆, 1𝑐 , 1𝑠 , 𝑖∗), then

algorithm B simulates an execution of Hyb(𝑏 )
3

and outputs 1 with probability Pr[Hyb(𝑏 )
3
(A) = 1]. We conclude that

algorithm B breaks mode indistinguishability with the same advantage 𝜀. □

Lemma 4.7. If ΠWE satisfies semantic security, ΠSSB is correct and somewhere statistically binding, ΠBARG satisfies
somewhere statistical soundness, then there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(0)
3
(A) = 1] − Pr[Hyb(1)

3
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
3
(A) = 1] − Pr[Hyb(1)

3
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. First, we note that with

probability at least 𝜀, it must be the case that A0 outputs (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1) where for 𝛽𝑖 defined according to

Eq. (4.1), it holds that 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 0. When 𝑃 (𝛽1, . . . , 𝛽𝐾 ), the output in both experiments is always 0. Thus, in the

subsequent analysis, we assume that 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 0. We useA = (A0,A1) to construct an efficient (non-uniform)

adversary B = (B0,B1) for the mode indistinguishability game. The behavior of B0 is shown in Fig. 2. On input the

non-uniform advice (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm B1 works as follows:

1. On input the security parameter 1
𝜆
and the advice string (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇0, 𝜇1, stA, (𝛽1, . . . , 𝛽𝐾 )), algorithm

B1 outputs 0 if 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1.

2. Otherwise, interpret 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and 𝑃 : {0, 1}𝐾 → {0, 1}. Let 𝑐 be the number of clauses in

𝑃 , 𝑡 ≤ 𝐾 be the maximum number of variables that appears in any clause of 𝑃 , and 𝑆𝑖 ⊆ [𝐾] be the variables
that appear in clause 𝑖 of 𝑃 . Let 𝑖∗ ∈ [𝑐] be the first index where for all 𝑗 ∈ 𝑆𝑖∗ , 𝛽 𝑗 = 0.

3. Algorithm B1 samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 1𝑡 , 𝐾, 𝑆𝑖∗ ) and hkcl ← SSB.Setup(1𝜆, 1ℓcl , 11, 𝑐, {𝑖∗}).
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4. Algorithm B1 computes

(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))
(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )) .

It then computes crsBARG ← BARG.Setup∗ (1𝜆, 1𝑐 , 1𝑠 , 𝑖∗), where 𝑠 is the size of the circuit 𝐶ClauseSAT that com-

putes RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from Fig. 1.

5. Algorithm B1 gives 𝐶ValidBARG, 𝜇0, 𝜇1 to the challenger and receives a ciphertext ctWE. Here, 𝐶ValidBARG is the

Boolean circuit that takes as input a BARG proof 𝜋 and outputs BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

6. Algorithm B1 sets ct = (crsBARG, hkinst, hkcl, ctWE) and outputs A2 (stA, ct).

By construction, algorithm B simulates hkinst, hkcl, hinst, hcl, crsBARG exactly according to the specification of Hyb(0)
3

and Hyb(1)
3

. To complete the proof, we first argue that with overwhelming probability over the choice of hkinst, hkcl,
and crsBARG, it holds that for all 𝜋 ∈ {0, 1}∗, 𝐶ValidBARG (𝜋) = 0:

• Let LClauseSAT be the language associated with RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl]. We first show that 𝑖∗ ∉

LClauseSAT. Consider a candidate witness (𝑆, 𝜋cl, 𝑗, 𝑥, 𝜋inst,𝑤) for statement 𝑖∗.

– First, hkcl is statistically binding on the set {𝑖∗}, and hcl is a hash of (𝑆1, . . . , 𝑆𝑐 ). Correctness and some-

where statistically binding of ΠSSB implies that the only set 𝑆 for which SSB.Verify(hkcl, hcl, 𝑖∗, 𝑆, ·) outputs
1 is 𝑆 = 𝑆𝑖∗ .

– Next, hkinst is statistically binding on the set 𝑆𝑖∗ and hinst is a hash of (𝑥1, . . . , 𝑥𝐾 ). Correctness and

somewhere statistically binding of ΠSSB implies that for all 𝑗 ∈ 𝑆𝑖∗ , the only values of 𝑥 for which

SSB.Verify(hkpk, hpk, 𝑗, 𝑥, ·) outputs 1 is if 𝑥 = 𝑥 𝑗 .

– By construction of 𝑖∗, for all 𝑗 ∈ 𝑆𝑖∗ , we have that 𝛽 𝑗 = 0. This means that for all𝑤 ∈ {0, 1}ℎ , it holds that
𝐶 (𝑥 𝑗 ,𝑤) = 0. From above, 𝑥 = 𝑥 𝑗 , so we conclude that 𝐶 (𝑥,𝑤) = 0.

Taken together, we conclude that 𝑖∗ ∉ LClauseSAT.

• Algorithm B samples crsBARG to be statistically sound on 𝑖∗ ∈ [𝑐]. Since 𝑖∗ ∉ LClauseSAT, somewhere statistical

soundness of ΠBARG states that with overwhelming probability over the choice of crsBARG, there does not exist
a proof 𝜋 where BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋) = 1. Correspondingly, this means that there does not

exist any 𝜋 where 𝐶ValidBARG (𝜋) = 1.

Since 𝐶ValidBARG (𝜋) = 0 for all 𝜋 with overwhelming probability, the witness encryption challenger constructs the

challenge ciphertext in one of two possible ways:

• If the challenger replies with ct←WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇0), algorithm B perfectly simulates Hyb(0)
3

and

outputs 1 with probability Pr[Hyb(0)
3
(A) = 1].

• If the challenger replies with ct←WE.Encrypt(1𝜆,𝐶ValidBARG, 𝜇1), algorithm B perfectly simulates Hyb(1)
3

and

outputs 1 with probability Pr[Hyb(1)
3
(A) = 1].

We conclude that algorithm B breaks semantic security with advantage 𝜀 − negl(𝜆). The lemma follows. □

Security now follows by combining Lemmas 4.4 to 4.7. □

Theorem 4.8 (Local Decryption). Suppose ΠSSB is succinct. Then Construction 4.1 supports local decryption.

Proof. This follows by inspection. We define the preprocessing and local decryption algorithms as follows:

• Preprocess(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )): On input the ciphertext ct = (crsBARG, hkinst, hkcl, ctWE), the Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, the policy 𝑃 : {0, 1}𝐾 → {0, 1}, and the statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , the prepro-
cessing algorithm computes a hash of the instances (hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .
Then, it outputs the hints (ht1, . . . , ht𝐾 ) where ht𝑖 = (𝑥𝑖 , 𝜋inst,𝑖 )
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• DecryptLocal(ct,𝐶, 𝑃, {(𝑖, ht𝑖 ,𝑤𝑖 )}𝑖∈𝑆 ): On input the ciphertext ct, the Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, the policy 𝑃 : {0, 1}𝐾 → {0, 1}, and the hints ht𝑖 = (𝑥𝑖 , 𝜋inst,𝑖 ) together with witnesses 𝑤𝑖 ∈ {0, 1}ℎ for
each 𝑖 ∈ 𝑆 , the local decryption algorithm proceeds as follows:

– For each 𝑖 ∈ [𝐾], let 𝛽𝑖 = 1 if 𝑖 ∈ 𝑆 and 𝛽𝑖 = 0 if 𝑖 ∉ 𝑆 . If 𝑃 (𝛽1, . . . , 𝛽𝐾 ) ≠ 0, then output ⊥.
– Let 𝑐 be the number of clauses that appear in 𝑃 . For 𝑖 ∈ [𝑐], let 𝑆𝑖 ⊆ [𝐾] denote the variables that

appear in clause 𝑖 of 𝑃 (under a canonical ordering of the variables). Compute a hash of the clauses

(hcl, 𝜋cl,1, . . . , 𝜋cl,𝑐 ) = SSB.Hash(hkcl, (𝑆1, . . . , 𝑆𝑐 )).
– Since 𝑃 is a CNF and 𝑃 (𝛽1, . . . , 𝛽𝐾 ) ≠ 0, every clause of 𝑃 must contain a satisfied literal. In other words,

for every 𝑖 ∈ [𝑐], there exists an index 𝑗𝑖 ∈ 𝑆 ∩ 𝑆𝑖 where 𝐶 (𝑥 𝑗𝑖 ,𝑤 𝑗𝑖 ) = 1. Let 𝑗𝑖 be the smallest such index

and define𝑤BARG,𝑖 = (𝑆𝑖 , 𝜋cl,𝑖 , 𝑗𝑖 , 𝑥 𝑗𝑖 , 𝜋inst, 𝑗𝑖 ,𝑤 𝑗𝑖 ).
– Let𝐶ClauseSAT be the Boolean circuit that computes the NP relation RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] from

Fig. 1. Construct an index BARG proof

𝜋BARG ← BARG.Prove(crsBARG,𝐶ClauseSAT, 𝑐, (𝑤BARG,1, . . . ,𝑤BARG,𝑐 )) .

– Let 𝐶ValidBARG be the Boolean circuit that takes as input a BARG proof 𝜋 and outputs

BARG.Verify(crsBARG,𝐶ClauseSAT, 𝑐, 𝜋).

Output WE.Decrypt(ctWE,𝐶ValidBARG, 𝜋BARG).

By succinctness of ΠSSB, the size of the openings 𝜋inst,𝑖 computed by Preprocess has size poly(𝜆, 𝑛, 𝑡, log𝐾). Corre-
sponding the size of the hints output by Preprocess have size 𝑛 + poly(𝜆, 𝑛, 𝑡, log𝐾), so succinctness follows. Finally,

correctness follows by construction (namely, the composition of Preprocess and DecryptLocal coincides with the

Decrypt algorithm in Construction 4.1). □

Instantiation. Construction 4.1 yields a succinct witness encryption scheme for CNF policies from plain witness

encryption in conjunction with somewhere statistically binding hash functions and somewhere statistically sound

(index) BARGs for NP [WW22]. When encrypting to a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a CNF policy
𝑃 : {0, 1}𝐾 → {0, 1} with 𝑐 clauses and where each clauses has size at most 𝑡 , the size of the ciphertext in Con-

struction 4.1 is poly(𝜆, |𝐶 |, 𝑡, log 𝑐). In particular, the size of the ciphertext scales with the size of a single clause and
polylogarithmically with the total number of clauses. In particular, when the size of each clause is constant, then

the overall ciphertext size is polylogarithmic in the size of the policy. We summarize the efficiency properties of our

instantiation in the following corollary:

Corollary 4.9 (Succinct Witness Encryption for CNF Policies). Let 𝜆 be a security parameter. Assuming the existence
of somewhere statistically binding hash functions, somewhere statistically sound BARGs for NP, and witness encryption
for NP, there exists a succinct witness encryption scheme for CNF policies (that supports local decryption). An encryption
of a message 𝜇 with respect to a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and a CNF policy 𝑃 : {0, 1}𝐾 → {0, 1} with
𝑐 clauses and maximum clause size 𝑡 has size |𝜇 | + poly(𝜆, |𝐶 |, 𝑡, log 𝑐). In particular, when consider CNFs where each
clause contains a constant number of variables (e.g., 𝑡 = 𝑂 (1)), the ciphertext size scales polylogarithmically with the
size of the policy 𝑃 .

Remark 4.10 (Conjunctions of Local Monotone Predicates). Construction 4.1 immediately generalizes to yield a

succinct witness encryption scheme for conjunctions of arbitrary (local) monotone predicates. Consider a policy

𝑃 : {0, 1}𝐾 → {0, 1} of the form
𝑃 (𝛽1, . . . , 𝛽𝐾 ) := 𝑃1 ( ®𝛽𝑆1 ) ∧ · · · ∧ 𝑃𝑐 ( ®𝛽𝑆𝑐 ),

where 𝑃1, . . . , 𝑃𝑐 are arbitrary monotone predicates on the variables
®𝛽𝑆𝑖 := (𝛽 𝑗 ) 𝑗∈𝑆𝑖 . A CNF corresponds to the special

case where each local predicate 𝑃𝑖 is a disjunction on the variables
®𝛽𝑆𝑖 . To generalize Construction 4.1 to this setting,

we proceed as follows:
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• We take hcl to be a hash of the pairs (𝑃1, 𝑆1), . . . , (𝑃𝑐 , 𝑆𝑐 ). Namely, hcl now binds to a predicate together with

the set of variables on which it depends.

• We modify the NP relation RClauseSAT to check satisfiability of the 𝑖th predicate:

Fixed values: hash keys hkinst, hkcl, a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and hashes hinst, hcl
Statement: index 𝑖 ∈ N
Witness: a pair (𝑃, 𝑆), an opening 𝜋cl, and triples (𝑥𝑖 ,𝑤𝑖 , 𝜋inst,𝑖 )𝑖∈𝑆

On input a statement 𝑖 ∈ N and a tuple ((𝑃, 𝑆), 𝜋cl, (𝑥𝑖 ,𝑤𝑖 , 𝜋inst,𝑖 )𝑖∈𝑆 ), output 1 if the following hold:

– SSB.Verify(hkcl, hcl, 𝑖, (𝑃, 𝑆), 𝜋cl) = 1;

– For all 𝑖 ∈ 𝑆 , SSB.Verify(hkinst, hinst, 𝑖, 𝑥𝑖 , 𝜋inst,𝑖 ) = 1; and

– 𝑃 ((𝛽𝑖 )𝑖∈𝑆 ) = 1, where 𝛽𝑖 = 𝐶 (𝑥𝑖 ,𝑤𝑖 ) for all 𝑖 ∈ 𝑆 .

Figure 3: The modified NP relation RClauseSAT [hkinst, hkcl,𝐶, hinst, hcl] to support general predicates

In the security proof, we use the fact that for every false instance (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )), there always exists an
index 𝑖∗ ∈ [𝑐] where the local predicate 𝑃𝑖∗ is unsatisfiable for the statements 𝑥𝑆𝑖∗ (irrespective of the choice
of witness). This property critically relies on the assumption that the local predicates are monotone. Indeed,

if the local predicates were non-monotone, it could be the case that every predicate is locally satisfiable for

some choice of witness, but the policy is globally unsatisfiable when the adversary is forced to use a consistent
witness for each instance (across different clauses). Our proof strategy in Theorem 4.3 assumes that there is

always one unsatisfiable clause, which will always be the case for a conjunction of monotone predicates.

With these two modifications, we obtain a succinct witness encryption scheme that supports policies that can be repre-

sented by a conjunction of local monotone predicates. An encryption of a message 𝜇 now with respect to the Boolean

relation𝐶 and a policy 𝑃 comprised of local predicates (𝑃1, . . . , 𝑃𝑐 ) has size |𝜇 | + poly(𝜆, |𝐶 |,max𝑖∈[𝑐 ] |𝑃𝑖 |, log 𝑐). Once
more, the ciphertext size scales with the size of a single predicate and polylogarithmically with the total number of

predicates.

4.2 Succinct Witness Encryption for DNF Policies
In this section, we show how to construct a succinct witness encryption scheme for DNF policies by combining a

witness encryption scheme together with a function-binding hash function. Our scheme is limited to trapdoor NP
relations where there is an efficiently-computable algorithm that can decide membership in the language (given some

trapdoor information). Specifically, we define a trapdoor NP relation as follows:

Definition 4.11 (Trapdoor NP Relation). Let R = {R𝑛}𝑛∈N be a family of NP relations where R𝑛 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1} is an efficiently-computable relation. We say R is a trapdoorNP relation if there exists an efficiently-computable

family of circuits C = {𝐶𝑛}𝑛∈N such that for all 𝑛 ∈ N and all 𝑥 ∈ {0, 1}𝑛 ,

𝐶𝑛 (𝑥) = 1 if and only if ∃𝑤 ∈ {0, 1}ℎ : R𝑛 (𝑥,𝑤) = 1.

Importantly for our applications, the construction itself does not require knowledge of the trapdoor circuits C.
Otherwise, the language is in P and witness encryption is trivial. The existence of the trapdoor relation is only

needed in the security proof (where the circuit family could be provided to the reduction algorithm as non-uniform

advice). As we show in Section 6, succinct witness encryption for trapdoor languages suffices for applications to

both computational secret sharing and the notion of monotone-policy encryption we introduce in this work.

Construction 4.12 (Succinct Witness Encryption for DNF Policies). Let 𝜆 be a security parameter,M be a message

space, and P be the set of Boolean formulas in disjunctive normal form. Our construction relies on the following:
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• LetΠLHE = (LHE.KeyGen, LHE.Encrypt, LHE.Eval, LHE.Decrypt) be a leveled homomorphic encryption scheme.

Let ℓct = ℓct (𝜆, 𝑑max) be a bound on the length of the ciphertext (encrypting a single bit) in ΠLHE as a function

of the security parameter 𝜆 and the depth bound 𝑑max.

• Let ΠFBH = (FBH.Setup, FBH.Hash, FBH.Verify) be a function-binding hash function for disjunctions of block

functions.

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a witness encryption scheme with message spaceM.

LetR = {R𝑛}𝑛∈N be a family of trapdoorNP relations, where the associated family of trapdoor circuits𝐶td = {𝐶td,𝑛}𝑛∈N
can be computed by a circuit of depth at most 𝑑td = 𝑑td (𝑛) and size at most 𝑠td (𝑛). We construct a succinct witness

encryption scheme for R with message spaceM and policy space P as follows:

• Encrypt(1𝜆,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜇): On input the security parameter 𝜆, the Boolean relation𝐶 : {0, 1}𝑛 ×{0, 1}ℎ →
{0, 1}, the Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and the message

𝜇 ∈ M, the encryption algorithm proceeds as follows:

– Let 𝑐 be the number of min-terms in 𝑃 , and let 𝑡 ≤ 𝐾 be the maximum number of variables that appears

in any min-term of 𝑃 . For any collection of 𝑡 instances 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , let𝑈𝑥̃1,...,𝑥̃𝑡 (𝐶) be the universal
circuit that takes as input the description of a circuit𝐶 of depth at most 𝑑td and size at most 𝑠td and outputs

𝑈𝑥̃1,...,𝑥̃𝑡 (𝐶) :=
∧
𝑗∈[𝑡 ]

𝐶 (𝑥𝑖 ). (4.2)

Note that we assume the instances 𝑥1, . . . , 𝑥𝑡 are hard-wired in the description of 𝑈𝑥̃1,...,𝑥̃𝑡 . Let 𝑑
′
td be a

bound on the depth of the circuit of𝑈𝑥̃1,...,𝑥̃𝑡 (for an arbitrary choice of 𝑥1, . . . , 𝑥𝑡 ).

– Next, for each min-term 𝜑 of 𝑃 over instances 𝑥𝑖𝜑,1 , . . . , 𝑥𝑖𝜑,𝑡 ∈ [𝐾], we define

𝑈𝜑 (𝐶) := 𝑈𝑥𝑖𝜑,1 ,...,𝑥𝑖𝜑,𝑡 (𝐶). (4.3)

In the following, we assume that the indices 𝑖𝜑,1, . . . , 𝑖𝜑,𝑡 of the instances that appear in 𝜑 are in lexico-

graphic order, so for every 𝜑 , there is a canonical description of the universal circuit𝑈𝜑 .

– Sample (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ). Let 𝐶dummy : ({0, 1}𝑛)𝑡 → {0, 1} be the dummy circuit

that takes as input 𝑡 statements and always outputs 1 (and padded to a string of size 𝑠td). Compute

ctLHE ← LHE.Encrypt(pkLHE,𝐶dummy).
– Let 𝑑dec = 𝑑dec (𝜆) and 𝑠dec = 𝑠dec (𝜆) be bounds on the depth and size, respectively, of the Boolean circuit

that computes 𝐶dec (ct) := LHE.Decrypt(skLHE, ct). Sample hk← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,⊥).
– For each min-term 𝜑𝑖 in 𝑃 , compute ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE).
– Compute a hash of the ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .
– Let 𝐶DNFSat be the Boolean circuit computing the following functionality:

Fixed values: a hash key hk, a circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a hash h, a public key pkLHE, and
a ciphertext ctLHE
Input: an index 𝑖 ∈ N, instances 𝑥1, . . . , 𝑥𝑡 , witnesses 𝑤̃1, . . . , 𝑤̃𝑡 , and an opening 𝜋

On input the index 𝑖 ∈ N, instances 𝑥1, . . . , 𝑥𝑡 , witnesses 𝑤̃1, . . . , 𝑤̃𝑡 , and an opening 𝜋 , output 1 if

the following conditions hold:

∗ For all 𝑗 ∈ [𝑡], it is the case that 𝐶 (𝑥 𝑗 , 𝑤̃ 𝑗 ) = 1.

∗ Let 𝑈𝑥̃1,...,𝑥̃𝑡 be the universal circuit from Eq. (4.2). Compute the ciphertext

ct = LHE.Eval(pkLHE,𝑈𝑥̃1,...,𝑥̃𝑡 , ctLHE). Check that FBH.Verify(hk, h, 𝑖, ct, 𝜋) = 1.

Figure 4: The 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] circuit
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Compute the ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇) and output the cipher-

text ct = (hk, h, pkLHE, ctLHE, ctWE).

• Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )): On input a ciphertext ct = (hk, h, pkLHE, ctLHE, ctWE), a Boolean
relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 ,
and witnesses𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ , the decryption algorithm proceeds as follows:

– Let 𝑐 be the number ofmin-terms in 𝑃 . For eachmin-term𝜑𝑖 in 𝑃 , compute ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE),
where𝑈𝜑𝑖 is defined as in Eq. (4.3).

– Compute a hash of the ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .
– Since 𝑃 is satisfied, there must exist an index 𝑖 ∈ [𝐾] such that 𝜑𝑖 is satisfied. Let 𝑖1, . . . , 𝑖𝑡 be the variables

that appear in 𝜑𝑖 . Let𝑤 = (𝑖, 𝑥𝑖1 , . . . , 𝑥𝑖𝑡 ,𝑤𝑖1 , . . . ,𝑤𝑖𝑡 , 𝜋ct,𝑖 ). OutputWE.Decrypt(ct,𝑤).

Theorem 4.13 (Correctness). If ΠFBH and ΠWE are correct, then Construction 4.12 is correct.

Proof. Take any security parameter 𝜆 ∈ N, Boolean relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, any Boolean policy 𝑃 ∈ P
where 𝑃 : {0, 1}𝑛 → {0, 1}, any collection of statements 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 and witnesses𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ where
𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, and any message 𝜇 ∈ M. Let ct ← Encrypt(1𝜆,𝐶, 𝑃, (𝑥1 . . . , 𝑥𝐾 ), 𝜇) and consider

Decrypt(ct,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) :

• By construction, ct = (hk, h, pkLHE, ctLHE, ctWE), where (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ) and ctLHE ←
LHE.Encrypt(pkLHE,𝐶dummy).

• Let 𝑐 be the number of min-terms in 𝑃 . For each min-term 𝜑𝑖 in 𝑃 , both the encryption and the decryp-

tion algorithms compute ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE). In addition, both algorithms compute a hash

(h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )). By correctness of ΠFBH, this means

∀𝑖 ∈ [𝑐] : FBH.Verify(hk, h, 𝑖, ct𝑖 , 𝜋ct,𝑖 ) = 1.

• Since 𝑃 is satisfied, there must exist an index 𝑖 ∈ [𝑐] such that 𝜑𝑖 is satisfied. Let 𝑖1, . . . , 𝑖𝑡 be the variables that

appear in 𝜑𝑖 . This means 𝐶 (𝑥𝑖 𝑗 ,𝑤𝑖 𝑗 ) = 1 for all 𝑗 ∈ [𝑡]. By Eq. (4.3),

𝑈𝜑𝑖 (𝐶) := 𝑈𝑥𝑖
1
,...,𝑥𝑖𝑡
(𝐶).

Since homomorphic evaluation is deterministic, this means

ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE) = LHE.Eval(pkLHE,𝑈𝑥𝑖
1
,...,𝑥𝑖𝑡

, ctLHE).

This means that 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] (𝑖, 𝑥𝑖1 , . . . , 𝑥𝑖𝑡 ,𝑤𝑖1 , . . . ,𝑤𝑖𝑡 , 𝜋ct,𝑖 ) = 1. The claim now follows by

correctness of witness encryption. □

Theorem 4.14. Suppose ΠLHE satisfies perfect correctness and CPA-security, ΠFBH satisfies function hiding and statistical
disjunction binding, and ΠWE satisfies semantic security. Then, Construction 4.12 satisfies semantic security.

Proof. Let A = (A0,A1) be an efficient non-uniform adversary for the semantic security game. In particular, on

input the security parameter 1
𝜆
, algorithm A0 outputs a tuple (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1) together with some state information

stA (of polynomial size) and where ®𝑥 = (𝑥1, . . . , 𝑥𝐾 ). Algorithm A1 takes as input the state stA and a ciphertext ct
and outputs a bit 𝑏′ ∈ {0, 1}. For each 𝑖 ∈ [𝐾], define the bit 𝛽𝑖 as follows:{

1 ∃𝑤𝑖 ∈ {0, 1}ℎ : 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1

0 otherwise.
(4.4)

Our reduction algorithm will take the bits
®𝛽 = (𝛽1, . . . , 𝛽𝐾 ), stA , and the trapdoor circuits 𝐶td,𝑛 associated with the

NP relation defined by 𝐶 as non-uniform advice. We now define a sequence of hybrid experiments parameterized

by a bit 𝑏 ∈ {0, 1}:
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• Hyb(𝑏 )
0

: This is the semantic security game with adversary A and bit 𝑏 ∈ {0, 1}:

– On input the security parameter 1
𝜆
, algorithm A0 (1𝜆) outputs (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1) and stA . For each 𝑖 ∈ [𝐾],

define the bits 𝛽𝑖 according to Eq. (4.4). Let
®𝛽 = (𝛽1, . . . , 𝛽𝐾 ).

– If 𝑃 ( ®𝛽) = 1, the challenger outputs 0. Otherwise, the challenger invokes 𝑏′ ← A1 (stA, ct) where
ct← Encrypt(1𝜆,𝐶, 𝑃, ®𝑥, 𝜇𝑏). Specifically, the challenger constructs ct as follows:

∗ Sample (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ) and compute ctLHE ← LHE.Encrypt(pkLHE,𝐶dummy).
∗ Sample hk← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,⊥).
∗ For each min-term 𝜑𝑖 in 𝑃 , compute ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE). Compute a hash of the

ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .
∗ Compute the ciphertext ctWE ← WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇𝑏) where 𝐶DNFSat
is the circuit in Fig. 4.

∗ Finally, the challenger sets ct = (hk, h, pkLHE, ctLHE, ctWE).
– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

except the challenger samples ctLHE ← LHE.Encrypt(pkLHE,𝐶td,𝑛), where 𝐶td,𝑛 is the

trapdoor circuit associated with the Boolean relation defined by 𝐶 .

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

except the challenger samples hk ← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,𝐶dec) where
𝐶dec (ct) := LHE.Decrypt(skLHE, ct).

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an adversary A in experiment Hyb(𝑏 )

𝑖
. In our reduction

algorithms below, we will construct an efficient non-uniform adversary B = (B0,B1). In all cases, algorithm B0
behaves as follows:

On input the security parameter 𝜆 ∈ N:

• Run (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1, stA) ← A0 (1𝜆).
• For each 𝑖 ∈ [𝐾], compute 𝛽𝑖 according to Eq. (4.1). Let

®𝛽 = (𝛽1, . . . , 𝛽𝐾 ).
• Output (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1, stA, ®𝛽,𝐶td,𝑛, 𝑑td′ ), where 𝐶td,𝑛 is the trapdoor circuit associated with the Boolean

relation defined by 𝐶 and 𝑑td′ is a bound on the depth of the circuit𝑈𝑥̃1,...,𝑥̃𝑡 from Eq. (4.2).

Figure 5: The pre-processing algorithm B0
We now analyze each adjacent pair of hybrid experiments.

Lemma 4.15. If ΠLHE satisfies CPA-security, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that
for all 𝜆 ∈ N, | Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Take any 𝑏 ∈ {0, 1} and suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀.

We use A = (A0,A1) to construct an efficient non-uniform adversary B = (B0,B1) for the CPA-security game:

1. On input the security parameter and the advice string (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1, stA, ®𝛽,𝐶td,𝑛), algorithm B1 outputs 0 if
𝑃 ( ®𝛽) = 0. Otherwise, algorithm B1 outputs the depth bound 1

𝑑 ′td . The challenger replies with pkLHE.

2. Algorithm B1 outputs the challenge messages 𝐶dummy and 𝐶td,𝑛 and receives a challenge ciphertext ctLHE.

3. Algorithm B1 samples hk← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,⊥).

4. For each min-term 𝜑𝑖 in 𝑃 , algorithm B1 computes ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE). Next, it computes a hash

of the ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .

5. Compute the ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇𝑏).
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6. Algorithm B1 defines ct = (hk, h, pkLHE, ctLHE, ctWE) and outputs A1 (stA, ct).

By definition, the challenger samples (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ), so the public key pkLHE is distributed
as in Hyb(𝑏 )

0
and Hyb(𝑏 )

1
. Next, if the challenger computes ctLHE ← LHE.Encrypt(pkLHE,𝐶dummy), then algorithm

B perfectly simulates an execution of Hyb(𝑏 )
0

. If ctLHE ← LHE.Encrypt(pkLHE,𝐶td,𝑛), then algorithm B perfectly

simulates an execution of Hyb(𝑏 )
1

. We conclude that algorithm B breaks CPA-security with the same advantage 𝜀. □

Lemma 4.16. If ΠFBH satisfies function hiding, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb(𝑏 )

1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1] | = negl(𝜆).

Proof. Take any 𝑏 ∈ {0, 1} and suppose | Pr[Hyb(𝑏 )
1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀.

We use A = (A0,A1) to construct an efficient non-uniform adversary B = (B0,B1) for the function-hiding game.

1. On input the security parameter 1
𝜆
and advice string (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1, stA, ®𝛽,𝐶td,𝑛), algorithm B1 samples a key-

pair (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ) and constructs the ciphertext ctLHE ← LHE.Encrypt(pkLHE,𝐶td,𝑛):

2. Let ℓct be the length of the ciphertext output by LHE.Encrypt(pkLHE, ·). Let 𝑑dec and 𝑠dec be a bound on

the depth and size of the Boolean circuit that computes the decryption circuit 𝐶dec. Algorithm B1 out-

puts the parameters 1
ℓct
, 1

𝑑
dec
, and 1

𝑠
dec
, the number of min-terms 𝑐 , together with the decryption circuit

𝐶dec (ct) := LHE.Decrypt(skLHE, ct). The challenger replies with a hash key hk.

3. For each min-term 𝜑𝑖 in 𝑃 , algorithm B1 computes ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE). Next, it computes a hash

of the ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .

4. Compute the ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇𝑏).

5. Algorithm B1 defines ct = (hk, h, pkLHE, ctLHE, ctWE) and outputs A1 (stA, ct).

If the challenger samples hk← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,⊥), then algorithm B perfectly simulates an execution

of Hyb(𝑏 )
1

. Alternatively, if the challenger sampled hk ← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,𝐶td,𝑛), then algorithm B
perfectly simulates an execution of Hyb(𝑏 )

2
. We conclude that algorithm B breaks function hiding of ΠFBH with the

advantage 𝜀. □

Lemma 4.17. If ΠWE satisfies semantic security, ΠFBH satisfies statistical disjunction binding and ΠLHE is perfectly
correct, then there exists a negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb(0)

2
(A) = 1] − Pr[Hyb(1)

2
(A) =

1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
2
(A) = 1] − Pr[Hyb(1)

2
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A = (A0,A1) to

construct an efficient non-uniform adversary B = (B0,B1) for the semantic security game:

1. On input the security parameter 1
𝜆
and advice string (𝐶, 𝑃, ®𝑥, 𝜇0, 𝜇1, stA, ®𝛽,𝐶td,𝑛), algorithm B1 samples a key-

pair (pkLHE, skLHE) ← LHE.KeyGen(1𝜆, 1𝑑 ′td ) and constructs the ciphertext ctLHE ← LHE.Encrypt(pkLHE,𝐶td,𝑛).

2. Next, algorithm B1 samples a hash key hk← FBH.Setup(1𝜆, 1ℓct , 1𝑑dec , 1𝑠dec , 𝑐,𝐶dec) where the circuit𝐶dec (ct) :=
LHE.Decrypt(skLHE, ct) is the LHE decryption circuit with skLHE hard-coded.

3. For each min-term 𝜑𝑖 in 𝑃 , algorithm B1 computes ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE). Next, it computes a hash

of the ciphertexts (h, 𝜋ct,1, . . . , 𝜋ct,𝑐 ) = FBH.Hash(hk, (ct1, . . . , ct𝑐 )) .

4. Algorithm B1 outputs the circuit 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] together with messages 𝜇0, 𝜇1. The challenger

replies with a ciphertext ctWE.

5. Algorithm B1 defines ct = (hk, h, pkLHE, ctLHE, ctWE) and outputs A1 (stA, ct).

First, we show that with overwhelming probability over the choice of hk, for all𝑤 = (𝑖, 𝑥1, . . . , 𝑥𝑡 , 𝑤̃1, . . . , 𝑤̃𝑡 , 𝜋), it
holds that 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] (𝑤) = 0.
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• First, for all 𝑗 ∈ [𝑡], we have that 𝐶 (𝑥 𝑗 , 𝑤̃ 𝑗 ) = 1. Otherwise, the output of 𝐶DNFSat is already 0.

• Let ct′ = LHE.Eval(pkLHE,𝑈𝑥̃1,...,𝑥̃𝑡 , ctLHE) be the ciphertext computed by 𝐶DNFSat. From the previous step, for

all 𝑗 ∈ [𝑡], there exists 𝑤̃ 𝑗 where𝐶 (𝑥 𝑗 , 𝑤̃ 𝑗 ) = 1. By the first property of Definition 4.11, this means𝐶td,𝑛 (𝑥 𝑗 ) = 1

for all 𝑗 ∈ [𝑡]. By definition of𝑈𝜑 (see Eq. (4.2)), this means that

𝑈𝑥̃1,...,𝑥̃𝑡 (𝐶td,𝑛) =
∧
𝑗∈[𝑡 ]

𝐶td,𝑛 (𝑥 𝑗 ) = 1.

• Consider the ciphertexts ct1, . . . , ct𝑐 that are hashed to obtain h. By definition, ct𝑖 = LHE.Eval(pkLHE,𝑈𝜑𝑖 , ctLHE).
Let 𝑥𝑖𝜑,1 , . . . , 𝑥𝑖𝜑,𝑡 ∈ [𝐾] be the instances associated with the 𝑖th min-term 𝜑𝑖 of 𝑃 . Since 𝑃 ( ®𝛽) = 0 (i.e., the policy

is not satisfied), there must exist some index 𝑗 ∈ [𝑡] such that for all𝑤 ∈ {0, 1}ℎ , it holds that 𝐶 (𝑥𝑖𝜑,𝑗 ,𝑤) = 0.

This means that 𝐶td,𝑛 (𝑥𝑖𝜑,𝑗 ) = 0. By definition of𝑈𝜑 (see Eqs. (4.2) and (4.3)), this means that

𝑈𝜑 (𝐶td,𝑛) =
∧
𝑗∈[𝑡 ]

𝐶td,𝑛 (𝑥𝑖𝜑,𝑗 ) = 0.

Since ctLHE is an encryption of 𝐶td,𝑛 , we appeal to perfect correctness of ΠLHE to conclude that for all 𝑖 ∈ [𝑐],

LHE.Decrypt(skLHE, ct𝑖 ) = 𝑈𝜑𝑖 (𝐶td,𝑛) = 0.

• Since hk is statistically disjunction binding with respect to the function 𝐶dec, 𝐶dec (ct𝑖 ) = 0 for all 𝑖 ∈ [𝑐],
𝐶dec (ct′) = 1, and the hash h is obtained by evaluating FBH.Hash(hk, (ct1, . . . , ct𝑐 )), the probability that there

exists an index 𝑖 ∈ [𝑡] and an opening 𝜋 where FBH.Verify(hk, h, 𝑖, ct′, 𝜋) = 1 is negligible (over the choice of hk).

In particular, with overwhelming probability, 𝑤 = (𝑖, 𝑥1, . . . , 𝑥𝑡 , 𝑤̃1, 𝑤̃𝑡 , 𝜋) is not a valid witness. By construction,

hk, h, pkLHE, ctLHE are distributed exactly according to the specification of Hyb(0)
2

and Hyb(1)
2

. It suffices to consider

the distribution of ctWE returned by the challenger:

• If ct←WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇0), then algorithm B perfectly simulates Hyb(0)
2

.

• If ct←WE.Encrypt(1𝜆,𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE], 𝜇1), then algorithm B perfectly simulates Hyb(1)
2

.

We conclude that algorithm B breaks semantic security with advantage 𝜀 − negl(𝜆) and the lemma follows. □

Semantic security now follows by combining Lemmas 4.15 to 4.17. □

Instantiation. Construction 4.12 yields a succinct witness encryption scheme for DNF policies from plain witness en-

cryption in conjunction with a leveled homomorphic encryption scheme and a function-binding hash function (for dis-

junction of block functions). The latter primitives can be built from standard lattice assumptions (e.g., [BV11, FWW23]).

When encrypting to a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, a DNF policy 𝑃 : {0, 1}𝐾 → {0, 1} with 𝑐 min-terms,

each of size at most 𝑡 , the size of the ciphertext in Construction 4.12 is poly(𝜆, |𝐶 |, 𝑡, log 𝑐). Similar to the case with

CNFs (Construction 4.1 and Corollary 4.9), the size of the ciphertext scales with the size of a single min-term and poly-

logarithmically with the number of min-terms. When each min-term is over a constant number of variables, then the

overall ciphertext is polylogarithmic in the policy size. We summarize our instantiation with the following corollary:

Corollary 4.18 (Succinct Witness Encryption for DNF Policies). Let 𝜆 be a security parameter. Assuming the existence
of leveled homomorphic encryption, function-binding hash functions for disjunction of block functions, and witness encryp-
tion for NP, there exists a succinct witness encryption scheme for DNF policies over a trapdoor NP relation. An encryption
of a message 𝜇 with respect to a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and a DNF policy 𝑃 : {0, 1}𝐾 → {0, 1} with
𝑐 min-terms of size at most 𝑡 is |𝜇 | + poly(𝜆, |𝐶 |, 𝑡, log 𝑐). When each min-term is over a constant number of variables
(e.g., 𝑡 = 𝑂 (1)), then the ciphertext size scales polylogarithmic with the size of 𝑃 .
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Remark 4.19 (Disjunction of Local Monotone Predicates). Much like the case for Construction 4.1 (see Remark 4.10),

Construction 4.12 readily generalizes to yield a succinct witness encryption scheme for disjunctions of arbitrary

(local) monotone predicates. Consider a policy 𝑃 : {0, 1}𝐾 → {0, 1} of the form

𝑃 (𝛽1, . . . , 𝛽𝐾 ) := 𝑃1 ( ®𝛽𝑆1 ) ∨ · · · ∨ 𝑃𝑐 ( ®𝛽𝑆𝑐 )

where 𝑃1, . . . , 𝑃𝑐 are arbitrary monotone predicates on the variables
®𝛽𝑆𝑖 := (𝛽 𝑗 ) 𝑗∈𝑆𝑖 . A DNF corresponds to the special

case where each local predicate 𝑃𝑖 is a conjunction over
®𝛽𝑆𝑖 . To generalize Construction 4.12 to this setting, it suffices

to modify the scheme as follows:

• For each 𝑖 ∈ [𝑐], let 𝑆𝑖 = { 𝑗𝑖,1, . . . , 𝑗𝑖,𝑡 } ⊆ [𝐾]. We replace the universal circuit𝑈𝜑𝑖 from Eqs. (4.2) and (4.3) with

the circuit

𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ] (𝐶) := 𝑃𝑖
(
𝐶 (𝑥 𝑗𝑖,1 ), . . . ,𝐶 (𝑥 𝑗𝑖,𝑡 )

)
, (4.5)

where the instances 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 and the predicate 𝑃𝑖 is hard-coded into the description of𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ].
As usual, we assume there is a canonical description of 𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ] that can be derived from 𝑃 and the

instances 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 .

• During encryption and decryption, the ciphertexts ct𝑖 are now computed as

ct𝑖 = LHE.Eval(pkLHE,𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ], ctLHE).

• Finally, we modify the relation 𝐶DNFSat to be the Boolean circuit that additionally take the local predicate 𝑃𝑖
as input:

Fixed values: a hash key hk, a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a hash h, a public key pkLHE, and a

ciphertext ctLHE
Input: an index 𝑖 , a predicate 𝑃 , instances 𝑥1, . . . , 𝑥𝑡 , witnesses 𝑤̃1, . . . , 𝑤̃𝑡 , and an opening 𝜋

On input an index 𝑖 , a predicate 𝑃 , instances 𝑥1, . . . , 𝑥𝑡 , witnesses 𝑤̃1, . . . , 𝑤̃𝑡 , and an opening 𝜋 , output

1 if the following conditions hold:

– 𝑃 (𝐶 (𝑥1, 𝑤̃1), . . . ,𝐶 (𝑥𝑡 , 𝑤̃𝑡 )) = 1.

– Let 𝑈𝑃 be the universal circuit from Eq. (4.5). Compute the ciphertext ct =

LHE.Eval(pkLHE,𝑈 [𝑃, 𝑥1, . . . , 𝑥𝑡 ], ctLHE) and check that FBH.Verify(hk, h, 𝑖, ct, 𝜋) = 1.

Figure 6: The modified 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] circuit to support general predicates

The security proof follows an identical structure as the proof of Theorem 4.14. The only modification is in the analysis

of the final hybrid (i.e., in the analog of Lemma 4.17). Consider the argument in the proof of Lemma 4.17. To rely

on witness encryption security in this step, we need to show that for all𝑤 = (𝑖, 𝑃, 𝑥1, . . . , 𝑥𝑡 , 𝑤̃1, . . . , 𝑤̃𝑡 ), it is the case
that 𝐶DNFSat [hk,𝐶, h, pkLHE, ctLHE] (𝑤) = 0. We proceed using a similar structure as in the proof of Lemma 4.17:

• First, we have that 𝑃 (𝐶 (𝑥1, 𝑤̃1), . . . , (𝑥𝑡 , 𝑤̃𝑡 )) = 1. Otherwise, 𝐶DNFSat already outputs 0.

• Let ct′ = LHE.Eval(pkLHE,𝑈 [𝑃, 𝑥1, . . . , 𝑥𝑡 ], ctLHE) be the ciphertext computed by 𝐶DNFSat. For each 𝑖 ∈ [𝑡], let
𝛽𝑖 = 𝐶 (𝑥𝑖 , 𝑤̃𝑖 ) = 1. From the previous point, we have that 𝐶 (𝛽1, . . . , 𝛽𝑡 ) = 1. Let 𝛽 ′𝑖 = 𝐶td,𝑛 (𝑥𝑖 ). By definition,

whenever 𝛽𝑖 = 1, the instance 𝑥𝑖 is true, so 𝐶td,𝑛 (𝑥𝑖 ) = 1. Thus, for all 𝑖 ∈ [𝑡], we have that 𝛽 ′𝑖 ≥ 𝛽𝑖 . Since 𝑃
is monotone, this means that 𝑃 (𝛽 ′

1
, . . . , 𝛽 ′𝑡 ) ≥ 𝑃 (𝛽1, . . . , 𝛽𝑡 ) = 1. From Eq. (4.5), this means that

𝑈 [𝑃, 𝑥1, . . . , 𝑥𝑡 ] (𝐶td,𝑛) = 𝑃 (𝛽 ′1, . . . , 𝛽 ′𝑡 ) = 1.

Since ctLHE is an encryption of 𝐶td,𝑛 , by correctness of ΠLHE, this means that ct′ is an encryption of 1 and

𝐶dec (ct′) = LHE.Decrypt(skLHE, ct′) = 𝑈 [𝑃, 𝑥1, . . . , 𝑥𝑡 ] (𝐶td,𝑛) = 1.
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• Consider the ciphertexts ct1, . . . , ct𝑐 that are hashed by the encryption algorithm to obtain h. By definition,

ct𝑖 = LHE.Eval(pkLHE,𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ], ctLHE). For each 𝑑 ∈ [𝑡], let 𝛽𝑖,𝑑 = 1 if there exists 𝑤 𝑗𝑖,𝑑 such that

𝐶 (𝑥 𝑗𝑖,𝑑 ,𝑤 𝑗𝑖,𝑑 ) = 1 and 0 otherwise. Since (𝑥1, . . . , 𝑥𝐾 ) is not a satisfying set of instances with respect to 𝐶 and

𝑃 , it follows that 𝑃 (𝛽𝑖,1, . . . , 𝛽𝑖,𝑡 ) = 0. Now let 𝛽 ′
𝑖,𝑑

= 𝐶td,𝑛 (𝑥 𝑗𝑖,𝑑 ). If 𝛽𝑖,𝑑 = 0, then the instance 𝑥 𝑗𝑖,𝑑 is false, so

𝛽 ′
𝑖,𝑑

= 𝐶td,𝑛 (𝑥 𝑗𝑖,𝑑 ) = 0. This means that 𝛽 ′
𝑖,𝑑
≤ 𝛽𝑖,𝑑 for all 𝑑 ∈ [𝑡]. Since 𝑃 is monotone, this means

𝑃 (𝛽 ′𝑖,1, . . . , 𝛽 ′𝑖,𝑡 ) ≤ 𝑃 (𝛽𝑖,1, . . . , 𝛽𝑖,𝑡 ) = 0.

From Eq. (4.5), this means that

𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ] (𝐶td,𝑛) = 𝑃𝑖 (𝛽 ′𝑖,1, . . . , 𝛽 ′𝑖,𝑡 ) = 0.

Again by correctness of ΠLHE, this means that for all 𝑖 ∈ [𝑐],

𝐶dec (ct𝑖 ) = LHE.Decrypt(skLHE, ct𝑖 ) = 𝑈 [𝑃𝑖 , 𝑥 𝑗𝑖,1 , . . . , 𝑥 𝑗𝑖,𝑡 ] (𝐶td,𝑛) = 0.

• The claim now follows by the fact that hk is statistically disjunction binding with respect to the function 𝐶dec,

exactly as in the proof of Lemma 4.17.

Taken altogether, we obtain a succinct witness encryption scheme for trapdoorNP relations that supports policies that

can be represented by a disjunction of local monotone predicates. An encryption of a message 𝜇 nowwith respect to the

Boolean relation𝐶 and a policy 𝑃 comprised of local predicates (𝑃1, . . . , 𝑃𝑐 ) has size |𝜇 |+poly(𝜆, |𝐶 |,max𝑖∈[𝑐 ] |𝑃𝑖 |, log 𝑐).
Once more, the ciphertext size scales with the size of a single predicate and polylogarithmically with the total number

of predicates.

5 Succinct Unique Witness Map for Read-Once Bounded-Space Policies
In this section, we show how to construct a succinct unique witness map for batch NP languages [CPW20]. Unique

witness maps can also be viewed as a publicly-verifiable witness PRF [Zha16, CPW23]. As discussed in Section 1

(see also Remarks 5.2 and 5.3), a succinct unique witness map for batch NP immediately implies a succinct witness

encryption for batch NP as well as a SNARG for monotone-policy batch NP (relative to the same policy class). We

begin with the definition.

Definition 5.1 (Succinct Unique Witness Map for Batch Languages). Let P be a family of policies. A succinct unique

witness map for batch NP with policy family P is a tuple of efficient algorithms ΠUWM = (Setup,Map,Verify) with
the following syntax:

• Setup(1𝜆,𝐶, 𝐾) → crs: On input the security parameter 1
𝜆 ∈ N, a Boolean relation𝐶 : {0, 1}𝑛 ×{0, 1}ℎ → {0, 1},

and a bound on the number of instances 𝐾 , the setup algorithm outputs a common reference string crs.

• Map(crs, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) → 𝜎 : On input the common reference string crs, a Boolean policy 𝑃 ∈ P
where 𝑃 : {0, 1}𝐾 → {0, 1}, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and witnesses 𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ , the mapping

algorithm deterministically outputs a canonical witness 𝜎 .

• Verify(crs, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜎) → 𝑏: On input the common reference string crs, instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 ,
and a canonical witness 𝜎 , the deterministic verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, we require that ΠUWM satisfy the following properties:

• Completeness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all Boolean policies 𝑃 ∈ P
where 𝑃 : {0, 1}𝐾 → {0, 1}, and all tuples of instances ®𝑥 = (𝑥1, . . . , 𝑥𝐾 ) and witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝐾 ) where
𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, we have that

Pr

[
Verify(crs, 𝑃, ®𝑥, 𝜎) = 1 :

crs← Setup(1𝜆,𝐶, 𝐾)
𝜎 = Map(crs, 𝑃, ®𝑥, ®𝑤)

]
= 1.
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• Uniqueness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all Boolean policies 𝑃 ∈ P
where 𝑃 : {0, 1}𝐾 → {0, 1}, all tuples of instances ®𝑥 = (𝑥1, . . . , 𝑥𝐾 ), all tuples of witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝐾 ),
®𝑤 ′ = (𝑤 ′

1
, . . . ,𝑤 ′

𝐾
) where 𝑃

(
𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )

)
= 𝑃

(
𝐶 (𝑥1,𝑤 ′1), . . . ,𝐶 (𝑥𝐾 ,𝑤 ′𝐾 )

)
= 1, we have that

Pr

[
Map(crs, 𝑃, ®𝑥, ®𝑤) = Map(crs, 𝑃, ®𝑥, ®𝑤 ′) : crs← Setup(1𝜆,𝐶, 𝐾)

]
= 1.

• Selective soundness: For a security parameter 𝜆 ∈ N and an adversary A, we define the selective soundness

game as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},

a Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, and challenge instances 𝑥∗
1
, . . . , 𝑥∗

𝐾
∈ {0, 1}𝑛 .

– If there exists 𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ such that 𝑃 (𝐶 (𝑥∗
1
,𝑤1), . . . ,𝐶 (𝑥∗𝐾 ,𝑤𝐾 )) = 1, then the challenger out-

puts 0. Otherwise, the challenger sends crs← Setup(1𝜆,𝐶, 𝐾) to A.

– Algorithm A outputs 𝜎 .

– The output of the experiment is the bit 𝑏′ = Verify
(
crs, (𝑥∗

1
, . . . , 𝑥∗

𝐾
), 𝜎

)
.

The unique witness map satisfies selective soundness if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏′ = 1] = negl(𝜆) in the selective soundness game.

• Succinctness: There exists universal polynomials poly
1
, poly

2
such that for all 𝜆 ∈ N, all Boolean circuits

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all Boolean policies 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, all tuples of instances
®𝑥 = (𝑥1, . . . , 𝑥𝐾 ), all tuples of witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝐾 ) where 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1, the following

properties hold:

– The size of the reference string crs output by Setup(1𝜆,𝐶, 𝐾) satisfies |crs| ≤ 𝑜 ( |𝑃 |) · poly
1
(𝜆, |𝐶 |, log𝐾).

– The size of the canonical witness 𝜎 output byMap(crs, ®𝑥, ®𝑤) satisfies |𝜎 | ≤ poly
2
(𝜆, log𝐾).

Remark 5.2 (Succinct Witness Encryption). The work of [CPW20] shows how to obtain witness encryption by

composing a unique witness map with a hardcore predicate. The same transformation extends to the batch setting (and

preserves succinctness). This means a unique witness map for batch NP and policy family P (satisfying Definition 5.1)

directly implies a succinct witness encryption for batch languages with the same policy family P.
To briefly recall the [CPW20] approach, their transformation constructs witness encryption for an NP language

L from a unique witness map for the or-language L ∨ L′, where L′ = {𝑦 | ∃ 𝑧 : 𝑦 = PRG(𝑧)} and PRG denotes

a pseudorandom generator. Here, a pair (𝑥,𝑦) ∈ L ∨ L′ if 𝑥 ∈ L or 𝑦 ∈ L′.

• Encryption: To encrypt a bit 𝜇 ∈ {0, 1} to a statement 𝑥 , the encrypter samples a random PRG seed 𝑧 and

computes 𝑦 = PRG(𝑧). Then, it computes the canonical witness 𝜎 for the statement (𝑥,𝑦) ∈ L ∨ L′ using the

witness (⊥, 𝑧). Finally, it computes a hardcore bit 𝛽 of 𝜎 and uses that to blind the message 𝜇. The ciphertext

is the pair (𝑦, 𝛽 ⊕ 𝜇).

• Decryption: Given a witness 𝑤 for 𝑥 ∈ L, the decrypter can compute the same canonical witness 𝜎 for

(𝑥,𝑦) ∈ L∨L′ using the witness (𝑤,⊥). From here, it can recover the blinding factor 𝛽 and then the message 𝜇.

To prove security, [CPW20] first replaces 𝑦 with a uniformly random string, which disables the “trapdoor” branch.

Now, if 𝑥 is a false statement, then (𝑥,𝑦) ∉ L ∨L′. Security of the unique witness map now asserts that the canonical

witness 𝜎 for (𝑥,𝑦) is unpredictable. Since the bit 𝛽 is hard-core, this suffices to blind the message 𝜇. Finally, we

observe that in the case case of batch languages, this transformation preserves succinctness in the number of instances

being batched. Thus, we note that a succinct unique witness map for batch NP with policy family P as defined above

implies succinct witness encryption for batch NP with policy family P as defined in Definition 3.1.

Remark 5.3 (Non-Adaptive SNARG for Monotone-Policy Batch NP). By definition, any unique witness map for

(batch) NP is also a non-interactive argument for (batch) NP (namely, the proof for a statement 𝑥 is simply the unique

witness𝑤 associated with 𝑥). Thus, a succinct unique witness map for batch NP with policy family P immediately
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gives a succinct non-interactive argument (SNARG) for batch NP with policy family P (also called a “fully-succinct”

batch argument [GSWW22, DWW24]). The size of the common reference string for the corresponding SNARG is

precisely the size of the reference string for the unique witness map. Selective security for the unique witness map then

corresponds to non-adaptive soundness for the resulting SNARG. A construction satisfying the succinctness properties

in Definition 5.1 gives a fully succinct monotone-policy BARG where the size of the CRS is sublinear in the policy size.

Construction. In this section, we show how to use indistinguishability obfuscation (together with a somewhere

statistically binding hash function and an injective PRG) to construct a succinct unique witness map for monotone

policies that can be implemented by a read-once bounded-space Turing machine. In particular, this captures policies

like weighted thresholds.

Definition 5.4 (Monotone Read-Once Bounded-Space Policy). Let 𝑃 : {0, 1}𝐾 → {0, 1} be a monotone policy.

We say that 𝑃 can be computed by a read-once Turing machine Γ with 𝑆 bits of space if there exists a tuple

Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) with the following properties:

• Step𝑖 : {0, 1}𝑆 × {0, 1} → {0, 1}𝑆 is a Boolean circuit that implements the 𝑖th step of the Turing machine

evaluation;

• 𝑐init ∈ {0, 1}𝑆 is the initial configuration; and

• 𝑐acc ∈ {0, 1}𝑆 is the accepting configuration.

Moreover, 𝑃 ( ®𝛽) = 1 if and only if 𝑐𝐾 = 𝑐acc where we define 𝑐0 = 𝑐init and for all 𝑖 ∈ [𝐾], 𝑐𝑖 = Step𝑖 (𝑐𝑖−1, 𝛽𝑖 ).

Reachable states for read-once Turing machines. Our construction of a succinct unique witness map will rely

on a notion of the set of reachable states for a given input. Specifically, for a string
®𝛽 = (𝛽1, . . . , 𝛽𝐾 ) ∈ {0, 1}𝐾 and

an index 𝑖 ∈ [𝐾], we associate a set of states 𝑇 ®𝛽,𝑖 ⊆ {0, 1}𝑆 that are potentially reachable after 𝑖 evaluation steps. In

our model, if 𝛽𝑖 = 0, then the evaluator must use the value 0 in position 𝑖 , but if 𝛽𝑖 = 1, then the evaluator can choose

either the value 0 or the value 1 as its input in position 𝑖 . In the following, we will sometimes say that
®𝛽 ′ ∈ {0, 1}𝐾

is “consistent” with
®𝛽 if for all 𝑖 ∈ [𝐾] where ®𝛽𝑖 = 0, we also have

®𝛽 ′𝑖 = 0. We now give the precise characterization

of reachable states that we use in our analysis:

Definition 5.5 (Reachable States for a Read-Once Turing Machines). Let 𝑃 : {0, 1}𝐾 → {0, 1} be a monotone policy

that can be computed by a read-once Turing machine (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) with space 𝑆 . We say an ensemble

of sets {𝑇 ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ] represents an admissible set of reachable states if it satisfies the following properties:

• For all
®𝛽 ∈ {0, 1}𝐾 , 𝑐init ∈ 𝑇 ®𝛽,0.

• For all
®𝛽 ∈ {0, 1}𝐾 , 𝑖 ∈ [𝐾], and 𝑐 ∈ {0, 1}𝑆 where 𝑐 ∈ 𝑇 ®𝛽,𝑖−1, we have Step𝑖 (𝑐, 0) ∈ 𝑇 ®𝛽,𝑖 .

• For all
®𝛽 ∈ {0, 1}𝐾 , 𝑖 ∈ [𝐾], and 𝑐 ∈ {0, 1}𝑆 where 𝑐 ∈ 𝑇 ®𝛽,𝑖−1 and 𝛽𝑖 = 1, we have Step𝑖 (𝑐, 1) ∈ 𝑇 ®𝛽,𝑖 .

• For all
®𝛽 ∈ {0, 1}𝐾 where 𝑃 ( ®𝛽) = 0, it holds that 𝑐acc ∉ 𝑇 ®𝛽,𝐾 .

We also associate a Boolean function Reachable ®𝛽,𝑖 : {0, 1}𝑆 → {0, 1} with each set 𝑇 ®𝛽,𝑖 where Reachable ®𝛽,𝑖 (𝑐) = 1

if and only if 𝑐 ∈ 𝑇 ®𝛽,𝑖 . In some settings of interest (e.g., weighted thresholds; see Remark 5.7), the Boolean circuit

computing Reachable ®𝛽,𝑖 (𝑐) has a much more compact description than enumerating the elements of 𝑇 ®𝛽,𝑖 .

The first property in Definition 5.5 states that the initial state must be reachable. The second property says that if a

configuration 𝑐𝑖−1 ∈ {0, 1}𝑆 is reachable after 𝑖 − 1 steps, then the state 𝑐𝑖 = Step𝑖 (𝑐𝑖−1, 0) must also be reachable after

𝑖 steps. This corresponds to the case of the evaluator taking a reachable configuration 𝑐𝑖−1 from the first 𝑖 − 1 steps and
reading the bit 0 on Step 𝑖 . When 𝛽𝑖 = 1, the second property says that the state Step𝑖 (𝑐𝑖−1, 1) must also be reachable

after 𝑖 steps. This corresponds to the evaluator taking 𝑐𝑖−1 and reading the bit 1 on Step 𝑖 . The final property says that if
®𝛽 ∈ {0, 1}𝐾 does not satisfy the policy, then the accepting states should not be reachable. Finally, Definition 5.5 allows

the set 𝑇 ®𝛽,𝑖 to be a super-set of the actual set of reachable states that can arise from honest executions of 𝑃 on inputs

®𝛽 ′ ∈ {0, 1}𝑡 that are consistent with ®𝛽 ∈ {0, 1}𝑡 . The only requirement is that 𝑇 ®𝛽,𝐾 does not contain any accepting

state (but could contain non-accepting states that are technically not reachable from an honest evaluation of 𝑃 ).
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Remark 5.6 (CRS Size). In our unique witness map construction, the size of the common reference string grows

with the maximum size of the description of Reachable ®𝛽,𝑖 (𝑐) rather than the cardinality of the set 𝑇 ®𝛽,𝑖 . In settings

where the description length of𝑇 ®𝛽,𝑖 is much smaller than the size of the set itself (e.g., the case of weighted thresholds;

see Remark 5.7), this yields constructions with a more compact CRS.

Remark 5.7 (Reachable States for Weighted Threshold Policies). A simple example of a monotone policy that can be

computed by a read-once bounded-space Turing machine is a weighted threshold policy. A weighted threshold policy

is parameterized by a set of (non-negative) weights 𝑤1, . . . ,𝑤𝐾 ∈ N and a threshold 𝑡 ∈ N. An input
®𝛽 ∈ {0, 1}𝐾

satisfies the policy if

∑
𝑖∈[𝐾 ] 𝛽𝑖𝑤𝑖 > 𝑡 . Suppose the maximumweight is𝑊 . It is easy to implement a weighted threshold

policy with a read-once Turing machine with 𝑆 = log(𝐾𝑊 ) bits of space. The state 𝑐 ∈ {0, 1}𝑆 is an accumulator

that stores the current (weighted) sum and the Step𝑖 (𝑐𝑖−1, 𝛽𝑖 ) circuit updates the accumulated value from 𝑐𝑖−1 to
𝑐𝑖−1 + 𝛽𝑖𝑤𝑖 . The set of accepting states consists of all values greater than the threshold. Moreover, this Turing machine

has a simple and admissible set of reachable states {𝑇 ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[𝐾 ] where 𝑇 ®𝛽,𝑖 =
{
𝑡 ∈ {0, 1}𝑆 : 𝑡 ≤ ∑

𝑗≤𝑖 𝛽 𝑗𝑤 𝑗

}
.

Here,

∑
𝑗≤𝑖 𝛽 𝑗𝑤 𝑗 is the maximum possible value that can arise after reading the first 𝑖 bits of the input. As such,

every valid configuration will be a value in the set 𝑇 ®𝛽,𝑖 . It is easy to see that this ensemble of sets satisfies all of the

admissibility requirements from Definition 5.5. Moreover, we can check membership in the set 𝑇 ®𝛽,𝑖 with a Boolean

circuit Reachable ®𝛽,𝑖 of size poly(log(𝐾𝑊 )) by simply hard-coding the threshold

∑
𝑗≤𝑖 𝛽 𝑗𝑤 𝑗 within Reachable ®𝛽,𝑖 .

Construction 5.8 (Succinct Unique Witness Map for Read-Once Bounded-Space Policies). Let 𝜆 be a security param-

eter and P be a family of read-once bounded-space monotone policies that can be computed by read-once space-𝑆

Turing machines (see Definition 5.5). Let 𝑠 = 𝑠 (𝜆, 𝑆) be a bound on the size of the Boolean circuit that computes

a step functions Step𝑖 associated with policies in P. Without loss of generality, we assume that all of the Turing

machines Γ computing a policy in P share the same initial state 𝑐init and same accepting state 𝑐acc. This is without

loss of generality since we can always relabel the states of the Turing machine and apply the same relabeling to the

step functions. Our construction relies on the following ingredients:

• Let 𝑖O be an indistinguishability obfuscator for Boolean circuits.

• Let ΠSSB = (SSB.Setup, SSB.Hash, SSB.Verify) be a somewhere statistically binding hash function.

• Let ΠPPRF = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF. For a key 𝑘 and an input 𝑥 , we will write

F(𝑘, 𝑥) to denote F.Eval(𝑘, 𝑥).

• Let G : {0, 1}ℓ → {0, 1}𝑚 be an injective PRG with seed length ℓ = ℓ (𝜆) and output length𝑚 =𝑚(𝜆).

Let 𝜆obf = 𝜆obf (𝜆, 𝑆) and 𝜆PRF = 𝜆PRF (𝜆, 𝑆) be polynomials in the security parameter which we will set in the security

analysis. We construct a succinct unique witness map for batch NP and policy family P as follows:

• Setup(1𝜆,𝐶, 𝐾): On input the security parameter 𝜆, a Boolean relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and a

Boolean policy 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 → {0, 1}, the setup algorithm proceeds as follows:

– Sample two hash keys hkstep ← SSB.Setup(1𝜆, 1𝑠 , 11, 𝐾,∅) and hkinst ← SSB.Setup(1𝜆, 1𝑛, 11, 𝐾,∅) for
hashing the step functions and the instances, respectively.

– Let 𝑠′ be the output length of SSB.Hash(hkstep, ·) and let 𝑛′ be the output length of SSB.Hash(hkinst, ·).
Sample a PRF key

𝑘 ← F.KeyGen
(
1
𝜆PRF , 1𝑠

′+𝑛′+⌈log𝐾 ⌉+𝑆 , 1ℓ
)
.

We will denote domain elements for the PRF by a tuple (hstep, hinst, 𝑖, 𝑐) where hstep is a hash of the step

functions, hinst is a hash of the instances, 𝑖 ∈ [𝐾] is an index, and 𝑐 ∈ {0, 1}𝑆 is a configuration of the

Turing machine computing the policy.

– Define the program MapProg as follows:
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Fixed values: Boolean relation 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, number of instances 𝐾 , hash keys

hkstep, hkinst, the initial configuration 𝑐init ∈ {0, 1}𝑆 , and a PRF key 𝑘

Input: an index 𝑖 ∈ [𝐾], a configuration 𝑐 ∈ {0, 1}𝑆 , a step function Step : {0, 1}𝑆 × {0, 1} → {0, 1},
an instance 𝑥 ∈ {0, 1}𝑛 , hash values hstep, hinst, openings 𝜋step, 𝜋inst, a witness 𝑤 ∈ {0, 1}ℎ , and a

signature 𝜎 ∈ {0, 1}𝑡

On input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎):

1. If SSB.Verify(hkstep, hstep, 𝑖, Step, 𝜋step) = 0, output ⊥.

2. If 𝑖 = 1 and 𝑐 ≠ 𝑐init, output ⊥.

3. If 𝑖 > 1 and G(𝜎) ≠ G(F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))), output ⊥.

4. Compute the next configuration 𝑐𝑖 ∈ {0, 1}𝑆 as follows:

𝑐𝑖 =

{
Step(𝑐, 1) if SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1 and 𝐶 (𝑥,𝑤) = 1

Step(𝑐, 0) otherwise.

5. Output (𝑐𝑖 , F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 ))).

Figure 7: The mapping programMapProg[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘].

Let sizeMapProg be the maximum size of the program MapProg[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘] and the corre-

sponding programs appearing in the proof of Theorem 5.13. Compute the obfuscated program

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘]).

– Define the program VerProg as follows:

Fixed values: number of instances 𝐾 , the accepting configuration 𝑐acc, and a PRF key 𝑘

Input: hash values hstep, hinst, and a signature 𝜎 ∈ {0, 1}𝑡

On input (hstep, hinst, 𝜎):

1. If G(𝜎) = G(F(𝑘, (hstep, hinst, 𝐾, 𝑐acc))), output 1.

2. Else, output 0.

Figure 8: The verification program VerProg[𝐾, 𝑐acc, 𝑘].

Let sizeVerProg be the maximum size of the program VerProg[𝐾, 𝑐acc, 𝑘] and the corresponding programs

appearing in the proof of Theorem 5.13. Compute the obfuscated program

ObfVer← 𝑖O(1𝜆obf , 1sizeVerProg ,VerProg[𝐾, 𝑐acc, 𝑘]) .

– Output crs = (hkstep, hkinst,ObfMap,ObfVer).

• Map(crs, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )): On input crs = (hkstep, hkinst,ObfMap,ObfVer), a policy 𝑃 ∈ P com-

puted by a Turing machine Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc), instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and witnesses

𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ , the mapping algorithm proceeds as follows:
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– Compute hashes of the step functions and the instances:

(hstep, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

– Initialize 𝑐0 = 𝑐init and 𝜎0 = ⊥. For each 𝑖 ∈ [𝐾], compute

(𝑐𝑖 , 𝜎𝑖 ) = ObfMap(𝑖, 𝑐𝑖−1, Step𝑖 , 𝑥𝑖 , hstep, hinst, 𝜋step,𝑖 , 𝜋inst,𝑖 ,𝑤𝑖 , 𝜎𝑖−1).

– Output 𝜎𝐾 .

• Verify(crs, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜎): On input crs = (hkstep, hkinst,ObfMap,ObfVer), a policy 𝑃 ∈ P computed by a

Turing machine Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc), instances 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛 , and a signature 𝜎 , the verifi-

cation algorithm proceeds as follows:

– Compute hashes of the step functions and the instances:

(hstep, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

– Output ObfVer(hstep, hinst, 𝜎).

Theorem 5.9 (Completeness). If 𝑖O and ΠSSB are correct, then Construction 5.8 is complete.

Proof. Take any 𝜆 ∈ N, Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, Boolean policy 𝑃 ∈ P computed by a Turing ma-

chine Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc), instances ®𝑥 = (𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛), and witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ)

where 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1. Let 𝑐0 = 𝑐init and 𝑐𝑖 = Step𝑖 (𝑐𝑖−1,𝐶 (𝑥𝑖 ,𝑤𝑖 )) for all 𝑖 ∈ [𝐾]. Then, by

Definition 5.4, we have that 𝑐𝐾 = 𝑐acc. Let crs← Setup(1𝜆,𝐶, 𝐾). Then,

crs = (hkstep, hkinst,ObfMap,ObfVer).

Next, by correctness of 𝑖O and ΠSSB,Map(crs, 𝑃, ®𝑥, ®𝑤) will output 𝜎 = F(𝑘, (hstep, hinst, 𝐾, 𝑐acc)), where

(hstep, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )),

and 𝑘 is the puncturable PRF key sampled by Setup and used to construct ObfMap and ObfVer. In this case,

VerProg[𝐾, 𝑐acc, 𝑘] (hstep, hinst, 𝜎) = 1, in which case Verify(crs, 𝑃, ®𝑥, 𝜎) = 1, as required. Completeness follows. □

Theorem 5.10 (Uniqueness). If 𝑖O and ΠSSB are correct, then Construction 5.8 is unique.

Proof. Take any 𝜆 ∈ N, Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, Boolean policy 𝑃 ∈ P computed by a Turing ma-

chine Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc), instances ®𝑥 = (𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛), and witnesses ®𝑤 = (𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ)

and ®𝑤 ′ = (𝑤 ′
1
, . . . ,𝑤 ′

𝐾
∈ {0, 1}ℎ) where

𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 𝑃 (𝐶 (𝑥1,𝑤 ′1), . . . ,𝐶 (𝑥𝐾 ,𝑤 ′𝐾 )) = 1.

Next, let 𝑐0 = 𝑐′
0
= 𝑐init, and for each 𝑖 ∈ [𝐾], define 𝑐𝑖 = Step𝑖 (𝑐𝑖−1,𝐶 (𝑥𝑖 ,𝑤𝑖 )) and 𝑐′𝑖 = Step𝑖 (𝑐′𝑖−1,𝐶 (𝑥𝑖 ,𝑤 ′𝑖 )).

By Definition 5.4, this means 𝑐𝐾 = 𝑐′
𝐾

= 𝑐acc. By correctness of 𝑖O and ΠSSB, this means Map(crs, 𝑃, ®𝑥, ®𝑤) and
Map(crs, 𝑃, ®𝑥, ®𝑤 ′) will both output

𝜎 = F(𝑘, (hstep, hinst, 𝐾, 𝑐acc)),
where

(hstep, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )),

and 𝑘 is the puncturable PRF key sampled by Setup and used to construct ObfMap and ObfVer. In particular, this

means that

Map(crs, 𝑃, ®𝑥, ®𝑤) = Map(crs, 𝑃, ®𝑥, ®𝑤 ′)
and uniqueness holds. □
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Remark 5.11 (Local Evaluation). Similar to the case of local decryption for succinct witness encryption (Defini-

tion 3.2), we can also define a “local” mapping algorithm for a succinct unique witness map for batch languages. In

this setting, one can first preprocess a batch of statements (𝑥1, . . . , 𝑥𝐾 ) into a collection of (short) hints (ht1, . . . , ht𝐾 )
with the property that given any policy 𝑃 , and any set {(𝑖, 𝑥𝑖 ,𝑤𝑖 , ht𝑖 )}𝑖∈𝑇 , the user can compute the canonical witness

on (𝑥1, . . . , 𝑥𝐾 ) whenever 𝑃 (𝛽1, . . . , 𝛽𝐾 ) = 1 and

𝛽𝑖 =

{
1 𝑖 ∈ 𝑇 ∧𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1

0 otherwise.

A unique witness map that supports this type of local evaluation property immediately implies a succinct witness

encryption scheme for batch languages with local decryption (via the construction described in Remark 5.2). It is easy

to see that Construction 5.8 supports this local evaluation property. Namely, given a batch of instances (𝑥1, . . . , 𝑥𝐾 ),
the hint ht𝑖 associated with the 𝑖th instance would simply be ht𝑖 = (𝑖, hinst, 𝜋inst,𝑖 ) where (hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) =
SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )). To compute the canonical witness given {(𝑖, 𝑥𝑖 ,𝑤𝑖 , ht𝑖 )}𝑖∈𝑇 , the evaluator can run the

Map algorithm in Construction 5.8, and simply input 𝜋inst = 𝑤 = ⊥ on all indices 𝑖 ∉ 𝑇 .

5.1 Security and Succinctness
In this section, we show that Construction 5.8 satisfies selective security (Theorem 5.13) and succinctness (Theo-

rem 5.33).

Sub-exponential hardness. We now proceed to give the security analysis for Construction 5.8. Security will rely on

sub-exponential hardness assumptions of the underlying primitives. To facilitate this, we will formulate some of our

security assumptions using (𝑡, 𝜀)-notation. We say that a primitive is (𝑡, 𝜀)-secure if, for all adversaries A running

in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , the adversary’s advantage is bounded
by 𝜀 (𝜆). If we say a primitive is secure (without giving an explicit (𝑡, 𝜀) dependence, then we mean that it satisfies

the usual notion of (1, negl(𝜆)) security). We now give the main security theorem and proof.

Pebbling lemma. We will also rely on the following pebbling lemma from [Ben89, GPSZ17]:

Lemma 5.12 (Pebbling Lemma [Ben89, GPSZ17]). Take any positive integer 𝑛 ∈ N. Let ®𝜏0 = 0
𝑛 . Then, there exists

𝑁 = 𝑂 (𝑛log2 3) and a sequence of strings ®𝜏1, . . . , ®𝜏𝑁 with the following properties:

• ®𝜏𝑁 = 0
𝑛−1∥1.

• For all 𝑖 ∈ [𝑁 ], ®𝜏𝑖−1 and ®𝜏𝑖 differ on a single index 𝑗 ∈ [𝑛]. Moreover, either 𝑗 = 1 or 𝜏𝑖−1, 𝑗−1 = 1 = 𝜏𝑖, 𝑗−1. In other
words, either ®𝜏𝑖−1 and ®𝜏𝑖 differ only on the first index 𝑗 = 1 or they differ on an index 𝑗 and both ®𝜏𝑖−1 and ®𝜏𝑖 are
equal to 1 in the preceding index 𝑗 − 1.

• For all 𝑖 ∈ [𝑁 ], the Hamming weight (i.e., the number of non-zero entries) in ®𝜏𝑖 is at most 1 + log𝑛.

Moreover, there exists an efficient and explicit algorithm that takes as input 1𝑛 and outputs ®𝜏1, . . . , ®𝜏𝑁 .

Theorem 5.13 (Selective Soundness). Suppose the primitives in Construction 5.8 satisfy the following properties:

• Suppose ΠSSB is correct, satisfies index hiding, and is somewhere statistically binding.

• Suppose ΠPPRF satisfies punctured correctness and
(
1, 2−𝜆

𝜀PRF
PRF

)
-punctured pseudorandomness for some constant

𝜀PRF ∈ (0, 1). Moreover, let 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF .

• Suppose 𝑖O is
(
1, 2−𝜆

𝜀obf
obf

)
-secure for some constant 𝜀obf ∈ (0, 1). Moreover, let 𝜆obf = (𝜆 + 𝑆)1/𝜀obf .

• Suppose G is secure.

Specifically, we only assume standard polynomial security for ΠSSB and G and sub-exponential security for ΠPPRF and
𝑖O. Then Construction 5.8 is selectively sound.
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Proof. Let A = (A0,A1) be an efficient non-uniform adversary for the selective soundness game. In particular, on

input the security parameter 1
𝜆
, algorithmA0 outputs a tuple (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) together with some state information

stA (of polynomial size). Algorithm A1 takes as input the state stA and the common reference string crs. For each
𝑖 ∈ [𝐾], define the bit 𝛽𝑖 as follows:

𝛽𝑖 :=

{
1 ∃𝑤𝑖 ∈ {0, 1}ℎ : 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1

0 otherwise.
(5.1)

In addition, let {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ] be the Boolean circuits that compute an admissible set of reachable

states associated with the policy 𝑃 (as defined in Definition 5.5). Our reduction algorithms will take (𝐶, 𝑃, ®𝑥), where
®𝑥 = (𝑥1, . . . , 𝑥𝑘 ), the bits ®𝛽 = (𝛽1, . . . , 𝛽𝐾 ), the description of the circuits {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ] , and stA as

non-uniform advice. Let Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) be the description of the read-once Turing machine that

computes the policy 𝑃 . We now define a sequence of hybrid experiments.

• Hybinit: This is the selective soundness game with adversary A:

– On input the security parameter 1
𝜆
, algorithm A0 (1𝜆) outputs (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) and stA . For each

𝑖 ∈ [𝐾], define the bits 𝛽𝑖 according to Eq. (5.1).

– If 𝑃 ( ®𝛽) = 1, the challenger outputs 0. Otherwise, the challenger invokes 𝜎 ← A1 (stA, crs) where
crs← Setup(1𝜆,𝐶, 𝐾).

– The output of the experiment is 𝑏′ = Verify(crs, 𝑃, (𝑥1, . . . , 𝑥𝐾 ), 𝜎).

• Hyb𝜏 for a string 𝜏 ∈ {0, 1}𝐾 : Same as Hybinit except the challenger computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))

and defines the following modified programMapProg
1
:
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Fixed values: Boolean relation𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, number of instances𝐾 , hash keys hkstep, hkinst,
the initial configuration 𝑐init ∈ {0, 1}𝑆 , a puncturable PRF key 𝑘 , hash values h∗step, h

∗
inst, a string

®𝛽 ∈ {0, 1}𝐾 ,
and a string 𝜏 ∈ {0, 1}𝐾

Input: an index 𝑖 ∈ [𝐾], a configuration 𝑐 ∈ {0, 1}𝑆 , a step function Step : {0, 1}𝑆 × {0, 1} → {0, 1}, an
instance 𝑥 ∈ {0, 1}𝑛 , hash values hstep, hinst, openings 𝜋step, 𝜋inst, a witness 𝑤 ∈ {0, 1}ℎ , and a signature

𝜎 ∈ {0, 1}𝑡

On input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎):

1. If (hstep, hinst) = (h∗step, h∗inst), 𝜏𝑖 = 1, and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, output ⊥.

2. If SSB.Verify(hkstep, hstep, 𝑖, Step, 𝜋step) = 0, output ⊥.

3. If 𝑖 = 1 and 𝑐 ≠ 𝑐init, output ⊥.

4. If 𝑖 > 1 and G(𝜎) ≠ G(F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))), output ⊥.

5. Compute the next configuration 𝑐𝑖 ∈ {0, 1}𝑆 as follows:

𝑐𝑖 =

{
Step(𝑐, 1) if SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1 and 𝐶 (𝑥,𝑤) = 1

Step(𝑐, 0) otherwise.

6. Output (𝑐𝑖 , F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 ))).

Figure 9: The mapping programMapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏].

When preparing the common reference string, the challenger now computes

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏]).

• Hybend: Same as Hyb𝜏 for 𝜏 = 0
𝐾−1∥1, except the challenger computes and defines the following modified

program VerProg
1
:

Fixed values: number of instances 𝐾 , the accepting configuration 𝑐acc, a puncturable PRF key 𝑘 , and hash

values h∗step, h
∗
inst

Input: hash values hstep, hinst, and a signature 𝜎 ∈ {0, 1}𝑡

On input (hstep, hinst, 𝜎):

1. If (hstep, hinst) = (h∗step, h∗inst), output 0.

2. If G(𝜎) = G(F(𝑘, (hstep, hinst, 𝐾, 𝑐acc))), output 1. Otherwise, output 0.

Figure 10: The verification program VerProg
1
[𝐾, 𝑐acc, 𝑘, h∗step, h∗inst].

When preparing the common reference string, the challenger now computes

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏])
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where 𝜏 = 0
𝐾−1∥1, and

ObfVer← 𝑖O(1𝜆obf , 1sizeVerProg ,VerProg
1
[𝐾, 𝑐acc, 𝑘, h∗step, h∗inst]) .

Jumping ahead, we will show the following properties:

Property 1 Suppose 𝜏 = 0
𝐾
. Then the success probability of A in Hybinit is only negligibly more than in Hyb𝜏 .

Property 2 Suppose 𝜏, 𝜏 ′ differ only on index 1 (i.e., 𝜏1 = 0 and 𝜏 ′
1
= 1). Then the success probability of A is only

negligibly more in Hyb𝜏 than in Hyb𝜏 ′ .

Property 3 Suppose 𝜏, 𝜏 ′ ∈ {0, 1}𝐾 differ at a single index 𝑖∗ > 1, and moreover 𝜏𝑖∗−1 = 𝜏 ′
𝑖∗−1 = 1. Then the

success probability of A is only negligibly more in Hyb𝜏 than in Hyb𝜏 ′ .

Property 4 Suppose 𝜏 = 0
𝐾−1∥1. Then the success probability ofA is only negligibly more inHyb𝜏 than inHybend.

Property 5 The success probability of A in Hybend is zero.

The claim then follows by Lemma 5.12, which provides an efficiently computable sequence of strings 𝜏1, . . . , 𝜏𝑁 ∈
{0, 1}𝐾 such that if we consider the sequence of hybrids Hybinit,Hyb𝜏1 , . . . ,Hyb𝜏𝑁 ,Hybend, the success probability of

A in each hybrid is only negligibly more than in the following hybrid. Since 𝑁 = poly(𝐾) = poly(𝜆), and the success

probability of A in Hybend is zero, we can conclude that the success probability of A in Hybinit (i.e., the selective
soundness game) is also negl(𝜆). We now formally prove the above properties.

Lemma 5.14 (Property 1). Suppose 𝑖O is secure and that 𝜆obf ≥ 𝜆. Let 𝜏 = 0
𝐾 . Then, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N, | Pr[Hybinit (A) = 1] − Pr[Hyb𝜏 (A) = 1] | = negl(𝜆).

Proof. It suffices to argue that the following two programs compute identical functionality:

• MapProg[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘] in Hybinit; and
• MapProg

1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏] in Hyb𝜏 .

By definition, the only difference in these two programs is the following additional check in MapProg
1
:

If hstep = h∗step, hinst = h∗inst, 𝜏𝑖 = 1, and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1: output ⊥.

However, since 𝜏 = 0
𝐾
, this condition never triggers and the two programs compute identical functionality. The claim

now follows by 𝑖O security. □

Lemma 5.15 (Property 2). Suppose 𝑖O is secure and that 𝜆obf ≥ 𝜆. Take any 𝜏, 𝜏 ′ ∈ {0, 1}𝐾 where 𝜏1 = 0, 𝜏 ′
1
= 1, and

𝜏𝑖 = 𝜏
′
𝑖 for all 𝑖 > 1. Then there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb𝜏 ′ (A) = 1] | = negl(𝜆).

Proof. It suffices to argue that the following two programs compute identical functionality:

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏]; and

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏 ′].

By definition, the only difference in these two programs is the following additional check in MapProg
1
:

If hstep = h∗step, hinst = h∗inst, 𝜏𝑖 = 1, and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1: output ⊥.

Take any input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎) to these programs. We argue that the two programs above

have identical behavior:

• Suppose 𝑖 ≠ 1. Then the behavior of the two programs are identical by construction, since 𝜏𝑖 = 𝜏
′
𝑖 for all 𝑖 > 1.

• Suppose 𝑖 = 1 and 𝑐 ≠ 𝑐init. Then both programs output ⊥.
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• Suppose 𝑖 = 1 and 𝑐 = 𝑐init. Since the Reachable function describes an admissible set of reachable states, we

have that Reachable ®𝛽,0 (𝑐) = 1. In this case, the two programs again behave identically.

Thus the two programs compute identical functionality. The claim now follows by 𝑖O security. □

Lemma 5.16 (Property 3). Suppose the following conditions hold:

• Suppose ΠSSB is correct, satisfies index hiding, and is somewhere statistically binding.

• Suppose ΠPPRF satisfies punctured correctness and
(
1, 2−𝜆

𝜀PRF
PRF

)
-punctured pseudorandomness for some constant

𝜀PRF ∈ (0, 1). Moreover, suppose 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF .

• Suppose 𝑖O is
(
1, 2−𝜆

𝜀obf
obf

)
-secure for some constant 𝜀obf ∈ (0, 1). Moreover, suppose 𝜆obf = (𝜆 + 𝑆)1/𝜀obf .

• Suppose G is secure and𝑚 ≥ ℓ + 𝜆.

Take any 𝜏, 𝜏 ′ ∈ {0, 1}𝐾 that differ on a single index 𝑖∗ > 1, where 𝜏𝑖∗−1 = 𝜏 ′𝑖∗−1 = 1, 𝜏𝑖∗ = 0, and 𝜏 ′
𝑖∗ = 1. Then there exists

a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb𝜏 ′ (A) = 1] | = negl(𝜆).

Proof. In the following, we will assume that our reduction algorithms are additionally provided (𝜏, 𝜏 ′, 𝑖∗) as part of
their non-uniform advice. In the following, we will interpret configurations 𝑐 ∈ {0, 1}𝑆 as the binary representation

of an 𝑆-bit integer. Then, for an integer 𝑐∗ ∈ Z, we say 𝑐 < 𝑐∗ if the integer associated with 𝑐 is less than or equal

to the value of 𝑐∗. We now define an intermediate sequence of hybrid experiments.

• Hyb𝜏,init: Same as Hyb𝜏 , except the challenger samples the hash keys hkstep, hkinst to be binding on the special

index 𝑖∗. Namely, the challenger in this experiment samples

hkstep ← SSB.Setup
(
1
𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}

)
hkinst ← SSB.Setup

(
1
𝜆, 1𝑛, 11, 𝐾, {𝑖∗}

)
.

• Hyb𝜏,𝑐∗ for 𝑐
∗ ∈ [0, 2𝑆 ]: Same as Hyb𝜏,init, except the challenger samples 𝑦∗ r← {0, 1}ℓ and then sets 𝑧∗ = G(𝑦∗),

and defines the following modified programMapProg
2
:
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Fixed values: Boolean relation𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, number of instances𝐾 , hash keys hkstep, hkinst,
the initial configuration 𝑐init ∈ {0, 1}𝑆 , a puncturable PRF key 𝑘 , hash values h∗step, h

∗
inst, a string

®𝛽 ∈ {0, 1}𝐾 ,
a string 𝜏 ∈ {0, 1}𝐾 , an index 𝑖∗ ∈ [𝐾], a string 𝑧∗ ∈ {0, 1}𝑚 , and a value 𝑐∗ ∈ [0, 2𝑆 ]

Input: an index 𝑖 ∈ [𝐾], a configuration 𝑐 ∈ {0, 1}𝑆 , a step function Step : {0, 1}𝑆 × {0, 1} → {0, 1}, an
instance 𝑥 ∈ {0, 1}𝑛 , hash values hstep, hinst, openings 𝜋step, 𝜋inst, a witness 𝑤 ∈ {0, 1}ℎ , and a signature

𝜎 ∈ {0, 1}𝑡

On input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎):

1. If (hstep, hinst) = (h∗step, h∗inst), 𝜏𝑖 = 1, and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, output ⊥.

2. If 𝑖 = 𝑖∗, (hstep, hinst) = (h∗step, h∗inst), 𝑐 < 𝑐∗, Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, and

G(𝜎 ⊕ F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))) ≠ 𝑧∗,

output ⊥.

3. If SSB.Verify(hkstep, hstep, 𝑖, Step, 𝜋step) = 0, output ⊥.

4. If 𝑖 = 1 and 𝑐 ≠ 𝑐init, output ⊥.

5. If 𝑖 > 1 and G(𝜎) ≠ G(F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))), output ⊥.

6. Compute the next configuration 𝑐𝑖 ∈ {0, 1}𝑆 as follows:

𝑐𝑖 =

{
Step(𝑐, 1) if SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1 and 𝐶 (𝑥,𝑤) = 1

Step(𝑐, 0) otherwise.

7. Output (𝑐𝑖 , F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 ))).

Figure 11: The mapping programMapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗].

When preparing the common reference string, the challenger now computes

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗])

• Hyb𝜏,end,0: Same as Hyb𝜏,2𝑆 , except the challenger samples 𝑧∗ r← {0, 1}𝑚 .

• Hyb𝜏,end,1: Same as Hyb𝜏,end,0, except the challenger samples hkstep and hkinst normally. Namely, the challenger

in this experiment samples

hkstep ← SSB.Setup(1𝜆, 1𝑠 , 11, 𝐾,∅)
hkinst ← SSB.Setup(1𝜆, 1𝑛, 11, 𝐾,∅).

Claim 5.17. Suppose ΠSSB satisfies index hiding. Then there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb𝜏,init (A) = 1] | = negl(𝜆).

Proof. We define an intermediate hybrid Hyb′𝜏,init which is the same as Hyb𝜏 , except the challenger samples hkstep ←
SSB.Setup

(
1
𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}

)
. The challenger samples hkinst as in Hyb𝜏 . It is easy to see that Hyb𝜏 and Hyb′𝜏,init are

computationally indistinguishable assuming index hiding security of ΠSSB. Formally, suppose

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb′𝜏,init (A) = 1] | ≥ 𝜀
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for some non-negligible 𝜀. We useA = (A0,A1) to construct an efficient non-uniform adversary B = (B0,B1) for the
index hiding game. As noted earlier, we assume the preprocessing algorithm B0 outputs an advice string of the form

stB = (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗).

The online algorithm B1 then works as follows:

1. On input the security parameter 1
𝜆
and the advice string (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗),

algorithm B1 outputs the input length 1
𝑠
, the bound 1

1
, the number of blocks 𝐾 , and the set {𝑖∗}.

2. The challenger responds with a hash key hkstep. Algorithm B1 samples hkinst ← SSB.Setup(1𝜆, 1𝑛, 11, 𝐾,∅).

3. Let Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) be the description of the Turing machine that computes 𝑃 . Algorithm B1

now computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

4. Algorithm B1 now samples the remaining components of the CRS as in Hyb𝜏 :

• 𝑘 ← F.KeyGen(1𝜆PRF , 1𝑠′+𝑛′+⌈log𝐾 ⌉+𝑆 , 1ℓ ).
• ObfMap← 𝑖O

(
1
𝜆obf , 1sizeMapProg ,MapProg

1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏]

)
.

• ObfVer← 𝑖O
(
1
𝜆obf , 1sizeVerProg ,VerProg[𝐾, 𝑐acc, 𝑘]

)
.

Algorithm B1 sets crs = (hkstep, hkinst,ObfMap,ObfVer) and invokes A1 on input (stA, crs). Algorithm A1

outputs 𝜎 .

5. Algorithm B1 outputs ObfVer(hstep, hinst, 𝜎).

We consider the two possible distributions for hkstep:

• If the challenger samples hkstep ← SSB.Setup(1𝜆, 1𝑠 , 11, 𝐾,∅), then algorithm B perfectly simulates an execu-

tion of Hyb𝜏 .

• If the challenger samples hkstep ← SSB.Setup(1𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}), then algorithm B perfectly simulates an

execution of Hyb′𝜏,init.

We conclude that algorithm B breaks index hiding with the same advantage asA, which proves the claim. By an anal-

ogous argument (applied to hkinst), we conclude that Hyb′𝜏,init and Hyb𝜏,init are also computationally indistinguishable.

Claim 5.17 now follows by a standard hybrid argument. □

Claim 5.18. Suppose 𝑖O is secure and that 𝜆obf ≥ 𝜆. Then, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏,init (A) = 1] − Pr[Hyb𝜏,0] (A) = 1| = negl(𝜆).

Proof. If suffices to argue that the following two programs compute identical functionality:

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏] in Hyb𝜏,init; and

• MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗] in Hyb𝜏,0.

By definition, the only difference in these two programs is the following additional check in MapProg
2
:

If 𝑖 = 𝑖∗, (hstep, hinst) = (h∗step, h∗inst), 𝑐 < 𝑐∗, Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, and

G(𝜎 ⊕ F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))) ≠ 𝑧∗,

output ⊥.
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However, since 𝑐 ∈ {0, 1}𝐾 and 𝑐∗ = 0 in Hyb𝜏,0, the condition 𝑐 < 𝑐
∗
is never satisfied. Thus, the two programs in

Hyb𝜏,init and Hyb𝜏,0 compute identical functionality and the claim now follows by 𝑖O security. □

Claim 5.19. Suppose the following conditions hold:

• Suppose ΠSSB is correct and somewhere statistically binding.

• Suppose ΠPPRF satisfies punctured correctness and
(
1, 2−𝜆

𝜀PRF
PRF

)
-punctured pseudorandomness for some constant

𝜀PRF ∈ (0, 1). Moreover, suppose 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF .

• Suppose 𝑖O is
(
1, 2−𝜆

𝜀obf
obf )-secure for some constant 𝜀obf ∈ (0, 1). Moreover, suppose 𝜆obf = (𝜆 + 𝑆)1/𝜀obf .

• Suppose G is secure and𝑚 ≥ ℓ + 𝜆.

Then, for all 𝑐∗ ∈ [0, 2𝑆 − 1] and all 𝜆 ∈ N,

| Pr[Hyb𝜏,𝑐∗ (A) = 1] − Pr[Hyb𝜏,𝑐∗+1 (A) = 1] | ≤ Ω(1)
2
𝜆+𝑆 .

Proof. We consider two cases depending on the value of Reachable ®𝛽,𝑖∗−1 (𝑐∗).

Case 1: Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 1. Suppose Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 1. In this case, the programs

• MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗] in Hyb𝜏,𝑐∗ ; and

• MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗ + 1] in Hyb𝜏,𝑐∗+1.

compute identical functionality. This is because the only difference between the two programs is MapProg
2
in

Hyb𝜏,𝑐∗+1 contains the following additional check:

if 𝑖 = 𝑖∗, (hstep, hinst) = (h∗step, h∗inst), 𝑐 = 𝑐∗, Reachable ®𝛽,𝑖∗−1 (𝑐) ≠ 1, and

G(𝜎 ⊕ F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))) ≠ 𝑧∗,

output ⊥.

When Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 1, this check is vacuous. As such we conclude that theMapProg
2
programs in the two

experiments compute identical functionality, so the claim follows by 𝑖O security.

Case 2: Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 0. Suppose Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 0. In this case, we define an additional sequence of

hybrid experiments:

• Hyb𝜏,𝑐∗,1: Same as Hyb𝜏,𝑐∗ except after sampling the PRF key 𝑘 , the challenger punctures it at the point

(h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗). Specifically, the challenger computes

𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ ) ← F.Puncture(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗))

and

𝑟 ∗ = 𝑦∗ ⊕ F(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)) .

Then, it defines the following program MapProg
3
:
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Fixed values: Boolean relation𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1}, number of instances𝐾 , hash keys hkstep, hkinst,
the initial configuration 𝑐init ∈ {0, 1}𝑆 , a puncturable PRF key 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, hash values h∗step, h

∗
inst, a

string
®𝛽 ∈ {0, 1}𝐾 , a string 𝜏 ∈ {0, 1}𝐾 , an index 𝑖∗ ∈ [𝐾], a string 𝑧∗ ∈ {0, 1}𝑚 , a value 𝑐∗ ∈ [0, 2𝑆 ], a PRG

seed 𝑦∗ ∈ {0, 1}𝑡 , and a string 𝑟 ∗ ∈ {0, 1}𝑡

Input: an index 𝑖 ∈ [𝐾], a configuration 𝑐 ∈ {0, 1}𝑆 , a step function Step : {0, 1}𝑆 × {0, 1} → {0, 1}, an
instance 𝑥 ∈ {0, 1}𝑛 , hash values hstep, hinst, openings 𝜋step, 𝜋inst, a witness 𝑤 ∈ {0, 1}ℎ , and a signature

𝜎 ∈ {0, 1}𝑡

On input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎):

1. If (hstep, hinst) = (h∗step, h∗inst), 𝜏𝑖 = 1, and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, output ⊥.

2. If 𝑖 = 𝑖∗, (hstep, hinst) = (h∗step, h∗inst), 𝑐 < 𝑐∗, Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, and

G
(
𝜎 ⊕ F

(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖 − 1, 𝑐)

) )
≠ 𝑧∗,

output ⊥.

3. If 𝑖 = 𝑖∗, (hstep, hinst) = (h∗step, h∗inst), 𝑐 = 𝑐∗, and 𝜎 ⊕ 𝑟 ∗ ≠ 𝑦∗, output ⊥.

4. If SSB.Verify(hkstep, hstep, 𝑖, Step, 𝜋step) = 0, output ⊥.

5. If 𝑖 = 1 and 𝑐 ≠ 𝑐init, output ⊥.

6. If (𝑖, hstep, hinst, 𝑐) ≠ (𝑖∗, h∗step, h∗inst, 𝑐∗), 𝑖 > 1 and

G(𝜎) ≠ G
(
F
(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖 − 1, 𝑐)

) )
,

output ⊥.

7. Compute the next configuration 𝑐𝑖 ∈ {0, 1}𝑆 as follows:

𝑐𝑖 =

{
Step(𝑐, 1) if SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1 and 𝐶 (𝑥,𝑤) = 1

Step(𝑐, 0) otherwise.

8. Output

(
𝑐𝑖 , F

(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )

) )
.

Figure 12: Themapping programMapProg
3
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, h∗step, h

∗
inst,
®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗, 𝑦∗, 𝑟 ∗].

When preparing the common reference string, the challenger now computes

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg
3
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, h∗step, h

∗
inst,
®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗, 𝑦∗, 𝑟 ∗])

• Hyb𝜏,𝑐∗,2: Same as Hyb𝜏,𝑐∗,1 except the challenger now samples 𝑟 ∗ r← {0, 1}𝑡 .

• Hyb𝜏,𝑐∗,3: Same as Hyb𝜏,𝑐∗,2 except the challenger now sets 𝑟 ∗ = F
(
𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)

)
.

Claim 5.20. Suppose ΠSSB is somewhere statistically binding, ΠPPRF is correct, G is injective, and 𝑖O is
(
1, 2−𝜆

𝜀obf
obf

)
-secure

for some constant 𝜀obf ∈ (0, 1). Suppose moreover that 𝜆obf = (𝜆 + 𝑆)1/𝜀obf . Then, there exists 𝜆A ∈ N such that for all
𝜆 ≥ 𝜆A ,

| Pr[Hyb𝜏,𝑐∗ (A) = 1] − Pr[Hyb𝜏,𝑐∗,1 (A) = 1] | ≤ 1

2
𝜆+𝑆 .
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Proof. We start by arguing that the following two programs compute identical functionality:

• MapProg
2
[𝐶,𝐾, hkstep, hk𝐾 , 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗]

• MapProg
3
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, h∗step, h

∗
inst,
®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗, 𝑦∗, 𝑟 ∗]

Take any input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎) to these programs. First, if (hstep, hinst) ≠ (h∗step, h∗inst), then
by punctured correctness, this means

F
(
𝑘, (hstep, hinst, ·, ·)

)
= F

(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, ·, ·)

)
.

In this case, the behavior of the two programs is identical. Thus, for the remainder of the analysis, it suffices to consider

the case where (hstep, hinst) = (h∗step, h∗inst). We now consider the programs’ behavior depending on the value of 𝑖:

• Suppose 𝑖 < 𝑖∗ − 1 or 𝑖 > 𝑖∗. This means 𝑖 − 1 ≠ 𝑖∗ − 1. By punctured correctness, this means

F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐)) = F(𝑘 (h
∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖 − 1, 𝑐)) .

Hence, the check in Step 6 ofMapProg
3
coincides with the corresponding check inMapProg

2
. Since we also

have 𝑖 ≠ 𝑖∗ − 1, punctured correctness also implies that for all 𝑐𝑖 ∈ {0, 1}𝑆 ,

F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 )) = F(𝑘 (h
∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )).

This means the output of Step 8 of MapProg
3
coincides with the output in MapProg

2
. We conclude that the

two programs behave identically on all inputs where 𝑖 < 𝑖∗ − 1.

• Suppose 𝑖 = 𝑖∗ − 1. Then, 𝑖 − 1 ≠ 𝑖∗ − 1. By the same argument as the previous case, the only possible difference

in the behavior of the two programs is the computation of

– F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 )) in Step 7 of MapProg
2
; and the computation of

– F
(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )

)
in Step 8 ofMapProg

3
.

First, by assumption 𝜏𝑖∗−1 = 1, so 𝜏𝑖 = 1 in this case. We now consider the possibilities depending on the value

of 𝑐 ∈ {0, 1}𝑆 :

– Suppose Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1. Since (hstep, hinst) = (h∗step, h∗inst) and 𝜏𝑖 = 1, both programs output ⊥ in

this case.

– Suppose Reachable ®𝛽,𝑖−1 (𝑐) = 1. First, recall that hkstep and hkinst are somewhere statistically binding at

index 𝑖 . Next, (hstep, hinst) = (h∗step, h∗inst) where

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))

Thus, with overwhelming probability over the choice of hkstep and hkinst:
∗ If Step ≠ Step𝑖 , then SSB.Verify(hkstep, hstep, 𝑖, Step, 𝜋step) = 0.

∗ If 𝑥 ≠ 𝑥𝑖 , then SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 0.

Thus, if Step ≠ Step𝑖 , with overwhelming probability over the choice of hkstep, both programs output ⊥.
It suffices to analyze inputs where Step = Step𝑖 . We now consider two possibilities:

∗ Suppose 𝐶 (𝑥,𝑤) = 0 or SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 0. Then, both programs compute the

configuration

𝑐𝑖 = Step(𝑐, 0) = Step𝑖 (𝑐, 0).
By assumption, Reachable ®𝛽,𝑖−1 (𝑐) = 1. Since Reachable computes an admissible set of reachable

states (Definition 5.5), this means Reachable ®𝛽,𝑖 (𝑐𝑖 ) = 1. Correspondingly, this means 𝑐𝑖 ≠ 𝑐
∗
(since

we are working with the case where Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 0). By punctured correctness, this means

F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 )) = F
(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )

)
and the programs behave identically.
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∗ Conversely, suppose 𝐶 (𝑥,𝑤) = 1 and SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1. As argued above, with

overwhelming probability over the choice of hkinst, this means 𝑥 = 𝑥𝑖 . This means 𝐶 (𝑥𝑖 ,𝑤) = 1

so by definition of 𝛽𝑖 (see Eq. (5.1)), this means that 𝛽𝑖 = 1. Let 𝑐𝑖 = Step(𝑐, 1) = Step𝑖 (𝑐, 1) be
the configuration computed by both programs. Since Reachable ®𝛽,𝑖−1 (𝑐) = 1, 𝛽𝑖 = 1, and Reachable
computes an admissible set of reachable states, this means that Reachable ®𝛽,𝑖 (𝑐𝑖 ) = 1. As in the

previous case, this means 𝑐𝑖 ≠ 𝑐
∗
(since Reachable ®𝛽,𝑖∗−1 (𝑐∗) = 0). By punctured correctness, we have

that F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 )) = F(𝑘 (h
∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )).

We conclude that the output of both programs are identical.

• Suppose 𝑖 = 𝑖∗. We consider the possibilities depending on the value of 𝑐:

– Suppose 𝑐 ≠ 𝑐∗. By punctured correctness,

F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐)) = F
(
𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖 − 1, 𝑐)

)
and the two programs implement identical checks.

– Suppose 𝑐 = 𝑐∗. Then, MapProg
2
checks that G(𝜎) = G(F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐))) whereas MapProg

3

checks that 𝜎 ⊕ 𝑟 ∗ = 𝑦∗. If the condition is not satisfied, then the respective programs output ⊥. Since
G is injective, the check in MapProg

2
is equivalent to checking

𝜎 = F(𝑘, (hstep, hinst, 𝑖 − 1, 𝑐)) . (5.2)

In Hyb𝜏,𝑐∗,1, the challenger sets

𝑟 ∗ = F(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)) ⊕ 𝑦∗,

so the condition 𝜎 ⊕ 𝑟 ∗ = 𝑦∗ is precisely equivalent to Eq. (5.2) given that (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗) =

(hstep, hinst, 𝑖 − 1, 𝑐).

Finally, since 𝑖 ≠ 𝑖∗ − 1, for all 𝑐𝑖 ∈ {0, 1}𝑆 , punctured correctness implies that

F(𝑘, (hstep, hinst, 𝑖, 𝑐𝑖 )) = F(𝑘 (h
∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, (hstep, hinst, 𝑖, 𝑐𝑖 )).

Hence the behavior of the two programs is identical in the two experiments.

Thus the two programs compute identical functionality. The claim now follows by sub-exponential 𝑖O security.

Formally, suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA , we have that

| Pr[Hyb𝜏,𝑐∗ (A) = 1] − Pr[Hyb𝜏,𝑐∗,1 (A) = 1] | > 1

2
𝜆+𝑆 .

Let ΛB = {(𝜆 + 𝑆)1/𝜀obf : 𝜆 ∈ ΛA}. Since 𝑆 is non-negative and ΛA is infinite, the set ΛB is also infinite. We now use

A = (A0,A1) to construct a non-uniform adversary B = (B0,B1) such that for all 𝜆obf ∈ ΛB , the advantage of B
is at least 1/2𝜆

𝜀obf
obf . The preprocessing algorithm B0 proceeds as follows:

1. On input 1
𝜆obf

, algorithm B0 first checks if there exists 𝜆 ∈ ΛA such that 𝜆obf = (𝜆 + 𝑆)1/𝜀obf . If no such 𝜆 exists,

then algorithm B0 outputs ⊥. Otherwise, it sets 𝜆 to be the smallest such value that satisfies the condition.

2. If there exists 𝜆 ∈ ΛA satisfying the above condition, then algorithm B runs A0 on input 1
𝜆
to obtain

(𝐶, 𝑃, ®𝑥, stA). It then computes
®𝛽 ∈ {0, 1}𝐾 according to Eq. (5.1) and the Boolean circuits {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ]

associated with 𝑃 .

3. Algorithm B0 outputs the advice string

stB = (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗, 𝑐∗, 𝜆). (5.3)
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The online algorithm B1 then proceeds as follows:

1. On input the security parameter 1
𝜆obf

and the advice string stB (parsed according to Eq. (5.3)), algorithm B1
samples

hkstep ← SSB.Setup
(
1
𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}

)
hkinst ← SSB.Setup

(
1
𝜆, 1𝑛, 11, 𝐾, {𝑖∗}

)
.

2. Let Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) be the description of the Turing machine that computes 𝑃 . Algorithm B1

computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

3. Next, algorithm B1 samples a PRF key 𝑘 ← F.KeyGen(1𝜆PRF , 1𝑠′+𝑛′+⌈log𝐾 ⌉+𝑆 , 1ℓ ). It also computes the punctured

key

𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ ) ← F.Puncture(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)).

4. Algorithm B1 samples 𝑦∗ r← {0, 1}𝜆 and sets 𝑧∗ = G(𝑦∗). Finally, it computes

𝑟 ∗ = 𝑦∗ ⊕ F(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)) .

5. Algorithm B1 gives the programs

MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗]

and

MapProg
3
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, h∗step, h

∗
inst,
®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗, 𝑦∗, 𝑟 ∗]

to the 𝑖O challenger. The 𝑖O challenger responds with an obfuscated program ObfMap.

6. Finally, algorithm B1 computes ObfVer← 𝑖O(1𝜆obf , 1sizeVerProg ,VerProg[𝐾, 𝑐acc, 𝑘]). It defines the common refer-

ence string crs = (hkstep, hkinst,ObfMap,ObfVer) and invokesA1 on input (stA, crs). AlgorithmA1 outputs 𝜎 .

7. Algorithm B1 outputs ObfVer(hstep, hinst, 𝜎).

By construction, if ObfMap is an obfuscation of MapProg
2
, then algorithm B perfectly simulates an execution of

Hyb𝜏,𝑐∗ , whereas if ObfMap is an obfuscation ofMapProg
3
, then algorithm B1 perfectly simulates an execution of

Hyb𝜏,𝑐∗,1. We claim that for all 𝜆obf ∈ ΛB algorithm B breaks security of 𝑖O with advantage 2
−(𝜆+𝑆 ) = 2

−𝜆1/𝜀obfobf , which

contradicts sub-exponential security of 𝑖O. □

Claim 5.21. Suppose ΠPPRF satisfies
(
1, 2−𝜆

𝜀PRF
PRF

)
-punctured pseudorandomness for some constant 𝜀PRF ∈ (0, 1). Suppose

moreover that 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF . Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb𝜏,𝑐∗,1 (A) = 1] − Pr[Hyb𝜏,𝑐∗,2 (A) = 1] | ≤ 1

2
𝜆+𝑆 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA , we have that

| Pr[Hyb𝜏,𝑐∗,1 (A) = 1] − Pr[Hyb𝜏,𝑐∗,2 (A) = 1] | > 1

2
𝜆+𝑆 .

Let ΛB = {(𝜆 + 𝑆)1/𝜀PRF : 𝜆 ∈ ΛA}. Since 𝑆 is non-negative and ΛA is infinite, the set ΛB is also infinite. We now use

A = (A0,A1) to construct a non-uniform adversary B = (B0,B1) such that for all 𝜆PRF ∈ ΛB , the advantage of B is

at least 1/2𝜆
𝜀PRF
PRF . The preprocessing algorithm B0 proceeds as follows (this is entirely analogous to the preprocessing

algorithm from the proof of Claim 5.20):
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1. On input 1
𝜆PRF

, algorithm B0 checks if there exists 𝜆 ∈ ΛA such that 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF . If no such 𝜆 exists,

then algorithm B0 outputs ⊥. Otherwise, it sets 𝜆 to be the smallest such value that satisfies the condition.

2. If there exists 𝜆 ∈ ΛA satisfying the above condition, then algorithm B runs A0 on input 1
𝜆
to obtain

(𝐶, 𝑃, ®𝑥, stA). It then computes
®𝛽 ∈ {0, 1}𝐾 according to Eq. (5.1) and the Boolean circuits {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ]

associated with 𝑃 .

3. Algorithm B0 outputs the advice string

stB = (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗, 𝑐∗, 𝜆). (5.4)

The online algorithm B1 then proceeds as follows:

1. On input the security parameter 1
𝜆PRF

and the advice string stB (parsed according to Eq. (5.4)), algorithm B1
samples

hkstep ← SSB.Setup
(
1
𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}

)
hkinst ← SSB.Setup

(
1
𝜆, 1𝑛, 11, 𝐾, {𝑖∗}

)
.

2. Let Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) be the description of the Turing machine that computes 𝑃 . Algorithm B1

computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

3. Next, algorithm B1 outputs the input length 1
𝑠′+𝑛′+⌈log𝐾 ⌉+𝑆

, the output length 1
ℓ
, and the challenger point

(h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗) to the challenger. The challenger replies with a punctured key 𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ )
and a

challenge 𝜁 ∈ {0, 1}ℓ .

4. Algorithm B1 samples 𝑦∗ r← {0, 1}𝜆 and sets 𝑧∗ = G(𝑦∗). Finally, it computes 𝑟 ∗ = 𝑦∗ ⊕ 𝜁 .

5. Algorithm B1 then computes

ObfMap← 𝑖O(MapProg
3
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝑖

∗−1,𝑐∗ )
, h∗step, h

∗
inst,
®𝛽, 𝜏, 𝑖∗, 𝑧∗, 𝑐∗, 𝑦∗, 𝑟 ∗])

and ObfVer ← 𝑖O(1𝜆obf , 1sizeVerProg ,VerProg[𝐾, 𝑐acc, 𝑘]). It sets crs = (hkstep, hkinst,ObfMap,ObfVer) and in-

vokes A1 on input (stA, crs). Algorithm A1 outputs 𝜎 .

6. Algorithm B1 outputs ObfVer(hstep, hinst, 𝜎).

By construction, the challenger samples 𝑘 ← F.KeyGen(1𝜆PRF , 1𝑠′+𝑛′+⌈log𝐾 ⌉+𝑆 , 1ℓ ) and

𝑘
(h∗step,h∗inst,𝑖

∗−1,𝑐∗ ) ← F.Puncture(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)) .

We now consider the two possibilities for the challenge value 𝜁 :

• Suppose 𝜁 = F(𝑘, (h∗step, h∗inst, 𝑖∗ − 1, 𝑐∗)). In this case, 𝑟 ∗ = 𝑦∗ ⊕ 𝜁 is distributed according to the specification

of Hyb𝜏,𝑐∗,1.

• Suppose 𝜁
r← {0, 1}ℓ . In particular, 𝜁 in this case is independent of all other components in the experiment.

This means the distribution of 𝑟 ∗ = 𝑦∗ ⊕ 𝜁 is also uniform over {0, 1}ℓ , which coincides with the distribution

of 𝑟 ∗ in Hyb𝜏,𝑐∗,2.

We conclude that for all 𝜆PRF ∈ ΛB algorithm B breaks punctured pseudorandomness with advantage 2
−(𝜆+𝑆 ) =

2
−𝜆1/𝜀PRFPRF , which contradicts sub-exponential security of ΠPPRF. □
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Claim 5.22. Suppose ΠPPRF satisfies
(
1, 2−𝜆

𝜀PRF
PRF

)
-punctured pseudorandomness for some constant 𝜀PRF ∈ (0, 1). Suppose

moreover that 𝜆PRF = (𝜆 + 𝑆)1/𝜀PRF . Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb𝜏,𝑐∗,2 (A) = 1] − Pr[Hyb𝜏,𝑐∗,3 (A) = 1] | ≤ 1

2
𝜆+𝑆 .

Proof. Follows by a similar argument as in the proof of Claim 5.21. The only difference is the reduction algorithm

sets 𝑟 ∗ = 𝜁 (rather than 𝑟 ∗ = 𝑦∗ ⊕ 𝜁 ). □

Claim 5.23. Suppose ΠPPRF is correct, G is injective, and 𝑖O is
(
1, 2−𝜆

𝜀obf
obf

)
-secure for some constant 𝜀obf ∈ (0, 1). Suppose

moreover that 𝜆obf = (𝜆 + 𝑆)1/𝜀obf . Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb𝜏,𝑐∗,3 (A) = 1] − Pr[Hyb𝜏,𝑐∗+1 (A) = 1] | ≤ 1

2
𝜆+𝑆 .

Proof. Follows by a similar argument as in the proof of Claim 5.20. □

Claim 5.19 now follows by combining Claims 5.20 to 5.23. □

Claim 5.24. Suppose G is pseudorandom. Then, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏,2𝑆 (A) = 1] − Pr[Hyb𝜏,end,0 (A) = 1] | = negl(𝜆).

Proof. Formally, suppose

| Pr[Hyb𝜏,2𝑆 (A) = 1] − Pr[Hyb𝜏,end,0 (A) = 1] | ≥ 𝜀

for some non-negligible 𝜀. We use A = (A0,A1) to construct an efficient non-uniform adversary B = (B0,B1) that
breaks security of G. As noted earlier, we assume the preprocessing algorithm B0 outputs an advice string of the form

stB = (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗).

The online algorithm B1 then works as follows:

1. On input the security parameter 1
𝜆
, the advice string (𝐶, 𝑃, ®𝑥, stA, ®𝛽, {Reachable ®𝛽,𝑖 } ®𝛽∈{0,1}𝐾 ,𝑖∈[0,𝐾 ], 𝜏, 𝜏 ′, 𝑖∗), and

the challenge 𝑧∗ ∈ {0, 1}𝑚 , algorithm B1 samples

hkstep ← SSB.Setup
(
1
𝜆, 1𝑠 , 11, 𝐾, {𝑖∗}

)
hkinst ← SSB.Setup

(
1
𝜆, 1𝑛, 11, 𝐾, {𝑖∗}

)
.

2. Let Γ = (Step
1
, . . . , Step𝐾 , 𝑐init, 𝑐acc) be the description of the Turing machine that computes 𝑃 . Algorithm B1

now computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )) .

It also computes

• 𝑘 ← F.KeyGen(1𝜆PRF , 1𝑠′+𝑛′+⌈log𝐾 ⌉+𝑆 , 1ℓ ).
• ObfMap← 𝑖O

(
1
𝜆obf , 1sizeMapProg ,MapProg

2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 2𝑆 ]

)
.

• ObfVer← 𝑖O
(
1
𝜆obf , 1sizeVerProg ,VerProg[𝐾, 𝑐acc, 𝑘]

)
.

Algorithm B1 sets crs = (hkstep, hkinst,ObfMap,ObfVer) and invokes A1 on input (stA, crs). Algorithm A1

outputs 𝜎 .

3. Algorithm B1 outputs ObfVer(hstep, hinst, 𝜎).
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We consider the two possible distributions for 𝑧∗:

• If 𝑧∗ = G(𝑦∗) where 𝑦∗ r← {0, 1}ℓ , then algorithm B perfectly simulates an execution of Hyb𝜏,2𝑆 .

• If 𝑧∗ r← {0, 1}𝑚 , then algorithm B perfectly simulates an execution of Hyb𝜏,end,0.

We conclude that algorithm B breaks pseudorandomness of G with the same advantage as A, which proves the

claim. □

Claim 5.25. Suppose ΠSSB satisfies index hiding. Then there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏,end,0 (A) = 1] − Pr[Hyb𝜏,end,1 (A) = 1] | = negl(𝜆).

Proof. Follows by the same argument as the proof of Claim 5.17. □

Claim 5.26. Suppose 𝑖O is secure and that 𝜆obf ≥ 𝜆. Suppose also that𝑚 ≥ ℓ + 𝜆. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏,end,1 (A) = 1] − Pr[Hyb𝜏 ′ (A) = 1] | ≤ negl(𝜆).

Proof. It suffices to argue that the following two programs compute identical functionality:

• MapProg
2
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏, 𝑖∗, 𝑧∗, 2𝑆 ] in Hyb𝜏,end,1; and

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏 ′].

Take any input (𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎) to these two programs. We consider the following possibilities:

• Suppose 𝑖 ≠ 𝑖∗. By assumption, this means 𝜏𝑖 = 𝜏
′
𝑖 , so the two programs behave identically.

• Suppose 𝑖 = 𝑖∗. This means that 𝜏𝑖 = 0 and 𝜏 ′𝑖 = 1. We consider two possibilities:

– Suppose (hstep, hinst) = (h∗step, h∗inst) and Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1. In this case, MapProg
1
always outputs ⊥.

Consider the behavior in MapProg
2
. First, the condition 𝑐 < 2

𝑆
always holds. Moreover, in Hyb𝜏,end,1, the

challenger samples 𝑧∗ r← {0, 1}𝑚 . Since𝑚 ≥ ℓ + 𝜆, with overwhelming probability over the choice of 𝑧∗,
we have that 𝑧∗ is not in the image of G. In this case, the check in Step 2 of MapProg

2
always triggers

and the program outputs ⊥.
– Suppose (hstep, hinst) ≠ (h∗step, h∗inst) or Reachable ®𝛽,𝑖−1 (𝑐) = 1. In this case, the behavior of the two

programs are identical by definition.

We conclude that the two programs compute identical functionality. The claim now follows by 𝑖O security. □

Completing the proof of Lemma 5.16. We now return to the proof of Lemma 5.16. By Claim 5.19, for all

𝑐∗ ∈ [0, 2𝑆 − 1] and all sufficiently-large 𝜆 ∈ N, we have that

| Pr[Hyb𝜏,𝑐∗ (A) = 1] − Pr[Hyb𝜏,𝑐∗+1 (A) = 1] | ≤ Ω(1)
2
𝜆+𝑆 .

By a hybrid argument, this means

| Pr[Hyb𝜏,0 (A) = 1] − Pr[Hyb𝜏,2𝑆 (A) = 1] | ≤ Ω(1)
2
𝜆
.

Combined with Claims 5.17, 5.18 and 5.24 to 5.26, we conclude via a hybrid argument that

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb𝜏 ′ (A) = 1] | = negl(𝜆). □
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Lemma 5.27 (Property 4). Let 𝜏 = 0
𝐾−1∥1. Then for all 𝜆 ∈ N,

| Pr[Hyb𝜏 (A) = 1] − Pr[Hybend (A) = 1] | = negl(𝜆).

Proof. We introduce an intermediate sequence of hybrids.

• Hyb𝜏,1: Same as Hyb𝜏 except the challenger samples the hash keys hkstep and hkinst to be binding on index 𝐾 .

Namely, the challenger samples

hkstep ← SSB.Setup(1𝜆SSB , 1𝑠 , 11, 𝐾, {𝐾})
hkinst ← SSB.Setup(1𝜆SSB , 1𝑛, 11, 𝐾, {𝐾}) .

• Hyb𝜏,2: Same as Hyb𝜏,1 except the challenger punctures the PRF key 𝑘 at (h∗step, h∗inst, 𝐾, 𝑐acc). Namely, the

challenger computes

𝑘
(h∗step,h∗inst,𝐾,𝑐acc ) ← F.Puncture(𝑘, (h∗step, h∗inst, 𝐾, 𝑐acc)) .

The challenger also computes 𝑧∗ = F
(
𝑘, (h∗step, h∗inst, 𝐾, 𝑐acc)

)
and defines the following program VerProg

2
:

Fixed values: number of instances 𝐾 , the accepting configuration 𝑐acc, a puncturable PRF key

𝑘
(h∗step,h∗inst,𝐾,𝑐acc ) , hash values h∗step, h

∗
inst, and a string 𝑧∗ ∈ {0, 1}𝑚

Input: hash values hstep, hinst, and a signature 𝜎 ∈ {0, 1}𝑡

On input (hstep, hinst, 𝜎):

1. If (hstep, hinst) = (h∗step, h∗inst) and G(𝜎) = 𝑧∗, output 1.

2. If (hstep, hinst) ≠ (h∗step, h∗inst) and G(𝜎) = G(F(𝑘 (h
∗
step,h

∗
inst,𝐾,𝑐acc ) , (hstep, hinst, 𝐾, 𝑐acc))), output 1.

3. Otherwise, output 0.

Figure 13: The verification program VerProg
2
[𝐾, 𝑐acc, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst, 𝑧

∗].

When preparing the common reference string, the challenger now computes

ObfMap← 𝑖O(1𝜆obf , 1sizeMapProg ,MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst,
®𝛽, 𝜏]).

and

ObfVer← 𝑖O(1𝜆obf , 1sizeVerProg ,VerProg
2
[𝐾, 𝑐acc, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst, 𝑧

∗]) .

• Hyb𝜏,3: Same as Hyb𝜏,3 except the challenger samples 𝑧∗ r← {0, 1}𝑚 .

Claim 5.28. Suppose ΠSSB satisfies index hiding. Then, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝜏 (A) = 1] − Pr[Hyb𝜏,1 (A) = 1] | = negl(𝜆).

Proof. Follows by the same argument as the proof of Claim 5.17. □

Claim 5.29. Suppose ΠPPRF is correct, 𝑖O is secure, and 𝜆obf ≥ 𝜆. Then, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

| Pr[Hyb𝜏,1 (A) = 1] − Pr[Hyb𝜏,2 (A)] | ≤ negl(𝜆).

Proof. First we note that the following two programs compute identical functionality:
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• VerProg[𝐾, 𝑐acc, 𝑘] in Hyb𝜏,1; and

• VerProg
2
[𝐾, 𝑐acc, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst, 𝑧

∗] in Hyb𝜏,2.

Consider any input (hstep, hinst, 𝜎) to these programs.

• Suppose (hstep, hinst) = (h∗step, h∗inst). Then both programs output 1 if and only if

G(𝜎) = 𝑧∗ = G(F(𝑘, (h∗step, h∗inst, 𝐾, 𝑐acc))).

• Suppose (hstep, hinst) ≠ (h∗step, h∗inst). Then, by punctured correctness, both programs output 1 if and only if

G(𝜎) = G(F(𝑘, (hstep, hinst, 𝐾, 𝑐acc))).

Next, we show that the following two programs also compute identical functionality:

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏] in Hyb𝜏,1; and

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst,
®𝛽, 𝜏] in Hyb𝜏,2.

Without loss of generality, we assume that algorithm A always outputs a tuple (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝐾 )) where 𝑃 ( ®𝛽) = 0

and
®𝛽 = (𝛽1, . . . , 𝛽𝐾 ) is as defined in Eq. (5.1). Otherwise, the output in both experiments is 0. Now, take any input

(𝑖, 𝑐, Step, 𝑥, hstep, hinst, 𝜋step, 𝜋inst,𝑤, 𝜎) to these two programs. First, note that 𝑖 ∈ [𝐾] which means

(hstep, hinst, 𝑖 − 1, 𝑐) ≠ (h∗step, h∗inst, 𝐾, 𝑐acc).

Thus, by punctured correctness of ΠPPRF, Step 4 of MapProg
1
behaves identically in the two cases. Thus, the two

programs can only differ on Step 6. We consider the following two cases.

• Suppose (hstep, hinst, 𝑖, 𝑐𝑖 ) ≠ (h∗step, h∗inst, 𝐾, 𝑐acc). Then by punctured correctness of ΠPPRF, the two programs

behave identically.

• Suppose (hstep, hinst, 𝑖, 𝑐𝑖 ) = (h∗step, h∗inst, 𝐾, 𝑐acc). In this case, 𝜏𝑖 = 𝜏𝐾 = 1. If Reachable ®𝛽,𝑖−1 (𝑐) ≠ 1, then both

programs output ⊥. We focus on the case where Reachable ®𝛽,𝑖−1 (𝑐) = 1. Next, recall that hkstep and hkinst are
somewhere statistically binding on index 𝐾 . In addition, in both experiments, the challenger computes

(h∗step, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(h∗inst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 ))

Thus, with overwhelming probability over the choice of hkstep and hkinst:

– If Step ≠ Step𝐾 , then SSB.Verify(hkstep, hstep, 𝐾, Step, 𝜋step) = 0.

– If 𝑥 ≠ 𝑥𝐾 , then SSB.Verify(hkinst, hinst, 𝐾, 𝑥, 𝜋inst) = 0.

Thus, if Step ≠ Step𝐾 , then both programs output ⊥ with overwhelming probability (over the choice of hkstep).
It suffices to consider the case where Step = Step𝐾 . We consider two possibilities:

– Suppose 𝐶 (𝑥,𝑤) = 1 and SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) = 1. As argued above, with overwhelming

probability over the choice of hkinst, this case occurs only if 𝑥 = 𝑥𝐾 . This means 𝐶 (𝑥𝐾 ,𝑤) = 𝐶 (𝑥,𝑤) = 1,

and in particular, that 𝛽𝐾 = 1. By construction of MapProg
1
, we have 𝑐𝑖 = Step(𝑐, 1) = Step𝐾 (𝑐, 1). Since

Reachable ®𝛽,𝐾−1 (𝑐) = 1 and 𝛽𝐾 = 1, by Definition 5.5 this means that

1 = Reachable ®𝛽,𝐾 (Step(𝑐, 1)) = Reachable ®𝛽,𝐾 (𝑐𝑖 ) = Reachable ®𝛽,𝐾 (𝑐acc),

which contradicts the premise that 𝑃 ( ®𝛽) = 0.
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– Suppose that either𝐶 (𝑥,𝑤) = 0 or SSB.Verify(hkinst, hinst, 𝑖, 𝑥, 𝜋inst) ≠ 1. In this case, 𝑐acc = 𝑐𝑖 = Step(𝑐, 0).
Again, since Reachable ®𝛽,𝐾−1 (𝑐) = 1, we can appeal to Definition 5.5 to conclude that

1 = Reachable ®𝛽,𝐾 (Step(𝑐, 0)) = Reachable ®𝛽,𝐾 (𝑐𝑖 ) = Reachable ®𝛽,𝐾 (𝑐acc),

which again contradicts the premise that 𝑃 ( ®𝛽) = 0.

We conclude that with overwhelming probability over the choice of hkinst and hkstep, this case does not happen
unless the adversary A outputs (𝐶, 𝑃, ®𝑥) where 𝑃 ( ®𝛽) = 1 (in which case, the advantage of A is 0).

We conclude that both pairs of programs compute identical functionality. The claim now follows by 𝑖O security and

a standard hybrid argument. □

Claim 5.30. Suppose ΠPPRF satisfies punctured pseudorandomness and 𝜆PRF ≥ 𝜆. Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb𝜏,2 (A) = 1] − Pr[Hyb𝜏,3 (A)] | = negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 5.21. □

Claim 5.31. Suppose ΠPPRF is correct, 𝑖O is secure, 𝜆obf ≥ 𝜆, and𝑚 ≥ 𝜆 + ℓ . Then, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb𝜏,3 (A) = 1] − Pr[Hybend (A)] | = negl(𝜆).

Proof. By the same argument as in the proof of Claim 5.29, the following two programs compute identical functionality:

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst,
®𝛽, 𝜏] in Hyb𝜏,3; and

• MapProg
1
[𝐶,𝐾, hkstep, hkinst, 𝑐init, 𝑘, h∗step, h∗inst, ®𝛽, 𝜏] in Hybend.

We now show that the following two programs also compute identical functionality:

• VerProg
2
[𝐾, 𝑐acc, 𝑘 (h

∗
step,h

∗
inst,𝐾,𝑐acc ) , h∗step, h

∗
inst, 𝑧

∗] in Hyb𝜏,3; and

• VerProg
1
[𝐾, 𝑐acc, 𝑘, h∗step, h∗inst] in Hybend.

Take any input (hstep, hinst, 𝜎) to these two programs.

• Suppose (hstep, hinst) = (h∗step, h∗inst). By definition, VerProg
1
always outputs ⊥ in this case. Consider the

behavior of VerProg
2
. In Hyb𝜏,3, the challenger samples 𝑧∗ r← {0, 1}𝑚 . Since𝑚 ≥ 𝜆 + ℓ , with overwhelming

probability over the choice of 𝑧, there does not exist a string 𝑦 ∈ {0, 1}ℓ such that G(𝑦) = 𝑧∗. Thus, with
overwhelming probability over the choice of 𝑧, VerProg

2
will always output 0 in this case.

• Suppose (hstep, hinst) ≠ (h∗step, h∗inst). Then, by punctured correctness, both programs output 1 if and only if

G(𝜎) = G(F(𝑘, (hstep, hinst, 𝐾, 𝑐acc))).

We conclude that with overwhelming probability over the choice of 𝑧
r← {0, 1}𝑚 , both programs compute identical

functionality. The claim now follows by 𝑖O security and a standard hybrid argument. □

Lemma 5.27 now follows by combining Claims 5.28 to 5.31. □

Lemma 5.32 (Property 5). For all 𝜆 ∈ N, Pr[Hybend (A) = 1] = 0.

Proof. The output in Hybend is computed as ObfVer(hstep, hinst, 𝜎) where the challenger computes

(hstep, 𝜋step,1, . . . , 𝜋step,𝐾 ) = SSB.Hash(hkstep, (Step1, . . . , Step𝐾 ))
(hinst, 𝜋inst,1, . . . , 𝜋inst,𝐾 ) = SSB.Hash(hkinst, (𝑥1, . . . , 𝑥𝐾 )).

By construction,

VerProg
1
[𝐾, 𝑐acc, 𝑘, hstep, hinst] (hstep, hinst, 𝜎) = 0

for all 𝜎 . As such, the output in this experiment is always 0, as required. □
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Theorem 5.13 now follows from Lemma 5.12 together with Lemmas 5.14 to 5.16, 5.27 and 5.32. □

Theorem 5.33 (Succinctness). Suppose ΠSSB is succinct. Let 𝐷 be a bound on the size of the circuit that computes the
admissible set of reachable states associated with policies in P (see Definition 5.5),7 Then, there exist universal polynomials
poly

1
and poly

2
such that the size of the crs output by Setup(1𝜆,𝐶, 𝐾) and the size of the canonical witness 𝜎 output

by Map(crs, ®𝑥, ®𝑤) are bounded by

|crs| ≤ poly
1
(𝜆, |𝐶 |, 𝑆, 𝐷, log𝐾)

|𝜎 | ≤ poly
2
(𝜆).

Proof. For all 𝜆 ∈ N, all Boolean circuits𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all Boolean policies 𝑃 ∈ P where 𝑃 : {0, 1}𝐾 →
{0, 1}, and all 𝑥1, . . . , 𝑥𝐾 ∈ {0, 1}𝑛,𝑤1, . . . ,𝑤𝐾 ∈ {0, 1}ℎ such that

𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝐾 ,𝑤𝐾 )) = 1,

the common reference string crs output by Setup(1𝜆,𝐶, 𝐾) consists of the following components:

• hash keys hkstep, hkinst for the somewhere-statistically-binding hash function;

• an obfuscated program ObfMap for generating proofs; and

• an obfuscated program ObfVer for verifying proofs.

Succinctness of ΠSSB ensures that |hkstep | ≤ poly(𝜆, 𝑠, log𝐾) and |hkinst | ≤ poly(𝜆, 𝑛, log𝐾), where 𝑠 = poly(𝜆, 𝑆) is
a bound on the size of the Boolean circuit that computes a step function Step𝑖 associated with a policy in P. Next,
we bound the sizes sizeMapProg and sizeVerProg of the obfuscated programs ObfMap and ObfVer (and their variants)

that appear in the analysis of Theorem 5.13.

• First, themapping programsMapProg appearing in the proof of Theorem 5.13 require hardwiring theReachable ®𝛽,𝑖
circuit for all indices 𝑖 where 𝜏𝑖 = 1. From Lemma 5.12, for every 𝜏 ∈ {0, 1}𝐾 appearing in the anal-

ysis of Theorem 5.13, there are at most 1 + log𝐾 indices 𝑖 ∈ [𝐾] where 𝜏𝑖 = 1. Thus, we can bound

sizeMapProg = poly(𝜆, |𝐶 |, 𝑆, 𝐷, log𝐾).

• Next, the sizes of verification programs VerProg appearing in the proof of Theorem 5.13 can be bounded by

sizeVerProg = poly(𝜆, 𝑛, 𝑆, log𝐾).

Taken together, we can bound the overall CRS size for Construction 5.8 by poly
1
(𝜆, |𝐶 |, 𝑆, 𝐷, log𝐾). Next, the size of

the canonical witness 𝜎 output byMap(crs, (𝑥1, . . . , 𝑥𝐾 ), (𝑤1, . . . ,𝑤𝐾 )) is simply an ℓ-bit string, where ℓ is the seed

length of a PRG. Here, we can take ℓ = poly
2
(𝜆), which completes the proof. □

Instantiation. Taken together, Construction 5.8 yields a succinct unique witness map for batch NP that supports

any read-once bounded-space policy using 𝑖O together with a somewhere statistically binding hash function and

an injective PRG. The somewhere statistically binding hash function and the injective PRG can be instantiated from

standard number-theoretic assumptions [HW15, OPWW15, GKVW20]. We summarize our instantiation with the

following corollary:

Corollary 5.34 (Succinct UniqueWitness Map for Read-Once Bounded-Space TuringMachines). Let 𝜆 be a security pa-
rameter. Assuming the existence of indistinguishability obfuscation for Boolean circuits, a somewhere statistically binding
hash function, and an injective PRG, there exists a succinct unique witness map for the set of monotone policies P that can
be computed by a read-once bounded-space Turing machine. Specifically, if 𝐾 is a bound on the number of instances, 𝑆 is
the space required by policies in 𝑃 , and 𝐷 ≤ poly(𝜆, 2𝑆 ) is the bound on the size of the circuit that computes the admissible
set of reachable states associated with policies in P, then the size of the CRS for the succinct unique witness map for a
Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and policy family P is poly(𝜆, |𝐶 |, 𝑆, 𝐷, log𝐾) and the proof size is poly(𝜆).
7
We can trivially bound 𝐷 = 𝑂 (2𝑆 ) by enumerating the set of reachable states for the space-𝑆 Turing machine.
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6 Applications
In this section, we highlight two immediate applications of succinct witness encryption for batch languages. The

first application is to succinct computational secret sharing [ABI
+
23] and the second is to distributed monotone-

policy encryption, a generalization of notions like distributed broadcast encryption [WQZD10, BZ14] and threshold

encryption with silent setup [GKPW24, ADM
+
24].

6.1 Succinct Computational Secret Sharing
In this section, we show that succinct witness encryption for batch languages immediately implies a succinct computa-

tional secret sharing scheme. We start by recalling the notion of succinct computational secret sharing from [ABI
+
23].

Definition 6.1 (Succinct Computational Secret Sharing [ABI
+
23, adapted]). Let 𝜆 be a security parameter, P be

a family of policies, andM be a message space. We model each policy 𝑃 ∈ P as a monotone Boolean function. A

succinct computational secret sharing scheme with policy space P is a pair of efficient algorithms ΠSCSS = (Share,
Reconstruct) with the following syntax:

• Share(1𝜆, 𝑃, 𝜇) → (sh0, sh1, . . . , sh𝑛): On input the security parameter 𝜆 ∈ N, a policy 𝑃 ∈ P (on 𝑛-bit inputs),

and a message 𝜇 ∈ M, the share algorithm outputs a collection of 𝑛 + 1 shares sh0, sh1, . . . , sh𝑛 , where sh𝑖 is the
share of the 𝑖th party and sh0 is the public information given to all parties. By default, the public information

sh0 is an empty string.

• Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1) → 𝜇: On input a policy 𝑃 ∈ P (on 𝑛-bit inputs), a string 𝛽 ∈ {0, 1}𝑛
(describing the reconstructing set), the public information sh0, and shares sh𝑖 for indices 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1,

the reconstruction algorithm outputs a message 𝜇 ∈ M.

We require that ΠSCSS satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all policies 𝑃 ∈ P (on 𝑛-bit inputs), all 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1}
where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 1, all messages 𝜇 ∈ M, we have that

Pr[Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1) = 𝜇 : (sh0, sh1, . . . , sh𝑛) ← Share(1𝜆, 𝑃, 𝜇)] = 1.

We say the scheme satisfies (statistical) correctness if there is a negligible function such that the above holds

with probability 1 − negl(𝜆).

• Security: For a security parameter 𝜆 ∈ N, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the security

experiment as follows:

– On input the security parameter 1
𝜆
, algorithmA chooses a policy 𝑃 ∈ P (on 𝑛-bit inputs), bits 𝛽1, . . . , 𝛽𝑛 ∈

{0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

– The challenger computes (sh0, sh1, . . . , sh𝑛) ← Share(1𝜆, 𝑃, 𝜇𝑏) and gives the shares sh0 and sh𝑖 where
𝛽𝑖 = 1 to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

The secret sharing scheme is secure if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the security game.

• Succinctness: There exists a polynomial poly such that for all 𝜆 ∈ N, policies 𝑃 ∈ P, and messages 𝜇 ∈ M,

the size of the public information sh0 and shares sh𝑖 output by (sh0, sh1, . . . , sh𝑛) ← Share(1𝜆, 𝑃, 𝜇) satisfy the

following:

|sh0 |, |sh𝑖 | ≤ 𝑜 ( |𝑃 |) · poly(𝜆, log𝑛).

Construction 6.2 (Succinct Computational Secret Sharing from Succinct Witness Encryption). Let 𝜆 be a security
parameter, P be a family of monotone access policies, andM be a message space. Our construction of succinct

computational secret sharing relies on the following primitives:
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• Let ΠPKE = (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme with message space

{0, 1}. Let 𝜌 = 𝜌 (𝜆) be the number of bits of randomness the PKE.Encrypt algorithm takes.

• Let ΠWE = (WE.Encrypt,WE.Preprocess,WE.DecryptLocal) be a succinct witness encryption scheme for batch

languages that supports local decryption (Definition 3.2) with message spaceM and policy family P.

We construct a succinct computational secret sharing scheme with message spaceM and policy space P as follows:

• Share(1𝜆, 𝑃, 𝜇): On input the security parameter 𝜆 ∈ N, the policy 𝑃 ∈ P (on 𝑛-bit inputs), and a message

𝜇 ∈ M, the share algorithm proceeds as follows:

– Sample (pk, sk) ← PKE.KeyGen(1𝜆). Then, for each 𝑖 ∈ [𝑛], samples 𝑟𝑖
r← {0, 1}𝜌 and let ct𝑖 =

PKE.Encrypt(pk, 1; 𝑟𝑖 ).
– Compute ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛), 𝜇), where 𝐶ValidShare [pk] (ct, 𝑟 ) outputs

1 if ct = PKE.Encrypt(pk, 1; 𝑟 ) and 0 otherwise.

– Compute (ht1, . . . , ht𝑛) ←WE.Preprocess(ctWE,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛)).
– Output the shares sh0 = (pk, ctWE) and for each 𝑖 ∈ [𝑛], sh𝑖 = (ct𝑖 , ht𝑖 , 𝑟𝑖 ).

• Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1): On input the policy 𝑃 (on 𝑛-bit inputs), a string 𝛽 ∈ {0, 1}𝑛 , a public
share sh0 = (pk, ctWE), and shares sh𝑖 = (ct𝑖 , ht𝑖 , 𝑟𝑖 ) for each 𝑖 where 𝛽𝑖 = 1, the decryption algorithm outputs

𝜇 = WE.DecryptLocal(ctWE,𝐶ValidShare [pk], {(𝑖, ht𝑖 , 𝑟𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1).

Theorem 6.3 (Correctness). If ΠWE is correct, then Construction 6.2 is correct.

Proof. Take any security parameter 𝜆 ∈ N, policy 𝑃 ∈ P (on 𝑛-bit inputs), inputs 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1} where
𝑃 (𝛽1, . . . , 𝛽𝑛) = 1, and any message 𝜇 ∈ {0, 1}. Suppose we compute (sh0, sh1, . . . , sh𝑛) ← Share(1𝜆, 𝑃, 𝜇). Con-
sider the value of Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1):

• By construction, sh0 = (pk, ctWE) where (pk, sk) ← PKE.KeyGen(1𝜆) and

ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛), 𝜇).

Here, ct𝑖 ← PKE.Encrypt(pk, 1; 𝑟𝑖 ). This means 𝐶ValidShare [pk] (ct𝑖 , 𝑟𝑖 ) = 1 for all 𝑖 ∈ [𝑛].

• Since 𝑃 (𝛽1, . . . , 𝛽𝑛) = 1, correctness of local decryption (Definition 3.2) implies that

WE.DecryptLocal(ctWE,𝐶ValidShare [pk], {(𝑖, ht𝑖 , 𝑟𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1) = 𝜇,

where (ht1, . . . , ht𝑛) = Preprocess(ctWE,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛)). Correctness follows. □

Theorem 6.4 (Security). If ΠPKE satisfies perfect correctness and CPA-security and ΠWE is secure, then Construction 6.2
is secure.

Proof. Let A be an efficient adversary for the security game. We begin by defining a sequence of hybrid experiments,

each parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )
0

: This is the security experiment with the bit 𝑏 ∈ {0, 1}.

– On input the security parameter 1
𝜆
, algorithm A starts by choosing a policy 𝑃 ∈ P (on 𝑛-bit inputs),

inputs 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

– The challenger starts by sampling (pk, sk) ← PKE.KeyGen(1𝜆). For each 𝑖 ∈ [𝑛], the challenger samples

ct𝑖 ← PKE.Encrypt(pk, 1).
– The challenger then computes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛), 𝜇𝑏).
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– Next, the challenger computes (ht1, . . . , ht𝑛) ←WE.Preprocess(ctWE,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛)) . It
then gives the shares sh0 = (pk, ctWE) and sh𝑖 = (ct𝑖 , ht𝑖 , 𝑟𝑖 ) for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1 to A.

– Finally, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except the challenger samples ct𝑖 ← PKE.Encrypt(pkPKE, 0) for all 𝑖 where 𝛽𝑖 = 0.

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an execution of experiment Hyb(𝑏 )

𝑖
with adversary A. We

now analyze the hybrid distributions.

Lemma 6.5. If ΠPKE is CPA-secure, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all
𝜆 ∈ N, | Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some 𝑏 ∈ {0, 1} and non-negligible 𝜀. We use A

to construct an efficient adversary B for the CPA-security game.

• At the beginning of the game, algorithm B receives the security parameter 1
𝜆
and a public key pk.

• Algorithm B starts running algorithm A. Algorithm A outputs a policy 𝑃 ∈ P (on 𝑛-bit inputs), inputs

𝛽1, . . . , 𝛽𝑛 ∈ {0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

• For each 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, algorithm B makes an encryption query on the pair of messages (1, 0)
to obtain the ciphertext ct𝑖 . For 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1, algorithm B samples 𝑟𝑖

r← {0, 1}𝜌 and computes

ct𝑖 ← PKE.Encrypt(pk, 1; 𝑟𝑖 ).

• The challenger then computes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛), 𝜇𝑏).

• Next, the challenger computes (ht1, . . . , ht𝑛) ←WE.Preprocess(ctWE,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛)) . It then
gives the shares sh0 = (pk, ctWE) and sh𝑖 = (ct𝑖 , ht𝑖 , 𝑟𝑖 ) for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1 to A.

• At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

By definition, the challenger samples (pk, sk) ← PKE.KeyGen(1𝜆), so the distribution of pk is perfectly simulated.

In the reduction, if the challenger responds with encryptions of 1 (i.e., ct𝑖 ← PKE.Encrypt(pk, 1)), then algorithm

B perfectly simulates the distribution of Hyb(𝑏 )
0

. Alternatively, if the challenger responds with encryptions of 0

(i.e., ct𝑖 ← PKE.Encrypt(pk, 1)), then algorithm B perfectly simulates the distribution of Hyb(𝑏 )
1

. Thus, algorithm

B breaks CPA-security of ΠPKE with the same advantage 𝜀. □

Lemma 6.6. If ΠPKE satisfies perfect correctness and ΠWE is secure, then there exists a negligible function negl(·) such
that for all 𝜆 ∈ N, | Pr[Hyb(0)

1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the witness encryption security game:

1. On input the security parameter 1
𝜆
, algorithmB starts running algorithmA on input 1

𝜆
. AlgorithmA outputs a

policy 𝑃 ∈ P (on 𝑛-bit inputs), inputs 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

2. Algorithm B samples (pk, sk) ← PKE.KeyGen(1𝜆). Then, for each 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, algorithm B
computes ct𝑖 ← PKE.Encrypt(pk, 0). If 𝛽𝑖 = 1, algorithm B samples 𝑟𝑖

r← {0, 1}𝜌 and computes ct𝑖 ←
PKE.Encrypt(pk, 1; 𝑟𝑖 ).

3. Algorithm B outputs the circuit 𝐶ValidShare [pk], the policy 𝑃 , the statements (ct1, . . . , ct𝑛), and the messages

𝜇0, 𝜇1. The challenger responds with a ciphertext ctWE.

4. Next, the challenger computes (ht1, . . . , ht𝑛) ←WE.Preprocess(ctWE,𝐶ValidShare [pk], 𝑃, (ct1, . . . , ct𝑛)) . It then
gives the shares sh0 = (pk, ctWE) and sh𝑖 = (ct𝑖 , ht𝑖 , 𝑟𝑖 ) for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1 to A.
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5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

First, we argue that for all 𝑟1, . . . , 𝑟𝑛 ∈ {0, 1}𝜌 , we have 𝑃 (𝐶ValidShare [pk] (ct1, 𝑟1), . . . ,𝐶ValidShare [pk] (ct𝑛, 𝑟𝑛)) = 0 :

• First, for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, there does not exist 𝑟 ∈ {0, 1}𝜌 where 𝐶ValidShare [pk] (ct𝑖 , 𝑟 ) = 1. By defini-

tion, 𝐶ValidShare [pk] (ct𝑖 , 𝑟 ) outputs 1 if and only if PKE.Encrypt(pk, 1; 𝑟 ) = ct𝑖 . However, in this experiment,

whenever 𝛽𝑖 = 0, the challenger constructs ct𝑖 to be an encryption of 0 under pk. Since ΠPKE satisfies perfect

correctness, there does not exist any 𝑟 ∈ {0, 1}𝜌 where ct𝑖 = PKE.Encrypt(pkPKE, 1; 𝑟 ).

• Take any candidate witness (𝑟1, . . . , 𝑟𝑛). Let 𝛽 ′𝑖 = 𝐶ValidShare [pk] (ct𝑖 , 𝑟𝑖 ). By the previous property, we have

that 𝛽 ′𝑖 = 0 whenever 𝛽𝑖 = 0. This means that for all 𝑖 ∈ [𝑛], 𝛽 ′𝑖 ≤ 𝛽𝑖 . Since 𝑃 is monotone, this means that

𝑃 (𝛽 ′
1
, . . . , 𝛽 ′𝑛) ≤ 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, as required.

We conclude that

∀𝑟1, . . . , 𝑟𝑛 ∈ {0, 1}𝜆 : 𝑃 (𝐶ValidShare [pk] (ct1, 𝑟1), . . . ,𝐶ValidShare [pk] (ct𝑛, 𝑟𝑛)) = 0.

In this case, the witness encryption challenger either encrypts the message 𝜇0 or the message 𝜇1. If the challenger com-

putes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (pk1, . . . , pk𝑛), 𝜇0), then algorithmB perfectly simulates an execution

of Hyb(0)
1

. Alternatively, if the challenger computes ctWE ← WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (pk1, . . . , pk𝑛), 𝜇1),
then it perfectly simulates an execution of Hyb(1)

1
. Thus, algorithm B breaks security of witness encryption with

the same advantage 𝜀. □

Security now follows by combining Lemmas 6.5 and 6.6. □

Remark 6.7 (Using Witness Encryption for Trapdoor NP Relations). When the underlying public-key encryp-

tion scheme ΠPKE in Construction 6.2 satisfies an “encryption with randomness recovery” property (i.e., where

the decryption algorithm recovers both the message and the encryption randomness) [HKW20], then the NP
relation 𝐶ValidShare [pk] in Construction 6.2 is a trapdoor NP relation. Specifically, the trapdoor relation is the

circuit 𝐶 [sk] with the secret key sk hard-wired inside it. On input a ciphertext ct, the 𝐶 [sk] circuit computes

(𝜇, 𝑟 ) ← PKE.Decrypt(sk, ct) and outputs 1 if ct = PKE.Encrypt(pk, 1; 𝑟 ) and 0 otherwise. By perfect correctness

of ΠPKE, whenever ct = PKE.Encrypt(pk, 1; 𝑟 ), then decryption recovers (1, 𝑟 ) and 𝐶 [sk] (ct) = 1. Alternatively, if

ct ≠ PKE.Encrypt(pk, 1; 𝑟 ) for some 𝑟 ∈ {0, 1}𝜌 , then 𝐶 [sk] (ct) = 0. Thus, we can instantiate Construction 6.2 with

any succinct witness encryption scheme for batch languages that supports trapdoor NP relations (as opposed to

arbitrary NP relations). Moreover, public-key encryption schemes with randomness recovery can be constructed

from any injective trapdoor function (see [Yao82, HKW20]).

Remark 6.8 (Using a PRG instead of Public-Key Encryption). We can also replace the public-key encryption scheme in

Construction 6.2 with a (sufficiently-expanding) pseudorandom generator. For instance, supposeG : {0, 1}𝜆 → {0, 1}2𝜆
is a secure PRG. Then, instead of taking the shares to be public-key encryptions ct𝑖 of 1 (with the randomness as

the secret key), we define the shares to be 𝑡𝑖 = G(𝑠𝑖 ) where 𝑠𝑖 r← {0, 1}𝜆 is the associated secret key. The relation

𝐶ValidShare then checks that 𝑡𝑖 = G(𝑠𝑖 ). In the security proof, we switch the shares 𝑡𝑖 for the honest parties (i.e., indices

𝑖 where 𝛽𝑖 = 0) to uniform random strings 𝑡𝑖
r← {0, 1}2𝜆 . With overwhelming probability over the choice of 𝑡𝑖 , there

no longer exists 𝑠𝑖 ∈ {0, 1}𝜆 such that G(𝑠𝑖 ) = 𝑡𝑖 , which is sufficient to invoke security of witness encryption. This

approach has the advantage that we can replace the public-key encryption scheme with a PRG, but the resulting

NP relation is no longer a trapdoor NP relation (see Remark 6.7 for more discussion).

Succinct computational secret sharing in the random oracle model. Construction 6.2 assumes the underlying

succinct witness encryption scheme supports local decryption. While our construction for CNF formulas (Construc-

tion 4.1) and for read-once bounded-space Turing machines (Construction 5.8) support this property, our construction

for DNF formulas (Construction 4.12) does not. In Appendix A, we show a variant of Construction 6.2 that works with

any succinct witness encryption scheme (without local decryption), but relies on the random oracle heuristic. Namely,

we show that using the notion of trapdoor proof systems from [FWW23], we can construct a succinct computational

secret sharing scheme from a succinct witness encryption, where the instances for the witness encryption scheme

consist of uniform random strings (and thus, can have a public, compact representation in the random oracle model).

We refer to Appendix A for the construction details and analysis.
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6.2 Distributed Monotone-Policy Encryption
In this section, we describe another application of succinct witness encryption for constructing distributed monotone-

policy encryption. As mentioned in Section 1.1, distributed monotone-policy encryption generalizes notions like

distributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM
+
24]

to arbitrary monotone policies. We give the notion here, and then show a simple construction from a succinct witness

encryption scheme for batch languages.

Definition 6.9 (Distributed Monotone-Policy Encryption). Let 𝜆 be a security parameter, P be a family of monotone

access policies, andM be a message space. We model each policy 𝑃 ∈ P as a monotone Boolean function. A dis-

tributed monotone-policy encryption scheme with policy space P is a tuple of efficient algorithms ΠDMPE = (Setup,
KeyGen, Encrypt,Decrypt) with the following syntax:

• Setup(1𝜆) → pp: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a set of public parameters

pp.

• KeyGen(pp) → (pk𝑖 , sk𝑖 ): On input the public parameters pp, the key-generation algorithm outputs a public

key pk𝑖 and a secret key sk𝑖 .

• Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇) → ct: On input the public parameters pp, a policy 𝑃 ∈ P (on 𝑛-bit inputs), a

list of 𝑛 public keys (pk
1
, . . . , pk𝑛), and a message 𝜇 ∈ M, the encryption algorithm outputs a ciphertext ct.

Note that the input length 𝑛 is determined by 𝑃 and is not fixed by the scheme.

• Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, sk𝑖 )}𝑖∈𝑇 , ct) → 𝜇: On input the public parameters pp, a policy 𝑃 ∈ P (on

𝑛-bit inputs), a list of 𝑛 public keys pk
1
, . . . , pk𝑛 , a list of decryption keys sk𝑖 for 𝑖 ∈ 𝑇 where 𝑇 ⊆ [𝑛], and a

ciphertext ct, the decryption algorithm outputs a message 𝜇 ∈ M.

Moreover, ΠDMPE should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all policies 𝑃 ∈ P (on 𝑛-bit inputs), inputs 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1}
where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 1, all messages 𝜇 ∈ M, all public parameters pp in the support of Setup(1𝜆), any set of

public keys pk𝑖 for 𝑖 ∈ [𝑛] \𝑇 where 𝑇 = {𝑖 ∈ [𝑛] : 𝛽𝑖 = 1}, we have that

Pr

[
Decrypt(pp, 𝑃, (pk

1
, . . . , pk𝑛), {(𝑖, sk𝑖 )}𝑖∈𝑇 , ct) = 𝜇 :

∀𝑖 ∈ 𝑇 : (pk𝑖 , sk𝑖 ) ← KeyGen(pp)
ct← Encrypt(pp, 𝑃, (pk

1
, . . . , pk𝑛), 𝜇)

]
= 1.

• Security: For a security parameter 𝜆, an adversaryA, and a bit𝑏 ∈ {0, 1}, we define the security game as follows:

– Setup: At the beginning of the game, the challenger samples the public parameters pp← Setup(1𝜆) and
initializes a counter ctr = 0 and an (empty) list C = ∅. The list C is used to keep track of corrupted keys.

The challenger gives pp to A.

– Pre-challenge query phase: The adversary can now make the following queries:

∗ Key-generation query: In a key-generation query, the challenger increments the counter ctr = ctr+1
and then samples samples (pkctr, skctr) ← KeyGen(pp) and responds with pkctr.

∗ Corruption query: In a corruption query, the adversary specifies a counter value ctr′ ≤ ctr, and
the challenger replies with skctr′ . The adversary adds ctr′ to C.

– Challenge phase: In the challenge phase, the adversary specifies a policy 𝑃 ∈ P and a pair of messages

(𝜇0, 𝜇1). In addition, for each 𝑖 ∈ [𝑛], algorithm A specifies a public key pk𝑖 or a counter value ctr𝑖 . For
each 𝑖 ∈ [𝑛] where algorithm A specifies a counter value ctr𝑖 ≤ ctr, the challenger sets pk𝑖 = pkctr. The
challenger replies to A with the challenge ciphertext ct∗ ← Encrypt(pp, 𝑃, (pk

1
, . . . , pk𝑛), 𝜇𝑏).

– Post-challenge query phase: The adversary can continue to make corruption queries in this phase.

(Note that post-challenge key-generation queries are not useful).

– Output: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.
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Let 𝛽𝑖 = 1 if the adversary specified a public key pk𝑖 or a corrupted counter value ctr𝑖 where ctr𝑖 ∈ C during

the challenge phase. For indices 𝑖 ∈ [𝑛] where A specified an uncorrupted counter value ctr𝑖 ∉ C, let 𝛽𝑖 = 0.

We say that A is admissible if 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0. We say that ΠDMPE is secure if for all efficient adversaries A,

there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆)

in the above security game.

• Succinctness: There exists a polynomial poly such that for all 𝜆 ∈ N, public parameters pp in the support

of Setup(1𝜆), policies 𝑃 ∈ P (on 𝑛-bit inputs), public keys pk
1
, . . . , pk𝑛 , and messages 𝜇 ∈ M, the size of the

ciphertext ct output by Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇) is |𝜇 | + 𝑜 ( |𝑃 |) · poly(𝜆, log𝑛).

Definition 6.10 (Static Security). Let ΠDMPE be a distributed monotone-policy encryption scheme with policy

space P. We say that ΠDMPE satisfies static security if ΠDMPE is secure against adversaries that does not make any

corruption queries during the query phase. Note that the adversary is still allowed to choose public keys itself (for

any non-accepting subset of parties) during the challenge phase.

Constructing monotone-policy encryption from succinct witness encryption. We can leverage a similar

strategy as used in our construction of computational secret sharing (Construction 6.2) to construct a monotone-policy

encryption scheme from succinct witness encryption together with any public-key encryption scheme. Much like

the case for computational secret sharing (Remark 6.8), we can also replace the public-key encryption scheme with a

PRG instead, though this will require us to instantiate the witness encryption scheme with one that supports general

NP relations as opposed to trapdoor NP relations (see Remark 6.16).

Construction 6.11 (Distributed Monotone-Policy Encryption). Let 𝜆 be a security parameter,M be a message space,

and P be a family of monotone policies. Our construction of monotone-policy encryption relies on the following

primitives:

• Let ΠPKE = (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme.

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a succinct witness encryption scheme for batch languages with

message spaceM and policy family P.

We construct a distributed monotone-policy encryption scheme ΠDMPE = (Setup,KeyGen, Encrypt,Decrypt) with
message spaceM and policy space P as follows:

• Setup(1𝜆): On input the security parameter 𝜆 ∈ N, sample (pkPKE, skPKE) ← PKE.KeyGen(1𝜆) and output

pp = (1𝜆, pkPKE).

• KeyGen(pp): On input the public parameters pp = (1𝜆, pkPKE), the key-generation algorithm samples 𝑟
r←

{0, 1}𝜌 and outputs the public key pk = PKE.Encrypt(pkPKE, 1; 𝑟 ) and the secret key sk = 𝑟 .

• Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇): On input the public parameters pp = (1𝜆, pkPKE), the policy 𝑃 ∈ P (on 𝑛-bit

inputs), a tuple of public keys pk
1
, . . . , pk𝑛 , and a message 𝜇 ∈ M, the encryption algorithm defines the Boolean

circuit𝐶ValidKey [pkPKE] to be the circuit that takes as input a statement ct and a witness 𝑟 ∈ {0, 1}𝜌 and outputs

1 if and only if ct = PKE.Encrypt(pkPKE, 1; 𝑟 ). The encryption algorithm outputs the ciphertext

ct←WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇).

• Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, sk𝑖 )}𝑖∈𝑇 , ct): On input the public parameters pp = (1𝜆, pkPKE), a policy 𝑃 ∈ P

(on 𝑛-bit inputs), the public keys pk
1
, . . . , pk𝑛 , a collection of secret keys {(𝑖, sk𝑖 }𝑖∈𝑇 , and the ciphertext ct, the

decryption algorithm first defines sk𝑖 = 0
𝜌
for all 𝑖 ∈ [𝑛] \𝑇 . Then it outputs the message

𝜇 = WE.Decrypt(ct,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), (sk1, . . . , sk𝑛)).
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Theorem 6.12 (Correctness). If ΠWE is correct, then Construction 6.11 is correct.

Proof. Take any security parameter 𝜆 ∈ N, a policy 𝑃 ∈ P, bits 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1} where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 1, a message

𝜇 ∈ M, any pp = (1𝜆, pkPKE) in the support Setup(1𝜆), and any collection of public keys pk𝑖 for 𝑖 ∈ [𝑛] \𝑇 , where𝑇 =

{𝑖 ∈ [𝑛] : 𝛽𝑖 = 1}. Suppose we sample (pk𝑖 , sk𝑖 ) ← KeyGen(pp) for all 𝑖 ∈ 𝑇 . Then, pk𝑖 = PKE.Encrypt(pkPKE, 1; sk𝑖 ).
Take ct← Encrypt(pp, 𝑃, (pk

1
, . . . , pk𝑛), 𝜇). This means ct←WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇).

Consider now Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, sk𝑖 )}𝑖∈𝑇 , ct):

• By definition Decrypt sets sk𝑖 = 0
𝜌
for all 𝑖 ∈ [𝑛] \𝑇 .

• Since pk𝑖 = PKE.Encrypt(pkPKE, 1; sk𝑖 ) for all 𝑖 ∈ 𝑇 , we have that 𝐶ValidKey [pkPKE] (pk𝑖 , sk𝑖 ) = 1 for all 𝑖 ∈ 𝑇 .
This means 𝛽𝑖 ≤ 𝐶ValidKey (pk𝑖 , sk𝑖 ) for all 𝑖 ∈ [𝑛].

• Since 𝑃 is monotone, this means 1 = 𝑃 (𝛽1, . . . , 𝛽𝑛) ≤ 𝑃 (𝐶ValidKey (pk1, sk1), . . . ,𝐶ValidKey (pk𝑛, sk𝑛)) . Thus
𝑃 (𝐶ValidKey (pk1, sk1), . . . ,𝐶ValidKey (pk𝑛, sk𝑛)) = 1.

• By correctness of ΠWE, the decryption algorithm outputs 𝜇. □

Theorem 6.13 (Static Security). If ΠPKE satisfies perfect correctness and CPA-security and ΠWE satisfies semantic
security, then Construction 6.11 is statically secure.

Proof. Let A be an efficient adversary for the static security game. We begin by defining a sequence of hybrid

experiments, each parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )
0

: This is the static security experiment with the bit 𝑏 ∈ {0, 1}.

– At the beginning of the game, the challenger initializes a counter ctr = 0 and samples pkPKE ←
PKE.KeyGen(1𝜆). The challenger gives pp = (1𝜆, pkPKE) to A.

– Algorithm A can now make key-generation queries to the challenger. On each query, the challenger

increments the counter ctr = ctr + 1. Then it samples 𝑟ctr
r← {0, 1}𝜌 and replies to A with pk∗ctr =

PKE.Encrypt(pkPKE, 1; 𝑟ctr).
– In the challenge phase, algorithm A specifies (a policy) 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],

algorithm A specifies either a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified

a counter value ctr𝑖 , the challenger sets pk𝑖 = pk∗ctr𝑖 . The challenger replies with the challenge ciphertext

ct∗ ←WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇𝑏).
– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except when responding to key-generation queries, the challenger samples pk∗ctr =
PKE.Encrypt(pkPKE, 0; 𝑟ctr).

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an execution of experiment Hyb(𝑏 )

𝑖
with adversary A. We

now analyze the hybrid distributions.

Lemma 6.14. If ΠPKE is CPA-secure, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all
𝜆 ∈ N, | Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some 𝑏 ∈ {0, 1} and non-negligible 𝜀. We use A

to construct an efficient adversary B for the CPA-security game.

1. At the beginning of the game, algorithm B receives the security parameter 1
𝜆
and a public key pkPKE. Algorithm

B initializes a counter ctr = 0.

2. Whenever A makes a key-generation query, algorithm B increments the counter ctr = ctr + 1 and then makes

an encryption query on the pair of messages (1, 0). The challenger replies with the ciphertext pk∗ctr, which B
forwards to A.
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3. In the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],
it also specifies a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified a counter

value ctr𝑖 , algorithm B sets pk𝑖 = pk∗ctr𝑖 . Algorithm B then replies with the challenge ciphertext ct∗ ←
WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇𝑏).

4. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

By definition, the challenger samples (pkPKE, skPKE) ← PKE.KeyGen(1𝜆), so the distribution of pkPKE is perfectly
simulated. In the reduction, if the challenger responds with encryptions of 1 (i.e., pk∗ctr ← PKE.Encrypt(pkPKE, 1)),
then algorithm B perfectly simulates the distribution of Hyb(𝑏 )

0
. Alternatively, if the challenger responds with en-

cryptions of 0 (i.e., pk∗ctr ← PKE.Encrypt(pkPKE, 0)), then algorithm B perfectly simulates the distribution of Hyb(𝑏 )
1

.

Thus, algorithm B breaks CPA-security of ΠPKE with the same advantage 𝜀. □

Lemma 6.15. If A is admissible, ΠPKE satisfies perfect correctness, and ΠWE is secure, then there exists a negligible
function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb(0)

1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the witness encryption security game:

1. On input the security parameter 1
𝜆
, algorithm B initializes a counter ctr = 0.

2. Whenever A makes a key-generation query, algorithm B increments the counter ctr = ctr + 1 and replies with

pk∗ctr ← PKE.Encrypt(pkPKE, 0).

3. In the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛], it
also specifies a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified a counter value ctr𝑖 ,
algorithm B sets pk𝑖 = pk∗ctr𝑖 . Algorithm B gives the circuit 𝐶ValidKey, the policy 𝑃 , the instances (pk1, . . . , pk𝑛),
and the pair of messages 𝜇0, 𝜇1 to the challenger. The challenger responds with a ciphertext ct∗.

4. Algorithm B gives ct∗ to A and outputs whatever A outputs.

First, we argue that for all 𝑟1, . . . , 𝑟𝑛 ∈ {0, 1}𝜌 , we have 𝑃 (𝐶ValidKey [pkPKE] (pk1, 𝑟1), . . . ,𝐶ValidKey [pkPKE] (pk𝑛, 𝑟𝑛)) = 0 :

• First, for all 𝑗 ∈ [ctr], there does not exist 𝑟 ∈ {0, 1}𝜌 such that 𝐶ValidKey [pkPKE] (pk∗𝑗 , 𝑟 ) = 1. By definition,

𝐶ValidKey [pkPKE] (pk∗𝑗 , 𝑟 ) outputs 1 if and only if PKE.Encrypt(pkPKE, 1; 𝑟 ) = pk∗𝑗 . However, in this experiment,

the challenger constructs pk∗𝑗 to be an encryption of 0 under pkPKE. Since ΠPKE satisfies perfect correctness,

there does not exist any 𝑟 ∈ {0, 1}𝜌 where pk∗𝑗 = PKE.Encrypt(pkPKE, 1; 𝑟 ).

• For each 𝑖 ∈ [𝑛], let 𝛽∗𝑖 = 1 if algorithm A chose the public key pk𝑖 . Let 𝛽
∗
𝑖 = 0 if algorithm A specified a

counter value ctr𝑖 for the 𝑖th public key (i.e., pk𝑖 = pk∗𝑗 for some 𝑗 ∈ [ctr]). Since A is admissible, we have that

𝑃 (𝛽∗
1
, . . . , 𝛽∗𝑛) = 0.

• Take any candidate witness (𝑟1, . . . , 𝑟𝑛). Let 𝛽𝑖 = 𝐶ValidKey [pkPKE] (pk𝑖 , 𝑟𝑖 ). By the first property, we have that

𝛽𝑖 = 0 = 𝛽∗𝑖 for all indices 𝑖 ∈ [𝑛] where algorithm A specified a counter value. Since 𝑃 is monotone, this

means that 𝑃 (𝛽1, . . . , 𝛽𝑛) ≤ 𝑃 (𝛽∗1, . . . , 𝛽∗𝑛) = 0, as required.

We conclude that

∀𝑟1, . . . , 𝑟𝑛 ∈ {0, 1}𝜆 : 𝑃 (𝐶ValidKey [pkPKE] (pk1, 𝑟1), . . . ,𝐶ValidKey [pkPKE] (pk𝑛, 𝑟𝑛)) = 0.

In this case, the witness encryption challenger either encrypts the message 𝜇0 or the message 𝜇1. If the challenger com-

putes ct∗ ←WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇0), then algorithmB perfectly simulates an execution

of Hyb(0)
1

. Alternatively, if the challenger computes ct∗ ← WE.Encrypt(1𝜆,𝐶ValidKey [pkPKE], 𝑃, (pk1, . . . , pk𝑛), 𝜇1),
then it perfectly simulates an execution of Hyb(1)

1
. Thus, algorithm B breaks security of witness encryption with

the same advantage 𝜀. □
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Static security now follows by combining Lemmas 6.14 and 6.15. □

Remark 6.16 (Using Witness Encryption for Trapdoor NP Relations). Similar to the case for Construction 6.2 (see

Remark 6.7), the relation 𝐶ValidKey [pkPKE] in Construction 6.11 is a trapdoor NP relation when we instantiate the

underlying public-key encryption scheme with a scheme that supports randomness recovery.

One-round distributed decryption. The decryption process in Construction 6.11 takes all of the secret keys

for users in an authorized set as input. In applications involving mutually distrusting parties, we would want to

support decryption without requiring each individual party to reveal their individual secret key to other parties. One

way to implement this is by having the parties run a multiparty computation protocol to evaluate the decryption

algorithm. The ideal scenario in this setting would be a one-round protocol where each party takes the ciphertext,

independently generates a “partial decryption” share, and then publishes their share. Afterwards, there is a public

decoding algorithm that takes the partial decryption shares from any authorized set of parties and recovers the

message. This type of one-round decryption is a common requirement in multiparty notions such as multi-key

homomorphic encryption [MW16] and threshold encryption with silent setup [GKPW24, ADM
+
24].

In Appendix B, we describe a simple modification of Construction 6.11 to support this type of one-round decryp-

tion process. Namely, using a similar paradigm as [GKPW24, ADM
+
24], we replace each user’s public key with a

verification key for a signature scheme. Each ciphertext in turn has a tag, and the decryption keys associated with

a specific ciphertext consist of signatures on the tag. The same decryption key (i.e., the signing key) can be used to

generate partial decryption shares for arbitrarily-many ciphertexts (and moreover, the partial decryption shares for

one ciphertext cannot be used to compromise security of a different ciphertext).
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A Succinct Computational Secret Sharing in the Random Oracle Model
Our succinct computational secret sharing scheme from Section 6.1 (Construction 6.2) relies on a succinct witness

encryption scheme that supports local decryption. Recall that in Construction 6.2, the public information is a succinct

witness encryption ciphertext encrypted with respect to the statement (ct1, . . . , ct𝑛), where ct𝑖 is part of the share for
user 𝑖 . In particular, each user only know their individual ct𝑖 and not ct𝑗 for 𝑗 ≠ 𝑖 . Thus, when a set of users 𝑆 ⊆ [𝑛]
come together to reconstruct the secret, they only have ct𝑖 for 𝑖 ∈ 𝑆 , and not ct𝑗 for 𝑗 ∉ 𝑆 . As such, reconstruction (i.e.,

the ability to decrypt the witness encryption ciphertext) critically relies on the ability to locally decrypt a ciphertext

given knowledge of only a subset of the statements.

An alternative approach in the random oracle model. An alternative approach to relying on local decryption

is to simply include the statement (ct1, . . . , ct𝑛) as part of the public information sh0. Of course, the scheme is

no longer succinct in this case. However, suppose that the underlying scheme had the property where each ct𝑖
is a uniform random string. In this case, we can rely on the random oracle heuristic to “compress” the statement

(ct1, . . . , ct𝑛). Namely, we simply define ct𝑖 := 𝐻 (𝑖) where 𝐻 is modeled as a random oracle. This would yield a

succinct computational secret sharing scheme in the random oracle model from any succinct witness encryption

scheme (without local decryption). In the context of Construction 6.2, each individual instance ct𝑖 is an encryption

of 1 under a public-key encryption scheme and the associated witness is the randomness 𝑟𝑖 associated with ct𝑖 .
The problem is that if we simply replace ct𝑖 with a uniform random string, then ct𝑖 need not be in the support of

the underlying encryption algorithm. In this case, there may not exist any randomness 𝑟𝑖 that explains ct𝑖 as an
encryption of 1. Thus, we need to replace the public-key encryption scheme with a stronger notion.

Trapdoor proof generator. The work of [FWW23] encountered a similar issue when constructing an optimal broad-

cast encryption scheme from witness encryption (in the random oracle model). To bridge the gap, they introduced

the notion of a trapdoor proof generator. We recall the notion from [FWW23, §5.1] here. A trapdoor proof generator

is defined over a family of sets X = {X𝜆}𝜆∈N. Using a trapdoor, it is possible to generate “proofs” 𝜋𝑥 for elements

𝑥 ∈ X, and moreover, there is a public verification algorithm that verifies the proofs. Moreover, the public parameters

pp of the trapdoor proof generator can be sampled in one of two (computationally) indistinguishable modes:

• Normal mode: In the normal mode, the trapdoor associated with pp can be used to generate proofs 𝜋 for all

but a negligible fraction of elements 𝑥 ∈ X.

• Alternative mode: In the alternative mode, the parameters pp effectively partitions X into two disjoint sets: a

dense set X𝑇 ⊂ X and a sparse pseudorandom set X𝐹 ⊂ X. In addition, there are two sampling algorithms:

(1) SampleTrue which jointly samples an element 𝑥 ∈ X𝑇 together with an accepting proof 𝜋𝑥 for 𝑥 ; and (2)

SampleFalse which samples an element 𝑥 ∈ X𝐹 for which there does not exist any accepting proof 𝜋𝑥 . Finally,

the trapdoor in the alternative mode can be used to decide membership in X𝑇 and X𝐹 .

We give the formal definition below:

Definition A.1 (Trapdoor Proof Generator [FWW23, Definition 5.4]). Let X = {X𝜆}𝜆∈N be a sequence of efficiently-

sampleable sets. A trapdoor proof generator for X is a tuple of polynomial-time algorithms ΠTPG = (Setup,
CreateProof,Verify, SetupAlt, SampleTrue, SampleFalse, TDDecide) with the following properties:

• Setup(1𝜆) → (pp, td): On input the security parameter 𝜆, the setup algorithm outputs a set of public parameters

pp and a trapdoor td. We assume that pp and td implicitly contain a description of 𝜆.

• CreateProof (td, 𝑥) → 𝜋 : On input the trapdoor td and an instance 𝑥 ∈ X𝜆 , the proof creation algorithm outputs

a proof 𝜋 .

• Verify(pp, 𝑥, 𝜋) → 𝑏: On input the public parameters pp, an instance 𝑥 ∈ X𝜆 , and a proof 𝜋 , the verification

algorithm outputs a bit 𝑏 ∈ {0, 1}.

• SetupAlt(1𝜆) → (pp, td): On input the security parameter 𝜆, the alternative setup algorithm outputs a set of

public parameters pp and a trapdoor td. We assume that pp and td implicitly contain a description of 𝜆.
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• SampleTrue(pp) → (𝑥, 𝜋): On input the public parameters pp, this sampling algorithm outputs an instance

𝑥 ∈ X𝜆 together with a proof 𝜋 .

• SampleFalse(pp) → 𝑥 : On input the public parameters pp, this sampling algorithm outputs an instance 𝑥 ∈ X𝜆 .

• TDDecide(td, 𝑥) → 𝑏: On input the trapdoor td and an instance 𝑥 ∈ X𝜆 , the decider algorithm outputs a bit

𝑏 ∈ {0, 1}.

We require ΠTPG satisfy the following properties:

• Correctness: There exists a negligible function negl(·) such that for all 𝜆 ∈ N, we have

Pr

[
Verify(pp, 𝑥, 𝜋) = 1 :

(pp, td) ← Setup(1𝜆), 𝑥 r← X𝜆
𝜋 ← CreateProof (td, 𝑥)

]
.

• Mode indistinguishability: For an adversary A, a security parameter 𝜆, and a bit 𝑏 ∈ {0, 1}, we define the
mode indistinguishability experiment as follows:

– If 𝑏 = 0, the challenger starts by sampling (pp, td) ← Setup(1𝜆). Otherwise, the challenger samples

(pp, td) ← SetupAlt(1𝜆). The challenger gives pp to A.

– Algorithm A can now (adaptively) make sampling queries to the challenger:

∗ Sample true instance: If A requests a true instance, then if 𝑏 = 0, the challenger samples 𝑥
r← X𝜆

and 𝜋 ← CreateProof (td, 𝑥). If 𝑏 = 1, the challenger samples (𝑥, 𝜋) ← SampleTrue(pp). The

challenger replies to A with (𝑥, 𝜋).
∗ Sample false instance: If A requests a false instance, then if 𝑏 = 0, the challenger responds with

𝑥
r← X𝜆 . If 𝑏 = 1, then the challenger responds with 𝑥 ← SampleFalse(pp).

– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say ΠTPG satisfies mode indistinguishability if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆)

in the above security game.

• Trapdoor decidability: The following properties hold:

– Accepting true instances: For all (possibly unbounded) adversariesA, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,

Pr

[
Verify(pp, 𝑥, 𝜋) = 1 ∧ TDDecide(td, 𝑥) ≠ 1 :

(pp, td) ← SetupAlt(1𝜆)
(𝑥, 𝜋) ← A(pp)

]
= negl(𝜆).

– Rejecting false instances: There exists a negligible function negl(·) such that for all 𝜆 ∈ N, it holds that

Pr

[
TDDecide(td, 𝑥) ≠ 0 :

(pp, td) ← SetupAlt(1𝜆)
𝑥 ← SampleFalse(pp)

]
= negl(𝜆).

Fact A.2 (Trapdoor Proof Generator [FWW23, §5.3]). Suppose there exists a public-key encryption scheme with

pseudorandom ciphertexts and a computational non-interactive zero-knowledge (NIZK) proof system for NP. Then,
there exists a trapdoor proof generator. In particular, there exists a trapdoor proof generator assuming polynomial

hardness of the plain LWE assumption.
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Succinct computational secret sharing. By substituting the trapdoor proof generator for the public-key encryption
scheme in Construction 6.2, we obtain a computational secret sharing scheme where the public information sh0 is a
long uniform random string. This in turn yields a succinct computational secret sharing scheme in the random oracle

model (where we derive the long uniform random string in sh0 from the random oracle). In the following description,

we describe our construction with a long uniform random string:

Construction A.3 (Succinct Computational Secret Sharing in the Random Oracle Model). Let 𝜆 be a security parame-

ter, P be a family of monotone access policies, andM be a message space. Our construction of succinct computational

secret sharing relies on the following primitives:

• First, letΠTPG = (TPG.Setup, TPG.CreateProof, TPG.Verify, TPG.SetupAlt, TPG.SampleTrue, TPG.SampleFalse,
TPG.TDDecide) be a trapdoor proof generator over a set system X = {X𝜆}𝜆∈N.

• Next, let ΠWE = (WE.Encrypt,WE.Decrypt) be a succinct witness encryption scheme for batch languages with

message spaceM and policy family P.

We construct a succinct computational secret sharing scheme with message spaceM and policy space P as follows:

• Share(1𝜆, 𝑃, 𝜇): On input the security parameter 𝜆 ∈ N, the policy 𝑃 ∈ P (on 𝑛-bit inputs), and a message

𝜇 ∈ M, the share algorithm proceeds as follows:

– Sample (pp, td) ← TPG.Setup(1𝜆). For each 𝑖 ∈ [𝑛], sample 𝑥𝑖
r← X𝜆 and 𝜋𝑖 ← TPG.CreateProof (td, 𝑥𝑖 ).

– Compute ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pp], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇), where 𝐶ValidShare [pk] (𝑥, 𝜋) outputs 1
if TPG.Verify(pp, 𝑥, 𝜋) = 1 and 0 otherwise.

– Output the public share sh0 = (pp, ctWE, 𝑥1, . . . , 𝑥𝑛) and the individual shares sh𝑖 = 𝜋𝑖 for each 𝑖 ∈ [𝑛].
Note that since 𝑥1, . . . , 𝑥𝑛 are uniform random, we can also sample them as (𝑥1, . . . , 𝑥𝑛) ← 𝐻 (𝜎) where
𝜎

r← {0, 1}𝜆 is a random seed and 𝐻 is modeled as a random oracle. This yields a construction with

succinct shares in the random oracle model.

• Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1): On input the policy 𝑃 (on 𝑛-bit inputs), a string 𝛽 ∈ {0, 1}𝑛 , a public
share sh0 = (pp, ctWE, 𝑥1, . . . , 𝑥𝑛), and shares sh𝑖 = 𝜋𝑖 for each 𝑖 where 𝛽𝑖 = 1, the decryption algorithm sets

𝑤𝑖 = ⊥ for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0. Then it outputs

𝜇 = WE.Decrypt(ctWE,𝐶ValidShare [pp], 𝑃, (𝑥1, . . . , 𝑥𝑛), (𝑤1, . . . ,𝑤𝑛)) .

Theorem A.4 (Correctness). If ΠWE and ΠTPG are correct, then Construction A.3 is (statistically) correct.

Proof. Take any security parameter 𝜆 ∈ N, policy 𝑃 ∈ P (on 𝑛-bit inputs), any input 𝛽 ∈ {0, 1}𝑛 where 𝑃 (𝛽) = 1,

and any message 𝜇 ∈ {0, 1}. Suppose we compute (sh0, sh1, . . . , sh𝑛) ← Share(1𝜆, 𝑃, 𝜇). Consider the value of

Reconstruct(𝑃, 𝛽, sh0, {(𝑖, sh𝑖 )}𝑖∈[𝑛]:𝛽𝑖=1):

• By construction, sh0 = (pp, 𝑥1, . . . , 𝑥𝑛) where (pp, td) ← TPG.Setup(1𝜆) and

ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pp], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇).

Here, 𝑥𝑖
r← X𝜆 and 𝜋𝑖 ← TPG.CreateProof (td, 𝑥𝑖 ). By completeness of ΠTPG, with overwhelming probability,

TPG.Verify(pp, 𝑥, 𝜋) = 1. This means 𝐶ValidShare [pp] (𝑥𝑖 , 𝜋𝑖 ) = 1 for all 𝑖 ∈ [𝑛].

• Since 𝑃 (𝛽) = 1, correctness of witness encryption now ensures that

WE.Decrypt(ctWE,𝐶ValidShare [pk], 𝑃, (𝑥1, . . . , 𝑥𝑛), (𝜋1, . . . , 𝜋𝑛)) = 𝜇. □

Theorem A.5. If ΠWE is semantically secure and ΠTPG satisfies mode indistinguishability and trapdoor decidability,
then Construction A.3 is secure.
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Proof. Let A be an efficient adversary for the security game. We begin by defining a sequence of hybrid experiments,

each parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )
0

: This is the security experiment with the bit 𝑏 ∈ {0, 1}.

– On input the security parameter 1
𝜆
, algorithm A starts by choosing a policy 𝑃 ∈ P (on 𝑛-bit inputs), an

input 𝛽 ∈ {0, 1}𝑛 where 𝑃 (𝛽) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

– The challenger samples (pp, td) ← TPG.Setup(1𝜆). For each 𝑖 ∈ [𝑛], the challenger samples 𝑥𝑖
r← X𝜆

and 𝜋𝑖 ← TPG.CreateProof (td, 𝑥𝑖 ). Finally, the challenger computes

ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇𝑏).

– The challenger gives the public information sh0 = (pp, 𝑥1, . . . , 𝑥𝑛) and the shares sh𝑖 = 𝜋𝑖 for each 𝑖 ∈ [𝑛]
where 𝛽𝑖 = 1 to A.

– Finally, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except the challenger samples (pp, td) ← SetupAlt(1𝜆). Then, for each 𝑖 ∈ [𝑛], the
challenger samples 𝑥𝑖 ← SampleFalse(pp) if 𝛽𝑖 = 0 and (𝑥𝑖 , 𝜋𝑖 ) ← SampleTrue(pp) if 𝛽𝑖 = 1.

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an execution of experiment Hyb(𝑏 )

𝑖
with adversary A. We

now analyze the hybrid distributions.

Lemma A.6. If ΠTPG satisfies mode indistinguishability, then for all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N, | Pr[Hyb(𝑏 )

0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some 𝑏 ∈ {0, 1} and non-negligible 𝜀. We use A

to construct an efficient adversary B for the mode indistinguishability game.

• At the beginning of the game, algorithm B receives the security parameter 1
𝜆
and the public parameters pp.

• Algorithm B starts running algorithm A. Algorithm A outputs a policy 𝑃 ∈ P (on 𝑛-bit inputs), an input

𝛽 ∈ {0, 1}𝑛 where 𝑃 (𝛽) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

• For each 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, algorithm B requests a false instance 𝑥𝑖 from the challenger. For each 𝑖 ∈ [𝑛]
where 𝛽𝑖 = 1, algorithm B requests a true instance (𝑥𝑖 , 𝜋𝑖 ) from the challenger.

• The challenger then computes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pk], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇𝑏).

• Next, the challenger gives the public information sh0 = (pp, 𝑥1, . . . , 𝑥𝑛) and the individual shares sh𝑖 = 𝜋𝑖 for
all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 1 to A.

8

• At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

We consider the two possibilities:

• Suppose the challenger samples (pp, td) ← TPG.Setup(1𝜆), the true instances as 𝑥𝑖
r← X𝜆 and 𝜋𝑖 ←

TPG.CreateProof (td, 𝑥𝑖 ), and the false instances as 𝑥𝑖
r← X𝜆 . Then, algorithm B perfectly simulates the

distribution in Hyb(𝑏 )
0

.

• Conversely, suppose the challenger samples (pp, td) ← TPG.SetupAlt(1𝜆), the true instances as (𝑥𝑖 , 𝜋𝑖 ) ←
TPG.SampleTrue(pp), and the false instances as 𝑥𝑖 ← TPG.SampleFalse(pp). Then, algorithm B perfectly

simulates the distribution in Hyb(𝑏 )
1

.

We conclude that algorithm B breaks mode indistinguishability of ΠTPG with the same advantage 𝜀. □

8
In the case where the instances are derived from the random oracle as (𝑥1, . . . , 𝑥𝑛 ) = 𝐻 (𝜎 ) where 𝜎 r← {0, 1}𝜆 , the reduction algorithm in

this step would program 𝐻 (𝜎 ) to the value of (𝑥1, . . . , 𝑥𝑛 ) obtained from the challenger.
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Lemma A.7. If ΠTPG satisfies trapdoor indistinguishability and ΠWE is secure, then there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb(0)

1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the witness encryption security game:

• On input the security parameter 1
𝜆
, algorithm B starts running algorithmA on input 1

𝜆
. AlgorithmA outputs

a policy 𝑃 ∈ P (on 𝑛-bit inputs), an input 𝛽 ∈ {0, 1}𝑛 where 𝑃 (𝛽) = 0, and two messages 𝜇0, 𝜇1 ∈ M.

• Algorithm B samples (pp, td) ← SetupAlt(1𝜆). Then, for each 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, algorithm B samples

𝑥𝑖 ← TPG.SampleFalse(pp). If 𝛽𝑖 = 1, algorithm B samples (𝑥𝑖 , 𝜋𝑖 ) ← TPG.SampleTrue(pp).

• Algorithm B outputs the circuit 𝐶ValidShare [pp], the policy 𝑃 , the statements (𝑥1, . . . , 𝑥𝑛), and the messages

𝜇0, 𝜇1. The challenger responds with a ciphertext ctWE.

• Next, the challenger gives the public information sh0 = (pp, 𝑥1, . . . , 𝑥𝑛) and the shares sh𝑖 = 𝜋𝑖 for all 𝑖 ∈ [𝑛]
where 𝛽𝑖 = 1 to A.

• At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

First, we argue that for all 𝜋1, . . . , 𝜋𝑛 ∈ {0, 1}∗, we have 𝑃 (𝐶ValidShare [pp] (𝑥1, 𝜋1), . . . ,𝐶ValidShare [pp] (𝑥𝑛, 𝜋𝑛)) = 0 :

• First, for all 𝑖 ∈ [𝑛] where 𝛽𝑖 = 0, we claim that with overwhelming probability over the choice of pp and 𝑥𝑖 ,

there does not exist 𝜋𝑖 where 𝐶ValidShare [pp] (𝑥𝑖 , 𝜋𝑖 ) = 1. First, in Hyb(0)
1

and Hyb(1)
1

, the challenger samples

𝑥𝑖 ← TPG.SampleFalse(pp). BY the trapdoor decidability property, with overwhelming probability (over the

choice of pp and 𝑥𝑖 ), it will be the case that TPG.TDDecide(td, 𝑥𝑖 ) ≠ 0. Suppose moreover that there exists

𝜋𝑖 such that TPG.Verify(pp, 𝑥𝑖 , 𝜋𝑖 ) = 1. Again by trapdoor decidability, this means that with overwhelming

probability (over the choice of pp), TPG.TDDecide(td, 𝑥𝑖 ) ≠ 1. Thus, with overwhelming probability, this

means TDDecide(td, 𝑥𝑖 ) ∉ {0, 1}, which is a contradiction. Hence, we conclude that there does not exist 𝜋𝑖
such that TPG.Verify(pp, 𝑥𝑖 , 𝜋𝑖 ) = 1.

• Take any candidate witness (𝜋1, . . . , 𝜋𝑛). Let 𝛽 ′𝑖 = 𝐶ValidShare [pk] (𝑥𝑖 , 𝜋𝑖 ). By the previous property, we have

that 𝛽 ′𝑖 = 0 whenever 𝛽𝑖 = 0. This means that for all 𝑖 ∈ [𝑛], 𝛽 ′𝑖 ≤ 𝛽𝑖 . Since 𝑃 is monotone, this means that

𝑃 (𝛽 ′
1
, . . . , 𝛽 ′𝑛) ≤ 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0, as required.

We conclude that with overwhelming probability over the choice of pp and 𝑥𝑖 (where 𝛽𝑖 = 0),

∀𝜋1, . . . , 𝜋𝑛 ∈ {0, 1}∗ : 𝑃 (𝐶ValidShare [pp] (ct1, 𝜋1), . . . ,𝐶ValidShare [pp] (ct𝑛, 𝜋𝑛)) = 0.

In this case, the witness encryption challenger either encrypts the message 𝜇0 or the message 𝜇1. If the challenger

computes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pp], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇0), then algorithm B perfectly simulates an execu-

tion of Hyb(0)
1

. Alternatively, if the challenger computes ctWE ←WE.Encrypt(1𝜆,𝐶ValidShare [pp], 𝑃, (𝑥1, . . . , 𝑥𝑛), 𝜇1),
then it perfectly simulates an execution of Hyb(1)

1
. Thus, algorithm B breaks security of witness encryption with

the same advantage 𝜀. □

Security now follows by combining Lemmas A.6 and A.7. □

Remark A.8 (Using Witness Encryption for Trapdoor NP Relations). We note that the NP relation 𝐶ValidShare from

Construction A.3 is a trapdoor NP relation. Namely, the trapdoor relation is the circuit 𝐶 [td] with the trapdoor

hard-wired inside it. On input an input 𝑥 , the circuit simply outputs TPG.TDDecide(td, 𝑥). When the scheme pa-

rameters are sampled in alternative mode (pp, td) ← TPG.SetupAlt(1𝜆) as in the proof of Lemma A.7, the trapdoor

decidability properties on ΠTPG coincide with the requirements for a trapdoor NP relation. This allows us to combine

Construction A.3 with our succinct witness encryption for DNFs (Construction 4.12) to obtain a computational secret

sharing scheme for DNF policies in the random oracle model where the share size scales with size of a single min-term

(and polylogarithmically with the number of min-terms).
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B Monotone-Policy Encryption with One-Round Distributed Decryption
In this section, we show how to extend our monotone-policy encryption scheme to support a one-round distributed

decryption process. As discussed in Section 6.2, our goal is a scheme where each party takes the ciphertext, inde-

pendently generates a decryption share, and then publishes their share. Then there is is a decoding algorithm that

takes the partial decryption shares from any authorized set of parties and recovers the message. The first security

requirement is that any unauthorized set of decryption shares for a given ciphertext should not leak any information

about the associated message. In addition, any collection decryption shares for a ciphertext ct should not leak any

information about a different ciphertext ct′. We now give the formal definition:

Definition B.1 (Distributed Monotone-Policy Encryption with 1-Round Decryption). Let 𝜆 be a security parameter,

P be a family of monotone access policies, andM be a message space. We model each policy 𝑃 ∈ P as a monotone

Boolean function. A distributed monotone-policy encryption scheme that supports 1-round decryption with policy

space P is a tuple of efficient algorithms ΠDMPE-1R = (Setup,KeyGen, Encrypt,GetHint,Decrypt) with the following

syntax:

• Setup(1𝜆) → pp: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a set of public parameters

pp.

• KeyGen(pp) → (pk𝑖 , sk𝑖 ): On input the public parameters pp, the key-generation algorithm outputs a public

key pk𝑖 and a secret key sk𝑖 .

• Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇) → ct: On input the public parameters pp, a policy 𝑃 ∈ P (on 𝑛-bit inputs), a

list of 𝑛 public keys (pk
1
, . . . , pk𝑛), and a message 𝜇 ∈ M, the encryption algorithm outputs a ciphertext ct.

Note that the input length 𝑛 is determined by 𝑃 and is not fixed by the scheme.

• GetHint(pp, sk, ct) → ht𝑖 : On input the public parameters pp, a decryption key sk, and a ciphertext ct, the
hint-computation algorithm outputs a decryption hint ht𝑖 .

• Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, ht𝑖 )}𝑖∈𝑇 , ct) → 𝜇: On input the public parameters pp, a policy 𝑃 ∈ P (on

𝑛-bit inputs), a list of 𝑛 public keys pk
1
, . . . , pk𝑛 , a list of decryption hints ht𝑖 for 𝑖 ∈ 𝑇 where 𝑇 ⊆ [𝑛], and a

ciphertext ct, the decryption algorithm outputs a message 𝜇 ∈ M.

Moreover, ΠDMPE-1R should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all policies 𝑃 ∈ P (on 𝑛-bit inputs), all inputs 𝛽 ∈ {0, 1}𝑛
where 𝑃 (𝛽) = 1, all messages 𝜇 ∈ M, all public parameters pp in the support of Setup(1𝜆), any set of public

keys pk𝑖 for 𝑖 ∈ [𝑛] \𝑇 where 𝑇 = {𝑖 ∈ [𝑛] : 𝛽𝑖 = 1}, we have that

Pr

Decrypt(pp, 𝑃, (pk1, . . . , pk𝑛), {(𝑖, ht𝑖 )}𝑖∈𝑇 , ct) = 𝜇 :
∀𝑖 ∈ 𝑇 : (pk𝑖 , sk𝑖 ) ← KeyGen(pp)

ct← Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇)

∀𝑖 ∈ 𝑇 : ht𝑖 ← GetHint(pp, (𝑖, sk𝑖 ), ct)

 = 1.

• Security: For a security parameter 𝜆, an adversaryA, and a bit𝑏 ∈ {0, 1}, we define the security game as follows:

– Setup: At the beginning of the game, the challenger samples the public parameters pp← Setup(1𝜆) and
initializes a counter ctr = 0 and an (empty) list C = ∅. The list C is used to keep track of corrupted keys.

The challenger gives pp to A.

– Pre-challenge query phase: The adversary can now make the following queries:

∗ Key-generation query: In a key-generation query, the challenger increments the counter ctr = ctr+1
and then samples samples (pkctr, skctr) ← KeyGen(pp) and responds with pkctr.

∗ Corruption query: In a corruption query, the adversary specifies a counter value ctr′ ≤ ctr, and
the challenger replies with skctr′ . The challenger also adds ctr′ to C.

∗ Hint-computation query: In a hint-computation query, the adversary specifies a ciphertext ct and
a counter ctr′ ≤ ctr. The challenger replies with GetHint(pp, skctr′ , ct).
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– Challenge phase: In the challenge phase, the adversary specifies a policy 𝑃 ∈ P and a pair of messages

(𝜇0, 𝜇1). In addition, for each 𝑖 ∈ [𝑛], algorithm A specifies a public key pk𝑖 or a counter value ctr𝑖 . For
each 𝑖 ∈ [𝑛] where algorithm A specifies a counter value ctr𝑖 ≤ ctr, the challenger sets pk𝑖 = pkctr. The
challenger replies to A with the challenge ciphertext ct∗ ← Encrypt(pp, 𝑃, (pk

1
, . . . , pk𝑛), 𝜇𝑏).

– Post-challenge query phase: The adversary can continue to make corruption and hint-computation

queries. If the adversary requests the decryption hint for a counter ctr′ and the challenge ciphertext ct∗,
the challenger also adds ctr′ to C.

– Output: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

Let 𝛽𝑖 = 1 if the adversary specified a public key pk𝑖 or if it chose a counter value ctr𝑖 where ctr𝑖 ∈ C during

the challenge phase (where C is the corrupted set at the very end of the security game). For indices 𝑖 ∈ [𝑛]
where A specified an uncorrupted counter value ctr𝑖 ∉ C, let 𝛽𝑖 = 0. We say that A is admissible if 𝑃 (𝛽) = 0.

We say that ΠDMPE-1R is secure if for all efficient adversaries A, there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

• Succinctness: There exists a polynomial poly such that for all 𝜆 ∈ N, public parameters pp in the support

of Setup(1𝜆), policies 𝑃 ∈ P (on 𝑛-bit inputs), public keys pk
1
, . . . , pk𝑛 , and messages 𝜇 ∈ M, the size of the

ciphertext ct output by Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇) is |𝜇 | + 𝑜 ( |𝑃 |) · poly(𝜆, log𝑛).

Definition B.2 (Static Security). Let ΠDMPE-1R be a distributed monotone-policy encryption with 1-round decryption

and policy space P. For an adversary A and a bit 𝑏 ∈ {0, 1}, we define the static security game to be the standard

security game from Definition B.1, except on each key-generation query, the adversary must pre-declare whether

the particular key will be corrupted or not. Specifically, on each key-generation query, the adversary additionally

specifies a bit 𝛾 ∈ {0, 1}. Let 𝛾1, . . . , 𝛾ctr ∈ {0, 1} be the bits associated with the key-generation queries the adversary

makes. The adversary is admissible for the static security game if the following conditions hold:

• For all corrupted indices ctr ∈ C, we have 𝛾ctr = 1.

• Let 𝛽𝑖 = 1 if the adversary specified a public key pk𝑖 or if it chose a counter value ctr𝑖 where 𝛾ctr𝑖 = 1 during

the challenge phase. For indices 𝑖 ∈ [𝑛] where A specified an (uncorrupted) counter value ctr𝑖 where 𝛾ctr𝑖 = 0,

let 𝛽𝑖 = 0. We require that 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0.

We say that ΠDMPE-1R is statically secure if for all efficient adversaries A, there exists a negligible function such that

for all 𝜆 ∈ N,
| Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

Note that in this game, the adversary is allowed to make pre-challenge hint-computation queries with respect to

any public key pkctr output by a key-generation query (irrespective of the value of the bit 𝛾ctr).

Puncturable signatures. Our construction relies on (strongly) puncturable signatures (also known as “all-but-one

signatures”) [GVW19, ADM
+
24]. We begin by recalling the definition:

Definition B.3 (Puncturable Signature [GVW19, ADM
+
24, adapted]). A strongly puncturable (or all-but-one) sig-

nature scheme with message spaceM = {{0, 1}𝜌 (𝜆) }𝜆∈N is a tuple of efficient algorithms ΠSPS = (KeyGen,KeyGenP,
Sign,Verify) with the following syntax:

• KeyGen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a key pair

(vk, sk).

• KeyGenP(1𝜆,𝑚∗) → (vk, sk): On input a security parameter 𝜆 and a message𝑚∗ ∈ {0, 1}𝜌 , the punctured-key-
generation algorithm outputs a key pair (vk, sk).
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• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message 𝑚 ∈ {0, 1}𝜌 , the signing algorithm outputs a

signature 𝜎 .

• Verify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ {0, 1}𝜌 , and a signature 𝜎 , the verification

algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ {0, 1}𝜌 , it holds that

Pr

[
Verify(vk,𝑚, 𝜎) = 1 :

(vk, sk) ← KeyGen(1𝜆)
𝜎 ← Sign(sk,𝑚)

]
= 1.

• Punctured correctness: There exists a negligible function negl(·) such that for all 𝜆 ∈ N and all𝑚∗ ∈ {0, 1}𝜌 ,
it holds that

Pr

[
Verify(vk,𝑚∗, 𝜎∗) = 1 for some 𝜎∗ ∈ {0, 1}∗ : (vk, sk) ← KeyGenP(1𝜆,𝑚∗)

]
= negl(𝜆).

• Punctured key indistinguishability: For an adversary A and a bit 𝑏 ∈ {0, 1}, we define the punctured key

indistinguishability experiment as follows:

1. On input a security parameter 𝜆, the adversary A outputs a message𝑚∗ ∈ {0, 1}𝜌 and sends it to the

challenger.

2. If 𝑏 = 0, the challenger samples (vk, sk) ← KeyGen(1𝜆). If 𝑏 = 1, the challenger samples (vk, sk) ←
KeyGenP(1𝜆,𝑚∗). It gives vk to A.

3. The adversary A can now make signing queries on messages𝑚 ∈ {0, 1}𝜌 \ {𝑚∗}. On each signing query,

the challenger replies with 𝜎 ← Sign(sk,𝑚).
4. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSPS satisfies punctured key indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that

|Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆)

in the punctured key indistinguishability experiment.

Distributed monotone-policy encryption construction. We now show how to construct a statically-secure

distributed monotone-policy encryption scheme that supports 1-round decryption using a succinct witness encryption

scheme for batch languages. Our construction is a variant of Construction 6.11 where we replace the public-key

encryption scheme with a puncturable signature scheme. Our approach leverages a similar strategy as that used

to construct the succinct signature-based witness encryption scheme from [ADM
+
24]. Namely, a user’s public key

pk consists of a signature verification keys and their secret key sk is the associated signing key. An encryption of a

message𝑚 with respect to user public keys pk
1
, . . . , pk𝑛 and decryption policy 𝑃 consists of a (random) tag 𝜏 together

with a witness encryption ctWE of the message with respect to (pk
1
, . . . , pk𝑛) and the policy 𝑃 . Decryption is only

possible if one holds signatures on the tag 𝜏 that verify with respect to an authorized subset of public keys (i.e., a set of

public keys that satisfy the access policy 𝑃 ). In this case, the decryption hints for any user is the signature on the tag 𝜏 .

In the following construction, we take the tag 𝜏 to be the verification key vkOTS for a (one-time) signature scheme and

include a signature on ctWE that verifies with respect to vkOTS. Using a one-time signature enforces a non-malleability

property on the ciphertexts, and is useful for supporting post-challenge hint queries. This is a standard approach that

is commonly used in the setting of building non-malleable and CCA-secure public-key encryption [DDN91, Sah99].

We give the formal construction below:

Construction B.4 (Distributed Monotone-Policy Encryption with 1-Round Decryption). Let 𝜆 be a security parame-

ter,M be a message space, and P be a family of monotone policies. Our construction of distributed monotone-policy

encryption with 1-round decryption relies on the following properties:
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• Let ΠOTS = (OTS.KeyGen,OTS.Sign,OTS.Verify) be a one-time signature scheme. Let 𝜌 = 𝜌 (𝜆) be the length
of the verification key output by ΠOTS.

• Let ΠSPS = (SPS.KeyGen, SPS.KeyGenP, SPS.Sign, SPS.Verify) be a strongly puncturable signature scheme

with message space {0, 1}𝜌 . Let 𝜅 = 𝜅 (𝜆) be the signature size.

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a succinct witness encryption scheme for batch languages with

message spaceM and policy family P.

We construct a distributed monotone-policy encryption scheme with 1-round decryption ΠDMPE-1R = (Setup,KeyGen,
Encrypt,GetHint,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm outputs pp = 1
𝜆
.

• KeyGen(pp): On input the public parameters pp = 1
𝜆
, the key-generation algorithm samples (vkSPS, skSPS) ←

SPS.KeyGen(1𝜆). It outputs the public key pk = vkSPS and the secret key skSPS.

• Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇): On input the public parameters pp = 1

𝜆
, the policy 𝑃 ∈ P (on 𝑛-bit inputs),

a tuple of public keys pk
1
, . . . , pk𝑛 , and a message 𝜇 ∈ M, the encryption algorithm proceeds as follows:

– Sample a key-pair (vkOTS, skOTS) ← OTS.KeyGen(1𝜆) for a one-time signature scheme

– Define the Boolean circuit 𝐶ValidSig [vkOTS] to be the circuit that takes as input a statement vkSPS and a

witness 𝜎SPS ∈ {0, 1}𝜅 and outputs 1 if and only if SPS.Verify(vkSPS, vkOTS, 𝜎SPS) = 1.

– Compute the ciphertext ctWE ←WE.Encrypt(1𝜆,𝐶ValidSig [vkOTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇) and the signature

𝜎OTS ← OTS.Sign(skOTS, ctWE)

Finally, it outputs the ciphertext ct = (vkOTS, ctWE, 𝜎OTS).

• GetHint(pp, sk, ct): On input the public parameters pp = 1
𝜆
, the secret key sk = skSPS, and a ciphertext

ct = (vkOTS, ctWE, 𝜎OTS), the hint-computation algorithm first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1

and outputs ⊥ if not. Otherwise, it outputs ht = 𝜎SPS ← SPS.Sign(skSPS, vkOTS).

• Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, ht𝑖 )}𝑖∈𝑇 , ct): On input the public parameters pp = 1

𝜆
, a policy 𝑃 ∈ P

(on 𝑛-bit inputs), the public keys pk
1
, . . . , pk𝑛 , a collection of hints {(𝑖, ht𝑖 )}𝑖∈𝑇 , and the ciphertext ct =

(vkOTS, ctWE, 𝜎OTS), the decryption algorithm first defines ht𝑖 = 0
𝜅
for all 𝑖 ∈ [𝑛] \𝑇 . Then it outputs the message

𝜇 = WE.Decrypt(ct,𝐶ValidSig [vkOTS], 𝑃, (pk1, . . . , pk𝑛), (ht1, . . . , ht𝑛)) .

Theorem B.5 (Correctness). If ΠOTS, ΠSPS, and ΠWE are correct, then Construction B.4 is correct.

Proof. Take any security parameter 𝜆 ∈ N, a policy 𝑃 ∈ P, input bits 𝛽1, . . . , 𝛽𝑛 ∈ {0, 1}𝑛 where 𝑃 (𝛽1, . . . , 𝛽𝑛) = 1,

a message 𝜇 ∈ M, and any collection of public keys pk𝑖 for 𝑖 ∈ [𝑛] \𝑇 , where 𝑇 = {𝑖 ∈ [𝑛] : 𝛽𝑖 = 1}. Let pp = 1
𝜆
.

Suppose we sample the following quantities:

• Sample (pk𝑖 , sk𝑖 ) ← KeyGen(pp) for all 𝑖 ∈ 𝑇 . By definition, this means pk𝑖 = pkSPS,𝑖 and sk𝑖 = skSPS,𝑖 where
(vkSPS,𝑖 , skSPS,𝑖 ) ← SPS.KeyGen(1𝜆).

• Take ct← Encrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), 𝜇). This means ct = (vkOTS, ctWE, 𝜎OTS) where

(vkOTS, skOTS) ← OTS.KeyGen(1𝜆)
ctWE ←WE.Encrypt(1𝜆,𝐶ValidSig [vkOTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇)
𝜎OTS ← OTS.Sign(skOTS, ctWE).

• Let ht𝑖 ← GetHint(pp, sk𝑖 , ct) for each 𝑖 ∈ 𝑇 . By correctness of ΠOTS, OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. Thus,

for all 𝑖 ∈ [𝑇 ], ht𝑖 = 𝜎SPS,𝑖 ← SPS.Sign(skSPS,𝑖 , vkOTS).
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Consider now Decrypt(pp, 𝑃, (pk
1
, . . . , pk𝑛), {(𝑖, ht𝑖 )}𝑖∈𝑇 , ct):

• By definition, Decrypt sets ht𝑖 = 0
𝜅
for all 𝑖 ∈ [𝑛] \𝑇 .

• By correctness of ΠSPS, we have SPS.Verify(vkSPS,𝑖 , vkOTS, 𝜎SPS,𝑖 ) = 1 for all 𝑖 ∈ 𝑇 . This means

𝐶ValidSig [vkOTS] (vkSPS,𝑖 , 𝜎SPS,𝑖 ) = 1

for all 𝑖 ∈ 𝑇 . Since 𝛽𝑖 = 0 for 𝑖 ∉ 𝑇 , we conclude that 𝛽𝑖 ≤ 𝐶ValidSig [vkOTS] (pk𝑖 , ht𝑖 ) for all 𝑖 ∈ [𝑛].

• Since 𝑃 is monotone, this means

1 = 𝑃 (𝛽1, . . . , 𝛽𝑛) ≤ 𝑃 (𝐶ValidSig [vkOTS] (pk1, ht1), . . . ,𝐶ValidSig [vkOTS] (pk𝑛, ht𝑛)).

• By correctness of ΠWE, the decryption algorithm outputs 𝜇. □

Theorem B.6 (Static Security). Suppose ΠOTS is one-time strongly unforgeable, ΠSPS satisfies punctured correctness
and punctured key indistinguishability, and ΠWE is secure. Then Construction B.4 is statically secure.

Proof. Let A be an efficient adversary for the static security game. We begin by defining a sequence of hybrid

experiments, each parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )
0

: This is the static security experiment with bit 𝑏 ∈ {0, 1}:

– At the beginning of the game, the challenger initializes a counter ctr = 0 and gives pp = 1
𝜆
to A.

– Algorithm A can now make queries to the challenger:

∗ Key-generation query: WhenA makes a key-generation query, it must specify a bit 𝛾 ∈ {0, 1}. The
challenger increments the counter ctr = ctr + 1 and then samples (vkctr, skctr) ← SPS.KeyGen(1𝜆).
It sets pkctr = vkctr and responds to A with pkctr.

∗ Corruption query: On input a counter ctr′ ≤ ctr, the challenger responds with skctr.
∗ Hint-computation query: On input a counter ctr′ ≤ ctr and a ciphertext ct = (vkOTS, ctWE, 𝜎OTS),
the hint-computation algorithm first checks thatOTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If not, it responds

with ⊥. Otherwise, it responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS).
– In the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],

algorithm A specifies either a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified

a counter value ctr𝑖 , the challenger sets pk𝑖 = pk∗ctr𝑖 . The challenger constructs the challenge ciphertext
as follows:

∗ Sample a key-pair (vk∗OTS, sk∗OTS) ← OTS.KeyGen(1𝜆) for a one-time signature scheme

∗ Compute the ciphertext ct∗WE ←WE.Encrypt(1𝜆,𝐶ValidSig [vk∗OTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇) and the signa-

ture 𝜎∗OTS ← OTS.Sign(sk∗OTS, ct∗WE)
The challenger replies with the challenge ciphertext ct∗ = (vk∗OTS, ct∗WE, 𝜎

∗
OTS).

– Algorithm A can continue to make queries to the challenger. These are handled exactly as in the

pre-challenge phase.

– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except the challenger samples the key-pair (vk∗OTS, sk∗OTS) ← OTS.KeyGen(1𝜆) for
the challenge ciphertext at the very beginning of the game. Then, when answering hint-computation queries

on (ctr′, ct) where ct = (vkOTS, ctWE, 𝜎OTS), the challenger additionally checks the following:

– If the query is in the pre-challenge phase, the challenger responds with ⊥ if vkOTS = vk∗OTS.

– If the query is in the post-challenge phase, the challenger responds with ⊥ if vkOTS = vk∗OTS and 𝛾ctr′ = 0.
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• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

, except when answering key-generation queries where 𝛾 = 0 (i.e., a key for an

uncorrupted user), the challenger samples (vkctr, skctr) ← SPS.KeyGenP(1𝜆, vk∗OTS).

We write Hyb(𝑏 )
𝑖
(A) to denote the output distribution of an execution of experiment Hyb(𝑏 )

𝑖
with adversary A. We

now analyze the hybrid distributions.

Lemma B.7. IfA is admissible and ΠOTS is one-time strongly unforgeable, then for all 𝑏 ∈ {0, 1}, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏 )
0
(A) = 1] − Pr[Hyb(𝑏 )

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. By construction, Hyb(𝑏 )

0

and Hyb(𝑏 )
1

are identical experiments unless one of the following two events occur:

• Algorithm A make a pre-challenge hint-computation query on ctr′ and ct = (vkOTS, ctWE, 𝜎OTS) where
OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1 and vkOTS = vk∗OTS.

• Algorithm A makes a post-challenge hint-computation query on ctr′ and ct = (vkOTS, ctWE, 𝜎OTS) where
𝛾ctr′ = 0, OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1 and vkOTS = vk∗OTS.

Thus, in an execution of Hyb(𝑏 )
0

or Hyb(𝑏 )
1

, algorithm A will trigger one or more of these events with probability

at least 𝜀. We use A to construct an efficient adversary B that breaks the one-time unforgeability of ΠOTS:

1. At the beginning of the security game, algorithm B receives a verification key vk∗OTS.

2. Algorithm A sets ctr = 0 and pp = 1
𝜆
. It starts running A on input pp. Whenever algorithm A makes a query,

algorithm B proceeds as follows:

• Key-generation query: WhenAmakes a key-generation query algorithmB increments the counter ctr =
ctr+1. Then it samples (vkctr, skctr) ← SPS.KeyGen(1𝜆). It sets pkctr = vkctr and responds toA with pkctr.

• Corruption query: On input a counter ctr′ ≤ ctr, algorithm B responds with skctr.

• Hint-computation query: On input a counter ctr′ ≤ ctr and a ciphertext ct = (vkOTS, ctWE, 𝜎OTS), the
hint-computation algorithm first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If not, it replies with

output ⊥. Otherwise, if vkOTS = vk∗OTS, then algorithm B halts with output (ctWE, 𝜎OTS). Otherwise, it
responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS).

3. During the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],
algorithm A specifies either a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified a

counter value ctr𝑖 , algorithm B sets pk𝑖 = pk∗ctr𝑖 . Algorithm B then computes

ct∗WE ←WE.Encrypt(1𝜆,𝐶ValidSig [vk∗OTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇

Algorithm B make a signing query on message ctWE to its challenger and receives a signature 𝜎∗OTS. It gives
the challenge ciphertext ct∗ = (vk∗OTS, ct∗WE, 𝜎

∗
OTS) to A.

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm B responds to corrup-

tion queries using the same procedure described above. For a hint-computation query on a counter ctr′ ≤ ctr
and a ciphertext ct = (vkOTS, ctWE, 𝜎OTS), algorithm B first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1.

If not, it responds with ⊥. Otherwise, if vkOTS = vk∗OTS and 𝛾ctr′ = 0, then algorithm B halts with output

ctWE, 𝜎OTS). Otherwise, it responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS). It responds to A with 𝜎SPS.

By construction, the challenger samples (vk∗OTS, sk∗OTS) ← OTS.KeyGen(1𝜆) whichmatches the specification inHyb(𝑏 )
0

and Hyb(𝑏 )
1

. Next, the key-generation and corruption queries are handled using the same procedure as in Hyb(𝑏 )
0

and Hyb(𝑏 )
1

. Moreover, in the challenge phase, the challenger would compute 𝜎∗OTS ← OTS.KeyGen(sk∗OTS, ct∗WE),
which again matches the distribution in Hyb(𝑏 )

0
and Hyb(𝑏 )

1
. We conclude that B perfectly simulates the challenger’s

behavior in Hyb(𝑏 )
0

, so with probability 𝜀, one of the two events above will occur with probability as least 𝜀:
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• Suppose A make a pre-challenge hint-computation query on ctr′ and ct = (vkOTS, ctWE, 𝜎OTS) where we have
OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1 and vkOTS = vk∗OTS. Since this is a pre-challenge query, algorithm B has not

made any signing queries to its oracle yet. This means (ctWE, 𝜎OTS) is a valid forgery for vk∗OTS.

• SupposeA makes a post-challenge hint-computation query on ctr′ and ct = (vkOTS, ctWE, 𝜎OTS) where 𝛾ctr′ = 0,

OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1 and vkOTS = vk∗OTS. Since A is admissible for the static security game,

𝛾ctr′ = 0, and this is a post-challenge query, it must be the case that ct ≠ ct∗. This means either ctWE ≠ ct∗WE
or 𝜎OTS ≠ 𝜎∗OTS. Correspondingly (ctWE, 𝜎OTS) is a valid forgery for vk∗OTS. Since there is the possibility that

ctWE = ct∗WE (but 𝜎OTS ≠ 𝜎
∗
OTS), we rely on strong unforgeability here.

Thus, we conclude that if either of the two events defined above occurs, algorithm B successfully breaks one-time

strong unforgeability of ΠOTS. The claim follows. □

Lemma B.8. If A is admissible and ΠSPS satisfies punctured key indistinguishability, then for all 𝑏 ∈ {0, 1}, there exists
a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(𝑏 )
1
(A) = 1] − Pr[Hyb(𝑏 )

2
(A) = 1] | = negl(𝜆).

Proof. Let𝑄 be a bound on the number of key-generation queries algorithmA makes. We now define an intermediate

sequence of hybrid experiments indexed by 𝑖 ∈ [0, 𝑄]:

• Hyb(𝑏 )
1,𝑖

: Same as Hyb(𝑏 )
1

, except the challenger responds to the first 𝑖 key-generation queries that algorithm

A makes using the specification in Hyb(𝑏 )
2

.

We now show that for all 𝑖 ∈ [𝑄], Hyb(𝑏 )
1,𝑖−1 and Hyb(𝑏 )

𝑖
are computationally indistinguishable. Suppose for some

index 𝑖 ∈ [𝑄], we have
| Pr[Hyb(𝑏 )

1,𝑖−1 (A) = 1] − Pr[Hyb(𝑏 )
1,𝑖
(A) = 1] | ≥ 𝜀

for some non-negligible 𝜀. We use A to construct an efficient adversary B for the punctured key indistinguishability

game:

1. Algorithm B initializes a counter ctr = 0 and samples (vk∗OTS, sk∗OTS) ← OTS.KeyGen(1𝜆). It gives vk∗OTS to the
challenger and receives a key vk∗SPS.

2. Algorithm B starts running algorithmA with input pp = 1
𝜆
. Whenever algorithmA makes a query, algorithm

B proceeds as follows:

• Key-generation query: WhenA makes a key-generation query with corruption bit 𝛾 ∈ {0, 1}, algorithm
B increments the counter ctr = ctr + 1. Then it proceeds as follows:

– Suppose 𝛾 = 1. Then it samples (vkctr, skctr) ← SPS.KeyGen(1𝜆).
– Suppose 𝛾 = 0. If ctr < 𝑖 , then it samples (vkctr, skctr) ← SPS.KeyGenP(1𝜆, vk∗OTS). If 𝛾 > 𝑖 , then it

samples (vkctr, skctr) ← SPS.KeyGen(1𝜆). If 𝛾 = 𝑖 , then it sets vkctr = vk∗SPS.

Algorithm B replies to A with vkctr.

• Corruption query: If A makes a corruption query on an index ctr′ ≤ ctr, algorithm B aborts with

output 0 if 𝛾ctr′ = 0. Otherwise, it responds with skctr′ .

• Hint-computation query: If A makes a hint-computation query on a counter ctr′ ≤ ctr and a cipher-

text ct = (vkOTS, ctWE, 𝜎OTS), algorithm B first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If not, it

responds with ⊥. Otherwise, it proceeds as follows:
– If vkOTS = vk∗OTS, algorithm B responds with ⊥.
– Otherwise, if ctr′ ≠ 𝑖 or if 𝛾ctr′ = 1, then algorithm B responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS).
– Finally, if ctr′ = 𝑖 and 𝛾ctr′ = 0, algorithm B makes a signing query on the message vkOTS to receive

a signature 𝜎SPS. It responds to A with 𝜎SPS.
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3. During the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],
algorithm A specifies either a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified a

counter value ctr𝑖 , algorithm B sets pk𝑖 = pk∗ctr𝑖 . Algorithm B then computes

ct∗WE ←WE.Encrypt(1𝜆,𝐶ValidSig [vk∗OTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇)
𝜎∗OTS ← OTS.Sign(sk∗OTS, ct∗WE).

Algorithm B responds to A with the challenge ciphertext ct∗ = (vk∗OTS, ct∗WE, 𝜎
∗
OTS).

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm B responds to corrup-

tion queries using the same procedure described above. For a hint-computation query on a counter ctr′ ≤ ctr
and a ciphertext ct = (vkOTS, ctWE, 𝜎OTS), algorithm B first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If

not, it responds with ⊥. Otherwise, it proceeds as follows:

• If vkOTS = vk∗OTS and 𝛾ctr′ = 0, then algorithm B responds with ⊥.
• Otherwise, if ctr′ ≠ 𝑖 or if 𝛾ctr′ = 1, then algorithm B responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS).
• Finally, if ctr′ = 𝑖 and 𝛾ctr′ = 0, then algorithm B makes a signing query on the message vkOTS to receive

a signature 𝜎SPS. It responds to A with 𝜎SPS.

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm A also outputs.

By construction, algorithm B does not make any signing queries on vk∗OTS, so it is a valid adversary for the punctured

key indistinguishability game. Next, algorithm B responds to corruption queries on counters ctr where 𝛾ctr = 0 with

⊥ (rather than the associated secret key). However, whenA is admissible, it is not allowed to issue corruption queries

on ctr where 𝛾ctr = 0. Thus, as long as A is admissible, the behavior of B perfectly coincides with the specification in

Hyb(𝑏 )
1,𝑖−1 and Hyb(𝑏 )

1,𝑖
. Now, if the challenger samples (vk∗SPS, sk∗SPS) ← SPS.KeyGen(1𝜆), then algorithm B perfectly

simulates an execution of Hyb(𝑏 )
1,𝑖−1 whereas if the challenger samples (vk∗SPS, sk∗SPS) ← SPS.KeyGenP(1𝜆, vk∗OTS), then

algorithmB perfectly simulates an execution ofHyb(𝑏 )
1,𝑖

. We conclude thatB breaks punctured key indistinguishability

with the same advantage. Finally, algorithm B is efficient so 𝑄 = poly(𝜆). Lemma B.8 now follows by a hybrid

argument. □

Lemma B.9. If A is admissible, ΠSPS satisfies punctured correctness, and ΠWE is secure, then there exists a negligible
function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(0)
2
(A) = 1] − Pr[Hyb(1)

2
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(0)
2
(A) = 1] − Pr[Hyb(1)

2
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the witness encryption security game:

1. On input the security parameter 1
𝜆
, algorithm B initializes a counter ctr = 0 and samples (vk∗OTS, sk∗OTS) ←

OTS.KeyGen(1𝜆). It gives vk∗OTS to the challenger and receives a key vk∗SPS.

2. Algorithm B starts running algorithmA with input pp = 1
𝜆
. Whenever algorithmA makes a query, algorithm

B proceeds as follows:

• Key-generation query: WhenA makes a key-generation query with corruption bit 𝛾 ∈ {0, 1}, algorithm
B increments the counter ctr = ctr + 1. Then it proceeds as follows:

– If 𝛾 = 0, it samples (vkctr, skctr) ← SPS.KeyGenP(1𝜆, vk∗OTS).
– If 𝛾 = 1, it samples (vkctr, skctr) ← SPS.KeyGen(1𝜆).

Algorithm B replies to A with vkctr.

• Corruption query: If A makes a corruption query on an index ctr′ ≤ ctr, algorithm B responds with

skctr′ .
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• Hint-computation query: If A makes a hint-computation query on a counter ctr′ ≤ ctr and a ci-

phertext ct = (vkOTS, ctWE, 𝜎OTS), algorithm B first checks that OTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If

not, it responds with ⊥. If vkOTS = vk∗OTS, it also responds with ⊥. Otherwise, it responds with

𝜎SPS ← SPS.Sign(skctr′ , vkOTS).

3. During the challenge phase, algorithm A specifies a policy 𝑃 and a pair of messages 𝜇0, 𝜇1. For each 𝑖 ∈ [𝑛],
algorithm A specifies either a public key pk𝑖 or a counter value ctr𝑖 . For each 𝑖 ∈ [𝑛] where A specified a

counter value ctr𝑖 , algorithm B sets pk𝑖 = pk∗ctr𝑖 . Algorithm B gives the circuit 𝐶ValidSig [vk∗OTS], the policy
𝑃 , the instances (pk

1
, . . . , pk𝑛), and the pair of messages 𝜇0, 𝜇1 to the challenger. The challenger replies with

ct∗WE. Finally, algorithm B computes 𝜎∗OTS ← OTS.Sign(sk∗OTS, ct∗WE), and responds to A with the challenge

ciphertext ct∗ = (vk∗OTS, ct∗WE, 𝜎
∗
OTS).

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm B responds to corrup-

tion queries using the same procedure described above. For a hint-computation query on a counter ctr′ ≤ ctr and
a ciphertext ct = (vkOTS, ctWE, 𝜎OTS), algorithmB first checks thatOTS.Verify(vkOTS, ctWE, 𝜎OTS) = 1. If𝛾ctr′ = 0

and vkOTS = vk∗OTS, then it also responds with ⊥. Otherwise, it responds with 𝜎SPS ← SPS.Sign(skctr′ , vkOTS).

5. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm A also outputs.

First, we argue that for all 𝜎1, . . . , 𝜎𝑛 ∈ {0, 1}𝜅 ,

𝑃
(
𝐶ValidSig [vk∗OTS] (pk1, 𝜎1), . . . ,𝐶ValidSig [vk∗OTS] (pk𝑛, 𝜎𝑛)

)
= 0. (B.1)

Let 𝛾1, . . . , 𝛾ctr be the corruption bits associated with the adversary’s key-generation queries. We proceed as follows:

• First, for all 𝑗 ∈ [ctr] where 𝛾 𝑗 = 0, there does not exist 𝜎 ∈ {0, 1}𝜅 where 𝐶ValidSig [vk∗OTS] (pk𝑗 , 𝜎) = 1. By

definition, 𝐶ValidSig [vk∗OTS] (pk𝑗 , 𝜎) = 1 only if SPS.Verify(pk𝑗 , vk∗OTS, 𝜎) = 1. However, when 𝛾 𝑗 = 0, algorithm

B samples (pk𝑗 , sk𝑗 ) ← SPS.KeyGen(1𝜆, vk∗OTS). By punctured correctness of ΠSPS, with overwhelming prob-

ability over the choice of (pk𝑗 , sk𝑗 ), there does not exist 𝜎 where SPS.Verify(pk𝑗 , vk∗OTS, 𝜎) = 1. The claim now

holds by a union bound over all of the key-generation queries 𝑗 ∈ [ctr] where 𝛾 𝑗 = 0.

• For each 𝑖 ∈ [𝑛], let 𝛽𝑖 = 1 if the adversary specified the public key pk𝑖 in the challenge phase or if it chose

a counter value ctr𝑖 where 𝛾ctr𝑖 = 1. Let 𝛽𝑖 = 0 otherwise. By admissibility, we have that 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0.

• Take any candidate witness (𝜎1, . . . , 𝜎𝑛). Let 𝛽 ′𝑖 = 𝐶ValidSig [vk∗OTS] (pk𝑖 , 𝜎𝑖 ). From the first property, on all indices

𝑖 ∈ [𝑛] where algorithm A specified a counter value ctr𝑖 where 𝛾ctr𝑖 = 0, with overwhelming probability,

𝛽 ′𝑖 = 𝐶ValidSig [vk∗OTS] (pk𝑖 , 𝜎𝑖 ) = 0 = 𝛽𝑖 . On indices 𝑖 ∈ [𝑛] where algorithm A chosen the public key pk𝑖 or a
counter value ctr𝑖 where 𝛾ctr𝑖 = 1, we have 𝛽𝑖 = 1. We conclude that for all 𝑖 ∈ [𝑛], 𝛽 ′𝑖 ≤ 𝛽𝑖 . Since 𝑃 is monotone,

this means

𝑃 (𝛽 ′
1
, . . . , 𝛽 ′𝑛) ≤ 𝑃 (𝛽1, . . . , 𝛽𝑛) = 0,

as required.

Thus, for all 𝜎1, . . . , 𝜎𝑛 ∈ {0, 1}𝜆 , Eq. (B.1) holds. In this case, the witness encryption challenger encrypts either 𝜇0
or 𝜇1. If ct∗WE ←WE.Encrypt(1𝜆,𝐶ValidSig [vk∗OTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇0), then algorithm B simulates an execution of

Hyb(0)
2

with overwhelming probability. Conversely, if ct∗WE ←WE.Encrypt(1𝜆,𝐶ValidSig [vk∗OTS], 𝑃, (pk1, . . . , pk𝑛), 𝜇1),
then simulates an execution of Hyb(1)

2
with overwhelming probability. Algorithm B breaks witness encryption with

the same advantage 𝜀. □

Static security now follows by combining Lemmas B.7 to B.9. □
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