Succinct Witness Encryption for Batch Languages and Applications

Lalita Devadas® Abhishek Jain™ Brent Waters™ David J. Wu$

Abstract

Witness encryption allows one to encrypt a message to an NP relation R and a statement x. The corresponding
decryption key is any valid NP witness w. In a succinct witness encryption scheme, we require that the size of the
ciphertext be sublinear in the size of the NP relation. Currently, all realizations of succinct witness encryption for NP
rely on strong assumptions such as pseudorandom obfuscation, extractable witness encryption, or differing-inputs
obfuscation. Notably, none of these notions are known from standard assumptions.

In this work, we consider a relaxation of succinct witness encryption for NP to the setting of batch NP. In this
setting, one encrypts to an NP relation R together with K statements x1, . .., xg. In the basic version, one can decrypt
if they have a witness wy, ..., wk for all K statements. The succinctness requirement is that the size of the ciphertext
should be sublinear in the number of instances K, but is allowed to grow with the size of the NP relation (i.e., the size of
a single instance). More generally, we can also impose a (monotone) policy P: {0, 1}X — {0,1} over the K instances.
In this case, decryption is possible only if there exists wi, ..., wg such that P(R(x1, w1),..., R(xk, wg)) = 1.

In this work, we initiate a systematic study of succinct witness encryption for batch languages. We start with two
simple constructions that support CNF and DNF policies based on plain witness encryption in conjunction with a some-
where statistically sound batch argument for NP or a function-binding hash function. Then, using indistinguishability
obfuscation, we show how to support policies that can be computed by read-once bounded-space Turing machines.
The latter construction is in fact a unique witness map for monotone-policy batch NP, and as such, also gives a SNARG
for monotone-policy batch NP where the size of the common reference string is sublinear in the number of instances.

Finally, we demonstrate some immediate applications of succinct witness encryption for batch languages. We
construct new succinct computational secret sharing schemes for CNFs, DNFs, and weighted threshold policies. We
also show how to build distributed monotone-policy encryption, a notion that generalizes recent trustless primitives
like distributed broadcast encryption and threshold encryption with silent setup.

1 Introduction

In a witness encryption scheme (for NP) [GGSW13], a user can encrypt a message to an NP statement x. Any-
one who knows an associated witness w can decrypt the ciphertext and recover the message. If the statement
is false, then the message is computationally hidden. Witness encryption has been used to build a broad set of
cryptographic primitives such as public-key encryption and generalizations such as identity-based encryption,
attribute-based encryption, broadcast encryption [GGSW13, FWW23, WW24], oblivious transfer [BGI*17], laconic
arguments [FNV17, BISW18, LMP24], and null obfuscation [WZ17, GKW17].

The witness size barrier. In witness encryption, the size of the ciphertext generally scales with the size of the
NP witness. This is true for constructions based on indistinguishability obfuscation (i0) [GGH*13], multilinear
maps [GGSW13, GLW14], and lattice-based assumptions [CVW18, Tsa22, VWW?22]. At a high level, we can view a
witness encryption ciphertext as a program that takes an NP witness as input, checks if the witness is valid, and if so,
outputs the message. Since this program takes the NP witness as input, the ciphertext size in existing constructions of
witness encryption scale with the witness size (and more broadly, the size of the circuit computing the NP relation).

“MIT. Email: 1ali@mit.edu.

TNTT Research and Johns Hopkins University. Email: abhishek@cs . jhu. edu.

#UT Austin and NTT Research. bwaters@cs.utexas. edu.

SUT Austin. Email: dwu4@cs . utexas . edu. Part of this work was done while visiting NTT Research.

A natural approach to overcome this witness-size dependency in the ciphertext size is to represent the NP relation
as a Turing machine, where the description length of the machine is independent of the witness size. For instance, the
ciphertext could be an obfuscated Turing machine that reads the witness and outputs the message if the witness is valid.
While we can build witness encryption in this way using iO for Turing machines [BGL*15, CHJV15, KLW15, GS18],
for general computations, the size of the obfuscated Turing machine still scales with the length of the input to the
machine. Thus, these approaches still run into the witness size barrier. Using differing-inputs obfuscation [ABG*13]
or extractable witness encryption [GKP*13], we can overcome this input-size barrier for iO for Turing machines.
However, neither of these notions are currently known from standard assumptions.

Succinct witness encryption. Very recently, Branco et al. [BDJ*25] introduced the notion of succinct witness
encryption where the size of the ciphertext is sublinear in the witness size. Moreover, they show how to overcome
the witness size barrier and construct succinct witness encryption for general NP relations from a notion called
pseudorandom obfuscation, which can be viewed as an ideal obfuscation for pseudorandom functions (i.e., the ob-
fuscated program is computationally independent of the input program). While [BDJ*25] shows the feasibility of
succinct witness encryption for NP, it relies on the new notion of pseudorandom obfuscation which we do not know
how to instantiate using standard assumptions. The only such instantiations from [BDJ*25, AKY24] is based on
learning with errors (LWE) together with the private-coin evasive LWE assumption. The work of [BDJ*25] also shows
that pseudorandom obfuscation for arbitrary pseudorandom functions is impossible. As such, the security of their
specific construction necessarily relies on a carefully-tailored formulation of private-coin evasive LWE. Moreover,
a sequence of recent works [VWW22, BUW24, BDJ*25, AMYY25, HJL25, HHY25] have raised significant questions
on the plausibility of private-coin evasive LWE. Thus, a natural question to ask is whether we can build succinct
witness encryption from standard cryptographic assumptions.

1.1 Our Results

In this work, we conduct a systematic study of succinct witness encryption for subclasses of NP. Specifically, we
consider batch languages, where instead of encrypting to a single NP statement, one instead encrypts to a batch
of K statements xy, ..., xg. Decryption succeeds if one knows valid witnesses w; for some subset of the statements.
The succinctness requirement is that the ciphertext scales sublinearly with the total number of statements K, but
we do allow the ciphertext to scale with the size of a single witness. In some sense, this is the same type of relaxation
considered in the study of batch arguments (BARGs) for NP [BHK17], where the goal is to give a succinct proof of
a batch of statements with a proof whose size scales sublinearly with the number of instances.

The basic version of our notion requires the decrypter to know a witness for every statement in order to decrypt.
However, we can consider more general decryption policies such as a threshold policy where one needs to know ¢-out-
of-n witnesses in order to decrypt. Most generally, we consider monotone policies where the encryption algorithm
takes the statements x1, . . ., xx together with a monotone policy P: {0,1}X — {0, 1}, and decryption is successful only
if there exist witnesses wy, . . ., wg such that P(C(xy, wy), ..., C(xk, wk)) = 1. Here C is the circuit that implements the
associated NP relation. This setting is the analog of monotone-policy batch arguments [BBK"23, NWW24, NWW25]
in the setting of succinct witness encryption.

The recent work of [ADM*24] considers a conceptually-similar notion of succinct witness encryption for batch
languages, but their work has two key restrictions. First they focus on witness encryption for a specific cryptographic
relation (namely, knowledge of a signature) and second, they only consider threshold policies. Their work gives a
construction from iO for Turing machines. In this work, our focus is on constructing succinct witness encryption
for batch NP and we also explore broader policy classes. We give constructions for simple policy families using plain
witness encryption and constructions for more expressive policies (e.g., monotone policies that can be computed
by read-once bounded-space Turing machines) using iO.

Constructions of succinct witness encryption. In this work, we provide three constructions of succinct witness
encryption for batch languages for different policy families. Our first two constructions support CNF and DNF policies
and are based on (plain) witness encryption. Our third construction relies on iO and supports any monotone policy
that can be computed by a read-once log-space Turing machine as well as policies like weighted thresholds (with
poly(4)-bit weights). We summarize the key features of our constructions below:

« Conjunctions of local predicates. Our first construction of succinct witness encryption supports conjunctions
of local monotone predicates. Specifically, consider a policy P: {0, 1}X — {0, 1} of the form

P(Br,....) = Pi(Bs,) A -~ A Pe(Bs,),

where each P; is a monotone predicate that depends on a subset S; C [K] of the inputs, and we write ,E s, to
denote the subset of i, ..., fk indexed by S;. An encryption of a message p with respect to a Boolean relation
C: {0,1}"x{0,1}" — {0, 1}, policy P, and instances x1, . .., xx € {0, 1}" has size |u|+poly(A, |C|, s, log c), where
s is the size of the largest predicate P;. For instance, when each predicate P; depends on a constant number of
input variables, then s = O(1) and the size of the ciphertext is poly(4, |C|,log |P|), which scales with the size of
a single instance and only polylogarithmically with the number of instances. This captures important special
cases where the predicate P is a conjunction or a 3-CNF formula. We construct our succinct witness encryption
scheme for conjunctions of local predicates from plain witness encryption and a somewhere-statistically-sound
batch argument for NP (e.g., [WW22]; see Section 1.2 for a description of the somewhere-statistically-soundness
requirement).

+ Disjunction of local predicates. We then consider the dual notion of succinct witness encryption for
disjunctions of local monotone predicates.! Specifically, our construction supports policies of the form

P(Br,....) = Pr(Bs,) V -~ V Pe(Bs,),

where each P; is a monotone predicate that depends on a subset S; C [K] of the inputs. An encryption of a
message p with respect to a Boolean relation C, policy P, and instances x1, . . ., xk has size |p|+poly(4, |C|, s, log ¢),
where s is the size of the largest predicate P;. Once again, the ciphertext size scales with the size of a single
instance and the size of the largest predicate, and only polylogarithmically with the number of predicates.
This constructions captures notions like DNF formulas as a special case. We construct our succinct witness
encryption scheme for disjunctions of local predicates from plain witness encryption and a function-binding
hash function [FWW23]; the latter can be built from any leveled homomorphic encryption scheme.

+ Read-once bounded-space Turing machine policies from i0. Our final construction supports monotone
policies that can be computed by a read-once bounded-space Turing machine. Specifically, suppose P: {0, 1}X —
{0, 1} is a policy that can be computed by a read-once Turing machine with S-bits of space. Then an encryption of
a message y1 with respect to a Boolean relation C, policy P, and instances xi, . . ., xg has size ||+ poly(A, |C], 2°).
Note that the size of the ciphertext scales exponentially with the space usage, so this scheme is tailored for policies
that can be computed by read-once Turing machines with O(log 1)-bits of space. For instance, this captures
policies such as threshold policies. Technically, our scheme is more general and can support monotone policies
computable by read-once Turing machines where the set of unreachable states has a compact description. For
instance, this allows our scheme to also support weighted threshold policies with A-bit weights (i.e., weights with
magnitude 2%). Our construction here relies on iO for circuits together with somewhere-statistically-binding
(SSB) hash functions [HW15].

Succinct unique witness maps for monotone-policy batch NP. Our iO-based construction for read-once
bounded-space Turing machines is more general and in particular, gives a succinct unique witness map [CPW20]
for monotone-policy batch NP with respect to policies computable by read-once bounded-space Turing machines. A
unique witness map for an NP relation deterministically maps all witness for an NP statement onto a single “canonical”
witness. There is a public verification algorithm that decides whether a candidate witness is the canonical witness
for a statement. The soundness requirement is that for a false statement, an efficient adversary cannot produce a
witness that satisfies the verification relation. In this work, we show how to construct a succinct unique witness map
for monotone-policy batch NP where the policy can be computed by a read-once bounded-space Turing machine.
The succinctness requirement is that the size of the common reference string (CRS) for the unique witness map is

ITechnically, this construction only supports “trapdoor NP relations” (see Definition 4.11) where we assume there is an efficient algorithm that
can decide the instance with the help of a trapdoor. This is a subclass of NP, but one that suffices for the cryptographic applications of succinct
witness encryption we consider in this work (Section 6).

sublinear in K and and the size of the canonical witness for K instances has size poly(4,log K). Notably, the size of
the canonical witness is fully succinct (independent of the size of the NP relation). A succinct unique witness map
for monotone-policy batch NP with policy family # immediately yields the following:

+ A succinct witness encryption scheme for batch NP with policy family # (see Remark 5.3). This follows via
the same “or-proof with hard-core predicate” transformation in [CPW20] (who described the implication from
a unique witness map for NP to witness encryption for NP).

« A succinct non-interactive argument (SNARG) for monotone-policy batch NP with policy family # where
the size of the CRS is sublinear in the number of instances (see Remark 5.2). Previously, SNARGs for batch
NP with a sublinear-size CRS were only known for conjunction policies [GSWW22, DWW24]. Our work
gives the first construction that supports policies like weighted thresholds. Even without full succinctness (i.e.,
monotone-policy BARGs where the proof size can scale with the size of the NP relation and just needs to be
sublinear in the number of instances), previous constructions [BBK*23, NWW24, NWW25] also required a
CRS whose size scales linearly with the number of instances.

Applications of succinct witness encryption for batch languages. We then highlight two immediate applications
of succinct witness encryption for batch languages. The first is to succinct computational secret sharing [ABI* 23]
and the second is a notion we call distributed monotone-policy encryption, which is a generalization of notions like
distributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM*24]:

Succinct computational secret sharing. In a succinct computational secret sharing scheme [ABI*23], a dealer
can share a secret with K parties with respect to a monotone access policy P. Thereafter, any subset of parties that
satisfies the access policy can come together and reconstruct the secret while the shares of any unauthorized set
of users should computationally hide the message. The succinctness requirement is that the size of each share should
be sublinear in the number of parties and the description size of P. A succinct witness encryption scheme for batch
NP with policy family # immediately implies a computational secret sharing scheme for the same family . Thus,
our work gives a succinct computational secret sharing scheme for monotone CNF and DNF formulas from plain
witness encryption (together with the LWE assumption) as well as for monotone policies computable by read-once
log-space Turing machines from iO (and SSB hash functions). Our construction for DNFs additionally assumes the
parties share a long, but reusable common random string, which can be compressed using a random oracle.

Previously, the works of [HIJ"16, BCG"19, ASY22] show how to use pseudorandom correlation generators based
on iO to build succinct computational secret sharing for general monotone policies in a setting where parties have
access to a long, reusable common random string (or alternatively, in the random oracle model). In the plain model,
the work of [ABI"23] shows how to construct succinct computational secret sharing for CNFs using either RSA or
i0. For DNF policies, the work of [ABI"23] give a construction with a public share whose size is linear in the policy
size. Our constructions improve upon these approaches as follows:

« For k-CNF policies (with constant k), we give a construction based on witness encryption in the plain model.
This is the first construction that does not use iO or the RSA assumption.

« For k-DNF policies (for any constant k), we obtain a construction from witness encryption in the random
oracle model. Previous constructions either relied on iO in the random oracle model [HIJ*16, BCG*19, ASY22]
or on one-way functions but with a long (message-dependent) public share [ABI*23]. Strictly speaking, the
construction of [ABI*23] does not satisfy the standard succinctness requirement for succinct computational
secret sharing which requires all shares to be sublinear in the size of the policy.

« Using iO, we obtain the first succinct computational secret sharing scheme for weighted threshold policies
where the share size is poly(A, log W) in the plain model and W is the magnitude of the weights. Previously, this
was only known from iO in the random oracle model [HIJ*16, BCG*19, ASY22]. Technically, our construction
supports any policy family that can be computed by a read-once, log-space Turing machine.?

2The actual class we capture is more general (see Section 1.2), and includes weighted thresholds (which is not captured generically by a read-once,
log-space Turing machine when the weights are w(log A)-bits).

Distributed monotone-policy encryption. Distributed monotone-policy encryption is a generalization of dis-
tributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM*24].
Specifically, in a threshold encryption scheme with silent setup, individual users each choose a public/secret key-pair
(pk;, sk;). Each user publishes their public key pk; in a public key directory. Later on, an encrypter can select any
subset of public keys {pk;};cs and a threshold t < |S| and encrypt a message p to this set. The guarantee is that
any set of at least ¢ users in the set S can decrypt and recover the message p, while any subset of less than t users
are unable to do so. Moreover, the size of the ciphertext should be succinct (scaling independently of the size of the
number of public keys in S). Distributed broadcast encryption is the special case where the threshold ¢ = 1 (i.e., any
individual user in the set S can decrypt).

Existing constructions of distributed monotone-policy encryption have thus far been limited to simple policies:
threshold encryption [GKPW24, ADM*24] or distributed broadcast encryption [BZ14, FWW23, KMW23, CW24,
CHW?25, WW25b]. Using succinct witness encryption for batch languages, we immediately obtain the first con-
structions that can support more general policies including CNFs and DNFs from witness encryption, and weighted
thresholds and more from iO.

1.2 Technical Overview

We begin with an overview of our constructions and show how to use succinct witness encryption for batch languages
to realize other cryptographic primitives.

Succinct witness encryption for conjunctions. As a warm-up, we show how to construct succinct witness
encryption for conjunctions from plain witness encryption and a somewhere-statistically-sound batch argument
(BARG). In a somewhere-statistically-sound BARG for NP [WW22], a prover can prove a batch of K NP statements
X1, ..., xg with a proof whose size scales sublinearly with K. Moreover, the public parameters for the BARG can be
programmed with a special index i such that the BARG is statistically sound on index i. In other words, when the
CRS is binding on index i, with overwhelming probability over the choice of i, there does not exist® an accepting
proof for any batch of instances (xi, ..., xx) where x; is false. The special index i is computationally hidden from the
view of the prover. In some sense, a BARG proof 7 can be viewed as a “compressed” witness for the tuple (xi, .. ., xx).
We leverage this to construct a succinct witness encryption scheme for conjunctions:

+ Suppose we want to encrypt a message p to instances (xi, ..., xx) for an NP relation R. We want decryption
to be possible only if the user knows a witness for all K instances.

« We compress the instances by hashing them. Let h be a hash of (x, ..., xg). We assume that the hash function
supports local openings (i.e., it is possible to open h to any x; with an opening of size poly(A, log K, |x;)).

« The ciphertext is a witness encryption ciphertext for the NP relation that verifies a BARG proof on K instances,
where the witness for instance i consists of a purported statement x;, a local opening of x; with respect to the
hash h, and a witness w; for x;. The BARG relation would check the validity of the local opening to x; and
then check that R(x;, w;) = 1.

Correctness follows immediately from completeness of the BARG. Succinctness follows from succinctness of the
BARG and the hash function. Security relies on security of the underlying witness encryption scheme and somewhere-
statistical-soundness of the BARG. Specifically, we show that if any individual instance x; is false, then there does not
exist a BARG proof that verifies (with respect to the hash digest h). To argue this, we require that the hash function
be somewhere statistically binding [HW15] (namely, the hash key can be programmed at a hidden index i such that
any hash h can only be opened to one particular value at position i) and the BARG to be somewhere statistically
sound. Then, we proceed as follows:

« Take any (x1, ..., xx) where x; is false. First, we program the hash function to be statistically binding at index
i and similarly, we program the BARG to be somewhere statistically sound on index i.

30ther BARG constructions such as [CJJ21b, CGJ*23] only ensure somewhere computational soundness which stipulates that such proofs are
hard to find for an efficient adversary.

« Let h be an SSB hash of (x3, . .., xg). The encryption algorithm encrypts with respect to the honestly-computed
hash h. Since h is statistically binding on index i, there does not exist a valid opening o; of h to any string
x; # x; at index i.

. Now, the i instance of the BARG is false, since it consists of either an invalid local opening of h to some
xlf # x;, or a valid opening of h to the false statement x;. Since the BARG is statistically sound on index i, there
does not exist an accepting BARG proof.

« Thus, the plain witness encryption scheme is being applied to a false statement (since a witness would be an
accepting BARG proof), so we can appeal to semantic security of the plain witness encryption scheme.

This immediately gives a succinct witness encryption for conjunctions. The construction naturally generalizes to
CNFs and conjunctions of local predicates, and we give the details in Section 4.1.

Succinct witness encryption for disjunctions. Next, we turn to the setting of disjunctions. Here, we show how
to combine plain witness encryption with a function-binding hash function [FWW23] to obtain a succinct witness
encryption scheme for disjunctions. Essentially, the function-binding hash function plays the role of the index BARG
for compressing the instances. Function-binding hash function (for disjunctions) generalize SSB hash functions by
(statistically) binding to a function of the input. Specifically, they have the following syntax:

« Like SSB hash functions, a user can use the hash key to compute a hash h of an input (x1, ..., xx) and produce
a succinct local opening of x; with respect to the hash.

« Next, the hash key can be sampled to be function binding for a specific function g. Like [FWW?23], we consider
disjunctions of the form

flen..xk) = \/ g(xi),

i€[K]
where g is some predicate. The function binding property now states that if h is a hash of (x7, ..., x;;) where
f(x},...,x;) = 0, then there does not exist an opening to any x;+ at any index i* € [K] where g(x) = 1.

Moreover, the hash key hides the associated function f.
To construct a succinct witness encryption scheme for disjunctions, we now proceed as follows:

« Suppose we want to encrypt y to instances (xi, ..., xx) with respect to an NP relation R. We want to support
decryption if the user know a witness w; for any instance x;.

« The encrypter starts by computing a hash h of (xi, ..., xx) using the function-binding hash function. Then, the
encrypter prepares a witness encryption of the message p with respect to the NP relation that takes as input a
purported statement x;, an opening of x; with respect to the hash h, and a witness w; for x;. The witness encryp-
tion simply checks that that the local opening is valid and that R (x;, w;) = 1. The size of the ciphertext grows
with the size of the verification circuit for the function-binding hash function and the size of the NP relation |R|.

Security of the above construction relies on the function-binding property of the hash function. Here, we will need
to additionally assume that the NP relation R is a “trapdoor NP relation:” namely, given some trapdoor information,
there is an efficient algorithm that decides membership in the NP language. Many cryptographic languages are
trapdoor NP relations (e.g., the set of strings that are encryptions of 1 under a public-key encryption scheme). As
we discuss later (see also Section 6), when using witness encryption to build other cryptographic primitives, it is
typically applied to a cryptographic language. Indeed, both of the applications we consider in this work (to succinct
computational secret sharing and to distributed monotone-policy encryption) can be instantiated from succinct
witness encryption for batch trapdoor NP relations.

To prove security of this construction, we start by fixing a false instance (xy, ..., xg). Let Cig be the trapdoor-
decision algorithm associated with R. Namely, Ci4(x) = 1 if and only if there exists a witness w where R(x, w) = 1.
Since (x1,...,xk) is false, this means C4(x;) = 0 for all i € [K]. Suppose we now program the function-binding hash
function to be function-binding on the function f(x1,...,xx) = V ek Cid(x;). Now, if h is a hash of (x1, ..., xk), the
function-binding property says there cannot be any opening of h to a statement x; where Ci4(x;) = 1. Correspondingly,

the only openings that exist for h are to statements X; where R (x;, w;) = 0 for all w;. Thus, there does not exist a valid
witness for the witness encryption relation, and security follows from security of the witness encryption scheme.

Similar to our construction for conjunctions, this scheme readily generalizes to support disjunctions of arbitrary
local monotone predicates. We provide the full details and formal analysis in Section 4.2.

Unique witness maps for read-once Turing machines. Our main construction is a unique witness map based
on iO for monotone-policy batch NP that supports any policy that can be computed by a read-once bounded-space
Turing machine. For our applications, we require two types of succinctness: the common reference string for the
unique witness map must be sublinear in the number of instances K, and the size of the canonical witness for a batch
of statements (xi, ..., xx) should be poly(4,log K), and be essentially independent of the size of the NP relation or
the size of the associated policy. In our construction, the size of the public parameters will scale with 25 where S
is the space usage of the Turing machine. As we see later, the size actually scales with the description length of the
set of unreachable states associated with the policy, which for certain policy families, is much smaller than 2°. An
important example of this is the class of weighted thresholds (see Remark 5.7).

The common reference string (CRS) for our unique witness map consists of two (obfuscated) programs: (1) a
prover program that is used to map witnesses for a batch of K statements together with an associated policy onto
a canonical witness; and (2) a verification program for verifying a canonical witness. Since we require the CRS size
to be sublinear in K, we cannot publish an obfuscated program that reads all K instances at once. Instead, similar
to [GSWW22, DWW24] (which consider SNARGs for batch NP with respect to conjunction policies), the prover
program reads one statement/witness at a time. After reading each statement/witness, it then outputs a representation
of its internal state together with a signature on it. The evaluator then invokes the prover program on the next
instance. More concretely, the programs behave as follows:

« First, we assume the NP relation (expressed as a Boolean circuit C that computes the NP relation) is hard-coded
in the prover and verification programs.

« We model a policy P: {0,1}¥ — {0,1} as a read-once Turing machine with S bits of space. Concretely, we
represent it as a tuple (Stepy, ..., Stepg, Cinit, Cacc), Where Step;: {0, 1}% x {0,1} — {0,1}° is a Boolean circuit
that takes the current configuration and the next bit of the input and outputs the next state, cini; € {0,1}°
is the initial configuration, and c,.c € {0,1}° is the accepting configuration. Let h be a hash on the tuple

((x1, Stepy), ..., (xk, S’tepK)).4

« To compute the canonical witness, the evaluator runs the obfuscated proving program K times. On the P
iteration, the evaluator passes in the hash h, the instance x;, the step function Step; together with an opening
for (x;, Step;) relative to h, the associated witness w;, the configuration c;_; from the first i — 1 steps of the
evaluation (with ¢y := c¢jnit), and a signature o;_; on (h,i — 1,¢;_1).

« If the signature o;_1 is valid, then the proving program computes the bit f; = C(x;, w;) and the updated state
of the Turing machine ¢; = Step;(c;—1, f;). It outputs a signature o; on (h, i, ¢;).

« The canonical witness for the batch of K statements is a signature on (h, K, cacc), where c,c is the accepting
configuration.

« The verification algorithm calls the obfuscated verification program which checks whether it was given a valid
signature on (h, K, cacc) or not.

For any tuple of statements (x1, . . ., xx) and policy P, the canonical witness is a (deterministic) signature on (h, K, cacc).
This depends solely on the statements and the policy, and is independent of the witnesses used to derive the signature.
Thus, this constructive gives a unique witness map for batch instances.

Proving security of this construction is very delicate. Recall that the security requirement for a unique witness map
says that an efficient adversary cannot come up with a proof that passes verification for any tuple (x1, . .., xk) that does
not satisfy the policy P. The general approach we take combines the chaining approach from [GSWW22, DWW24]

*In the actual construction (Construction 5.8), we separate these into two separate hashes in order to support a local evaluation property that
is useful for applications (see Remark 5.11). For ease of exposition in this overview, we describe things using a single hash.

with the pebbling arguments from [GPSZ17, GS18]. Notably, the latter was used for analyzing iO for Turing machines.
We highlight some of the key features of our reduction and refer to Section 5 for the formal description:

« First, we consider selective security where the statements (xi, ..., xx) and the monotone policy P are fixed in
advance. Now, for each i € [K], we define the set S; of reachable configurations after i steps of P. Specifically,
let Sy = {cinit} be the initial configuration. Then, for each i € [K], S; contains all ¢; where ¢; = Step(c;—1,0)
and ¢;_1 € S;_1 (i.e., the states that are reachable by starting from a reachable state after i — 1 steps and then
reading a 0). In addition, if the i'h statement is true, then S; also contains all ¢; where ¢; = Step(c;_;, 1) where
ci—1 € Si_1 (i.e., the states that are reachable from a reachable state after i steps and then reading a 1).

« Let h* be the hash on ((xy, Step,) ..., (xk, Stepg)). Our general strategy in the security proof is to propagate
the following invariant: at step i of the computation, the only possible signatures on tuples of the form (h*, i, ¢;)
are those where ¢; € S;. Namely, signatures should only exist on reachable configurations. We show that if
the invariant holds for an index i, then using punctured programming techniques [SW14], we can establish the
invariant for index i + 1. To carry out this step, we need to embed within the obfuscated program a description
of the reachable states after the first i states (i.e., a description of the set S;). For this reason, the size of the
obfuscated program in our construction grows exponentially with the space of the Turing machine, limiting
us to log-space computations. However, in settings where the the sets S; have a compact description, then the
size of the programs only scales with the size of the compact description of S;. This captures important policies
families such as weighted threshold policies (see Remark 5.7).

« The next challenge comes from the need to “unpuncture.” Specifically, the way we establish our invariant
that signatures do not exist on any unreachable configuration is we “puncture” away the ability to generate
signatures on inputs of the form (h* i, ¢;) for all ¢; ¢ S;. If we have to hard-code all of these inputs into the
program across all indices i € [K], then the size of the program scales linearly with the number of instances,
which is precisely what we want to avoid. Thus, once we have established the invariant on an index i, we need
a way to unpuncture previous points. We can model this unpuncturing step as a pebbling game [GPSZ17, GS18],
which provides a way to propagate our invariant while ensuring that at any point in time, we only need to
program in the sets S; for at most O(log K) indices. We refer to the proof of Theorem 5.13 for the full details.

« A second challenge that arises in our analysis is within the propagation step itself. Recall that on step i, our goal
is to puncture away all signatures on inputs of the form (h*, i, ¢;) where ¢; ¢ S;. A natural approach would be
to step through each of the 25 possible configurations one-by-one and leverage punctured programming (and
indeed, this is our overall proof strategy). This would result in 2° hybrids in total, and if done naively, would
lead to signatures whose size now scales with the space-bound S. Once again, this would no longer meet our
succinctness requirements. Thus, we need to design our hybrids so that the dependence on the space usage S is
entirely absorbed by the programs in the common reference string and not in the size of the output signatures.
To support this, we use the randomization techniques developed recently in the context of constructing and
batching adaptively-sound SNARGs for NP from iO [DWW24, WW25a].

Taken together, we obtain a succinct witness map for batch languages from iO and SSB hash functions. The size
of the CRS scales with the description length of the set of reachable states for the Turing machine. Note that if
we directly use iO for Turing machines to build a unique witness map (i.e., read all K statements/witnesses and
output a signature if the policy is satisfied), then the size of the CRS grows linearly with the number of instances
K (because the size of the obfuscated program in existing constructions of iO for Turing machines from standard
assumptions [BGL*15, CHJV15, KLW15, GS18] all grow with the input length). These approaches would in turn not
suffice for either of our applications to succinct witness encryption or for SNARGs for monotone-policy batch NP with a
sublinear-size CRS. Our approach shows how to overcome this input-size barrier for a particular class of computations.

Application to succinct computational secret sharing. A succinct witness encryption scheme for a policy P
immediately gives a succinct computational secret sharing scheme for #. The construction is straightforward:

« Let pk be the public-key for a public-key encryption scheme. Suppose there are K parties in the system.
Each party’s share consists of a pair (ct;, r;) where ct; = Encrypt(pk, 1;7) is encryption of 1 under pk using
randomness 7;.

+ Let Ry (ct,) be an NP relation that outputs 1 if ct = Encrypt(pk, 1;7). To share a message y with respect to a
policy P, the dealer publishes a witness encryption ciphertext with message 1, statement (cty, ..., ctg), policy
P, and R as the associated NP relation.

Both the parties’ individual shares as well as the public information are succinct (the latter by succinctness of the
witness encryption scheme). Moreover, any set of users that satisfies the policy is able to decrypt and recover p.°
Security follows readily from security of the succinct witness encryption scheme. We refer to Section 6.1 for the full
details. An appealing feature of our construction is that the party’s individual shares are reusable. Whenever the dealer
wants to share a new message, it only needs to publish a short public share (i.e., the witness encryption ciphertext).

Application to distributed monotone-policy encryption. Our second application is to distributed monotone-
policy encryption. In this notion, users generate their own public keys pk and post them to a public-key directory.
Thereafter, one can encrypt to a collection of public keys {pk;};cs together with a monotone policy P (on the set S
of public keys). Any authorized set of users can pool their decryption keys to decrypt and learn the message. We can
construct a distributed monotone-policy encryption scheme in the same manner as our succinct computational secret
sharing construction. Namely, the public parameters for the monotone-policy encryption scheme will be the public
key pk for a public-key encryption scheme. Each user’s public key will be an encryption of 1 under pk and their
secret key is the associated encryption randomness. An encryption of a message y to a set of public keys {pk;}ies
and access policy P is precisely a succinct witness encryption of ;1 where the statement corresponds to {pk;};cs and
the policy corresponds to P. Correctness and security follow as in the case of succinct computational secret sharing.
In the basic version described here, users have to share their decryption keys in order to decrypt. We can also
consider a stronger model where instead of users exchanging secret keys to decrypt they instead publish a one-time
partial decryption of the message. This is standard in settings like multi-key homomorphic encryption [MW16] or
threshold encryption with silent setup [GKPW24, ADM*24]. Using similar techniques as in [GKPW24, ADM*24], we
can easily extend our construction to support this. Namely, we let each user’s long-term secret key be a signing key for
a digital signature scheme. Their public key is the associated verification key. Next, we associate a (random) tag with
each ciphertext. Instead of checking for possession of the associated decryption key, the witness encryption scheme
now checks that the decrypter provides a valid signature for a set of users that satisfy the access policy. The signatures
now serves as the “decryption key” Security of the signature scheme ensures that the decryption hint for one
ciphertext does not help break semantic security of an unrelated ciphertext. We provide the full details in Appendix B.

2 Preliminaries

Throughout this work, we write A to denote the security parameter. For a positive integer n € N, we write
[n] :== {1,...,n}. We say a function f(A) is negligible if f = 0(A17¢) for all ¢ € N, and write negl(1) to denote
a negligible function. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its
input. We write poly(4) to denote a fixed function that is bounded by some polynomial in A. We model an efficient
non-uniform algorithm A as a pair of algorithms A = (Ao, A1) where A is a (possibly unbounded) algorithm that
takes as input 1* and outputs an advice string p; of polynomial length, and algorithm A; is an efficient algorithm.
The output of A on an input x € {0,1}* is defined as first computing the advice string p; « Ay(1*) and then taking
the output to be A; (py, x). Throughout this work, we will consider efficient non-uniform adversaries.

Witness encryption. We now recall the notion of a witness encryption scheme for NP [GGSW13].

Definition 2.1 (Witness Encryption [GGSW13, adapted]). Let M be a message space. A witness encryption scheme
ITwe for NP with message space M is a pair of efficient algorithms ITwg = (Encrypt, Decrypt) with the following
syntax:

« Encrypt(14,C,) — ct: On input the security parameter A € N, a circuit C: {0, 1} — {0,1}, and a message
u € M, the encryption algorithm outputs a ciphertext ct.

Technically, this requires that decryption is possible even if the users do not know the full statement (i.e., the public keys of all users in the
system). As we discuss in Sections 4 and 5, the schemes in this work support this “local” decryption property.

« Decrypt(ct,C,w) — p: On input a ciphertext ct, a Boolean relation C: {0, l}h — {0, 1}, a witness w € {0, 1}h,
the decryption algorithm outputs a message p.

Moreover, we require that (Encrypt, Decrypt) satisfy the following two properties:

« Correctness: For all A € N, all Boolean circuits C: {0,1}"* — {0, 1}, all witnesses w € {0, 1} where C(w) =1,
and all messages p € M,

Pr[Decrypt(ct,C,w) = p: ct « Encrypt(lA, C,p]=1.

- Semantic security: For a security parameter A € N, a bit b € {0, 1}, and an adversary A, we define the
semantic security game as follows:

- On input the security parameter 1%, algorithm A outputs a Boolean relation C: {0,1}" — {0,1} and a
pair of messages po, j1 € M.

— If there exists w € {0, 1}" such that C(w) = 1, then the challenger outputs 0. Otherwise, the challenger
responds with ct « Encrypt(14,C, up).

- Algorithm A outputs a bit " € {0, 1} which is also the output of the experiment.

The witness encryption scheme is semantically secure if for all efficient adversaries A, there exists a negligible
function negl(-) such that forall A € N, |Pr[d’ =1 | b =0] —Pr[d0’ =1 | b = 1]| = negl(A) in the semantic
security game.

2.1 Standard Cryptographic Notions

In this section, we recall the formal definitions of some standard cryptographic notions.

Digital signatures and public-key encryption. We begin with the standard notion of a (one-time) digital signature
scheme and a public-key encryption scheme.

Definition 2.2 (One-Time Digital Signature). A one-time digital signature scheme IIgrs over a message space
M = {M;})en is a triple of efficient algorithms IIors = (KeyGen, Sign, Verify) with the following syntax:

« KeyGen(1%) — (vk, sk): On input the security parameter A, the key-generation algorithm outputs a verification
key vk and a signing key sk. We assume that sk and vk implicitly include a description of the security parameter
1%,

« Sign(sk,m) — o: On input the signing key sk and a message m € M, the signing algorithm outputs a signature
o.

« Verify(vk, m, 0) — b: On input the verification key vk, a message m, and a signature o, the verification algorithm
outputs a bit b € {0, 1}.

We require Ilors satisfy the following properties:

« Correctness: For all A € N and all m € M, we have

(vk, sk) « KeyGen(1%)

Pr | Verify(vk,m,0) = 1: & — Sign(sk, m)

+ One-time strong unforgeability: For a security parameter A, an adversary A, we define the one-time strong
unforgeability game as follows:

— The challenger begins by sampling (vk, sk) « KeyGen(1*) and gives vk to A.

- Algorithm A can make a signing query on a message m € M,. The challenger responds with ¢ «
Sign(sk, m®).

10

— Algorithm A outputs a forgery (m*, o).
— The challenger outputs b = 1 if Verify(vk, m*, ¢*) = 1 and in addition, if A made a signing query on the
message m to receive a signature o, then (m*, ¢*) # (m, o). Otherwise, the challenger outputs b = 0.

We say Ilors satisfies one-time strong unforgeability if for all existing adversaries A, there exists a negligible
function such that for all A € N, Pr[b = 1] = negl(1) in the above security game.

Definition 2.3 (Public-Key Encryption). A public-key encryption scheme Ilpgg is a triple of efficient algorithms
IIpke = (KeyGen, Encrypt, Decrypt) with the following syntax:

. KeyGen(1*) — (pk, sk): On input a security parameter A, the key-generation algorithm outputs a public key
pk and a secret key sk.

« Encrypt(pk, m) — ct: On input a public key pk and a message m € {0, 1}, the encryption algorithm outputs
a ciphertext ct.

« Decrypt(sk, ct) — m: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a message
m € {0,1}.

We require that Ilpke satisfy the following properties:

« Correctness: For all A € N and all messages m € {0, 1},

(pk, sk) « KeyGen(1%) _

Pr | Decrypt(sk,ct) =m: ct — Encrypt(pk, m)

« CPA-security: For a security parameter A, an adversary A and a bit b € {0, 1}, we define the CPA-security
game as follows:®
— At the beginning of the game, the challenger samples (pk, sk) « KeyGen(1*) and gives (1%, pk) to A.

— Algorithm A can now make adaptive queries on pairs of messages mg, m; € {0, 1}. On each query, the
challenger responds with ct, « Encrypt(pk, my).

— Algorithm A outputs a bit »” € {0, 1}, which is the output of the experiment.
We say that ITpge is CPA-secure if for all efficient adversaries (A, there exists a negligible function negl(-) such
thatforall A € N, [Pr[d’ =1 | b =0] —Pr[d’ =1]| b = 1]| = negl(A) in the CPA-security game.
Leveled homomorphic encryption. A leveled homomorphic encryption [Gen09] enables a bounded number of

homomorphic operations on encrypted inputs. We recall the formal definition below:

Definition 2.4 (Leveled Homomorphic Encryption). A public-key (leveled) homomorphic encryption scheme is a
tuple of efficient algorithms ITj yg = (KeyGen, Encrypt, Eval, Decrypt) with the following syntax:

« KeyGen(14,1%) — (pk, sk): On input a security parameter A and a depth bound d, the key-generation algorithm
outputs a public key pk and a secret key sk.

« Encrypt(pk,m) — ct: On input a public key pk and a message m € {0, 1}, the encryption algorithm outputs
a ciphertext ct.

« Decrypt(sk,ct) — m: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a message
m € {0,1}.

« Eval(pk, C, {ct;}ie[s]) — ct’: On input a Boolean circuit C: {0,1}’ — {0, 1} and a collection of ¢ ciphertexts
cty, ..., cty, the evaluation algorithm outputs a new ciphertext ct’. This algorithm is deterministic.

®Note that we can equivalently define the simpler game where the adversary makes a single encryption query, which implies the multi-query
version via a standard hybrid argument. However, the multi-query definition is useful in our security proofs.

11

We require that IT) ¢ satisfy the following properties:

« Correctness: For all A,d € N, all Boolean circuits C: {0,1}¥ — {0,1} of depth at most d, and all inputs
x € {0,1}%,
(pk, sk) « KeyGen(1%)
Pr | Decrypt(sk,ct’) = C(x) : Vi€ [£] : ct; « Encrypt(pk,x;) | =1.
ct’ = Eval(pk, C, {ct;}iere)

« Compactness: There exists a universal polynomial p such that for all A,d € N, all Boolean circuits C: {0, 1} —
{0, 1} with depth at most d, all (pk, sk) in the support of KeyGen(l’l, 1d), all inputs x1,...,x, € {0,1}, and all
ciphertexts ct; in the support of Encrypt(pk, x;) for each i € [£], it holds that

lpkl < p(A,d) and |ct'| < p(Ad),
where ct” = Eval(pk, C, {ct; }ie[¢])-

« CPA-security: For a security parameter A, an adversary A and a bit b € {0, 1}, we define the CPA-security
game as follows:

— On input the security parameter 14, algorithm A outputs the depth bound 1¢. The challenger samples
(pk, sk) « KeyGen(14,1%,1°) and replies to A with pk.

— Algorithm A can now make adaptive queries on pairs of messages mg, m; € {0, 1}. On each query, the
challenger responds with ct, < Encrypt(pk, mp).

— Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that ITj g is CPA-secure if for all efficient adversaries A, there exists a negligible function negl(-) such
thatforall A € N, [Pr[d’ =1 | b =0] —Pr[d’ =1]| b = 1]| = negl(A) in the CPA-security game.

Remark 2.5 (Encrypting Longer Messages). We extend the encryption algorithm Encrypt to support arbitrary-
length messages m € {0, 1}’ by encrypting bit-by-bit (i.e., for a message m = mym; - - - my, Encrypt(pk, m) outputs
(cty,...,cty) where ct; « Encrypt(pk, m;)). Similarly, when considering CPA-security for longer messages, we allow
the adversary to submit arbitrary-length messages mg, m; to the challenger, with the restriction that [mg| = |m4].

Somewhere statistically binding hash functions. A somewhere statistically binding hash function [HW15] is
a hash function where the digest of an input x € {0, 1} statistically binds to the value of x; at some index i € [¢].
Moreover, the description of the hash function (i.e., the hash key) computationally hides the index i. In the following
definition, we describe a variant that statistically binds to a set of indices (and where the size of the digest scales
linearly with the size of the set). We give the formal syntax below:

Definition 2.6 (Somewhere Statistically Binding Hash Function [HW15]). A somewhere statistically binding hash
function ITgsp is a triple of efficient algorithms ITssg = (Setup, Hash, Verify) with the following syntax:

. Setup(ll, 10l thmax g S) — hk: On input a security parameter A, a block length #,j, a bound on the size of
the binding set kmax, @ bound on the number of blocks nmax, and a set S C [npmayx| of size at most kyay, the setup
algorithm outputs a hash key hk. We assume that hk (implicitly) contains a description of (1%, 16k, 1kma pn Y.

« Hash(hk, (x1,...,x,)) — (h,m,...,m,;): On input a hash key hk and a tuple of inputs x;, ..., x, € {0, 1}k
where n < npyay, the hashing algorithm outputs a hash h together with openings ry, . . ., 7.

« Verify(hk, h, i, x;, ;) — b: On input a hash key hk, a hash h, an index i € [npax], an input x; € {0, 1}%%, and
a proof m;, the verification algorithm outputs a bit b € {0, 1}.

We require that IIssp satisfy the following properties:

12

« Correctness: For all A, fji, kmax, tmax € N, all input lengths n € [nyay], all inputs x1,...,x, € {0,1}%k, all
indices i € [n], and all sets S C [nyay] of size at most kyay, we have that

hk « SetUp(lA>lﬁm,lkmm,nnmx,s)

Pr |Verify(hk, h, i, x;, i) = 1: (h, mq, ..., m,) « Hash(hk, (x1,...,x,)) -

1

« Set hiding: For a security parameter A, an adversary A, and a bit b € {0, 1}, we define the set-hiding experiment
as follows:

- On input the security parameter 1%, algorithm A outputs the input length 1%%, the bound 1%m, the
number of blocks nyax, and a set S C [nyax] of size at most kpayx.

— If b = 0, the challenger computes hk « Setup(lﬁ, 16l 1 kmax Nmax, @) and if b = 1, it computes hk «
Setup(l", 10tk (hmax g S). The challenger gives hk to A.

— Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that ITssp satisfies set hiding if for all efficient adversaries A, there exists a negligible function negl(-)
such that forall A € N, |Pr[b’ =1 | b= 0] —Pr[b’ = 1| b = 1]| = negl(A) in the set hiding game.

« Somewhere statistically binding: We say a hash key hk is statistically binding for a set S if there does not
exist values (h, i, x;, x;, 7;, /) where

ieS and x;#x; and Verify(hk, h, i, x;, ;) = 1 = Verify(hk, h, i, x], 7}).

We say that IIssp is somewhere statistically binding if for all polynomials #,jc = Gk (A4), kmax = kmax(4), and
Nmax = Nmax(4), there exists a negligible function negl(-) such that for all sets S C [nyax] of size at most kpay,

Pr [hk is statistically binding for S : hk « Setup(ll, 10k 1 Kmax g S)] > 1 - negl(4).

« Succinctness: There exists a universal polynomial p such that for all A, &k, kmax, Pmax € N, all sets S C [nmax]
of size at most kmay, all inputs xi,...,x, € {0,1}%% where n < npay, all hash keys hk in the support
of Setup(ll, 16k pKmax S), and all (h, my, ..., m,) in the support of Hash(hk, (xy,...,x,)), it holds that
[hk], [h], |7:] < p(A, i, kmaxs 10g nmax) for all i € [n].

Function-binding hash functions. Function-binding hash functions [FWW23] generalize somewhere-statistically
binding hash functions by statistically binding to a (computationally-hidden) function of the input. In this work,
we specialize our syntax to disjunctions of block functions, which is the primary family of function-binding hash
functions considered in [FWW23] and which suffice for our applications. Specifically, we consider hash functions
that bind to a disjunction of a function g:

[y, xn) = \/ g(x;).

i€[n]

Like somewhere statistically binding hash functions, a user can compute a hash of any input (x;, ..., x;,) and produce
a succinct local opening of x; with respect to the hash value. The function binding property (specifically, the statistical
disjunction binding property) then asserts that if one computes a hash of (x7, ..., x;) where f(x],...,x;) = 0, then
there does not exist an opening to any x;- where g(%;+) = 1 for all i*. This is because for all values of %},

FOer, oo X1, Ko, Xjrg, <, Xp) = (%) V \/g(x,-) =1# f(x],...,x,).
i#i*
We now give the formal definition adapted from [FWW23].

Definition 2.7 (Function-Binding Hash Function for Disjunction of Block Functions [FWW23]). A function-binding
hash function ITggy for disjunctions of block functions is a triple of efficient algorithms Ilrgy = (Setup, Hash, Verify)
with the following syntax:

13

Setup(l’l, 16l 19max 1 Smax Nmax» C) — hk: On input a security parameter A, a block length 4, a depth bound
dmax, a size bound sy.y, a bound on the number of blocks .y, and a Boolean circuit C: {0, 1}%% — {0,1} (or
a special symbol C = 1), the setup algorithm outputs a hash key hk.

Hash(hk, (xi,...,x,)) = (h, 71, ..., m1,): Oninput a hash key hk and a collection of inputs x1, . . ., x, € {0, 1) b
where n < np,y, the hashing algorithm outputs a hash h together with openings =, . . ., 7,.

Verify(hk, h, i, x;, ;) — b: On input a hash key hk, a hash h, an index i € [nmax], an input x; € {0, 1}%%, and
a proof ;, the verification algorithm outputs a bit b € {0, 1}.

We require that IIrgy satisfy the following properties:

Correctness: For all A, 6, dmax, Smaxs "max € N, all input lengths n € [nyay], all inputs xi, ..., x, € {0, 1}5k,
all indices i € [n], and all Boolean circuits C: {0, 1}% — {0,1} of depth at most diay and size at most spax
(or alternatively, C = 1), we have that

. . L hk «— Setup(lA, lfblk, 1dmax, 1$max’ Nmax C)
Pr | Verify(hk h.i, xi, m) =1 (h, 7y, ..., m,) « Hash(hk, (x1,...,x,))

Function hiding: For a security parameter A, an adversary A, and abit b € {0, 1}, we define the function-hiding
experiment as follows:

- On input the security parameter, algorithm A outputs the input length 1%, the bounds 1%max, 15, and
Nmax, together with a Boolean circuit C: {0, 1}% — {0,1} of depth at most dyax and size at most Spax.

- If b = 0, the challenger computes hk « Setup(lA, 10l 1dmax | {Smax p 1). If b = 1, the challenger
computes hk « Setup(lA, 10l 1 dmax {Smax p C). The challenger gives hk to A.

— Algorithm A outputs a bit »” € {0, 1}, which is the output of the experiment.

We say that Iy satisfies function hiding if for all efficient adversaries A, there exists a negligible function
negl(-) such that forall A € N, |Pr[b’ =1 | b =0] —Pr[b’ =1 | b =1]| = negl(A) in the function hiding game.

Statistically disjunction binding: Fix parameters #x, dmax, Smax> max- We say a hash key hk is statistically-
disjunction-binding for a block function C: {0, 1}%* — {0,1} if for all inputs x;,...,x, € {0, 1}%% where
n < Nyax and C(x;) = 0 for all i € [n], and setting (h, 7y, ..., 7m,) = Hash(hk, (x1, ..., x,)), there does not exist
an opening (i, x;, 7r;) where

C(x;) =1 and Verify(hk, h,i,x;, ;).

We say that Iy is statistically disjunction binding if for all polynomials fjx = &k (A), kmax = kmax(4),
Smax = Smax (4), and nmay = Nmax (1), there exists a negligible function negl(-) such that for all Boolean circuits
C: {0,1}%% of depth at most dpax and size at most Syay,

Pr[hk is statistically-disjunction-binding for C : hk « Setup (1%, 1%k, 19max 1Smax p o C)] > 1 — negl(A).

Succinctness: There exists universal polynomials p;, p; such that for all A, fx, kmax, @max, "max € N, all Boolean
circuits C: {0,1}%% — {0,1} of depth at most dpay and size at most spay (or alternatively, C = 1), all inputs
X1, ... X € {0,1}5% where n < npay, all hash keys hk in the support of Setup(1%, 16k, 1max 15max), and
all (h, my, ..., m,) in the support of Hash(hk, (xi,...,x,)), it holds that

- |hk| <p1 (/1; Smax> 10g nmax)-
- |h|,|m| < P2 (A, dmax log Smax:s log Nmax)-

Batch arguments for NP. A non-interactive batch argument (BARG) for NP [BHK17, CJJ21a, CJJ21b] allows a prover
to convince a verifier that a batch of k NP statements xy, . . ., x; are true with a proof whose size scales sublinearly
with k. In this work, we will consider the specific setting of an index BARG [CJJ21b], which corresponds to the special

14

case of index languages (i.e., the batch language where the statements are simply the indices 1,2, ..., k). Moreover,
we consider the stronger notion of somewhere statistical soundness where there does not exist a valid proof & with
respect to a CRS that is binding on index i when statement i is false. The [WW22] construction satisfies this stronger
notion of somewhere statistical soundness; other BARG constructions [C]J21b, CGJ*23] have been shown to satisfy
a weaker computational version of this property. We review the formal definition below:

Definition 2.8 (Non-Interactive Batch Argument for Index Languages). An non-interactive batch argument for index
languages IgaRg is a triple of efficient algorithms (Setup, Prove, Verify) with the following syntax:

« Setup(1%, 1kmax 15ma) — crs: On input the security parameter A € N, a bound on the number of instances
kmax € N, and a bound on the circuit size sy € N, the setup algorithm outputs a common reference string
crs. We assume that crs(implicitly) contain a description of (11, kmaxs Smax)-

« Prove(crs,C, (wy, ..., wg)) — m: On input the common reference string crs, a Boolean circuit C of size at most
Smax, together with k < kyay Witnesses wy, . .., wg, the prove algorithm outputs a proof 7.

« Verify(crs, C, k,) — b: On input the common reference string crs, a Boolean circuit C of size at most Smay, an
integer k < kpax, and a proof r, the verification algorithm outputs a bit b € {0, 1}.

We require that IIgarc satisfy the following properties:

« Completeness: For all A, kmay, Smax € N, all Boolean circuits C of size at most sy, all positive integers k < kpay,
all witnesses wy, ..., wy where C(i,w;) = 1 for all i € [k], it holds that

crs «— Setup(l", 1Kmax | 1 Smax)

Pr | Verify(crs,C k. m) = 1 7« Prove(crs, C, (wy, ..., Wg))

=1

« Somewhere statistical soundness: There exists an efficient algorithm Setup® with the following syntax:

- Setup®(14, 1Kmax 1Smax_ i) — crs: Oninput the security parameter A € N, a bound on the number of instances
kmax € N, a bound on the circuit size sp.x € N, and an index i € [kmax], the setup algorithm outputs a
common reference string crs. We assume that the CRS (implicitly) contain a description of (1%, kmaxs Smax)-

We additionally require the following properties:

— Mode indistinguishability: For a security parameter A, an adversary A, and a bit b € {0, 1}, we define
the mode indistinguishability game as follows:
» On input the security parameter 14, algorithm A outputs 1% and 1% and an index i € [kmay].
« If b = 0, the challenger replies with crs < Setup(1%, 1kmax, 15max) If b = 1, the challenger replies with
crs «— Setup*(ll, 1Kmax {Smax_ i).
+ Algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.
We say that IIgarc satisfies mode indistinguishability if for all efficient adversaries A, there exists a
negligible function negl(-) such that forall A e N, |Pr[b’ =1 | b =0] —Pr[b’ =1 | b = 1]| = negl(4) in
the mode indistinguishability game.
- Somewhere statistical soundness: We say that IIgarc satisfies somewhere statistical soundness if
for all polynomials kmax = kmax(A) and Smax = Smax(A), there exists a negligible function negl(-) such

that for all i € [knyax], all Boolean circuits of size at most sy, where C(i,w) = 0 for all w € {0,1}%, all
i <k<kpy andall 1 € N,

Pr[3r : Verify(crs,C, k, m) =1 | crs « Setup™(crs, 1Kmax 18max)] = negl(4).

« Succinctness: There exists a universal polynomial p such that for all A, kpax, Smax € N, all Boolean circuits C
of size at most smay, all positive integers k < kmay, all witnesses wy, ..., wy where C(i,w;) = 1 for all i € [k],
all crs in the support of Setup(l/l, 1Kmax 1°max) and all proofs 7 in the support of Prove(crs, C, (w1, ..., wi)), we
have that |crs| < p(A,10g smax, 10g kmax), and || < p(A, |C|,log k).

15

Indistinguishability obfuscation. We recall the notion of an indistinguishability obfuscation scheme [BGI*01]:

Definition 2.9 (Indistinguishability Obfuscation [BGI*01]). An indistinguishability obfuscator for Boolean circuits
is an efficient algorithm iO(-, -, -) with the following properties:

« Correctness: For all security parameters A € N, circuit size parameters s € N, all Boolean circuits C of size
at most s, and all inputs x,
Pr[C’'(x) = C(x) : C" « i0(11,1%,0)] = 1.

+ Security: For a bit b € {0, 1} and a security parameter A, we define the program indistinguishability game
between an adversary A and a challenger as follows:

— On input the security parameter 14, the adversary outputs a size parameter 1° and two Boolean circuits
Cy, C; of size at most s.

— If there exists an input x such that Cy(x) # C;(x), then the challenger halts with output L. Otherwise,
the challenger replies with iO(l’l, 15,Cp).

— The adversary A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that iO is secure if for all efficient adversaries A, there exists a negligible function negl(-) such that
for all A € N, we have that

[Pr[b"=1:0=0] —Pr[b' =1:b=1]| < negl(d)
in the above program indistinguishability game.
Puncturable PRFs and injective PRGs. Next, we recall the notion of a puncturable PRF [BW13, KPTZ13, BGI14]

and the notion of an injective PRG, which will be useful in combination with iO to obtain our succinct unique witness
map for batch languages in Section 5.

Definition 2.10 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists of a
tuple of efficient algorithms Ilpprr = (KeyGen, Eval, Puncture) with the following syntax:

« KeyGen(14, 1%, 1%u) — k: On input the security parameter 1, an input length £y, and an output length £,
the key-generation algorithm outputs a key k. We assume that the key k contains an implicit description of
tin and £yt

« Puncture(k, x*) — k*"): On input a key k and a point x* € {0, 1}%», the puncture algorithm outputs a punctured
key k*"). We assume the punctured key contains an implicit description of £, and £o;.

« Eval(k,x) — y: Oninputakey k and an input x € {0, 1}%", the evaluation algorithm outputs a value y € {0, 1}%u:
In addition, ITpprr should satisfy the following properties:
« Functionality-preserving: For all A, £y, £t € N, every input x € {0, 1}, and every x € {0, 1}% \ {x*},

k «— KeyGen(1%, 16n, 16u)

Pr |Eval(k, x) = Eval(k™"), x) : k&) — Puncture(k, x*)

=1.

« Punctured pseudorandomness: For a bit b € {0, 1} and a security parameter A, we define the (selective)
punctured pseudorandomness game between an adversary A and a challenger as follows:

— On input the security parameter 1%, the adversary A outputs the input length 1%, the output length 1%,
and commits to a challenge point x* € {0, 1},

— The challenger samples k « KeyGen (1%, 1%, 1%u) and gives k") «— Puncture(k, x*) to A.

— If b = 0, the challenger gives y* = Eval(k, x*) to A. If b = 1, then it gives y* < {0, 1} to A.

16

— At the end of the game, the adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that ITpprr satisfies punctured pseudorandomness if for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N,

[Pr(b’ =1:b=0]—Pr[b' =1:b=1]| < negl(d)
in the punctured pseudorandomness security game.

Definition 2.11 (Injective PRG). Let £ = £(4) be an input-length parameter and m = m(A) be an output length param-
eter. An injective pseudorandom generator (PRG) is an efficiently-computable injective function G: {0, 1} — {0,1}™
where for all efficient adversaries A, there exists a negligible function negl(-) such that for all 1 € N,

|Pr[A(1Y,G(s)) =1:5 & {0,1}] = Pr[A(1N 1) =1:t & {0,1}™]] = negl(A).

3 Succinct Witness Encryption for Batch Languages

We begin by introducing the notion of succinct witness encryption for batch languages. This is the main cryptographic
notion we consider in this work, and in Section 6, we show how it can be used to realize applications to computational
secret sharing and monotone-policy encryption.

Definition 3.1 (Succinct Witness Encryption for Batch Languages). Let M be a message space and P be a family
of policies. A succinct witness encryption scheme Iy for batch languages with message space M and policy family
P is a pair of efficient algorithms ITwg = (Encrypt, Decrypt) with the following syntax:

« Encrypt(1*,C, P, (xy,...,xk),) — ct: On input the security parameter A € N, a Boolean relation C: {0, 1}" x
{0, 1}h — {0,1}, a Boolean policy P € $ where P: {0, 1}X — {0,1)}, instances xy,...,xx € {0,1}", and a
message p, the encryption algorithm outputs a ciphertext ct.

« Decrypt(ct,C, P, (x1,...,xK), (W, ...,wg)) — p: On input a ciphertext ct, a Boolean relation C: {0,1}" X
{0,1}" — {0,1}, a Boolean policy P € P where P: {0,1}¥ — {0, 1}, statements (xi,...,xx) € {0,1}"*, and
witnesses wy, . .., wg € {0, 1}", the decryption algorithm outputs a message .

Moreover, we require that [Ty satisfy the following properties:

« Correctness: For all security parameters A € N, all Boolean relations C: {0,1}" x {0,1}" — {0,1}, all
Boolean policies P € P where P: {0,1}X — {0, 1}, all tuples of statements xi, ..., xg € {0,1}", all witnesses
wi,...,wg € {0, 1}h where P(C(x1, w1),...,C(xk, wk)) = 1, and all messages p € M,

Pr[Decrypt(ct,C, P, (x1,...,xK), (W1,...,WK)) = i :
ct «— Encrypt(lA, CP, (xy,...,xk),)] = 1.

- Semantic security: For a security parameter A € N, a bit b € {0, 1}, and an adversary A, we define the
semantic security game as follows:

— On input the security parameter 1%, algorithm A outputs a Boolean relation C: {0,1}"x {0, 1} — {0,1},a
policy P € P where P: {0, 1K - {0,1},a tuple of statements x1, ..., xx € {0, 1}", and a pair of messages
Ho, 1 € M.

— If there exists wy, ..., wg € {0, 1}h such that P(C(x1, w1), . ..,C(xk, wk)) = 1, then the challenger outputs
0. Otherwise, the challenger responds with the ciphertext ct « Encrypt(l/l, C, P, (x1, .-, XK), J).

— Algorithm A outputs a bit »” € {0, 1}, which is the output of the experiment.

17

The succinct witness encryption scheme for batch languages is semantically secure if for all efficient adversaries
A, there exists a negligible function negl(-) such that for all A € N,

|Pr[b' =1|b=0] —Pr[b' =1]|b=1]| = negl(A)
in the semantic security game.

« Succinctness: There exists a polynomial poly such that for all A € N, circuits C: {0,1}" x {0,1}"* — {0,1},
policies P € P (on n-bit inputs), instances xi, ..., xx € {0, 1}", and messages p € M, the size of the ciphertext
ct output by ct « Encrypt(14,C, P, (x1, ..., xx), 1) satisfies |ct| < o(|P]) - poly(4,|C|,log K).

Local decryption. In Definition 3.1, the decryption algorithm requires knowledge of all of the statements associated
with the ciphertext. When considering applications of succinct witness encryption to computational secret sharing
and monotone policy encryption, it will be important to consider a decryption algorithm that only requires knowledge
of a subset of statements that satisfy the policy (as opposed to all of the statements). Similar to the setting of batch
arguments [CJJ21b] and locally verifiable signatures, we can support this property by decomposing the decryption
algorithm into a preprocessing algorithm which takes as input the policy P together with all of the statements and
outputs a short “hint” associated with each statement. The preprocessing algorithm only depends on the statement and
not the witnesses. Then, there is a local decryption algorithm that takes as input the ciphertext together with a subset of
statements and their associated hints and witnesses and outputs the message. Notably, the local decryption algorithm
only requires knowledge of the statements and hints that satisfy the policy. We define this property formally below:

Definition 3.2 (Local Decryption). A succinct witness encryption scheme ITwe = (Encrypt, Decrypt) with message
space M and policy family P supports local decryption if there exist a pair of efficient algorithms (Preprocess,
DecryptLocal) with the following syntax:

« Preprocess(ct,C, P, (x1,...,xk)) — (hty, ..., htg): On input a ciphertext ct, a Boolean relation C: {0, 1}" X
{0, 1}h — {0, 1}, a Boolean policy P € P, and the statements x1, ..., xx € {0, 1}", the preprocessing algorithm
outputs a tuple of hints hty, ..., htg. This algorithm is deterministic.

« DecryptLocal(ct,C, P, {(i, ht;, w;) }ics) — p: On input a ciphertext ct, a Boolean relation C: {0,1}" x {0, 1} —
{0, 1}, a Boolean policy P € P, and a collection of hints and witnesses (ht;, w;) for i € S, the local decryption
algorithm outputs a message p. This algorithm is also deterministic.

We require (Preprocess, DecryptLocal) satisfy the following properties:

« Correctness: For all security parameters A € N, all Boolean relations C: {0,1}" x {0,1}" — {0, 1}, all Boolean
policies P € P where P: {0, 13X — {0,1}, all inputs fi,..., Bk € {0,1} where P(f1, ..., fx) = 1, all statements
X1, ...,xg € {0,1}", all witnesses wy,...,wg € {0, l}h where C(x;, w;) = 1 for all i where f; = 1, and for all
messages 4 € M,

Pr [DecryptLocal(ct, C,P,{(i,ht;, wi) }ic[x]pi=1) = p] =1,

where ct « Encrypt(ll, C,P,(x1,...,xKk), 1) and (hty, ..., htg) = Preprocess(ct,C, P, (x1, ..., XxK)).

« Succinct hints: There exists a polynomial poly such that for all A € N, circuits C: {0,1}" x {0,1}" — {0,1},
policies P € P (on n-bit inputs), instances x, ..., xx € {0, 1}", messages y € M, and all ciphertexts ct in the
support of Encrypt(lﬂ, C,P,(xy,...,xK), i), the hints (hty, ..., htx) = Preprocess(ct,C, P, (xy, . . ., xg)) satisfy

Vi € [K] : |ht;| < o(|P]) - poly(4, |C|,log K).

4 Succinct Witness Encryption for CNFs and DNFs

In this section, we show how to construct succinct witness encryption with succinct ciphertexts that support CNF
and DNF policies from witness encryption (in conjunction with either somewhere statistically sound batch arguments
for NP [WW22] or function-binding hash functions [FWW23]).

18

4.1 Succinct Witness Encryption for CNF Policies

We start by constructing a succinct witness encryption scheme that supports CNF policies. The size of the ciphertext
scales with the maximum number of variables that can appear in a single clause but polylogarithmically in the total
number of clauses. For the particular setting where each clause contains a constant number of variables, the size
of the ciphertext (and public parameters) scale polylogarithmically with the description length of the CNF.

Construction 4.1 (Succinct Witness Encryption for CNF Policies). Let A be a security parameter, M be a message
space, and P be the set of Boolean formulas in conjunctive normal form. Our construction relies on the following:

« Let IIssg = (SSB.Setup, SSB.Hash, SSB.Verify) be a somewhere statistically binding hash function.

« Let IIgarGg = (BARG.Setup, BARG.Prove, BARG.Verify) be a somewhere statistically sound index BARG.

« Let ITwe = (WE.Encrypt, WE.Decrypt) be a witness encryption scheme with message space M.

We construct a succinct witness encryption scheme with message space M and policy space P as follows:

. Encrypt(lﬂ, C,P, (x1,...,xK), #): On input the security parameter A, the Boolean relation C: {0, 1}" x {0, 1}h —
{0, 1}, the Boolean policy P € # where P: {0, 1}¥ — {0,1}, instances x, ..., xx € {0,1}"*, and the message
u € M, the encryption algorithm proceeds as follows:

Let ¢ be the number of clauses in P and let t < K be the maximum number of variables that appears in
any clause of P.

Sample hkinst SSB.Setup(l’l, 1",1°, K, @). Let £y = £,(1) be a bound on the description of a single
clause. Sample hk < SSB.Setup(1%,1%, 11, ¢,).

Compute a hash of the instances
(hinsts Tinst, 15 - - > Tinst k) = SSB.Hash(hkinst, (x1, .. ., x))-

Fori € [c],let S; € [K] denote the variables that appear in clause i of P (under a canonical ordering of
the variables). Compute a hash of the clauses (hel, 71, - . ., 7l c) = SSB.Hash(hke, (S1, ..., S¢)).

Define the index relation RcjausesaT:

Fixed values: hash keys hkins, hkq, a circuit C: {0,1}" x {0, 1} — {0, 1}, and hashes hjng, he
Statement: index i € N
Witness: a set S, an opening 7|, an index j, an NP statement x, an opening 7j,st, and an NP witness w

On input a statement i € N and a tuple (S, 7|, j, X, Tinst, W), output 1 if the following conditions hold:
» SSB.Verify(hk, het, i, S, 1) = 1.

« j € S and SSB.Verify (hkinst, hinst, j, X, 7inst) = 1 and C(x, w) = 1.

Figure 1: The NP relation Rcjausesat [hkinsts hkel, C, hinst, hei]

Let s be the size of the Boolean circuit Ccaysesat that computes
RclausesaT [hkinst, hkel, C, hinst, hel] from Fig. 1. Sample crsgarc «— BARG .Setup(1%,1¢, 1°).

Let Cvalidsarc be the Boolean circuit that takes as input a BARG proof 7 and outputs
BARG.Verify(crsparc, CclauseSAT; C; 7T).

In particular, the values of crsgarg, Cclausesat, and ¢ are hard-wired in the circuit Cy,jiggarc. Compute the
ciphertext ctwg « WE.Encrypt(lA, CValidBARG» 1)-

19

Output the ciphertext ct = (crspara, hkinst> hkel, ctwe).

« Decrypt(ct,C, P, (x1,...,xK), (Wq,...,wk)): On input a ciphertext ct = (crsgaras hkinst, hkel, hinst, hel, ctwe),
a Boolean relation C: {0,1}" x {0,1}* — {0,1}, a policy P € P where P: {0,1}¥ — {0,1}, instances
X1,...,xg € {0,1}", and witnesses wy, ..., wg € {0, 1}h, the decryption algorithm proceeds as follows:

- If P(C(x1, w1),...,C(xk, wk)) = 0, output L.

— Otherwise, compute a hash of the instances (hinst, Tinst 1, - - -» Tinstx) = SSB.Hash(hkinst, (x1, ..., XK)).
Let ¢ be the number of clauses that appear in P. For i € [c], let S; € [K] denote the variables that
appear in clause i of P (under a canonical ordering of the variables). Compute a hash of the clauses
(het, 7Tl 1, - - - 7ele) = SSB.Hash(hkg, (S1, ..., Sc))-

— Since P(C(x1, wy),...,C(xk, wg)) = 1 and P is a CNF, every clause of P must contain a satisfied literal.
In other words, for every i € [c], there exists an index j; € S; where C(x;,, w;,) = 1. Let j; be the smallest
such index and define wgarc,i = (Si, 7elis ji> Xj;» Minst,ji» Wj;)-

— Let Cclausesat be the Boolean circuit that computes the NP relation Rcjausesat [hkinst, hkel, C, hinst, hei] from
Fig. 1. Construct a proof TIBARG <— BARG.PI’OVC(CI‘SBARG, CClauseSAT> G, (WBARG,I: Cey WBARG,C))'

— Let CvalidBArG be the circuit that takes as input a proof 7 and outputs BARG.Verify(crsgarc, CclauseSAT» € 7T)-
Output WE.Decrypt(ctwe, CvalidBARG: TBARG)-

Theorem 4.2 (Correctness). IfIlssg and Ilwe are correct and Ilgarg is complete, then Construction 4.1 is correct.

Proof. Take any security parameter A € N, Boolean relation C: {0,1}" x {0,1}" — {0, 1}, any Boolean policy P € P
where P: {0,1}" — {0, 1}, any collection of statements x1, ..., xg € {0, 1}" and witnesses wy, ..., wx € {0, l}h where
P(C(x1,w1),...,C(xk, wk)) = 1, and any message u € M. Let ct « Encrypt(ll, C,P,(xy...,xK), ;1) and consider
Decrypt(ct,C, P, (x1, ..., xK), (W1,..., wg)) :

« By construction, ct = (crsgara, hkinst> hkel, ctwe).

« Let ¢ be the number of clauses in P, and for i € [c], let S; C [K] be the variables that appear in the i* clause
of P. Since P(C(x1, w1),...,C(xk, wk)) = 1 and P is a CNF, this means that for every i € [c], there exists an
index j; € S; such that C(x;,, w;,) = 1. As in Encrypt and Decrypt, let j; be the smallest such index.

« Next, the ciphertext ct satisfies ct « WE.Encrypt(l’l, CvalidBARGs 1) Where Cvajidparc takes as input a BARG
proof 7 and outputs BARG.Verify(crsgarc, CclauseSATs € 7T)-

« By construction, hj,s is a hash of the instances (xy, . . ., xg) under hkj,st and h is a hash of the sets Sy, ..., S,
under hk,|. The decryption algorithm first computes

(hi/nst’ Tlinst,15 « - > ﬂinst,n) = SSB-HaSh(hkinsts (xl: LR xK))
(h’}, 7e11s - - - 7et,e) = SSB.Hash(hkg, (Sy, ..., Sc)).

cl
inst> DK.)) using
= hkj.st and hk;] = hk. For each i € [c], consider the witness

Since SSB.Hash is deterministic and Encrypt and Decrypt compute hkiyst and hk (resp., hk

identical procedures, this means hk;

WBARG,i = (Si, Tcl,is Jj» Xj;» Tinst, j;» Wj;) constructed by the decryption algorithm. By construction, S; is the ith
clause of P and j; € S;. By correctness of Ilssg, it holds that
SSB.Verify(hke, hel, 1, Si, 7e1,;) = 1 = SSB.Verify (hkinst, hinst, ji» Xj;» Tinst,j;) -
Moreover, j; € S; and C(xj,, w;;) = 1. Thus, for all i € [c],
CclausesaT (i, WBARG,i) = RclausesaT [hkinst, hkel, C, hinst, hei] (i, wearc,i) = 1.
« By completeness of IIgarg, this means that BARG.Verify (crsgarc, CclausesAT € TBARG) = 1 when mparc «—

BARG.Prove(crsgarG, CclauseSAT: €, (WBARG,1 - - - » WBARG,c))-

20

« Correspondingly, CvaiidsarG (BARG) = 1 so by correctness of ITwg, WE.Decrypt(ctwe, TBarRG) = U
Correctness holds. m]

Theorem 4.3 (Semantic Security). Suppose Issp satisfies correctness, set hiding, and somewhere statistical binding,
IIgarG is somewhere extractable, and Ilwe satisfies semantic security. Then Construction 4.1 is semantically secure.

Proof. Let A = (A, A1) be an efficient non-uniform adversary for the semantic security game. In particular, on
input the security parameter 14, algorithm A, outputs a tuple (C, P, (x1, . .., Xk), jo, 1) together with some state
information st # (of polynomial size). Algorithm (A; takes as input the state st #z and a ciphertext ct and outputs a
bit b’ € {0, 1}. For each i € [K], define the bit f; as follows:

1 Ewi € {0, 1}h : C(xi, Wl') =1
Bi = , (4.1)
0 otherwise.
Our reduction algorithms will take the bits (fs, . .., fx) along with st # as non-uniform advice. We now define a

sequence of hybrid experiments parameterized by a bit b € {0, 1}:
. Hyb(()b>: This is the semantic security game with adversary A and bit b € {0, 1}:

— On input the security parameter 14, algorithm ?{0(1’1) outputs (C, P, (xy, . .., XK), Ho, 1) and st#. For
each i € [K], define the bits f; according to Eq. (4.1).

- IfP(B1,. .., Px) = 1, the challenger outputs 0. Otherwise, the challenger invokes b’ « A; (st .4, ct) where
ct «— Encrypt(l’l, C,P, (x1,...,xK), tp). Specifically, the challenger constructs ct as follows:

« Let ¢ be the number of clauses in P and let t < K be the maximum number of variables that appears
in any clause of P.

» The challenger samples hkinst SSB.Setup(lA, 1",1%, K, @) and hk < SSB.Setup(l’l, 14,11 ¢, @),
where £ = £(A) is a bound on the description of a single clause.

» Let s be the size of the circuit that computes Rciausesat [hkinst, hkels C, hinst, he] from Fig. 1. The
challenger samples crsgarg < BARG.Setup(lA, 1, 1%).

« The challenger computes

(hinsts Tlinst,15 « + +» ﬂinst,K) = SSB~Ha5h(hkinsta (xl, ces ,xK))
(hd, Tl 1s -« s HC]’C) = SSB.HaSh(hkd, (51, ey Sc)),

where S; C [K] denotes the variables that appear in clause i.

« Finally, the challenger computes the ciphertext ctwg « WE.Encrypt(lA, CvalidBARG» 1), Where
CvalidBARG 1s the circuit that takes 7 as input and outputs BARG.Verify(crsgarc, CclauseSATs € 7T)-

» The challenger sets ct = (crsgarc, hKinst, hkel, ctwe).
— The output of the experiment is the bit b’ € {0, 1}.

. Hybib): Suppose P(fi, ..., Bx) = 0. Then, there exists an index i* € [c] such that for all j € S+, §; = 0. Let i*
be the first such index where this property holds. This experiment is the same as Hyb,"’ except the challenger
samples hkinst < SSB.Setup(14,17, 1%, K, S;).

. Hybgb): Same as Hybib) except the challenger samples hk. « SSB.Setup(1%,1%, 1%, ¢, {i*}).
. Hyb§b>: Same as Hybgh) except the challenger sample crsgapc < BARG.Setup™ (174, 1¢,1°, i*).

We write Hybfb) (A) to denote the output distribution of an adversary A in experiment Hybgb). In our reduction
algorithms below, we will construct an efficient non-uniform adversary 8 = (8, B;). In all cases, algorithm B,
behaves as follows:

21

On input the security parameter A € N:

° Run (C5 P> (xl’ .. ~;xK)’Il0allla Stﬂ) — ﬂo(lh)
« For each i € [K], compute f; according to Eq. (4.1).
« Output (G, P, (x1,...,xK), Ho, 1, Sta, (1, - - -, BK))-

Figure 2: The pre-processing algorithm 5,
We now analyze each adjacent pair of hybrid experiments.

Lemma 4.4. IfIlssp satisfies set hiding, then for allb € {0, 1}, there exists a negligible function negl(-) such that for
all € N, | Pr[Hyb{" (A) = 1] - Pr[Hyb\" (A) = 1]| = negl(1).

Proof. Suppose |Pr[Hybéh)(&zl) =1] - Pr[Hybiw (A) = 1]| = ¢ for some non-negligible . We use A = (Ay, A1) to
construct an efficient non-uniform adversary 8 = (8By, 8;) for the set-hiding security game. The behavior of By is
shown in Fig. 2. On input the non-uniform advice (C, P, (x1, . .., Xk), to, 1, Sta, (B1, - - -, Px)), algorithm B; works
as follows:

1. On input the security parameter 17 and the advice string (C, P, (x1, ..., XK), Ho, 1, Sta, (B1, - - ., PK)), algorithm
B outputs 0if P(fy, ..., fx) = 1.

2. Otherwise, interpret C: {0,1}" X {0,1}* — {0,1} and P: {0,1}¥ — {0, 1}. Let ¢ be the number of clauses in
P, t < K be the maximum number of variables that appears in any clause of P, and S; C [K] be the variables
that appear in clause i of P. Let i* € [c] be the first index where for all j € S;-, ; = 0.

3. Algorithm B, outputs the input length 17, the bound 1/, the number of blocks K, and the set S;-. The challenger
replies with a hash key hkins;. Algorithm $B; then samples hk < SSB.Setup (14,14, 1, ¢, @).

4. Algorithm $B; computes

(hinst; Tinst,15 « « +» ﬂinst,K) = SSB-HaSh(hkinsts (xb cees xK))
(het, 7t 1, - - - 7ele) = SSB.Hash(hkg, (S1, ..., Se)).

Next, it samples crsgarc < BARG.Setup(l’l, 1¢,1%), where s is the size of the circuit Ccjausesat that com-
putes Relausesat [hKinsts hkel, C, hinst, he] from Fig. 1. Finally, algorithm 8 constructs the ciphertext ctwg «
WE.Encrypt(l’l, CvalidBARG» b)> Where Cvajidparc is the Boolean circuit that takes as input a BARG proof 7 and
outputs BARG.Verify(crsgarc, CclauseSATs € 7T)-

5. Algorithm B sets ct = (crsgara, hkinst, hkel, ctwe) and outputs Az (st 4, ct).

If the challenger samples hkjns; < SSB.Setup(lA, 1",1%, K, @), then algorithm B simulates an execution of Hyb(()b)
and outputs 1 with probability Pr[Hybib) (A) = 1]. If the challenger samples hkins; < SSB.Setup(1%,17, 1%, K, S;+),

then algorithm 8 simulates an execution of Hybib) and outputs 1 with probability Pr[HybEb) (A) = 1]. We conclude
that algorithm B breaks set hiding with the same advantage e. O

Lemma 4.5. IfTlssp satisfies set hiding, then for all b € {0, 1}, there exists a negligible function negl(-) such that for
all 2 € N, | Pr[Hyb'? (A) = 1] - Pr[Hyb\" (A) = 1]| = negl(A).

Proof. Follows by a similar argument as the proof of Lemma 4.4, except the reduction algorithm obtains the hash
key hk¢ from the challenger instead of hk;ps;. m]

Lemma 4.6. IfIlgarc satisfies somewhere statistical soundness (specifically, mode indistinguishability), then for all
b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb{" (A) = 1] = Pr[Hyb\" (A) = 1]| = negl(1).

22

Proof. Suppose |Pr[Hyb§b) (A)=1] - Pr[Hybgw (A) = 1]| = ¢ for some non-negligible ¢. We use A = (Ay, A;) to
construct an efficient (non-uniform) adversary 8 = (8B, 8;) for the mode indistinguishability game. The behavior
of By is shown in Fig. 2. On input the non-uniform advice (C, P, (x1, .. ., xx), Ho, t1, Sta, (f1, - - ., Bk)), algorithm B
works as follows:

1. On input the security parameter 17 and the advice string (C, P, (x1, . .., XK), Ho» 1, Sta, (P1, - - -» Px)), algorithm
B, outputs 0if P(fy, ..., fx) = 1.

2. Otherwise, interpret C: {0,1}" x {0,1}* — {0, 1} and P: {0,1}X — {0, 1}. Let ¢ be the number of clauses in
P, t < K be the maximum number of variables that appears in any clause of P, and S; C [K] be the variables
that appear in clause i of P. Let i* € [c] be the first index where for all j € S;, f; = 0.

3. Algorithm B; samples hkinst — SSB.Setup(lA, 1",1% K, S;+) and hky < SSB.Setup(lA, 1411 ¢, {i*}).
4. Algorithm $B; computes

(hinst, Tlinst,15 « + +» ”inst,K) = SSB~HaSh(hkinst’ (xl’ e xK))
(het, el 1, - - - 7ele) = SSB.Hash(hkg, (S1, ..., Sc)).

5. Algorithm 8B; outputs the number of instances 1€, the circuit size 1°, and the index i* € [c]. The challenger re-
sponds with crsgarg. Here s is the size of the circuit Ccaysesat that computes Rcijausesat [hkinsts hkels C, hinst hei]
from Fig. 1.

6. Algorithm B, constructs the ciphertext ctwg « WE.Encrypt(l’l, CvalidBARGs Hb) Where Cvajidsarc is the Boolean
circuit that takes as input a BARG proof 7 and outputs BARG.Verify(crsgarc, CclausesATs G 7).

7. Algorithm B sets ct = (crspara, hkinst, hkel, ctwe) and outputs Ay (st 4, ct).

If the challenger samples crsgarc < BARG.Setup(1%, 1¢,1°%), algorithm B simulates an execution of Hybéb) and
outputs 1 with probability Pr[Hybgb) (A) = 1]. If the challenger samples crsgarc < BARG.Setup*(1%,1¢, 1%, i*), then

algorithm B simulates an execution of Hybéb) and outputs 1 with probability Pr[Hybgb) (A) = 1]. We conclude that
algorithm B breaks mode indistinguishability with the same advantage e. O

Lemma 4.7. IfIlwe satisfies semantic security, Ilssp is correct and somewhere statistically binding, Ilgarc satisfies
somewhere statistical soundness, then there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb\” (A) = 1] - Pr[Hyb\" (A) = 1]| = negl().

Proof. Suppose |Pr[Hyb§0) (A)=1] - Pr[Hybgl)(ﬂ) = 1]| > ¢ for some non-negligible ¢. First, we note that with
probability at least ¢, it must be the case that A, outputs (C, P, (x1, ..., xk), tlo, p11) Where for f; defined according to
Eq. (4.1), it holds that P(fy, . .., fx) = 0. When P(f4, ..., fk), the output in both experiments is always 0. Thus, in the
subsequent analysis, we assume that P(fy, ..., fx) = 0. We use A = (Ao, A;) to construct an efficient (non-uniform)
adversary B8 = (8B, B) for the mode indistinguishability game. The behavior of By is shown in Fig. 2. On input the
non-uniform advice (C, P, (x1, ..., XK), to, 11, Sta, (b1, - - ., Px)), algorithm B; works as follows:

1. On input the security parameter 1% and the advice string (C, P, (x1, . .., XK), Ho, 11, Sta, (B1, - - -, Px)), algorithm
B, outputs 0 if P(fy,..., k) = 1.

2. Otherwise, interpret C: {0,1}" x {0,1}* — {0,1} and P: {0,1}X — {0, 1}. Let ¢ be the number of clauses in
P, t < K be the maximum number of variables that appears in any clause of P, and S; C [K] be the variables
that appear in clause i of P. Let i* € [c] be the first index where for all j € S;+, B; = 0.

3. Algorithm B; samples hkins < SSB.Setup(1%,17, 1%, K, Si+) and hky < SSB.Setup(1%, 1%, 1%, ¢, {i*}).

23

4. Algorithm $B; computes

(hinst, Tinst,15+ « > ﬂinst,K) = SSB-HaSh(hkinst, (xl, cees xK))
(het, et 1, - - - 7ele) = SSB.Hash(hkg, (S1, ..., Sc)).

It then computes crsgarGg BARG.Setup*(l’l, 1¢,1%,i*), where s is the size of the circuit C¢jaysesat that com-
putes RclausesaT [Mkinst, hke, C, hingt, he] from Fig. 1.

5. Algorithm B, gives CvalidsarG, Ho, 1 to the challenger and receives a ciphertext ctwe. Here, Cvalidsarc is the
Boolean circuit that takes as input a BARG proof 7 and outputs BARG.Verify(crsgarc, CclauseSAT> G 7T)-

6. Algorithm B; sets ct = (crsparc, hkinst, hkel, ctwe) and outputs A, (st 4, ct).

By construction, algorithm 8 simulates hkinst, hkel, hinst, hel, crsparc exactly according to the specification of Hybéo)
and Hybél) . To complete the proof, we first argue that with overwhelming probability over the choice of hkinst, hke,
and crspgaRc, it holds that for all 7 € {0, 1}*, Cvalidsarc () = 0:

o Let Lclausesat be the language associated with Rciausesar [hkinst, hkels C, hinsts he]. We first show that i* ¢
Lclausesat- Consider a candidate witness (S, 7|, J, X, Tinst, w) for statement i*.

— First, hk, is statistically binding on the set {i*}, and h is a hash of (S, ...,S.). Correctness and some-
where statistically binding of IIssg implies that the only set S for which SSB.Verify (hk, h, i*, S, -) outputs
1is S = S;-.

— Next, hkinst is statistically binding on the set S;» and hinst is a hash of (xy,...,xx). Correctness and
somewhere statistically binding of IIssg implies that for all j € S;+, the only values of x for which
SSB.Verify (hkpi, hpk, j, x, -) outputs 1 is if x = x;.

- By construction of i*, for all j € S;+, we have that ; = 0. This means that for all w € {0, l}h, it holds that
C(xj,w) = 0. From above, x = x;, so we conclude that C(x, w) = 0.

Taken together, we conclude that i* ¢ Lcaysesat-

« Algorithm 8B samples crsparg to be statistically sound on i* € [c]. Since i* ¢ Lclausesat, Somewhere statistical
soundness of IIgarg states that with overwhelming probability over the choice of crsgarg, there does not exist
a proof = where BARG.Verify(crsgarGs CclausesaT; ¢,) = 1. Correspondingly, this means that there does not
exist any 7 where Cyajidparc () = 1.

Since Cvalidsarc () = 0 for all & with overwhelming probability, the witness encryption challenger constructs the
challenge ciphertext in one of two possible ways:

« If the challenger replies with ct « WE.Encrypt (1%, Cyaiidsarc. /o), algorithm B perfectly simulates Hybgo) and
outputs 1 with probability Pr[HybéO)(ﬂ) =1].
« If the challenger replies with ct « WE.Encrypt(l’\, CvalidBARG» 1), algorithm B perfectly simulates Hybgl) and
outputs 1 with probability Pr[Hybgl)(ﬂ) =1].
We conclude that algorithm 8 breaks semantic security with advantage ¢ — negl(4). The lemma follows. O
Security now follows by combining Lemmas 4.4 to 4.7. O
Theorem 4.8 (Local Decryption). Suppose Ilssp is succinct. Then Construction 4.1 supports local decryption.
Proof. This follows by inspection. We define the preprocessing and local decryption algorithms as follows:

« Preprocess(ct,C, P, (x1, ..., xk)): On input the ciphertext ct = (crsparc, hkinst> hke, ctwe), the Boolean circuit
C: {0,1}" x{0,1}" — {0, 1}, the policy P: {0, 1}¥ — {0, 1}, and the statements x1, ..., xx € {0, 1}", the prepro-
cessing algorithm computes a hash of the instances (hinst, Tinst.1, - - -» Zinst k) = SSB.Hash(hkinst, (x1, . . ., xx)).
Then, it outputs the hints (ht;, ..., htx) where ht; = (xi, Tinst.i)

24

« DecryptLocal(ct, C, P, {(i, ht;, w;) }ics): On input the ciphertext ct, the Boolean circuit C: {0,1}" x {0,1}" —
{0, 1}, the policy P: {0,1}X — {0,1}, and the hints ht; = (x;, Tinst.;) together with witnesses w; € {0, 1}" for
each i € S, the local decryption algorithm proceeds as follows:

— Foreachie [K],letfi=1ifieSand f;=0ifi ¢ S.If P(fy,...,Pk) # 0, then output L.

— Let ¢ be the number of clauses that appear in P. For i € [c], let S; C [K] denote the variables that
appear in clause i of P (under a canonical ordering of the variables). Compute a hash of the clauses
(hep, Tl s v s 7Tc|,c) = SSB.Hash(hk, (Sy,...,S¢)).

— Since P is a CNF and P(f4,. .., fx) # 0, every clause of P must contain a satisfied literal. In other words,
for every i € [c], there exists an index j; € SN S; where C(xj,, w;;) = 1. Let j; be the smallest such index
and define wgarg,i = (Si, Tel,i Jis Xj;» Tinst, j;» Wj,)-

— Let Cclausesat be the Boolean circuit that computes the NP relation Rcjausesat [hkinst, hkel, C, hinst, hei] from
Fig. 1. Construct an index BARG proof

78ARG <— BARG.Prove(crsparc, CclausesAT, € (WBARG,1s - - - » WBARG.c))-
— Let Cvalidsarc be the Boolean circuit that takes as input a BARG proof 7 and outputs
BARG.Verify(crsparc, CclauseSAT, G 7).
Output WE.Decrypt(ctwe, CvalidBARG> TBARG)-

By succinctness of IIssp, the size of the openings minst; computed by Preprocess has size poly(A, n, t,log K). Corre-
sponding the size of the hints output by Preprocess have size n + poly(4, n, t,log K), so succinctness follows. Finally,
correctness follows by construction (namely, the composition of Preprocess and DecryptLocal coincides with the
Decrypt algorithm in Construction 4.1). O

Instantiation. Construction 4.1 yields a succinct witness encryption scheme for CNF policies from plain witness
encryption in conjunction with somewhere statistically binding hash functions and somewhere statistically sound
(index) BARGs for NP [WW22]. When encrypting to a Boolean circuit C: {0,1}" x {0,1}"* — {0, 1}, a CNF policy
P: {0,1}¥ — {0,1} with ¢ clauses and where each clauses has size at most ¢, the size of the ciphertext in Con-
struction 4.1 is poly(4A, |C|, t,log ¢). In particular, the size of the ciphertext scales with the size of a single clause and
polylogarithmically with the total number of clauses. In particular, when the size of each clause is constant, then
the overall ciphertext size is polylogarithmic in the size of the policy. We summarize the efficiency properties of our
instantiation in the following corollary:

Corollary 4.9 (Succinct Witness Encryption for CNF Policies). Let A be a security parameter. Assuming the existence
of somewhere statistically binding hash functions, somewhere statistically sound BARGs for NP, and witness encryption
for NP, there exists a succinct witness encryption scheme for CNF policies (that supports local decryption). An encryption
of a message i with respect to a Boolean circuit C: {0,1}" x {0,1}* — {0,1} and a CNF policy P: {0, 1} — {0,1} with
¢ clauses and maximum clause size t has size |u| + poly (A, |C|, t,log ¢). In particular, when consider CNFs where each
clause contains a constant number of variables (e.g., t = O(1)), the ciphertext size scales polylogarithmically with the
size of the policy P.

Remark 4.10 (Conjunctions of Local Monotone Predicates). Construction 4.1 immediately generalizes to yield a
succinct witness encryption scheme for conjunctions of arbitrary (local) monotone predicates. Consider a policy
P: {0,1}X — {0,1} of the form . .

P(Bus.., B) = Pi(Bs,) A -+ A PelBs,),

where Py, ..., P, are arbitrary monotone predicates on the variables _ﬁ s, = (Bj)jes;- A CNF corresponds to the special
case where each local predicate P; is a disjunction on the variables fs,. To generalize Construction 4.1 to this setting,
we proceed as follows:

25

« We take h to be a hash of the pairs (P, S1), ..., (P, S¢). Namely, h¢ now binds to a predicate together with
the set of variables on which it depends.

« We modify the NP relation Rcausesar to check satisfiability of the ith predicate:

Fixed values: hash keys hk;,st, hk, a circuit C: {0, 1} x {0, 1}" — {0, 1}, and hashes hing, hq
Statement: index i € N
Witness: a pair (P, S), an opening 7, and triples (x;, Wi, Tinst,i)ies

On input a statement i € N and a tuple ((P, S), 7r¢l, (Xi, Wi, Tinst.i)ies), output 1 if the following hold:
— SSB.Verify(hke, het, i, (P, S), o) = 1;
— Foralli € S, SSB.Verify(hkinst, hinsts I, Xi, Tinst.;) = 1; and

— P((Bi)ies) = 1, where f; = C(x;, w;) foralli € S.

Figure 3: The modified NP relation Rciaysesat [hKinst hkel, C, hinst, he] to support general predicates

In the security proof, we use the fact that for every false instance (C, P, (xy, . . ., xg)), there always exists an
index i* € [c] where the local predicate P; is unsatisfiable for the statements xs,. (irrespective of the choice
of witness). This property critically relies on the assumption that the local predicates are monotone. Indeed,
if the local predicates were non-monotone, it could be the case that every predicate is locally satisfiable for
some choice of witness, but the policy is globally unsatisfiable when the adversary is forced to use a consistent
witness for each instance (across different clauses). Our proof strategy in Theorem 4.3 assumes that there is
always one unsatisfiable clause, which will always be the case for a conjunction of monotone predicates.

With these two modifications, we obtain a succinct witness encryption scheme that supports policies that can be repre-
sented by a conjunction of local monotone predicates. An encryption of a message y now with respect to the Boolean
relation C and a policy P comprised of local predicates (P4, ..., P) has size || + poly(A, |C|, max;c[] |Pi], log c). Once
more, the ciphertext size scales with the size of a single predicate and polylogarithmically with the total number of
predicates.

4.2 Succinct Witness Encryption for DNF Policies

In this section, we show how to construct a succinct witness encryption scheme for DNF policies by combining a
witness encryption scheme together with a function-binding hash function. Our scheme is limited to trapdoor NP
relations where there is an efficiently-computable algorithm that can decide membership in the language (given some
trapdoor information). Specifically, we define a trapdoor NP relation as follows:

Definition 4.11 (Trapdoor NP Relation). Let R = {R,},ci be a family of NP relations where R,,: {0,1}" x {0,1}" —
{0, 1} is an efficiently-computable relation. We say R is a trapdoor NP relation if there exists an efficiently-computable
family of circuits C = {C, } e such that for all n € N and all x € {0, 1}",

Ca(x)=1 ifandonlyif 3we {0,1}": Ry(x,w) = 1.

Importantly for our applications, the construction itself does not require knowledge of the trapdoor circuits C.
Otherwise, the language is in P and witness encryption is trivial. The existence of the trapdoor relation is only
needed in the security proof (where the circuit family could be provided to the reduction algorithm as non-uniform
advice). As we show in Section 6, succinct witness encryption for trapdoor languages suffices for applications to
both computational secret sharing and the notion of monotone-policy encryption we introduce in this work.

Construction 4.12 (Succinct Witness Encryption for DNF Policies). Let A be a security parameter, M be a message
space, and P be the set of Boolean formulas in disjunctive normal form. Our construction relies on the following:

26

« LetII g = (LHE.KeyGen, LHE.Encrypt, LHE.Eval, LHE.Decrypt) be aleveled homomorphic encryption scheme.
Let £ = £.¢(A, dmax) be a bound on the length of the ciphertext (encrypting a single bit) in IT| 4 as a function
of the security parameter A and the depth bound dp,x.

« Let IIrgy = (FBH.Setup, FBH.Hash, FBH.Verify) be a function-binding hash function for disjunctions of block
functions.

+ Let ITwe = (WE.Encrypt, WE.Decrypt) be a witness encryption scheme with message space M.

Let R = {R, }nen be a family of trapdoor NP relations, where the associated family of trapdoor circuits Cry = {Cid.n tnen
can be computed by a circuit of depth at most diy = diq(n) and size at most sig(n). We construct a succinct witness
encryption scheme for R with message space M and policy space P as follows:

. Encrypt(lﬁ, C,P, (xy,...,xK),): On input the security parameter A, the Boolean relation C: {0, 1}" X {0, l}h —
{0, 1}, the Boolean policy P € P where P: {0,1}¥ — {0,1}, instances x, ..., xg € {0,1}", and the message
u# € M, the encryption algorithm proceeds as follows:

Let ¢ be the number of min-terms in P, and let t < K be the maximum number of variables that appears

in any min-term of P. For any collection of ¢ instances X1,...,%; € {0,1}", let Ug,,._#, (C) be the universal
circuit that takes as input the description of a circuit C of depth at most di4 and size at most sq and outputs
Us, .5 (C) = [\ C(). (4.2)
jelt]
Note that we assume the instances X1, ..., X; are hard-wired in the description of Uz, x,. Let d{, be a
bound on the depth of the circuit of U, ¢, (for an arbitrary choice of X1, ..., X;).
Next, for each min-term ¢ of P over instances Xigys oo Xiy, € [K], we define
U(p (C) = Ux,-wyl,...,xiq,yt (C) (43)
In the following, we assume that the indices iy 1, ..., i, of the instances that appear in ¢ are in lexico-

graphic order, so for every ¢, there is a canonical description of the universal circuit U,.

Sample (pky g, skine) < LHE.KeyGen(1%, 1%¢). Let Cdummy : ({0,1}")* — {0,1} be the dummy circuit
that takes as input t statements and always outputs 1 (and padded to a string of size syq). Compute
ctipe < LHE.Encrypt(pk e, Cdummy)-

Let dgec = dgec(A) and sgec = Sdec (A) be bounds on the depth and size, respectively, of the Boolean circuit
that computes Cgec(ct) := LHE.Decrypt(skppg, ct). Sample hk « FBH.Setup(l’l, 1fet, 1%dec Sdee ¢, 1).

For each min-term ¢; in P, compute ct; = LHE.Eval(pk g, Uy;, ctiHE).
Compute a hash of the ciphertexts (h, 7ct 1, - . ., 7ctc) = FBH.Hash(hk, (cty, ..., ct;)).
Let CpNrsat be the Boolean circuit computing the following functionality:

Fixed values: a hash key hk, a circuit C: {0, 1}" x {0, l}h — {0, 1}, a hash h, a public key pk, ;;¢, and
a ciphertext ct| g

Input: an index i € N, instances %y, . . ., X;, witnesses wy, . . ., Wy, and an opening =

On input the index i € N, instances Xy, . .., X;, witnesses wy, ..., w;, and an opening 7, output 1 if
the following conditions hold:

« Forall j € [¢], it is the case that C(X;, w;) = 1.

« Let Uy, .z be the universal circuit from Eq. (4.2). Compute the ciphertext
ct = LHE.Eval(pk g, Uz,,... %> ctine). Check that FBH. Verify (hk, h, i, ct,) = 1.

.....

Figure 4: The Cpnrsat [hk, C, h, pk g, ctine] circuit

27

Compute the ciphertext ctywg «— WE.Encrypt(lA, Conrsat [hk, C, h, pk g, ctine], p) and output the cipher-
text ct = (hk, h, pk; . ctine, ctwe).

+ Decrypt(ct,C, P, (xy,...,xK), (wq,...,wk)): On input a ciphertext ct = (hk, h, pk; g, ctine, ctwe), a Boolean
relation C: {0,1}" x {0,1}" — {0,1}, a policy P € P where P: {0,1}¥ — {0, 1}, instances x1, ..., xx € {0,1}",
and witnesses wy, . .., wg € {0, 1}", the decryption algorithm proceeds as follows:

- Let cbe the number of min-terms in P. For each min-term ¢; in P, compute ct; = LHE.Eval(pk, ¢, U, ctinE),
where U,, is defined as in Eq. (4.3).

— Compute a hash of the ciphertexts (h, 7zt 1, . . ., 7ete) = FBH.Hash(hk, (cty, ..., ct.)).

— Since P is satisfied, there must exist an index i € [K] such that ¢; is satisfied. Let iy, . .., i; be the variables
that appear in ¢;. Let w = (i, x;,, . . ., Xi,, Wi,, . . ., Wi,, Ter,i). Output WE.Decrypt(ct, w).

Theorem 4.13 (Correctness). If gy and Ilwe are correct, then Construction 4.12 is correct.

Proof. Take any security parameter A € N, Boolean relation C: {0,1}" x {0,1}* — {0, 1}, any Boolean policy P € P
where P: {0,1}" — {0, 1}, any collection of statements xy, ..., xx € {0, 1}" and witnesses wy, ..., wg € {0, l}h where
P(C(x1,w1),...,C(xg, wk)) = 1, and any message u € M. Let ct « Encrypt(1},C, P, (x; ..., xk),) and consider
Decrypt(ct,C, P, (x1,. .., xK), (W1,...,Wg)) :

» By construction, ct = (hk, h, pkyy¢, ctine, ctwe), where (pky g, skung) < LHE.KeyGen(1%,1%) and ctipe «
LHE.Encrypt(pk, yg, Cdummy)-

+ Let ¢ be the number of min-terms in P. For each min-term ¢; in P, both the encryption and the decryp-
tion algorithms compute ct; = LHE.Eval(pk, ¢, Uy, ctipe). In addition, both algorithms compute a hash
(h, et 1, - - - 7et,e) = FBH.Hash(hk, (cty, . .., ctc)). By correctness of Irpy, this means

Vi € [c] : FBH.Verify(hk, h, i, ct;, 7t ;) = 1.

« Since P is satisfied, there must exist an index i € [c] such that g; is satisfied. Let iy, . . ., i; be the variables that
appear in ¢;. This means C(x;;, w;;) = 1for all j € [t]. By Eq. (4.3),

.....

Since homomorphic evaluation is deterministic, this means
ct; = LHE.Eval(pk g, Uy, ctipe) = LHE.Eval(pk, e, Ux,-l,..i,xi,,CtLHE)-

This means that Cpnrsat [hk, C, h, pky e, ctine] (6, x4y, - - -, X3, Wi, - - ., Wi, Teri) = 1. The claim now follows by
correctness of witness encryption. o

Theorem 4.14. Suppose I\ g satisfies perfect correctness and CPA-security, gy satisfies function hiding and statistical
disjunction binding, and Il satisfies semantic security. Then, Construction 4.12 satisfies semantic security.

Proof. Let A = (A, A1) be an efficient non-uniform adversary for the semantic security game. In particular, on

input the security parameter 1%, algorithm A, outputs a tuple (C, P, ¥, o, j11) together with some state information

stz (of polynomial size) and where ¥ = (x1, ..., xg). Algorithm A; takes as input the state st.4 and a ciphertext ct

and outputs a bit b’ € {0, 1}. For each i € [K], define the bit f; as follows:

1 HWI' < {0, l}h : C(Xi,Wi) =1

. (4.4)
0 otherwise.

Our reduction algorithm will take the bits ﬁ = (p1,--.,PK), sta, and the trapdoor circuits Ciq, associated with the
NP relation defined by C as non-uniform advice. We now define a sequence of hybrid experiments parameterized
by a bit b € {0,1}:

28

. Hyb(()b>: This is the semantic security game with adversary A and bit b € {0, 1}:

— On input the security parameter 17, algorithm Ay(1%) outputs (C, P, X, g, p11) and st #. For each i € [K],
define the bits f; according to Eq. (4.4). Let f = (f1, ..., fk)-

- If P(ﬁ) = 1, the challenger outputs 0. Otherwise, the challenger invokes b’ « A;(stg, ct) where
ct « Encrypt(14,C, P, X, iip). Specifically, the challenger constructs ct as follows:
« Sample (pky g, skipe) < LHE.KeyGen(lA, ldt,d) and compute ct;yg < LHE.Encrypt(pk, g, Cdummy)-
» Sample hk « FBH.Setup(l’l, plet, 1ddec {Sdec ¢ 1).
« For each min-term ¢; in P, compute ct; = LHE.Eval(pk ¢, U, ctipe). Compute a hash of the
ciphertexts (h, 7ct 1, . . ., Zete) = FBH.Hash(hk, (cty, ..., ctc)).

« Compute the ciphertext ctwg < WE.Encrypt(1%, Cpnrsat [k, C, h, Pk e ctine]s fp) where Cpnrsat
is the circuit in Fig. 4.

« Finally, the challenger sets ct = (hk, h, pk . ctinE, ctwe).
— At the end of the game, algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

. Hyb§b>: Same as Hyb(()b) except the challenger samples ct| g < LHE.Encrypt(pk, g, Cid.n), where Cg, is the
trapdoor circuit associated with the Boolean relation defined by C.

. Hybgw: Same as Hybib) except the challenger samples hk « FBH.Setup (1%, 1%, 1%ec, 1% ¢, Cy..) where
Cdec(ct) := LHE.Decrypt(skiyg, ct).

We write Hybgb) (A) to denote the output distribution of an adversary A in experiment Hybgb). In our reduction
algorithms below, we will construct an efficient non-uniform adversary 8 = (B, B;). In all cases, algorithm B,
behaves as follows:

On input the security parameter A € N:

« Run (C, P, X, pio, ji1,st) «— Ao(11). .

« For each i € [K], compute f; according to Eq. (4.1). Let = (B1,. .., fx)-

« Output (C, P, %, po, p11, st a, B, Ctd.n> dig’), where Ciq p, is the trapdoor circuit associated with the Boolean
relation defined by C and dyy is a bound on the depth of the circuit Uy, g, from Eq. (4.2).

.....

Figure 5: The pre-processing algorithm 5,
We now analyze each adjacent pair of hybrid experiments.

Lemma 4.15. If1] ¢ satisfies CPA-security, then for all b € {0, 1}, there exists a negligible function negl(-) such that
forall x € N, | Pr[Hyb{" (A) = 1] - Pr[Hyb'? (A) = 1]| = negl(1).

Proof. Take any b € {0, 1} and suppose |Pr[Hyb(()b) (A)=1] - Pr[Hybib) (A) = 1]| = ¢ for some non-negligible &.
We use A = (Ao, A;) to construct an efficient non-uniform adversary 8 = (B, B;) for the CPA-security game:

1. On input the security parameter and the advice string (C, P, X, o, j11, st a1, ﬁ, Ctd.n), algorithm B; outputs 0 if
P(p) = 0. Otherwise, algorithm B; outputs the depth bound 1%s. The challenger replies with pk, ;.

2. Algorithm 8B, outputs the challenge messages Cqummy and Ciq,, and receives a challenge ciphertext ct; .
3. Algorithm B; samples hk « FBH.Setup(lA, 1let, 1ddec {5dec ¢ 1).

4. For each min-term ¢; in P, algorithm $B; computes ct; = LHE.Eval(pk, ¢, Uy, ctipe). Next, it computes a hash
of the ciphertexts (h, 7zt 1, . . ., 7ete) = FBH.Hash(hk, (cty, . .., ctc)).

5. Compute the ciphertext ctyg « WE.Encrypt(l’l, Conrsat [hk, C, h, pky g, ctinel, po)-

29

6. Algorithm B; defines ct = (hk, h, pk g, ctinE, ctwe) and outputs A; (st 4, ct).

By definition, the challenger samples (pk, ¢, skipe) < LHE.KeyGen(1%, 1%4), so the public key pky g is distributed
as in Hyb(()b) and Hybgb). Next, if the challenger computes ct yg «— LHE.Encrypt(pk, ¢, Cqummy), then algorithm
8B perfectly simulates an execution of Hyb(()b). If ctiye « LHE.Encrypt(pk g, Cid). then algorithm 8B perfectly
simulates an execution of Hybib). We conclude that algorithm 8 breaks CPA-security with the same advantage e. O

Lemma 4.16. IfIlrpy satisfies function hiding, then for all b € {0, 1}, there exists a negligible function negl(-) such
that for all A € N, |Pr[Hyb§b) (A)=1] - Pr[Hyb;b) (A) = 1]| = negl(A).

Proof. Take any b € {0, 1} and suppose |Pr[Hyb§b) (A)=1] - Pr[Hybéb) (A) = 1]| = ¢ for some non-negligible .
We use A = (A, A;) to construct an efficient non-uniform adversary 8 = (B, B;) for the function-hiding game.

1. On input the security parameter 14 and advice string (C, P, X, jto, 11, St a1, E Ctd.n), algorithm B; samples a key-
pair (pk g, skine) < LH E.KeyGen(l’l, 1%4) and constructs the ciphertext ct ye <= LHE.Encrypt(pk g, Ctdn):

2. Let £ be the length of the ciphertext output by LHE.Encrypt(pk g,). Let dgec and sgec be a bound on
the depth and size of the Boolean circuit that computes the decryption circuit Cgec. Algorithm $; out-
puts the parameters 1%, 1%, and 1%¢, the number of min-terms c, together with the decryption circuit
Cdec(ct) := LHE.Decrypt(skipye, ct). The challenger replies with a hash key hk.

3. For each min-term ¢; in P, algorithm $B; computes ct; = LHE.Eval(pk, ¢, U, ctipe). Next, it computes a hash
of the ciphertexts (h, 7zt 1, . . ., 7ete) = FBH.Hash(hk, (cty,. .., ctc)).

4. Compute the ciphertext ctyg «— WE.Encrypt(lA, Conrsat [hk, C, h, pky g, ctimels po)-
5. Algorithm B, defines ct = (hk, h, pk; ¢, ctiqe, ctwe) and outputs (A (st4, ct).

If the challenger samples hk « FBH.Setup(lA, 1fet, 19dec 15dec ¢, 1), then algorithm B perfectly simulates an execution
of Hybib) . Alternatively, if the challenger sampled hk « FBH.Setup(l’*, 1let, 1%ec 180 ¢, Ctd.n), then algorithm 8

perfectly simulates an execution of Hybgb). We conclude that algorithm 8B breaks function hiding of Ilggy with the
advantage e. O

Lemma 4.17. IfIlwg satisfies semantic security, Ilpgy satisfies statistical disjunction binding and I1 g is perfectly
correct, then there exists a negligible function negl(-) such that for all A € N, |Pr[Hyb£°) (A)=1] - Pr[Hybgl) A =
1]| = negl(A).

Proof. Suppose |Pr[Hyb;°) (A)=1] - Pr[Hybgl)(ﬂ) = 1]| > ¢ for some non-negligible ¢. We use A = (A, A;) to
construct an efficient non-uniform adversary 8 = (8, 8;) for the semantic security game:

1. On input the security parameter 1* and advice string (C, P, X, fio, 11, st 7, E, Ctd,n), algorithm B; samples a key-
pair (pk g, SkLHE) < LHE.KeyGen(lA, ldt’d) and constructs the ciphertext ct yg <= LHE.Encrypt(pk g, Ctdn)-

2. Next, algorithm $B; samples a hash key hk « FBH.Setup(lA, 1fet, 1ddec 15dec ¢, Cdec) Where the circuit Cyec(ct) :=
LHE.Decrypt(skLpe, ct) is the LHE decryption circuit with sk ¢ hard-coded.

3. For each min-term ¢; in P, algorithm $B; computes ct; = LHE.Eval(pk ¢, U, ctipe). Next, it computes a hash
of the ciphertexts (h, 7t 1, . . ., 7ete) = FBH.Hash(hk, (cty, ..., ctc)).

4. Algorithm B; outputs the circuit Cpnrsat [hk, C, h, pk| e, ctine] together with messages po, p11. The challenger
replies with a ciphertext ctwe.

5. Algorithm B, defines ct = (hk, h, pk; ¢, ctiEe, ctwe) and outputs A (st4, ct).
First, we show that with overwhelming probability over the choice of hk, for all w = (i, X1, ..., X, Wy, ..., Wy,), it

holds that Cpnrsat [hk, C, h, pkLHE’ ctipe] (w) = 0.

30

« First, for all j € [t], we have that C(x;, w;) = 1. Otherwise, the output of Cpnrsa is already 0.

o Let ct’” = LHE.Eval(pk, ¢, Us,,... %, ctLne) be the ciphertext computed by Cpnrsat- From the previous step, for
all j € [t], there exists w; where C(x;, w;) = 1. By the first property of Definition 4.11, this means Ciq,(X;) = 1
for all j € [t]. By definition of U, (see Eq. (4.2)), this means that

Jjelt]

« Consider the ciphertexts cty, . . ., ct, that are hashed to obtain h. By definition, ct; = LH E.Ev_}al(pkLHE, Uyp,» CtLHE)-
Letx;,,, ..., xi,, € [K] be the instances associated with the it" min-term ¢; of P. Since P(f) = 0 (i.e., the policy
is not satisfied), there must exist some index j € [¢] such that for all w € {0, 1}", it holds that C (xi,;»w) = 0.
This means that Cig n(xi, ;) = 0. By definition of U, (see Egs. (4.2) and (4.3)), this means that

Up(Cuan) = /\ Cuan(xi,,) = 0.
Jjelz]

Since ct g is an encryption of Cyq ,, We appeal to perfect correctness of ITj g to conclude that for all i € [c],

LHE.Decrypt(skine, ct;) = Uy, (Cia,n) = 0.

« Since hk is statistically disjunction binding with respect to the function Cyec, Cyec(ct;) = 0 for all i € [c],
Cdec(ct”) = 1, and the hash h is obtained by evaluating FBH.Hash(hk, (cts, ..., ct.)), the probability that there
existsanindex i € [t] and an opening 7 where FBH.Verify (hk, h, i, ct’, r) = 1is negligible (over the choice of hk).

In particular, with overwhelming probability, w = (i, X1, ..., X;, W1, Wy,) is not a valid witness. By construction,

hk, h, pk g, ctine are distributed exactly according to the specification of Hybgo) and Hybgl). It suffices to consider
the distribution of ctwg returned by the challenger:

« If ct « WE.Encrypt(1%, Cpnrsat [hk, C, h, pki 4 ctine], o), then algorithm B perfectly simulates Hybéo).

o Ifct « WE.Encrypt(lA, Conrsat [hk, C, h, pky . ctine], p1), then algorithm B perfectly simulates Hybgl).
We conclude that algorithm 8 breaks semantic security with advantage ¢ — negl(4) and the lemma follows. O

Semantic security now follows by combining Lemmas 4.15 to 4.17. O

Instantiation. Construction 4.12 yields a succinct witness encryption scheme for DNF policies from plain witness en-
cryption in conjunction with a leveled homomorphic encryption scheme and a function-binding hash function (for dis-
junction of block functions). The latter primitives can be built from standard lattice assumptions (e.g., [BV11, FWW23]).
When encrypting to a Boolean circuit C: {0,1}"x{0,1}"* — {0, 1}, a DNF policy P: {0, 1}¥ — {0, 1} with ¢ min-terms,
each of size at most ¢, the size of the ciphertext in Construction 4.12 is poly(4, |C|, t,log ¢). Similar to the case with
CNFs (Construction 4.1 and Corollary 4.9), the size of the ciphertext scales with the size of a single min-term and poly-
logarithmically with the number of min-terms. When each min-term is over a constant number of variables, then the
overall ciphertext is polylogarithmic in the policy size. We summarize our instantiation with the following corollary:

Corollary 4.18 (Succinct Witness Encryption for DNF Policies). Let A be a security parameter. Assuming the existence
of leveled homomorphic encryption, function-binding hash functions for disjunction of block functions, and witness encryp-
tion for NP, there exists a succinct witness encryption scheme for DNF policies over a trapdoor NP relation. An encryption
of a message ji with respect to a Boolean circuit C: {0,1}" x {0,1}" — {0,1} and a DNF policy P: {0,1}¥ — {0,1} with
¢ min-terms of size at most t is |p| + poly (A, |C|, t,1og c). When each min-term is over a constant number of variables
(e.g., t = O(1)), then the ciphertext size scales polylogarithmic with the size of P.

31

Remark 4.19 (Disjunction of Local Monotone Predicates). Much like the case for Construction 4.1 (see Remark 4.10),
Construction 4.12 readily generalizes to yield a succinct witness encryption scheme for disjunctions of arbitrary
(local) monotone predicates. Consider a policy P: {0, 1} — {0, 1} of the form

P(By,.... fk) = Py(Bs,) V -+ V P(fs,)

where Py, ..., P, are arbitrary monotone predicates on the variables ES,- i= () jes,. A DNF corresponds to the special
case where each local predicate P; is a conjunction over fs,. To generalize Construction 4.12 to this setting, it suffices
to modify the scheme as follows:

+ Foreachi € [c],letS; = {ji1,..., it} S [K]. We replace the universal circuit U,, from Eqs. (4.2) and (4.3) with
the circuit

U[Pi,xjivl, P in»t] (C) = Pl‘ (C(xji.l)’ ey C(.X'jl.'t)), (45)
where the instances xj, ,, ..., xj;, and the predicate P; is hard-coded into the description of U[P;, x},,, ..., xj;,].
As usual, we assume there is a canonical description of U[P;, xj,,, ..., x};,] that can be derived from P and the

instances Xjis v es Xjiye
« During encryption and decryption, the ciphertexts ct; are now computed as

ct; = LHE.Eval(pk e, U[Pi, xj,,, - - -, Xj,,], ctime)-

« Finally, we modify the relation Cpnrsat to be the Boolean circuit that additionally take the local predicate P;
as input:

Fixed values: a hash key hk, a circuit C: {0, 1}" x {0, 1}h — {0, 1}, a hash h, a public key pk; ¢, and a
ciphertext ct yg

Input: an index i, a predicate P, instances X1, . . ., X;, witnesses wy, ..., w;, and an opening 7

On input an index i, a predicate P, instances Xi, . . ., Xy, witnesses wy, ..., w;, and an opening 7, output
1 if the following conditions hold:

- P(C(xy,w1),...,C(%, wy)) = 1.

— Let Up be the universal circuit from Eq. (4.5). Compute the ciphertext ct =
LHE.Eval(pk g, U[P, X1, . . ., X¢], ctpe) and check that FBH.Verify(hk, h, i, ct, 7) = 1.

Figure 6: The modified Cpnrsat [hk, C, h, pk| g, ctine] circuit to support general predicates

The security proof follows an identical structure as the proof of Theorem 4.14. The only modification is in the analysis
of the final hybrid (i.e., in the analog of Lemma 4.17). Consider the argument in the proof of Lemma 4.17. To rely
on witness encryption security in this step, we need to show that for all w = (i, P, Xy, ..., X, W1, ..., Wy), it is the case
that Cpnrsat [hk, C, h, pk e, ctine] (w) = 0. We proceed using a similar structure as in the proof of Lemma 4.17:

« First, we have that P(C(xy, wy), ..., (X;, w;)) = 1. Otherwise, Cpnrsat already outputs 0.

« Let ct” = LHE.Eval(pk, ¢, U[P, X1, . .., X¢], ctiqe) be the ciphertext computed by Cpnrsat- For each i € [t], let
pi = C(%;, w;) = 1. From the previous point, we have that C(fs,..., ;) = 1. Let] = Ciqn(%;). By definition,
whenever ; = 1, the instance %; is true, so Ciq,(X;) = 1. Thus, for all i € [¢], we have that] > f;. Since P
is monotone, this means that P(f;,..., ;) = P(f1,..., f;) = 1. From Eq. (4.5), this means that

UL, %1, ..., %] (Ctan) = P(B1..... B;) = 1.
Since cty g is an encryption of Cyq , by correctness of I g, this means that ct’ is an encryption of 1 and

Cyec(ct”) = LHE.Decrypt(sk_pg, ct’) = U[P, %y, ..., %] (Cidn) = 1.

32

« Consider the ciphertexts cty, ..., ct. that are hashed by the encryption algorithm to obtain h. By definition,
ct; = LHE.Eval(pk ye, U[Py, X, s . . -, X,], ctine). For each d € [¢], let B4 = 1 if there exists wj, , such that
C(xj, 4> wj,,) = 1 and 0 otherwise. Since (xj, ..., xx) is not a satisfying set of instances with respect to C and
P, it follows that P(Biy, . .., fir) = 0. Now let f | = Ctan(xj,,). If g = 0, then the instance x;, , is false, so
B, ; = Ctan(xj,,) = 0. This means that § , < B; 4 for all d € [¢]. Since P is monotone, this means

P(Bi1 .- Biy) < P(Bins... Bir) = 0.

From Eq. (4.5), this means that

UlPi xj;5 - -5 %;,) (Can) = Pi(Biys - -, Biy) = 0.
Again by correctness of ITj jjg, this means that for all i € [c],

Cdec(ct;) = LHE.Decrypt(skinE, ct;) = U[Pi, xj, 5 . . ., X, | (Cid,n) = 0.

« The claim now follows by the fact that hk is statistically disjunction binding with respect to the function Cye.,
exactly as in the proof of Lemma 4.17.

Taken altogether, we obtain a succinct witness encryption scheme for trapdoor NP relations that supports policies that
can be represented by a disjunction of local monotone predicates. An encryption of a message u now with respect to the
Boolean relation C and a policy P comprised of local predicates (Py, . . ., Pc) has size |u|+poly (A, |C|, max;e[] |Pi], logc).
Once more, the ciphertext size scales with the size of a single predicate and polylogarithmically with the total number
of predicates.

5 Succinct Unique Witness Map for Read-Once Bounded-Space Policies

In this section, we show how to construct a succinct unique witness map for batch NP languages [CPW20]. Unique
witness maps can also be viewed as a publicly-verifiable witness PRF [Zha16, CPW23]. As discussed in Section 1
(see also Remarks 5.2 and 5.3), a succinct unique witness map for batch NP immediately implies a succinct witness
encryption for batch NP as well as a SNARG for monotone-policy batch NP (relative to the same policy class). We
begin with the definition.

Definition 5.1 (Succinct Unique Witness Map for Batch Languages). Let P be a family of policies. A succinct unique
witness map for batch NP with policy family % is a tuple of efficient algorithms IIywm = (Setup, Map, Verify) with
the following syntax:

« Setup(14,C,K) — crs: On input the security parameter 1* € N, a Boolean relation C: {0, 1}" x {0, 1}* — {0, 1},
and a bound on the number of instances K, the setup algorithm outputs a common reference string crs.

« Map(crs, P, (xq,...,xK), (W1, ..., wg)) — o: On input the common reference string crs, a Boolean policy P € P
where P: {0,1}X — {0, 1}, instances xi,...,xx € {0,1}", and witnesses w, ..., wg € {0, l}h, the mapping
algorithm deterministically outputs a canonical witness o.

« Verify(crs, P, (x1,...,%k),0) — b: On input the common reference string crs, instances xi, ..., xx € {0, 1}",
and a canonical witness o, the deterministic verification algorithm outputs a bit b € {0, 1}.

Moreover, we require that ITywm satisfy the following properties:

« Completeness: For all A € N, all Boolean circuits C: {0,1}" x {0,1}* — {0, 1}, all Boolean policies P € P
where P: {0,1}X — {0, 1}, and all tuples of instances X = (xi, ..., xx) and witnesses w = (wy, ..., wg) where
P(C(x1,w1),...,C(xk,wk)) = 1, we have that

crs «— Setup(l’l, C,K)

S0 =1.
o = Map(crs, P, X, w)

Pr | Verify(crs,P,X,0) = 1:

33

« Uniqueness: For all A € N, all Boolean circuits C: {0,1}" x {0,1}* — {0, 1}, all Boolean policies P € P
where P: {0,1}X — {0, 1}, all tuples of instances X = (x1,...,xk), all tuples of witnesses w = (w1, ..., wg),
w = (W], ..., wy) where P(C(x1,w1),...,C(xk, wk)) = P(C(x1,w)),...,C(xk, Wy)) = 1, we have that

Pr [Map(crs, P, X,w) = Map(crs, P,X,w’) : crs « Setup(lA,C, K)] =1.
« Selective soundness: For a security parameter A € N and an adversary A, we define the selective soundness
game as follows:

— On input the security parameter 1%, algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}" — {0,1},
a Boolean policy P € P where P: {0,1}X — {0, 1}, and challenge instances x7, X €{0,1}".

If there exists wy,...,wg € {0, l}h such that P(C(x], wy), .. .,C(x}}, wg)) = 1, then the challenger out-
puts 0. Otherwise, the challenger sends crs < Setup(14,C,K) to A.

Algorithm A outputs o.

The output of the experiment is the bit b’ = Verify(crs, (x;‘, e x;}), 0').

The unique witness map satisfies selective soundness if for all efficient adversaries A, there exists a negligible
function negl(-) such that for all A € N, Pr[b” = 1] = negl(A) in the selective soundness game.

« Succinctness: There exists universal polynomials poly,, poly, such that for all A € N, all Boolean circuits
C: {0,1}" x {0,1}" — {0,1}, all Boolean policies P € P where P: {0,1}¥ — {0,1}, all tuples of instances
X = (x1,...,xK), all tuples of witnesses w = (wy, ..., wg) where P(C(x1, w1),...,C(xk, wk)) = 1, the following
properties hold:

— The size of the reference string crs output by Setup(1%, C, K) satisfies |crs| < o(|P]) - poly, (4, |C|, log K).

— The size of the canonical witness o output by Map(crs, X, w) satisfies |o| < poly,(4,log K).

Remark 5.2 (Succinct Witness Encryption). The work of [CPW20] shows how to obtain witness encryption by
composing a unique witness map with a hardcore predicate. The same transformation extends to the batch setting (and
preserves succinctness). This means a unique witness map for batch NP and policy family ¥ (satisfying Definition 5.1)
directly implies a succinct witness encryption for batch languages with the same policy family P.

To briefly recall the [CPW20] approach, their transformation constructs witness encryption for an NP language
L from a unique witness map for the or-language £ vV L', where L’ = {y | 3z : y = PRG(z)} and PRG denotes
a pseudorandom generator. Here, a pair (x,y) € LV L' ifxe Lorye L.

« Encryption: To encrypt a bit € {0, 1} to a statement x, the encrypter samples a random PRG seed z and
computes y = PRG(z). Then, it computes the canonical witness o for the statement (x,y) € £ vV £’ using the
witness (L, z). Finally, it computes a hardcore bit § of o and uses that to blind the message u. The ciphertext

is the pair (y, f @ p).

« Decryption: Given a witness w for x € L, the decrypter can compute the same canonical witness o for
(x,y) € LV L’ using the witness (w, L). From here, it can recover the blinding factor § and then the message .

To prove security, [CPW20] first replaces y with a uniformly random string, which disables the “trapdoor” branch.
Now, if x is a false statement, then (x,y) ¢ L V L’. Security of the unique witness map now asserts that the canonical
witness o for (x,y) is unpredictable. Since the bit § is hard-core, this suffices to blind the message p. Finally, we
observe that in the case case of batch languages, this transformation preserves succinctness in the number of instances
being batched. Thus, we note that a succinct unique witness map for batch NP with policy family # as defined above
implies succinct witness encryption for batch NP with policy family # as defined in Definition 3.1.

Remark 5.3 (Non-Adaptive SNARG for Monotone-Policy Batch NP). By definition, any unique witness map for
(batch) NP is also a non-interactive argument for (batch) NP (namely, the proof for a statement x is simply the unique
witness w associated with x). Thus, a succinct unique witness map for batch NP with policy family £ immediately

34

gives a succinct non-interactive argument (SNARG) for batch NP with policy family # (also called a “fully-succinct”
batch argument [GSWW22, DWW24]). The size of the common reference string for the corresponding SNARG is
precisely the size of the reference string for the unique witness map. Selective security for the unique witness map then
corresponds to non-adaptive soundness for the resulting SNARG. A construction satisfying the succinctness properties
in Definition 5.1 gives a fully succinct monotone-policy BARG where the size of the CRS is sublinear in the policy size.

Construction. In this section, we show how to use indistinguishability obfuscation (together with a somewhere
statistically binding hash function and an injective PRG) to construct a succinct unique witness map for monotone
policies that can be implemented by a read-once bounded-space Turing machine. In particular, this captures policies

like weighted thresholds.

Definition 5.4 (Monotone Read-Once Bounded-Space Policy). Let P: {0,1}X — {0,1} be a monotone policy.
We say that P can be computed by a read-once Turing machine T' with S bits of space if there exists a tuple
I' = (Stepy, ..., Stepg, Cinit, Cacc) With the following properties:

« Step;: {0, 1}% x {0,1} — {0,1}° is a Boolean circuit that implements the i step of the Turing machine
evaluation;

« Cinit € {0,1}° is the initial configuration; and
* Cacc € {0,1}° is the accepting configuration.

Moreover, P(/)’) = 1if and only if cx = cacc Where we define ¢y = cjnit and for all i € [K], ¢; = Step;(ci—1, fi)-

Reachable states for read-once Turing machines. Our construction of a succinct unique witness map will rely
on a notion of the set of reachable states for a given input. Specifically, for a string /3 = (B1,...,Px) € {0,1}¥ and
an index i € [K], we associate a set of states T {0, 1} that are potentially reachable after i evaluanon steps. In
our model, if §; = 0, then the evaluator must use the value 0 in position i, but if §; = 1, then the evaluator can choose
either the value 0 or the value 1 as its input in position i. In the following, we will sometimes say that /3” € {0,1}K
is “consistent” with /3 if for all i € [K] where f; = 0, we also have /3’ = 0. We now give the precise characterization
of reachable states that we use in our analysis:

Definition 5.5 (Reachable States for a Read-Once Turing Machines). Let P: {0, 1}X — {0, 1} be a monotone policy
that can be computed by a read-once Turing machine (Step,, ..., Step, Cinit, Cacc) With space S. We say an ensemble
of sets {Tf} je (0,1} ic[0,k] Tepresents an admissible set of reachable states if it satisfies the following properties:

« For all ﬁ € {0, 1}X, cinit € Tso.

« For all ﬁ € {0,1}X,i € [K],and c € {0,1}° where c € Tf,i-1, we have Step,(c,0) € Tg;.

« For allﬁ € {0,1}X,i € [K],and c € {0,1}° where c € T5:-1 and B; = 1, we have Step;(c, 1) € T3;.
« For all E € {0, 1}¥ where P(ﬁ) = 0, it holds that cacc ¢ Tjk.

We also associate a Boolean function Reachablej;: {0, 1}% — {0,1} with each set Tf,; where Reachablej;(c) = 1
if and only if ¢ € Tf;. In some settings of interest (e.g., weighted thresholds; see Remark 5.7), the Boolean circuit
computing Reachableg;(c) has a much more compact description than enumerating the elements of Tg ;.

The first property in Definition 5.5 states that the initial state must be reachable. The second property says that if a
configuration ¢;_; € {0, 1} is reachable after i — 1 steps, then the state ¢; = Step;(ci—1, 0) must also be reachable after
i steps. This corresponds to the case of the evaluator taking a reachable configuration c;_; from the first i — 1 steps and
reading the bit 0 on Step i. When f; = 1, the second property says that the state Step;(c;—1, 1) must also be reachable
after i steps. This corresponds to the evaluator taking c;—; and reading the bit 1 on Step i. The final property says that if
,[3 € {0, 1}¥ does not satisfy the policy, then the accepting states should not be reachable. Finally, Definition 5.5 allows
the set Tg; to be a super-set of the actual set of reachable states that can arise from honest executions of P on inputs
p’ € {0,1} that are consistent with § € {0, 1}. The only requirement is that T x does not contain any accepting
state (but could contain non-accepting states that are technically not reachable from an honest evaluation of P).

35

Remark 5.6 (CRS Size). In our unique witness map construction, the size of the common reference string grows
with the maximum size of the description of Reachablej;(c) rather than the cardinality of the set T ;. In settings
where the description length of T§; is much smaller than the size of the set itself (e.g., the case of weighted thresholds;
see Remark 5.7), this yields constructions with a more compact CRS.

Remark 5.7 (Reachable States for Weighted Threshold Policies). A simple example of a monotone policy that can be
computed by a read-once bounded-space Turing machine is a weighted threshold policy. A weighted threshold policy
is parameterized by a set of (non-negative) weights wy,..., wg € N and a threshold ¢ € N. An input § € {0,1}¥
satisfies the policy if 2\;c[x) fiwi > t. Suppose the maximum weight is W. It is easy to implement a weighted threshold
policy with a read-once Turing machine with S = log(KW) bits of space. The state ¢ € {0,1}° is an accumulator
that stores the current (weighted) sum and the Step;(c;—1, f;) circuit updates the accumulated value from c;_; to
ci—1 + Piw;. The set of accepting states consists of all values greater than the threshold. Moreover, this Turing machine
has a simple and admissible set of reachable states {Tj} jc(0,1}% ic[x] Where Tg; = {t €f{0,1}°:t < 2j<i ﬁjwj}.
Here,). ;<; Bjw;j is the maximum possible value that can arise after reading the first i bits of the input. As such,
every valid configuration will be a value in the set Tj;. It is easy to see that this ensemble of sets satisfies all of the
admissibility requirements from Definition 5.5. Moreover, we can check membership in the set T3 ; with a Boolean
circuit Reachablej; of size poly(log(KW)) by simply hard-coding the threshold 3’ ;.; B;w; within Reachableg ;.

Construction 5.8 (Succinct Unique Witness Map for Read-Once Bounded-Space Policies). Let A be a security param-
eter and P be a family of read-once bounded-space monotone policies that can be computed by read-once space-S
Turing machines (see Definition 5.5). Let s = s(4, S) be a bound on the size of the Boolean circuit that computes
a step functions Step; associated with policies in . Without loss of generality, we assume that all of the Turing
machines I' computing a policy in P share the same initial state cjnit and same accepting state c,cc. This is without
loss of generality since we can always relabel the states of the Turing machine and apply the same relabeling to the
step functions. Our construction relies on the following ingredients:

« Let iO be an indistinguishability obfuscator for Boolean circuits.
« Let IIssp = (SSB.Setup, SSB.Hash, SSB.Verify) be a somewhere statistically binding hash function.

« Let ITpprr = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF. For a key k and an input x, we will write
F(k, x) to denote F.Eval(k, x).

« Let G: {0,1}Y — {0,1}™ be an injective PRG with seed length ¢ = £(1) and output length m = m(A).

Let Aobf = Aobf(A, S) and Aprr = Aprr(4, S) be polynomials in the security parameter which we will set in the security
analysis. We construct a succinct unique witness map for batch NP and policy family # as follows:

« Setup(1*,C,K): On input the security parameter A, a Boolean relation C: {0,1}" x {0,1}" — {0,1}, and a
Boolean policy P € P where P: {0,1}X — {0, 1}, the setup algorithm proceeds as follows:

- Sample two hash keys hkgep SSB.Setup(lA, 15,11, K, @) and hkjns SSB.Setup(lA, 1,11, K, @) for
hashing the step functions and the instances, respectively.

- Let s’ be the output length of SSB.Hash(hkscp, -) and let n’ be the output length of SSB.Hash(hkinst, -).
Sample a PRF key
k «— F.KeyGen(lAPRF, 15+ +[logKT+S 1[).

We will denote domain elements for the PRF by a tuple (htep, hinst, i, ¢) where hgtep is a hash of the step
functions, hins is a hash of the instances, i € [K] is an index, and ¢ € {0,1}" is a configuration of the
Turing machine computing the policy.

— Define the program MapProg as follows:

36

Fixed values: Boolean relation C: {0,1}" x {0,1}* — {0, 1}, number of instances K, hash keys
hkstep, hkinst, the initial configuration cinit € {0, 1}%, and a PRF key k

Input: an index i € [K], a configuration ¢ € {0, 1}, a step function Step: {0, 1}° x {0,1} — {0,1},
an instance x € {0,1}", hash values hep, hinst, openings Ziep, Tinst, 2 Witness w € {0, 1}, and a
signature o € {0, 1}

On input (i, ¢, Step, X, hstep, Ninst, Tsteps Tinsts W, 0):
1. If SSB.Verify(hkstep, hstep, i, Step, 7step) = 0, output L.
2. If i =1 and ¢ # cjnit, output L.
3. If i > 1and G(0) # G(F(k, (hstep, hinst, i — 1,¢))), output L.
4. Compute the next configuration ¢; € {0,1}° as follows:

o Step(c, 1) if SSB.Verify (hkinst, hinst, i, X, Tinst) = 1 and C(x, w) = 1
- Step(c,0) otherwise.

(&}

. Output (c;, F(k, (hstep, hinst 1, ¢i))).

Figure 7: The mapping program MapProg|[C, K, hksiep, hkinst, Cinit, k]

Let sizemapprog be the maximum size of the program MapProg[C, K, hkstep, hkinst, cinit, k] and the corre-
sponding programs appearing in the proof of Theorem 5.13. Compute the obfuscated program

ObfMap « iO (1%, 157emareros MapProg[C, K, hkstep, hKinst, Cinit, k1)-

— Define the program VerProg as follows:

Fixed values: number of instances K, the accepting configuration c,c., and a PRF key k
Input: hash values hgep, hinst, and a signature o € {0, 1}*
On input (hgtep, hinst, 0):

1. If G(0) = G(F(k, (hstep, hinst, K, cacc))), output 1.

2. Else, output 0.

Figure 8: The verification program VerProg[K, cacc, k].

Let sizeverprog be the maximum size of the program VerProg|[K, cacc, k] and the corresponding programs
appearing in the proof of Theorem 5.13. Compute the obfuscated program

ObfVer « iO(1obf | SiZeVerprog VerProg[K, cace, k).

— Output crs = (hkstep, hkinst, ObfMap, Obf Ver).

« Map(crs, P, (x1, ..., xk), (W,...,wg)): On input crs = (hkstep, hkins;, ObfMap, ObfVer), a policy P € $ com-
puted by a Turing machine I' = (Step,,..., Stepg, Cinit, Cacc), instances xy,...,xx € {0,1}", and witnesses
wi, ..., wk € {0,1}", the mapping algorithm proceeds as follows:

37

— Compute hashes of the step functions and the instances:
(Psteps Tstep, 15 - - - » Tstep, k) = SSB.Hash (hkstep, (Stepy, ..., Stepg))
(inst Tinst .15 - - -» Tinst k) = SSB.Hash (hkinst, (x1, . .., XK))-
— Initialize ¢y = cinit and oy = L. For each i € [K], compute
(ci, 0;) = ObfMap(i, ¢;_1, Step;, xi, hstep, Ninsts Tstep,i> Tinst,i» Wis Ti—1)-
- Output ox.

« Verify(crs, P, (x1,...,xg), 0): On input crs = (hkstep, hkinst, ObfMap, ObfVer), a policy P € # computed by a
Turing machine ' = (Step,, . .., Stepg, Cinit, Cacc), instances xi, ..., xx € {0,1}", and a signature o, the verifi-
cation algorithm proceeds as follows:

— Compute hashes of the step functions and the instances:

(Psteps Tstep,1s - - - » Tstep, k) = SSB.Hash (hkstep, (Stepy, ..., Stepg))
(hinst: Tlinst,15 « « «» ”inst,K) = SSB-HaSh(hkinst, (xh cee ,xK))-

— Output ObfVer(hgiep, hinst, 0).
Theorem 5.9 (Completeness). IfiO and Ilssg are correct, then Construction 5.8 is complete.

Proof. Take any A € N, Boolean circuit C: {0,1}" x {0,1}" — {0, 1}, Boolean policy P € $ computed by a Turing ma-
chine I' = (Step,, . .., Stepg., Cinit, Cacc), instances X = (x1, ..., xx € {0, 1}"), and witnesses w = (wy, ..., wg € {0, 1}h)
where P(C(xy,w1),...,C(xk, wg)) = 1. Let ¢y = cinit and ¢; = Step;(ci—1, C(x;, w;)) for all i € [K]. Then, by
Definition 5.4, we have that cx = c,cc. Let crs «— Setup(l’l, C,K). Then,

crs = (hkstep, hkinst, ObfMap, Obf Ver).
Next, by correctness of iO and IIssg, Map(crs, P, X, w) will output o = F(k, (hstep, hinst, K, Cacc)), where
(Nsteps Tstep,1s - - - » Tstep,k) = SSB.Hash (hkstep, (Stepy, .. ., Stepy))
(hinsts Tinst,15« « +» ”inst,K) = SSB-HaSh(hkinsts (xla e XK)),
and k is the puncturable PRF key sampled by Setup and used to construct ObfMap and ObfVer. In this case,
VerProg[K, cacc, k] (hstep, hinst, @) = 1, in which case Verify(crs, P, X, o) = 1, as required. Completeness follows.)
Theorem 5.10 (Uniqueness). IfiO and Issg are correct, then Construction 5.8 is unique.

Proof. Take any A € N, Boolean circuit C: {0,1}" x {0,1}" — {0, 1}, Boolean policy P € # computed by a Turing ma-
chine I = (Stepy, ..., Stepg., Cinit, Cacc), instances X = (x1,...,xg € {0,1}"), and witnesses w = (wy, ..., wg € {0, l}h)
and W' = (wy, ..., wg € {0, 1}") where

P(C(x1,w1),...,C(xk, wk)) = P(C(x1,w]),...,C(xk, wg)) = 1.

Next, let g = c; = cinit, and for each i € [K], define ¢; = Step,(c;—1,C(x;, w;)) and ¢; = Step;(c;_;, C(x;, w))).

-1
By Definition 5.4, this means cx = cj = Cacc. By correctness of iO and IIssg, this means Map(crs, P, X, w) and

Map(crs, P, X, w’) will both output
o= F(k, (hstep> hinsta K> Cacc))s

where
(hstep’ Tlstep,1s + + +» 77-'step,K) = SSB-HaSh(hkstep, (Stepy, ..., Stepg))
(hinst, Tlinst, 15+ +» ”inst,K) = SSB-HaSh(hkinst, (xl’ ces xK)),

and k is the puncturable PRF key sampled by Setup and used to construct ObfMap and ObfVer. In particular, this
means that
Map(crs, P, X, w) = Map(crs, P, X, w")

and uniqueness holds. O

38

Remark 5.11 (Local Evaluation). Similar to the case of local decryption for succinct witness encryption (Defini-
tion 3.2), we can also define a “local” mapping algorithm for a succinct unique witness map for batch languages. In
this setting, one can first preprocess a batch of statements (xy, ..., xx) into a collection of (short) hints (hty, ..., htg)
with the property that given any policy P, and any set {(i, x;, w;, ht;) };eT, the user can compute the canonical witness
on (xi,...,xx) whenever P(fi;,...,fx) =1 and
ﬁ— 1 iGT/\C(xi,Wi)Zl
" 1o otherwise.

A unique witness map that supports this type of local evaluation property immediately implies a succinct witness
encryption scheme for batch languages with local decryption (via the construction described in Remark 5.2). It is easy
to see that Construction 5.8 supports this local evaluation property. Namely, given a batch of instances (xi, . .., xx),
the hint ht; associated with the i instance would simply be ht; = (i, hinst, 7inst.i) Where (hinst, Tinst 1, - - - » Tinst k) =

SSB.Hash (hkinst, (x1, - - ., Xk)). To compute the canonical witness given {(i, x;, w;, ht;) };er, the evaluator can run the
Map algorithm in Construction 5.8, and simply input 7mj,st = w = L on all indices i ¢ T.

5.1 Security and Succinctness

In this section, we show that Construction 5.8 satisfies selective security (Theorem 5.13) and succinctness (Theo-
rem 5.33).

Sub-exponential hardness. We now proceed to give the security analysis for Construction 5.8. Security will rely on
sub-exponential hardness assumptions of the underlying primitives. To facilitate this, we will formulate some of our
security assumptions using (¢, €)-notation. We say that a primitive is (¢, €)-secure if, for all adversaries A running
in time at most (1) - poly(A), there exists Az € N such that for all 1 > 14, the adversary’s advantage is bounded
by (). If we say a primitive is secure (without giving an explicit (¢, ¢) dependence, then we mean that it satisfies
the usual notion of (1, negl(1)) security). We now give the main security theorem and proof.

Pebbling lemma. We will also rely on the following pebbling lemma from [Ben89, GPSZ17]:

Lemma 5.12 (Pebbling Lemma [Ben89, GPSZ17]). Take any positive integer n € N. Let Ty = 0". Then, there exists
N = 0(n'°823) and a sequence of strings 7i, . . ., Txy with the following properties:

o Ty = 0"71|1.

« Foralli € [N], 7i_1 and 7; differ on a single index j € [n]. Moreover, either j =1 or t;_1j—1 = 1 = 7; j_1. In other
words, either 7;_; and 7; differ only on the first index j = 1 or they differ on an index j and both 7;_, and 7; are
equal to 1 in the preceding index j — 1.

o Foralli € [N], the Hamming weight (i.e., the number of non-zero entries) in 7; is at most 1 + log n.
Moreover, there exists an efficient and explicit algorithm that takes as input 1" and outpuis 7y, .. ., Tn..
Theorem 5.13 (Selective Soundness). Suppose the primitives in Construction 5.8 satisfy the following properties:

« Suppose Ilssp is correct, satisfies index hiding, and is somewhere statistically binding.

« Suppose Hpprr satisfies punctured correctness and (1, Z_AP?J;F)—punctured pseudorandomness for some constant
eprr € (0,1). Moreover, let Apgp = (A + S)1/2P%F

« Suppose iO is (1, 27Aog?f)-securefor some constant eqps € (0, 1). Moreover, let Aops = (A + S)1/obr.
» Suppose G is secure.

Specifically, we only assume standard polynomial security for llssg and G and sub-exponential security for Ilpprr and
i0. Then Construction 5.8 is selectively sound.

39

Proof. Let A = (Ay, A;) be an efficient non-uniform adversary for the selective soundness game. In particular, on
input the security parameter 14, algorithm Ay outputs a tuple (C, P, (x1, . .., xk)) together with some state information
st (of polynomial size). Algorithm A; takes as input the state st 4 and the common reference string crs. For each
i € [K], define the bit f5; as follows:

By = {1 Fw; € {0, 1}h :Clx;,w;) =1 6

0 otherwise.

In addition, let {Reachableg;} e (o1} ic[o,x] be the Boolean circuits that compute an admissible set of reachable
states associated with the policy P (as defined in Definition 5.5). Our reduction algorithms will take (C, P, X), where
X = (x1,...,x¢), the bits B = (1, ..., Bk), the description of the circuits {Reachablej;} e (0,1} ic[ox]> and st as
non-uniform advice. Let I' = (Step, ..., Stepg, Cinit, Cacc) be the description of the read-once Turing machine that
computes the policy P. We now define a sequence of hybrid experiments.

+ Hyb,;;: This is the selective soundness game with adversary A:

— On input the security parameter 14, algorithm A,(1%) outputs (C, P, (xy,...,xx)) and stg. For each
i € [K], define the bits §; according to Eq. (5.1).

- If P(ﬁ) = 1, the challenger outputs 0. Otherwise, the challenger invokes ¢ « A;(sta, crs) where
crs «— Setup(ll, C,K).

— The output of the experiment is b = Verify(crs, P, (x1, . .., Xk), 0).

« Hyb, for a string 7 € {0, 1}X: Same as Hyb,, except the challenger computes

(h:tep, Tstep,1s - - -» Tstep,.k) = SSB.Hash(hkstep, (Step, ..., Stepg))
(hi*nst’ Tlinst,1> « - +» ﬂinst,K) = SSB-HaSh(hkinsts (xl, cees xK))

and defines the following modified program MapProg;:

40

Fixed values: Boolean relation C: {0, 1} x{0, l}h — {0, 1}, number of instances K, hash keys h Estep, hkinst,
the initial configuration cini¢ € {0, 1}, a puncturable PRF key k, hash values h’,__ h’ astring f € {0,1}%,

step’ "inst?
and a string 7 € {0, 1}¥

Input: an index i € [K], a configuration ¢ € {0, 1}°, a step function Step: {0,1}° x {0,1} — {0,1}, an
instance x € {0, 1}", hash values hgiep, hinst, Openings 7iep, Tinst, @ Witness w € {0, 1}, and a signature
o€ {01}

On input (i, ¢, Step, x, hstep, hinst» Tsteps Tinst, W, 0):
1. If (hgtep, hinst) = (hs*tep, h:), 7i = 1, and Reachableg;_;(c) # 1, output L.
2. If SSB.Verify (hkstep, hstep, i, Step, msiep) = 0, output L.
3. If i = 1 and ¢ # cjnjt, output L.
4. If i > 1and G(o) # G(F(k, (hstep, hinst, i — 1,¢))), output L.

5. Compute the next configuration ¢; € {0, 1}° as follows:

) Step(c,1) if SSB.Verify(hkinst, hinst, i, X, 7inst) = 1 and C(x, w) = 1
Step(c,0) otherwise.

6. Output (Ci, F(k, (hstep, Rinst, 1, ci)))-

Figure 9: The mapping program MapProg, [C, K, hkstep, hkinst, Cinit, k, hi;.,, b ﬁ 7].

> step’ inst?

When preparing the common reference string, the challenger now computes

ObfMap «— iO (1%, 157MarPros MapProg, [C, K, hkstep> hkinsts Cinits k> hiyers b o 71).

> istep?

« Hyb,,4: Same as Hyb_ for 7 = 0X~1||1, except the challenger computes and defines the following modified
program VerProg,:

Fixed values: number of instances K, the accepting configuration c,, a puncturable PRF key k, and hash
values h:tep, he o

Input: hash values hgep, hinst, and a signature o € {0, 1}

On input (hstep, hinst, 0):

1. If (hstep> hinst) = (thcp’ h}:;\st)’ Output 0.

2. If G(o) = G(F(k, (hstep, hinst, K, €acc))), output 1. Otherwise, output 0.

hlnst]

Figure 10: The verification program VerProg, [K, cacc, k, h

step?

When preparing the common reference string, the challenger now computes

-

ObfMap « iO (1%, 15%Mawrroz MapProg, [C, K, hksteps hKinsts Cinits ks hiyeps hiicis B 71)

> Histep?

41

where 7 = 0571||1, and

ObfVer — iO(1%, 15795 VerProg, [K, Cace, ks iy i])-

Jumping ahead, we will show the following properties:
Property 1 Suppose 7 = 0X. Then the success probability of A in Hyb, ., is only negligibly more than in Hyb._.

Property 2 Suppose 7,7’ differ only on index 1 (i.e, 7; = 0 and 7; = 1). Then the success probability of A is only
negligibly more in Hyb_ than in Hyb .

Property 3 Suppose 7,7’ € {0,1}K differ at a single index i* > 1, and moreover 7;_; = t/._; = 1. Then the
success probability of A is only negligibly more in Hyb_ than in Hyb_,.

Property 4 Suppose 7 = 0X71||1. Then the success probability of A is only negligibly more in Hyb_ than in Hyb, ;.
Property 5 The success probability of A in Hyb,, 4 is zero.

The claim then follows by Lemma 5.12, which provides an efficiently computable sequence of strings 71,...,7y €
{0, 1}X such that if we consider the sequence of hybrids Hyb,_ ., Hyb, ,...,Hyb_ , Hyb, 4, the success probability of
A in each hybrid is only negligibly more than in the following hybrid. Since N = poly(K) = poly(A), and the success
probability of A in Hyb,, 4 is zero, we can conclude that the success probability of A in Hyb, ;; (i.e., the selective
soundness game) is also negl(1). We now formally prove the above properties.

Lemma 5.14 (Property 1). Suppose iO is secure and that Agps > A. Let T = 0X. Then, there exists a negligible function
negl(-) such that for all A € N, | Pr[Hyb, ,,(A) = 1] — Pr[Hyb_(A) = 1]| = negl(A).

Proof. It suffices to argue that the following two programs compute identical functionality:

+ MapProg|[C, K, hkstep, hkinst, Cinit, k] in Hyb; 5 {nd
. MaPPFOg1 [C.K, hkstep: hKinst, Cinit, K, h:tep’ thst’ B,] in Hybr

By definition, the only difference in these two programs is the following additional check in MapProg;:
If hgtep = h;‘tep, hinst = hi ., 7i = 1, and Reachableg;—1(c) # 1: output L.

However, since 7 = 0K, this condition never triggers and the two programs compute identical functionality. The claim
now follows by iO security. O

Lemma 5.15 (Property 2). Suppose iO is secure and that Aops > A. Take any r, 7" € {0, 1YX where r; = 0, 7, =1, and
7; = 1] for alli > 1. Then there exists a negligible function negl(-) such that for all 1 € N,

| Pr[Hyb_(A) = 1] = Pr[Hyb_ (A) = 1]| = negl(A).
Proof. 1t suffices to argue that the following two programs compute identical functionality:

* Mapprog] [C’ K’ hksteps hkinsta Cinit, k h* h* ’Za T]; and

> 'step’ inst’

° MaPProgl [C, Ks hkstep, I"lkinsb Cinit» k, h:tep’ h;kns,[, ﬂ> T/] .
By definition, the only difference in these two programs is the following additional check in MapProg;:
Ifhgep = h:tep, hinst = h¥ ., 7i = 1, and Reachablej;_1(c) # 1: output 1.

Take any input (i, c, Step, x, hstep, hinst, Tstep, Tinst, W, 0) to these programs. We argue that the two programs above
have identical behavior:

+ Suppose i # 1. Then the behavior of the two programs are identical by construction, since 7; = 7; for all i > 1.

« Suppose i = 1 and ¢ # cinit. Then both programs output L.

42

« Suppose i = 1 and ¢ = cjyit- Since the Reachable function describes an admissible set of reachable states, we
have that Reachablej(c) = 1. In this case, the two programs again behave identically.

Thus the two programs compute identical functionality. The claim now follows by iO security. O
Lemma 5.16 (Property 3). Suppose the following conditions hold:

« Suppose Issp is correct, satisfies index hiding, and is somewhere statistically binding.
« Suppose Hpprr satisfies punctured correctness and (1, Z_APEEF)-punctured pseudorandomness for some constant
eprr € (0,1). Moreover, suppose Appr = (A + S)UEPRF.

€obf
« Suppose iO is (1,27)-secure for some constant eqpf € (0, 1). Moreover, suppose Aot = (A + S) /%,

« Suppose G is secure andm > £ + .

Take any 7, 7" € {0, 1}X that differ on a single index i* > 1, where sy = 7/._; = 1, 73+ = 0, and t}, = 1. Then there exists
a negligible function negl(-) such that for all A € N,

| Pr[Hyb_(A) = 1] = Pr[Hyb_ (A) = 1]| = negl(1).

Proof. In the following, we will assume that our reduction algorithms are additionally provided (z, 7/, i*) as part of
their non-uniform advice. In the following, we will interpret configurations ¢ € {0, 1}° as the binary representation
of an S-bit integer. Then, for an integer ¢* € Z, we say ¢ < c¢* if the integer associated with c is less than or equal
to the value of ¢*. We now define an intermediate sequence of hybrid experiments.

 Hyb_;.;;: Same as Hyb_, except the challenger samples the hash keys hkgtep, hkinst to be binding on the special

7,init*
index i*. Namely, the challenger in this experiment samples

hksep = SSB.Setup(1%, 1%, 11, K, {i'})
hkinst < SSB.Setup (1,1, 1, K, {i'}).

« Hyb_ . for ¢* € [0,2%]: Same as Hyb_; ., except the challenger samples y* <~ {0, 1}" and then sets z* = G(y"),
and defines the following modified program MapProg,:

43

Fixed values: Boolean relation C: {0 1}"x{0,1}* — {0, 1}, number of instances K, hash keys hkstep, hkinst,
the initial configuration c;niy € {0, 1}°, a puncturable PRF key k, hash values h?,__, h* astring f € {0, 1}X,

step’ |nst’
a string 7 € {0, 1}X, an index i* € [K], a string z* € {0, 1}, and a value c* € [0, 2°]

Input: an index i € [K], a configuration ¢ € {0, 1}°, a step function Step: {0,1}° x {0,1} — {0,1}, an
instance x € {0, 1}", hash values hgiep, hinst, Openings 7iep, Tinst, @ Witness w € {0, 1}, and a signature
o€ {01}

On input (i, c, Step, x, hstep’ hinst, Tsteps Tinsts W» 0):
1. If (hgtep, hinst) = (hstep, mst), 17; = 1, and Reachableg; 1(c) # 1, output L.
2. If i = i*, (hstep, hinst) = (h;), ¢ < c*, Reachablej;_1(c) # 1, and

step’ Ninst
G (o ® F(k, (hstep, hinst, i = 1,¢))) # 27,
output L.
3. If SSB.Verify (hkstep, hstep, i, Step, 7step) = 0, output L.
4. If i = 1 and ¢ # cjnjt, output L.
5. If i > 1and G(0) # G(F(k, (hstep, hinst, i — 1,¢))), output L.

6. Compute the next configuration ¢; € {0, 1}° as follows:

) Step(c,1) if SSB.Verify(hkinst, hinst, i, X, 7inst) = 1 and C(x, w) = 1
- Step(c,0) otherwise.

7. Output (Ci, F(k, (hstepa Rinst, I, ci)))'

Figure 11: The mapping program MapProg, [C, K, hkstep, hkinst, Cinit, k, h} B i, 2% c*].

> step? mst’ >0

When preparing the common reference string, the challenger now computes

Obeap «— iO(lAObf, 1SizeMameg, MaPPFng [C» K, hkstep, hKinst, Cinit, k h; ﬁ T,i" 2", ¢])

> istep? |nst’
« Hyb_ . 4,: Same as Hyb_,s, except the challenger samples z* <~ {0,1}"".

. Hbe end,1} Same as Hbe end,0» €Xcept the challenger samples hksiep and hkinst normally. Namely, the challenger
in this experiment samples

hkstep < SSB.Setup(1%, 1%, 1, K, @)
hkinst < SSB.Setup(1%,1", 1}, K, ©).

Claim 5.17. Suppose Ilssp satisfies index hiding. Then there exists a negligible function negl(-) such that for all A € N,

Proof. We define an intermediate hybrid Hyb’
SSB.Setup(1%, 1%, 1%, K, {i*}). The challenger samples hkins as in Hyb,_. It is easy to see that Hyb_and Hyb/

| Pr[Hyb (A) = 1] = Pr[Hyb_; ; (A) = 1]| = negl(1).

zinit Which is the same as Hyb_, except the challenger samples hkstep

Tlnlt

computationally indistinguishable assuming index hiding security of IIssg. Formally, suppose

| Pr[Hyb, (A) = 1] = Pr[Hyb.. . (A)=1]| = ¢

7,init

44

for some non-negligible . We use A = (A, Aj) to construct an efficient non-uniform adversary 8 = (B, B;) for the
index hiding game. As noted earlier, we assume the preprocessing algorithm 8B, outputs an advice string of the form

stg = (C,P, %, sta, . {Reachableg;} je 0,1} icfox]> T 75 17)-
The online algorithm $B; then works as follows:

1. On input the security parameter 1* and the advice string (C, P, X, st #, ﬁ, {Reachableg;} je (0.1} iefo.k]> T T 1%),
algorithm B; outputs the input length 1%, the bound 1', the number of blocks K, and the set {i*}.

2. The challenger responds with a hash key hkstep. Algorithm $B; samples hkins < SSB.Setup(lA, 1,11, K, 2).

3. Let T = (Stepy, ..., Stepg, Cinit, Cacc) be the description of the Turing machine that computes P. Algorithm B,
now computes
(h:tep, Tstep,1s - - - » Mstep,k) = SSB.Hash(hkgeep, (Stepy, ..., Stepg))
(hi*nst’ Tlinst, 15+ - +» ﬂinst,K) = SSB-HaSh(hkinst: (xly s xK))-

4. Algorithm $; now samples the remaining components of the CRS as in Hyb _:
« k « F.KeyGen(17prF 15"+ +[log K]+ q0)
« ObfMap « iO(lAObf, 15iZ€Mapprog MapProg, [C, K, hkstep, hkinst, Cinit; K, h’s‘tep, h? [_f: T])
« ObfVer « iO(le, 15izeverbrog, VerProg[K, cace, k]).

Algorithm By sets crs = (hkgtep, hkinst, ObfMap, ObfVer) and invokes A; on input (st g, crs). Algorithm A,
outputs o.

5. Algorithm B; outputs ObfVer (hstep, hinst, 7).
We consider the two possible distributions for hkstep:

« If the challenger samples hkgtep < SS B.Setup(ll, 15,11, K, @), then algorithm B perfectly simulates an execu-
tion of Hyb_.

« If the challenger samples hkgtep < SSB.Setup(1%,1°, 11, K, {i*}), then algorithm B perfectly simulates an
execution of Hyb’; ...
We conclude that algorithm 8 breaks index hiding with the same advantage as A, which proves the claim. By an anal-

ogous argument (applied to hkinst), we conclude that Hyb’ ; . and Hyb_; .. are also computationally indistinguishable.

Claim 5.17 now follows by a standard hybrid argument. O

Claim 5.18. Suppose iO is secure and that Aghs > A. Then, there exists a negligible function negl(-) such that forallA € N,
|Pr[Hyb_; i (A) = 1] = Pr[Hyb_,](A) = 1| = negl(4).
Proof. 1f suffices to argue that the following two programs compute identical functionality:

« MapProg, [C, K, hKstep, hKinst: Cinit» k, hiyers W o 7] in Hyb_ s and

> Ustep® inst? 7,init>

¢ MapProgz [Ca K, hkstep’ hkinsb Cinit» k, h; h?

> istep? inst?

B.r,i%, 2", ¢*] in Hyb_ ;.
By definition, the only difference in these two programs is the following additional check in MapProg,:

[fi =i (hstep’ hinst) = (h:tep’ hy

inst

), ¢ < c¢*, Reachableg;_1(c) # 1, and
G(o @ F(k, (hstep> hinst, i — 1,¢))) # 27,

output L.

45

However, since ¢ € {0, 1}K and ¢* =0 1in Hbe,O, the condition ¢ < ¢* is never satisfied. Thus, the two programs in
Hyb_ ;i and Hyb_ ; compute identical functionality and the claim now follows by iO security.]

Claim 5.19. Suppose the following conditions hold:

« Suppose Issp is correct and somewhere statistically binding.

« Suppose Hpprr satisfies punctured correctness and (1, Z_APEEF)-punctured pseudorandomness for some constant
eprr € (0,1). Moreover, suppose Appr = (A + S)UEPRF.

o Suppose iO is (1, Z_Agg?f)—securefor some constant e,p¢ € (0,1). Moreover, suppose Aops = (A + S)1/éobr
« Suppose G is secure andm > £ + .
Then, for allc* € [0,2° — 1] and all A € N,

Q(1)

| Pr[Hyb, ..(A) = 1] = Pr[Hyb, ., (A) =1]| < Py

Proof. We consider two cases depending on the value of Reachablej;_1(c”).

Case 1: Reachablej ;«_;(c*) = 1. Suppose Reachablej ;-1 (c*) = 1. In this case, the programs

« MapProg, [C, K, hkstep, hkinst, Cinit, k, hg B.7,i*,z",¢*] in Hyb_ .; and

> step? mst’ rc’

+ MapProg, [C.K, hksteps hkinst, Cinit> &, h; ,B 7,i% 2% ¢* + 1] in Hyb

> Ustep? mst’ T,c*+1"

compute identical functionality. This is because the only difference between the two programs is MapProg, in
Hyb, ..., contains the following additional check:

ifi = 1", (hstep, hinst) = (hstep,) ¢ =", Reachableg ;-1 (c) # 1, and
G(O'@ F(k (hstep, insts £ — 1, C))) + Z

output L.

When Reachablej ;«_1(c*) = 1, this check is vacuous. As such we conclude that the MapProg, programs in the two
experiments compute identical functionality, so the claim follows by iO security.

Case 2: Reachablej;_1(c*) = 0. Suppose Reachableg ;- _1(c*) = 0. In this case, we define an additional sequence of
hybrid experiments:

« Hyb_ . 1 Same as Hyb__. except after sampling the PRF key k, the challenger punctures it at the point
(hgteps M 1 — 1,€7). Spec1ﬁcally, the challenger computes
k stepMinse” =€) F puncture(k, (hteps inst 1 = 1.€7))
and

r' =y" & F(k, (hStep sl — 1))
Then, it defines the following program MapProg;:

46

Fixed values: Boolean relation C: {0, 1} x{0, l}h — {0, 1}, number of instances K, hash keys hkgtep, hkinst,

the initial configuration cj,i; € {0, 1}5 , a puncturable PRF key ke (stepsPinge " = 1:67) , hash values h:tep, h?nst, a

string ﬁ € {0,1}X, a string 7 € {0,1}X, an index i* € [K], a string z* € {0,1}™, a value ¢* € [0, 2°], a PRG
seed y* € {0,1}, and a string r* € {0, 1}

Input: an index i € [K], a configuration ¢ € {0, 1}°, a step function Step: {0,1}° x {0,1} — {0,1}, an
instance x € {0, 1}", hash values hgicp, hinst, Openings 7iep, Tinst, a Witness w € {0, 1}, and a signature
o€ {01}
On input (i, c, Step, x, hstep’ hinst, Tlsteps Tinsts W5 0):

1. If (hstep, hinst) = (hjieps Wi)s 7 = 1, and Reachableg;—;(c) # 1, output L.

step’ "ins

2. Ifi = i*, (hstep, hinst) = (h:tep, h?), ¢ < c*, Reachableg;_1(c) # 1, and

inst

G(o @ F(k™e o 2 (hggep, hinst, i = 1,¢))) # 2",
output L.
3. If i = i*, (hsteps hinst) = (h;ep, hi (),c=c", and o ® r* # y*, output L.
4. If SSB.Verify (hkstep, hstep, i, Step, 7siep) = 0, output L.
5. If i = 1 and ¢ # cinit, output L.

6. If (i, hgtep, hinst, ¢) # (i, h h ..¢),i>1and

:tep’
G(O') # G(F(k(h;lep'hmspi e)a (hstep, hinsts i— 1: C)))s
output L.

7. Compute the next configuration ¢; € {0, 1}° as follows:

o Step(c, 1) if SSB.Verify (hkinst, hinst, i, X, 7inst) = 1 and C(x, w) = 1
Step(c,0) otherwise.

8. Output (e F(k "o), (hyep, b,).

Figure 12: The mapping program MapProg, [C, K, hkstep, hkinst, Cinit, Mt st 1) T B T,i% 25 ¢yt rr].

> step’ Vinst?

When preparing the common reference string, the challenger now computes

ObfMap «— iO (1%, 157wwros, MapProg, [C, K, hstep, kinst, cinie, k"o 10t e Bt 2% ¢y r'])

« Hyb, .. ,: Same as Hyb,_ . ; except the challenger now samples r* & 0,1},

« Hyb_ . 5: Same as Hyb,_ ., except the challenger now sets r* = F(k, (h:tep, h! @' =1, c))
Claim 5.20. Suppose Issg is somewhere statistically binding, Ippgr is correct, G is injective, and iO is (1, Z_Aog?f)—secure
for some constant eqps € (0, 1). Suppose moreover that Aops = (A + S)V/eebt | Then, there exists Az € N such that for all
A>Aq,

|Pr[Hybr,c* (ﬂ) = 1] - Pr[Hybr,C*,l (ﬂ) = l]l s 2/1+S’

47

Proof. We start by arguing that the following two programs compute identical functionality:

° MapPrng [C; K, hkstepa ths Cinit» k; h? h’ B: T, i*, Z*, C*]

step’ " inst’

(h%. h* i*—1,c" 2 . -
* MapPrOgS [C’ K’ hkst&p’ hkinst> Cinit» F*step>Tinst ¢)’ h:tep’ h?nst’ﬁ’ 7, l*’ Z*’ C*’ y,r]

Take any input (i, c, Step, x, hstep, hinst, Tsteps Tinst; W, 0) to these programs. First, if (hstep, hinst) # (h:tep, h?), then
by punctured correctness, this means

F(k, (hstep; hinsta B)) = F(k(h;eplh;spi*iljc*)’ (hstep’ hinsta)))

In this case, the behavior of the two programs is identical. Thus, for the remainder of the analysis, it suffices to consider
the case where (hstep, hinst) = (h:tep, h:). We now consider the programs’ behavior depending on the value of i:

+ Suppose i < i* —1ori > i*. Thismeans i — 1 # i* — 1. By punctured correctness, this means
F(k> (hsteps hinst; i— 1, C)) = F(k(h;ep,hrns‘,i*_l’c*)s (hsteps hinsts i— 1, C))

Hence, the check in Step 6 of MapProg, coincides with the corresponding check in MapProg,. Since we also
have i # i* — 1, punctured correctness also implies that for all ¢; € {0,1}°,

F(K, (Nsteps Rinsts &, €7)) = F(k MMl =20 (b i ey).

This means the output of Step 8 of MapProg, coincides with the output in MapProg,. We conclude that the
two programs behave identically on all inputs where i < i* — 1.

« Suppose i = i* — 1. Then, i — 1 # i* — 1. By the same argument as the previous case, the only possible difference
in the behavior of the two programs is the computation of

= F(k, (hstep, hinst, i, ¢;)) in Step 7 of MapProg,; and the computation of

— F(kMseMiosel 2D (b hingt, B, ¢;)) in Step 8 of MapProg,.
First, by assumption 7;+_; = 1, so 7; = 1 in this case. We now consider the possibilities depending on the value
of ¢ € {0, 1}5:

¢
step’

- Suppose Reachableg;_1(c) # 1. Since (hgtep, hinst) = (h
this case.

h: o) and 7; = 1, both programs output L in

— Suppose Reachablej;_;(c) = 1. First, recall that hkse, and hk;ns; are somewhere statistically binding at
index i. Next, (hstep, hinst) = (hjep, b1) where

step’ "inst
(h:tep’ Tstep,1 - - - » Mstep,k) = SSB.Hash (hkstep, (Stepy, ..., Stepg))
(h?nst’ Tlinst,15 + - - » ﬂinst,K) = SSB-HaSh(hkinsts (x1, cee axK))

Thus, with overwhelming probability over the choice of hkstep and hkins::
« If Step # Step;, then SSB.Verify (hkstep, hstep, i, Step, 7step) = 0.
» If x # x;, then SSB.Verify (hkinst, hinst, i, X, Tinst) = 0.

Thus, if Step # Step;, with overwhelming probability over the choice of hkgep, both programs output L.
It suffices to analyze inputs where Step = Step;. We now consider two possibilities:

» Suppose C(x, w) = 0 or SSB.Verify(hkinst, hinst, i, X, Tinst) = 0. Then, both programs compute the
configuration
¢; = Step(c, 0) = Step;(c, 0).

By assumption, Reachableg;_;(c) = 1. Since Reachable computes an admissible set of reachable
states (Definition 5.5), this means Reachablej;(c;) = 1. Correspondingly, this means c; # c* (since
we are working with the case where Reachablej;_;(c*) = 0). By punctured correctness, this means

F(k, (Nsteps hinsts iy 7)) = F(kMsepMnse™ =50 (o hing i, ¢7)

and the programs behave identically.

48

» Conversely, suppose C(x, w) = 1 and SSB.Verify(hkinst, hinst, i, X, 7inst) = 1. As argued above, with
overwhelming probability over the choice of hkjnst, this means x = x;. This means C(x;, w) = 1
so by definition of f; (see Eq. (5.1)), this means that f; = 1. Let ¢; = Step(c,1) = Step;(c, 1) be
the configuration computed by both programs. Since Reachableg;_;(c) = 1, ; = 1, and Reachable
computes an admissible set of reachable states, this means that Reachablej;(c;) = 1. As in the
previous case, this means c; # c¢* (since Reachableg;_;(c*) = 0). By punctured correctness, we have

that F(k, (hstep, hinst 1)) = F(k o2, (e, hingy i, €1)).
We conclude that the output of both programs are identical.
« Suppose i = i*. We consider the possibilities depending on the value of c:

— Suppose ¢ # ¢*. By punctured correctness,
. i — - (hfepshinspsi™ —1,6")) .
F(k’ (hstep> Rinst, 1 = 1, C)) - F(k prine > (hstep> Rinst, i — 1, C))

and the two programs implement identical checks.

- Suppose ¢ = c*. Then, MapProg, checks that G(c) = G(F(k, (hstep, hinst, i — 1,¢))) whereas MapProg;
checks that o @ r* = y*. If the condition is not satisfied, then the respective programs output L. Since
G is injective, the check in MapProg, is equivalent to checking

o =F(k, (hStEpa hinst, i — 1,¢)). (5.2)

In Hyb the challenger sets

7,c%,1°
r' = F(k, (hgep hipg " = 1,¢7)) @Y,

so the condition ¢ @ r* = y* is precisely equivalent to Eq. (5.2) given that (h:tep, h! i — 1Lc") =
(hstep’ hinst, i — 1, ¢).

Finally, since i # i* — 1, for all ¢; € {0, 1}5, punctured correctness implies that
. hr, bt L=t .
F(k, (hstep> hinst, 1, ¢;)) = F(k(step?tnst?! =5), (hstep» hinst, i, ¢7)).
Hence the behavior of the two programs is identical in the two experiments.

Thus the two programs compute identical functionality. The claim now follows by sub-exponential iO security.
Formally, suppose there exists an infinite set Az C N such that for all A € A 4, we have that

[PrlHyb, (1) = 1] = PrHyb, ., () = 1]] > e

T,c* WS

Let Ag = {(A+S)Y/% : X € A #}. Since S is non-negative and A # is infinite, the set Ag is also infinite. We now use
A = (Ao, A;) to construct a non-uniform adversary B = (By, B1) such that for all Aopr € Ag, the advantage of B

is at least 1/ 20" . The preprocessing algorithm B, proceeds as follows:

1. On input 1/obf algorithm B, first checks if there exists A € Az such that Agpr = (4 + S)/eabf If no such A exists,
then algorithm B, outputs L. Otherwise, it sets A to be the smallest such value that satisfies the condition.

2. If there exists 1 € Ag satisfying the above condition, then algorithm 8B runs A, on input 1* to obtain
(C,P, X, stg). It then computes 8 € {0, 1}X according to Eq. (5.1) and the Boolean circuits {Reachablej ;} je(0,1}% ic[o.k]
associated with P.

3. Algorithm 8B, outputs the advice string

stg = (C,P, X, sta, ﬁ {Reachableg;} je (0,1} ic[ok] T ', i c*,). (5.3)

49

The online algorithm B, then proceeds as follows:

1. On input the security parameter 1% and the advice string stg (parsed according to Eq. (5.3)), algorithm 8B,
samples

hkstep < SSB.Setup(1%, 15,1, K, {i*})
hkinst «— SSB.Setup(l’l, 1", 14K, {i*}).

2. LetT = (Stepy, ..., Steps, Cinit, Cacc) be the description of the Turing machine that computes P. Algorithm 8,
computes

(h:tep, Trstep,1s - - -» Tstep,k) = SSB.Hash (hkiep, (Step;, ..., Stepg))
(hi*nst’ Tlinst,15 « « +» ”inst,K) = SSB-HaSh(hkinsts (xl, e xK))-

3. Next, algorithm B; samples a PRF key k < F.KeyGen(17¢rF, 15"+ +Tlog K1+ 1) [t a]s0 computes the punctured
key
ke stepPinse " =1 F puncture(k, (hgteps Ninsr 1 = 1,¢7)).

4. Algorithm B; samples y* & {0, 1} and sets z* = G(y*). Finally, it computes
r =y" @ F(k, (hgep, hipgp i — 1,¢7)).
5. Algorithm 8B, gives the programs
MapProg, [C, K, hkstep, hkinst, Cinit, k. h:tep, mst,ﬁ T,i%, 2% ¢’

and
MapPr0g3[C K, hkstep, hkinst, Clnlt,k stepMins 7 =16)’h:tep’ mst’ﬁ i’z ¢ y r']

to the iO challenger. The iO challenger responds with an obfuscated program ObfMap.

6. Finally, algorithm B; computes ObfVer « iO (1A°bf , 151Zeverprog VerProg[K, cacc, k]). It defines the common refer-
ence string crs = (hKstep, hkinst, ObfMap, ObfVer) and invokes A; on input (st g, crs). Algorithm A, outputs o.

7. Algorithm B; outputs ObfVer (hstep, hinst, 7).

By construction, if ObfMap is an obfuscation of MapProg,, then algorithm 8 perfectly simulates an execution of
Hyb_ .., whereas if ObfMap is an obfuscation of MapProgs, then algorithm $; perfectly simulates an execution of

T,c*>
1/,
Hyb, .. ;. We claim that for all Aohs € Ag algorithm B breaks security of iO with advantage 27 (+5) = 9= Ay bf, which
contradicts sub-exponential security of iO. O

Claim 5.21. Suppose Ilpprr satisfies (1, Z_A;E';F)—punctured pseudorandomness for some constant eprr € (0, 1). Suppose
moreover that Apgr = (A + S)Y/°%F Then, there exists Az € N such that for all A > A 7,

[Pr[Hyb, . (A) = 1] = Pr[Hyb_..,(A) =1]| < s

Proof. Suppose there exists an infinite set Az C N such that for all A € A 4, we have that

| Pr[Hyb, . (A) = 1] = Pr[Hyb ., (A) = 1] > 5.

Let Ag = {(A+)Y/ :) € Ag}. Since S is non-negative and A # is infinite, the set Ag is also infinite. We now use
= (Ay, A;) to construct a non-uniform adversary 8 = (B, B;) such that for all Apgr € Ag, the advantage of B is

at least 1/ 2 . The preprocessing algorithm B, proceeds as follows (this is entirely analogous to the preprocessing
algorithm from the proof of Claim 5.20):

50

1. On input 17err algorithm B, checks if there exists A € A # such that Apgr = (4 + S)/#rF If no such A exists,
then algorithm B, outputs L. Otherwise, it sets A to be the smallest such value that satisfies the condition.

2. If there exists 1 € Az satisfying the above condition, then algorithm 8B runs A, on input 1* to obtain
(C,P, %, st #). It then computes f € {0, 1}X according to Eq. (5.1) and the Boolean circuits {Reachableg;} je (0.1} ie[0,]
associated with P.

3. Algorithm B, outputs the advice string

stg = (C,P, X, stg, E {Reachableg,;} je 0,1} ic[ok] T 7, 1% c", A). (5.4)

The online algorithm $B; then proceeds as follows:

1. On input the security parameter 17°% and the advice string stg (parsed according to Eq. (5.4)), algorithm B,
samples
hkstep < SSB.Setup(1%, 15,1, K, {i*})
hkinst < SSB.Setup(1%,1", 1", K, {i"}).

2. LetT = (Stepy, ..., Stepg, Cinit, Cacc) be the description of the Turing machine that computes P. Algorithm 8,
computes
(h:tep, Tstep,1s - - -» Tstep,k) = SSB.Hash(hkstep, (Step, ..., Stepg))
(hi*nsp Tlinst,15 « « +» ”inst,K) = SSB~HaSh(hkinst’ (xb ey xK))~

3. Next, algorithm B, outputs the input length 157 +M°eK1+S 'the output length 1¢, and the challenger point
(h%.., h ,i* — 1,¢*) to the challenger. The challenger replies with a punctured key kMsterMinst’” =2 and a

step’ "inst’

challenge ¢ € {0,1}".
4. Algorithm B, samples y* & {0, 1} and sets z* = G(y*). Finally, it computes r* = y* & (.
5. Algorithm $B; then computes

ObfMap « iO(MapProg;[C, K, hkstep, hkinst, Cinit, k M Pinste i =1€7) e B: i 2% ¢yt r])

> Uistep’ Minst?

and ObfVer « iQ (1%, 157everProg VerProg[K, cace, k]). It sets crs = (hkstep, hkinst, ObfMap, ObfVer) and in-
vokes A; on input (stg, crs). Algorithm A; outputs o.

6. Algorithm B, outputs ObfVer (hstep, hinst, 7).

By construction, the challenger samples k « F.KeyGen(177rF, 15+ +[logK1+S 1£) and
Je (Nstephinsei” —1.€") F.Puncture(k, (hs*tep, hi i —1c")).

We now consider the two possibilities for the challenge value {:

« Suppose ¢ = F(k, (h;‘tep, h! i =1, ¢*)). In this case, r* = y* @ { is distributed according to the specification
of Hyb

7,c%,1°

« Suppose { & {0,1}’. In particular, in this case is independent of all other components in the experiment.
This means the distribution of r* = y* @ { is also uniform over {0, 1}/, which coincides with the distribution
of r* in Hyb

7,c*,2°
We conclude that for all Apgr € Ag algorithm B breaks punctured pseudorandomness with advantage 2-(++5) =

1/€pRp . . s .
~%rr " which contradicts sub-exponential security of ITppgr.]

51

Claim 5.22. Suppose Ippgr satisfies (1, Z_A;E';F)—punctured pseudorandomness for some constant eprr € (0, 1). Suppose
moreover that Aprr = (A + S)Y/°%F Then, there exists Az € N such that for all A > A #,

|Pr[Hbe,c*,2(ﬂ) = 1] - Pr[Hybr,c*,S(ﬂ) = 1]| < zﬂ+5 ’

Proof. Follows by a similar argument as in the proof of Claim 5.21. The only difference is the reduction algorithm
sets r* = { (rather than r* = y* @ (). O

Claim 5.23. Suppose Ilppgr is correct, G is injective, and iO is (1, 2 A")-secure for some constant eqps € (0, 1). Suppose
moreover that Aoyt = (A + S)Y/. Then, there exists Az € N such that for all A > A4,

|Pr[Hyb_ . 5(A) = 1] = Pr[Hyb_ ., (A) =1]| < s

Proof. Follows by a similar argument as in the proof of Claim 5.20. O
Claim 5.19 now follows by combining Claims 5.20 to 5.23. O

Claim 5.24. Suppose G is pseudorandom. Then, there exists a negligible function negl(-) such that for all A € N,
| Pr[Hyb,_ s (A) = 1] = Pr[Hyb__ 40(A) = 1]| = negl(A).

Proof. Formally, suppose
|Pr[Hybszs (A)=1] - Pr[Hbe’endyo(ﬂ) =1]| > ¢

for some non-negligible ¢. We use A = (A, A1) to construct an efficient non-uniform adversary 8 = (B, B;) that
breaks security of G. As noted earlier, we assume the preprocessing algorithm %, outputs an advice string of the form

stg = (C, P, X, sta, f, {Reachableg;} je (0.1} ie[0,k]> T T, i").
The online algorithm B, then works as follows:

1. On input the security parameter 1%, the advice string (C, P, %, st &, ,E, {Reachableﬁ‘,i}ge{oll}x,ie[OEK], 7,7',i"), and
the challenge z* € {0, 1}, algorithm $; samples

hkstep < SSB.Setup(1%, 15,1, K, {i*})
hkinst < SSB.Setup(1%,1", 1, K, {i*}).

2. LetT = (Stepy, ..., Steps, Cinit, Cacc) be the description of the Turing machine that computes P. Algorithm 8,
now computes

(h:tep, Tstep,1s - - -» Tstep,k) = SSB.Hash(hkstep, (Step, ..., Stepg))
(hisp> Tinst, 15 - - -» Tinst k) = SSB.Hash(hkingt, (x1, . .., xg)).
It also computes
« k « F.KeyGen(17erF, 15"+ +[log KT+5 1)
« ObfMap « iO(lebf, 151Z€MapProg MapProg, [C, K, hkiep, hkinst, Cinit, &, h;‘tep, h;‘nst, E, T, i, z%, 25]).

« ObfVer « iO(lA‘)bf, 15izeverbrog, VerProg[K, cace, k]).

Algorithm By sets crs = (hkstep, hkinst, ObfMap, ObfVer) and invokes A; on input (st g, crs). Algorithm A,
outputs o.

3. Algorithm 8, outputs ObfVer(hstep, hinst, 7).

52

We consider the two possible distributions for z*:
. If z* = G(y*) where y* & {0,1}¢, then algorithm B perfectly simulates an execution of Hyb, »s.

o If z* & {0,1}™, then algorithm B perfectly simulates an execution of Hyb_ .4 -

We conclude that algorithm 8 breaks pseudorandomness of G with the same advantage as A, which proves the

claim. O

Claim 5.25. Suppose Ilssp satisfies index hiding. Then there exists a negligible function negl(-) such that for all A € N,
| Pr[Hyb, cngo(A) = 1] = Pr[Hyb, ., (A) = 1]| = negl(4).

Proof. Follows by the same argument as the proof of Claim 5.17. O

Claim 5.26. Suppose iO is secure and that Aops > A. Suppose also that m > € + A. Then, there exists a negligible function
negl(-) such that forall A € N,

[Pr[Hyb, .4, (A) = 1] = Pr[Hyb,, (A) = 1]| < negl(}).
Proof. 1t suffices to argue that the following two programs compute identical functionality:

+ MapProg, [C, K, hkstep, hkinst, Cinit k, hie, hi, E 7,i% 2%, 2%] in Hyb and

> Ustep> Minst? rend,1>

+ MapProg, [C, K, hkstep, hkinst, Cinit k, hiep, hi, E,r’],

> 'step’ inst?
Take any input (i, ¢, Step, X, hstep, hinst> Tsteps Tinst, W,) to these two programs. We consider the following possibilities:
+ Suppose i # i*. By assumption, this means 7; = 7}, so the two programs behave identically.

+ Suppose i = i*. This means that 7; = 0 and 7] = 1. We consider two possibilities:

— Suppose (hstep, hinst) = (h:tep, hr) and Reachableg;_i(c) # 1. In this case, MapProg, always outputs L.
Consider the behavior in MapProg,. First, the condition ¢ < 25 always holds. Moreover, in Hbe’end,l, the
challenger samples z* & {0,1}™. Since m > £ + A, with overwhelming probability over the choice of z*,

we have that z* is not in the image of G. In this case, the check in Step 2 of MapProg, always triggers
and the program outputs L.

— Suppose (hiep, hinst) # (h;‘tep, h?) or Reachablez;_1(c) = 1. In this case, the behavior of the two

Ins
programs are identical by definition.

We conclude that the two programs compute identical functionality. The claim now follows by iO security. O

Completing the proof of Lemma 5.16. We now return to the proof of Lemma 5.16. By Claim 5.19, for all
¢* € [0,2° — 1] and all sufficiently-large A € N, we have that

Q(1
| Pr[Hyb, .(A) = 1] = Pr[Hyb, .., (A) =1]| < %
By a hybrid argument, this means
Q1
[Pr[Hyb, ((A) = 1] = Pr[Hyb_,s(A) = 1]| < %

Combined with Claims 5.17, 5.18 and 5.24 to 5.26, we conclude via a hybrid argument that

| Pr[Hyb_(A) = 1] = Pr[Hyb_ (A) = 1]| = negl(A). O

53

Lemma 5.27 (Property 4). Let 7 = 0K71||1. Then forall A € N,
| Pr[Hyb_(A) = 1] — Pr[Hyb,,4(A) = 1]| = negl(4).
Proof. We introduce an intermediate sequence of hybrids.

« Hyb,_,: Same as Hyb, except the challenger samples the hash keys hkstep and hkinst to be binding on index K.
Namely, the challenger samples
hkstep < SSB.Setup (1%, 15,1, K, {K})
hkinst < SSB.Setup(1%5®, 1", 11, K, {K}).

« Hyb,,: Same as Hyb_; except the challenger punctures the PRF key k at (h; K, cacc). Namely, the

challenger computes

step? mst’

k (MstepMinseKoace) F puncture(k, (hsteps Ninse> K cace))-

The challenger also computes z* = F(k, (h? K, cacc)) and defines the following program VerProg,:

step? |nst’

Fixed values: number of instances K, the accepting configuration c,., a puncturable PRF key
ke Psteplinseocac) hash values h:tep, h? > and a string z* € {0, 1}

Input: hash values hgtep, hinst, and a signature o € {0, 1}
On input (hstep’ hinst, 0):

1. If (hstep, hinst) = (hstep h:) and G(o) = z*, output 1.

2. If(hstep, |nst) # (h) and G(O-) = C‘(F(k(hqep [”S[KCM) (hstep» |nst;K Cacc))) OutPUtl

step? |nst

3. Otherwise, output 0.

Figure 13: The verification program VerProg, [K, cacc, Je (PtepsPingeo K Cace) s Pteps hingp 2°1-

When preparing the common reference string, the challenger now computes
ObfMap « l-O(l)Lobf’ lsiZeMapProg’ MapProg, [C, K, hkstep, hKinst, Cinits K (NStepshinst Ko Cace) h:tep’ hu*nst’:g 7]).

and
ObfVer «— iO (14, 1570w s VerProg, [K, coce, ke nse o) hry e 27]).

« Hyb, ;: Same as Hyb, ; except the challenger samples z* & {o,13m,
Claim 5.28. Suppose Issp satisfies index hiding. Then, there exists a negligible function negl(-) such that for all A € N,
| Pr{Hyb (A) = 1] = Pr[Hyb, ,(A) = 1]| = negl(4).
Proof. Follows by the same argument as the proof of Claim 5.17. O

Claim 5.29. Suppose Ippgr is correct, iO is secure, and Aops > A. Then, there exists a negligible function negl(-) such
that forall A € N,
|Pr[Hyb_,(A) = 1] = Pr[Hyb_,(A)]| < negl(}).

Proof. First we note that the following two programs compute identical functionality:

54

.1; and

« VerProg[K, cacc, k] in Hyb

(h% . .h' K.Cacc) % * %7+
+ VerProg, [K, Cace, kb step st Cace] hstep’ hmst’z | in Hbe,Z'

Consider any input (hgtep, hinst, o) to these programs.

+ Suppose (hstep, hinst) = (hstep, » «t)- Then both programs output 1 if and only if
G(U) =z'= G(F(k (hstepa mst’K Cacc)))
+ Suppose (hstep, hinst) # (hgiep, i i) Then, by punctured correctness, both programs output 1 if and only if

G(O’) = G(F(k, (hstepy hinsta K, cacc)))~

Next, we show that the following two programs also compute identical functionality:

+ MapProg, [C, K, hkstep, hkinst, Cinit k, hie, hi, ﬁ,] in Hyb, ,; and

> 'step’ inst?

* MapProg, [C,K, hkstép, hkmstaclmt,k(sep s oaee) ﬁ 7] in Hbe,z-

> Ustep? inst?

Without loss of generality, we assume that algorithm A always outputs a tuple (C, P, (x1, . .., xx)) where P(ﬁ) =0
and = (f1,..., fk) is as defined in Eq. (5.1). Otherwise, the output in both experiments is 0. Now, take any input
(i, ¢, Step, x, hstep, hinst, Tsteps Tinst; W, @) to these two programs. First, note that i € [K] which means

(hstep’ hinst, i = 1,¢) # (hstep’ |nst’K Cacc)-

Thus, by punctured correctness of IIpprr, Step 4 of MapProg, behaves identically in the two cases. Thus, the two
programs can only differ on Step 6. We consider the following two cases.

+ Suppose (hstep, hinst, i, ¢;) # (hstep, st K €ace). Then by punctured correctness of Ilppgr, the two programs
behave identically.

+ Suppose (hstep, hinst, i, ¢;) = (hstep, st K Cace). In this case, 7; = tx = 1. If Reachablej;_1(c) # 1, then both
programs output L. We focus on the case where Reachablej;_;(c) = 1. Next, recall that hkse, and hk;,s; are
somewhere statistically binding on index K. In addition, in both experiments, the challenger computes

(h:tep, Tstep,1s - - -» Tstep,k) = SSB.Hash(hkstep, (Step, ..., Stepg))
(hisp> Tinst 15 - - -» Tinst, k) = SSB.Hash(hkingt, (x1,. .., xx))

Thus, with overwhelming probability over the choice of hkgtep and hkiqs:

- If Step # Stepy, then SSB.Verify (hkstep, hstep, K, Step, step) = 0.
- If x # xx, then SSB.Verify (hkinst, hinst, K, X, Tinst) = 0.

Thus, if Step # Stepy., then both programs output L with overwhelming probability (over the choice of hkscp).
It suffices to consider the case where Step = Stepy. We consider two possibilities:

— Suppose C(x,w) = 1 and SSB.Verify(hKinst, hinst, i, X, Zinst) = 1. As argued above, with overwhelming
probability over the choice of hki,st, this case occurs only if x = xg. This means C(xg, w) = C(x,w) =1,
and in particular, that fx = 1. By construction of MapProg,, we have c¢; = Step(c, 1) = Stepg(c, 1). Since
Reachablegx_i(c) = 1 and g = 1, by Definition 5.5 this means that

1 = Reachablej k (Step(c, 1)) = Reachablej x (c;) = Reachableg x(cacc),

which contradicts the premise that P(E) =0.

55

— Suppose that either C(x, w) = 0 or SSB.Verify (hkinst, hinst, i; X, Tinst) # 1. In this case, caec = ¢; = Step(c, 0).
Again, since Reachablej x_1(c) = 1, we can appeal to Definition 5.5 to conclude that

1 = Reachablej k (Step(c,0)) = Reachablej x (c;) = Reachableg x(cacc),
which again contradicts the premise that P(ﬁ) =0.

We conclude that with overwhelming probability over the choice of hkinst and hkgtep, this case does not happen
unless the adversary A outputs (C, P, ¥) where P(ﬁ) = 1 (in which case, the advantage of A is 0).

We conclude that both pairs of programs compute identical functionality. The claim now follows by iO security and
a standard hybrid argument. O

Claim 5.30. Suppose Ippgr satisfies punctured pseudorandomness and Aprr > A. Then, there exists a negligible function
negl(-) such that for all A € N, | Pr[Hyb_,(A) = 1] — Pr[Hyb_;(A)]| = negl(4).

Proof. Follows by a similar argument as the proof of Claim 5.21. O

Claim 5.31. Suppose Ilppgr is correct, iO is secure, Adops = A, and m > A + €. Then, there exists a negligible function
negl(-) such that for all A € N, | Pr[Hyb_5(A) = 1] — Pr[Hyb, 4(A)]| = negl(4).

Proof. By the same argument as in the proof of Claim 5.29, the following two programs compute identical functionality:

.35 and

« MapProg, [C,K, hkstep, hkinsts Cinits k Pstep PinseKotace) iz e B 7] in Hyb

> Ustep® Vinst’ /7

+ MapProg, [C, K, hkstep, hkinst, Cinit, k; hjep, D1 o ﬂ, 7] in Hyb,, 4.

> step?

We now show that the following two programs also compute identical functionality:

[
. VerProgz[K,cacc,k(T S N S

> 'step’ inst?

in Hyb,

z'] in Hyb_;; and
« VerProg, [K, cacc, k, D,), B

> Hstep? mst] end*

Take any input (hstep, hinst, 0) to these two programs.

+ Suppose (hsiep, hinst) = (hstep, o). By definition, VerProg, always outputs L in this case. Consider the

behavior of VerProg,. In Hyb_ , the challenger samples z* ¢ {0,1}". Since m > A + ¢, with overwhelming
probability over the choice of z, there does not exist a string y € {0, 1}¢ such that G(y) = z*. Thus, with
overwhelming probability over the choice of z, VerProg, will always output 0 in this case.

+ Suppose (hstep, hinst) # (hgiep, i i) Then, by punctured correctness, both programs output 1 if and only if
G(o) = G(F(k, (hstep> hinst, K, Cacc)))-

We conclude that with overwhelming probability over the choice of z & {0, 1}™, both programs compute identical
functionality. The claim now follows by iO security and a standard hybrid argument. O

Lemma 5.27 now follows by combining Claims 5.28 to 5.31. O
Lemma 5.32 (Property 5). ForallA € N, Pr[Hyb, 4(A) =1] =0.
Proof. The output in Hyb,, is computed as ObfVer(hsiep, hinst, @) where the challenger computes

(Nsteps Tstep,1s - - - » Tstep,k) = SSB.Hash (hkstep, (Stepy, . . ., Stepy))
(hinsts Tinst,15« « > ”inst,K) = SSB-HaSh(hkinsts (xla e xK))-

By construction,
VerProg, [K, cacc: K, hstep, Rinst] (hstep, hinst, 0) = 0

for all 0. As such, the output in this experiment is always 0, as required. O

56

Theorem 5.13 now follows from Lemma 5.12 together with Lemmas 5.14 to 5.16, 5.27 and 5.32. O

Theorem 5.33 (Succinctness). Suppose ssp is succinct. Let D be a bound on the size of the circuit that computes the
admissible set of reachable states associated with policies in P (see Definition 5.5),” Then, there exist universal polynomials
poly, and poly, such that the size of the crs output by Setup(1%, C, K) and the size of the canonical witness o output
by Map(crs, X, w) are bounded by

|Cr5| S pOIY1(/L |C|aS, D’ logK)
|a] < poly,(4).

Proof. For all A € N, all Boolean circuits C: {0,1}" x {0, 1} — {0, 1}, all Boolean policies P € ¢ where P: {0,1}X —
{0,1}, and all x1,...,xx € {0,1}", wy,...,wg € {0, l}h such that

P(C(x1,w1),...,C(xk, wk)) =1,
the common reference string crs output by Setup (14, C, K) consists of the following components:
» hash keys hksiep, hkins; for the somewhere-statistically-binding hash function;
« an obfuscated program ObfMap for generating proofs; and
« an obfuscated program ObfVer for verifying proofs.

Succinctness of IIssg ensures that |[hksiep| < poly(4,s,log K) and |hkiqs¢| < poly(4, n,log K), where s = poly(4,5) is
a bound on the size of the Boolean circuit that computes a step function Step; associated with a policy in #. Next,
we bound the sizes sizemapprog and sizeverprog of the obfuscated programs ObfMap and ObfVer (and their variants)
that appear in the analysis of Theorem 5.13.

« First, the mapping programs MapProg appearing in the proof of Theorem 5.13 require hardwiring the Reachablej ;
circuit for all indices i where 7; = 1. From Lemma 5.12, for every 7 € {0,1}X appearing in the anal-
ysis of Theorem 5.13, there are at most 1 + logK indices i € [K] where 7; = 1. Thus, we can bound
SiZ€MapProg = poly(4,|C|, S, D,log K).

+ Next, the sizes of verification programs VerProg appearing in the proof of Theorem 5.13 can be bounded by
sizeverprog = poly(4,n, S, log K).

Taken together, we can bound the overall CRS size for Construction 5.8 by poly, (4, |C|, S, D,log K). Next, the size of
the canonical witness o output by Map(crs, (x1, ..., xk), (w1, ..., wk)) is simply an ¢£-bit string, where ¢ is the seed
length of a PRG. Here, we can take ¢ = poly, (1), which completes the proof. O

Instantiation. Taken together, Construction 5.8 yields a succinct unique witness map for batch NP that supports
any read-once bounded-space policy using iO together with a somewhere statistically binding hash function and
an injective PRG. The somewhere statistically binding hash function and the injective PRG can be instantiated from
standard number-theoretic assumptions [HW15, OPWW15, GKVW20]. We summarize our instantiation with the
following corollary:

Corollary 5.34 (Succinct Unique Witness Map for Read-Once Bounded-Space Turing Machines). Let A be a security pa-
rameter. Assuming the existence of indistinguishability obfuscation for Boolean circuits, a somewhere statistically binding
hash function, and an injective PRG, there exists a succinct unique witness map for the set of monotone policies P that can
be computed by a read-once bounded-space Turing machine. Specifically, if K is a bound on the number of instances, S is
the space required by policies in P, and D < poly(A, 2°) is the bound on the size of the circuit that computes the admissible
set of reachable states associated with policies in P, then the size of the CRS for the succinct unique witness map for a
Boolean circuit C: {0,1}" x {0, 1} — {0, 1} and policy family P is poly(A, |C|, S, D,log K) and the proof size is poly(2).

"We can trivially bound D = O(2%) by enumerating the set of reachable states for the space-S Turing machine.

57

6 Applications

In this section, we highlight two immediate applications of succinct witness encryption for batch languages. The
first application is to succinct computational secret sharing [ABI*23] and the second is to distributed monotone-
policy encryption, a generalization of notions like distributed broadcast encryption [WQZD10, BZ14] and threshold
encryption with silent setup [GKPW24, ADM*24].

6.1

Succinct Computational Secret Sharing

In this section, we show that succinct witness encryption for batch languages immediately implies a succinct computa-
tional secret sharing scheme. We start by recalling the notion of succinct computational secret sharing from [ABI*23].

Definition 6.1 (Succinct Computational Secret Sharing [ABI*23, adapted]). Let A be a security parameter, be
a family of policies, and M be a message space. We model each policy P € $ as a monotone Boolean function. A
succinct computational secret sharing scheme with policy space P is a pair of efficient algorithms ITscss = (Share,
Reconstruct) with the following syntax:

Share(l’l, P, i) — (shg, shy, ..., sh,): On input the security parameter A € N, a policy P € P (on n-bit inputs),
and a message p € M, the share algorithm outputs a collection of n + 1 shares shg, shy, . . ., shy,, where sh; is the
share of the i'h party and shy is the public information given to all parties. By default, the public information
shg is an empty string.

Reconstruct (P, f, sho, { (i, sh;) }ie[n]:5,=1) — p: On input a policy P € P (on n-bit inputs), a string g € {0,1}"
(describing the reconstructing set), the public information shy, and shares sh; for indices i € [n] where §; = 1,
the reconstruction algorithm outputs a message p € M.

We require that IIscss satisfy the following properties:

Correctness: For all security parameters A € N, all policies P € P (on n-bit inputs), all fi,..., 5, € {0,1}
where P(fy,. .., Bn) = 1, all messages p € M, we have that

Pr[Reconstruct(P, B, sho, { (i, sh;) }ic[n):p,=1) = #1 : (sho,shy, ..., sh,) & Share(l’l,P,y)] =1.

We say the scheme satisfies (statistical) correctness if there is a negligible function such that the above holds
with probability 1 — negl(2).

Security: For a security parameter A € N, a bit b € {0,1}, and an adversary A, we define the security
experiment as follows:

— On input the security parameter 1, algorithm A chooses a policy P € P (on n-bit inputs), bits f, ..., f, €
{0, 1} where P(f1, ..., fn) = 0, and two messages py, i1 € M.

— The challenger computes (shg, shy,...,sh,) « Share(14, P, Up) and gives the shares shy and sh; where
ﬂi =1to ﬂ

— Algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

The secret sharing scheme is secure if for all efficient adversaries A, there exists a negligible function negl(-)
such that forall A e N, |Pr[0’ =1 |b=0] —Pr[b’ =1]| b = 1]| = negl(A) in the security game.

Succinctness: There exists a polynomial poly such that for all 1 € N, policies P € P, and messages y € M,
the size of the public information shy and shares sh; output by (shy, shy, ..., sh,) « Share(14, P,) satisfy the
following;:

Ishol, Ishi| < o(|P]) - poly(4, log).

Construction 6.2 (Succinct Computational Secret Sharing from Succinct Witness Encryption). Let A be a security
parameter, £ be a family of monotone access policies, and M be a message space. Our construction of succinct
computational secret sharing relies on the following primitives:

58

o Let IIpke = (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme with message space
{0,1}. Let p = p(A) be the number of bits of randomness the PKE.Encrypt algorithm takes.

« Let ITwe = (WE.Encrypt, WE.Preprocess, WE.DecryptLocal) be a succinct witness encryption scheme for batch
languages that supports local decryption (Definition 3.2) with message space M and policy family P.

We construct a succinct computational secret sharing scheme with message space M and policy space P as follows:

« Share(1%4, P, 1): On input the security parameter A € N, the policy P € P (on n-bit inputs), and a message
p € M, the share algorithm proceeds as follows:

Sample (pk,sk) < PKE.KeyGen(1%). Then, for each i € [n], samples r; & {0,1}” and let ct; =
PKE.Encrypt(pk, 1;7;).

Compute ctwg «— WE.Encrypt(lA, Cvalidshare [pk], P, (cty, . .., cty), 1), where Cyajiashare [pk] (ct, 7) outputs
1if ct = PKE.Encrypt(pk, 1;7) and 0 otherwise.

Compute (hty, ..., ht,) « WE.Preprocess(ctwe, Cvaiidshare [pk], P, (cty, - . ., cty)).
— Output the shares shy = (pk, ctwe) and for each i € [n], sh; = (ct;, hty, r;).

« Reconstruct(P, B, sho, {(i,sh;) }ic[n]:5,=1): On input the policy P (on n-bit inputs), a string € {0, 1}", a public
share shy = (pk, ctwe), and shares sh; = (ct;, ht;, ;) for each i where §; = 1, the decryption algorithm outputs

p = WE.DecryptLocal(ctwe, Cvalidshare [Pk], { (i, hti, 73) Yie[n).pi=1)-

Theorem 6.3 (Correctness). IfIlwe is correct, then Construction 6.2 is correct.

Proof. Take any security parameter A € N, policy P € % (on n-bit inputs), inputs f;,..., 5, € {0,1} where
P(B1,...,Pn) = 1, and any message p € {0,1}. Suppose we compute (shy,shy,...,sh,) « Share(lA,P, 1). Con-
sider the value of Reconstruct(P, f, sho, { (i, sh;) }ic[n]:5,=1):

« By construction, shy = (pk, ctwg) where (pk, sk) < PKE.KeyGen(1%) and
ctwe < WE.Encrypt(1%, Cyaiidshare [Pk, P, (ct1, . . ., ctp),).
Here, ct; < PKE.Encrypt(pk, 1;r;). This means Cyajidshare [pk] (ct;, r;) = 1 for all i € [n].
« Since P(fs, ..., fn) = 1, correctness of local decryption (Definition 3.2) implies that
WE.DecryptLocal(ctwe, Cvatidshare [PK], { (i, hti, i) Yic[n):5:=1) = H
where (hty, ..., ht,) = Preprocess(ctwg, Cvalidshare [PK], P, (cty, . . ., ct,)). Correctness follows. O

Theorem 6.4 (Security). IfIlpke satisfies perfect correctness and CPA-security and Ilwe is secure, then Construction 6.2
is secure.

Proof. Let A be an efficient adversary for the security game. We begin by defining a sequence of hybrid experiments,
each parameterized by a bit b € {0, 1}:

. Hyb(()b): This is the security experiment with the bit b € {0, 1}.

— On input the security parameter 1%, algorithm A starts by choosing a policy P € P (on n-bit inputs),
inputs f1, ..., fn € {0,1} where P(f1, ..., fn) = 0, and two messages o, i1 € M.

— The challenger starts by sampling (pk, sk) < PKE.KeyGen(1%). For each i € [n], the challenger samples
ct; < PKE.Encrypt(pk, 1).

— The challenger then computes ctwg «— WE.Encrypt(lA, Cvalidshare [PK], P, (cty, . .., cty), tip)-

59

— Next, the challenger computes (hty, ..., ht,;) « WE.Preprocess(ctwe, Cvalidshare [Pk], P, (ct1, . .., cty)). It
then gives the shares shy = (pk, ctwe) and sh; = (ct;, ht;, ;) for all i € [n] where §; = 1 to A.

— Finally, algorithm A outputs a bit b" € {0, 1}, which is the output of the experiment.
. Hyb§b>: Same as Hyb(()h), except the challenger samples ct; « PKE.Encrypt(pkpyg, 0) for all i where f; = 0.
We write Hybgb) (A) to denote the output distribution of an execution of experiment Hybgb) with adversary A. We
now analyze the hybrid distributions.
Lemma 6.5. IfTpge is CPA-secure, then for all b € {0, 1}, there exists a negligible function negl(-) such that for all
A €N, |Pr[Hyb"” (A) = 1] - Pr[Hyb{" (A) = 1]| = negl ().

Proof. Suppose |Pr[Hyb(()b) (A)=1] - Pr[Hybib) (A) =1]| = e for some b € {0, 1} and non-negligible ¢&. We use A
to construct an efficient adversary B for the CPA-security game.

« At the beginning of the game, algorithm B receives the security parameter 1* and a public key pk.

« Algorithm B starts running algorithm A. Algorithm A outputs a policy P € P (on n-bit inputs), inputs
B, ..., Pn € {0,1} where P(ps, ..., fn) =0, and two messages Lo, ji; € M.

« For each i € [n] where f; = 0, algorithm B makes an encryption query on the pair of messages (1,0)
to obtain the ciphertext ct;. For i € [n] where f; = 1, algorithm B samples r; < {0,1}” and computes
ct; « PKE.Encrypt(pk, 1;7;).

« The challenger then computes ctwg « WE.Encrypt(lA, Cvalidshare [PK], P, (cty, . .., Cty), tip).

« Next, the challenger computes (hty, ..., ht,) < WE.Preprocess(ctwe, Cvalidshare [Pk], P, (cti, . .., ct,)). It then
gives the shares shy = (pk, ctwe) and sh; = (ct;, ht;, ;) for all i € [n] where f; = 1 to A.

« At the end of the game, algorithm A outputs a bit b” € {0, 1}, which 8 also outputs.

By definition, the challenger samples (pk, sk) «— PKE.KeyGen(1%), so the distribution of pk is perfectly simulated.
In the reduction, if the challenger responds with encryptions of 1 (i.e., ct; « PKE.Encrypt(pk, 1)), then algorithm

8B perfectly simulates the distribution of Hybéb) . Alternatively, if the challenger responds with encryptions of 0

(i-e., ct; « PKE.Encrypt(pk, 1)), then algorithm B perfectly simulates the distribution of Hybib). Thus, algorithm
B breaks CPA-security of IIpkg with the same advantage ¢. m]

Lemma 6.6. IfIlpge satisfies perfect correctness and Ilwe is secure, then there exists a negligible function negl(-) such

that for all A € N, | Pr[Hyb\® (A) = 1] — Pr[Hyb\" (A) = 1] = negl(A).

Proof. Suppose |Pr[Hyb§0) (A =1] - Pr[Hybgl)(ﬂ) = 1]| > ¢ for some non-negligible ¢. We use A to construct
an efficient adversary 8 for the witness encryption security game:

1. On input the security parameter 14, algorithm 8 starts running algorithm A on input 1*. Algorithm A outputs a
policy P € P (on n-bit inputs), inputs fi, .. ., fn € {0, 1} where P(fs, ..., fn) = 0, and two messages i, 11 € M.

2. Algorithm B samples (pk,sk) < PKE.KeyGen(1%). Then, for each i € [n] where f; = 0, algorithm B
computes ct; < PKE.Encrypt(pk,0). If B; = 1, algorithm B samples r; < {0,1}” and computes ct; «
PKE.Encrypt(pk, 1;r;).

3. Algorithm B outputs the circuit Cyajigshare [pk], the policy P, the statements (cty, ..., ct,), and the messages
Lo, 1. The challenger responds with a ciphertext ctwe.

4. Next, the challenger computes (hty, ..., ht,) « WE.Preprocess(ctwe, Cvalidshare [Pk], P, (cty, . .., cty)). It then
gives the shares shy = (pk, ctwg) and sh; = (ct;, ht;, r;) for all i € [n] where §; = 1 to A.

60

5. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which B also outputs.
First, we argue that for all r1, ..., r, € {0,1}?, we have P(Cvaligshare [Pk] (ct1,71), - - -, Cvalidshare [k] (ctn, 1)) = 0 :

« First, for all i € [n] where f; = 0, there does not exist r € {0, 1}* where Cvaligshare [pk] (ct;, 7) = 1. By defini-
tion, Cvalidshare [pk] (ct;, 7) outputs 1 if and only if PKE.Encrypt(pk, 1;r) = ct;. However, in this experiment,
whenever f; = 0, the challenger constructs ct; to be an encryption of 0 under pk. Since ITpkg satisfies perfect
correctness, there does not exist any r € {0, 1} where ct; = PKE.Encrypt(pkpgg, 1;7).

+ Take any candidate witness (ry,...,r,). Let B/ = Cvaiidshare [pk] (ct;, 7;). By the previous property, we have
that 8] = 0 whenever f; = 0. This means that for all i € [n], f; < ;. Since P is monotone, this means that
P(B1,....By) < P(Pr,..., Bn) =0, as required.

We conclude that

Vrl, ...,In € {0, l}A : P(CValidShare[pk] (Ctl, r1)> ..+, CvalidShare [Pk] (Ctns rn)) =0.

In this case, the witness encryption challenger either encrypts the message iy or the message y. If the challenger com-
putes ctwg «— WE.Encrypt(lA, Cvalidshare [PK], P, (pky, . . ., pk,,), to), then algorithm 8 perfectly simulates an execution

of Hybio). Alternatively, if the challenger computes ctwe « WE.Encrypt(l’l, Cvalidshare [Pk, P, (pkys - - -, pk,,), 1),

then it perfectly simulates an execution of Hybil). Thus, algorithm B breaks security of witness encryption with
the same advantage «. O

Security now follows by combining Lemmas 6.5 and 6.6. O

Remark 6.7 (Using Witness Encryption for Trapdoor NP Relations). When the underlying public-key encryp-
tion scheme Ilpge in Construction 6.2 satisfies an “encryption with randomness recovery” property (i.e., where
the decryption algorithm recovers both the message and the encryption randomness) [HKW20], then the NP
relation Cygjligshare[pk] in Construction 6.2 is a trapdoor NP relation. Specifically, the trapdoor relation is the
circuit C[sk] with the secret key sk hard-wired inside it. On input a ciphertext ct, the C[sk] circuit computes
(p,r) « PKE.Decrypt(sk,ct) and outputs 1 if ct = PKE.Encrypt(pk, 1;7) and 0 otherwise. By perfect correctness
of Ipkg, whenever ct = PKE.Encrypt(pk, 1;7), then decryption recovers (1,r) and C[sk](ct) = 1. Alternatively, if
ct # PKE.Encrypt(pk, 1;r) for some r € {0, 1}?, then C[sk](ct) = 0. Thus, we can instantiate Construction 6.2 with
any succinct witness encryption scheme for batch languages that supports trapdoor NP relations (as opposed to
arbitrary NP relations). Moreover, public-key encryption schemes with randomness recovery can be constructed
from any injective trapdoor function (see [Yao82, HKW20]).

Remark 6.8 (Using a PRG instead of Public-Key Encryption). We can also replace the public-key encryption scheme in
Construction 6.2 with a (sufficiently-expanding) pseudorandom generator. For instance, suppose G: {0, 1}* — {0,1}?4
is a secure PRG. Then, instead of taking the shares to be public-key encryptions ct; of 1 (with the randomness as
the secret key), we define the shares to be t; = G(s;) where s; & {0, 1} is the associated secret key. The relation
Cvalidshare then checks that t; = G(s;). In the security proof, we switch the shares ¢; for the honest parties (i.e., indices
i where f8; = 0) to uniform random strings t; < {0, 1}?*. With overwhelming probability over the choice of ¢;, there
no longer exists s; € {0, 1}* such that G(s;) = t;, which is sufficient to invoke security of witness encryption. This
approach has the advantage that we can replace the public-key encryption scheme with a PRG, but the resulting
NP relation is no longer a trapdoor NP relation (see Remark 6.7 for more discussion).

Succinct computational secret sharing in the random oracle model. Construction 6.2 assumes the underlying
succinct witness encryption scheme supports local decryption. While our construction for CNF formulas (Construc-
tion 4.1) and for read-once bounded-space Turing machines (Construction 5.8) support this property, our construction
for DNF formulas (Construction 4.12) does not. In Appendix A, we show a variant of Construction 6.2 that works with
any succinct witness encryption scheme (without local decryption), but relies on the random oracle heuristic. Namely,
we show that using the notion of trapdoor proof systems from [FWW23], we can construct a succinct computational
secret sharing scheme from a succinct witness encryption, where the instances for the witness encryption scheme
consist of uniform random strings (and thus, can have a public, compact representation in the random oracle model).
We refer to Appendix A for the construction details and analysis.

61

6.2

Distributed Monotone-Policy Encryption

In this section, we describe another application of succinct witness encryption for constructing distributed monotone-
policy encryption. As mentioned in Section 1.1, distributed monotone-policy encryption generalizes notions like
distributed broadcast encryption [WQZD10, BZ14] and threshold encryption with silent setup [GKPW24, ADM*24]
to arbitrary monotone policies. We give the notion here, and then show a simple construction from a succinct witness
encryption scheme for batch languages.

Definition 6.9 (Distributed Monotone-Policy Encryption). Let A be a security parameter, $ be a family of monotone
access policies, and M be a message space. We model each policy P € # as a monotone Boolean function. A dis-
tributed monotone-policy encryption scheme with policy space % is a tuple of efficient algorithms IIpmpe = (Setup,
KeyGen, Encrypt, Decrypt) with the following syntax:

Setup(1*) — pp: On input the security parameter A € N, the setup algorithm outputs a set of public parameters
Pp-

KeyGen(pp) — (pk;, sk;): On input the public parameters pp, the key-generation algorithm outputs a public
key pk; and a secret key sk;.

Encrypt(pp, P, (pky, ..., pk,), #) — ct: On input the public parameters pp, a policy P € ¥ (on n-bit inputs), a
list of n public keys (pk;, ..., pk,), and a message y € M, the encryption algorithm outputs a ciphertext ct.
Note that the input length n is determined by P and is not fixed by the scheme.

Decrypt(pp, P, (pky, ..., pk,), {(i,ski) }ieT, ct) — p: On input the public parameters pp, a policy P € # (on
n-bit inputs), a list of n public keys pk;, ..., pk,, a list of decryption keys sk; for i € T where T C [n], and a
ciphertext ct, the decryption algorithm outputs a message y € M.

Moreover, IIpmpe should satisfy the following properties:

Correctness: For all security parameters A € N, all policies P € P (on n-bit inputs), inputs f4, ..., f, € {0,1}
where P(fi, ..., fn) = 1, all messages y € M, all public parameters pp in the support of Setup(1%), any set of
public keys pk; for i € [n] \ T where T = {i € [n] : f; = 1}, we have that

. Vi e T : (pk;, sk;) < KeyGen
Pr | Decrypt(pp. P, (pky, pky,), { (i, ski) }ier, ct) = p - ct<—Encr§/}:)tl(ppll)D (pkly p(kpg’)u) =1

Security: For a security parameter A, an adversary A, and a bit b € {0, 1}, we define the security game as follows:

— Setup: At the beginning of the game, the challenger samples the public parameters pp « Setup(1*) and
initializes a counter ctr = 0 and an (empty) list C = @. The list C is used to keep track of corrupted keys.
The challenger gives pp to A.

— Pre-challenge query phase: The adversary can now make the following queries:

+ Key-generation query: In a key-generation query, the challenger increments the counter ctr = ctr+1
and then samples samples (pk,,, sketr) < KeyGen(pp) and responds with pk

ctr> ctre
» Corruption query: In a corruption query, the adversary specifies a counter value ctr’ < ctr, and

the challenger replies with sk¢,. The adversary adds ctr’ to C.

— Challenge phase: In the challenge phase, the adversary specifies a policy P € P and a pair of messages
(pto, p11)- In addition, for each i € [n], algorithm A specifies a public key pk; or a counter value ctr;. For
each i € [n] where algorithm A specifies a counter value ctr; < ctr, the challenger sets pk; = pk,. The
challenger replies to A with the challenge ciphertext ct* < Encrypt(pp, P, (pky, ..., pk,), #p)-

ctr-

— Post-challenge query phase: The adversary can continue to make corruption queries in this phase.
(Note that post-challenge key-generation queries are not useful).

— Output: At the end of the game, algorithm A outputs a bit " € {0, 1}, which is the output of the
experiment.

62

Let f; = 1 if the adversary specified a public key pk; or a corrupted counter value ctr; where ctr; € C during
the challenge phase. For indices i € [n] where A specified an uncorrupted counter value ctr; ¢ C, let §; = 0.
We say that A is admissible if P(f, ..., f,) = 0. We say that IIpmp is secure if for all efficient adversaries A,
there exists a negligible function negl(-) such that forall 1 € N,

[Pr[b’ =1|b=0] —Pr[b' =1]|b=1]| = negl(d)
in the above security game.

+ Succinctness: There exists a polynomial poly such that for all 1 € N, public parameters pp in the support
of Setup(1%), policies P € P (on n-bit inputs), public keys pk,, ..., pk,, and messages y € M, the size of the
ciphertext ct output by Encrypt(pp, P, (pky, ..., pk,), ¢) is |u| + o(|P]) - poly(4A, logn).

Definition 6.10 (Static Security). Let IIpmpe be a distributed monotone-policy encryption scheme with policy
space P. We say that IIpmpe satisfies static security if IIpmpe is secure against adversaries that does not make any
corruption queries during the query phase. Note that the adversary is still allowed to choose public keys itself (for
any non-accepting subset of parties) during the challenge phase.

Constructing monotone-policy encryption from succinct witness encryption. We can leverage a similar
strategy as used in our construction of computational secret sharing (Construction 6.2) to construct a monotone-policy
encryption scheme from succinct witness encryption together with any public-key encryption scheme. Much like
the case for computational secret sharing (Remark 6.8), we can also replace the public-key encryption scheme with a
PRG instead, though this will require us to instantiate the witness encryption scheme with one that supports general
NP relations as opposed to trapdoor NP relations (see Remark 6.16).

Construction 6.11 (Distributed Monotone-Policy Encryption). Let A be a security parameter, M be a message space,
and P be a family of monotone policies. Our construction of monotone-policy encryption relies on the following
primitives:

« Let IIpkg = (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt) be a public-key encryption scheme.

« Let ITwg = (WE.Encrypt, WE.Decrypt) be a succinct witness encryption scheme for batch languages with
message space M and policy family P.

We construct a distributed monotone-policy encryption scheme Ipmpe = (Setup, KeyGen, Encrypt, Decrypt) with
message space M and policy space P as follows:

« Setup(1%): On input the security parameter A € N, sample (pkpyg, skpke) < PKE.KeyGen(1%) and output
pp = (1%, pkpye)-

« KeyGen(pp): On input the public parameters pp = (1%, pkpy;), the key-generation algorithm samples r -
{0, 1}” and outputs the public key pk = PKE.Encrypt(pkpgg, 1;) and the secret key sk = r.

« Encrypt(pp, P, (pky, ..., pk,), #): On input the public parameters pp = (1%, pkpy¢), the policy P € P (on n-bit
inputs), a tuple of public keys pk;, ..., pk,, and a message i € M, the encryption algorithm defines the Boolean
circuit Cvajigey [Pkpke] to be the circuit that takes as input a statement ct and a witness r € {0,1}” and outputs
1if and only if ct = PKE.Encrypt(pkpig, 1;7). The encryption algorithm outputs the ciphertext

ct «— WE.Encrypt(lA, Cvalidkey [Pkpkels P, (pky, - . -, pky),).

« Decrypt(pp, P, (pky, ..., pk,), {(i,ski) }ieT, ct): On input the public parameters pp = (1%, pkpy), a policy P € P
(on n-bit inputs), the public keys pk;, ..., pk,,, a collection of secret keys {(i, sk;};cr, and the ciphertext ct, the
decryption algorithm first defines sk; = 0° for all i € [n] \ T. Then it outputs the message

1 = WE.Decrypt(ct, Cvaiidkey [Pkpkel, P> (Pkys - - -, pk,), (skq, . . ., skp)).

63

Theorem 6.12 (Correctness). If Ilwe is correct, then Construction 6.11 is correct.

Proof. Take any security parameter A € N, a policy P € P, bits fiy, ..., pn € {0,1} where P(f1, ..., fn) = 1, a message
1€ M, any pp = (1, pkpyg) in the support Setup(1%), and any collection of public keys pk; for i € [n] \ T, where T =
{i € [n] : B; = 1}. Suppose we sample (pk;, sk;) < KeyGen(pp) forall i € T. Then, pk; = PKE.Encrypt(pkpg, 1;sk;).
Take ct « Encrypt(pp, P, (pky, . .., pk,), #). This means ct « WE.Encrypt(1%, Cvalidkey [Pkpel, Ps (pky, - - -, pky), 1)
Consider now Decrypt(pp, P, (pk;, - .., pk,), {(i, ski) }ier, ct):

« By definition Decrypt sets sk; = 0” for alli € [n] \ T.

« Since pk; = PKE.Encrypt(pkpg, 1;sk;) for all i € T, we have that Cyajigkey [pkpke] (pk;, sk;) = 1 forall i € T.
This means f; < Cvaiidkey (pk;, sk;) for all i € [n].

+ Since P is monotone, this means 1 = P(fi,...,5n) < P(Cvalidkey(Pky; ski), ..., Cvaiidkey (pk,, skn)). Thus
P(CVaIidKey(pkl, ski), ... ,CVaIidKey(pkn, skp)) = 1.

« By correctness of Iy, the decryption algorithm outputs p. O

Theorem 6.13 (Static Security). If Ilpke satisfies perfect correctness and CPA-security and Ilwe satisfies semantic
security, then Construction 6.11 is statically secure.

Proof. Let A be an efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments, each parameterized by a bit b € {0, 1}:

. Hyb(()b): This is the static security experiment with the bit b € {0, 1}.

At the beginning of the game, the challenger initializes a counter ctr = 0 and samples pkpy
PKE.KeyGen(1%). The challenger gives pp = (1%, pkpyg) to A.
- Algorithm A can now make key-generation queries to the challenger. On each query, the challenger

increments the counter ctr = ctr + 1. Then it samples ry, < {0,1}” and replies to A with pk,, =
PKE.Encrypt(pkpgg, 1; Tetr)-

— In the challenge phase, algorithm A specifies (a policy) P and a pair of messages po, y1. For each i € [n],
algorithm A specifies either a public key pk; or a counter value ctr;. For each i € [n] where A specified
a counter value ctr;, the challenger sets pk; = pk,, . The challenger replies with the challenge ciphertext
ct’ WE.Encrypt(l’l, CValidKey[kaKE]’Pa (pkys ... pky), pp).

— At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

. Hybib) : Same as Hyb(b) , except when responding to key-generation queries, the challenger samples pk;,, =

PKE.Encrypt(pkpgg, 0; Tetr)-
We write Hybgb) (A) to denote the output distribution of an execution of experiment Hybi(b) with adversary A. We
now analyze the hybrid distributions.
Lemma 6.14. IfIpge is CPA-secure, then for all b € {0, 1}, there exists a negligible function negl(-) such that for all
A €N, | Pr[Hyb{" (A) = 1] = Pr[Hyb!? (A) = 1]| = negl(2).

Proof. Suppose |Pr[Hybéb) (A)=1] - Pr[Hybib)(;?{) =1]| > ¢ for some b € {0, 1} and non-negligible ¢. We use A
to construct an efficient adversary 8 for the CPA-security game.

1. At the beginning of the game, algorithm B receives the security parameter 1* and a public key pkpy. Algorithm
8 initializes a counter ctr = 0.

2. Whenever A makes a key-generation query, algorithm $ increments the counter ctr = ctr + 1 and then makes
an encryption query on the pair of messages (1,0). The challenger replies with the ciphertext pk’,,, which 8
forwards to A.

64

3. In the challenge phase, algorithm A specifies a policy P and a pair of messages fi, 11. For each i € [n],
it also specifies a public key pk; or a counter value ctr;. For each i € [n] where A specified a counter
value ctr;, algorithm B sets pk; = pky,, . Algorithm B then replies with the challenge ciphertext ct* «

WE.Encrypt(1%, Cualidkey [Pkpke s Ps (Pkys - - -, pky,), fip)-
4. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which 8 also outputs.

By definition, the challenger samples (pkpyg, skpke) < PKE.KeyGen(1%), so the distribution of pkpy is perfectly
simulated. In the reduction, if the challenger responds with encryptions of 1 (i.e., pk},, « PKE.Encrypt(pkpyg, 1)),

then algorithm 8 perfectly simulates the distribution of Hybéb). Alternatively, if the challenger responds with en-
(b)
i

*

cryptions of 0 (i.e., pky,, < PKE.Encrypt(pkpgg, 0)), then algorithm 8B perfectly simulates the distribution of Hyb
Thus, algorithm 8B breaks CPA-security of IIpkg with the same advantage e.]

Lemma 6.15. If A is admissible, Ilpke satisfies perfect correctness, and Ilwe is secure, then there exists a negligible
function negl(-) such that for all A € N, |Pr[Hyb§0) (A)=1] - Pr[Hybil)(ﬂ) = 1]| = negl(A).

Proof. Suppose |Pr[Hyb§0) (A) =1] - Pr[Hybgl)(ﬂ) = 1]| > ¢ for some non-negligible ¢. We use A to construct
an efficient adversary B for the witness encryption security game:

1. On input the security parameter 1%, algorithm 8 initializes a counter ctr = 0.

2. Whenever ‘A makes a key-generation query, algorithm 8 increments the counter ctr = ctr + 1 and replies with
pkZ, < PKE.Encrypt(pkpgg, 0).

ctr

3. In the challenge phase, algorithm A specifies a policy P and a pair of messages o, 1. For each i € [n], it
also specifies a public key pk; or a counter value ctr;. For each i € [n] where A specified a counter value ctr;,
algorithm 3B sets pk; = pkg,,,. Algorithm B gives the circuit Cyalidkey, the policy P, the instances (pk, ..., pk,),
and the pair of messages po, y; to the challenger. The challenger responds with a ciphertext ct™.

4. Algorithm 8 gives ct* to A and outputs whatever A outputs.
First, we argue that forall ry, ..., r, € {0,1}”, we have P(Cvalidkey [PKkpke]l (PK1s 71)s - - - > Cvalidkey [Pkpiel (PK, 7n)) =0

« First, for all j € [ctr], there does not exist r € {0, 1}” such that Cyalidkey [Pkpxe] (pk’,7) = 1. By definition,
Cvalidkey [Pkpke] (K],) outputs 1 if and only if PKE.Encrypt(pkpye, 15 7) = pkj. However, in this experiment,
the challenger constructs pk] to be an encryption of 0 under pkpy. Since Ilpge satisfies perfect correctness,
there does not exist any r € {0,1}” where pk’; = PKE.Encrypt(pkpyg, 157).

+ For each i € [n], let f = 1 if algorithm A chose the public key pk;. Let 8 = 0 if algorithm A specified a
counter value ctr; for the i public key (i.e., pk; = pk’; for some j € [ctr]). Since A is admissible, we have that

(...) = 0.

+ Take any candidate witness (ry,..., 7). Let f; = Cvaiidiey [Pkpkel (Pk;, 7i). By the first property, we have that
pi = 0 = B} for all indices i € [n] where algorithm A specified a counter value. Since P is monotone, this
means that P(fy,..., Bn) < P(B],...,B,) =0, as required.

We conclude that

Vri, oo € {0, 13 2 P(Cvalidiey [Pkpie] (PKys 71)s - - - Cvalidiey [PKpie] (PKps 7)) = 0.

In this case, the witness encryption challenger either encrypts the message p or the message p;. If the challenger com-
putes ct* « WE.Encrypt(14, Cvaiidkey [Pkpke], P, (Pky, - - -, pky,), fio), then algorithm B perfectly simulates an execution

of Hybio). Alternatively, if the challenger computes ct* « WE.Encrypt(17, Cvalidkey [Pkpkels Py (pky, . . ., pky,), p1),

then it perfectly simulates an execution of Hybgl). Thus, algorithm B breaks security of witness encryption with
the same advantage «. O

65

Static security now follows by combining Lemmas 6.14 and 6.15. O

Remark 6.16 (Using Witness Encryption for Trapdoor NP Relations). Similar to the case for Construction 6.2 (see
Remark 6.7), the relation Cyjidkey [pkpge] in Construction 6.11 is a trapdoor NP relation when we instantiate the
underlying public-key encryption scheme with a scheme that supports randomness recovery.

One-round distributed decryption. The decryption process in Construction 6.11 takes all of the secret keys
for users in an authorized set as input. In applications involving mutually distrusting parties, we would want to
support decryption without requiring each individual party to reveal their individual secret key to other parties. One
way to implement this is by having the parties run a multiparty computation protocol to evaluate the decryption
algorithm. The ideal scenario in this setting would be a one-round protocol where each party takes the ciphertext,
independently generates a “partial decryption” share, and then publishes their share. Afterwards, there is a public
decoding algorithm that takes the partial decryption shares from any authorized set of parties and recovers the
message. This type of one-round decryption is a common requirement in multiparty notions such as multi-key
homomorphic encryption [MW16] and threshold encryption with silent setup [GKPW24, ADM*24].

In Appendix B, we describe a simple modification of Construction 6.11 to support this type of one-round decryp-
tion process. Namely, using a similar paradigm as [GKPW24, ADM*24], we replace each user’s public key with a
verification key for a signature scheme. Each ciphertext in turn has a tag, and the decryption keys associated with
a specific ciphertext consist of signatures on the tag. The same decryption key (i.e., the signing key) can be used to
generate partial decryption shares for arbitrarily-many ciphertexts (and moreover, the partial decryption shares for
one ciphertext cannot be used to compromise security of a different ciphertext).

Acknowledgments

We thank Yuval Ishai for extensive discussions in an early phase of this project. Brent Waters is supported by NSF
CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2140975, CNS-2318701, a
Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

ABG'13 Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-inputs
J] g Y. g-inp
obfuscation and applications. IACR Cryptol. ePrint Arch., 2013.

[ABI*23] Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, and Vinod Vaikuntanathan.
Succinct computational secret sharing. In STOC, 2023.

[ADM*24] Gennaro Avitabile, Nico Déttling, Bernardo Magri, Christos Sakkas, and Stella Wohnig. Signature-based
witness encryption with compact ciphertext. In ASTACRYPT, 2024.

[AKY24] Shweta Agrawal, Simran Kumari, and Shota Yamada. Pseudorandom multi-input functional encryption
and applications. IACR Cryptol. ePrint Arch., 2024.

[AMYY25] Shweta Agrawal, Anuja Modi, Anshu Yadav, and Shota Yamada. Evasive LWE: attacks, variants &
obfustopia. IACR Cryptol. ePrint Arch., page 375, 2025.

[ASY22] Damiano Abram, Peter Scholl, and Sophia Yakoubov. Distributed (correlation) samplers: How to remove
a trusted dealer in one round. In EUROCRYPT, 2022.

23 vika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth. s
BBK* Zvika Brakerski, Maya Farber Brodsky, Yael T Kalai, Alex Lombardi, and Omer Paneth. SNARG
for monotone policy batch NP. In CRYPTO, 2023.

BCG*19 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
Y. y
pseudorandom correlation generators: Silent OT extension and more. In CRYPTO, 2019.

66

[BDJ*25]

[Beng&9]

[BGI*01]

[BGI14]

[BGI*17]

[BGL*15]

[BHK17]

[BISW18]

[BUW24]

[BV11]

[BW13]

[BZ14]

[CGJ*23]

[CHJV15]

[CHW25]

[ClJ21a]

[CJJ21b]

[CPW20]

[CPW23]

[CVW18]

Pedro Branco, Nico Déttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, and
Vinod Vaikuntanathan. Pseudorandom obfuscation and applications. In CRYPTO, 2025.

Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Comput., 18(4), 1989.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In PKC, 2014.

Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-message
witness indistinguishability and secure computation in the plain model from new assumptions. In
ASIACRYPT, 2017.

Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized encodings
and their applications. In STOC, 2015.

Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch NP
verification from standard computational assumptions. In STOC, 2017.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGsS via linear multi-prover
interactive proofs. In EUROCRYPT, 2018.

Chris Brzuska, Akin Unal, and Ivy K. Y. Woo. Evasive LWE assumptions: Definitions, classes, and
counterexamples. In ASTACRYPT, 2024.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, 2011.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, 2013.

Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO, 2014.

Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation
intractability and SNARGs from sub-exponential DDH. In CRYPTO, 2023.

Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling and
indistinguishability obfuscation for RAM programs. In STOC, 2015.

Jeffrey Champion, Yao-Ching Hsieh, and David J. Wu. Registered ABE and adaptively-secure broadcast
encryption from succinct LWE. In CRYPTO, 2025.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP
from standard assumptions. In CRYPTO, 2021.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for £ from LWE. In FOCS, 2021.

Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs. Witness maps and applications. In PKC,
2020.

Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs. A map of witness maps: New definitions
and connections. In PKC, 2023.

Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs:
Proofs, attacks, and candidates. In CRYPTO, 2018.

67

[CW24]

[DDN91]

[DWW24]

[FNV17]

[FWW23]

[Gen09]

[GGH*13]

[GGSW13]

[GKP*13]

[GKPW24]

[GKVW20]

[GKW17]

[GLW14]

[GPSZ17]

[GS18]

[GSWW22]

[GVW19]

[HHY25]

[HIJ*16]

[HJL25]

[HKW20]

Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. In TCC, 2024.

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended abstract). In
STOC, 1991.

Lalita Devadas, Brent Waters, and David J. Wu. Batching adaptively-sound snargs for NP. In TCC, 2024.

Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of knowledge. In
PKC, 2017.

Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE,
flexible broadcast, and more. In CRYPTO, 2023.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, 2013.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications.
In STOC, 2013.

Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run turing machines on encrypted data. In CRYPTO, 2013.

Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold encryption
with silent setup. In CRYPTO, 2024.

Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters. On perfect correctness
in (lockable) obfuscation. In TCC, 2020.

Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS, 2017.

Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance independent
assumptions. In CRYPTO, 2014.

Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-exponential
barrier in obfustopia. In EUROCRYPT, 2017.

Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for turing machines. In TCC, 2018.

Rachit Garg, Kristin Sheridan, Brent Waters, and David J. Wu. Fully succinct batch arguments for NP
from indistinguishability obfuscation. In TCC, 2022.

Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and trace
from positional witness encryption. In PKC, 2019.

Tzu-Hsiang Huang, Wei-Hsiang Hung, and Shota Yamada. A note on obfuscation-based attacks on
private-coin evasive LWE. IACR Cryptol. ePrint Arch., page 421, 2025.

Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure multiparty computation
with general interaction patterns. In ITCS, 2016.

Yao-Ching Hsieh, Aayush Jain, and Huijia Lin. Lattice-based post-quantum io from circular security with
random opening assumption (part II: zeroizing attacks against private-coin evasive LWE assumptions).
In CRYPTO, 2025.

Susan Hohenberger, Venkata Koppula, and Brent Waters. Chosen ciphertext security from injective
trapdoor functions. In CRYPTO, 2020.

68

[HW15]

[KLW15]

[KMW23]

[KPTZ13]

[LMP24]

[MW16]

[NWW24]

[NWW?25]

[OPWW15]

[Sah99]

[SW14]

[Tsa22]

[VWW22]

[WQZD10]

[WW22]

[WW24]

[WW25a]

[WW25b]

[WZ17]

[Yao82]
[Zha16]

Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In ITCS, 2015.

Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for turing
machines with unbounded memory. In STOC, 2015.

Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bilinear
groups. In ASIACRYPT, 2023.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In ACM CCS, 2013.

Yanyi Liu, Noam Mazor, and Rafael Pass. On witness encryption and laconic zero-knowledge arguments.
IACR Cryptol. ePrint Arch., 2024.

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In
EUROCRYPT, 2016.

Shafik Nassar, Brent Waters, and David J. Wu. Monotone policy BARGs from BARGs and additively
homomorphic encryption. In TCC, 2024.

Shafik Nassar, Brent Waters, and David J. Wu. Monotone-policy BARGs and more from BARGs and
quadratic residuosity. In PKC, 2025.

Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere
statistically binding hashing and positional accumulators. In ASIACRYPT, 2015.

Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In FOCS, 1999.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In STOC, 2014.

Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO, 2022.

Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive
LWE. In ASIACRYPT, 2022.

Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast encryption. In ACM
CCS, 2010.

Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In CRYPTO, 2022.

Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from witness encryption.
In TCC, 2024.

Brent Waters and David J. Wu. A pure indistinguishability obfuscation approach to adaptively-sound
SNARGs for NP. In CRYPTO, 2025.

Hoeteck Wee and David J. Wu. Unbounded distributed broadcast encryption and registered ABE from
succinct LWE. In CRYPTO, 2025.

Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In FOCS,
2017.

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS, 1982.

Mark Zhandry. How to avoid obfuscation using witness PRFs. In TCC, 2016.

69

A Succinct Computational Secret Sharing in the Random Oracle Model

Our succinct computational secret sharing scheme from Section 6.1 (Construction 6.2) relies on a succinct witness
encryption scheme that supports local decryption. Recall that in Construction 6.2, the public information is a succinct
witness encryption ciphertext encrypted with respect to the statement (cty, ..., ct,), where ct; is part of the share for
user i. In particular, each user only know their individual ct; and not ct; for j # i. Thus, when a set of users S C [n]
come together to reconstruct the secret, they only have ct; for i € S, and not ct; for j ¢ S. As such, reconstruction (i.e.,
the ability to decrypt the witness encryption ciphertext) critically relies on the ability to locally decrypt a ciphertext
given knowledge of only a subset of the statements.

An alternative approach in the random oracle model. An alternative approach to relying on local decryption
is to simply include the statement (cty,...,ct,) as part of the public information shy. Of course, the scheme is
no longer succinct in this case. However, suppose that the underlying scheme had the property where each ct;
is a uniform random string. In this case, we can rely on the random oracle heuristic to “compress” the statement
(cty,...,cty). Namely, we simply define ct; := H(i) where H is modeled as a random oracle. This would yield a
succinct computational secret sharing scheme in the random oracle model from any succinct witness encryption
scheme (without local decryption). In the context of Construction 6.2, each individual instance ct; is an encryption
of 1 under a public-key encryption scheme and the associated witness is the randomness r; associated with ct;.
The problem is that if we simply replace ct; with a uniform random string, then ct; need not be in the support of
the underlying encryption algorithm. In this case, there may not exist any randomness r; that explains ct; as an
encryption of 1. Thus, we need to replace the public-key encryption scheme with a stronger notion.

Trapdoor proof generator. The work of [FWW23] encountered a similar issue when constructing an optimal broad-
cast encryption scheme from witness encryption (in the random oracle model). To bridge the gap, they introduced
the notion of a trapdoor proof generator. We recall the notion from [FWW?23, §5.1] here. A trapdoor proof generator
is defined over a family of sets X = {X)} en. Using a trapdoor, it is possible to generate “proofs” x, for elements
x € X, and moreover, there is a public verification algorithm that verifies the proofs. Moreover, the public parameters
pp of the trapdoor proof generator can be sampled in one of two (computationally) indistinguishable modes:

« Normal mode: In the normal mode, the trapdoor associated with pp can be used to generate proofs = for all
but a negligible fraction of elements x € X.

« Alternative mode: In the alternative mode, the parameters pp effectively partitions X into two disjoint sets: a
dense set X7 € X and a sparse pseudorandom set Xr C X. In addition, there are two sampling algorithms:
(1) SampleTrue which jointly samples an element x € Xr together with an accepting proof r, for x; and (2)
SampleFalse which samples an element x € Xr for which there does not exist any accepting proof 7. Finally,
the trapdoor in the alternative mode can be used to decide membership in X7 and Xf.

We give the formal definition below:

Definition A.1 (Trapdoor Proof Generator [FWW23, Definition 5.4]). Let X = {X)},1en be a sequence of efficiently-
sampleable sets. A trapdoor proof generator for X is a tuple of polynomial-time algorithms IItpg = (Setup,
CreateProof, Verify, SetupAlt, SampleTrue, SampleFalse, TDDecide) with the following properties:

« Setup(1*) — (pp, td): On input the security parameter], the setup algorithm outputs a set of public parameters
pp and a trapdoor td. We assume that pp and td implicitly contain a description of A.

« CreateProof(td, x) — 7: On input the trapdoor td and an instance x € X, the proof creation algorithm outputs
a proof .

« Verify(pp, x,) — b: On input the public parameters pp, an instance x € X, and a proof x, the verification
algorithm outputs a bit b € {0, 1}.

« SetupAlt(1}) — (pp, td): On input the security parameter A, the alternative setup algorithm outputs a set of
public parameters pp and a trapdoor td. We assume that pp and td implicitly contain a description of A.

70

« SampleTrue(pp) — (x,7): On input the public parameters pp, this sampling algorithm outputs an instance
x € X together with a proof 7.

« SampleFalse(pp) — x: On input the public parameters pp, this sampling algorithm outputs an instance x € X).

« TDDecide(td, x) — b: On input the trapdoor td and an instance x € X, the decider algorithm outputs a bit
b e {0,1}.

We require Iltpg satisfy the following properties:

« Correctness: There exists a negligible function negl(-) such that for all A € N, we have

(pp td) « Setup(1%),x & X;

Pr | Verify (pp, x,m) = 1: 7 « CreateProof(td, x)

« Mode indistinguishability: For an adversary A, a security parameter A, and a bit b € {0, 1}, we define the
mode indistinguishability experiment as follows:

- If b = 0, the challenger starts by sampling (pp,td) < Setup(1%). Otherwise, the challenger samples
(pp, td) « SetupAlt(1*). The challenger gives pp to A.

- Algorithm A can now (adaptively) make sampling queries to the challenger:

+ Sample true instance: If A requests a true instance, then if b = 0, the challenger samples x < X
and 7 <« CreateProof(td,x). If b = 1, the challenger samples (x,7) < SampleTrue(pp). The
challenger replies to A with (x, 7).

« Sample false instance: If A requests a false instance, then if b = 0, the challenger responds with
x € X,.If b = 1, then the challenger responds with x < SampleFalse(pp).

— At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say Iltpg satisfies mode indistinguishability if for all efficient adversaries A, there exists a negligible
function negl(-) such that for all A € N,

|Pr[b’ =1:b=0] —Pr[b’ =1:b=1]| = negl(})
in the above security game.
« Trapdoor decidability: The following properties hold:

- Accepting true instances: For all (possibly unbounded) adversaries A, there exists a negligible function
negl(-) such that for all A € N,

. _ . ~ (pp,td) « SetupAlt(1Y) |
Pr [Verlfy(pp, x,7) =1 A TDDecide(td, x) # 1: (x,7) — Alpp) = negl(4).

- Rejecting false instances: There exists a negligible function negl(-) such that for all 4 € N, it holds that

(pp td) « SetupAlt(1%)

Pr [TDDemde(td, x)#0: x < SampleFalse(pp)

] = negl(4).

Fact A.2 (Trapdoor Proof Generator [FWW23, §5.3]). Suppose there exists a public-key encryption scheme with
pseudorandom ciphertexts and a computational non-interactive zero-knowledge (NIZK) proof system for NP. Then,
there exists a trapdoor proof generator. In particular, there exists a trapdoor proof generator assuming polynomial
hardness of the plain LWE assumption.

71

Succinct computational secret sharing. By substituting the trapdoor proof generator for the public-key encryption
scheme in Construction 6.2, we obtain a computational secret sharing scheme where the public information shy is a
long uniform random string. This in turn yields a succinct computational secret sharing scheme in the random oracle
model (where we derive the long uniform random string in shy from the random oracle). In the following description,
we describe our construction with a long uniform random string:

Construction A.3 (Succinct Computational Secret Sharing in the Random Oracle Model). Let A be a security parame-
ter, P be a family of monotone access policies, and M be a message space. Our construction of succinct computational
secret sharing relies on the following primitives:

« First, let IItpg = (TPG.Setup, TPG.CreateProof, TPG.Verify, TPG.SetupAlt, TPG.SampleTrue, TPG.SampleFalse,
TPG.TDDecide) be a trapdoor proof generator over a set system X = {X} }1en-

« Next, let ITwg = (WE.Encrypt, WE.Decrypt) be a succinct witness encryption scheme for batch languages with
message space M and policy family P.

We construct a succinct computational secret sharing scheme with message space M and policy space P as follows:

« Share(1%, P, 1): On input the security parameter A € N, the policy P € P (on n-bit inputs), and a message
p € M, the share algorithm proceeds as follows:

— Sample (pp, td) « TPG.Setup(1%). For each i € [n], sample x; & X, and 7; « TPG.CreateProof(td, x;).

— Compute ctyg < WE.Encrypt(1%, Cyatidshare [pp], P, (X1, - - ., Xn), 1£), Where Cvalidshare [pk] (X, 7) outputs 1
if TPG.Verify(pp, x, 7) = 1 and 0 otherwise.

— Output the public share shy = (pp, ctwe, X1, - . ., x,,) and the individual shares sh; = x; for each i € [n].
Note that since x;, . . ., X, are uniform random, we can also sample them as (xi, ..., x,) < H(o) where
o & {0,1}} is a random seed and H is modeled as a random oracle. This yields a construction with
succinct shares in the random oracle model.

« Reconstruct(P, B, sho, {(i, sh;) }ic[n]:5,=1): On input the policy P (on n-bit inputs), a string € {0, 1}", a public
share shy = (pp, ctwe, x1, . . ., Xn), and shares sh; = ; for each i where f; = 1, the decryption algorithm sets
w; = L for all i € [n] where ; = 0. Then it outputs

= WE.Decrypt(ctwe, Cvatigshare PP Py (X1, - o, Xn), (Wi, ., w).

Theorem A.4 (Correctness). IfIlwg and Iltpg are correct, then Construction A.3 is (statistically) correct.

Proof. Take any security parameter A € N, policy P € $ (on n-bit inputs), any input § € {0, 1} where P(f) = 1,
and any message y € {0,1}. Suppose we compute (shy,shs,...,sh,) « Share(l’l, P, i1). Consider the value of
Reconstruct(P, B, sho, {(i, sh;) }ic[n]:5,=1):

« By construction, shy = (pp, X1, . . ., x,) where (pp, td) < TPG.Setup(1*) and
ctwe — WE.Encrypt(1%, Cvaiidshare [PP]. P, (X1, . . ., Xn).).

Here, x; & X) and ; < TPG.CreateProof(td, x;). By completeness of IItpg, with overwhelming probability,
TPG.Verify(pp, x, 7) = 1. This means Cyajigshare [pp] (xi, ;) = 1 for all i € [n].

« Since P(f) = 1, correctness of witness encryption now ensures that

WE.Decrypt(ctwe, Cvalidshare [PK], P, (X1, . .., Xp), (711, . . ., 7)) = . =

Theorem A.5. IfIlwe is semantically secure and Iltpg satisfies mode indistinguishability and trapdoor decidability,
then Construction A.3 is secure.

72

Proof. Let A be an efficient adversary for the security game. We begin by defining a sequence of hybrid experiments,
each parameterized by a bit b € {0, 1}:

. Hyb(()b): This is the security experiment with the bit b € {0, 1}.

— On input the security parameter 1%, algorithm A starts by choosing a policy P € % (on n-bit inputs), an
input g € {0, 1}" where P(f) = 0, and two messages o, 1 € M.

The challenger samples (pp, td) « TPG.Setup(1*). For each i € [n], the challenger samples x; & X
and m; < TPG.CreateProof(td, x;). Finally, the challenger computes

ctwe < WE.Encrypt(1%, Cvatidshare [pK], P, (X1, - - -, Xn), f1p).

The challenger gives the public information shy = (pp, x1, . . ., x,,) and the shares sh; = 7; for each i € [n]
where f; = 1to A.

Finally, algorithm A outputs a bit b” € {0, 1}, which is the output of the experiment.

. Hybib): Same as Hybéb), except the challenger samples (pp, td) « SetupAlt(1*). Then, for each i € [n], the
challenger samples x; < SampleFalse(pp) if f; = 0 and (x;, 77;) «— SampleTrue(pp) if f; = 1.

We write Hybl(b) (A) to denote the output distribution of an execution of experiment Hybgb) with adversary A. We
now analyze the hybrid distributions.

Lemma A.6. IfIltpg satisfies mode indistinguishability, then for all b € {0, 1}, there exists a negligible function negl(-)
such that for all A € N, |Pr[Hyb(()b) (A)=1] - Pr[Hybgb)(&zl) =1]| = negl(A).

Proof. Suppose |Pr[Hyb(()b) (A)=1] - Pr[Hybib) (A) =1]| = ¢ for some b € {0, 1} and non-negligible ¢&. We use A
to construct an efficient adversary B for the mode indistinguishability game.

« At the beginning of the game, algorithm B receives the security parameter 1* and the public parameters pp.

+ Algorithm 8 starts running algorithm A. Algorithm A outputs a policy P € P (on n-bit inputs), an input
B € {0,1}" where P(f) = 0, and two messages o, jt1 € M.

« For each i € [n] where §; = 0, algorithm B requests a false instance x; from the challenger. For each i € [n]
where f; = 1, algorithm B requests a true instance (x;, ;) from the challenger.

« The challenger then computes ctwg « WE.Encrypt(lA, Cvalidshare [PK], P, (%1, . . ., Xn), b))

« Next, the challenger gives the public information shy = (pp, x1, . . ., X,) and the individual shares sh; = 7; for
alli € [n] where f; = 1to A.S

« At the end of the game, algorithm A outputs a bit b* € {0, 1}, which 8B also outputs.
We consider the two possibilities:

« Suppose the challenger samples (pp,td) <« TPG.Setup(1%), the true instances as x; < X, and z; «
TPG.CreateProof(td, x;), and the false instances as x; < Xj. Then, algorithm B perfectly simulates the
distribution in Hyb(()b).

« Conversely, suppose the challenger samples (pp,td) < TPG.SetupAlt(1%), the true instances as (x;, 7;) «
TPG.SampleTrue(pp), and the false instances as x; < TPG.SampleFalse(pp). Then, algorithm B perfectly
. L (b)
simulates the distribution in Hyb,™.

We conclude that algorithm 8 breaks mode indistinguishability of IItpg with the same advantage e. O
3In the case where the instances are derived from the random oracle as (x1,..., xn) = H(o) where o & {0, 1}A, the reduction algorithm in
this step would program H (o) to the value of (xy,...,x,) obtained from the challenger.

73

Lemma A.7. IfIlpg satisfies trapdoor indistinguishability and Ilwe is secure, then there exists a negligible function
negl(-) such that forall A € N, |Pr[Hyb§°) (A)=1] - Pr[Hybil)(?{) = 1]| = negl(4).

Proof. Suppose |Pr[Hyb§0) (A)=1] - Pr[Hybgl)(ﬂ) = 1]| > ¢ for some non-negligible ¢. We use A to construct
an efficient adversary 8 for the witness encryption security game:

« On input the security parameter 1%, algorithm B starts running algorithm A on input 1*. Algorithm A outputs
a policy P € # (on n-bit inputs), an input § € {0, 1}" where P(f) = 0, and two messages i, i1 € M.

« Algorithm B samples (pp,td) « SetupAlt(1*). Then, for each i € [n] where f; = 0, algorithm B samples
x; < TPG.SampleFalse(pp). If f; = 1, algorithm B samples (x;, ;) < TPG.SampleTrue(pp).

« Algorithm 8 outputs the circuit Cvajidshare [pp], the policy P, the statements (xy, ..., x,), and the messages
Ho, f1. The challenger responds with a ciphertext ctwe.

« Next, the challenger gives the public information shy = (pp, X1, . . ., x») and the shares sh; = 7; for all i € [n]
where f; = 1 to A.

+ At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which B also outputs.
First, we argue that for all 7y, ..., 1, € {0, 1}*, we have P(Cvajidshare [PP] (1, 771), - - - s Cvalidshare [PP] (%n, 72)) = 0

« First, for all i € [n] where §; = 0, we claim that with overwhelming probability over the choice of pp and x;,
there does not exist 7; where Cvajigshare [pp] (%, ;) = 1. First, in Hybio) and Hybil), the challenger samples
x; < TPG.SampleFalse(pp). BY the trapdoor decidability property, with overwhelming probability (over the
choice of pp and x;), it will be the case that TPG.TDDecide(td, x;) # 0. Suppose moreover that there exists
7; such that TPG.Verify(pp, x;, 7;) = 1. Again by trapdoor decidability, this means that with overwhelming
probability (over the choice of pp), TPG.TDDecide(td, x;) # 1. Thus, with overwhelming probability, this
means TDDecide(td, x;) ¢ {0, 1}, which is a contradiction. Hence, we conclude that there does not exist ;
such that TPG.Verify(pp, x;, 7;) = 1.

+ Take any candidate witness (71, ...,). Let f; = Cvaiidshare [pk] (x;, 71;). By the previous property, we have
that f; = 0 whenever f; = 0. This means that for all i € [n], f; < f;. Since P is monotone, this means that

P(Bl,....By) < P(Pi,...,Bn) =0, as required.

We conclude that with overwhelming probability over the choice of pp and x; (where f; = 0),

Vi, ..., 1, € {0, 1}* : P(CVaIidShare[pp] (Ctl’ 771): cees CValidShare[pp] (Ctn, ”n)) =0.

In this case, the witness encryption challenger either encrypts the message o or the message ;. If the challenger
computes ctwg « WE.Encrypt(lA, Cvalidshare [pp], P, (X1, . . ., Xn), llo), then algorithm B perfectly simulates an execu-
tion of Hybio). Alternatively, if the challenger computes ctwg « WE.Encrypt(l’\, Cvalidshare [PP]s Py (X1, - - -5 Xn), f11),

then it perfectly simulates an execution of Hybgl). Thus, algorithm B breaks security of witness encryption with
the same advantage ¢. O

Security now follows by combining Lemmas A.6 and A.7. O

Remark A.8 (Using Witness Encryption for Trapdoor NP Relations). We note that the NP relation Cyajigshare from
Construction A.3 is a trapdoor NP relation. Namely, the trapdoor relation is the circuit C[td] with the trapdoor
hard-wired inside it. On input an input x, the circuit simply outputs TPG.TDDecide(td, x). When the scheme pa-
rameters are sampled in alternative mode (pp, td) « TPG.SetupAlt(1%) as in the proof of Lemma A.7, the trapdoor
decidability properties on IIpg coincide with the requirements for a trapdoor NP relation. This allows us to combine
Construction A.3 with our succinct witness encryption for DNFs (Construction 4.12) to obtain a computational secret
sharing scheme for DNF policies in the random oracle model where the share size scales with size of a single min-term
(and polylogarithmically with the number of min-terms).

74

B Monotone-Policy Encryption with One-Round Distributed Decryption

In this section, we show how to extend our monotone-policy encryption scheme to support a one-round distributed
decryption process. As discussed in Section 6.2, our goal is a scheme where each party takes the ciphertext, inde-
pendently generates a decryption share, and then publishes their share. Then there is is a decoding algorithm that
takes the partial decryption shares from any authorized set of parties and recovers the message. The first security
requirement is that any unauthorized set of decryption shares for a given ciphertext should not leak any information
about the associated message. In addition, any collection decryption shares for a ciphertext ct should not leak any
information about a different ciphertext ct’. We now give the formal definition:

Definition B.1 (Distributed Monotone-Policy Encryption with 1-Round Decryption). Let A be a security parameter,
% be a family of monotone access policies, and M be a message space. We model each policy P € P as a monotone
Boolean function. A distributed monotone-policy encryption scheme that supports 1-round decryption with policy
space P is a tuple of efficient algorithms IIpmpe-1r = (Setup, KeyGen, Encrypt, GetHint, Decrypt) with the following
syntax:

« Setup(1*) — pp: On input the security parameter A € N, the setup algorithm outputs a set of public parameters
pPp-

+ KeyGen(pp) — (pk;, sk;): On input the public parameters pp, the key-generation algorithm outputs a public
key pk; and a secret key sk;.

« Encrypt(pp, P, (pky, ..., pk,), g) — ct: On input the public parameters pp, a policy P € # (on n-bit inputs), a
list of n public keys (pkj, ..., pk,), and a message y € M, the encryption algorithm outputs a ciphertext ct.
Note that the input length n is determined by P and is not fixed by the scheme.

« GetHint(pp, sk, ct) — ht;: On input the public parameters pp, a decryption key sk, and a ciphertext ct, the
hint-computation algorithm outputs a decryption hint ht;.

« Decrypt(pp, P, (pky, - .., pk,). {(i, ht;) }ieT, ct) — p: On input the public parameters pp, a policy P € P (on
n-bit inputs), a list of n public keys pk, ..., pk,, a list of decryption hints ht; for i € T where T C [n], and a
ciphertext ct, the decryption algorithm outputs a message y € M.

Moreover, IIpmpe-1r should satisfy the following properties:

« Correctness: For all security parameters A € N, all policies P € P (on n-bit inputs), all inputs § € {0,1}"
where P(f) = 1, all messages y € M, all public parameters pp in the support of Setup(1%), any set of public
keys pk; for i € [n] \ T where T = {i € [n] : f; = 1}, we have that

Vi € T : (pk;, sk;) < KeyGen(pp)

Pr |Decrypt(pp, P, (pky, ..., pk,), {(i, ht;) }ier, ct) = p = ct « Encrypt(pp, P, (pky,...,pk,),p) | =1.
Vi € T : ht; « GetHint(pp, (i, sk;), ct)

« Security: For a security parameter A, an adversary A, and a bit b € {0, 1}, we define the security game as follows:

— Setup: At the beginning of the game, the challenger samples the public parameters pp <« Setup(1*) and
initializes a counter ctr = 0 and an (empty) list C = @. The list C is used to keep track of corrupted keys.
The challenger gives pp to A.

— Pre-challenge query phase: The adversary can now make the following queries:

+ Key-generation query: In a key-generation query, the challenger increments the counter ctr = ctr+1
and then samples samples (pk.,, skctr) < KeyGen(pp) and responds with pk

ctr> ctr-

+ Corruption query: In a corruption query, the adversary specifies a counter value ctr’ < ctr, and
the challenger replies with skc. The challenger also adds ctr’ to C.

+ Hint-computation query: In a hint-computation query, the adversary specifies a ciphertext ct and
a counter ctr’ < ctr. The challenger replies with GetHint(pp, sketr, ct).

75

— Challenge phase: In the challenge phase, the adversary specifies a policy P € P and a pair of messages
(o, p11). In addition, for each i € [n], algorithm A specifies a public key pk; or a counter value ctr;. For
each i € [n] where algorithm A specifies a counter value ctr; < ctr, the challenger sets pk; = pk,. The
challenger replies to A with the challenge ciphertext ct* « Encrypt(pp, P, (pky, ..., pk,), ip)-

ctre

— Post-challenge query phase: The adversary can continue to make corruption and hint-computation
queries. If the adversary requests the decryption hint for a counter ctr’ and the challenge ciphertext ct*,
the challenger also adds ctr’ to C.

— Output: At the end of the game, algorithm A outputs a bit &' € {0,1}, which is the output of the
experiment.

Let f; = 1 if the adversary specified a public key pk; or if it chose a counter value ctr; where ctr; € C during
the challenge phase (where C is the corrupted set at the very end of the security game). For indices i € [n]
where A specified an uncorrupted counter value ctr; ¢ C, let f; = 0. We say that A is admissible if P(f) = 0.
We say that IIpmpe-1r is secure if for all efficient adversaries A, there exists a negligible function negl(-) such
that forall A € N,

[Pr[b" =1|b=0] —Pr[b’ =1]b=1]| = negl(A).

+ Succinctness: There exists a polynomial poly such that for all 1 € N, public parameters pp in the support
of Setup(1%), policies P € P (on n-bit inputs), public keys pk,, ..., pk,, and messages y € M, the size of the
ciphertext ct output by Encrypt(pp, P, (pky, ..., pk,), ¢) is |u| + o(|P]) - poly(4A, logn).

Definition B.2 (Static Security). Let IIppmpe-1r be a distributed monotone-policy encryption with 1-round decryption
and policy space . For an adversary A and a bit b € {0, 1}, we define the static security game to be the standard
security game from Definition B.1, except on each key-generation query, the adversary must pre-declare whether
the particular key will be corrupted or not. Specifically, on each key-generation query, the adversary additionally
specifies a bit y € {0, 1}. Let y1, . . ., Yetr € {0, 1} be the bits associated with the key-generation queries the adversary
makes. The adversary is admissible for the static security game if the following conditions hold:

« For all corrupted indices ctr € C, we have y, = 1.

« Let f; = 1 if the adversary specified a public key pk; or if it chose a counter value ctr; where y, = 1 during
the challenge phase. For indices i € [n] where A specified an (uncorrupted) counter value ctr; where ycr, = 0,
let f; = 0. We require that P(fs, ...,) = 0.

We say that IIpmpe-1r is statically secure if for all efficient adversaries A, there exists a negligible function such that
forall A € N,

|Pr[b’ =1|b=0]-Pr[b' =1|b=1]| =negl(}).
Note that in this game, the adversary is allowed to make pre-challenge hint-computation queries with respect to

any public key pk,, output by a key-generation query (irrespective of the value of the bit y,).

ctr

Puncturable signatures. Our construction relies on (strongly) puncturable signatures (also known as “all-but-one
signatures”) [GVW19, ADM*24]. We begin by recalling the definition:

Definition B.3 (Puncturable Signature [GVW19, ADM*24, adapted]). A strongly puncturable (or all-but-one) sig-
nature scheme with message space M = {{0,1}?!)},y is a tuple of efficient algorithms TIsps = (KeyGen, KeyGenP,
Sign, Verify) with the following syntax:

« KeyGen(1") — (vk, sk): On input the security parameter A, the key-generation algorithm outputs a key pair
(vk, sk).

« KeyGenP(1%,m*) — (vk, sk): On input a security parameter A and a message m* € {0, 1}”, the punctured-key-
generation algorithm outputs a key pair (vk, sk).

76

« Sign(sk,m) — o: On input a signing key sk and a message m € {0, 1}”, the signing algorithm outputs a
signature o.

« Verify(vk,m, o) — b: On input a verification key vk, a message m € {0, 1}”, and a signature o, the verification
algorithm outputs a bit b € {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

- Correctness: For all A € N and all m € {0, 1}, it holds that

. _ (vk, sk) « KeyGen(1%) _

Pr[Verify(vk,m,0) =1 & Sign(sk, m) =1.

« Punctured correctness: There exists a negligible function negl(-) such that for all A € N and all m* € {0, 1}”,
it holds that

Pr |Verify(vk, m*, o*) = 1 for some ¢* € {0,1}" : (vk, sk) « KeyGenP(1%, m*)] = negl(4).

« Punctured key indistinguishability: For an adversary A and a bit b € {0, 1}, we define the punctured key
indistinguishability experiment as follows:

1. On input a security parameter A, the adversary A outputs a message m* € {0, 1} and sends it to the
challenger.

2. If b = 0, the challenger samples (vk, sk) « KeyGen(1%). If b = 1, the challenger samples (vk, sk) «
KeyGenP (14, m*). It gives vk to A.

3. The adversary A can now make signing queries on messages m € {0,1}” \ {m*}. On each signing query,
the challenger replies with o < Sign(sk, m).

4. The adversary outputs a bit b € {0, 1}, which is the output of the experiment.

We say that Ilsps satisfies punctured key indistinguishability if for all efficient adversaries A, there exists a
negligible function negl(-) such that

IPr[b’ =1|b=0] —Pr[b' =1 b =1]| = negl(})

in the punctured key indistinguishability experiment.

Distributed monotone-policy encryption construction. We now show how to construct a statically-secure
distributed monotone-policy encryption scheme that supports 1-round decryption using a succinct witness encryption
scheme for batch languages. Our construction is a variant of Construction 6.11 where we replace the public-key
encryption scheme with a puncturable signature scheme. Our approach leverages a similar strategy as that used
to construct the succinct signature-based witness encryption scheme from [ADM*24]. Namely, a user’s public key
pk consists of a signature verification keys and their secret key sk is the associated signing key. An encryption of a
message m with respect to user public keys pk;, ..., pk, and decryption policy P consists of a (random) tag r together
with a witness encryption ctwg of the message with respect to (pk, ..., pk,) and the policy P. Decryption is only
possible if one holds signatures on the tag r that verify with respect to an authorized subset of public keys (i.e., a set of
public keys that satisfy the access policy P). In this case, the decryption hints for any user is the signature on the tag .
In the following construction, we take the tag 7 to be the verification key vkors for a (one-time) signature scheme and
include a signature on cty that verifies with respect to vkors. Using a one-time signature enforces a non-malleability
property on the ciphertexts, and is useful for supporting post-challenge hint queries. This is a standard approach that
is commonly used in the setting of building non-malleable and CCA-secure public-key encryption [DDN91, Sah99].
We give the formal construction below:

Construction B.4 (Distributed Monotone-Policy Encryption with 1-Round Decryption). Let A be a security parame-
ter, M be a message space, and # be a family of monotone policies. Our construction of distributed monotone-policy
encryption with 1-round decryption relies on the following properties:

77

« Let I[Igts = (OTS.KeyGen, OTS.Sign, OTS.Verify) be a one-time signature scheme. Let p = p(A) be the length
of the verification key output by ors.

« Let IIsps = (SPS.KeyGen, SPS.KeyGenP, SPS.Sign, SPS.Verify) be a strongly puncturable signature scheme
with message space {0, 1}”. Let k = k(1) be the signature size.

o Let Ilwg = (WE.Encrypt, WE.Decrypt) be a succinct witness encryption scheme for batch languages with
message space M and policy family P.

We construct a distributed monotone-policy encryption scheme with 1-round decryption IIpmpe-1r = (Setup, KeyGen,
Encrypt, GetHint, Decrypt) as follows:

« Setup(1*): On input the security parameter A, the setup algorithm outputs pp = 1%,

« KeyGen(pp): On input the public parameters pp = 1%, the key-generation algorithm samples (vksps, sksps) <
SPS.KeyGen(lA). It outputs the public key pk = vksps and the secret key sksps.

« Encrypt(pp, P, (pk,, . . ., pk,), #): On input the public parameters pp = 1%, the policy P € P (on n-bit inputs),
a tuple of public keys pk;, ..., pk,, and a message y € M, the encryption algorithm proceeds as follows:

— Sample a key-pair (vkors, skots) < OTS.KeyGen(lA) for a one-time signature scheme

- Define the Boolean circuit Cy,jidsig [VkoTs] to be the circuit that takes as input a statement vksps and a
witness osps € {0, 1}* and outputs 1 if and only if SPS.Verify(vksps, vkorts, osps) = 1.

— Compute the ciphertext ctyg «— WE.Encrypt(lA, Cvalidsig [VkoTs], P, (pky, .. ., pk,),) and the signature
oots < OTS.Sign(skorts, ctwe)

Finally, it outputs the ciphertext ct = (vkors, ctwe, 0oTs)-

« GetHint(pp, sk, ct): On input the public parameters pp = 1%, the secret key sk = sksps, and a ciphertext
ct = (vkors, ctwe, oots), the hint-computation algorithm first checks that OTS.Verify(vkors, ctwe, oots) = 1
and outputs L if not. Otherwise, it outputs ht = osps «— SPS.Sign(sksps, vkoTs).

« Decrypt(pp, P, (pky, . .., pk,), {(i, ht;) }ic7, ct): On input the public parameters pp = 1%, a policy P € P
(on n-bit inputs), the public keys pk,,..., pk,, a collection of hints {(i, ht;)};cr, and the ciphertext ct =
(vkors, ctwe, ooTs), the decryption algorithm first defines ht; = 0% for all i € [n]\T. Then it outputs the message

p= WE.DeCl‘ypt(Ct, CVaIidSig [VkOTS], P, (pkl, e, pkn), (htl, e, htn)).

Theorem B.5 (Correctness). IfIlors, sps, and Iy are correct, then Construction B.4 is correct.

Proof. Take any security parameter A € N, a policy P € P, input bits f;, ..., f, € {0,1}" where P(f,...,Bn) = 1,
a message i € M, and any collection of public keys pk; for i € [n] \ T, where T = {i € [n] : f; = 1}. Let pp = 1%
Suppose we sample the following quantities:

« Sample (pk;, sk;) < KeyGen(pp) for all i € T. By definition, this means pk; = pksps ; and sk; = sksps; where
(VkSPS,i,SkSPS,i) — SPS.KeyGen(lA).

« Take ct < Encrypt(pp, P, (pky, ..., pk,), #). This means ct = (vkors, ctwe, oors) where

(vkors, skots) < OTS.KeyGen(1%)

ctwe — WE.Encrypt(1%, Cvaiiasig[Vkots], P, (pky, - . ., pky,),)
O0TS «— OTS.Sign(SkOTs, ctwe).

« Let ht; « GetHint(pp, sk;, ct) for each i € T. By correctness of I1grs, OTS.Verify (vkors, ctwe, dors) = 1. Thus,
foralli € [T], ht; = Osps,i < SPS.Sign(SkSPS’i,VkOTs).

78

Consider now Decrypt(pp, P, (pky, ..., pk,), {(i, ht;) }ier, ct):
« By definition, Decrypt sets ht; = 0 for alli € [n] \ T.

+ By correctness of ITsps, we have SPS.Verify(vksps i, vkors, osps ;) = 1 for all i € T. This means
Cvalidsig[Vkots] (vksps i, osps,i) = 1

foralli € T. Since 8; = 0 for i ¢ T, we conclude that ; < Cyajigsig[VkoTs](pk;, ht;) for all i € [n].

« Since P is monotone, this means
1=P(Pi,..., Bn) < P(Cvaiigsig[vkots] (pky, ht1), ..., Cvaiiasig [VkoTs] (pk,, hty)).

« By correctness of Iy, the decryption algorithm outputs p. O

Theorem B.6 (Static Security). Suppose Ilgrs is one-time strongly unforgeable, Isps satisfies punctured correctness
and punctured key indistinguishability, and Il is secure. Then Construction B.4 is statically secure.

Proof. Let A be an efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments, each parameterized by a bit b € {0, 1}:

. Hyb(()b): This is the static security experiment with bit b € {0, 1}:

— At the beginning of the game, the challenger initializes a counter ctr = 0 and gives pp = 1* to A.
— Algorithm A can now make queries to the challenger:

» Key-generation query: When A makes a key-generation query, it must specify a bit y € {0, 1}. The
challenger increments the counter ctr = ctr + 1 and then samples (vkeyy, sketr) SPS.KeyGen(lA).
It sets pk,, = vkctr and responds to A with pk

» Corruption query: On input a counter ctr’ < ctr, the challenger responds with skt,.

ctr ctr*

» Hint-computation query: On input a counter ctr’ < ctr and a ciphertext ct = (vkors, ctwe, 0oTs),
the hint-computation algorithm first checks that OTS.Verify(vkors, ctwe, oots) = 1. If not, it responds
with L. Otherwise, it responds with osps «— SPS.Sign(skc, vkors).

— In the challenge phase, algorithm A specifies a policy P and a pair of messages pi, y1. For each i € [n],
algorithm A specifies either a public key pk; or a counter value ctr;. For each i € [n] where A specified
a counter value ctr;, the challenger sets pk; = pk¢,, . The challenger constructs the challenge ciphertext
as follows:

« Sample a key-pair (vk{rs, skiyrs) < OTS.KeyGen(14) for a one-time signature scheme

« Compute the ciphertext ct},,; « WE.Encrypt(1%, Cvaiiasig[Vks], Ps (pky, . . ., pk,,), 1) and the signa-
ture o(y15 < OTS.Sign(skgyrs, ctyyp)

The challenger replies with the challenge ciphertext ct* = (vkgrg, ctiy g 051)-

— Algorithm A can continue to make queries to the challenger. These are handled exactly as in the
pre-challenge phase.

— At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

. Hybib): Same as Hyb(b), except the challenger samples the key-pair (vk{rg, skips) < OTS.KeyGen(1%) for
the challenge ciphertext at the very beginning of the game. Then, when answering hint-computation queries
on (ctr’, ct) where ct = (vkors, ctwe, ooTts), the challenger additionally checks the following:

- If the query is in the pre-challenge phase, the challenger responds with L if vkors = vk{rs.
- If the query is in the post-challenge phase, the challenger responds with L if vkors = vk{j1s and yer = 0.

79

. Hyb§b>: Same as Hybib), except when answering key-generation queries where y = 0 (i.e., a key for an
uncorrupted user), the challenger samples (vkcy, sketr) < SPS.KeyGenP (17, vkrs)-

We write Hybl(b) (A) to denote the output distribution of an execution of experiment Hybgb) with adversary A. We
now analyze the hybrid distributions.

Lemma B.7. If A is admissible and Iots is one-time strongly unforgeable, then for allb € {0, 1}, there exists a negligible
function negl(-) such that for all A € N,

| Pr[Hyb'" (A) = 1] - Pr[Hyb!" (A) = 1]| = negl(2).
Proof. Suppose |Pr[Hybéb) (A)=1] - Pr[Hybgb) (A) = 1]| = ¢ for some non-negligible ¢. By construction, Hybéb)
and Hybib) are identical experiments unless one of the following two events occur:

« Algorithm A make a pre-challenge hint-computation query on ctr’ and ct = (vkors, ctwe, oots) where
OTS. Verify(vkors, ctwe, oots) = 1 and vkors = vkiyrs.

« Algorithm A makes a post-challenge hint-computation query on ctr’ and ct = (vkors, ctwe, oots) where
Yetr =0, OTS.Verify(kaTS, ctwe, oots) = 1 and vkots = VkE)TS'

Thus, in an execution of Hybéb) or Hybgb), algorithm A will trigger one or more of these events with probability
at least e. We use A to construct an efficient adversary 8 that breaks the one-time unforgeability of ITots:

1. At the beginning of the security game, algorithm B receives a verification key vk .

2. Algorithm A sets ctr = 0 and pp = 1%. It starts running A on input pp. Whenever algorithm A makes a query,
algorithm B proceeds as follows:

« Key-generation query: When A makes a key-generation query algorithm % increments the counter ctr =
ctr+1. Then it samples (vketr, Sketr) «— SPS.KeyGen(lA). It sets pk.;, = vkt and responds to A with pk

« Corruption query: On input a counter ctr’ < ctr, algorithm B responds with sket,.

ctr ctr-

« Hint-computation query: On input a counter ctr’ < ctr and a ciphertext ct = (vkors, ctwe, oots), the
hint-computation algorithm first checks that OTS.Verify(vkors, ctwe, oots) = 1. If not, it replies with
output L. Otherwise, if vkors = vk{j1s, then algorithm 8 halts with output (ctwe, oors). Otherwise, it
responds with osps «— SPS.Sign(sketr, vkors).

3. During the challenge phase, algorithm A specifies a policy P and a pair of messages y, y11. For each i € [n],
algorithm A specifies either a public key pk; or a counter value ctr;. For each i € [n] where A specified a

counter value ctr;, algorithm B sets pk; = pk,,, . Algorithm B then computes

ctyyg WE.Encrypt(l’l,CVa“dSig[ka)TS],P, (pky, ..., pk,), p

Algorithm 8 make a signing query on message ctwe to its challenger and receives a signature o . It gives
the challenge ciphertext ct* = (vkg g, ctjy e, 0515) to A.

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm 8 responds to corrup-
tion queries using the same procedure described above. For a hint-computation query on a counter ctr’ < ctr
and a ciphertext ct = (vkors, ctwe, ooTs), algorithm B first checks that OTS.Verify(vkors, ctwe, oors) = 1.
If not, it responds with L. Otherwise, if vkors = vk and yw = 0, then algorithm B halts with output
ctwe, oots). Otherwise, it responds with ogps «— SPS.Sign(sketr, vkors). It responds to A with osps.

By construction, the challenger samples (vk{s, skirs) < OTS.KeyGen(1%) which matches the specification in Hyb(()b)
and Hybib). Next, the key-generation and corruption queries are handled using the same procedure as in Hyb(()b)
and Hybib). Moreover, in the challenge phase, the challenger would compute o < OTS.KeyGen(skgyg, ctyye),
which again matches the distribution in Hyb(()b) and Hybib) . We conclude that 8 perfectly simulates the challenger’s

behavior in Hybéb), so with probability ¢, one of the two events above will occur with probability as least :

80

« Suppose A make a pre-challenge hint-computation query on ctr’ and ct = (vkors, ctwe, oors) where we have
OTS. Verify(vkors, ctwe, gots) = 1 and vkors = vkiyrs. Since this is a pre-challenge query, algorithm $ has not
made any signing queries to its oracle yet. This means (ctwe, oots) is a valid forgery for vk{e.

« Suppose A makes a post-challenge hint-computation query on ctr’ and ct = (vkors, ctwe, oors) where y = 0,
OTS. Verify(vkors, ctwe, oots) = 1 and vkors = vkgrg. Since A is admissible for the static security game,
Y = 0, and this is a post-challenge query, it must be the case that ct # ct*. This means either ctwg # ctj, ¢

5

or ooTs # Ogrg- Correspondingly (ctwe, oots) is a valid forgery for vk{ . Since there is the possibility that
ctwe = ctyy ¢ (but oots # 0(15), We rely on strong unforgeability here.

Thus, we conclude that if either of the two events defined above occurs, algorithm 8 successfully breaks one-time
strong unforgeability of IIots. The claim follows. O

Lemma B.8. If A is admissible and Ilsps satisfies punctured key indistinguishability, then for all b € {0, 1}, there exists
a negligible function negl(-) such that forall A € N,

| Pr[Hyb\" (A) = 1] = Pr[Hyb{") (A) = 1]| = negl(A).

Proof. Let Q be a bound on the number of key-generation queries algorithm A makes. We now define an intermediate
sequence of hybrid experiments indexed by i € [0, Q]:

. Hybib.>: Same as Hybib), except the challenger responds to the first i key-generation queries that algorithm

1
s

A makes using the specification in Hyb;b).

We now show that for all i € [Q], Hybibl.)_1 and Hybgb) are computationally indistinguishable. Suppose for some
index i € [Q], we have
b b
| Pr[Hyb(") | (A) = 1] - Pr[Hyb{") (A) = 1]| > ¢

for some non-negligible ¢. We use A to construct an efficient adversary 8 for the punctured key indistinguishability
game:

1. Algorithm B initializes a counter ctr = 0 and samples (vkgyrs, skiyrg) < OTS.KeyGen(1%). It gives vk{rg to the
challenger and receives a key vk¢ps.

2. Algorithm 8 starts running algorithm A with input pp = 1*. Whenever algorithm A makes a query, algorithm
B proceeds as follows:

+ Key-generation query: When A makes a key-generation query with corruption bit y € {0, 1}, algorithm
B increments the counter ctr = ctr + 1. Then it proceeds as follows:
— Suppose y = 1. Then it samples (vke, sketr) < SPS.KeyGen(lA).
- Suppose y = 0. If ctr < i, then it samples (Vke, Sketr) < SPS.KeyGenP(14, vkirs). If y > i, then it
samples (vketr, Sketr) < SPS.KeyGen(lA). If y = i, then it sets vkt = vkeps.
Algorithm 8 replies to A with vkc,.

« Corruption query: If A makes a corruption query on an index ctr’ < ctr, algorithm 8 aborts with
output 0 if 4 = 0. Otherwise, it responds with sk, .

+ Hint-computation query: If A makes a hint-computation query on a counter ctr’ < ctr and a cipher-
text ct = (vkors, ctwe, oots), algorithm B first checks that OTS.Verify (vkors, ctwe, oors) = 1. If not, it
responds with L. Otherwise, it proceeds as follows:

- If vkots = vk, algorithm B responds with L.
— Otherwise, if ctr’ # i or if yctv = 1, then algorithm B responds with ogps «— SPS.Sign(sketr, vkoTs).

— Finally, if ctr’ = i and yc = 0, algorithm B makes a signing query on the message vkors to receive
a signature osps. It responds to A with ogps.

81

3. During the challenge phase, algorithm A specifies a policy P and a pair of messages y, j11. For each i € [n],
algorithm A specifies either a public key pk; or a counter value ctr;. For each i € [n] where A specified a

counter value ctr;, algorithm B sets pk; = pk,,, . Algorithm B then computes

ctyp «— WE.Encrypt(lA, Cvalidsig [Vkors]s Py (Pkys - . ., pky), 1)
og1s — OTS.Sign(sk{rs, Ctiye)-

Algorithm B responds to A with the challenge ciphertext ct* = (vkgrs, Ctiyps 051)-

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm B responds to corrup-
tion queries using the same procedure described above. For a hint-computation query on a counter ctr’ < ctr
and a ciphertext ct = (vkors, ctwe, oots), algorithm B first checks that OTS.Verify(vkors, ctwe, oors) = 1. If
not, it responds with L. Otherwise, it proceeds as follows:

« If vkots = vkrg and yer = 0, then algorithm B responds with L.
« Otherwise, if ctr’ # i or if ycty = 1, then algorithm B responds with osps «— SPS.Sign(skctr, vkors).

« Finally, if ctr’ = i and yv = 0, then algorithm $B makes a signing query on the message vkors to receive
a signature osps. It responds to A with osps.

5. At the end of the game, algorithm A outputs a bit b € {0, 1}, which algorithm A also outputs.

By construction, algorithm B does not make any signing queries on vkgs, so it is a valid adversary for the punctured
key indistinguishability game. Next, algorithm B responds to corruption queries on counters ctr where y, = 0 with
1 (rather than the associated secret key). However, when A is admissible, it is not allowed to issue corruption queries
on ctr where yct = 0. Thus, as long as A is admissible, the behavior of B perfectly coincides with the specification in
Hyb(b) and Hybibi). Now, if the challenger samples (vkgps, skgpg) SPS.KeyGen(1%), then algorithm B perfectly

Li-1
(&)

simulates an execution of Hyb, ;" ;| whereas if the challenger samples (vkSps, skips) SPS.KeyGenP (14, vkgrs), then

algorithm B perfectly simulates an execution of Hybg’bl.). We conclude that B breaks punctured key indistinguishability
with the same advantage. Finally, algorithm 8 is efficient so Q = poly(1). Lemma B.8 now follows by a hybrid
argument.]

Lemma B.9. If A is admissible, IIsps satisfies punctured correctness, and Il is secure, then there exists a negligible
function negl(-) such that for all A € N,

| Pr[Hyb ") (A) = 1] - Pr[Hyb" (A) = 1]| = negl(1).

Proof. Suppose |Pr[Hyb§0) (A)=1] - Pr[Hybgl) (A) = 1]| = e for some non-negligible &. We use A to construct
an efficient adversary 8 for the witness encryption security game:

1. On input the security parameter 1%, algorithm B initializes a counter ctr = 0 and samples (vkgrss skirs)
OTS.KeyGen(14). It gives vk{rs to the challenger and receives a key vkgpg.

2. Algorithm 8 starts running algorithm A with input pp = 1*. Whenever algorithm A makes a query, algorithm
B proceeds as follows:

« Key-generation query: When A makes a key-generation query with corruption bit y € {0, 1}, algorithm
B increments the counter ctr = ctr + 1. Then it proceeds as follows:
- Ify =0, it samples (vketr, sketr) SPS.KeyGenP(l’l,vk’éTs).
- If y = 1, it samples (Vkct,, skeir) < SPS.KeyGen(14).
Algorithm 8 replies to A with vk,

« Corruption query: If A makes a corruption query on an index ctr’ < ctr, algorithm B responds with
skt

82

« Hint-computation query: If A makes a hint-computation query on a counter ctr’ < ctr and a ci-
phertext ct = (vkors, ctwe, ooTs), algorithm B first checks that OTS.Verify(vkors, ctwe, oors) = 1. If
not, it responds with L. If vkors = vk{qg, it also responds with L. Otherwise, it responds with
osps < SPS.Sign(sketr, vkors)-

3. During the challenge phase, algorithm A specifies a policy P and a pair of messages yg, y11. For each i € [n],

algorithm A specifies either a public key pk; or a counter value ctr;. For each i € [n] where A specified a
counter value ctr;, algorithm 8 sets pk; = Pk:tr,»- Algorithm B gives the circuit CVandSig[vk(*)TS], the policy
P, the instances (pky, ..., pk,), and the pair of messages yo, y; to the challenger. The challenger replies with
ctyyg- Finally, algorithm 8 computes o7y < OTS.Sign(skg s, ctyy), and responds to A with the challenge

ciphertext ct* = (vkgrs, Ctyps 057)-

4. Algorithm A can continue making corruption and hint-computation queries. Algorithm $ responds to corrup-
tion queries using the same procedure described above. For a hint-computation query on a counter ctr’ < ctr and
a ciphertext ct = (vkors, ctwe, oots), algorithm B first checks that OTS.Verify (vkors, ctwe, cots) = 1. If yerr = 0
and vkors = vk, then it also responds with L. Otherwise, it responds with osps «<— SPS.Sign(sket, vkors).

5. At the end of the game, algorithm A outputs a bit &’ € {0, 1}, which algorithm A also outputs.

First, we argue that for all 01, ..., 0, € {0, 1},
p (CVa[idSig [sz)'rs] (pkls O'l)s cees CVaIidSig [Vk*o'rs] (Pkn> O'n)) =0. (B-l)
Let yy,. .., Yctr be the corruption bits associated with the adversary’s key-generation queries. We proceed as follows:

« First, for all j € [ctr] where y; = 0, there does not exist o € {0,1}* where CVaIidSig[sz)Ts](ij,O') = 1. By
definition, Cvaiigsig [VkGrs] (pkj, o) = 1only if SPS.Verify(pkj, vkrs, 0) = 1. However, when y; = 0, algorithm
B samples (pk;, sk;) «— SPS.KeyGen (17, vk{rg)- By punctured correctness of Isps, with overwhelming prob-

ability over the choice of (pkj, sk;), there does not exist o where SPS.Verify(pkj, vkrs) = 1. The claim now
holds by a union bound over all of the key-generation queries j € [ctr] where y; = 0.

« For each i € [n], let f; = 1 if the adversary specified the public key pk; in the challenge phase or if it chose
a counter value ctr; where y,, = 1. Let ; = 0 otherwise. By admissibility, we have that P(f, ..., f,) = 0.

« Take any candidate witness (01, ..., 0,). Let B = Cvaliasig [VkGrs] (Pk;, 03). From the first property, on all indices
i € [n] where algorithm A specified a counter value ctr; where y, = 0, with overwhelming probability,
B! = Cvaiigsig[Vk1s1 (pk;» 0i) = 0 = f;. On indices i € [n] where algorithm A chosen the public key pk; or a
counter value ctr; where y, = 1, we have ; = 1. We conclude that for all i € [n], f; < ;. Since P is monotone,
this means

P(Bi,-- . p) < P(Pr.....fn) =0,

as required.

Thus, for all o4,...,0, € {0, l}A, Eq. (B.1) holds. In this case, the witness encryption challenger encrypts either yq
or py. If ctfy ¢ WE.Encrypt(lA, Cvaligsig [VKGTs] P, (pky, - - ., pky), o), then algorithm B simulates an execution of

Hybéo) with overwhelming probability. Conversely, if ct}, ; < WE.Encrypt(l’l, Cvalidsig [Vkors]s Pr (pkys - . ., pkyy), p1),

then simulates an execution of Hybgl) with overwhelming probability. Algorithm 8 breaks witness encryption with
the same advantage «. O

Static security now follows by combining Lemmas B.7 to B.9. O

83

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Standard Cryptographic Notions

	Succinct Witness Encryption for Batch Languages
	Succinct Witness Encryption for CNFs and DNFs
	Succinct Witness Encryption for CNF Policies
	Succinct Witness Encryption for DNF Policies

	Succinct Unique Witness Map for Read-Once Bounded-Space Policies
	Security and Succinctness

	Applications
	Succinct Computational Secret Sharing
	Distributed Monotone-Policy Encryption

	Succinct Computational Secret Sharing in the Random Oracle Model
	Monotone-Policy Encryption with One-Round Distributed Decryption

