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Abstract

A software watermarking scheme enables one to embed a “mark” (i.e., a message) within a
program while preserving the program’s functionality. Moreover, there is an extraction algorithm
that recovers an embedded message from a program. The main security goal is that it should be
difficult to remove the watermark without destroying the functionality of the program. Existing
constructions of watermarking focus on watermarking cryptographic functions like pseudorandom
functions (PRFs); even in this setting, realizing watermarking from standard assumptions remains
difficult. The first lattice-based construction of secret-key watermarking due to Kim and Wu
(CRYPTO 2017) only ensures mark-unremovability against an adversary who does not have
access to the mark-extraction oracle. The construction of Quach et al. (TCC 2018) achieves the
stronger notion of mark-unremovability even if the adversary can make extraction queries, but
has the drawback that the watermarking authority (who holds the watermarking secret key) can
break pseudorandomness of all PRF keys in the family (including unmarked keys).

In this work, we construct new lattice-based secret-key watermarking schemes for PRFs that
both provide unremovability against adversaries that have access to the mark-extraction oracle
and offer a strong and meaningful notion of pseudorandomness even against the watermarking
authority (i.e., the outputs of unmarked keys are pseudorandom almost everywhere). Moreover,
security of several of our schemes can be based on the hardness of computing nearly polynomial
approximations to worst-case lattice problems. This is a qualitatively weaker assumption than
that needed for existing lattice-based constructions of watermarking (that support message-
embedding), all of which require quasi-polynomial approximation factors. Our constructions
rely on a new cryptographic primitive called an extractable PRF, which may be of independent
interest.

1 Introduction

A software watermarking scheme enables a user or an authority to embed a “mark” within a program
in a way that the marked program behaves almost identically to the original program. It should
be difficult to remove the watermark from a marked program without significantly altering the
program’s behavior, and moreover, it should be difficult to create new (or malformed) programs
that are considered to be watermarked. The first property of unremovability is useful for proving
ownership of software (e.g., in applications to digital rights management) while the second property
of unforgeability is useful for authenticating software (e.g., for proving that the software comes from
a trusted distributor).

∗Part of this work was done while a student at Stanford.
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1.1 Background and Motivation

Barak et al. [BGI+01, BGI+12] and Hopper et al. [HMW07] introduced the first rigorous math-
ematical framework for software watermarking. Realizing the strong security requirements put
forth in these works has been difficult. Early works [NSS99, YF11, Nis13] made partial progress
by considering weaker security models and imposing restrictions on the adversary’s capabilities.
This changed with the work of Cohen et al. [CHN+16], who gave the first positive construction of
software watermarking (for classes of cryptographic functionalities) that achieved unremovability
against arbitrary adversarial strategies from indistinguishability obfuscation.

More formally, a software watermarking scheme consists of two main algorithms. First, the
marking algorithm takes a circuit C and outputs a “marked” circuit C ′ with the property that C ′

and C agree almost everywhere. Second, a verification algorithm takes a circuit C and outputs
marked or unmarked. In the message-embedding setting, the marking algorithm also takes a
message m in addition to the circuit and embeds the message m within the circuit as the watermark.
In this case, we replace the verification algorithm with a mark-extraction algorithm that takes a
circuit as input and which outputs either the embedded message or unmarked. A watermarking
scheme is robust against arbitrary removal strategies if the adversary is given complete flexibility
in crafting a circuit C̃ ′ that mimics the behavior of a marked circuit C ′, but does not contain the
watermark. This most directly captures our intuitive notions of unremovability and is the setting
that we focus on in this work.

Since the work of Cohen et al., there has been many works on building stronger variants of
software watermarking [YAL+17, YAL+18] and constructing watermarking (and variants) from
simpler assumptions [BLW17, KW17, BKS17, QWZ18]. While this latter line of work has made
tremendous progress and has yielded constructions of watermarking from standard lattice assump-
tions [KW17], CCA-secure encryption [QWZ18], and even public-key encryption (in the stateful
setting) [BKS17], these gains have come at the price of relaxing the watermarking security re-
quirements. As such, there is still a significant gap between the security and capabilities of the
Cohen et al. construction [CHN+16] from indistinguishability obfuscation and the best schemes we
have from standard assumptions. In this work, we narrow this gap and introduce a new lattice-based
software watermarking scheme for pseudorandom functions (PRFs) that satisfies stronger security
and provides more functionality than the previous constructions from standard assumptions. Along
the way, we introduce the notion of an “extractable PRF” that may be useful beyond its applications
to cryptographic watermarking.

Watermarking PRFs. While the notion of software watermarking is well-defined for general
functionalities, Cohen et al. [CHN+16] showed that watermarking is impossible for any class of
learnable functions. Consequently, research on watermarking has focused on cryptographic functions
like PRFs. In their work, Cohen et al. gave the first constructions of watermarking for PRFs
(as well as several public-key primitives) from indistinguishability obfuscation. The Cohen et al.
watermarking construction has the appealing property in that the scheme supports public mark-
extraction (i.e., anyone is able to extract the embedded message from a watermarked program). The
main drawback though is their reliance on strong (and non-standard) assumptions. Subsequently,
Boneh et al. [BLW17] introduced the concept of a private puncturable PRF and showed how to
construct secretly-extractable watermarking schemes from a variant of private puncturable PRFs
(called private programmable PRFs). Building on the Boneh et al. framework, Kim and Wu [KW17]
showed that a relaxation of private programmable PRFs also sufficed for watermarking, and they
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gave the first construction of watermarking from standard lattice assumptions. Neither of these
constructions support public extraction, and constructing watermarking schemes that support public
extraction from standard assumptions remains a major open problem.

Towards publicly-extractable watermarking. Not only did the schemes in [BLW17, KW17]
not support public extraction, they had the additional drawback that an adversary who only has
access to the extraction oracle for the watermarking scheme can easily remove the watermark
from a marked program (using the algorithm from [CHN+16, §2.4]). Thus, it is unclear whether
these schemes bring us any closer to a watermarking scheme with public extraction. A stepping
stone towards a publicly-extractable watermarking scheme is to construct a secretly-extractable
watermarking scheme, except we give the adversary access to the extraction oracle. The difficulty
in handling extraction queries is due to the “verifier rejection” problem that also arises in similar
settings such as constructing designated-verifier proof systems or CCA-secure encryption. Namely,
the adversary can submit carefully-crafted circuits to the extraction oracle and based on the oracle’s
responses, learn information about the secret watermarking key.

Recently, Quach et al. [QWZ18] gave an elegant and conceptually-simple construction of secretly-
extractable watermarking that provided unremovability in this stronger model where the adversary
has access to the extraction oracle. Moreover, their scheme also supports public marking: namely,
anyone is able to take a PRF and embed a watermark within it. The basic version of their scheme is
mark-embedding (i.e., programs are either marked or unmarked) and can be instantiated from any
CCA-secure public-key encryption scheme. To support full message-embedding, their construction
additionally requires private puncturable PRFs (and thus, the only standard-model instantiation
today relies on lattices). In both cases, however, their scheme has the drawback in that the holder
of the watermarking secret key completely compromises pseudorandomness of all PRF keys in
the family (including unmarked keys). In particular, given even two evaluations of a PRF (on
distinct points), the watermarking authority in the scheme of [QWZ18] can already distinguish
the evaluations from random. While it might be reasonable to trust the watermarking authority,
we note here that users must fully trust the authority (even if they generate a PRF key only for
themselves and never interact with the watermarking authority). Even if the authority passively
observes PRF evaluations (generated by honest users), it is able to tell those evaluations apart
from truly random values. As we discuss below, this is a significant drawback of their construction
and limits its applicability. Previous constructions [CHN+16, BLW17, KW17] did not have this
drawback.

Security against the watermarking authority. Intuitively, it might seem like in any secret-key
watermarking scheme, users implicitly have to trust the watermarking authority (either to mark
their keys, or to verify their keys, or both), and so, there is no reason to require security against
the watermarking authority. However, we note that this is not the case. For example, the marking
and extraction algorithms can always be implemented by a two-party computation between the
watermarking authority and the user, in which case the watermarking authority never sees any of the
users’ keys in the clear, and yet, the users still enjoy all of the protections of a watermarking scheme.
In existing schemes that do not provide security against the watermarking authority [QWZ18],
the PRF essentially has a “backdoor” and the watermarking authority is able to distinguish every
evaluation or every PRF in the family from random. This is a significant increase in the amount of
trust the user now has to place in the watermarking authority. The constructions we provide in this
work provide a meaningful notion of security even against the watermarking authority. Namely,
as long as the users never evaluate the PRF on a restricted set of points (which is a sparse subset
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of the domain and statistically hidden from the users), then the input/output behavior of both
unmarked and marked keys remain pseudorandom even against the watermarking authority.

More generally, as noted above, a watermarking scheme that supports extraction queries is
an intermediate primitive between secretly-extractable watermarking and publicly-extractable
watermarking. If the intermediate scheme is insecure in the presence of a party who can extract,
then the techniques used in that scheme are unlikely to extend to the public-key setting (where
everyone can extract). Handling extraction queries (with security against the authority) is closer to
publicly-extractable watermarking compared to notions from past works. We believe our techniques
bring us closer towards publicly-extractable watermarking from standard assumptions.

1.2 Our Contributions

In this work and similar to [QWZ18], we study secretly-verifiable watermarking schemes for PRFs
that provide unremovability (and unforgeability) against adversaries that have access to both
the marking and the extraction oracles. Our goal is to achieve these security requirements while
maintaining security even against the watermarking authority. We provide several new constructions
of secretly-verifiable watermarking schemes for PRFs from standard lattice assumptions where the
adversary has access to the extraction oracle. Moreover, we show that all of our constructions achieve
a relaxed (but still meaningful) notion of pseudorandomness for unmarked keys even in the presence
of the watermarking authority. Our constructions also simultaneously achieve unremovability and
unforgeability (with parameters that match the lower bounds in Cohen et al. [CHN+16]). In fact, we
show that meaningful notions of unforgeability (that capture the spirit of unforgeability and software
authentication as discussed in [HMW07, CHN+16, YAL+18]) are even possible for schemes that
support public marking. Our constructions are the first to provide all of these features. Moreover, we
are able to realize these new features while relying on qualitatively weaker lattice-based assumptions
compared to all previous watermarking constructions from standard assumptions (specifically, on the
hardness of computing nearly polynomial (i.e., nω(1)) approximations to worst-case lattice problems
as opposed to computing quasi-polynomial (i.e., 2logc(n) for constant c > 1) approximations; see
Remark 4.27). We provide a comparison of our new watermarking construction to previous schemes
in Table 1, and also summarize these results below.

Extractable PRFs. The key cryptographic building block we introduce in this work is the notion
of an extractable PRF. An extractable PRF is a standard PRF family F : K×X → Y outfitted with
an extraction trapdoor td. The extractability property says that given any circuit that computes
F(k, ·), the holder of the trapdoor td can recover the PRF key k (with overwhelming probability).
In fact, the extraction process is robust in the following sense: given any circuit C : X → Y whose
behavior is “close” to F(k, ·), the extraction algorithm still extracts the PRF key k. The notion of
closeness that we use is ε-closeness: we say that two circuits C0 and C1 are ε-close if C0 and C1 only
differ on at most an ε-fraction of the domain. Of course, for extraction to be well-defined, it must
be the case that for any pair of distinct keys k1, k2, the functions F(k1, ·) and F(k2, ·) are far apart.
We capture this by imposing a statistical requirement on the PRF family called key-injectivity,1

which requires that F(k1, ·) and F(k2, ·) differ on at least an ε′-fraction of points where ε′ � ε. This
ensures that if C is ε-close to some PRF F(k, ·), then k is unique (and extraction recovers k). In

1Key-injectivity also played a role in previous watermarking constructions, though in a different context [CHN+16,
KW17].
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Scheme
Public Public Extraction PRF Security Hardness

Marking Extraction Oracle (Authority) Assumption

Cohen et al. [CHN+16] 7 3 3 3 iO
Boneh et al. [BLW17] 7 7 7 3 iO
Kim-Wu [KW17] 7 7 7 3 LWE∗

Quach et al. [QWZ18] 3 7 3 7 LWE∗

Yang et al. [YAL+18] 7 3 3 3 iO

This Work
7 7 3 3† LWE‡

3 7 3 3† LWE‡ + RO

∗LWE with a quasi-polynomial modulus-to-noise ratio (i.e., 2logc n for constant c > 1).
†Our construction provides a weaker notion of restricted pseudorandomness against the watermarking authority.
‡LWE with a nearly polynomial modulus-to-noise ratio (i.e., nω(1)).

Table 1: Comparison of our watermarkable family of PRFs to previous constructions.
We focus exclusively on message-embedding constructions. For each scheme, we
indicate whether it supports public marking and public extraction, whether mark-
unremovability holds in the presence of an extraction oracle, whether unmarked
keys remain pseudorandom against the watermarking authority, and the hardness
assumption each scheme is based on. In the above, “iO” denotes indistinguishability
obfuscation and “RO” denotes a random oracle.

Section 2, we provide a detailed technical overview on how to construct extractable PRFs from
standard lattice assumptions. We give the formal definition, construction, and security analysis in
Section 4.

From extractable PRFs to watermarking. The combination of extractability and key-
injectivity gives a natural path for constructing a secret-key watermarking scheme for PRFs.
We begin with a high-level description of our basic mark-embedding construction which illustrates
the main principles. First, we will need to extend our extractable PRF family to additionally
support puncturing. In a puncturable PRF [BW13, KPTZ13, BGI14], the holder of a PRF key k
can puncture k at a point x∗ to derive a “punctured key” kx∗ with the property that kx∗ can be
used to evaluate the PRF on all points x 6= x∗. Moreover, given the punctured key kx∗ , the value of
the PRF F(k, x∗) at x∗ is still indistinguishable from a uniformly random value.

Suppose now that we have an extractable PRF where the PRF keys can be punctured. To
construct a mark-embedding watermarkable family of PRFs F : K×X → Y , we take the watermarking
secret key to be the trapdoor for the extractable PRF family. To mark a PRF key k ∈ K, the
watermarking authority derives a special point x(k) ∈ X from k (using a PRF key that is also part
of the watermarking secret key), and punctures k at x(k) to obtain the punctured key kx(k) . The
watermarked program just implements PRF evaluation using the punctured key kx(k) . To check
whether a circuit C : X → Y is marked, the watermarking authority applies the extraction algorithm
to C to obtain a key k ∈ K (or ⊥ if extraction does not output a key). If the extraction algorithm
outputs a key k ∈ K, the verification algorithm computes the special point x(k) from k and outputs
marked if C(x(k)) 6= F(k, x(k)) and unmarked otherwise. If the extraction algorithm outputs ⊥,
the algorithm outputs unmarked.
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Unremovability of this construction essentially reduces to puncturing security. By robust
extractability (and key-injectivity), if the adversary only corrupts a small number of points in
a marked key (within the unremovability threshold), then the extraction algorithm successfully
recovers k (with overwhelming probability). To remove the watermark, the adversary’s task is to
“fix” the value of the PRF at the punctured point x(k). Any adversary that succeeds to do so breaks
puncturing security (in particular, the adversary must be able to recover the real value of the PRF
at the punctured point given only the punctured key). Note that here, we do require that the
range Y of the PRF be super-polynomial (if the range was polynomial, then the adversary can guess
the correct value of the PRF at x(k) with noticeable probability and remove the watermark). Note
that this basic scheme neither provides unforgeability (i.e., it is easy to construct circuits that are
considered marked even without the watermarking key) nor supports message-embedding. As we
discuss in greater detail below, both of these properties can be achieved with additional work.

Handling extraction queries. A primary objective of this work is to construct a watermarking
scheme for PRFs where unremovability holds even against an adversary that has access to the
extraction oracle. At first glance, our marking algorithm may appear very similar to that in [BLW17,
KW17], since all of these constructions rely on some form of puncturable PRFs. These previous
constructions do not satisfy unremovability in the presence of an extraction oracle because they
critically rely on the adversary not being able to identify the special point x(k). Namely, in these
constructions, to check whether a circuit C is marked or not, the authority derives the special point
x(k) from the input/output behavior of C and then checks whether C(x(k)) has a specific structure.
If the adversary is able to learn the point x(k), then it can tweak the value of the marked circuit at
x(k) and remove the watermark. In fact, even if the puncturable PRF completely hides the special
point x(k), the binary search attack from Cohen et al. [CHN+16] allows the adversary to use the
extraction oracle to recover x(k), and thus, defeat the watermarking scheme.

In our construction, to decide whether a circuit C is marked or not, the authority first extracts
a key k and checks whether C(x(k)) = F(k, x(k)). Therefore, in order to remove the watermark,
it is not enough for the adversary to just recover the special point x(k) via the extraction oracle
(in fact, the special point x(k) is public). To succeed, the adversary has to recover the original
value of the PRF at x(k), which is hard when the PRF has a super-polynomial range and the PRF
satisfies puncturing security. The fact that we do not rely on the unpredictability of the special point
for security is a subtle but important distinction in our construction. In Section 5, we show that
assuming the underlying PRF provides robust extractability (and key-injectivity), the adversary
can simulate for itself the behavior of the extraction oracle. Thus, the presence of the extraction
oracle cannot help the adversary break unremovability.

Unforgeability and message-embedding via multi-puncturing. While the basic construction
above provides unremovability, it is easy to forge watermarked programs. Namely, an adversary can
simply take a circuit that implements a PRF F(k, ·) and randomly corrupt a (1/poly(λ))-fraction
of the output (where λ is a security parameter). Then, with noticeable probability, the adversary
will corrupt the PRF at the special point x(k) associated with k, thereby causing the verification
algorithm to conclude that the circuit is marked. This is easily prevented by puncturing k at λ

points x
(k)
1 , . . . , x

(k)
λ . We now say that a circuit C is marked only if C(x

(k)
i ) 6= F(k, x

(k)
i ) for all i ∈ [λ].

Of course, this modification does not affect unremovability. Now, to forge a watermarked program,
the adversary has to construct a circuit C whose behavior closely resembles F(k, ·), and yet, C and

F(k, ·) disagree on all of the special points x
(k)
1 , . . . , x

(k)
λ , which are derived pseudorandomly from
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the key k. This means that unless the adversary previously made a request to mark k (in which

case its circuit C would no longer be considered a forgery), the points x
(k)
1 , . . . , x

(k)
λ associated with

k look uniformly random to A. But now, if C and F(k, ·) are close, they will not differ on λ random
points, except with negligible probability. We formalize this argument in Section 5.2.

The same technique of puncturing at multiple points also enables us to extend our basic mark-
embedding watermarking scheme into a scheme that supports message-embedding. We take a basic
bit-by-bit approach similar in spirit to the ideas taken in [Nis13, KW17, QWZ18]. Specifically, to
support embedding messages of length t in a PRF key k, we first derive from k a collection of λ

pseudorandom points for each index and each possible bit: S
(k)
i,b = {x(k)

i,b,1, . . . , x
(k)
i,b,λ} for all i ∈ [t]

and b ∈ {0, 1}. To embed a message m ∈ {0, 1}t in the key k, the marking algorithm punctures k at

all of the points in the sets S
(t)
i,mi

for i ∈ [t]. To recover the watermark, the extraction algorithm
proceeds very similarly as before. Specifically, on input a circuit C, the extraction algorithm uses the
trapdoor for the underlying extractable PRF to obtain a candidate key k (or outputs unmarked if

no key is extracted). Given a candidate key k, the extraction algorithm derives the sets S
(k)
i,b for

each index i ∈ [t] and bit b ∈ {0, 1}. For each index, the algorithm counts the number of points

in S
(k)
i,0 and S

(k)
i,1 on which C and F(k, ·) disagree. For correctly-watermarked keys, C and F(k, ·)

will disagree on all of the points in one of the sets and none of the points in the other set. This
difference in behavior allows the extraction algorithm to recover the bit at index i. We provide the
full description and analysis in Section 5.3.

Public marking in the random oracle model. In the mark-embedding and message-embedding
watermarking constructions we have described so far, both marking and extraction require knowledge
of the watermarking secret key. If we look more closely at the marking algorithm, however, we
see that the only time the watermarking key is used during marking is to derive the set of points
to be punctured (specifically, the set of points to be punctured is derived by evaluating a PRF
on the key k). Critically, we do not require that the set of punctured points be hidden from the
adversary (and indeed, the watermarked key completely reveals the set of punctured points), but
only that they are unpredictable (without knowledge of k). Thus, instead of using a PRF to derive
the points to be punctured, we can use a random oracle. This gives a construction of a message-
embedding watermarking scheme that supports public marking. We provide the full description and
analysis of this scheme in Section 5.4. We note that Quach et al. [QWZ18] were the first to give a
watermarking scheme that supported public marking without random oracles (for mark-embedding,
they only needed CCA-secure public-key encryption while for full message-embedding, they relied on
lattices). However, as noted before, their scheme does not provide any security against a malicious
watermarking authority (or provide unforgeability, which we discuss below).

Unforgeability and public marking. Recall that unforgeability for a watermarking scheme says
that no efficient adversary should be able to construct a marked circuit that is significantly different
from marked circuits it already received. This property seems at odds with the semantics of a
watermarking scheme that supports public marking, since in the latter, anyone can mark programs
of their choosing. However, we can still capture the following spirit of unforgeability by requiring
that the only marked circuits that an adversary can construct are those that are close to circuits
that are contained in the function class. In the case of watermarking PRFs, this means that the
only circuits that would be considered to be watermarked are those that are functionally close to a
legitimate PRF. This property is useful in scenarios where the presence of a watermark is used to
argue authenticity of software (e.g., to prove to someone that the software implements a specific type

7



of computation). In this work, we introduce a weaker notion of unforgeability that precisely captures
this authenticity property (Definition 5.13). We then show that our watermarking construction
supports public-marking while still achieving this form of weak unforgeability. The only previous
candidate of software watermarking that supports public marking [QWZ18] does not satisfy this
property, and indeed, in their scheme, it is easy to construct functions that are constant everywhere
(which are decidedly not pseudorandom), but nonetheless would be considered to be marked.

Optimal bounds for unremovability and unforgeability. We say that a watermarking scheme
is ε-unremovable if an adversary who only changes an ε-fraction of the values of a marked circuit
cannot remove the watermark,2 and that it is δ-unforgeable if an adversary cannot create a new
marked program that differs on at least a δ-fraction of points from any marked circuits it was given.
Conceptually, larger values of ε means that the watermark remains intact even if the adversary can
corrupt the behavior of the marked program on a larger fraction of inputs, while smaller values of δ
means that the adversary’s forgery is allowed to agree on a larger fraction of the inputs of a marked
program. Previously, Cohen et al. [CHN+16] showed that any message-embedding watermarking
scheme can at best achieve ε = 1/2 − 1/poly(λ) and δ = ε + 1/poly(λ). Our constructions in
this work achieve both of these bounds (for any choice of poly(λ) factors). Previous constructions
like [CHN+16, QWZ18] did not provide unforgeability while [BLW17, KW17] could only tolerate
ε = negl(λ) (and any δ = 1/poly(λ)).

Security against the watermarking authority. The key property of extractable PRFs that
underlies our watermarking constructions is that there is an extraction trapdoor td that can be used
to extract the original PRF key k from any circuit whose behavior is sufficiently similar to that of
F(k, ·). In the case of watermarking, the watermarking authority must hold the trapdoor to use it to
extract watermarks from marked programs. This raises a new security concern as the watermarking
authority can now break security of all PRFs in the family, including unmarked ones. As discussed
in Section 1.1, this was the main drawback of the Quach et al. [QWZ18] watermarking construction.

Due to our reliance on extractable PRFs, our watermarkable family of PRFs also cannot
satisfy full pseudorandomness against the watermarking authority. However, we can show a weaker
property against the watermarking authority we call T -restricted pseudorandomness. Namely, we
can associate a set S ⊆ X of size at most T with our watermarkable family of PRFs such that any
adversary (even if they have the extraction trapdoor) is unable to break pseudorandomness of any
(unmarked) PRF, provided that they do not query the function on points in S. The distinguisher
is also provided the set S. In other words, our family of PRFs still provides pseudorandomness
everywhere except S. In our concrete constructions (Construction 4.19), the restricted set S consists
of λ randomly-chosen points in X . This means that if the domain of the PRF is super-polynomial,
our notion of T -restricted pseudorandomness strictly interpolates between weak pseudorandomness
(or even non-adaptive pseudorandomness)3 and strong pseudorandomness. It is also worth noting
that from the perspective of a user who does not hold the watermarking secret key, the points in S
are statistically hidden. This means that in any standard usage of the PRF between honest users,
with overwhelming probability, the PRF would never be evaluated on one of the restricted points.
Equivalently, if the watermarking authority only sees passive evaluations of the PRF, then it will

2This definition is the complement of the definition from previous works on watermarking [CHN+16, BLW17, KW17,
YAL+17, QWZ18, YAL+18], but we adopt this to maintain consistency with our definition for robust extractability.

3In the weak pseudorandomness game, the adversary is given outputs of the PRF on random inputs, while in the
non-adaptive pseudorandomness game, the adversary must declare all of its evaluation queries before seeing any
evaluations of the PRF or the public parameters.
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not be able to break pseudorandomness of the underlying PRF. This notion of “passive” security
against the watermarking authority strictly improves upon the lattice-based message-embedding
watermarking construction in [QWZ18]. In their setting, the watermarking authority is able to
break pseudorandomness given any two (distinct) evaluations of the PRF; that is, their scheme does
not even satisfy weak pseudorandomness against the watermarking authority. It is an interesting
and important question to obtain watermarking with security in the presence of an extraction
oracle and which retrains full pseudorandomness even against the watermarking authority. The
only constructions that satisfy this notion rely on obfuscation.

Watermarking without private puncturing. All existing constructions of message-embedding
watermarking from standard assumptions have relied on private puncturable PRFs4 in some
form [KW17, QWZ18]. Our message-embedding watermarking construction is the first that does not
rely on private puncturing; standard puncturing in conjunction with key-extractability suffices. While
this might seem like a minor distinction, we note that constrained PRFs can be constructed from
weaker assumptions. For instance, puncturable PRFs can be built from one-way functions [GGM84,
BW13, KPTZ13, BGI14] while the simplest constructions of private puncturable PRFs rely on lattice-
based assumptions [BKM17, CC17, BTVW17, PS18, CVW18]. If we just consider lattice-based
constrained PRFs, the Brakerski-Vaikuntanathan puncturable PRF [BV15] can be based on the
(polynomial) hardness of solving worst-case lattice problems with a nearly polynomial approximation
factor (i.e., nω(1)),5 while constructions of private puncturable PRFs from lattices [BKM17, CC17,
BTVW17, PS18, CVW18] can only be based on the hardness of solving worst-case lattice problems
with a quasi-polynomial approximation factor (i.e., 2logc n for some constant c > 1). Since all of
the existing constructions of message-embedding watermarking from standard assumptions rely on
private puncturing in some form, they can only be reduced to worst-case lattice problems with quasi-
polynomial approximation factors at best. In this work, we show that a variant of our construction
(satisfying a relaxed notion of unforgeability as in [KW17]) can be based solely on worst-case lattice
problems with a nearly polynomial approximation factor (Remark 4.27). Concretely, we give the
first (message-embedding) watermarking scheme whose security can be based on computing nearly
polynomial approximations to worst-case lattice problems (Corollary 5.39).

Additional properties. Finally, in Section 5.5, we briefly describe some additional features of our
new watermarking scheme. For instance, we show a new transferability property supported by our
scheme (i.e., the watermarking authority can remove the watermark from a marked key and then
re-watermark it under a different user’s identity).

1.3 Additional Related Work

We now survey some additional works that use similar techniques as those in our construction.

Lattice-based PRFs. The study of lattice-based PRFs started with the seminal work of
Banerjee et al. [BPR12]. Subsequently, [BLMR13, BP14] constructed the first lattice-based key-

4A private puncturable PRF [BLW17] is a puncturable PRF where the punctured key also hides the punctured point.
There are several lattice-based constructions of private puncturable PRFs (and more generally, private constrained
PRFs) [CC17, BKM17, BTVW17, PS18, CVW18].

5While the general construction described in [BV15] relies on worst-case lattice problems with sub-exponential
approximation factors, when restricted to just puncturing constraints (which can be computable by log-depth circuits),
it can be based on worst-case lattice problems with a nearly polynomial approximation factor by leveraging the
techniques for branching program evaluation [BV14].
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homomorphic PRFs. The first circuit-constrained PRFs were constructed in [BV15, BFP+15] and
were later extended to private constrained PRFs in [BKM17, CC17, BTVW17, PS18, CVW18].

Matrix embeddings. The matrix embedding techniques used in this work build on a series of works
in the areas of attribute-based encryption [SW05] and predicate encryption [BW07, KSW08] from
LWE. These include the attributed-based encryption constructions of [ABB10, GVW13, BGG+14,
GV15, BV16, BCTW16] and the (one-sided) predicate encryption constructions of [AFV11, GMW15,
GVW15, BTVW17, GKW17, WZ17].

2 Technical Overview

In this section, we provide a technical overview of our construction of extractable PRFs from
standard lattice assumptions. As described in Section 1.2, this is the key cryptographic primitive
we rely on in our watermarking constructions (described formally in Section 5). We believe that
the algebraic techniques we develop for constructing our extractable PRF are general and will find
applications beyond the study of PRFs and watermarking. We highlight the core principles and
techniques here, but defer the formal definitions, constructions, and analysis to Section 4.

The LWE assumption. The learning with errors (LWE) assumption [Reg05], parameterized by n,
m, q, χ, states that for a uniformly random vector s ∈ Znq , a uniformly random matrix A ∈ Zn×mq ,
and a noise vector e sampled from a (low-norm) error distribution χ, the distribution (A, s ·A + e)6

is computationally indistinguishable from the uniform distribution over Zn×mq × Zmq . Equivalently,
rather than explicitly adding noise, the LWE assumption can instead be defined with respect to
a rounding modulus p < q and the component-wise rounding operation b·ep : Zq → Zp [BPR12].
This variant of the LWE assumption states that the distribution (A, bs ·Aep) is computationally

indistinguishable from the uniform distribution over Zn×mq × Zmp ; this is also known as the learning
with rounding (LWR) assumption [BPR12]. For the parameter setting we consider in this work,
hardness of LWE implies hardness of LWR [BPR12].

Lattice-based PRFs. A natural way to construct a pseudorandom function F : K ×X → Y from
the LWE assumption is to take the PRF key k ∈ K to be the LWE secret s ∈ Znq and define F(s, x)
to output an LWE sample bs ·Axep for a matrix Ax that is uniquely determined by the input
x ∈ X . Note that when the domain X is super-polynomial, the matrix Ax cannot be a uniformly
random matrix as required by the LWE assumption since F(s, ·) must be an (efficiently-computable)
deterministic function. Constructing a PRF from LWE thus amounts to designing a suitable
mapping x 7→ Ax such that the vector bs ·Axep is still pseudorandom under LWE.

Nearly all existing LWE-based PRF constructions follow this general blueprint; we refer to
Section 1.3 for a more comprehensive discussion of related work. Specifically, these PRF families are
defined with respect to a set of public matrices pp = (A1, . . . ,Aρ) and an input-to-matrix mapping
Evalpp : X → Zn×mq (that implements the mapping x 7→ Ax) such that the outputs of

F(s, x) := bs ·Axep where Ax ← Evalpp(x) (2.1)

are computationally indistinguishable from uniform vectors over Znp under the LWE assumption. In
this overview, rather than focusing on a particular PRF construction, we show how to obtain an
extractable PRF from any lattice-based PRF family that follows this blueprint.

6For notational simplicity, we drop the transpose notation when it is clear from context.
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Key extraction via lattice trapdoors. Recall from Section 1 that in an extractable PRF family,
the holder of a trapdoor td (for the PRF family) can recover the PRF key k ∈ K given only oracle
access to the PRF F(k, ·). Using the basic structure of lattice-based PRF candidates from Eq. (2.1),
a natural starting point is to design the mapping Evalpp : X → Zn×mq such that for a special input
x∗ ∈ X , the matrix D← Evalpp(x∗) has a known (lattice) trapdoor tdD, which can be included as
part of the trapdoor for the extractable PRF family (together with the special input x∗).

A lattice trapdoor tdD for a matrix D ∈ Zn×mq enables sampling short preimages under the
matrix D [Ajt99, GPV08, AP09, MP12, LW15]. Specifically, given an arbitrary target matrix
T ∈ Zn×mq , the trapdoor tdD enables sampling a short matrix RT ∈ Zm×mq such that D ·RT = T.
Additionally, the trapdoor for D can be used to solve the search version of the LWE problem: given
an LWE instance (D, bs ·Dep), one first computes a short matrix RG using the trapdoor D and
then derive the vector

bs ·Dep ·RG = bs ·D ·RGep + noise = bs ·Gep + noise ∈ Zmp ,

where noise is a small error vector that occurs from the modular rounding and G ∈ Zn×mq is the

standard powers-of-two gadget matrix [MP12]. Since GT is the generator matrix for a linear
error-correcting code, recovering s form bs ·Gep + noise is straightforward (c.f., [MP12]).

Given the trapdoor tdD, it is straightforward to implement the Extract algorithm. Namely,
Extract first queries F(s, ·) on the special point x∗ ∈ X to obtain the output bs ·Dep. It then uses
the trapdoor information tdD to recover the secret key s.

Programming the trapdoor. The problem of constructing an extractable PRF family now boils
down to generating a set of public parameters pp and a suitable mapping Evalpp : X → Zn×mq

such that the matrix Ax∗ ← Evalpp(x∗) can be programmed to be a trapdoor matrix D. At
the same time, Evalpp must be designed so that the basic blueprint from Eq. (2.1) still satisfies
pseudorandomness. The concept of programming the output of a PRF was previously explored in
the context of constrained PRFs [BLW17, KW17, CC17, PS18]. These works study the notion of
a private programmable PRF where constrained keys can be programmed to a specific value at a
particular point (or set of points). However, the techniques used in these works do not directly
apply to our setting as our goal is fundamentally different. To construct an extractable PRF, we
need a PRF family such that the evaluation of every PRF key from the family is programmed to a
trapdoor matrix. In fact, our notion is completely independent of constraining, and an extractable
PRF family need not even support constraining. In other words, we want programmability with
respect to the public parameters of the PRF family rather than just an individual PRF key.

The way we construct the function Evalpp is quite simple and general. We take any existing
PRF construction F′ : Zmq ×X → Zmp following the blueprint from Eq. (2.1) that is defined respect
to a set of matrices pp′ = (A1, . . . ,Aρ) and mapping Eval′pp′ : X → Zn×mq , and define a new shifted
mapping

Evalpp(x) := Eval′pp′(x) + W = Ax + W,

for some shift matrix W ∈ Zn×mq and a new set of public matrices pp = (A1, . . . ,Aρ,W). First,
observe that given a point x∗ ∈ X and a trapdoor matrix D, it is easy to generate a programmed
set of public parameters:

1. Generate the matrices A1, . . . ,Aρ ∈ Zn×mq as in the original PRF family.
2. Set W = D−Ax∗ where Ax∗ ← Eval′pp′(x

∗).
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It is easy to see that security of the original PRF family is preserved. Specifically, we now have

F(s, x) = bs · (Ax + W)ep ≈ bs ·Axep + bs ·Wep = F′(s, x) + bs ·Wep , (2.2)

Since a randomly sampled trapdoor matrix D is statistically close to uniform, the matrix W is also
statistically close to uniform. This means that the additional vector offset w = bs ·Wep introduced
by W looks indistinguishable from a uniformly random vector under LWE. Moreover,

F(s, x∗) = bs · (Ax∗ + W)ep = bs ·Dep ,

so given the trapdoor tdD, it is easy to recover the key s.

2.1 Robust Extractability

The PRF family F : Znq × X → Znp defined in Eq. (2.2) already satisfies a basic notion of key-
extractability. Namely, any authority who holds the trapdoor information (x∗, tdD) is able to extract
the PRF key given just oracle access to the function F(s, ·); moreover, F(s, ·) remains pseudorandom
to anyone who does not possess the trapdoor. To support watermarking, however, we require a
stronger security property called robust extractability (Definition 4.9).

Robustness and key-injectivity. At a high level, robust extractability says that the Extract
algorithm should successfully recover the PRF key even if it is just given access to a function
(modeled as a circuit) whose behavior is “close” to F(s, ·). In fact, even if the adversary has oracle
access to Extract, it should not be able to produce a circuit C whose behavior is sufficiently “close”
to F(s, ·) for some key s ∈ Znq , and for which, the extraction algorithm fails to extract s from C.
The closeness metric that we use in this work is ε-closeness; namely, we say that two circuits C
and C ′ are ε-close if they agree on all but an ε-fraction of elements in the domain. In all of our
constructions, ε = 1/poly(λ). Of course, for the extractability property to be well-defined, it should
be the case that for distinct keys s1, s2 ∈ Znq , F(s1, ·) and F(s2, ·) should be “far” apart. As discussed
in Section 1.2, we capture this by defining a notion of key-injectivity (Definition 4.11) similar in
flavor to previous definitions from [CHN+16, KW17], and then show (Theorem 4.22) that over the
randomness used to sample the public parameters, the basic construction in Eq. (2.2) satisfies our
key-injectivity property. Thus, in the subsequent discussion, we assume without loss of generality
that if a circuit C is ε-close to F(s, ·) for any ε = 1/poly(λ), then s is unique.

The basic PRF construction from Eq. (2.2) does not satisfy robust extractability (for any
closeness parameter ε = 1/poly(λ)). Specifically, the adversary can recover the special point x∗ ∈ X
using binary search. To mount the attack, the adversary first chooses a key s ∈ Znq , and constructs
the circuit F(s, ·). The adversary then (arbitrarily) partitions the domain into two halves X1 and X2

and queries the extraction oracle on a circuit C that agrees with F(s, ·) on X1 and outputs ⊥ on X2.
Depending on whether the extraction algorithm succeeds in recovering s or not, the adversary learns
which of X1 or X2 contains the special point x∗. After a polynomial number of queries, the adversary
learns x∗. Once the adversary learns the special point x∗, it can always cause extraction to fail on
a circuit by simply having the circuit output ⊥ on x∗ (and F(s, x) on all x 6= x∗). Moreover, this
circuit agrees with F(s, ·) on all but a single point (i.e., they agree on all but a negligible fraction of
the domain when |X | is super-polynomial), which breaks robust extractability.

Defending against binary search. Effectively, the binary search attack relies on the fact that
the adversary can easily construct circuits C such that the behavior of Extract on C (specifically,
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whether Extract succeeds or not) is correlated with the secret extraction trapdoor (specifically, the
point x∗). To defend against this, we develop a way to ensure that the behavior of Extract on a
circuit C depends only on properties of the circuit C (and not on the extraction trapdoor). If this is
the case, then the extraction oracle does not leak information about the extraction trapdoor, and in
turn, robust extractability holds. We note that this type of approach is conceptually very similar to
the notion of strong soundness in the context of constructing multi-theorem argument systems in
the designated-verifier setting [BCI+13, BISW17].7 To achieve this, we proceed in two steps. First,
we modify the Extract algorithm to force the adversary to only submit circuits that are very close
to an actual PRF circuit F(s, ·). Then, we tweak the construction to ensure that extraction queries
on circuits C that are too close to a real PRF circuit are not helpful to the adversary. We describe
this below.

• Testing for closeness. After the Extract algorithm recovers a candidate key s ∈ Znq from
a circuit C, it additionally checks whether the behavior of the circuit C and F(s, ·) are
“similar.” While computing the exact distance between C and F(s, ·) cannot be done in
polynomial time, it is straightforward to construct a randomized algorithm that accepts (with
overwhelming probability) whenever C and F(s, ·) are ε1-close and rejects (with overwhelming
probability) whenever C and F(s, ·) are ε2-far, for any choice of ε2 > ε1 + 1/poly(λ). This

can be done by sampling random points x1, . . . , xξ
r← X and counting the number of inputs

where C(xi) = F(s, xi). If the number of points on which the two circuits differ is greater than
ξ · (ε1 + ε2)/2, then the Extract algorithm outputs ⊥. By choosing ξ = poly(λ) accordingly,
we can appeal to standard concentration bounds and show that Extract will only output a
candidate key when C and F(s, ·) are at least ε2-close. When applied to watermarking, the
parameter ε1 corresponds to the unremovability threshold while the parameter ε2 corresponds
to the unforgeability threshold.

• Embedding multiple trapdoors. The closeness test prevents the adversary from querying
the extraction oracle on circuits that are more than ε2-far from valid PRF circuits F(s, ·), since
the output of Extract on these queries is ⊥ with overwhelming probability. However, since
ε2 = 1/poly(λ), the adversary can still query the extraction oracle on circuits that are ε2-close
to the real PRF circuit F(s, ·). In this case, each query still (roughly) allows the adversary
to rule out at least an ε2-fraction of the domain, and so, in time poly(1/ε2) = poly(λ), the
adversary is again able to extract the special point x∗ for the PRF family.

The second ingredient in our construction is to embed multiple trapdoors. Specifically, instead
of just embedding a single lattice trapdoor at x∗, we instead embed λ distinct trapdoors at λ
special points x∗1, . . . , x

∗
λ

r← X . Now, on input a circuit C, the Extract algorithm evaluates C
at each special point x∗i , and use the lattice trapdoor inversion algorithm to obtain candidate
keys si. It performs the closeness test described above on each candidate key si and outputs
si if the closeness test succeeds, and ⊥ if none succeed. By key-injectivity, there can only be

7In designated-verifier argument systems, an adversary who has oracle access to the verifier can observe the verifier’s
behavior on different statements and proof strings. When the verifier’s responses are correlated with its secret
verification state, the prover can potentially leverage the leakage and compromise soundness. This is the so-called
“verifier rejection” problem. Strong soundness is a property that says that the responses of the verifier depend only on
the statement or proof string, and not on the secret verification state (the analog in our setting is that the behavior
of the extraction oracle only depends on the input circuit and not the extraction trapdoor). This property is very
useful for arguing soundness in the presence of a verification oracle for designated-verifier argument systems.
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one key s where F(s, ·) is ε2-close to C whenever ε2 < 1/2. At a very high level, the benefit of
having multiple trapdoors is that the adversary has to corrupt the value at all of the trapdoors
in order to cause the output of the Extract algorithm to differ (in a manner that is correlated
with the secret extraction state). Since the special points x∗1, . . . , x

∗
λ are independently and

uniformly distributed, and the adversary is effectively constrained to choosing circuits C which
are ε2-close to some F(s, ·), the probability that the adversary succeeds in constructing such a
circuit is ελ2 = negl(λ). We refer to Section 4.2 and Theorem 4.26 for the formal analysis.

2.2 Puncturing and Pseudorandomness Given the Trapdoor

Recall from Section 1.2 that to obtain a watermarking scheme from an extractable PRF, we
additionally require that the extractable PRFs support puncturing constraints. Since our techniques
for building extractable PRFs are broadly applicable to many lattice-based PRFs, we can take an
existing candidate with the structure from Eq. (2.1) and derive from it an extractable PRF. In
particular, we can apply our general construction to the Brakerski-Vaikuntanathan constrained
PRF [BV15], and obtain a puncturable extractable PRF. To achieve the stronger security notion of
(T -restricted) pseudorandomness against an authority that holds the extraction trapdoor, we have
to develop new techniques. We discuss the challenges below.

Security against the authority. As discussed in Section 1.2, a key contribution of our work is
showing that the keys in our watermarkable PRF family still provide a relaxed form of pseudo-
randomness even against the holder of the watermarking secret key. This property amounts to
showing that the underlying extractable PRF satisfies T -restricted pseudorandomness against an
adversary who is given the extraction trapdoor. Specifically, we show that as long as the adversary
(who has the trapdoor) is not allowed to query the PRF on the special points x∗1, . . . , x

∗
λ, then

pseudorandomness holds. This set of special points constitute the restricted set in the T -restricted
pseudorandomness experiment. First, recall from Eq. (2.2) that

F(s, x) = bs · (Ax + W)ep ≈ F′(s, x) + bs ·Wep ,

where F′(s, x) is the existing PRF (specifically, the Brakerski-Vaikuntanathan PRF [BV15]). At first
glance, one might be tempted to believe that T -restricted pseudorandomness against the authority
follows immediately from the security of F′ since the value F(s, x) is just F′(s, x) shifted by bs ·Wep
where W = D−Ax∗ . Without the extraction trapdoor, D is statistically close to uniform, so we
can appeal to LWE to argue that the shift bs ·Wep is uniformly random (and looks independent of
F′(s, x)). But given the trapdoor matrix D, this is no longer the case; the shift bs ·Wep is correlated
with the PRF key s, and not easily simulated without knowing s itself. Thus, it is unclear how to
directly reduce security of F to security of the underlying PRF F′.

Consider a potential reduction algorithm B that uses an adversary for F in the T -restricted
pseudorandomness security game to break the security of F′. In this case, B is given the extraction
trapdoor. If the reduction algorithm B is able to correctly simulate the evaluation F(s, x) on all
points x ∈ X , then it can use its trapdoor information tdD to extract s and break security of F′

itself. Thus, for the proof to go through, we minimally need to rely on some type of “puncturing”
argument (c.f., [BV15]). A possible starting point is to give the reduction algorithm B a punctured
key k′S for F′ that enables evaluation of F′ at all points except the restricted points S = (x∗1, . . . , x

∗
λ).

Then, B can simulate the correct PRF evaluations at all non-restricted points, but it is unable to
compute the evaluations at the special points for itself.
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Unfortunately, this basic puncturing approach is still insufficient to prove security. Namely,
even if the reduction algorithm can simulate the non-shifted PRF evaluation F′(s, x) at all of the
non-restricted points, it must still simulate the shift bs ·Wep without knowledge of the key s. To
address this, we additionally need to “program” the evaluations of the punctured key kS at the
non-punctured points. Specifically, we program the key kS to introduce a shift by the key-dependent
vector bs ·Wep at all of the non-punctured points. This latter step relies on an adaptation of the
technique of programmable matrix embeddings from [KW17]. This enables B to simulate the full
PRF evaluation F(s, x) = F′(s, x) + bs ·Wep for the adversary. We refer to Section 4.2 for the full
details of the construction and security analysis.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer n ≥ 1, we write
[n] to denote the set of integers {1, . . . , n}. For a distribution D, we write x← D to denote that x

is sampled from D; for a finite set S, we write x
r← S to denote that x is sampled uniformly from S.

We write Funs[X ,Y] to denote the set of all functions mapping from a domain X to a range Y.
Unless specified otherwise, we use λ to denote the security parameter. We say a function f(λ) is

negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say that an event happens
with overwhelming probability if its complement happens with negligible probability. We say an
algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We use
poly(λ) to denote a quantity whose value is bounded by a fixed polynomial in λ. We say that
a family of distributions D = {Dλ}λ∈N is B-bounded if the support of D is {−B, . . . , B − 1, B}
with probability 1. For two families of distributions D1 and D2, we write D1

c
≈ D2 if the two

distributions are computationally indistinguishable (i.e., no efficient algorithm can distinguish

D1 from D2, except with negligible probability). We write D1
s
≈ D2 if the two distributions are

statistically indistinguishable (i.e., the statistical distance between D1 and D2 is negligible). We
now define the circuit-similarity metric we use in this work.

Definition 3.1 (Circuit Similarity). Fix a circuit class C on ρ-bit inputs. For two circuits C,C ′ ∈ C
and for a non-decreasing function ε : N→ N, we write say that C is ε-close to C ′, denoted C ∼ε C ′,
if C and C ′ agree on all but an ε-fraction of inputs. More precisely, we write

C ∼ε C ′ ⇐⇒ Pr[x
r← {0, 1}ρ : C(x) 6= C ′(x)] ≤ ε.

Similarly, we write C 6∼ε C ′ to denote that C and C ′ differ on at least an ε-fraction of inputs.

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote vectors and bold
uppercase letter (e.g., A,B) to denote matrices. To simplify notation, we often omit the vector
transpose notation. In particular, for a vector s and a matrix A, we simply write sA to denote
their vector-matrix product. Throughout this work, we always use the infinity norm for vectors and
matrices. For a vector x, we write ‖x‖ to denote maxi |xi|. Similarly, for a matrix A, we write ‖A‖
to denote maxi,j |Ai,j |. If x ∈ Zn and A ∈ Zn×m, then ‖xA‖ ≤ n · ‖x‖ · ‖A‖.

Modular rounding. For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe
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and extend it coordinate-wise to matrices and vectors over Zq. Here, the operation b·e is the
rounding operation over the real numbers.

The gadget matrix. We define the “gadget matrix” G = g ⊗ In ∈ Zn×n·dlog qe
q where g =

(1, 2, 4, . . . , 2dlog qe−1). We define the inverse function G−1 : Zn×mq → Zndlog qe×m
q which expands

each entry x ∈ Zq in the input matrix into a column of size dlog qe consisting of the bits of the
binary representation of x. To simplify the notation, we always assume that G has width m (in
our construction, m = Θ(n log q)). Note that this is without loss of generality since we can always
extend G by appending all-zero columns. We have the property that for any matrix A ∈ Zn×mq , we
have that G ·G−1(A) = A.

3.1 Lattice Preliminaries

In this section, we provide some background on the computational lattice problems and lattice-based
techniques that we use in this work.

The 1D-SIS problem. Following [BV15, BKM17, KW17], we also use a special case of the
well-known short integer solution (SIS) problem that was introduced by Ajtai [Ajt96] and studied in
a series of works [Mic04, MR07, MP13, GINX16].

Definition 3.2 (One-Dimensional Short Integer Solution [Ajt96]). Fix a security parameter λ and
integers m = m(λ), q = q(λ), and B = B(λ). The one-dimensional short integer solution (1D-SIS)
problem 1D-SISm,q,B is defined as follows:

given v
r← Zmq , compute z ∈ Zm such that ‖z‖ ≤ B and 〈v, z〉 = 0 mod q.

The 1D-SISm,q,B assumption states that no efficient adversary is able to solve the 1D-SISm,q,B
problem except with negligible probability.

The hardness of the 1D-SISm,p,q,B problem has been studied in a series of works [Mic04, MR07,
MP13, GINX16] for various choices of the modulus q. In particular, the work of [GINX16] shows that
the 1D-SIS problem is as hard as approximating worst-case various lattice problems (e.g., GapSVP
or SIVP) on any n-dimensional lattice where n = Õ(log q) to within a factor of of B · Õ(

√
n).

In this work, we make use of the “rounded” variant of the 1D-SIS assumption, which was first
introduced in [BV15] for constructing single-key circuit-constrained PRFs and used in [BKM17,
KW17, PS18] for constructing single-key private constrained PRFs.

Definition 3.3 (One-Dimensional Rounded Short Integer Solution [BV15, BKM17]). Fix a security
parameter λ and integers m = m(λ), p = p(λ), q = q(λ), and B = B(λ). The one-dimensional
rounded short integer solution (1D-SIS-R) problem 1D-SIS-Rm,p,q,B problem is defined as follows:

given v
r← Zmq , compute z ∈ Zm such that ‖z‖ ≤ B,

and one of the following conditions hold:

〈v, z〉 ∈ [−B,B] + (q/p) · Z or 〈v, z〉 ∈ [−B,B] + (q/p)(Z + 1/2).8

The 1D-SIS-Rm,p,q,B assumption states that no efficient adversary can solve the 1D-SIS-Rm,p,q,B
problem except with negligible probability.

8Here, we write (q/p)(Z + 1/2) to denote values of the form bq/2pe+ (q/p) · Z.
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The works of [BV15, BKM17] show that the 1D-SIS-Rm,p,q,B problem is as hard as the 1D-SISm,q/p,B
problem and therefore, is as hard as approximating certain worst-case lattice problems (e.g., GapSVP
or SIVP) on any n-dimensional lattice where n = Õ(log(q/p)) to within a factor of B ·O(

√
n).

Learning with errors. The learning with errors (LWE) assumption was first introduced by
Regev [Reg05]. In the same work, Regev showed that solving LWE in the average case is as hard
as (quantumly) approximating several standard lattice problems in the worst case. We state the
assumption below.

Definition 3.4 (Learning with Errors [Reg05]). Fix a security parameter λ and integers n = n(λ),
m = m(λ), q = q(λ), and an error (or noise) distribution χ = χ(λ) over the integers. Then, the

(decisional) learning with errors (LWE) assumption LWEn,m,q,χ states that for A
r← Zn×mq , s

r← Znq ,

e
r← χm, and u

r← Zmq , the following two distributions are computationally indistinguishable:

(A, sA + e) and (A,u)

When the error distribution χ is B-bounded (oftentimes, a discrete Gaussian distribution), and under
mild conditions on the modulus q, the LWEn,m,q,χ assumption is true assuming various worst-case
lattice problems such as GapSVP and SIVP on an n-dimensional lattice are hard to approximate
within a factor of Õ(n · q/B) by a quantum algorithm [Reg05]. Similar reductions of LWE to the
classical hardness of approximating worst-case lattice problems are also known [Pei09, ACPS09,
MM11, MP12, BLP+13].

Lattice trapdoors. Although LWE is believed to be hard, with some auxiliary trapdoor informa-
tion, the problem becomes easy. Lattice trapdoors have been used in a wide variety of context and
are studied extensively in the literature [Ajt99, GPV08, AP09, MP12, LW15]. Since the specific
details of the trapdoor constructions are not necessary for this work, we highlight just the properties
we require in the following theorem.

Theorem 3.5 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12, LW15]). Fix a security parameter
λ, lattice parameters n, m, q, and a rounding modulus p where m = Ω(n log q) and q = Ω(np

√
log q).

Then, there exists a tuple of efficient algorithms (TrapGen, Invert) with the following properties:

• TrapGen(1λ)→ (A, td): On input the security parameter λ, the trapdoor generation algorithm
outputs a matrix A ∈ Zn×mq and a trapdoor td.

• Invert(td,v) → s/⊥: On input a trapdoor td, and a vector v ∈ Zmp , the inversion algorithm
outputs a vector s ∈ Znq or ⊥.

• For all vectors s ∈ Znq , (A, td)← TrapGen(1λ), we have

Pr
[
Invert

(
td, bs ·Aep

)
= s
]

= 1.

• For (A, td)← TrapGen(1λ) and A′
r← Zn×mq , we have ∆(A,A′) ≤ q−n.
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3.2 Embedding Circuits into Matrices

We also use the matrix encoding scheme introduced by Boneh et al. [BGG+14]. A matrix encoding
scheme allows one to embed a sequence of input bits x1, . . . , xρ ∈ {0, 1} into matrices A1, . . . ,Aρ ∈
Zn×mq . Moreover, it is possible to homomorphically evaluate any circuit (of a priori bounded depth)
over the encoded input bits. The specific implementation of the homomorphic operations are
non-essential to this work, so we just give the basic schematic that we need in the theorem below:

Theorem 3.6 (Matrix Embeddings [BGG+14]). Fix a security parameter λ, and lattice parameters
n,m, q. Then, there exist a pair of efficiently-computable algorithms (Evalpk,Evalct) with the following
syntax:

• Evalpk
(
C, (Ai)i∈[ρ]) → AC : On input a circuit C : {0, 1}ρ → {0, 1}, and a set of matrices

(Ai)i∈[ρ], the Evalpk algorithm outputs a matrix AC ∈ Zn×mq .

• Evalct
(
C, x, (Ai)i∈[ρ], (ai)i∈[ρ]

)
→ aC,x: On input a circuit C : {0, 1}ρ → {0, 1}, an input

x ∈ {0, 1}ρ, a set of matrices (Ai)i∈[ρ], and a set of vectors (ai)i∈[ρ], the Evalct algorithm
outputs a vector aC,x ∈ Zmq .

Moreover, the algorithms (Evalpk,Evalct) satisfy the following property. Let (Ai)i∈[ρ] be a set of
matrices in Zn×mq , let x ∈ {0, 1}ρ be an input, let C : {0, 1}ρ → {0, 1} be a Boolean circuit of depth
d, and let (ai)i∈[ρ] be vectors of the form

ai = s(Ai + xi ·G) + ei ∀i ∈ [ρ],

for some vector s ∈ Znq and where ‖ei‖ ≤ B for all i ∈ [ρ]. Then, if we compute the matrix
AC ← Evalpk

(
C, (Ai)i∈[ρ]

)
and the vector aC,x ← Evalct

(
C, x, (Ai)i∈[ρ], (ai)i∈[ρ]

)
, we have that

aC,x = s(AC + C(x) ·G) + eC,x, (3.1)

for an error vector ‖eC,x‖ ≤ B ·mO(d).

The private translucent PRF construction from [KW17] introduced a way to the “program” the
matrix in Eq. (3.1) so that when C(x) = 1, the evaluation procedure outputs s(AC + D) + eC,x, for
an arbitrary matrix D (instead of the gadget matrix G). The ability to program the target matrix
will be useful in the security analysis of our puncturable extractable PRF construction (Section 4).
Again, we do not need the specific details of how the homomorphic evaluation and programming is
implemented, so we abstract out the core construction from [KW17] in the following theorem:

Theorem 3.7 (Matrix Embeddings with Programming [KW17]). Fix a security parameter λ
and lattice parameters n,m, q. Then, there exists a pair of efficiently-computable algorithms
(EvalPpk,EvalPct) with the following syntax:

• EvalPpk

(
C, (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m]) → AC : On input a circuit C : {0, 1}ρ → {0, 1}, and

two sets of matrices (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m] ∈ Zn×mq , the EvalPpk algorithm outputs a
matrix AC ∈ Zn×mq .

• EvalPct

(
C, x, (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m], (ai)i∈[ρ], (ãα,β)α∈[n],β∈[m]

)
→ ax,C : On input a circuit

C : {0, 1}ρ → {0, 1}, an input x ∈ {0, 1}ρ, sets of matrices (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m] ∈ Zn×mq ,
and sets of vectors (ai)i∈[ρ], (ãα,β)α∈[n],β∈[m] ∈ Zmq , the EvalPct algorithm outputs a vector
aC,x ∈ Zmq .
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Moreover, the algorithms (EvalPpk,EvalPct) satisfy the following property. First, define the following
quantities:

• Let (Ai)i∈[ρ] and (Ãα,β)α∈[n],β∈[m] be collections of matrices in Zn×mq .

• Let D ∈ Zn×mq be a matrix where the (α, β)th entry is dα,β.

• Let x ∈ {0, 1}ρ and let C : {0, 1}ρ → {0, 1} be a Boolean circuit of depth d.

• Let (ai)i∈[ρ], (ãα,β)α∈[n],β∈[m] be vectors of the form

ai = s(Ai + xi ·G) + ei ∀i ∈ [ρ],

ãα,β = s(Aα,β + dα,β ·G) + eα,β ∀α ∈ [n], β ∈ [m],

for some vector s ∈ Znq and ‖ei‖ , ‖ẽj,k‖ ≤ B for all i ∈ [ρ], α ∈ [n], and β ∈ [m].

Then, if we compute the matrix AC ← EvalPpk

(
C, (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m]

)
and the vector ax,C ←

EvalPct

(
x,C, (Ai)i∈[ρ], (Ãα,β)α∈[n],β∈[m], (ai)i∈[ρ], (ãα,β)α∈[n],β∈[m]

)
, we have that

ax,C = s(AC + C(x) ·D) + ex,C ,

where ‖ex,C‖ ≤ B ·mO(d).

Remark 3.8 (Matrix Embeddings for Branching Programs [BV14, GV15]). The matrix embeddings
technique described in Theorems 3.6 and 3.7 support the homomorphic evaluation of any circuit (of
a priori bounded depth) on the encoded bits. In particular, homomorphically evaluating a circuit of
depth d on the encoded bits can increase the initial noise B by a multiplicative factor mO(d). For
circuits in NC1, there are more efficient ways to evaluate on the encodings by first converting them
into branching programs and tailoring the homomorphic evaluation accordingly [BV14, GV15]. This
means that for any circuit of depth d = O(log ρ), one can homomorphically evaluate the circuit on
the encoded bits such that the noise that is associated with the encodings grows by at most poly(ρ)
factor as opposed to mO(log ρ). We will leverage this fact to base security of our main constructions
on solving worst-case lattice problems with a nearly polynomial (i.e., very slightly superpolynomial)
approximation factor.

4 Extractable PRF

In this section, we introduce the core notion of an extractable PRF that we use throughout this
work. We begin by recalling the definition of a PRF and then introduce our relaxed notion of
T -restricted pseudorandomness (i.e., pseudorandom everywhere except on a fixed set of T points).

Definition 4.1 (Pseudorandom Function [GGM84]). A pseudorandom function with key-space
K, domain X , and range Y is a function F : K × X → Y that can be computed by a determin-
istic polynomial-time algorithm. A PRF can also include a separate key-generation algorithm
F.KeyGen(1λ) that on input the security parameter λ, outputs a key k ∈ K. If no explicit key-

generation algorithm is provided, then the default behavior of F.KeyGen is to sample k
r← K. A

function function F is a secure PRF if for all efficient adversaries A and sampling k ← F.KeyGen(1λ),

f
r← Funs[X ,Y], we have that∣∣∣Pr

[
AF(k,·)(1λ) = 1

]
− Pr

[
Af(·)(1λ) = 1

]∣∣∣ = negl(λ).
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Definition 4.2 (T -Restricted Pseudorandomness). Let F : K×X → Y be a function with key-space
K, domain X , and range Y (and optionally, a key-generation algorithm F.KeyGen(1λ) that takes
as input a security parameter λ and outputs a key k ∈ K). We say that F satisfies T -restricted
pseudorandomness if there exists a set S ⊆ X where |S| ≤ T , such that for all efficient adversaries

A, and sampling k ← F.KeyGen(1λ), f
r← Funs[X ,Y], we have that∣∣∣Pr

[
AO0(k,·)(1λ, S) = 1

]
− Pr

[
AO1(f,·)(1λ, S) = 1

]∣∣∣ = negl(λ),

where the oracles O0 and O1 are defined as follows:

• The S-restricted (real) evaluation oracle O0 takes as input a key k ∈ K and a point x ∈ X
and outputs F(k, x) if x /∈ S and ⊥ otherwise.

• The S-restricted (ideal) evaluation oracle O1 takes as input a function f : X → Y and a point
x ∈ X and outputs f(x) if x /∈ S and ⊥ otherwise.

In other words, the outputs of F look pseudorandom to any adversary that cannot query the PRF
on the restricted set S.

Remark 4.3 (Pseudorandomness Implies T -Restricted Pseudorandomness). It is easy to see that
if F : K ×X → Y is pseudorandom, then it also satisfies T -restricted pseudorandomness for all T .
Specifically, we take the restricted set S to be the empty set.

Remark 4.4 (Selective Pseudorandomness). In our security analysis, it will often be easier to
work with a weaker notion of pseudorandomness called selective pseudorandomness. We give a
more precise definition in Definition A.1. Using a technique called complexity leveraging [BB04a],
selective pseudorandomness implies full pseudorandomness (as defined in Definition 4.1) at the
expense of a super-polynomial loss in the security reduction. We define a notion of selective
T -restricted pseudorandomness in the same manner (Remark A.3). In Remark A.17, we describe
another approach to obtain full security with only a polynomial loss (based on a “partitioning”
argument [BB04b, Wat05]).

Extractable PRFs. We now define the syntax and security requirements of an extractable PRF
family. We refer to Sections 1.2 and 2.1 for an overview of the definitions.

Definition 4.5 (Extractable PRF). An extractable PRF with key-space K, domain X , and range
Y consists of a tuple of efficient algorithms ΠEPRF = (PrmsGen,SampleKey,Eval,Extract) with the
following syntax:

• PrmsGen(1λ) → (pp, td): On input the security parameter λ, the parameter-generation
algorithm outputs a set of public parameters pp and a trapdoor td.

• SampleKey(pp)→ k: On input the public parameters pp, the key-generation algorithm outputs
a PRF key k ∈ K.

• Eval(pp, k, x)→ y: On input the public parameters pp, a PRF key k ∈ K, and input x ∈ X ,
the PRF evaluation algorithm outputs a value y ∈ Y.
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• Extract(pp, td, C)→ k/⊥: On input the public parameters pp, the trapdoor td, and a circuit
C : X → Y, the extraction algorithm outputs a key k ∈ K ∪ {⊥}. Without loss of generality,
the Extract algorithm can also be defined to take a circuit whose domain is any superset of
the PRF domain X .

The public parameters pp of an extractable PRF induces a PRF family Fpp : K × X → Y where
Fpp(k, x) := Eval(pp, k, x) and Fpp.KeyGen(1λ) computes and returns k ← SampleKey(pp). Note
that the description of the induced PRF family F does not include the trapdoor td.

Definition 4.6 (Pseudorandomness). Fix a security parameter λ, and let ΠPRF = (PrmsGen,
SampleKey,Eval,Extract) be an extractable PRF with key-space K, domain X , and range Y. We
say that ΠPRF satisfies pseudorandomness if for (pp, td)← PrmsGen(1λ), the induced PRF family
Fpp : K ×X → Y is a secure PRF.

Definition 4.7 (T -Restricted Pseudorandomness Given the Trapdoor). Fix a security parameter λ,
and let ΠPRF = (PrmsGen, SampleKey,Eval,Extract) be an extractable PRF with key-space K, domain
X , and range Y . For a parameter T ∈ N, we say that ΠPRF satisfies T -restricted pseudorandomness
given the trapdoor if for (pp, td)← PrmsGen(1λ), the induced PRF family Fpp : K×X → Y satisfies
T -restricted pseudorandomness even when the distinguisher (i.e., the algorithm A) is given the
trapdoor (equivalently, even if the description of Fpp includes the trapdoor td).

Definition 4.8 (Extract-and-Test). An extractable PRF ΠEPRF = (PrmsGen,SampleKey,Eval,
Extract) with key-space K has an “extract-and-test” extraction algorithm if Extract can additionally
be decomposed into two algorithms (ExtractCandidates,TestCandidate) with the following properties:

• ExtractCandidates(pp, td, C)→ S: On input the public parameters pp, the trapdoor td, and
a circuit C, the candidate extraction algorithm outputs a (possibly empty) set S ⊆ K of
candidate keys, where |S| = poly(λ).

• TestCandidate(pp, td, C, k)→ b: On input the public parameters pp, the trapdoor td, a circuit
C : X → Y, and a candidate key k ∈ K, the test candidate algorithm outputs a bit b ∈ {0, 1}.
Note that we allow TestCandidate to be a randomized algorithm.

Moreover, the Extract(pp, td, C) algorithm can be written as follows:

• Extract(pp, td, C): First invoke ExtractCandidates(pp, td, C) to obtain a set S ⊆ K of candidate
keys. For each k ∈ S, compute bk ← TestCandidate(pp, td, C, k). Output any k ∈ S where
bk = 1. If bk = 0 for all k ∈ S, output ⊥.

Definition 4.9 (Robust Extractability). Fix a security parameter λ and closeness parameters ε1, ε2.
Let ΠEPRF = (PrmsGen,SampleKey,Eval,Extract) be an extractable pseudorandom function with
key-space K, domain X , and range Y . Suppose ΠEPRF has an extract-and-test extraction algorithm
where for (pp, td)← PrmsGen(1λ) and ε1 < ε2, the TestCandidate algorithm satisfies the following
two properties:

• For all k ∈ K and C(·) ∼ε1 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) = 1] = 1− negl(λ).

• For all k ∈ K and C(·) 6∼ε2 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) = 1] = negl(λ).

Next, for an adversary A, we define two experiments ExtRealA(λ, ε1, ε2) and ExtIdealA(λ, ε1, ε2):
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• Setup phase: At the start of both experiments, the challenger samples (pp, td)← PrmsGen(1λ)
and gives pp to A.

• Query phase: Adversary A can issue any (polynomial) number of extraction queries to the
challenger. On an extraction oracle query C : X → Y, the challenger in the two experiments
responds as follows:

– ExtReal : In the real experiment, the challenger replies with Extract(pp, td, C).

– ExtIdeal : In the ideal experiment, the challenger proceeds as follows:

∗ If there exists a unique k ∈ K where C(·) ∼ε2 Eval(pp, k, ·), the challenger computes
bk ← TestCandidate(pp, td, C, k). It replies with k if bk = 1 and ⊥ if bk = 0.

∗ Otherwise, the challenger replies with ⊥.

• Output phase: Once the adversary A is done making queries, it outputs a bit b ∈ {0, 1}.
This is the output of the experiment.

We say that ΠEPRF satisfies (ε1, ε2)-robust extractability if for all (possibly unbounded) adversaries
A making any polynomial number Q = poly(λ) queries, we have that∣∣Pr

[
ExtRealA(λ, ε1, ε2) = 1

]
− Pr

[
ExtIdealA(λ, ε1, ε2) = 1]

∣∣ = negl(λ).

Remark 4.10 (Generalized Candidate Testing). In our constructions, we will require a generalized
version of TestCandidate with the following properties:

• The TestCandidate algorithm is publicly-computable; namely, TestCandidate does not depend on
the trapdoor td. To make this explicit, in the case where TestCandidate is publicly-computable,
we write the algorithm as TestCandidate(pp, C, k).

• If C1, C2 satisfy C1 ∼ε C2 for some ε = negl(λ), then for all pp and all k ∈ K,

Pr[TestCandidate(pp, C1, k) 6= TestCandidate(pp, C2, k)] = negl(λ).

• Instead of taking as input a candidate key k ∈ K as input, the TestCandidate can also take as
input an arbitrary circuit C ′ : X → Y , with the property that for (pp, td)← PrmsGen(1λ) and
k ← SampleKey(pp), and any circuit C ′ : X → Y where C ′ ∼ε Eval(pp, k, ·) and ε = negl(λ),

{TestCandidate(pp, C, k)}
s
≈ {TestCandidate(pp, C, C ′)},

where the randomness is taken over the random coins in PrmsGen, SampleKey, and TestCandidate.

Key-injectivity. As discussed in Section 2, a property that is often useful in conjunction with
robust extractability is key-injectivity. We define this below.

Definition 4.11 (Key-Injectivity). Let ΠEPRF = (PrmsGen,SampleKey,Eval,Extract) be an ex-
tractable PRF with key-space K and domain X . We say that ΠEPRF is key-injective if for
(pp, td)← PrmsGen(1λ), we have

Pr
[
∃ k0, k1 ∈ K, x ∈ X : Eval(ppk0, x) = Eval(ppk1, x) ∧ k0 6= k1

]
= negl(λ).
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Lemma 4.12 (Uniqueness of Keys). Suppose an extractable PRF ΠEPRF = (PrmsGen, SampleKey,
Eval,Extract) with key-space K, domain X , and range Y satisfies key-injectivity (Definition 4.11).
Then, for all positive constants ε < 1/2 and taking (pp, td) ← PrmsGen(1λ), it holds with over-
whelming probability that for all circuits C : X → Y, if there exists a key k ∈ K such that
C(·) ∼ε Eval(pp, k, ·), then k is unique.

Proof. Take any circuit C : X → Y, and suppose there exists a key k∗ ∈ K where C(·) ∼ε
Eval(pp, k, ·). First, for any key k ∈ K, define the set Sk as

Sk = |{x ∈ X : C(x) = Eval(pp, k, x)}| .

By assumption, |Sk∗ | ≥ (1− ε) |X |. Next, by key-injectivity, with overwhelming probability (over
the choice of pp), it holds that for all keys k 6= k∗ and all x ∈ X , Eval(pp, k∗, x) 6= Eval(pp, k, x).
Equivalently, with overwhelming probability, Sk < ε |X | for all keys k 6= k∗. This means that for all
k 6= k∗, Eval(pp, k, ·) and C` differ on at least a (1− ε)-fraction of the domain. Since 1− ε > 1/2 > ε,
this means that C(·) 6∼ε EX.Eval(pp, k, ·) for all k 6= k∗. In other words, k∗ is unique.

4.1 Puncturable Extractable PRFs

In a puncturable PRF [BW13, KPTZ13, BGI14], the PRF key k can be used to derive a punctured
key kx∗ that can be used to evaluate the PRF everywhere except the punctured point x∗ ∈ X .
Moreover, the actual PRF value F(k, x∗) remains pseudorandom even given the punctured key. More
generally, we can consider puncturing the PRF at a set S ⊆ X . In this case, the punctured key kS
can be used to evaluate the PRF at all points in X \ S, while the PRF values at points in S remain
pseudorandom. This is also called a constrained PRF [BW13]. In our setting, we primarily consider
puncturing at sets containing up to poly(λ) elements. We now review the formal definitions.

Definition 4.13 (Puncturable PRF [BW13, KPTZ13, BGI14, adapted]). Let ΠPRF = (PrmsGen,
SampleKey,Eval,Extract) be an extractable PRF with key-space K, domain X , and range Y (Defini-
tion 4.5). We say that ΠPRF is a puncturable PRF if there additionally exist two efficient algorithms
(Puncture,PunctureEval) with the following syntax:

• Puncture(pp, k, S)→ kS : On input the public parameters pp, a PRF key k ∈ K, and a puncture
set S ⊆ X (where |S| = poly(λ)), the puncturing algorithm outputs a punctured key kS .

• PunctureEval(pp, kS , x)→ y: On input the public parameters pp, a punctured key kS , and an
input x ∈ X , the punctured-evaluation algorithm outputs a value y ∈ Y.

Correctness. We introduce two notions of correctness. The standard notion of correctness for
puncturable PRFs says that the behavior of the punctured key is identical to that of the real key
on all points not in the punctured set. In this work, we consider two relaxation of this notion.
First, we show that perfect correctness holds for most keys in the domain (e.g., if a key is sampled
honestly using SampleKey and then punctured, the punctured key and the original key agree on all
non-punctured points with overwhelming probability). While this property suffices for applications
where we can assume that PRF keys are honestly sampled, in scenarios like watermarking, we
additionally give the adversary the ability to choose PRF keys. For this reason, we introduce
an additional correctness requirement that says that no efficient adversary is able to find a key
k ∈ K and a set S such that the punctured key kS ← Puncture(pp, k, S) disagrees with k on a
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noticeable fraction of non-punctured points. Essentially, this property says that even if we puncture
an adversarially-chosen key, the punctured key is still almost functionality-preserving.

Definition 4.14 (Perfect Correctness for Most Keys). Fix a security parameter λ, and let ΠEPRF =
(PrmsGen,SampleKey,Eval,Extract,Puncture,PunctureEval) be a puncturable extractable PRF with
key-space K, domain X , and range Y. We say that ΠEPRF is statistically correct for honest keys if
for all S ⊆ X where |S| = poly(λ), and setting (pp, td) ← PrmsGen(1λ), k ← SampleKey(pp), and
kS ← Puncture(pp, k, S), we have that

Pr
[
∃x ∈ X \ S : Eval(pp, k, x) 6= PunctureEval(pp, kS , x)

]
= negl(λ).

Definition 4.15 (Almost-Functionality-Preserving for Adversarial Keys). Fix a security parameter
λ, and let ΠEPRF = (PrmsGen, SampleKey,Eval,Extract,Puncture,PunctureEval) be a puncturable
extractable PRF with key-space K, domain X , and range Y. We say that ΠEPRF is almost-
functionality-preserving for adversarial keys if for all efficient adversaries A, and taking (pp, td)←
PrmsGen(1λ), (k, S)← A(1λ, pp) and kS ← Puncture(pp, k, S), we have that

Pr
[
x

r← X \ S : Eval(pp, k, x) 6= PunctureEval(pp, kS , x)
]

= negl(λ).

Definition 4.16 (Puncturing Security). Fix a security parameter λ, and let ΠEPRF = (PrmsGen,
SampleKey,Eval,Extract,Puncture,PunctureEval) be a puncturable extractable PRF with key-space
K, domain X , and range Y. For an efficient adversary A and a bit b, we define experiment
ExptPuncΠEPRF,A(λ, b) as follows:

• Setup phase: At the beginning of the experiment, the adversary chooses a set S ⊆ X
with |S| = poly(λ) and a challenge input x∗ ∈ S, and sends (S, x∗) to the challenger. Then,
the challenger samples the public parameters (pp, td) ← PrmsGen(1λ), a master secret key
k ← SampleKey(pp), and the punctured key kS ← Puncture(pp, k, S). Furthermore, the
challenger computes the challenge evaluation as follows:

– If b = 0, the challenger sets y∗ ← Eval(pp, k, x∗).

– If b = 1, the challenger sets y∗
r← Y.

Finally, it provides pp, kS , and y∗ to A.

• Query phase: Adversary A can issue any (polynomial) number of evaluation queries x ∈ S
to the challenger. The challenger in the two experiments responds with y ← Eval(pp, k, x).

• Output phase: Once the adversary A is done making queries, it outputs a bit b ∈ {0, 1}.
This is the output of the experiment.

We say that ΠEPRF satisfies selective puncturing security if for all efficient adversaries A,∣∣Pr
[
ExptPuncΠEPRF,A(λ, 0) = 1

]
− Pr

[
ExptPuncΠEPRF,A(λ, 1) = 1

]∣∣ = negl(λ).

Remark 4.17 (Selective vs. Adaptive Security). Definition 4.16 requires that the adversary commit
to its challenge point x∗ ∈ X at the beginning of the security game. We can also define an adaptive
notion of security where the adversary gets to choose the challenge point after seeing the public
parameters, the punctured key, and making evaluation queries. Note though this security notion
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is adaptive in the choice of the challenge point, but still selective in the choice of the constraint
set S. Similar to the setting of selective vs. adaptive pseudorandomness (Remark 4.4), we can
use complexity leveraging to boost selective puncturing security to adaptive puncturing security
at the expense of a super-polynomial loss in the security reduction. In Remark A.17, we describe
another approach of obtaining full adaptivity (in the choice of the challenge evaluation) with only
a polynomial loss in the security reduction. This is the technique taken in [BV15] for showing
adaptive security of their lattice-based constrained PRF.

Remark 4.18 (Puncturing Security Implies Pseudorandomness). It is straightforward to see that
selective puncturing security implies selective pseudorandomness (Definition A.1), and similarly,
that adaptive puncturing implies adaptive pseudorandomness.

4.2 Constructing Extractable PRFs

In this section, we present our extractable PRF family from standard lattice assumptions. Although
our construction follows the main ideas that we outlined in Section 2, implementing these ideas
algebraically is non-trivial. We begin with a brief algebraic overview of our construction.

Construction overview. As discussed in Section 2, our PRF family is defined with respect to
a set of public matrices in Zn×mq , which we denote by (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ],
(Cj)j∈[ρ], V, and W. Here, n,m, q are lattice parameters, t is the number of punctured points, and
ρ is the bit-length of the PRF input. These matrices can be logically partitioned into three sets of
matrices that handle different correctness or security goals.

• The matrices (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m] are used for the T -restricted pseudorandomness proof.
As discussed in Section 2.2, handling the evaluation queries in T -restricted pseudorandomness
requires generating a punctured key that is specifically programmed to enable simulation of
the key-dependent shift (i.e., the bs ·Wep term in Eq. (2.2)). Specifically, a key step in the
proof of T -restricted pseudorandomness (Theorem 4.25) will rely on generating a punctured
key with respect to the matrices (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m].

• The matrices (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V implement the constrained PRF construction
of [BV15]. The punctured key that is generated by the puncturing algorithm will be punctured
with respect to these matrices.

• The matrix W is the shift matrix. As described in Section 2, matrix W is generated by
first evaluating Evalpp on the rest of the matrices (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ],
(Cj)j∈[ρ], V, and then defining it as a corresponding shifted matrix from a trapdoor matrix D.

As discussed in Section 2.1, to achieve robust extractability, we need to embed multiple trapdoors.
We support this by simply concatenating together multiple copies of the PRF, where each copy is
associated with one of the trapdoors. We now give the formal construction.

Construction 4.19 (Puncturable Extractable PRFs). Let λ be a security parameter, and ε1, ε2

be distance parameters where 0 < ε1 < ε2 < 1/2, and ε2 ≥ ε1 + 1/poly(λ). We define the following
scheme parameters:

• (n,m, q, χB) – lattice parameters, where χB is a B-bounded distribution,
• p – the rounding modulus,
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• t – a bound on the number of points to be punctured (indexed by i),
• ρ – the bit-length of the PRF input (indexed by j),
• η – the number of special points where we embed the extraction trapdoor (indexed by `).

Throughout this section and in the analysis, we will assume that n,m, t, ρ, η = poly(λ). Let
(TrapGen, Invert) be the lattice trapdoor algorithms from Theorem 3.5. For an input x ∈ {0, 1}ρ, we
define the equality function f eqx : {0, 1}ρ → {0, 1} where

f eqx (x∗) =

{
1 if x = x∗

0 otherwise.

More generally, for a set of points S ⊆ {0, 1}ρ of size t (represented as a concatenation of the
bit-strings in S), we define the containment function f conx : {0, 1}tρ → {0, 1} where

f conx (S) =

{
1 if x ∈ S
0 otherwise.

Note that both the equality circuit f eqx and the containment circuit f conx for any x ∈ {0, 1}ρ can be
computed by a circuit of depth d = O(log ρ+ log t) = O(log λ). Our (puncturable) extractable PRF
ΠPRF = (PrmsGen, SampleKey,Eval,Extract,Puncture,PunctureEval) with key-space K = [−B,B]n,
domain X = {0, 1}ρ\{0}, and range Y = Zηmp is defined as follows:

• PrmsGen(1λ): On input the security parameter λ, the PrmsGen algorithm begins by sampling

(A
(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (B

(`)
i,j )i∈[t],j∈[ρ], (C

(`)
j )j∈[ρ], V(`) uniformly at random from Zn×mq

for every ` ∈ [η]. It also samples a set of η special points h(`) r← {0, 1}ρ along with trapdoor
matrices (D(`), tdD(`))← TrapGen(1λ) for all ` ∈ [η]. Then, for all ` ∈ [η], it computes

– A
(`)

h(`)
← EvalPpk

(
f eq
h(`)

, (A
(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

– B
(`)

h(`)
← Evalpk

(
f con
h(`)

, (B
(`)
i,j )i∈[t],j∈[ρ]

)
,

– C
(`)

h(`)
← Evalpk

(
f eq
h(`)

, (C
(`)
j )j∈[ρ]

)
,

and defines the matrix

W(`) = A
(`)

h(`)
+ B

(`)

h(`)
G−1

(
C

(`)

h(`)

)
G−1

(
V(`)

)
+ D(`) ∈ Zn×mq . (4.1)

Finally, it outputs

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

, (4.2)

and td =
(
h(`), tdD(`)

)
`∈[η]

.

• SampleKey(pp): On input the public parameters pp, the key-generation algorithm samples a
key s← χn, and outputs the PRF key k = s.

• Eval(pp, k, x): On input the public parameters pp (as specified in Eq. (4.2)), a PRF key k = s,
and an input x ∈ {0, 1}ρ \ {0}, the evaluation algorithm first computes the matrices
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– A
(`)
x ← EvalPpk

(
f eqx , (A

(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

– B
(`)
x ← Evalpk

(
f conx , (B

(`)
i,j )i∈[t],j∈[ρ]

)
,

– C
(`)
x ← Evalpk

(
f eqx , (C

(`)
j )j∈[ρ]

)
,

for all ` ∈ [η]. Then, it sets

Z(`)
x = A(`)

x + B(`)
x G−1(C(`)

x )G−1(V(`)), (4.3)

for all ` ∈ [η], and computes the vector

ỹx = s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)
∈ Zηmq . (4.4)

Finally, it outputs the rounded vector yx = bỹep ∈ Zηmp .

• Extract(pp, td, C): The extraction algorithm is defined with respect to two sub-algorithms
ExtractCandidates and TestCandidate (as in Definition 4.8) that are defined as follows:

– ExtractCandidates(pp, td, C): On input the public parameters pp (as specified in Eq. (4.2)),
a trapdoor td =

(
h(`), tdD(`)

)
`∈[η]

, and a circuit C : {0, 1}ρ → Zηmp , the candidate ex-

traction algorithm evaluates the circuit on the test points to get y(`) ← C
(
h(`)
)

for all

` ∈ [η]. Then, for all ` ∈ [η], it parses the vector y(`) = (y
(`)
1 | · · · | y(`)

η ) where each

y
(`)
1 , . . . ,y

(`)
η ∈ Zmp . Then, it extracts s(`) ← Invert(tdD(`) ,y

(`)
` ) and outputs the set of all

s(`) for which s(`) 6= ⊥ and s(`) ∈ [−B,B]n.

– TestCandidate(pp, C, k): Let δ = (ε2 − ε1)/2 = 1/poly(λ), ε = ε1 + δ, and ξ = λ/δ2 =
poly(λ). On input the public parameters pp, a key k = s, and a circuit C : {0, 1}ρ → Zηmp ,

the test candidate algorithm samples x∗1, . . . , x
∗
ξ

r← {0, 1}ρ and computes the number Ns

of indices i ∈ [ξ] where C(x∗i ) 6= Eval(pp, s, x∗i ). If Ns ≤ εξ, then output 1. Otherwise,
output 0. Note that TestCandidate is publicly-computable (it does not require a trapdoor).

The full extraction algorithm follows the extract-and-test procedure described in Definition 4.8.

• Puncture(pp, k, S): On input the public parameter pp (as specified in Eq. (4.2)), a PRF key
k = s, and a set of points to be punctured S = {xi}i∈[t], the Puncture algorithm first samples

error vectors e
(`)
A,j , e

(`)

Ã,α,β
, e

(`)
B,i,j , e

(`)
W ← χm for all i ∈ [t], j ∈ [ρ], α ∈ [n], β ∈ [m], and ` ∈ [η].

Then, for each ` ∈ [η] it defines the vectors

– a
(`)
j = sA

(`)
j + e

(`)
A,j for all j ∈ [ρ],

– ã
(`)
α,β = sÃ

(`)
α,β + e

(`)

Ã,α,β
for all α ∈ [n] and β ∈ [m],

– b
(`)
i,j = s

(
B

(`)
i,j + xi,j ·G

)
+ e

(`)
B,i,j for all i ∈ [t] and j ∈ [ρ],

– w(`) = sW(`) + e
(`)
W.

Finally, it outputs the punctured key

kS =
(
S,
(
w(`), (a

(`)
j )j∈[ρ], (ã

(`)
α,β)α∈[n],β∈[m], (b

(`)
i,j )i∈[t],j∈[ρ]

)
`∈[η]

)
. (4.5)
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• PunctureEval(pp, kS , x): On input the public parameters pp (as specified in Eq. (4.2)), the
punctured key kS (as specified in Eq. (4.5)), and an input x ∈ {0, 1}ρ \ {0}, the punctured
evaluation algorithm computes the following for each ` ∈ [η]:

– a
(`)
x ← EvalPct

(
f eqx ,0, (A

(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (a

(`)
j )j∈[ρ], (ã

(`)
α,β)α∈[n],β∈[m]

)
,

– b
(`)
x ← Evalct

(
f conx , S, (B

(`)
i,j )i∈[t],j∈[ρ], (b

(`)
i,j )i∈[t],j∈[ρ]

)
,

– C
(`)
x ← Evalpk

(
f eqx , (C

(`)
j )j∈[ρ]

)
.

Then, for each ` ∈ [η], it sets

z(`)
x = a(`)

x + b(`)
x G−1(C(`)

x )G−1(V(`)), (4.6)

and computes the vector

yx = (w(1) − z(1)
x | · · · | w(η) − z(η)

x ) ∈ Zηmq . (4.7)

Finally, it outputs the rounded vector yx = bỹxep ∈ Zηmp .

Security analysis. We now show that under the LWE and 1D-SIS-R assumptions (with suitable
parameters), the puncturable extractable PRF construction from Construction 4.19 satisfies cor-
rectness, puncturing security, and robust extractability. We give the formal theorem statements
here, but defer the formal proofs to Appendix A. For the theorems that mention selective notions of
security, we note that there is a simple variant of our construction (using admissible hash functions)
that achieves adaptive security (see Remarks 4.17 and A.17).

Theorem 4.20 (Perfect Correctness for Most Keys). Fix a security parameter λ and lattice
parameters n,m, q, p,B. Suppose the conditions in Theorem 3.5 hold and 2ρB ·mO(log λ) · p/q =
negl(λ). Then, the extractable PRF ΠEPRF from Construction 4.19 satisfies perfect correctness for
most keys (Definition 4.14).

Theorem 4.21 (Almost-Functionality-Preserving for All Keys). Fix a security parameter λ and
lattice parameters n,m, q, p,B. Suppose the conditions in Theorem 3.5 hold and ρ = ω(log λ). Then,
under the 1D-SIS-Rm′,p,q,E assumption for m′ = nmη and E = B ·mO(log λ), the extractable PRF
ΠEPRF from Construction 4.19 is almost-functionality-preserving for all keys (Definition 4.15).

Theorem 4.22 (Key-Injectivity). Fix a security parameter λ and lattice parameters n,m, q, p,B.
Suppose the conditions in Theorem 3.5 hold and 2ρ(4B + 1)n/pηm = negl(λ). Then, the extractable
PRF ΠEPRF from Construction 4.19 satisfies key-injectivity (Definition 4.11).

Theorem 4.23 (Puncturing Security). Fix a security parameter λ and lattice parameters n,m, q, p,B.
Suppose the conditions in Theorem 3.5 hold and 2ρB ·mO(log λ) · p/q = negl(λ). Then, under the
LWEn,m′,q,χ assumption for m′ = ηm(nm + (t + 2)ρ + 1) + ηm, the extractable PRF ΠEPRF from
Construction 4.19 satisfies selective puncturing security (Definition 4.16).

Corollary 4.24 (Pseudorandomness). Fix a security parameter λ and lattice parameters n,m, q, p,B.
Suppose the conditions in Theorem 4.23 hold. Then, the extractable PRF ΠEPRF from Construc-
tion 4.19 satisfies selective pseudorandomness (Definition 4.6, Remark 4.4).
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Proof. Follows from Theorem 4.23 and Remark 4.18

Theorem 4.25 (T -Restricted Psueodrandomness). Fix a security parameter λ and lattice parameters
n,m, q, p,B. Suppose the conditions in Theorem 3.5 hold and 2ρB ·mO(log λ) · p/q = negl(λ). Then,
under the LWEn,m′,q,χ assumption for m′ = ηm(nm+ρ(t+2))+ηm, the extractable PRF ΠEPRF from
Construction 4.19 satisfies selective T -restricted pseudorandomness (Definition 4.7, Remark 4.4) for
T = η.

Theorem 4.26 (Robust Extractability). Fix a security parameter λ and lattice parameters n,m, q, p,B.
Take any 0 < ε1 < ε2 < 1/2 where ε2 − ε1 ≥ 1/poly(λ). Let ΠEPRF be the extractable PRF from
Construction 4.19. Suppose the conditions in Theorem 3.5 hold, m ≥ 2n log q, dq/pe ≤ q/4, and
η = ω(log λ), and that ΠEPRF satisfies key-injectivity (Definition 4.11). Then, ΠEPRF satisfies (ε1, ε2)-
robust extractability (Definition 4.9). Moreover, the TestCandidate algorithm in Construction 4.19
satisfies the generalized candidate testing properties from Remark 4.10.

4.3 Concrete Parameter Instantiations

In this section, we describe one possible instantiation for the parameters of the extractable PRF
scheme in Construction 4.19. We choose our parameters so that the underlying LWE and 1D-SIS
assumptions that we rely on reduce to approximating worst-case lattice problems to within a
sub-exponential factor 2Õ(n1/c) for some constant c where n is the lattice dimension. Let λ be a
security parameter and take any constant c > 0.

• We set the PRF input length to be ρ = λ and the number of special points to η = λ. We allow
the number of punctured points t = poly(λ) to be any a priori bounded polynomial in λ (this
is set depending on the specific application).

• We define nLWE = λc and n1D-SIS = Õ(λ). Then, we set the lattice dimension n = nLWE = λc.

• We set the modulus q = 22n1/c
and take m = Θ(n log q) (chosen so that Theorem 3.5 holds).

We choose the rounding modulus to be p = 2n
1/c

and the noise distribution χB to be the
discrete Gaussian distribution DZ,

√
n. In this case, B = poly(n) = poly(λ).

It is easy to check that this setting of the parameters satisfies all of the requirements in Theo-
rems 4.20 through 4.26. Moreover, for this setting of parameters, the underlying LWE and 1D-SIS
assumptions that we rely on reduce to the hardness of solving worst-case lattice problems with a
sub-exponential approximation factor. We refer to Section 3.1 for background on the worst-case
reductions. Specifically, we have the following:

• The LWE assumption needed for Theorems 4.23 and 4.25 reduce to the hardness of solving
worst-case lattice problems over a lattice of dimension n = nLWE with approximation factor

Õ(n · q/B) = 2Õ(n
1/c
LWE).

• The 1D-SIS-R assumption for Theorem 4.21 translates to solving worst-case lattice problems
over a lattice of dimension Õ(log(q/p)) = Õ(n1/c) = Õ(λ) = n1D-SIS with approximation factor
B · Õ(

√
n1D-SIS) = poly(λ).
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Remark 4.27 (Extractable PRFs from Weaker Lattice Assumptions). With the above parameter
setting, Construction 4.19 satisfies correctness even against adversarially-chosen keys (Theorem 4.21).
If we relax the requirements on the extractable PRF and only require the standard notion of
correctness (Definition 4.14, Remark 5.24), then it is possible to instantiate the parameters such
that all of the remaining properties only rely on the hardness of solving worst-case lattice problems
with a nearly polynomial approximation factor. First, we set ρ = ω(log λ), which still suffices for
all of the theorem statements in Section 4.2. Then, we implement the equality and set-containment
functions f eqx and f conx from Construction 4.19 using branching programs as in [BV14, GV15] (see
Remark 3.8). With this change, the noise growth in the homomorphic evaluation scales with
poly(ρ) = poly(λ) rather than mO(log λ). If we now go through the same analysis as in the proofs
of Theorems 4.20, 4.23, 4.24, and 4.25, we obtain an analogous set of theorem statements, except
with poly(λ) in place of mO(log λ). This means that we can set p, q = nω(1) = 2ω(logn) to satisfy all
of the requirements, and thus, base security on the hardness of LWE with a nearly polynomial
modulus-to-noise ratio.

Our current approach for showing correctness against adversarially-chosen keys (Definition 4.15)
relies on hardness of the 1D-SIS assumption. Since the hardness of a 1D-SIS-R instance over Zmq
reduces to a worst-case lattice problem in a lattice of dimension Õ(log(q/p)), we need q to be
sub-exponential to have meaningful worst-case security. But when q is sub-exponential (and the
noise distribution is polynomially-bounded), the approximation factor obtained from reducing LWE
to a worst-case lattice problem is sub-exponential at best. It is interesting whether we can get the
stronger notion of correctness from worst-case lattice problems with a smaller approximation factor.

5 Watermarkable PRFs from Puncturable Extractable PRFs

In this section, we formally introduce the notion of a watermarkable family of PRFs. Our definitions
(Section 5.1) are adapted from those of previous work [CHN+16, BLW17, KW17, QWZ18]. Then,
in Sections 5.2 through 5.4, we present three constructions of watermarkable families of PRFs. Our
first construction (Section 5.2) achieves the weakest notion of mark-embedding watermarking in the
secret-key setting, but the construction highlights the key connections between extractable PRFs
and watermarkable PRFs. Then, building on our basic construction, we show how to extend it to a
message-embedding watermarking scheme in the secret-key setting (Section 5.3). Finally, we show
that we can further extend our message-embedding watermarking scheme to obtain a scheme that
supports public marking in the random oracle model (Section 5.4).

5.1 Watermarking PRFs

We begin by formally introducing the notion of a watermarkable PRF family.

Definition 5.1 (Watermarkable Family of PRFs). Fix a security parameter λ and a message space
M. A secretly-extractable, message-embedding watermarkable family of PRFs with key-space K, a
domain X , and a range Y is a tuple of algorithms ΠWM = (Setup,Mark,Extract) with the following
properties:

• Setup(1λ)→ (pp,wsk): On input the security parameter λ, the setup algorithm outputs public
parameters pp and the watermarking secret key wsk.
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• Mark(wsk, k,m)→ C: On input the watermarking secret key wsk, a PRF key k ∈ K, and a
message m ∈M, the mark algorithm outputs a circuit C : X → Y.

• Extract(wsk, C) → m: On input the watermarking secret key wsk and a circuit C : X → Y,
the extraction algorithm outputs a string m ∈M∪ {⊥}.

Moreover, ΠWM includes the description of a PRF family F : K × X → Y. The description of the
PRF family may include the public parameters pp for the watermarkable PRF family, as sampled
by the Setup algorithm. We often refer to ΠWM as a watermarking scheme for the PRF family
F : K ×X → Y.

Remark 5.2 (Mark-Embedding Watermarking). Definition 5.1 describes a message-embedding
watermarking scheme that allows the watermarking authority to embed an arbitrary message inside
a PRF. To simplify the description of our construction (and just focus on the main ideas), we also
consider the weaker notion of mark-embedding watermarking where programs are either considered to
be marked or unmarked. Equivalently, this corresponds to Definition 5.1 whereM = {marked}.
When describing a mark-embedding watermarking scheme, we simplify the Mark algorithm to only
take in two parameters: the watermarking secret key wsk and the PRF key k. In this case, we will
also often write unmarked in place of ⊥.

Correctness. The correctness requirements on a cryptographic watermarking scheme are twofold.
First, a watermarked key should behave like the original key almost everywhere (i.e., the behavior
of the watermarked key differs from the original key on only a negligible fraction of the domain).
While we might hope that the watermarked key perfectly preserves the behavior of the original key,
assuming indistinguishability obfuscation, this notion is impossible to achieve [BGI+12]. The second
requirement is that if we watermark a key with a message, then the extraction algorithm will be able
to extract the same message from the watermarked key. We formalize these two properties below:

Definition 5.3 (Watermarking Correctness). Fix a security parameter λ and let ΠWM = (Setup,Mark,
Extract) be a message-embedding watermarking scheme for a PRF family F : K ×X → Y with mes-
sage space M. Then, we say that ΠWM is correct if for all messages m ∈M, (pp,wsk)← Setup(1λ),
k ← F.KeyGen(pp), and C ← Mark(wsk, k,m), the following two properties hold:

• Functionality-preserving: C(·) ∼ε F(k, ·) for some ε = negl(λ).

• Extraction correctness: Pr[Extract(wsk, C) = m] = 1− negl(λ).

Remark 5.4 (Stronger Notions of Correctness). Definition 5.3 only requires that the correctness
properties hold for honestly-generated PRF keys. This was also the case in the lattice-based
watermarking scheme from [KW17]. The underlying (algebraic) reason in both cases is that the
lattice-based puncturable PRFs used in both constructions are not functionality-preserving for all
keys (i.e., the behavior of a punctured key matches that of the real key for most, but not all, of the
keys in the domain). In our particular case though, we note that our puncturable extractable PRF
is functionality-preserving for adversarially-chosen keys (Definition 4.15, Theorem 4.21), so we can
in fact argue correctness even for adversarially-chosen keys. Of course, this does not rule out the
existence of keys k ∈ K where watermarking correctness does not hold. To our knowledge, however,
ensuring correctness for honestly-generated (or more generally, adversarially-chosen) keys suffices
for all of the candidate applications of watermarking. Nonetheless, we note that there are several
constructions of cryptographic watermarking (for PRFs) [CHN+16, YAL+17, YAL+18, QWZ18]
that do satisfy the strongest notion of correctness for all keys.
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Pseudorandomness. The second property we require on a watermarkable family of PRFs is the
usual notion of pseudorandomness for the PRF family. As discussed in Section 1, we also consider a
stronger notion where pseudorandomness should hold even against the watermarking authority (i.e.,
the holder of the watermarking secret key). While many existing watermarking schemes based on
obfuscation or lattices [CHN+16, BLW17, KW17] naturally satisfy this property, both our scheme
and that of Quach et al. [QWZ18] do not provide full pseudorandomness. However, in our case,
we can achieve the weaker notion of T -restricted pseudorandomness (Definition 4.7) against the
watermarking authority. Intuitively, this means that pseudorandomness is ensured even against the
watermarking authority provided that the authority does not see the PRF evaluations on any of T
“special” points. We now define these requirements formally.

Definition 5.5 (Pseudorandomness). Let ΠWM = (Setup,Mark,Extract) be a watermarking scheme
for a PRF family F : K ×X → Y. We say that ΠWM satisfies pseudorandomness if the PRF family
F is a secure PRF (when the public parameters ΠWM are honestly generated via Setup).

Definition 5.6 (T -Restricted Pseudorandomness Against the Authority). Let ΠWM = (Setup,Mark,
Extract) be a watermarking scheme for a PRF family F. We say that ΠWM satisfies pseudorandomness
against the watermarking authority if the PRF family F satisfies T -restricted pseudorandomness
even when the distinguisher is given the watermarking secret key wsk (equivalently, even if the
description of F includes the trapdoor td sampled by Setup).

Remark 5.7 (Extended Pseudorandomness). Quach et al. [QWZ18] introduced the stronger notion
of extended pseudorandomness which asks that the PRF family F associated with a watermarking
scheme ΠWM remain secure even if the adversary is given access to the extraction oracle Extract(wsk, ·)
(but not the watermarking secret key wsk). All of the schemes we present in this work also
satisfy this stronger notion. In fact, as we discuss in Remark 5.15, in the secret-key setting, any
watermarking scheme that satisfies pseudorandomness and unforgeability automatically satisfies
extended pseudorandomness. This argument does not generalize to the setting of public marking.
Nonetheless, we are able to show that our watermarking scheme with public marking in the random
oracle model (Construction 5.32) also satisfies extended pseudorandomness (using a very similar
argument as that needed to argue a relaxed variant of unforgeability for the same construction).

Remark 5.8 (Security Against the Watermarking Authority). When T is polynomial and the
domain is super-polynomial, the notion of T -restricted pseudorandomness interpolates between
strong pseudorandomness and weak pseudorandomness (or even non-adaptive pseudorandomness)
in that we allow the adversary the ability to make adaptive queries on almost but a few points.
In fact, in our particular construction, the special set of T points not only has negligible density
but is statistically hidden from a normal user. Thus, in normal use of the PRF, it is very unlikely
that a user would need to evaluate the PRF on one of the special points. Thus, in these scenarios,
we effectively ensure pseudorandomness against the watermarking authority. In contrast, the
Quach et al. [QWZ18] construction has the property that given just two evaluations of any PRF,
the watermarking authority can completely break pseudorandomness. Namely, their PRF candidate
does not even satisfy weak pseudorandomness against the watermarking authority.

Remark 5.9 (Stronger Notions of Security Against the Watermarking Authority). Our notion
of security against the watermarking authority (Definition 5.6) says that a restricted notion of
pseudorandomness holds against an adversary that possesses both the public parameters pp and the
watermarking secret key wsk. This definition still assumes that pp and wsk are honestly generated.
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A natural question is whether some meaningful notion of pseudorandomness is possible against an
adversary that can choose both pp and wsk.

In our setting, it is not difficult to see that we still achieve T -restricted pseudorandomness
against a semi-honest authority that generates the parameters (i.e., even if the adversary is given the
randomness used for Setup, the PRF family still satisfies T -restricted pseudorandomness). However,
if the watermarking authority chooses the public parameters maliciously, then we are no longer able
to argue (any) security on the resulting PRF family. In the context of lattice-based PRFs, this issue
seems more fundamental in that we would minimally require a PRF that remains pseudorandom
even against an adversary that can program the public parameters. Constructing such a PRF family
is an interesting challenge. We do note that we can still provide some guarantees in this setting.
Specifically, recall from Section 1.2 that our puncturable extractable PRF can essentially be viewed
as a translation of a puncturable PRF satisfying various structural properties. This means that if
we start with a puncturable PRF (e.g., [BV15]) where the public parameters are generated honestly,
we can bootstrap that construction to a puncturable extractable PRF that provides T -restricted
pseudorandomness even against an adversary that is allowed to choose the additional parameters
needed by the extractable PRF family. We note though that this bootstrapping relies on the algebraic
structure of the underlying lattice-based PRF, and is not a black-box construction. Nonetheless,
this is conceptually-similar to the stronger property ensured by the obfuscation-based watermarking
construction of Cohen et al. [CHN+16], who showed how to obtain a watermarkable PRF family
from any puncturable PRF. In their construction, the additional parameters needed to support
watermarking are independent of the underlying PRF family (and thus, can be adversarially-chosen
without compromising the security of the underlying PRF family).

Unforgeability and unremovability. The main security notions for a cryptographic watermark-
ing scheme we consider are unremovability and unforgeability. Conceptually, unremovability says
that an efficient adversary cannot should not be able to remove a watermark from a marked program
while unforgeability says that an adversary should not be able to construct a new marked program.
While unforgeability is naturally defined for watermarking schemes supporting secret-marking, the
same is not true in the public-key setting as the adversary is able to mark any PRF circuit of its
choosing. Nonetheless, as we discussed in Section 1.2, we can still capture the spirit of unforgeability
by defining a weaker notion that says that the only watermarked circuits an efficient adversary could
produce are those that implement a PRF. In other words, no efficient adversary should be able to
produce a new circuit whose behavior is drastically different from that of a valid PRF and which
would still be considered watermarked. We refer to this property as “weak unforgeability.” We now
define the basic watermarking security experiment as well as the different security properties we
require:

Definition 5.10 (Watermarking Experiment [BLW17, adapted]). Fix a security parameter λ. Let
ΠWM = (Setup,Mark,Extract) be a watermarking scheme for the PRF family F : K×X → Y . Let A
be an adversary. Then the watermarking experiment ExptWMΠWM,A(λ) proceeds as follows. The

challenger begins by sampling (pp,wsk)← Setup(1λ) and gives pp to the adversary A. The adversary
A is then given access to the following oracles:

• Marking oracle. On input a message m ∈M and a PRF key k ∈ K, the challenger returns
the circuit C ← Mark(wsk, k,m) to A.

• Extraction oracle. On input a message m ∈ M and a circuit C : X → Y, the challenger
returns m← Extract(wsk, C).
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• Challenge oracle. On input a message m̂ ∈M, the challenger samples k̂ ← F.KeyGen(1λ),
and returns the circuit Ĉ ← Mark(wsk, k̂, m̂) to A.

Finally, A outputs a circuit C̃ : X → Y. The output of the experiment, denoted ExptWMΠWM,A(λ),

is Extract(wsk, C̃).

Definition 5.11 (ε-Unremovability [CHN+16, BLW17, adapted]). Fix a security parameter λ. Let
ΠWM = (Setup,Mark,Extract) be a watermarking scheme for a PRF family F : K ×X → Y . We say
that an adversary A for the watermarking experiment is ε-unremoving-admissible if the following
conditions hold:

• The adversary A makes exactly one query to the challenge oracle.

• The circuit C̃ that A outputs satisfies C̃ ∼ε Ĉ, where Ĉ is the circuit output by the challenge
oracle.

We say that ΠWM is ε-unremovable if for all efficient and ε-unremoving-admissible adversaries A,

Pr[ExptWMΠWM,A(λ) 6= m̂] = negl(λ),

where m̂ is the message A submitted to the challenge oracle in ExptWMΠWM,A(λ).

Definition 5.12 (δ-Unforgeability [CHN+16, BLW17, adapted]). Fix a security parameter λ. Let
ΠWM = (Setup,Mark,Extract) be a watermarking scheme for a PRF family F : K ×X → Y . We say
that an adversary A for the watermarking experiment is δ-unforging-admissible if the following
conditions hold:

• The adversary A does not make any challenge oracle queries.

• The circuit C̃ that A outputs satisfies C̃ 6∼δ C` for all ` ∈ [Q], where Q is the number of
queries A made to the marking oracle, C` is the output of the marking oracle on the `th query.

Then, we say that ΠWM is δ-unforgeable if for all efficient and δ-unforging-admissible adversaries A,

Pr[ExptWMΠWM,A(λ) 6= ⊥] = negl(λ).

Definition 5.13 (Weak δ-Unforgeability). Fix a security parameter λ. Let ΠWM = (Setup,Mark,
Extract) be a watermarking scheme for a PRF family F : K ×X → Y. We say that an adversary A
for the watermarking experiment is weak δ-unforging-admissible if the following conditions hold:

• The adversary A does not make any challenge oracle queries.

• The circuit C̃ that A outputs satisfies C̃(·) 6∼δ F(k, ·) for all k ∈ K.

Then, we say that ΠWM is weak δ-unforgeable if for all efficient and weak δ-unforging-admissible
adversaries A,

Pr[ExptWMΠWM,A(λ) 6= ⊥] = negl(λ).
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Remark 5.14 (Unforgeability Notions). We note that any watermarking scheme that is δ-
unforgeable is also weak δ′-unforgeable for some δ′ = δ + negl(λ), provided that the underlying
watermarking scheme is correct even for adversarially-chosen keys (Remark 5.4). To see this, observe
that any adversary that wins the weak δ-unforgeable game must be able to produce a circuit C̃
that is at least δ-far from F(k, ·) for all k ∈ K. We argue that C̃ is also an admissible forgery for
the standard δ′-unforgeability game for some δ′ = δ + negl(λ). In the δ′-unforgeability game, the
adversary has to output a circuit that is at least δ′-far from C` where C` is the circuit from the
`th marking query. If the watermarking scheme is correct even for adversarially-chosen keys, then
C` ∼ε F(k`, ·), where k` is the key the adversary submitted in its `th marking oracle query and
ε = negl(λ). Thus, if C̃ ′ 6∼δ F(k`, ·), then C̃ 6∼δ′ C` for δ′ = δ+ ε = δ+ negl(λ). This means that the
circuit C̃ is a valid forgery for the δ′-unforgeability game.

Remark 5.15 (From Unforgeability to Extended Pseudorandomness). As discussed in Remark 5.7,
the notion of extended pseudorandomness from [QWZ18] requires that pseudorandomness for the
PRF associated with a watermarking scheme ΠWM hold even if the adversary has access to the
extraction oracle. If ΠWM satisfies δ-unforgeability for some δ > 0, then pseudorandomness implies
extended pseudorandomness. In particular, in the pseudorandomness security game, the adversary
is not given any marked circuits; δ-unforgeability then says that the adversary cannot produce
any circuit that is considered marked. In other words, the response to all of the extraction oracle
queries an efficient adversary makes is ⊥. Correspondingly, extended pseudorandomness reduces to
standard pseudorandomness. Thus, our watermarking constructions that satisfy δ-unforgeability
(Constructions 5.17 and 5.25) also satisfy extended pseudorandomness. Our watermarking scheme
that supports public marking in the random oracle model (Construction 5.32) also satisfies extended
pseudorandomness (Theorem 5.38); in that case, the argument does not generically follow from
unforgeability, but a similar argument as that used to show weak δ-unforgeability does suffice.

Remark 5.16 (Relaxing Unforgeabiilty). The definition of unforgeability in Definition 5.12 is the
standard one introduced by Cohen et al. [CHN+16]. However, we can consider a relaxation of
unforgeability from [KW17] where instead of requiring that the circuit C̃ output by the adversary to
be sufficiently far from all circuits C1, . . . , CQ that the adversary received from the marking oracle, we
instead require that C̃ be sufficiently far from the PRFs F(k1, ·), . . . ,F(k`, ·) the adversary submitted
to the marking oracle. When the underlying PRF is correct for adversarial keys (Definition 4.15),
then these two notions are the same. However, when the underlying PRF does not necessarily
provide correctness for adversarially-chosen keys, then achieving this relaxed notion of unforgeability
is potentially easier. In our setting, if we just consider the relaxed version of unforgeability, then
security of our watermarking scheme only needs to rely on the (polynomial) hardness of solving worst-
case lattice problems up to a nearly polynomial approximation factor. All previous constructions of
watermarking that support message-embedding from standard assumptions could only be reduced
to the hardness of worst-case lattice problems with a quasi-polynomial approximation factor.

5.2 Mark-Embedding Watermarking

In this section, we present our basic construction of a mark-embedding watermarkable family of
PRFs (in the secret-key setting) from extractable PRFs. While the message-embedding construction
in Section 5.3 strictly subsumes this construction, we present it for pedagogical reasons. The
basic construction captures all of the core ideas that underlie our watermarking scheme from
extractable PRFs and minimizes the number of technical details that arise with more complex
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notions of watermarking. We refer to Section 1.2 for a high-level overview of this construction. In
the subsequent sections, we build upon this construction to obtain message-embedding watermarking
(and, in the random oracle model, message-embedding watermarking with public marking).

Construction 5.17 (Mark-Embedding Watermarkable PRFs). Let λ be a security parameter. Our
mark-embedding watermarkable PRF relies on the following primitives:

• Let ΠEPRF = (EX.PrmsGen,EX.SampleKey,EX.Eval,EX.Extract,EX.Puncture,EX.PunctureEval)
be a puncturable extractable PRF with key-space KEPRF, domain X , and range Y.

• Let PRF : KPRF ×KEPRF → X λ be a pseudorandom function.

We construct a watermarkable PRF ΠWM = (Setup,Mark,Extract) as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm samples a PRF key

kPRF
r← KPRF, and parameters for the extractable PRF (pp, td) ← EX.PrmsGen(1λ). It

outputs the public parameters pp and the watermarking secret key wsk = (kPRF, pp, td).

• Mark(wsk, k): On input the watermarking secret key wsk = (kPRF, pp, td), and a key k ∈ KEPRF,
the marking algorithm derives points (x∗1, . . . , x

∗
λ) ← PRF(kPRF, k) and a punctured key

k′ ← EX.Puncture(pp, k, (x∗1, . . . , x
∗
λ)). It outputs the circuit C : X → Y that implements the

punctured evaluation algorithm EX.PunctureEval(pp, k′, ·).

• Extract(wsk, C): On input the watermarking secret key wsk = (kPRF, pp, td), and a circuit
C : X → Y, the extraction algorithm first extracts a key k ← EX.Extract(pp, td, C). If
k = ⊥, output unmarked. Otherwise, it computes (x∗1, . . . , x

∗
λ)← PRF(kPRF, k). If C(x∗i ) 6=

EX.Eval(pp, k, x∗i ) for all i ∈ [λ], then output marked. Otherwise, output unmarked.

The underlying PRF family F : KEPRF × X → Y (induced by the public parameters pp for
the watermarking scheme) is defined as F(k, x) := Eval(pp, k, x) and F.KeyGen simply returns
EX.SampleKey(pp). Note that the description of the PRF family F includes the public parameters
pp, but not the other components in the watermarking secret key wsk.

Correctness. Correctness of our construction follows from correctness and several statistical
properties of the underlying extractable PRF (implied by the different security properties on the
extractable PRF). We state the theorem below, but defer the formal proof to Appendix B.1.

Theorem 5.18 (Correctness). Suppose ΠEPRF satisfies perfect correctness for most keys (Def-
inition 4.14), key-injectivity (Definition 4.11), (ε1, ε2)-robust extractability for ε1 = 1/poly(λ)
(Definition 4.16), and puncturing security (Definition 4.16), and that 1/ |X | = negl(λ). Then, the
watermarking scheme ΠWM from Construction 5.17 is correct.

Pseudorandomness. Next, we show that our watermarking scheme satisfies both the usual notion
of pseudorandomness (against adversaries that do not have the watermarking secret key) as well as
the relaxed version of T -pseudorandomness against the watermarking authority.

Theorem 5.19 (Pseudorandomness). Suppose ΠEPRF is pseudorandom (Definition 4.6). Then, the
watermarking scheme ΠWM from Construction 5.17 is pseudorandom (Definition 5.5).
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Proof. The PRF family associated with ΠWM is the PRF family associated with the underlying
extractable PRF ΠEPRF. Thus, pseudorandomness of ΠEPRF implies pseudorandomness of ΠWM.

Theorem 5.20 (T -Restricted Pseudorandomness Against the Authority). Suppose ΠEPRF satisfies
T -restricted pseudorandomness given the trapdoor (Definition 4.7). Then, the watermarking scheme
ΠWM from Construction 5.17 satisfies T -restricted pseudorandomness against the watermarking
authority (Definition 5.6).

Proof. First, we note that the PRF family F associated with ΠWM is precisely the PRF family asso-
ciated with the underlying extractable PRF ΠEPRF, which satisfies T -restricted pseudorandomness
given the trapdoor. Thus, given an adversary A that breaks T -restricted pseudorandomness for
ΠWM, we can easily build an adversary B that breaks T -restricted pseudorandomness of ΠEPRF.
Specifically, algorithm B gets (pp, td) and a restricted set S ⊆ X from the ΠEPRF challenger, samples

a PRF key kPRF
r← KPRF and simulates the watermarking secret key as wsk = (kPRF, pp, td). It

gives (wsk, S) to A. To simulate evaluation queries, algorithm B simply forwards the queries to its
evaluation oracle and echoes the response. At the end of the game, B outputs whatever A outputs.
It is easy to see that B’s distinguishing advantage is the same as A’s, and the claim follows.

Unremovability and unforgeability. We now state our security theorems for unremovability and
unforgeability, but defer their formal analysis to Appendix B.1. We then state a simple corollary that
says that the watermarking scheme satisfies the notion of extended pseudorandomness from [QWZ18]
(see Remarks 5.7 and 5.15).

Theorem 5.21 (Unremovability). Suppose that 1/ |Y| = negl(λ), that PRF is a secure PRF, and
that ΠEPRF satisfies key-injectivity (Definition 4.11), (ε1, ε2)-robust extractability (Definition 4.9),
the additional properties in Remark 4.10, and selective puncturing security (Definition 4.16). Then,
for all ε ≤ ε1, the mark-embedding watermarkable PRF family ΠWM from Construction 5.17 satisfies
ε-unremovability (Definition 5.11).

Theorem 5.22 (Unforgeability). Suppose that PRF is a secure PRF and that ΠEPRF is almost
functionality-preserving for adversarially-chosen keys (Definition 4.15) and satisfies (ε1, ε2)-robust
extractability (Definition 4.9) as well as the additional properties in Remark 4.10. In addition,
suppose that 1/ |X | = negl(λ). Then, for all δ ≥ ε2, the mark-embedding watermarkable PRF family
ΠWM from Construction 5.17 satisfies δ-unforgeability (Definition 5.12).

Corollary 5.23 (Extended Pseudorandomness). Suppose the conditions in Theorems 5.19 and 5.22
hold. Then, the watermarking scheme ΠWM from Construction 5.17 satisfies extended pseudoran-
domness (Remark 5.7).

Proof. Follows from the argument outlined in Remark 5.15.

Remark 5.24 (Relaxed Unforgeability from Weaker Assumptions). Theorem 5.22 only relies on
the extractable PRF ΠEPRF being functionality-preserving for adversarially-chosen keys to argue the
full notion of unforgeability as defined in Definition 5.12. If we consider the relaxed notion from
Remark 5.16 (and considered in [KW17]), then this assumption is no longer necessary for the proof.
In this case, all of the other properties specified in Theorem 5.22 can be realizing assuming the
hardness of solving worst-case lattice problems with a nearly polynomial (rather than sub-exponential)
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approximation factor (Section 4.3, Remark 4.27). This simplification also applies to the message-
embedding watermarking constructions in Sections 5.3 and 5.4. This is the weakest assumption from
which we currently have message-embedding watermarking. All previous constructions of message-
embedding watermarking either relied on obfuscation [CHN+16, BLW17, YAL+17, YAL+18], or
worst-case lattice problems with a quasi-polynomial approximation factor [KW17, QWZ18].

5.3 Message-Embedding Watermarking

In this section, we show how to extend our basic mark-embedding watermarking construction
from Construction 5.17 to additionally support message embedding. We refer to Section 1.2 for a
high-level overview of our construction.

Construction 5.25 (Message-Embedding Watermarkable PRFs). Let λ be a security parameter.
Let M = {0, 1}t be the message space for the watermarking scheme. Our message-embedding
watermarkable PRF family relies on the following primitives:

• Let ΠEPRF = (EX.PrmsGen,EX.SampleKey,EX.Eval,EX.Extract,EX.Puncture,EX.PunctureEval)
be a puncturable extractable PRF with key-space KEPRF, domain X , and range Y.

• Let PRF : KPRF × (KEPRF × [t]× {0, 1})→ X λ be a pseudorandom function.

We construct a watermarkable PRF ΠWM = (Setup,Mark,Extract) as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm samples a PRF key

kPRF
r← KPRF, and parameters for the extractable PRF (pp, td) ← EX.PrmsGen(1λ). It

outputs the public parameters pp and the watermarking secret key wsk = (kPRF, pp, td).

• Mark(wsk, k,m): On input the watermarking secret key wsk = (kPRF, pp, td), a key k ∈
KEPRF, and a message m ∈ {0, 1}t, the marking algorithm derives a collection of points
(x∗i,1, . . . , x

∗
i,λ) ← PRF(kPRF, (k, i,mi)) for each i ∈ [t]. It then constructs a punctured key

k′ ← EX.Puncture(pp, k, {x∗i,j}i∈[t],j∈[λ]). Finally, it outputs the circuit C : X → Y that
implements the punctured evaluation algorithm EX.PunctureEval(pp, k′, ·).

• Extract(wsk, C): On input the watermarking secret key wsk = (kPRF, pp, td), and a circuit
C : X → Y, the extraction algorithm first extracts a key k ← EX.Extract(pp, td, C). If k = ⊥,
output ⊥. Otherwise, for each i ∈ [t] and b ∈ {0, 1}, the extraction algorithm computes
(x∗i,b,1, . . . , x

∗
i,b,λ)← PRF(kPRF, (k, i, b)). Let Ni,b denote the number of indices j ∈ [λ] where

C(x∗i,b,j) 6= EX.Eval(pp, k, x∗i,b,j). If there exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or
Ni,0, Ni,1 > 2λ/3, then output ⊥. Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the unique bit
where Ni,bi > 2λ/3. Output the message m = b1 · · · bt.

The underlying PRF family F : KEPRF × X → Y (induced by the public parameters pp for
the watermarking scheme) is defined as F(k, x) := Eval(pp, k, x) and F.KeyGen simply returns
EX.SampleKey(pp). Note that the description of the PRF family F includes the public parameters
pp, but not the other components in the watermarking secret key wsk.

Correctness and security analysis. We now state our main security theorems, but defer the
formal analysis of Theorems 5.29 and 5.30 to Appendix B.2. The theorem statements and analysis
are very similar to the corresponding ones from Section 5.2.
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Theorem 5.26 (Correctness). Suppose ΠEPRF satisfies perfect correctness for most keys (Def-
inition 4.14), key-injectivity (Definition 4.11), (ε1, ε2)-robust extractability for ε1 = 1/poly(λ)
(Definition 4.9), and puncturing security (Definition 4.16), and that 1/ |X | = negl(λ). Then, the
watermarking scheme ΠWM from Construction 5.25 is correct

Proof. Follows by the same argument as that in the proof of Theorem 5.18.

Theorem 5.27 (Pseudorandomness). Suppose ΠEPRF is pseudorandom (Definition 4.6). Then, the
watermarking scheme ΠWM from Construction 5.25 is pseudorandom (Definition 5.5).

Proof. Follows by the same argument as that in the proof of Theorem 5.19.

Theorem 5.28 (T -Restricted Pseudorandomness Against the Authority). Suppose ΠEPRF satisfies
T -restricted pseudorandomness given the trapdoor (Definition 4.7). Then, the watermarking scheme
ΠWM from Construction 5.25 satisfies T -restricted pseudorandomness against the watermarking
authority (Definition 5.6).

Proof. Follows by the same argument as that in the proof of Theorem 5.20.

Theorem 5.29 (Unremovability). Suppose that 1/ |Y| = negl(λ), that PRF is a secure PRF, and
that ΠEPRF satisfies key-injectivity (Definition 4.11), (ε1, ε2)-robust extractability (Definition 4.9),
the additional properties in Remark 4.10, and selective puncturing security (Definition 4.16). Then,
for all ε ≤ ε1, the message-embedding watermarkable PRF family ΠWM from Construction 5.25
satisfies ε-unremovability (Definition 5.11).

Theorem 5.30 (Unforgeability). Suppose that PRF is a secure PRF and that ΠEPRF is almost
functionality-preserving for adversarially-chosen keys (Definition 4.15) and satisfies (ε1, ε2)-robust
extractability (Definition 4.9) as well as the additional properties in Remark 4.10. In additional,
suppose that 1/ |X | = negl(λ). Then, for all δ ≥ ε2, the message-embedding watermarkable PRF
family ΠWM from Construction 5.17 satisfies δ-unforgeability (Definition 5.12).

Corollary 5.31 (Extended Pseudorandomness). Suppose the conditions in Theorems 5.27 and 5.30
hold. Then, the watermarking scheme ΠWM from Construction 5.25 satisfies extended pseudoran-
domness.

Proof. Follows from the argument outlined in Remark 5.15.

5.4 Public Marking in the Random Oracle Model

In this section, we show how a simple variant of Construction 5.25 gives a message-embedding
watermarking scheme that supports public marking in the random oracle model. At a high level, our
construction replaces the pseudorandom function PRF(kPRF, ·) used to derive the points to puncture
with a random oracle. This yields a scheme where anybody can run the marking algorithm. The
security analysis follows very similarly to the analysis of the message-embedding watermarking
scheme from Section 5.3.

Construction 5.32 (Message-Embedding Watermarkable PRFs with Public Marking). Let λ be
a security parameter. Let M = {0, 1}t be the message space for the watermarking scheme. Our
mark-embedding watermarkable PRF with public marking relies on the following primitives:
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• Let ΠEPRF = (EX.PrmsGen,EX.SampleKey,EX.Eval,EX.Extract,EX.Puncture,EX.PunctureEval)
be a puncturable extractable PRF with key-space KEPRF, domain X , and range Y.

• Let H be a hash function H : (KEPRF× [t]×{0, 1})→ X λ, which we model as a random oracle
in the security analysis.

We construct a publicly-markable watermarkable PRF ΠWM = (Setup,Mark,Extract) as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm samples parameters for
the extractable PRF (pp, td)← EX.PrmsGen(1λ). It outputs pp as the public parameters and
sets wsk = (pp, td).

• Mark(pp, k,m): On input the public parameters pp, a PRF key k ∈ KEPRF, and a message
m ∈ M, the marking algorithm derives a collection of points (x∗i,1, . . . , x

∗
i,λ) ← H(k, i,mi)

for each i ∈ [t]. It then constructs a punctured key k′ ← EX.Puncture(pp, k, {x∗i,j}i∈[t],j∈[λ]).
Finally, it outputs the circuit C : X → Y that implements the punctured evaluation algorithm
EX.PunctureEval(pp, k′, ·).

• Extract(wsk, C): On input the watermarking secret key wsk = (pp, td), and a circuit C : X → Y ,
the extraction algorithm first extracts a key k ← EX.Extract(pp, td, C). If k = ⊥, out-
put ⊥. Otherwise, for each i ∈ [t] and b ∈ {0, 1}, the extraction algorithm computes
(x∗i,b,1, . . . , x

∗
i,b,λ)← H(k, i, b). Let Ni,b denote the number of indices j ∈ [λ] where C(x∗i,b,j) 6=

EX.Eval(pp, k, x∗i,b,j). If there exists an index i ∈ [t] whereNi,0, Ni,1 < 2λ/3 orNi,0, Ni,1 > 2λ/3,
then output ⊥. Otherwise, for each i ∈ [t], let bi be the unique bit where Ni,bi > 2λ/3. Output
the message m = b1 · · · bt.

The underlying PRF family F : KEPRF × X → Y (induced by the public parameters pp for
the watermarking scheme) is defined as F(k, x) := Eval(pp, k, x) and F.KeyGen simply returns
EX.SampleKey(pp). Note that the description of the PRF family F includes the public parameters
pp, but not the other components in the watermarking secret key wsk.

Correctness and security analysis. We now state our main security theorems, but defer the
formal analysis of Theorems 5.36, 5.22, and 5.38 to Appendix B.3. The theorem statements and
analysis are very similar to the corresponding ones from Sections 5.2 and 5.3.

Theorem 5.33 (Correctness). Suppose ΠEPRF satisfies perfect correctness for most keys (Def-
inition 4.14), key-injectivity (Definition 4.11), (ε1, ε2)-robust extractability for ε1 = 1/poly(λ)
(Definition 4.9), and puncturing security (Definition 4.16), and that λ/ |X | = negl(λ). Then, the
watermarking scheme ΠWM from Construction 5.32 is correct.

Proof. Follows by the same argument as that in the proof of Theorem 5.18.

Theorem 5.34 (Pseudorandomness). Suppose ΠEPRF is pseudorandom (Definition 4.6). Then, the
watermarking scheme ΠWM from Construction 5.32 is pseudorandom (Definition 5.5).

Proof. Follows by the same argument as that in the proof of Theorem 5.19.

Theorem 5.35 (T -Restricted Pseudorandomness Against the Authority). Suppose ΠEPRF satisfies
T -restricted pseudorandomness given the trapdoor (Definition 4.7). Then, the watermarking scheme
ΠWM from Construction 5.32 satisfies T -restricted pseudorandomness against the watermarking
authority (Definition 5.6).

40



Proof. The PRF family associated with ΠWM is the PRF family associated with the underlying
extractable PRF ΠEPRF, and the watermarking secret key is precisely the public parameters and
trapdoor for ΠEPRF. Thus T -restricted pseudorandomness of ΠWM against the watermarking
authority reduces directly to T -restricted pseudorandomness of ΠEPRF given the trapdoor.

Theorem 5.36 (Unremovability). Suppose that 1/ |Y| = negl(λ) and that ΠEPRF satisfies key-
injectivity (Definition 4.11), (ε1, ε2)-robust extractability (Definition 4.9), the additional properties
in Remark 4.10, and selective puncturing security (Definition 4.16). Then, for all ε ≤ ε1, the
mark-embedding watermarkable PRF family ΠWM from Construction 5.17 satisfies ε-unremovability
(Definition 5.11) in the random oracle model.

Theorem 5.37 (Weak Unforgeability). Suppose that ΠPRF is a secure PRF and that ΠEPRF satisfies
(ε1, ε2)-robust extractability (Definition 4.9) and the additional properties in Remark 4.10. Then,
for all δ ≥ ε2, the message-embedding watermarkable PRF family ΠWM from Construction 5.32
satisfies weak δ-unforgeability (Definition 5.13) in the random oracle model.

Theorem 5.38 (Extended Pseudorandomness). Suppose the conditions in Theorems 5.34 and 5.37
hold. Then, the watermarking scheme ΠWM from Construction 5.25 satisfies extended pseudoran-
domness in the random oracle model.

5.5 Watermarking Instantiations from Lattices

In this section, we instantiate our watermarking constructions from Sections 5.3 and 5.4 using our
puncturable extractable PRF from Section 4. This yields the following (new) constructions of PRFs
from lattices. To simplify the corollary, we state it based on the approximation factor for worst-case
lattice problems using the parameter settings suggested in Section 4.3 (and Remark 4.27).

Corollary 5.39 (Message-Embedding Watermarking from Lattices). Fix a security parameter λ.
Take any 0 < ε < δ < 1/2 where δ > ε+ 1/poly(λ). Then, assuming it is difficult to approximate to
worst-case lattice problems (e.g., GapSVP or SIVP) with a nearly polynomial approximation factor,
there exists a secret-key message-embedding watermarking scheme that satisfies ε-unremovability,
δ-unforgeability (the variant in Remark 5.16), and T -restricted pseudorandomness against the
watermarking authority for T = λ. Assuming hardness of approximating worst-case lattice problems
with a sub-exponential approximation factor, the resulting watermarking scheme satisfies the standard
notion of δ-unforgeability (Definition 5.12). Moreover, under the same assumptions in the random
oracle model, we obtain watermarking schemes that satisfy weak δ-unforgeability (and all of the
other properties) that additionally supports public marking.

Additional properties. We conclude by describing several additional features supported by our
watermarking scheme.

• Transferability: An interesting property of our new watermarking schemes is that the
watermarking authority can recover the original unmarked key given a watermarked function
(via the extraction algorithm of the underlying extractable PRF). Thus, it is possible to
transfer a watermarked key with one user’s identity to a different user’s identity (by first
extracting the unmarked key and then re-watermarking it with the identity of the new
user). It is not clear how to implement such a functionality in previous watermarking
schemes [CHN+16, BLW17, KW17, QWZ18].
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• Robust embedding: Our extractable PRF has the property that even if a circuit C differs
from F(k, ·) everywhere, as long as their outputs are “close” (in infinity norm), then key
extraction still succeeds. This means that we can consider an even stronger notion of
watermarking where we allow the adversary to corrupt the behavior of the PRF everywhere,
but as long as most of the values are still “close” to their original values, the watermark is
still preserved.
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A Analysis of Puncturable Extractable PRF (Construction 4.19)

In this section, we provide the formal analysis of our puncturable extractable PRF (Construc-
tion 4.19).

A.1 Preliminaries

In this section, we define a few concepts that we will use in the security analysis.

Selective pseudorandomness. As noted in Remark 4.4, it will often be easier to work with a
selective notion of pseudorandomness in our proofs. We first give the following alternative definition
of pseudorandomness, which is equivalent to the simpler version given in Definition 4.1 (Remark A.2)

Definition A.1 (Selective and Adaptive Pseudorandomness). Let F : K × X → Y be a function
with key-space K, domain X , and range Y. We additionally allow F to depend on some public
parameters pp (for instance, F may be drawn from a family of functions and pp is used to identify a
particular instance). Optionally, F can include a key-generation algorithm F.KeyGen that on input
the security parameter λ, outputs a key k ∈ K. For an adversary A and a bit b ∈ {0, 1}, we define
the security experiment ExptPRFF,A(λ, b) as follows:

1. At the beginning of the game, the challenger gives the adversary the description of F and the
public parameters pp (if there are any). The challenger then samples a key k ← F.KeyGen(1λ)

and a function f
r← Funs[X ,Y].

2. The adversary is then allowed to make evaluation queries and a single challenge query:

• Evaluation queries. On input an input x ∈ X , the challenger replies with F(k, x)

• Challenge query. On input an input x∗ ∈ X , the challenger replies with F(k, x∗) if
b = 0 and f(x∗) if b = 1.

3. At the end of the experiment, algorithm A outputs a bit, which is the also the output of the
experiment.

We say that an adversary A is admissible if A never makes an evaluation query on x∗ ∈ X , where x∗

is its single challenge query. Finally, we say that a function F satisfies adaptive pseudorandomness if
for all efficient and admissible adversaries,∣∣Pr

[
ExptPRFF,A(λ, 0) = 1

]
− Pr

[
ExptPRFF,A(λ, 1) = 1

]∣∣ = negl(λ). (A.1)

We say that F satisfies selective pseudorandomness if Eq. (A.1) holds only for efficient and admissible
adversaries that are required to commit to their challenge point x∗ ∈ X at the beginning of the
security experiment (before seeing the public parameters and before making any evaluation queries).
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Remark A.2 (Relation Between Pseudorandomness Notions). By a simply hybrid argument, any
PRF that is adaptively secure according to Definition A.1 is also secure according to Definition 4.1
(with a 1/Q loss in the security reduction where Q is the number of queries the adversary makes in
the standard PRF security game). As noted also in Remark 4.4, selective pseudorandomness implies
adaptive pseudorandomness with a super-polynomial loss in the security reduction (c.f., [BB04a]).

Remark A.3 (Selective T -Restricted Pseudorandomness). We can define a notion of selective
T -restricted pseudorandomness in the style of Definition A.1. In the selective setting, the challenger
chooses the public parameters and the restricted set S ⊆ X at the beginning of the experiment and
gives T to the adversary. Once again, the adversary must commit to its challenge x∗ ∈ X before
seeing the public parameters pp and making evaluation queries. Note though that the adversary’s
challenge point is allowed to depend on the restricted set S.

Hybrid LWE. In this work, we will also use the following simple variant of LWE we call “Hybrid
LWE” to simplify our security analysis. The hybrid LWE assumption essentially says that LWE
remains hard even if the LWE distinguisher always gets to see valid LWE samples. We show that
hardness of the Hybrid LWE assumption is implied by hardness of the standard LWE assumption.

Definition A.4 (Hybrid LWE). Fix a security parameter λ, integers n = n(λ), m1 = m1(λ),
m2 = m2(λ), q = q(λ), and an error distribution χ = χ(λ) over the integers. Then the hybrid

LWE assumption HybLWEn,m1,m2,q,χ assumption states that for A1
r← Zn×m1

q , A2
r← Zn×m2

q ,

s
r← Znq , e1

r← χm1 , e2
r← χm2 , and u

r← Zm2
q , the following two distributions are computationally

indistinguishable:

(A1,A2, sA1 + e1, sA2 + e2) and (A1,A2, sA1 + e1,u).

Lemma A.5 (LWE Implies Hybrid LWE). Fix a security parameter λ and integers n = n(λ),
m1 = m1(λ), m2 = m2(λ), q = q(λ) and an error distribution χ = χ(λ) over the integers. Let
m = m1 +m2. Under the LWEn,m,q,χ assumption, the HybLWEn,m1,m2,q,χ assumption also holds.

Proof. The proof follows by a simple hybrid argument. In each hybrid experiment below, the
experiment first samples A1

r← Zn×m1
q , A2

r← Zn×m2
q , s

r← Znq , e1
r← χm1 , e2

r← χm2 , u1
r← Zm1

q ,

and u2
r← Zm2

q . We now specify the output of each hybrid experiment:

• hyb0: Output (A1,A2, sA1 + e1, sA2 + e2).

• hyb1: Output (A1,A2,u1,u2).

• hyb2: Output (A1,A2, sA1 + e1,u2).

Since m = m1 + m2, the output of hybrids hyb0 and hyb1 is computationally indistinguishable
under the LWEn,m,q,χ assumption. The output of hybrids hyb1 and hyb2 is computationally
indistinguishable under the LWEn,m1,q,χ assumption (implied by the LWEn,m,q,χ assumption since
m1 ≤ m). The distributions in hyb0 and hyb2 correspond to the two distributions in the hybrid
LWE assumption, and the claim follows.

Uniqueness of LWE secrets. For a suitable choice of parameters, an LWE sample induces a
unique secret vector with overwhelming probability. In this work, we rely on a stronger property,
which says that with overwhelming probability, there does not exist any vectors that can be explained
by two LWE secrets. Although the following lemma is folklore, we provide the proof for completeness.
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Lemma A.6 (Uniqueness of LWE Secrets). Fix a security parameter λ, lattice parameters n, m, q,
and a rounding modulus p where m ≥ 2n log q and dq/pe ≤ q/4. Then, for any two distinct vectors
s0, s1 ∈ Znq , s0 6= s1, we have

Pr
A

r←Zn×mq

[
∃ s0, s1 ∈ Znq : bs0 ·Aep = bs1 ·Aep

]
= q−n.

Proof. Fix any two vectors s0, s1 ∈ Znq with s0 6= s1 and denote s̃ = s0 − s1 ∈ Znq \{0}. By the
(almost-)linearity of the rounding function, we have

Pr
A

r←Zn×mq

[
bs0 ·Aep = bs1 ·Aep

]
≤ Pr

A
r←Zn×mq

[
b(s0 − s1)ep ·A ∈ {0, 1}

]
≤ Pr

A
r←Zn×mq

[
s̃ ·A ∈

[
2 dq/pe

]m]
=
(
2dq/pe

)m · q−m
≤ 2−m.

Now, taking a union bound overall all the possible vectors s̃ ∈ Znq , the lemma follows.

Borderline points. Before proceeding with the full security analysis, we first prove a statistical
fact about the behavior of our PRF. Specifically, we show that with for any fixed key s ∈ [−B,B]n,
with overwhelming probability over the choice of public parameters, the value Eval(pp, s, x) on all
x ∈ {0, 1}ρ will not lie in a “borderline set” (that is, the unrounded PRF evaluation from Eq. (4.4)
will be far from all rounding boundaries). We define the Borderline property more precisely below
and then show the lemma.

Definition A.7 (Borderline Evaluations). Let m, p, q be positive integers with q > p. For a bound
E, we define the set BorderlineE to be the set of vectors y ∈ Zmq where there exists a unit vector
uβ ∈ Zmq for some β ∈ [m] such that 〈y,u〉β is within E of the “rounding boundary.” More precisely,

BorderlineE :=

{
y ∈ Zmq | ∃β ∈ [m] : 〈y,uβ〉 ∈ [−E,E] +

q

p

(
Z +

1

2

)}
.

Next, we define the alternative evaluation algorithm that outputs the unrounded PRF evaluation:

• UREval(pp, k, x): On input the public parameters pp (as specified in Eq. (4.2)), a PRF key
k = s, and an input x ∈ {0, 1}ρ \ {0}, the alternative evaluation algorithm outputs the
unrounded output ỹx as defined by Eq. (4.4).

Lemma A.8 (No Borderline Evaluations for Most Keys). Suppose that q is a prime with q =
Ω(np

√
log q). Then, for all λ ∈ N and any fixed s ∈ [−B,B]n, if we sample (pp, td)← PrmsGen(1λ),

then

Pr
[
∃x ∈ {0, 1}ρ \ {0} : ỹx ← UREval(pp, s, x) ∧ ỹx ∈ BorderlineE

]
≤ 2ρ+2ηmE · p

q
,

where the probability is taken over the random coins used to sample pp.

48



Proof. We first bound the probability that ỹx ∈ BorderlineE for some fixed input x ∈ {0, 1}ρ \ {0}.
Let

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

be the public parameters output by PrmsGen(1λ), and take any s ∈ [−B,B]n. From Eq. (4.1),

W(`) = A
(`)

h(`)
+ B

(`)

h(`)
G−1

(
B̃

(`)

h(`)

)
G−1

(
V(`)

)
+ D(`) ∈ Zn×mq .

Next, by definition of the evaluation algorithm UREval(pp, s, x),

ỹx = s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)
∈ Zηmq . (A.2)

Observe that if s = 0, then ỹx = 0, in which case ỹx /∈ BorderlineE . To complete, the analysis, it
suffices to consider only the setting where s 6= 0. To do so, we consider the distribution of ỹx in the
following distributions:

• hyb0: This is the real distribution where ỹx ← UREval(pp, s, x) described above.

• hyb1: Instead of computing W(`) according to Eq. (4.1), sample W(`) r← Zn×mq for all ` ∈ [η],
and then compute ỹx using Eq. (A.2) as usual.

• hyb2: Instead of computing ỹx using Eq. (A.2), sample ỹx
r← Zηmq .

We now bound the statistical distance between each consecutive pair of hybrids as well as the
probability of ỹx ∈ BorderlineE in hyb2.

• The only difference between hyb0 and hyb1 is in how the matrices W(`) are sampled. Consider
the distribution in hyb0. Since the PrmsGen algorithm samples D(`) using the trapdoor sam-
pling algorithm TrapGen, the matrices D(`) are distributed statistically close to uniform (and
independently of all of the other components in pp). This means that the distribution of W(`)

for each ` ∈ [η] is also statistically close to uniform (and independent of the other components
in pp). More precisely, by Theorem 3.5, ∆(W(`),Uniform(Zn×mq )) ≤ q−n. Correspondingly,

∆(hyb0,hyb1) = ∆([W(1) | · · · |W(η)],Uniform(Zn×ηmq )) ≤ ηq−n.

• In hyb1, each of the W(`) is uniform and independent of the other components in pp. Thus,
if s 6= 0 and q is prime (so Zq forms a field), then ỹx is uniformly distributed over Zηmq . Since
we are assuming that s 6= 0, hyb1 and hyb2 are identically distributed.

• In hyb2, ỹx is uniform over Zηmq , so by a union bound (over the components of ỹx),

Pr[ỹx
r← Zηmq : ỹx ∈ BorderlineE ] ≤ ηm(2E + 1)p

q
.

From the above analysis, we have that in hyb0, for any fixed x ∈ {0, 1}ρ,

Pr[yx ∈ BorderlineE ] ≤ ηm(2E + 1)p

q
+ ηq−n ≤ 4ηmE · p

q

We take a union bound over all x ∈ {0, 1}ρ \ {0}:

Pr
[
∃x ∈ {0, 1}ρ \ {0} : ỹx ← UREval(pp, k, x) ∧ ỹx ∈ BorderlineE

]
≤ 2ρ ·

(
4ηmE · p

q

)
,

which proves the claim.
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A.2 Proof of Theorem 4.20 (Perfect Correctness for Most Keys)

We show that Construction 4.19 is perfectly correct for almost all keys. First, let (pp, td) ←
PrmsGen(1λ) and k = s← SampleKey(pp). From Eq. (4.2), we have

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

.

Take any set S where |S| = t = poly(λ), and let kS ← Puncture(pp, k, S). From Eq. (4.5), we have

kS =
(
S,
(
w(`), (a

(`)
j )j∈[ρ], (ã

(`)
α,β)α∈[n],β∈[m], (b

(`)
i,j )i∈[t],j∈[ρ]

)
`∈[η]

)
.

We show that for all x ∈ {0, 1}ρ \ {S ∪ {0}}, with overwhelming probability over the choice of pp
and s, Eval(pp, k, x) = PunctureEval(pp, kS , x). Consider the value of the evaluation and punctured
evaluation at some x ∈ {0, 1}ρ \ {S ∪ {0}}:

• By definition, the Eval algorithm first computes the “unrounded” value ỹx where

ỹx = s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)
∈ Zηmq .

The output is yx = bỹxep.

• By definition, the PunctureEval algorithm first computes the “unrounded” value ỹ′x where

ỹ′x = (w(1) − z(1)
x | · · · | w(η) − z(η)

x ) ∈ Zηmq ,

The output is y′x = bỹ′xep. Now, for all x ∈ {0, 1}ρ \ (S ∪ {0}), we have that f eqx (0) = 0
and f conx (S) = 0, so by the specification of the Puncture and PunctureEval algorithms and
Theorem 3.6, we have that for all ` ∈ [η],

z(`)
x = sA(`)

x + e
(`)
A + (sB(`)

x + e
(`)
B )G−1(C(`)

x )G−1(V(`))

= s(A(`)
x + B(`)

x G−1(C(`)
x )G−1(V(`))) + e(`)

= sZ(`)
x + e(`),

where
∥∥e(`)

A

∥∥,
∥∥e(`)

B

∥∥ and
∥∥e(`)

∥∥ ≤ B ·mO(d) = B ·mO(log λ), since d = O(log λ), and Z
(`)
x is

defined according to Eq. (4.3). Similarly, by definition, w(`) = sW(`) + e
(`)
W. Thus, we can

write ỹ′x = ỹx + e for some e ∈ Zηmq and where ‖e‖ ≤ B ·mO(log λ).

Thus, yx = bỹxep = bỹ′xep = y′x unless ỹx ∈ BorderlineE where E = B ·mO(log λ). By Lemma A.8, for
the provided parameters, the probability that there exists x ∈ {0, 1}ρ \ {0} where ỹx ∈ BorderlineE
is negligible, so we conclude that with overwhelming probability (over the randomness in PrmsGen,
SampleKey, and Puncture), Eval(pp, k, x) = PunctureEval(pp, kS , x) for all x ∈ {0, 1}ρ \ (S ∪ {0}).

A.3 Proof of Theorem 4.21 (Almost-Functionality-Preserving for All Keys)

We begin by defining two hybrid experiments between an adversary A and a challenger:

• hyb0: In hyb0, the challenger begins by sampling (pp, td) ← PrmsGen(1λ). It gives pp to
A. Adversary A replies with a key k = s ∈ [−B,B]m and a set S ⊆ {0, 1}ρ \ {0} of size t.

The challenger computes kS ← Puncture(pp, k, S) and samples x
r← X \ S. The output of the

experiment is 1 if Eval(pp, k, x) 6= PunctureEval(pp, kS , x) and 0 otherwise.
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• hyb1: Same as hyb0, except when sampling the public parameters pp, instead of defining the
matrices W(`) according to (4.1), the challenger instead samples W(`) r← Zn×mq for all ` ∈ [η].
The other components of pp are unchanged.

For an index i, we write hybi(A) to denote the output distribution of hybi with adversary A.
Showing that Construction 4.19 is almost-functionality-preserving for adversarial keys is equivalent
to showing that for all efficient adversaries A, Pr[hyb0(A) = 1] = negl(λ). To complete the proof,
we show that for all efficient adversaries A, hyb0(A) and hyb1(A) are statistically indistinguishable
and that under the 1D-SIS-Rm′,q,p,E assumption, Pr[hyb1(A) = 1] = negl(λ).

Lemma A.9. Suppose the lattice parameters n,m, p, q satisfy the conditions in Theorem 3.5. Then,
for all adversaries A, the distributions hyb0(A) and hyb1(A) are statistically indistinguishable.

Proof. The only difference between the two experiments is that in hyb1, the matrices W(`) are
uniformly random. To see this, we first appeal to Theorem 3.5 to argue that each D(`) is statistically
close to uniform in hyb0. Moreover, they are sampled independently of all the other components in
the public parameters. Finally, since η = poly(λ), we conclude that the public parameters generated
in hyb0 and hyb1 are statistically indistinguishable.

We now show that for public parameters output by hyb1, no efficient adversary can produce a key
s ∈ [−B,B]n that violates correctness.

Lemma A.10. Suppose ρ = ω(log λ). Let m′ = nmη and E = B · mO(log λ). Then, under the
1D-SIS-Rm′,p,q,E assumption, for all efficient adversaries A, Pr[hyb1(A) = 1] = negl(λ).

Proof. Suppose there exists an adversary A where hyb1(A) = 1 with non-negligible probability.
We use A to construct an algorithm B that breaks the 1D-SIS-Rm′,p,q,E assumption. Algorithm B
proceeds as follows:

1. Parsing the 1D-SIS-R challenge. At the beginning of the experiment, algorithm B receives
a challenge d ∈ Zm′q from the 1D-SIS-Rm′,p,q,B challenger where m′ = nmη. It parses the

components of d = (d
(`)
α,β)α∈[n],β∈[m],`∈[η]. For each ` ∈ η, it defines a matrix D(`) ∈ Zn×mq

where the (α, β)th entry of D(`) is d
(`)
α,β.

2. Simulating the public parameters. Before simulating the rest of the public parameters,
algorithm B first samples x

r← {0, 1}ρ \{0}. It then simulates the rest of the public parameters

pp as follows. First, B samples matrices (A
(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (B

(`)
i,j )i∈[t],j∈[ρ], (C

(`)
j )j∈[ρ],

V(`) uniformly at random from Zn×mq for every ` ∈ [η]. Then, for all ` ∈ [η], it computes

• A
(`)
x ← EvalPpk

(
f eqx , (A

(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

• B
(`)
x ← Evalpk

(
f conx , (B

(`)
i,j )i∈[t],j∈[ρ]

)
,

• C
(`)
x ← Evalpk

(
f eqx , (C

(`)
j )j∈[ρ]

)
,

and defines the matrix

W(`) = A(`)
x + B(`)

x G−1
(
C(`)
x

)
G−1

(
V(`)

)
+ D(`) ∈ Zn×mq .
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It sets

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

,

and gives pp to A.

3. Solving the 1D-SIS-R challenge. After receiving the public parameters pp, A outputs a key
s ∈ [−B,B]n and a set S ⊆ {0, 1}ρ \ {0} of size t. If x ∈ S, then B aborts the simulation and
outputs Fail. Otherwise, algorithm B computes the vector y(`) = s ·D(`) for all ` ∈ [η] and

checks if there exists an index β∗ ∈ [m], `∗ ∈ [η] for which y
(`∗)
β∗ ∈ [−E,E] + (q/p)(Z + 1/2).

If no such index exists, then B aborts the experiment and outputs Fail. Otherwise, it defines
the vector z = (zα,β,`)α∈[n],β∈[m],`∈[η] ∈ Znmηq as follows:

zα,β,` =

{
sα β = β∗, ` = `∗

0 otherwise,
(A.3)

where sα is the αth component of s. Algorithm B submits z ∈ Zm′ as the solution to the
1D-SIS-Rm′,q,p,E challenge.

To complete the proof, we show that algorithm B perfectly simulates hyb1 for A and moreover, that
whenever hyb1(A) outputs 1, then B successfully solves the 1D-SIS-R challenge (up to a negligible
loss in advantage).

Correctness of the simulation. In the simulation, the matrices (A
(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m],

(B
(`)
i,j )i∈[t],j∈[ρ], (C

(`)
j )j∈[ρ], V(`) are sampled exactly as defined in hyb1. Furthermore, by definition,

the 1D-SIS-Rm′,p,q,B challenge d ∈ Zm′q is a uniform vector over Zm′q , which means that each D(`) is

also uniformly random for all ` ∈ [η]. In addition, since D(`) is sampled independently of all of the
other components in pp, it follows that each of the W(`) for ` ∈ [η] is independently uniform, exactly
as required in hyb1. Thus, B perfectly simulates the pp according to the distribution in hyb1.

Correctness of the solution. By the previous argument, the public parameters perfectly hide
the point x from the adversary (the adversary only sees W(`) and not D(`), so the D(`) is a one-time
pad encryption of the matrices that depend on x). Therefore, the set S output by the adversary is
independent of x. Since x is sampled uniformly at random from {0, 1}ρ \ {0}, the probability that
x ∈ S is t/(2ρ − 1) = negl(λ) since t = poly(λ) and ρ = ω(log λ). Thus, without loss of generality,
we assume that x /∈ S (this only reduces B’s advantage by a negligible factor).

Suppose that the output of hyb1(A) is 1. This means that A outputs a key k = s ∈ [−B,B]n

and a set S ⊆ {0, 1}ρ \ {0} such that for kS ← Puncture(pp, k, S), we have Eval(pp, k, x) 6=
PunctureEval(pp, kS , x). We consider each of the values Eval(pp, k, x) and PunctureEval(pp, kS , x).

• By definition, the Eval algorithm first computes the “unrounded” value ỹx

ỹx = s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)
= s
(
D(1) | · · · | D(η)

)
∈ Zηmq .

The output is yx = bỹxep.
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• By definition, the PunctureEval algorithm first computes the “unrounded” value ỹ′x

ỹ′x = (w(1) − z(1)
x | · · · | w(η) − z(η)

x ) ∈ Zηmq .

The output is y′x = bỹ′xep. Now, for all x ∈ {0, 1}ρ \ (S ∪ {0}), we have that f eqx (0) = 0 and
f conx (S) = 0, so by the specification of Puncture and PunctureEval and Theorem 3.6, we have
that for all ` ∈ [η],

z(`)
x = sA(`)

x + e
(`)
A + (sB(`)

x + e
(`)
B )G−1(C(`)

x )G−1(V(`))

= s(A(`)
x + B(`)

x G−1(C(`)
x )G−1(V(`))) + e(`)

= sZ(`)
x + e(`),

where
∥∥e(`)

A

∥∥,
∥∥e(`)

B

∥∥ and
∥∥e(`)

∥∥ ≤ B ·mO(d) = B ·mO(log λ), since d = O(log λ), and Z
(`)
x is

defined according to Eq. (4.3). Similarly, by definition, w(`) = sW(`) + e
(`)
W where

∥∥e(`)
W

∥∥ ≤
B ·mO(log λ). Thus, we can write ỹ′x = ỹx + e for some e ∈ Zηmq and where ‖e‖ ≤ B ·mO(log λ).

Thus, yx = bỹxep = bỹ′xep = y′x unless ỹx ∈ BorderlineE
9 where E = B ·mO(log λ). Equivalently, if

yx 6= ỹ′x, then there exists indices β∗ ∈ [m] and `∗ ∈ [η] where

ỹx,β∗,`∗ =
〈
s,d

(`∗)
β∗
〉
∈ [−E,E] + (q/p)(Z + 1/2),

where d`
∗
β∗ ∈ Znq is the (β∗)th column of D(`∗) and ỹx,β∗,`∗ ∈ Zq where we view ỹx = (ỹx,β,`)β∈[m],`∈[η].

By construction of z from Eq. (A.3), we thus have

〈d, z〉 =
〈
s,d

(`∗)
β∗

〉
= ỹx,β∗,`∗ ∈ [−E,E] + (q/p)(Z + 1/2).

Furthermore, since each components of z is either 0 or a component of s ∈ [−B,B]n, we have that
‖z‖ ≤ B < B ·mO(log λ). Hence, the vector z is a correct solution to the 1D-SIS-R challenge d. Thus,
if hyb1(A) outputs 1, then algorithm B successfully solves the 1D-SIS-R challenge (except with
negligible probability). Thus, the advantage of B is negligibly smaller than Pr[hyb1(A) = 1]. The
claim follows.

Combining Lemmas A.9 and A.10, we conclude that under the 1D-SIS-Rm′,p,q,E assumption, no
efficient adversary can find a key s ∈ [−B,B]n and a constraint S where the behavior of the
punctured key kS and the real key S differ on a non-negligible fraction of the non-punctured
points.

A.4 Proof of Theorem 4.22 (Key-Injectivity)

Key-injectivity is a property only of the public parameters pp. To show this property, we use a
simple hybrid argument:

• hyb0: The output of this experiment is the public parameters pp where (pp, td)← PrmsGen(1λ).
Namely, the public parameters pp are generated according to Eq. (4.2).

9Unlike the proof of Theorem 4.20, we cannot appeal to Lemma A.8 because the secret key s here is chosen adversarially
and depends on the public parameters. This is the reason we rely on the 1D-SIS-R assumption.
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• hyb1: The public parameters pp are generated as in hyb0, except instead of computing W(`)

according to Eq. (4.1), the challenger instead samples W(`) r← Zn×mq for all ` ∈ [η]. The other
components of pp are unchanged and the challenger outputs pp.

By the same argument as in the proof of Lemma A.9, the distributions hyb0 and hyb1 are
statistically indistinguishable. It thus suffices to show that for the public parameters output by
hyb1, key-injectivity holds.

Lemma A.11. Suppose the public parameters pp are generated according to hyb1. Then,

Pr[∃s0, s1 ∈ [−B,B]n, x ∈ {0, 1}ρ \ {0} : Eval(pp, s0, x) = Eval(pp, s1, x) ∧ s0 6= s1] = negl(λ).

Proof. Suppose there exist two distinct keys s0 6= s1 ∈ [−B,B]n and an x ∈ {0, 1}ρ \ {0} such that
Eval(pp, s0, x) = Eval(pp, s1, x). We show that this event happens with negligible probability over
the randomness used to sample W(`) in the public parameters. By definition of Eval, we can write

Eval(pp, s0, x) = bs0(W − Zx)ep and Eval(pp, s1, x) = bs1(W − Zx)ep ,

where W = (W(1) | · · · | W(η)), Zx = (Z
(1)
x | · · · | Z(η)), and each Z(`) is as defined in Eq. (4.3).

Thus, if Eval(pp, s0, x) = Eval(pp, s1, x), it must be the case that (s0 − s1)(W − Zx) ∈ [−B′, B′]ηm,
where B′ = q/2p. Since W is sampled independently of all components in Z, (s0 − s1) 6= 0, and q is
a prime (i.e., Zq is a field), this means that that the distribution of (s0 − s1)(W − Zx) is uniformly
random over Zηmq . In particular, this means that

Pr
W

r←Zn×ηmq

[(s0 − s1)(W − Zx) ∈ [−B′, B′]ηm] ≤ (2B′/q)ηm = 1/pηm.

We now union bound over all possible values of (s0 − s1) ∈ [−2B, 2B]n and all x ∈ {0, 1}ρ to
conclude that

Pr[∃s0, s1 ∈ Znq , x ∈ {0, 1}ρ\{0} : Eval(pp, s0, x) = Eval(pp, s1, x)∧s0 6= s1] ≤ 2ρ(4B + 1)n

pηm
= negl(λ).

Finally, since hyb0 and hyb1 are statistically close, the corresponding probability using the public
parameters in hyb0 can only be negligibly different, and the theorem follows.

A.5 Proof of Theorem 4.23 (Puncturing Security)

We will prove the theorem under the HybLWEn,m1,m2,q,χ assumption where m1 = ηm(nm+(t+2)ρ+1)
and m2 = ηm (which is implied by the LWEn,m,q,χ assumption by Lemma A.5). We proceed via a
sequence of hybrid experiments between an adversary A, and a challenger.

• hyb0: This is the real puncturing security experiment ExptPuncΠEPRF,A(λ, 0) from Defini-
tion 4.16. Specifically, the challenger proceeds in each phase of the experiment as follows:

– Setup phase: At the start of the experiment, the adversary A commits to a challenge
set S ⊆ {0, 1}ρ\{0} where S = {xi}i∈[t] and a challenge point x∗ ∈ S to the challenger.

Then, the challenger generates the public parameters (pp, td) ← PrmsGen(1λ), PRF
key k = s← SampleKey(pp), punctured key kS ← Puncture(pp, k, S), and the challenge
evaluation y∗ ← Eval(pp, k, x∗) ∈ Zηmp . It gives pp, kS , and y∗ to A.
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– Query phase: Adversary A issues a polynomial number of evaluation queries to the
challenger. On an evaluation query x ∈ S, the challenger computes yx ← Eval(pp, k, x)
and gives yx to A.

– Output phase: Adversary A outputs a bit b ∈ {0, 1}, which is the output of the
experiment.

• hyb1: Same as hyb0 except when generating the public parameters pp during the setup phase,
the challenger samples W(`) r← Zn×mq for all ` ∈ [η].

• hyb2: Same as hyb1 except during the setup phase, instead of sampling the matrices(
B

(`)
i,j

)
i∈[t],j∈[ρ]

and
(
C

(`)
j

)
j∈[ρ]

uniformly at random, it first samples another set of matri-

ces
(
B̂

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

uniformly at random, and defines for all ` ∈ [η]

– B
(`)
i,j = B̂

(`)
i,j − xi,j ·G for all i ∈ [t] and j ∈ [ρ],

– C
(`)
j = Ĉ

(`)
j − x∗j ·G for all j ∈ [ρ],

where xi,j is the jth bit of xi ∈ S, and x∗j is the jth bit of x∗.

• hyb3: Same as hyb2 except when computing the challenge value to be y∗ ← Eval(pp, k, x∗),

the challenger instead samples y∗
r← Zηmp .

• hyb4: Same as hyb3, except the matrices
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

and
(
C

(`)
j

)
j∈[ρ]

are sampled uniformly

at random.

• hyb5: Same as hyb4, except during the setup phase, the public parameters are gener-
ated according to PrmsGen. This corresponds to the ideal puncturing security experiment
ExptPuncΠEPRF,A(λ, 1).

For an index i and an adversary A, we write hybi(A) to denote the output of experiment hybi.
We now show that the output distributions of each consecutive pair of hybrids are computationally
(or statistically) indistinguishable.

Lemma A.12. Suppose that the lattice parameters n,m, q, p satisfy the requirements in Theorem 3.5.
Then, for all adversaries A, |Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]| = negl(λ).

Proof. Follows by the same argument as that used in the proof of Lemma A.9.

Lemma A.13. For all adversaries A, |Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]| = 0.

Proof. Since the matrices
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

and
(
C

(`)
j

)
j∈[ρ]

are sampled uniformly at random, the

corresponding set of matrices in the public parameters are also uniformly (and independently)
distributed. Thus, the output distributions of hyb1 and hyb2 are identical.

Lemma A.14. Suppose that 2ρB · mO(log λ) · p/q = negl(λ), and let m1 = ηm(nm + (t + 2)ρ +
1) and m2 = ηm. Under the HybLWEn,m1,m2,q,χ assumption, for all efficient adversaries A,
|Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]| = negl(λ).

55



Proof. Suppose that there is an adversary A where the output distributions of hyb2(A) and hyb3(A)
are noticeably different. We use A to construct an algorithm B that breaks the HybLWEn,m1,m2,q,χ

assumption. Algorithm B proceeds as follows:

1. Parsing the HybLWE challenge. At the beginning of the experiment, algorithm B receives
a challenge (A1,A2,u1,u2) from the HybLWEn,m1,m2,q,χ challenger. Algorithm B interprets
the matrix A1 ∈ Zn×m1

q as the concatenation of the following collection of matrices (each in
Zn×mq : (

Ŵ(`),
(
Â

(`)
j

)
j∈[ρ]

,
(
Â

(`)
α,β

)
α∈[n],β∈[m]

,
(
B̂

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
Ĉ

(`)
j

)
j∈[ρ]

,
)
`∈[η]

.

Correspondingly, it interprets the vector u1 ∈ Zm1
q as the concatenation of the following

collection of vectors (each in Zmq ):(
ŵ(`),

(
â

(`)
j

)
j∈[ρ]

,
(
â

(`)
α,β

)
α∈[n],β∈[m]

,
(
b̂

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
ĉ

(`)
j

)
j∈[ρ]

,
)
`∈[η]

. (A.4)

It interprets the matrix A2 ∈ Zn×m2
q as the concatenation of the collection of matrices(

V̂(`)
)
`∈[η]

where each V̂(`) ∈ Zn×mq . It interprets the vector u2 ∈ Zm2
q as the concatenation

of the collection of vectors
(
v̂(`)

)
`∈[η]

where v̂(`) ∈ Zmq for each ` ∈ [η].

2. Simulating the public parameters and trapdoor. Algorithm B begins simulating an
execution of hyb2 and hyb3 for A. At the start of the setup phase, Adversary A commits
to a challenge set S = {xi}i∈[t] and a challenge point x∗ ∈ S. Algorithm B constructs the
components of the public parameters pp for each ` ∈ [η] as follows:

• W(`) = Ŵ(`),

• A
(`)
j = Â

(`)
j for all j ∈ [ρ],

• Ã
(`)
α,β = Â

(`)
α,β for all α ∈ [n] and β ∈ [m],

• B
(`)
i,j = B̂

(`)
i,j − xi,j ·G for all i ∈ [t], j ∈ [ρ],

• C
(`)
j = Ĉ

(`)
j − x∗j ·G for all j ∈ [ρ],

• V(`) = V̂(`),

where xi,j denotes the jth component of xi ∈ S, and x∗j denote the jth component of x∗. It
sets the public parameters pp to be

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

.

3. Simulating the punctured key. For the punctured key, B sets

kS =
(
S,
(
ŵ(`), (â

(`)
j )j∈[ρ], (â

(`)
α,β)α∈[n],β∈[m], (b̂

(`)
i,j )i∈[t],j∈[ρ]

)
`∈[η]

)
,

and gives kS to A.
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4. Common parameters for simulating PRF evaluations. Before describing how B sim-
ulates the challenge value and the evaluation queries, we define some common notation.
Specifically, for an input x ∈ {0, 1}ρ, we define the following vectors and matrices:

a(`)
x ← EvalPct

(
f eqx ,0, (A

(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m], (â

(`)
j )j∈[ρ], (â

(`)
α,β)α∈[n],β∈[m]

)
,

b(`)
x ← Evalct

(
f conx , S, (B

(`)
i,j )i∈[t],j∈[ρ], (b̂

(`)
i,j )i∈[t],j∈[ρ]

)
,

C(`)
x ← Evalpk

(
f eqx , (C

(`)
j )j∈[ρ]

)
,

c(`)
x ← Evalct

(
f eqx , x, S, (C

(`)
j )j∈[ρ], (ĉ

(`)
j )j∈[ρ]

)
.

(A.5)

5. Simulating the challenge evaluation. To simulate the challenge evaluation y∗, algorithm

B computes a
(`)
x∗ , b

(`)
x∗ , C

(`)
x∗ , and c

(`)
x∗ according to Eq. (A.5) for all ` ∈ [η]. Then, it sets

z
(`)
x∗ = a

(`)
x∗ + b

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))− c

(`)
x∗G

−1(V(`)) + v̂(`), (A.6)

for all ` ∈ [η] and finally, it returns the vector

y∗ =
⌊
ŵ(1) − z

(1)
x∗ | · · · | ŵ

(η) − z
(η)
x∗

⌉
p
.

6. Simulating the evaluation queries. When the adversary A makes an evaluation query

on an input x ∈ S, algorithm B proceeds by computing a
(`)
x , b

(`)
x , C

(`)
x , and c

(`)
x according to

Eq. (A.5) for all ` ∈ [η]. Then, it sets

z(`)
x = a(`)

x + b(`)
x G−1(C(`)

x )G−1(V(`))− c(`)
x , (A.7)

for all ` ∈ [η] and returns the vector

yx =
⌊
ŵ(1) − z(1)

x | · · · | ŵ(η) − z(η)
x

⌉
p
.

7. Output of the experiment. At the end of the experiment, algorithm A outputs a bit
b ∈ {0, 1}. Algorithm B simply echoes the bit b.

Correctness of the simulation. To complete the proof, we show that algorithm B correctly
simulates the views of either hyb2 or hyb3 to A depending on whether the challenge vectors
u2 = (v̂(`))`∈[η] ∈ Zm2

q consist of LWE samples or if they are uniformly random. We consider each
components in the simulation separately:

• Public parameters. In the HybLWE security game, the matrix A1 is sampled uniformly at
random from Zn×m1

q . Thus, B constructs the public parameters pp using the same procedure
as that in hyb2 and hyb3.

• Secret PRF key. The LWE secret s (chosen by the HybLWE challenger) plays the role
of the PRF key in the simulation. Note that HybLWE challenger samples s from the same
distribution as the SampleKey algorithm used in hyb2 and hyb3.
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• Punctured key. By definition of HybLWE, we can write the vectors in u1 (Eq. (A.4)) as
follows:

ŵ(`) = sŴ(`) + e
(`)
W = sW(`) + e

(`)
W

â
(`)
j = sÂ

(`)
j + e

(`)
A,j = sA

(`)
j + e

(`)
A,j for all j ∈ [ρ],

â
(`)
α,β = sÂ

(`)
α,β + e

(`)
A,α,β = sÃ

(`)
α,β + e

(`)
A,α,β for all α ∈ [n], β ∈ [m],

b̂
(`)
i,j = sB̂

(`)
i,j + e

(`)
B,i,j = s(B

(`)
i,j + xi,j ·G) + e

(`)
B,i,j for all i ∈ [t], j ∈ [ρ],

ĉ
(`)
j = sĈ

(`)
j + e

(`)
C,j = s(C

(`)
j + x∗j ·G) + e

(`)
C,j for all j ∈ [ρ],

for some s ∈ [−B,B]n and error vectors e
(`)
W, e

(`)
A,j , e

(`)
A,α,β, e

(`)
B,i,j , and e

(`)
C,j that are sampled

from χm. Hence, the punctured key

kS =
(
S,
(
ŵ(`), (â

(`)
j )j∈[ρ], (â

(`)
α,β)α∈[n],β∈[m], (b̂

(`)
i,j )i∈[t],j∈[m]

)
`∈[η]

)
,

is correctly simulated as in hyb2 and hyb3.

• Evaluation queries. Suppose the adversary makes an evaluation query on an input x ∈ S.
In hyb2 and hyb3, the challenger would reply with the real evaluation

yx = Eval(pp, s, x) =
⌊
s(W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

⌉
p
,

where W(`) = Ŵ(`) is the matrix in the public parameters pp and Z(`) is as defined in Eq. (4.3)
for all ` ∈ [η]. We show that with overwhelming probability, algorithm B replies with the same
value. By Theorems 3.6 and 3.7, and the fact that f eqx

(
0
)

= 0 = f eqx
(
x∗
)

and f conx (S) = 1, the

vectors a
(`)
x , b

(`)
x , and c

(`)
x from Eq. (A.5) satisfy the following relations:

a(`)
x = s

(
A(`)
x + f eqx (0) ·D

)
+ e

(`)
a,x = sA(`)

x + e
(`)
a,x,

b(`)
x = s

(
B(`)
x + f conx (S) ·G

)
+ e

(`)
b,x = s(B(`)

x + G) + e
(`)
b,x,

c(`)
x = s

(
B(`)
x + f conx (x∗) ·G

)
+ e

(`)
c,x = sC(`)

x + e
(`)
c,x,

for error vectors
∥∥e(`)

a,x

∥∥,∥∥e(`)
b,x

∥∥,∥∥e(`)
c,x

∥∥ ≤ B ·mO(d) = B ·mO(log λ) since d = O(log λ). Substi-
tuting into Eq. (A.7), this means that in the simulation

z(`)
x = a(`)

x + b(`)
x G−1(C(`)

x )G−1(V(`))− c(`)
x

= s
(
A(`) + B(`)G−1(C(`))G−1(V(`))

)
+ e

(`)
z,x

= sZ(`)
x + e

(`)
z,x,

where Z
(`)
x is as defined in Eq. (4.3) and where ‖e(`)

z,x‖ ≤ B ·mO(log λ). Thus, the simulation
evaluation yx has the form

yx =
⌊
ŵ(1) − z(1)

x | · · · | ŵ(η) − ê(η)
x

⌉
p

=
⌊
s
(
W(1) − Z(1)

x + e(1) | · · · |W(η) − Z(η)
x + e(η)

)⌉
p
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using the relation for ŵ from Eq. (A.8) and where
∥∥e(`)

∥∥ ≤ B · mO(log λ) for all ` ∈ [η].
This means that the simulated value yx and the real evaluation yx are identical as long as
yx /∈ BorderlineE for E = B ·mO(log λ). By Lemma A.8, for the provided parameters, we have
yx /∈ BorderlineE with overwhelming probability. Thus, the evaluation queries are correctly
simulated with overwhelming probability.

• Challenge value. Using Theorems 3.6 and 3.7, and the fact that f eqx∗
(
0
)

= 0 and f conx∗ (S) =

f eqx∗
(
x∗
)

= 1, the vectors
(
a

(`)
x∗
)
`∈[η]

,
(
b

(`)
x∗
)
`∈[η]

, and
(
c

(`)
x∗
)
j∈[t]

from Eq. (A.5) satisfy the

following relations:

a
(`)
x∗ = s

(
A

(`)
x∗ + f eqx∗(0) ·D

)
+ e

(`)
a,x∗ = sA

(`)
x∗ + e

(`)
a,x∗ ,

b
(`)
x∗ = s

(
B

(`)
x∗ + f conx∗ (S) ·G

)
+ e

(`)
b,x∗ = s(B

(`)
x∗ + G) + e

(`)
b,x∗ ,

c
(`)
x∗ = s

(
C

(`)
x∗ + f eqx∗(x

∗) ·G
)

+ e
(`)
c,x∗ = s(C

(`)
x∗ + G) + e

(`)
c,x∗ ,

(A.8)

for all ` ∈ [η] where
∥∥e(`)

a,x∗
∥∥, ∥∥e(`)

b,x∗

∥∥, ∥∥e(`)
c,x∗
∥∥ ≤ B ·mO(log λ). Substituting into Eq. (A.6), this

means that in the simulation

z
(`)
x∗ = a

(`)
x∗ + b

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))− c

(`)
x∗G

−1(V(`)) + v̂(`)

= s(A
(`)
x∗ + B

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))−V(`)) + v̂(`) + e

(`)
z,x∗

= s(Z
(`)
x∗ −V(`)) + v̂(`) + e

(`)
z,x∗ ,

using the definition of Z
(`)
x∗ from Eq. (4.3) and where

∥∥e(`)
z,x∗
∥∥ ≤ B ·mO(log λ). Thus, for all

` ∈ [η],

ŵ(`) − z
(`)
x∗ = s(W(`) − Z

(`)
x∗ + V(`))− v̂(`) + ê(`), (A.9)

using the relation for ŵ(`) from Eq. (A.8). We now consider the behavior of the challenger in
hyb2 and hyb3 and show that if the vectors v̂(`) are LWE samples, then B correctly simulates
hyb2 for A (with overwhelming probability); otherwise, if the vectors v̂(`) are uniformly
random, then B correctly simulates hyb3 for A.

– In hyb2, the challenger answers the challenge query using Eval(pp, s, x∗), which computes
and outputs the following:

y∗ = Eval(pp, s, x∗) =
⌊
s(W(1) − Z

(1)
x∗ | · · · |W

(η) − Z
(η)
x∗ )
⌉
p
.

Suppose v̂(`) = sV(`) + e
(`)
v where e

(`)
v is sampled from χm. In this case, Eq. (A.9)

becomes
ŵ(`) − z

(`)
x∗ = s(W(`) − Z

(`)
x∗ ) + (ê(`) − e

(`)
v ),

and the simulated challenge evaluation has the form

y∗ =
⌊
ŵ(1) − z

(1)
x∗ | · · · | ŵ

(η) − z
(η)
x∗

⌉
p

=
⌊
s
(
W(1) − Z

(1)
x∗
)

+ (ê(1) − e
(1)
v ) | · · · | s

(
W(η) − Z

(η)
x∗
)

+ (ê(η) − e
(η)
v )
⌉
p
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Thus the simulated value y∗ and the real evaluation y∗ are identical as long as y∗ /∈
BorderlineE for E = B ·mO(log λ). By Lemma A.8, for the provided parameters, y∗ /∈
BorderlineE with overwhelming probability, and so algorithm B correctly simulates the
challenge evaluation according to the specification of hyb2.

– In hyb3, the challenger answers the evaluation query by sampling y∗
r← Zηmp . If each v̂(`)

is a uniformly random vector over Zmq (and independent of all of the other components),

then from Eq. (A.9), ŵ(`) − z
(`)
x∗ is also uniformly random over Zmp for all ` ∈ [η]. This

means that algorithm B’s response y∗ is uniformly random over Zηmp , in which case B
perfectly simulates the distribution in hyb3.

By the above analysis, we have shown that if the vectors v̂(`) consist of LWE samples, then B
correctly simulates hyb3 for A (up to negligible error) and if they are uniformly random, then
B correctly simulates hyb4 for A (up to negligible error). Thus, if the outputs of hyb2(A) and
hyb3(A) are noticeably different, then B breaks the HybLWEn,m1,m2,q,χ assumption with noticeable
probability.

Lemma A.15. For all adversaries A, |Pr[hyb3(A) = 1] = Pr[hyb4(A) = 1]| = 0.

Proof. Same as the proof of Lemma A.13.

Lemma A.16. Suppose that the lattice parameters n,m, q, p satisfy the requirements in Theorem 3.5.
Then, for all adversaries A, |Pr[hyb4(A) = 1] = Pr[hyb5(A) = 1]| = negl(λ).

Proof. Same as the proof of Lemma A.12.

Combining Lemmas A.12 through A.16, the extractable PRF ΠEPRF from Construction 4.19 satisfies
puncturing security.

Remark A.17 (Adaptive Security via Admissible Hash Functions). In the puncture pseudoran-
domness proof above, we prove selective security (Remark 4.4) to better demonstrate the key ideas
of our construction and proofs. Using admissible hash functions and partitioning [BB04b, Wat05],
we can tweak our construction to also achieve adaptive security. As in [BV15], we can augment the
PRF with another set of matrices that (in the security proof) encode an admissible hash function.
Since an admissible hash function can be implemented in NC1, this increases the modulus q (and
therefore, the approximation factors for the worst-case lattice problems) by only a polynomial factor.

A.6 Proof of Theorem 4.25 (T -Restricted Pseudorandomness Given Trapdoor)

We begin by specifying the set S of restricted points for the PRF family. First, recall that
each choice of public parameters pp in ΠEPRF induces a PRF family Fpp : K × X → Y. Take
(pp, td)← PrmsGen(1λ), and write td = (h(`), tdD(`))`∈[η]. The restricted set for the PRF family Fpp is

the set of special points {h(`)}`∈[η]. We now show that ΠEPRF satisfies T -restricted pseudorandomness
where T = η for this particular choice of restricted points.

Proof of T -resticted pseudorandomness. We will prove the theorem under the HybLWEn,m1,m2,q,χ

assumption where m1 = ηm(nm + ρ(t + 2)) and m2 = ηm (which is implied by the LWEn,m′,q,χ
assumption by Lemma A.5). To show selective T -restricted pseudorandomness, we use the definition
based on Definition A.1 (with the modification from Remark 4.4). We proceed via a sequence of
hybrid experiments between an adversary A, and a challenger.
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• hyb0: This is the real security experiment ExptPRFΠEPRF,A(λ, 0) from Definition A.1. Specifi-
cally, the challenger proceeds in each phase of the experiment as follows:

– Setup phase: At the start of the experiment, the challenger samples a set of η special
points h(`) r← {0, 1}ρ. It defines the restricted set T = {h(`)}`∈[η] and sends T to the
adversary. The adversary then commits to a challenge point x∗ ∈ {0, 1}ρ \ (T ∪{0}). The
challenger samples the remainder of the public parameters using (pp, td)← PrmsGen(1λ)
using h(`) as the special points. It then samples a PRF key k ← SampleKey(pp), and
computes y∗ ← Eval(pp, k, x∗). It gives (pp, td,y∗) to the adversary. Note that this
procedure is identical to the behavior of PrmsGen as specified by ΠEPRF.

– Query phase: Adversary A can then issue any (polynomial) number of evaluation
queries x ∈ {0, 1}ρ \ (T ∪ {0}). For each of these queries, the challenger replies with
yx ← Eval(pp, k, x).

– Output phase: Adversary A outputs a bit b ∈ {0, 1}, which is the output of the
experiment.

• hyb1: Same as hyb0, during the setup phase, except instead of sampling the matrices(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β)α∈[n],β∈[m],

(
B

(`)
i,j

)
i∈[t],j∈[ρ]

, and
(
C

(`)
j

)
j∈[ρ]

uniformly at random, the chal-

lenger first samples another set of matrices
(
Â

(`)
j

)
j∈[ρ]

,
(
Â

(`)
α,β

)
α∈[n],β∈[m]

,
(
B̂

(`)
i,j

)
i∈[t],j∈[ρ]

, and(
Ĉ

(`)
j

)
j∈[ρ]

uniformly at random from Zn×mq , and defines for all ` ∈ [η]

– A
(`)
j = Â

(`)
j − h

(`)
j ·G for all j ∈ [ρ],

– Ã
(`)
α,β = Â

(`)
α,β − d

(`)
α,β ·G for all α ∈ [n] and β ∈ [m],

– B
(`)
i,j = B̂

(`)
i,j − x∗j ·G for all i ∈ [t] and j ∈ [ρ],

– C
(`)
j = Ĉ

(`)
j − x∗i ·G for all j ∈ [ρ],

where h
(`)
j denotes the jth bit of h(`), d

(`)
α,β denotes the (α, β)th component of D(`), and x∗j

denote the jth component of x∗.

• hyb2: Same as hyb1 except when computing the challenge value y∗ during the setup phase,
the challenger samples y∗

r← Zηmp .

• hyb3: Same as hyb2, except the public parameters are generated according to PrmsGen. This
corresponds to the ideal T -restricted pseudorandomness security experiment ExptPRFΠEPRF,A(λ, 1)
from Definition A.1.

For an index i and an adversary A, we write hybi(A) to denote the output of experiment hybi.
We now show that the output distributions of each consecutive pair of hybrids are computationally
(or statistically) indistinguishable.

Lemma A.18. For all adversaries A, |Pr[hyb0(A) = 1] = Pr[hyb1(A) = 1]| = 0.

Proof. Since the matrices
(
Â

(`)
j

)
j∈[ρ]

,
(
Â

(`)
α,β

)
α∈[n],β∈[m]

,
(
B̂

(`)
i,j

)
i∈[t],j∈[ρ]

, and
(
Ĉ

(`)
j

)
j∈[ρ]

are sampled

uniformly at random, the corresponding set of matrices in the public parameters are also uniformly
(and independently) distributed. Thus, the output distributions of hyb0 and hyb1 are identical.
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Lemma A.19. Suppose 2ρB · mO(log λ) · p/q = negl(λ), and let m1 = ηm(nm + ρ(t + 2)) and
m2 = ηm. Then, under the HybLWEn,m1,m2,q,χ assumption, for all efficient adversaries A, it holds
that |Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]| = negl(λ).

Proof. This proof is very similar to the proof of Lemma A.14. Suppose there is an adversary A
where the output distributions of hyb1(A) and hyb2(A) are noticeably different. We use A to
construct an algorithm B that breaks the HybLWEn,m1,m2,q,χ assumption. Algorithm B proceeds as
follows:

1. Parsing the HybLWE challenge. At the beginning of the experiment, algorithm B receives
a challenge (A1,A2,u1,u2) from the HybLWEn,m1,m2,q,χ challenger. Algorithm B interprets
the matrix A1 ∈ Zn×m1

q as the concatenation of the following collection of matrices (each in
Zn×mq ): ((

Â
(`)
j

)
j∈[ρ]

,
(
Â

(`)
α,β

)
α∈[n],β∈[m]

,
(
B̂

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
Ĉ

(`)
j

)
j∈[ρ]

)
`∈[η]

.

Correspondingly, it interprets the vector u1 ∈ Zm1
q as the concatenation of the following

collection of vectors (each in Zmq ):((
â

(`)
j

)
j∈[ρ]

,
(
â

(`)
α,β

)
α∈[n],β∈[m]

,
(
b̂

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
ĉ

(`)
j

)
j∈[ρ]

)
`∈[η]

. (A.10)

It interprets the matrix A2 ∈ Zn×m2
q as the concatenation of the collection of matrices(

V̂(`)
)
`∈[η]

where each V̂(`) ∈ Zn×mq . It interprets the vector u2 ∈ Zm2
q as the concatenation

of the collection of vectors
(
v̂(`)

)
`∈[η]

where each v̂(`) ∈ Zmq .

2. Simulating the public parameters and trapdoor. Algorithm B begins simulating an
execution of hyb1 and hyb2 for A. At the start of the setup phase, algorithm B samples a
set of test points h(`) r← {0, 1}ρ for ` ∈ [η]. It gives the set T = {h(`)}`∈[η] to A. Adversary
A then commits to a challenge point x∗ ∈ {0, 1}ρ \ (T ∪ {0}). Next, for ` ∈ [η], algorithm
B samples trapdoor matrices (D(`), tdD(`))← TrapGen(1λ). Algorithm B now constructs the
components of the public parameters pp as follows for each ` ∈ [η]:

• A
(`)
j = Â

(`)
j − h

(`)
j ·G for all j ∈ [ρ],

• Ã
(`)
α,β = Â

(`)
α,β − d

(`)
α,β ·G for all α ∈ [n] and β ∈ [m],

• B
(`)
i,j = B̂

(`)
i,j − x∗j ·G for all i ∈ [t], j ∈ [ρ],

• C
(`)
j = Ĉ

(`)
j − x∗j ·G for all j ∈ [ρ],

• V(`) = V̂(`),

where h
(`)
j denotes the jth bit of h(`), d

(`)
α,β denotes the (α, β)th component of D(`), and x∗j

denote the jth component of x∗. Then, for ` ∈ [η], it computes

• A
(`)

h(`)
← EvalPpk

(
f eq
h(`)

, (A
(`)
j )j∈[ρ], (Ã

(`)
α,β)α∈[n],β∈[m]

)
,

• B
(`)

h(`)
← Evalpk

(
f con
h(`)

, (B
(`)
i,j )i∈[t],j∈[ρ]

)
,

• C
(`)

h(`)
← Evalpk

(
f eq
h(`)

, (C
(`)
j )j∈[ρ]

)
,
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and
W(`) = A

(`)

h(`)
+ B

(`)

h(`)
G−1

(
C

(`)

h(`)

)
G−1(V(`)) + D(`) ∈ Zn×mq .

Finally, it sets the public parameters pp to be

pp =
(
W(`),

(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(`)
j

)
j∈[ρ]

,V(`)
)
`∈[η]

and the trapdoor td =
(
h(`), tdD(`)

)
`∈[η]

.

3. Common parameters for simulating PRF evaluations. Before describing how B simu-
lates the challenge value and the evaluation queries, we define some common notation. First,
define the multi-set Sx∗ that consists of t copies of x∗ (that is, the bitwise representation of
Sx∗ is x∗‖x∗‖ · · · ‖x∗ ∈ {0, 1}tρ). Next, for an input x ∈ {0, 1}ρ, define the following vectors
and matrices:

a(`)
x ← EvalPct

(
f eqx , h

(`),
(
A

(`)
j

)
j∈[ρ]

,
(
Ã

(`)
α,β

)
α∈[n],β∈[m]

,
(
â

(`)
j

)
j∈[ρ]

,
(
â

(`)
α,β

)
α∈[n],β∈[m]

)
,

b(`)
x ← Evalct

(
f conx , Sx∗ ,

(
B

(`)
i,j

)
i∈[t],j∈[ρ]

,
(
b̂

(`)
i,j

)
i∈[t],j∈[ρ]

)
,

C(`)
x ← Evalpk

(
f eqx ,

(
C

(`)
j

)
j∈[ρ]

)
,

c(`)
x ← Evalct

(
f eqx , x

∗,
(
C

(`)
j

)
j∈[ρ]

,
(
ĉ

(`)
j

)
j∈[ρ]

)
.

(A.11)

In addition algorithm B first computes a
(`)

h(`)
, b

(`)

h(`)
, C

(`)

h(`)
for all ` ∈ [η] according to Eq. (A.11),

and computes for all ` ∈ [η],

w(`) = a
(`)

h(`)
+ b

(`)

h(`)
G−1(C

(`)

h(`)
)G−1(V(`)). (A.12)

4. Simulating the challenge value. To simulate the challenge evaluation y∗, algorithm B
computes a

(`)
x∗ , b

(`)
x∗ , c

(`)
x∗ according to Eq. (A.11), and the vector

z
(`)
x∗ = a

(`)
x∗ + b

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))− c

(`)
x∗G

−1(V(`)) + v̂(`), (A.13)

for all ` ∈ [η]. It defines the vector

y∗ =
⌊
(w(1) − z

(1)
x∗ ) | · · · | (w(η) − z

(η)
x∗ )
⌉
p
,

where the vectors w(`) are defined in Eq. (A.12). Algorithm B gives (pp, td,y∗) to A.

5. Simulating the evaluation queries. When the adversary A makes an evaluation query

x ∈ {0, 1}ρ \ (T ∪ {0} ∪ {x∗}), algorithm B computes a
(`)
x ,b

(`)
x ,C

(`)
x according to Eq. (A.11)

and the vector
z(`)
x = a(`)

x + b(`)
x G−1(C(`)

x )G−1(V(`)), (A.14)

for all ` ∈ [η]. It replies with

yx =
⌊
(w(1) − z(1)

x ) | · · · | (w(η) − z(η)
x )
⌉
p
,

where the w(`) are as defined in Eq. (A.12).
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6. Output of the experiment. At the end of the experiment, algorithm A outputs a bit
b ∈ {0, 1}. Algorithm B simply echoes the bit b.

Correctness of the simulation. To complete the proof, we show that algorithm B correctly
simulates the views of either hyb1 or hyb2 to A depending on whether the challenge vectors
u2 = (v̂(`))`∈[η] ∈ Zm2

q consist of LWE samples or if they are uniformly random. First, by definition
of HybLWE, we can write the vectors in u1 (Eq. (A.10)) as follows:

â
(`)
j = sÂ

(`)
j + e

(`)
A,j = s(A

(`)
j + h

(`)
j ·G) + e

(`)
A,j for all j ∈ [ρ],

â
(`)
α,β = sÂ

(`)
α,β + e

(`)
A,α,β = s(A

(`)
α,β + d

(`)
α,β ·G) + e

(`)
A,α,β for all α ∈ [n], β ∈ [m],

b̂
(`)
i,j = sB̂

(`)
i,j + e

(`)
B,i,j = s(B

(`)
i,j + x∗j ·G) + e

(`)
B,i,j for all i ∈ [t], j ∈ [ρ],

ĉ
(`)
j = sĈ

(`)
j + e

(`)
C,j = s(C

(`)
j + x∗j ·G) + e

(`)
C,j for all j ∈ [ρ],

for some s ∈ Znq and error vectors e
(`)
A,j , e

(`)
A,α,β , e

(`)
B,i,j , and e

(`)
C,j sampled from χm. By Theorems 3.6

and 3.7, and the fact that f eq
h(`)

(h(`)) = 1, f con
h(`)

(Sx∗) = 0, the vectors a
(`)

h(`)
and b

(`)

h(`)
from Eq. (A.11)

satisfy the following:

a
(`)

h(`)
= s
(
A

(`)

h(`)
+ f eq

h(`)
(h(`)) ·D

)
+ e

(`)

a,h(`)
= s
(
A

(`)

h(`)
+ D) + e

(`)

a,h(`)
,

b
(`)

h(`)
= s
(
B

(`)

h(`)
+ f con

h(`)
(Sx∗) ·G

)
+ e

(`)

b,h(`)
= sB

(`)

h(`)
+ e

(`)

b,h(`)
,

for all ` ∈ [η] where
∥∥e(`)

a,h(`)

∥∥,∥∥e(`)

b,h(`)

∥∥ ≤ B ·mO(d) = mO(log λ) since d = O(log λ). Substituting into

Eq. (A.12), this means that in the simulation,

w(`) = a
(`)

h(`)
+ b

(`)

h(`)
G−1(C

(`)

h(`)
)G−1(V(`))

= s
(
A

(`)

h(`)
+ D + B

(`)

h(`)
G−1(C

(`)

h(`)
)G−1(V(`))

)
+ e

(`)
w

= sW(`) + e
(`)
w (A.15)

for all ` ∈ [η] and where ‖e(`)
w ‖ ≤ B ·mO(log λ). Now, we consider each component in the simulation

separately:

• Public parameters and trapdoor. In the HybLWE security game, the matrix A1 is sampled
uniformly at random from Zn×m1

q . Thus, B constructs the public parameters pp and trapdoor
td using the same procedure as that in hyb1 and hyb2.

• Secret PRF key. The LWE secret s (chosen by the HybLWE challenger) plays the role of
the PRF key in the simulation. Note that the HybLWE challenger samples s from the same
distribution as the SampleKey algorithm used in hyb1 and hyb2.

• Evaluation queries. Suppose the adversary makes an evaluation query on an input x ∈
{0, 1}ρ \ (T ∪ {0} ∪ {x∗}). In hyb1 and hyb2, the challenger would reply with the real
evaluation

yx = Eval(pp, s, x) =
⌊
s
(
W(1) − Z(1)

x | · · · |W(η) − Z(η)
x

)⌉
p
,
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where W(`) is the matrix in the public parameters pp and Z
(`)
x is as defined in Eq. (4.3) for

all ` ∈ [η]. We show that with overwhelming probability, algorithm B replies with the same

value. By Theorems 3.6 and 3.7 and the fact that f eqx
(
h(`)
)

= 0 = f conx (Sx∗), the vectors a
(`)
x

and b
(`)
x from Eq. (A.11) satisfy the following relations:

a(`)
x = s

(
A

(`)

h(`)
+ f eqx (h(`)) ·D

)
+ e

(`)
a,x = sA

(`)

h(`)
+ e

(`)
a,x,

b(`)
x = s(B

(`)

h(`)
+ f conx (Sx∗) ·G) + e

(`)
b,x = sB

(`)

h(`)
+ e

(`)
b,x,

for error vectors ‖e(`)
a,x‖, ‖e(`)

b,x‖ ≤ B ·m
O(log λ). Substituting into Eq. (A.14), this means that

in the simulation,

z(`)
x = a(`)

x + b(`)
x G−1(C(`)

x )G−1(V(`))

= s
(
A(`)
x + B(`)

x G−1(C(`)
x )G−1(V(`))

)
+ e

(`)
z,x

= sZ(`)
x + e

(`)
z,x,

using the definition of Z
(`)
x from Eq. (4.3) and where ‖e(`)

z,x‖ ≤ B · mO(log λ). Thus, for all
` ∈ [η]

w(`) − z(`)
x = s

(
W(`) − Z(`)

x

)
+ ê(`),

using the relation for w(`) from Eq. (A.15) and where ‖ê(`)‖ ≤ B · mO(log λ). Thus, the
simulated evaluation yx satisfies the following:

yx =
⌊
(w(1) − z(1)

x ) | · · · | (w(η) − z(η)
x )
⌉
p

=
⌊
s
(
W(1) − Z(1)

x

)
+ ê(1) | · · · | s

(
W(η) − Z(η)

x

)
+ ê(η)

⌉
p

This means that the simulated value yx and the real evaluation yx are identical as long as
yx /∈ BorderlineE for E = B ·mO(log λ). By Lemma A.8, yx /∈ BorderlineE with overwhelming
probability. Thus, the evaluation queries are correctly simulated with overwhelming probability.

• Challenge value. By Theorems 3.6 and 3.7 and the fact that f eqx∗
(
h(`)
)

= 0, f conx∗ (Sx∗) = 1,

and f eqx∗
(
x∗
)

= 1, the vectors a
(`)
x∗ , b

(`)
x∗ , c

(`)
x∗ satisfy the following relations:

a
(`)
x∗ = s(A

(`)
x∗ + f eqx∗(h

(`)) ·D) + e
(`)
a,x∗ = sA

(`)
x∗ + e

(`)
a,x∗

b
(`)
x∗ = s(B

(`)
x∗ + f conx∗ (Sx∗) ·G) + e

(`)
b,x∗ = s(B

(`)
x∗ + G) + e

(`)
b,x∗

c
(`)
x∗ = s(C

(`)
x∗ + f eqx∗(x

∗) ·G) + e
(`)
c,x∗ = s(C

(`)
x∗ + G) + e

(`)
c,x∗

for error vectors ‖e(`)
a,x∗‖, ‖e

(`)
b,x∗‖, ‖e

(`)
c,x∗‖ ≤ B ·mO(log λ). Substituting into Eq. (A.13), this

means that in the simulation,

z
(`)
x∗ = a

(`)
x∗ + b

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))− c

(`)
x∗G

−1(V(`)) + v̂(`)

= s
(
A

(`)
x∗ + B

(`)
x∗G

−1(C
(`)
x∗ )G−1(V(`))−V(`)

)
+ v̂(`) + e

(`)
z,x∗

= s
(
Z

(`)
x∗ −V(`)) + v̂(`) + e

(`)
z,x∗
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using the definition of Z
(`)
x∗ from Eq. (4.3) and where ‖e(`)

z,x∗‖ ≤ B ·mO(log λ). Thus, for all
` ∈ [η],

w(`) − z
(`)
x∗ = s

(
W(`) − Z

(`)
x∗ + V(`)

)
− v̂(`) + ê(`), (A.16)

using the relation for w(`) from Eq. (A.15) and where
∥∥ê(`)

∥∥ ≤ B ·mO(log λ). We now consider

the behavior of the challenger in hyb1 and hyb2 and show that if the vectors v̂(`) are LWE
samples, then B correctly simulates hyb1 for A (with overwhelming probability); otherwise, if
the vectors v(`) are uniformly random, then B correctly simulates hyb2 for A.

– In hyb1, the challenger answers the challenge query using Eval(pp, s, x∗) which computes
and outputs the following:

y∗ = Eval(pp, s, x∗) =
⌊
s
(
W(1) − Z

(1)
x∗ | · · · |W

(η) − Z
(η)
x∗
)⌉
p
.

Suppose v̂(`) = sV(`) + e
(`)
v where e

(`)
v is sampled from χm. In this case, Eq. (A.16)

becomes
w(`) − z

(`)
x∗ = s

(
W(`) − Z

(`)
x∗
)

+ (ê(`) − e
(`)
v ),

and the simulated challenge evaluation has the form

y∗ =
⌊
(w(1) − z

(1)
x∗ ) | · · · | (w(η) − z

(η)
x∗ )
⌉
p

=
⌊
s
(
W(1) − Z

(1)
x∗
)

+ (ê(1) − e
(1)
v ) | · · · | s

(
W(η) − Z

(η)
x∗
)

+ (ê(η) − e
(η)
v )
⌉
p

Thus, the simulated value y∗ and the real evaluation y∗ are identical as long as y∗ /∈
BorderlineE for E = B ·mO(log λ). By Lemma A.8, y∗ /∈ BorderlineE with overwhelming
probability, and so algorithm B correctly simulates the challenge evaluation according to
the specification of hyb1 if the vectors v(`) are LWE samples.

– In hyb2, the challenger answers the evaluation query by sampling y∗
r← Zηmp . If each v̂(`)

is a uniformly random vector over Zmq (and independent of all of the other components),

then according to Eq. (A.16), w(`) − z
(`)
x∗ is also uniformly random over Zmq for all ` ∈ [η].

This means that algorithm B’s response y∗ is uniformly random over Zηmp , in which case
B perfectly simulates the distribution in hyb2.

By the above analysis, we have shown that if the vectors v(`) consist of valid LWE samples, then B
correctly simulates hyb1 for A (up to negligible error) and if they are uniformly random, then B
correctly simulates hyb2 for A (up to negligible error). Thus, if the outputs of hyb1(A) and hyb2(A)
are noticeably different, then B breaks the HybLWEn,m1,m2,q,χ with noticeable probability.

Lemma A.20. For all adversaries A, |Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]| = 0.

Proof. Same as the proof of Lemma A.18.

Combining Lemmas A.18 through A.20, construction ΠPRF satisfies T -restricted pseudorandomness
for T = η.
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A.7 Proof of Theorem 4.26 (Robust Extractability)

By inspection, the TestCandidate algorithm in ΠEPRF satisfies the generalized candidate testing
properties from Remark 4.10. It thus suffices to show that ΠEPRF satisfies robust extractability.
First, we show that the TestCandidate algorithm for ΠEPRF satisfies the requirements for robust
extractability. Then, we show that the output of the real extraction experiment ExtRealA(λ, ε1, ε2) is
statistically indistinguishable from the output of the ideal extraction algorithm ExtIdealA(λ, ε1, ε2).

Statistical properties of TestCandidate. Both properties follow from Hoeffding’s inequality. Take
(pp, td)← PrmsGen(1λ), any key s ∈ [−B,B]n and any circuit C : {0, 1}ρ → Zηmp .

• Suppose C(·) ∼ε1 Eval(pp, s, ·). Then

Pr[xi
r← {0, 1}ρ : C(xi) 6= Eval(pp, s, xi)] ≤ ε1 = ε− δ.

Let Ns be the number of indices i ∈ [ξ] where C(x∗i ) 6= Eval(pp, s, x∗i ), ξ = λ/δ2, and

x∗1, . . . , x
∗
ξ

r← {0, 1}ρ. By Hoeffding’s inequality,

Pr[Ns > εξ] ≤ Pr[|Ns − (ε− δ)ξ| > δξ] ≤ 2−Ω(δ2ξ) = 2−Ω(λ) = negl(λ).

Thus, in this case, TestCandidate outputs 1 with probability 1− negl(λ).

• Suppose C(·) 6∼ε2 Eval(pp, s, ·). Then

Pr[xi
r← {0, 1}ρ : C(xi) 6= Eval(pp, s, xi)] > ε2 = ε+ δ.

Again by Hoeffding’s inequality,

Pr[Ns ≤ εξ] = Pr[|Ns − (ε+ δ)ξ| ≥ δξ] ≤ 2−Ω(δ2ξ) = 2−Ω(λ) = negl(λ).

Thus, in this case, TestCandidate outputs 1 with negligible probability.

Indistinguishability of ExtReal and ExtIdeal. We proceed via a sequence of hybrid experiments
between an (unbounded) adversary A, and an (unbounded) challenger.

• hyb0: This is the real extractability experiment ExtRealA(λ, ε1, ε2) from Definition 4.9. Specif-
ically, the challenger proceeds in each phase of the experiment as follows:

– Setup phase: The challenger samples (pp, td)← PrmsGen(1λ) and gives pp to A.

– Query phase: Whenever A makes an extraction query on a circuit C : {0, 1}ρ → Zηmp ,
the challenger replies with Extract(pp, td, C).

– Output phase: At the end of the experiment, the adversary A outputs a bit b ∈ {0, 1},
which is also the output of the experiment.

• hyb1: Same as hyb0, except the challenger implements the ExtractCandidates sub-algorithm
(used by Extract) using the following (inefficient) algorithm that does not rely on the lattice
trapdoors tdD(`) in td:
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– ExtractCandidates(pp, td, C): On input the public parameters pp (as specified in Eq. (4.2)),
a trapdoor td =

(
h(`), tdD(`)

)
`∈[η]

, and a circuit C : {0, 1}ρ → Zηmp , the candidate

extraction algorithm first evaluates the circuit C on the test points h(`) to obtain

(y
(`)
1 | · · · | y

(`)
η ) ← C(h(`)) for all ` ∈ [η]. For each ` ∈ [η], if there exists a unique

s ∈ [−B,B]n such that

y
(`)
` =

⌊
s
(
W(`) − Z

(`)

h(`)

)⌉
p
, (A.17)

where Z
(`)

h(`)
is defined according to Eq. (4.3), then set s(`) = s, and otherwise, set s(`) = ⊥.

Output the set of all s(`) where s(`) 6= ⊥.

• hyb2: Same as hyb1, except during the setup phase, the challenger samples the trapdoor
matrices D(`) r← Zn×mq in the public parameters pp uniformly at random for all ` ∈ [η]. It
leaves the trapdoors tdD(`) unspecified (since nothing in the experiment depends on them).

• hyb3: Same as hyb2 except the challenger implements the ExtractCandidates sub-algorithm
(used by Extract) using the following (inefficient) algorithm that does not depend on any
trapdoor td:

– ExtractCandidates(pp, C): On input the public parameters pp (as specified in Eq. (4.2)),
and a circuit C : {0, 1}ρ → Zηmp , check if there exists a unique key s ∈ [−B,B]n such
that C(·) ∼ε2 Eval(pp, s, ·). If so, then output the singleton set {s}; otherwise, output
the empty set ∅.

By design, this is the ideal extractability experiment ExtIdealA(λ, ε1, ε2).

Lemma A.21. Suppose the conditions in Theorem 3.5 hold, m ≥ 2n log q, and dq/pe ≤ q/4.
Then, for all adversaries A that makes Q = poly(λ) extraction queries, we have

∣∣Pr[hyb0(A) =
1]− Pr[hyb1(A) = 1]

∣∣ = negl(λ).

Proof. The only difference between the experiments hyb0 and hyb1 is in the way the challenger
implements the ExtractCandidates algorithm.

• In hyb0, the ExtractCandidates algorithm computes s(`) ← Invert(tdD(`) ,y
(`)
` ) for each ` ∈ [η],

where the values (y
(`)
1 | · · · | y

(`)
η ) are derived from C(h(`)).

• In hyb1, the ExtractCandidates algorithm computes (y
(`)
1 | · · · | y

(`)
η )← C(h(`)) as above, and

then tries to finds a key s ∈ [−B,B]n where

y
(`)
` =

⌊
s
(
W(`) − Z

(`)

h(`)

)⌉
p

=
⌊
s ·D(`)

⌉
p
.

If such a vector exists, then it sets s(`) = s, and otherwise, it sets s(`) = ⊥.

The rest of the logic is identical in hyb0 and hyb1. Hence, it suffices to show that the distribution of
the vectors s(`) for ` ∈ [η] in the two experiments are statistically indistinguishable. By construction,

D(`) = W(`) − Z
(`)

h(`)
for all ` ∈ [η] in both experiments. By Theorem 3.5, if there exists a vector

s ∈ [−B,B]n for which
⌊
s ·D(`)

⌉
p

= y
(`)
` , the challenger in hyb0 will set s(`) = s with overwhelming

probability. If no such vector s exists, then it will set s(`) = ⊥ with overwhelming probability. Again
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by Theorem 3.5, the matrices D(`) are statistically close to uniform over Zn×mq , so by Lemma A.6, if

there exists s ∈ [−B,B]n such that
⌊
s ·D(`)

⌉
p

= y
(`)
` , then s is unique with overwhelming probability.

Thus, with overwhelming probability, the output of ExtractCandidates in hyb0 and hyb1 will be
identical. The lemma then follows by a union bound over the number of times Q = poly(λ) the
Extract algorithm is invoked in the two experiments.

Lemma A.22. Suppose the conditions in Theorem 3.5 hold. Then, for all adversaries A, we have
that

∣∣Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]
∣∣ = negl(λ).

Proof. Follows immediately from Theorem 3.5.

Lemma A.23. Suppose ΠEPRF satisfies key-injectivity (Definition 4.11), η = ω(log λ), m ≥ 2n log q,
dq/pe ≤ q/4, and ε2 < 1/2. Then, for all adversaries A that makes Q = poly(λ) extraction queries,
we have that

∣∣Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]
∣∣ = negl(λ).

Proof. We use a hybrid argument. First, let hyb2,0 ≡ hyb2. Then, for i ∈ [Q], we define hyb2,i to
be the experiment where the first i extraction queries the adversary makes are answered according
according to the specification in hyb2 and the remaining Q − i queries are answered according
to the specification in hyb3. By construction, hyb2,Q ≡ hyb3. We now show that for all i ∈ [Q],

hyb2,i−1
s
≈ hyb2,i. It suffices to consider the ith extraction query the adversary A makes. Let C be

the circuit A submits to the challenger on its ith query. We consider two cases:

Case 1. Suppose there exists a key s∗ ∈ [−B,B]n where C(·) ∼ε2 Eval(pp, s∗, ·). Since ΠEPRF

satisfies key-injectivity and ε2 < 1/2, we can appeal to Lemma 4.12 to argue that s∗ is in fact unique
(with overwhelming probability). Consider the challenger’s behavior in hyb2,i−1 and hyb2,i:

• In hyb2,i, the ExtractCandidates algorithm will output {s∗}. In this case, the challenger
then computes bs∗ ← TestCandidate(pp, C, s∗). The challenger replies to the extraction query
with ⊥ if bs∗ = 0 and s∗ if bs∗ = 1.

• In hyb2,i−1, the ExtractCandidates algorithm first computes (y
(`)
1 | · · · | y

(`)
η )← C(h(`)) for all

` ∈ [η], and defines s(`) ∈ [−B,B]n to be the unique vector (if there is one) where

y
(`)
` =

⌊
s(`)
(
W(`) − Z

(`)

h(`)

)⌉
p

=
⌊
s(`) ·D(`)

⌉
p
.

Note that if s(`) exists, then it is unique (with overwhelming probability) by Lemma A.6. We
now proceed as follows:

– First, we show that with overwhelming probability, there exists some ` ∈ [η] such that
C(h(`)) = Eval(pp, s∗, h(`)). By construction of hyb2,i−1, the view of the adversary prior
to its ith extraction query is entirely independent of h(`) for all ` ∈ [η]. This means

that the challenger can sample h(`) r← {0, 1}ρ after the adversary has submitted its ith

extraction query C. Since C(·) ∼ε2 Eval(pp, s∗, ·), and all of the points h(`) are sampled
uniformly and independently from {0, 1}ρ,

Pr[∀` ∈ [η] : C(h(`)) 6= Eval(pp, s∗, h(`))] ≤ εη2 ≤ 1/2η = negl(λ),

since ε2 < 1/2 and η = ω(log λ).
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– Thus, with overwhelming probability, there exists ` ∈ [η] where

C(h(`)) = Eval(pp, s∗, h(`)) =
⌊
s∗
(
D(1) | · · · | D(η)

)⌉
p
,

where the last equality follows by definition of Eval and the public parameters pp. This
means that in hyb2,i−1, the challenger will set s(`) = s∗. Now, let S ⊆ Znq be the set of

candidate keys output by ExtractCandidates on the ith query in hyb2,i−1. To compute the
response to the extraction query, the challenger computes bs ← TestCandidate(pp, C, s)
for each s ∈ S. It outputs s if bs = 1. By the above analysis, with overwhelming
probability, s∗ ∈ S. Suppose there exists another key s ∈ S where s 6= s∗. Since s∗ is the
unique key where C(·) ∼ε2 Eval(pp, s∗, ·), it follows that C(·) 6∼ε2 Eval(pp, s, ·). Then, by
the statistical properties of TestCandidate, the bit bs = 0 for all s 6= s∗ with overwhelming
probability. Since |S| ≤ η = poly(λ), it follows that with overwhelming probability bs = 0
for all s ∈ S where s 6= s∗. In this case, the challenger in hyb2,i−1 replies with s∗ if
bs∗ = 1 and ⊥ if bs∗ = 0. This is exactly the challenger’s behavior in hyb2,i. Hence, the
challenger’s behavior in hyb2,i−1 and hyb2,i is statistically indistinguishable.

Case 2. Suppose that for all keys s ∈ [−B,B]n, it is the case that C(·) 6∼ε2 Eval(pp, s, ·). We again
consider the challenger’s behavior on the ith extraction query in hyb2,i−1 and hyb2,i.

• In hyb2,i, the ExtractCandidates algorithm will always output ∅ in this case. Thus, the
challenger always responds with ⊥.

• In hyb2,i−1, let S ⊆ Znq be the set of candidate keys output by ExtractCandidates on the ith

query in hyb2,i−1. The challenger in hyb2,i−1 computes bs ← TestCandidate(pp, C, s) for each
s ∈ S. For all s ∈ S, since C(·) 6∼ε2 Eval(pp, s, ·), it follows by the statistical properties of
TestCandidate that bs = 0 with overwhelming probability. Since |S| ≤ η = poly(λ), it follows
by a union bound that bs = 0 for all s ∈ S with overwhelming probability. Equivalently, the
challenger replies with ⊥ with overwhelming probability.

We see that in both cases, the challenger’s response to the ith extraction query in hyb2,i−1 and hyb2,i

are statistically indistinguishable. Finally, since the adversary makes at most Q = poly(λ) queries
(and so, there are polynomially many hybrids), we conclude that hyb2 and hyb3 are statistically
indistinguishable.

Combining Lemmas A.21 through A.23, we conclude that the extractable PRF construction ΠEPRF

from Construction 4.19 satisfies (ε1, ε2)-robust extractability.

B Analysis of Watermarking Schemes

In this section, we provide the formal analysis of our watermarking schemes from Section 5.

B.1 Analysis of Mark-Embedding Watermarking Scheme

In this section, we provide the security analysis of our basic mark-embedding watermarking scheme
(Construction 5.17).
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Proof of Theorem 5.18 (Correctness). We show that both of the correctness requirements are
satisfied. Take (pp,wsk)← Setup(1λ), k ← F.KeyGen(pp) and C ← Mark(wsk, k). By definition of
ΠWM, this means that k ← EX.SampleKey(pp), and moreover C := EX.PunctureEval(pp, k′, ·), where
k′ ← EX.Puncture(pp, k, {x∗i }i∈[λ]) where (x∗1, . . . , x

∗
λ)← PRF(kPRF, k) ∈ X λ.

• Functionality-preserving: Since the public parameters pp and the key k are sampled
honestly, by correctness of ΠEPRF, with overwhelming probability

C(x) = EX.PunctureEval(pp, k′, x) = EX.Eval(pp, k, x) = F(k, x)

for all x /∈ {x∗i }i∈[λ]. This means that C(·) ∼ε F(k, ·) for ε = λ/ |X | = negl(λ).

• Extraction correctness: From above, we have that with overwhelming probability, C(·) ∼ε
EX.Eval(pp, k, ·) for ε = negl(λ). Since ε1 = 1/poly(λ), by (ε1, ε2)-robust extractability (and
key-injectivity) of ΠEPRF, we have that with overwhelming probability, EX.Extract(pp, td, C)
outputs k. In this case, the extraction algorithm checks whether C(x∗i ) 6= EX.Eval(pp, k, x∗i )
for all i ∈ [λ], where (x∗1, . . . , x

∗
λ) ← PRF(kPRF, k). By definition of C, this is equivalent to

checking whether EX.PunctureEval(pp, k′, x∗i ) 6= EX.Eval(pp, k, x∗i ) for all i ∈ [λ]. By definition
k′ is obtained by puncturing k at (x∗1, . . . , x

∗
λ), so by puncturing security10 of ΠEPRF, with

overwhelming probability, EX.PunctureEval(pp, k′, x∗i ) 6= EX.Eval(pp, k, x∗i ) for all i ∈ [λ].
Hence, with overwhelming probability, Extract(wsk, C) = marked.

Proof of Theorem 5.21 (Unremovability). We proceed via a sequence of hybrid arguments.
Without loss of generality, we assume that the adversary makes at most one challenge query
(otherwise, the adversary is not admissible).

• hyb0: This is the real watermarking security game ExptWMΠWM,A(λ) from Definition 5.10.
Specifically, the experiment proceeds as follows.

1. First, the challenger samples kPRF
r← KPRF and (pp, td)← EX.PrmsGen(1λ). It gives pp

to the adversary.

2. The challenger responds to the adversary’s oracle queries as follows:

– Marking oracle. On input a key k ∈ KEPRF, the challenger first computes
the test points (x∗1, . . . , x

∗
λ) ← PRF(kPRF, k) as well as the punctured key k′ ←

EX.Puncture(pp, k, (x∗1, . . . , x
∗
λ)). Finally, it outputs the circuit C : X → Y where

C(·) = EX.PunctureEval(pp, k′, ·).
– Extraction oracle. On input a circuit C : X → Y, the challenger first computes
k ← EX.Extract(pp, td, C). If k = ⊥, it outputs unmarked. Otherwise, it computes
(x∗1, . . . , x

∗
λ)← PRF(kPRF, k) and outputs marked if C(x∗i ) 6= EX.Eval(pp, k, x∗i ) for

all i ∈ [λ], and unmarked otherwise.

– Challenge oracle. The challenger first samples a key k̂ ← EX.SampleKey(pp). Then,
it computes the test points (x̂∗1, . . . , x̂

∗
λ)← PRF(kPRF, k̂) as well as the punctured key

k̂′ ← EX.Puncture(pp, k̂, (x̂∗1, . . . , x̂
∗
λ)). It outputs the challenge circuit Ĉ : X → Y

where Ĉ(·) = EX.PunctureEval(pp, k̂′, ·).
10Specifically, if the punctured key agreed with the real key at a punctured point with noticeable probability, then an

adversary can break security of the punctured PRF with the same advantage.
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3. At the end of the experiment, after the adversary outputs its circuit C̃ : X → Y, the
challenger treats C̃ as an extraction query and proceeds accordingly. The output of the
extraction query on C̃ is the output of the experiment.

• hyb1: Same as hyb0, except that at the beginning of the experiment, the challenger samples
a uniformly random function f

r← Funs[KEPRF,X λ]. For the rest of the experiment, the
challenger always uses f(·) in place of PRF(kPRF, ·).

• hyb2: Same as hyb1, except the challenger initializes an empty set T at the beginning of the
experiment. During the experiment, whenever the adversary makes a marking oracle query
for a key k ∈ KEPRF, the challenger adds k to T (if it is not already contained in T ). When
the adversary makes a challenge query, the challenger adds the challenge key k̂ ∈ KEPRF to T .
During the experiment (and when computing the output), the challenger uses the following
procedure to implement the extraction oracle queries:

– Extraction oracle. On input a circuit C : X → Y, the challenger computes bk ←
EX.TestCandidate(pp, C, k) for each k ∈ T . If bk = 0 for all k ∈ T , it outputs unmarked.
If bk = 1 for some k ∈ T , the challenger computes (x∗1, . . . , x

∗
λ) ← f(k). If C(x∗i ) 6=

EX.Eval(pp, k, x∗i ) for all i ∈ [λ], the challenger outputs marked; otherwise, it outputs
unmarked.

In particular, the challenger’s behavior in hyb2 no longer depends on the trapdoor td.

• hyb3: Same as hyb2, except whenever the challenger computes EX.TestCandidate(pp, ·, k̂),
where k̂ is the challenge key, it instead computes EX.TestCandidate(pp, ·, Ĉ), where Ĉ is the
challenge circuit.

• hyb4: Same as hyb3, except at the beginning of the security game, the challenger samples ran-
dom values ŷ∗1, . . . , ŷ

∗
λ

r← Y . Then, whenever the challenger needs to compute EX.Eval(pp, k̂, x̂∗i )
for i ∈ [λ] after the adversary has made a challenge query, the challenger uses the value ŷ∗i
instead. Here, k̂ is the challenge key and (x̂∗1, . . . , x̂

∗
λ)← f(k̂).

• hyb5: Same as hyb4, except the challenger no longer adds the challenge key k̂ to the set
T when responding to the challenge oracle. Moreover, it uses the following procedure to
implement the extraction oracle:

– Extraction oracle. The pre-challenge extraction queries are handled as in hyb4.
On a post-challenge extraction query C : X → Y, the challenger computes bk̂ ←
EX.TestCandidate(pp, C, Ĉ), and outputs marked if bk̂ = 1. Otherwise, the challenger
proceeds as in hyb4.

For a hybrid experiment hybi, we write hybi(A) to denote the output distribution of hybrid
experiment hybi with adversary A. For an integer i, we define the advantage Advi,i+1(A) as

Advi,i+1(A) := |Pr[hyb0(A) 6= marked]− Pr[hyb1(A) 6= marked]| .

We now show that for all efficient adversaries A, the advantage between each consecutive pair of
hybrid experiments is negligible, and moreover, that Pr[hyb5(A) 6= marked] = negl(λ).
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Lemma B.1. Suppose ΠPRF is a secure PRF. Then, for all efficient adversaries A, Adv0,1(A) =
negl(λ).

Proof. Suppose there is an efficient adversary A where Adv0,1(A) is non-negligible. We use A to
construct an efficient adversary B for ΠPRF. Algorithm B simulates experiment hyb0 for A exactly
as prescribed, except whenever it needs to compute PRF(kPRF, ·) on an input k ∈ KEPRF, algorithm
B forwards k to the ΠPRF challenger and uses the response (x∗1, . . . , x

∗
λ) ∈ X λ as the value for

PRF(kPRF, k). At the end, B computes the output of the experiment and outputs 1 if the output is
not marked, and 0 otherwise. If the ΠPRF challenger responds with pseudorandom values, then B
perfectly simulates hyb0 for A, and if the challenger responds with evaluations of a truly random
function, then B perfectly simulates hyb1 for A. Thus, the distinguishing advantage of B is precisely
Adv0,1, and the claim follows.

Lemma B.2. Suppose ΠEPRF satisfies key-injectivity and (ε1, ε2)-robust extractability for ε2 < 1/2.
Then, for all (unbounded) adversaries A, Adv1,2(A) = negl(λ).

Proof. We begin by defining an intermediate hybrid experiment hyb′1 as follows:

• hyb′1: Same as hyb1, except the challenger uses the following (inefficient) algorithm to
implement the extraction oracle:

– Extraction oracle. On input a circuit C : X → Y, the challenger checks if there is a
unique key k ∈ KEPRF where C(·) ∼ε2 EX.Eval(pp, k, ·). If so, the challenger computes
bk ← EX.TestCandidate(pp, C, k). If no such k exists or if bk = 0, the challenger replies
with unmarked. Otherwise, it computes (x∗1, . . . , x

∗
λ)← f(k) and outputs marked if

for all i ∈ [λ], C(xi) = EX.Eval(pp, k, xi), and unmarked otherwise.

Essentially, hyb′1 is identical to hyb1 except we replace EX.Extract(pp, td, ·) with the ideal extraction
procedure from Definition 4.9.

Claim B.3. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) adversaries A,
the output distributions of hyb1(A) and hyb′1(A) are statistically indistinguishable.

Proof. Follows immediately from the fact that ΠEPRF satisfies (ε1, ε2)-robust extractability.

Next, we show that the output distributions of hyb′1 and hyb2 are also statistically indistinguishable.
Let Q = poly(λ) be a bound on the number of extraction queries A makes. Define hyb′1,0 ≡ hyb′1,
and for ` ∈ [Q], define a hybrid experiment hyb′1,` as follows:

• hyb′1,`: Same as hyb′1 except the first ` extraction queries are handled using the procedure in
hyb2, while the remaining extraction queries are implemented using the procedure in hyb′1.

Define hyb′1,Q+1 ≡ hyb2; namely, hyb′1,Q+1 is the hybrid where all of the extraction queries A
makes is handled according to hyb2, as is the final “simulated” extraction oracle query used to
compute the output of the experiment.

Claim B.4. If ε2 < 1/2 and ΠEPRF satisfies key-injectivity, then for all (unbounded) adversaries
A and all ` ∈ [Q + 1], the output distributions of hyb′1,`−1(A) and hyb′1,`(A) are statistically
indistinguishable.
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Proof. By construction, hybrid hyb′1,`−1 and hyb′1,` are identical experiments except on how the

challenger implements the `th extraction query. Let C` : X → Y be the `th query the adversary
submits to the extraction oracle (or the “simulated” extraction query used to determine the output
of the experiment). We argue that the challenger’s response in the two hybrids is statistically
indistinguishable. We consider two possibilities:

• Suppose there exists some key k∗ ∈ KEPRF where Ci(·) ∼ε2 EX.Eval(pp, k∗, ·). Since ε2 < 1/2
and ΠEPRF satisfies key-injectivity, by Lemma 4.12, the key k∗ is unique. Consider now the
challenger’s behavior in the two experiments:

– In hyb′1,`−1, the challenger computes bk∗ ← EX.TestCandidate(pp, C`, k
∗). If bk∗ = 0, it

outputs unmarked. Otherwise, it computes (x∗1, . . . , x
∗
λ)← f(k∗) and outputs marked

if for all i ∈ [λ], C`(x
∗
i ) = EX.Eval(pp, k∗, x∗i ), and unmarked otherwise.

– In hyb′1,`, the challenger first computes bk ← EX.TestCandidate(pp, C`, k) for all k ∈ T .
From above, for all k 6= k∗, C`(·) 6∼ε2 EX.Eval(pp, k, ·). Since ΠEPRF satisfies (ε1, ε2)-
robust extractability and |T | = poly(λ), with overwhelming probability, bk = 0 for all
k 6= k∗. Thus, if k∗ /∈ T , or if k∗ ∈ T and bk∗ = 0, then the challenger outputs unmarked.
If k∗ ∈ T and bk∗ = 1, then the challenger computes (x∗1, . . . , x

∗
λ)← f(k∗) and outputs

marked if for all i ∈ [λ], C`(x
∗
i ) 6= EX.Eval(pp, k∗, x∗i ), and unmarked otherwise.

We now consider two cases:

– Suppose the adversary previously made a marking oracle query on k∗ (or if k∗ = k̂ is
the challenge key). Then, in hyb′1,i, k

∗ ∈ T . By the above analysis, the challenger’s
response in hyb′1,i−1 and hyb′1,i is identical with overwhelming probability (since with
overwhelming probability, the challenger in both experiments implement the same ex-
traction procedure).

– Suppose the adversary has not made a marking oracle query on k∗ and k∗ is not the
challenge key. By construction, this means that k∗ /∈ T in hyb′1,i. In this case, with
overwhelming probability, the challenger’s response in hyb′1,i is unmarked. We show
that this is also the case in hyb′1,i−1.

By construction, in hyb′1,i−1, the challenger outputs marked only if for all i ∈ [λ],
C`(x

∗
i ) = EX.Eval(pp, k∗, x∗i ). We show that this happens with negligible probability. By

construction, if the adversary never makes a marking query on k∗ and k∗ is not the
challenge query, then the adversary’s view in hyb′1,i−1 up to the ith extraction query is

independent of f(k∗). This is because for all queries prior to the ith extraction query, the
challenger in hyb′1,i−1 only needs to compute f(k) for keys that appear or have appeared
in either a marking query or a challenge query (namely, keys in the set T ). Since the
view of A prior to the ith extraction query is independent of f(k∗), the challenger can
lazily sample f(k∗) ∈ X λ after A has submitted its query to the extraction oracle. Since
C`(·) ∼ε2 EX.Eval(pp, k∗, ·),

Pr[(x∗1, . . . , x
∗
λ)

r← X λ : C`(x
∗
i ) 6= EX.Eval(pp, k∗, x∗i ) for all i ∈ [λ]] ≤ (ε2)λ = negl(λ).

Thus, with overwhelming probability, the challenger in hyb′1,i−1 outputs unmarked.
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In both cases, the distribution of the challenger’s response on the ith extraction query in
hyb′1,i−1 and hyb′1,i is statistically indistinguishable.

• Suppose that for all keys k ∈ KEPRF, C`(·) 6∼ε2 EX.Eval(pp, k, ·). Then, in hyb′1,i−1, the
challenger always responds with unmarked. Next, since ΠEPRF satisfies (ε1, ε2)-robust
extractability, Pr[EX.TestCandidate(pp, C, k) = 1] = negl(λ) for all k ∈ KEPRF. In hyb1,i, the
challenger first evaluates bk ← EX.TestCandidate(pp, C, k) for all k ∈ T . Since |T | = poly(λ),
with overwhelming probability, bk = 0 for all k ∈ T . This means that the challenger in hyb′1,i
outputs unmarked with overwhelming probability. Thus, the adversary’s views in hyb′1,i−1

and hyb′1,i are statistically indistinguishable.

In both cases, the challenger’s responses in hyb′1,i−1 and hyb′1,i are statistically indistinguishable,
and the claim follows.

Combining Claims B.3 and B.4 and using the fact that Q = poly(λ), we claim that the output
distributions of hyb1 and hyb2 are statistically indistinguishable.

Lemma B.5. Suppose algorithm TestCandidate in ΠEPRF satisfies the additional properties in
Remark 4.10. Then, for all (unbounded) adversaries A, Adv2,3(A) = negl(λ).

Proof. The only difference between experiments hyb2 and hyb3 is that the challenger in hyb3

replaces EX.TestCandidate(pp, ·, k̂) with EX.TestCandidate(pp, ·, Ĉ). First, by definition, Ĉ(·) =
EX.PunctureEval(pp, k̂′, ·) where k̂′ ← EX.Puncture(pp, k̂, (x̂∗1, . . . , x̂

∗
λ)). Thus, by correctness of

ΠEPRF (Definition 4.14),

Pr[x
r← X \ {x̂∗1, . . . , x̂∗λ} : Ĉ(x) 6= EX.Eval(pp, k̂, x)] = negl(λ).

This means that

Pr
x

r←X
[Ĉ(x) 6= EX.Eval(pp, k̂, x)] ≤ λ

|X |
+ negl(λ) = negl(λ).

Thus Ĉ ∼ε EX.Eval(pp, k̂, ·) where ε = negl(λ). Finally, since k̂ is sampled using EX.SampleKey, we
can conclude via Remark 4.10 that the distribution of {EX.TestCandidate(pp, ·, k̂)} in hyb2 and the
distribution of {EX.TestCandidate(pp, ·, Ĉ)} are statistically indistinguishable. Since the adversary
in the unremovability game makes poly(λ) queries, the number of times the challenger needs to run
EX.TestCandidate is also poly(λ). Thus, the output distributions for hyb2 and hyb3 are statistically
indistinguishable.

Lemma B.6. Suppose ΠEPRF satisfies key-injectivity and selective puncturing security and 1/ |Y| =
negl(λ). Then, for all efficient adversaries A, Adv3,4(A) = negl(λ).

Proof. The difference between hyb3 and hyb4 is that in hyb4, the evaluations EX.Eval(pp, k̂, x̂∗i )
using the challenge key are replaced with random values ŷ∗i for all i ∈ [λ]. Thus, we appeal to
puncturing security of ΠEPRF to argue that the outputs of the two experiments are computationally
indistinguishable. Towards that end, suppose there exists an adversary A where Adv3,4(A) is
non-negligible. We use A to build a distinguisher B:
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1. Algorithm B samples (x̂∗1, . . . , x̂
∗
λ)

r← X λ and sends (x̂∗1, . . . , x̂
∗
λ) to the puncturing security

challenger. The challenger replies with the public parameters pp and a punctured key k̂′.
Algorithm B makes challenge queries at x̂∗1, . . . , x̂

∗
λ to obtain values ŷ∗1, . . . , ŷ

∗
λ.

2. Algorithm B begins simulating an execution of hyb3 and hyb4 for A by providing A the
public parameters pp. To simplify the description, we assume that B implements the random
function f : KEPRF → X λ by lazily sampling the entries of f . That is, whenever B needs
to evaluate f on a new input k ∈ KEPRF, it samples and stores (x1, . . . , xλ)

r← X λ and sets
f(k) := (x1, . . . , xλ). If B already computed f(k) on a previous query, then B uses the same
value. Now, it answers A’s queries as follows:

• Marking oracle. On input a key k ∈ KEPRF, algorithm B implements the marking
oracle using the procedure described in hyb3 and hyb4. In addition, it samples a random
point x ∈ X and checks whether EX.Eval(pp, k, x) = EX.PunctureEval(pp, k̂′, x). If so,
then B halts the simulation and outputs 1 if ŷ∗1 = EX.Eval(pp, k, x̂∗1) and 0 otherwise.

• Extraction oracle. Algorithm B simulates the pre-challenge queries as described
in hyb3 and hyb4. On a post-challenge query C : X → Y, algorithm B computes
bk ← EX.TestCandidate(pp, C, k) for k ∈ T and bk̂ ← EX.TestCandidate(pp, C, Ĉ), where

Ĉ is the challenge circuit.

– If bk̂ = 0 and bk = 0 for all k ∈ T , algorithm B outputs unmarked.

– If bk = 1 for some k ∈ T , algorithm B computes (x∗1, . . . , x
∗
λ) ← f(k) and outputs

marked if C(x∗i ) 6= EX.Eval(pp, k, x∗i ) for i ∈ [λ] and unmarked otherwise.

– If bk̂ = 1, algorithm B outputs marked if C(x̂∗i ) 6= ŷ∗i for i ∈ [λ] and unmarked
otherwise.

• Challenge oracle. Algorithm B replies with the circuit Ĉ := EX.PunctureEval(pp, k̂, ·),
where k̂ is the punctured key B received from the puncturing security challenger.

3. At the end of the experiment, let C̃ : X → Y be the circuit the adversary outputs. If A aborts
before outputting a circuit, B sets output = ⊥. Otherwise, B simulates an extraction oracle
query on C̃ and sets output to be the output of the extraction oracle. Finally, B outputs 1 if
output 6= marked and 0 otherwise.

We now show that algorithm B simulates an execution of hyb3 if the challenge values ŷ∗1, . . . , ŷ
∗
λ

correspond to the real evaluations of the PRF, and that it corresponds to an execution of hyb4 if they
are uniformly random values. In particular, let k̂ be the PRF key sampled by the puncturing security
challenger (unknown to B). The test points (x̂∗1, . . . , x̂

∗
λ) play the role of f(k̂) in the simulation. As

long as B never has to compute f(k̂) in the simulation, then it correctly simulates the behavior of
f . By construction, the only times where B needs to sample new outputs of f are in response to
marking queries. We thus consider the two cases:

• Suppose A never makes a marking query on k̂. In this case, if the challenge values ŷ∗1, . . . , ŷ
∗
λ

are pseudorandom (i.e., the outputs of EX.Eval), the view B simulates for A is statistically
close to hyb3. If the challenge values are uniformly random, the view B simulates for A is
statistically close to hyb4. In particular, the only difference between the simulated experiments
and the real experiments is the extra abort condition B introduces when answering marking
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queries. Suppose A makes a marking query on a key k 6= k̂. We argue that B halts with
negligible probability. First, by correctness of ΠEPRF,

Pr
x

r←X
[EX.PunctureEval(pp, k̂′, x) 6= EX.Eval(pp, k̂, x)] ≤ λ

|X |
+ negl(λ) = negl(λ). (B.1)

Next, by key-injectivity of ΠEPRF, we have that for k 6= k̂

Pr
x

r←X
[EX.Eval(pp, k, x) = EX.Eval(pp, k̂, x)] = negl(λ).

Thus, the probability that B aborts when responding to a marking oracle query is negl(λ).
Since A makes a polynomial number of queries, we conclude that the view B simulates
for A is statistically close to hyb3 or hyb4 depending on whether the challenge values are
pseudorandom or truly random. In this case, the distinguishing advantage of B is precisely
Adv3,4(A).

• Suppose A makes a marking oracle query on k̂. By correctness of ΠEPRF (Eq. (B.1)), algorithm
B in this case will halt with overwhelming probability. When the challenge values are
pseudorandom (namely, if ŷ∗1 = EX.Eval(pp, k̂, x̂∗1)), algorithm B outputs 1 with probability 1.
When the challenge values are truly random, algorithm B outputs 1 with probability 1/ |Y|.
Thus, algorithm B is able to break puncturing security of ΠEPRF with probability that is
negligibly close to 1− 1/ |Y|, which is non-negligible.

In both cases, the distinguishing advantage of B is non-negligible, and the claim follows.

Lemma B.7. For all (unbounded) adversaries A, Adv4,5(A) = negl(λ).

Proof. By construction, the only difference between hyb4 and hyb5 is in how the post-challenge
extraction queries are handled and how the experiment’s output is computed. Let Q = poly(λ)
be a bound on the number of post-challenge extraction queries the adversary makes. We define a
sequence of Q intermediate hybrids as follows:

• hyb4,`: Same as hyb4, except the first ` post-challenge extraction queries are handled as in
hyb5 while the remaining post-challenge extraction queries are handled as in hyb4.

We additionally define hyb4,Q+1 ≡ hyb5. Now, we show that the outputs of each pair of hybrid
experiments is statistically indistinguishable.

Claim B.8. For all (unbounded) adversaries A and all ` ∈ [Q+ 1], the distributions hyb4,`−1(A)
and hyb4,`(A) are statistically indistinguishable.

Proof. By construction, hyb4,`−1 and hyb4,` are identical except on how the challenger responds to
the `th post-challenge extraction query. Let C` : X → Y be the circuit the challenger submits in the
`th extraction query. By design, the challenger’s behavior in the two experiments are only different
if bk̂ ← EX.TestCandidate(pp, C`, Ĉ) = 1. Suppose this is the case, and consider the challenger’s
behavior in the two experiments:
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• In hyb4,`−1, the challenger computes (x∗1, . . . , x
∗
λ)← f(k̂) and outputs marked if C`(x

∗
i ) 6= ŷ∗i

for all ` ∈ [λ]. Otherwise, it outputs unmarked.

By construction of hyb4,`−1, the adversary’s view up to its `th post-challenge extraction query
is entirely independent of ŷ∗1, . . . , ŷ

∗
λ, which are sampled uniformly at random at the beginning

of the experiment. Thus, we can defer the sampling of ŷ∗1, . . . , ŷ
∗
λ until after the adversary has

submitted its extraction query C`. Then,

Pr[ŷ∗1, . . . , ŷ
∗
λ

r← Y : C`(x
∗
i ) 6= ŷ∗i for all i ∈ [λ]] = (1− 1/ |Y|)λ = 1− negl(λ).

Thus, with overwhelming probability, the challenge outputs marked in this case.

• In hyb4,`, the challenger always outputs marked in this case.

Since Q = poly(λ), we conclude via Claim B.8 that the distributions hyb4(A) and hyb5(A) are
statistically indistinguishable.

Lemma B.9. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) and ε-
unremoving-admissible adversaries A where ε ≤ ε1, Pr[hyb5(A) 6= marked] = negl(λ).

Proof. If A is ε-unremoving-admissible, then at the end of the experiment, the circuit C̃ : X → Y
output by A satisfies C̃ ∼ε Ĉ, where Ĉ is the circuit the challenger uses to respond to the challenge
query. Next, since ΠEPRF satisfies (ε1, ε2)-robust extractability and ε ≤ ε1, this means that bk̂ = 1

with overwhelming probability where bk̂ ← EX.TestCandidate(pp, C̃, Ĉ). By construction, in hyb5,
the challenger outputs unmarked in this case, as required.

Combining Lemmas B.1 through B.9, the message-embedding watermarking scheme ΠWM from
Construction 5.25 satisfies ε-unremovability.

Proof of Theorem 5.22 (Unforgeability). The proof relies on a similar sequence of hybrids as
that in the proof of Theorem 5.21. We briefly describe them below:

• hyb0: This is the real watermarking security game ExptWMΠWM,A(λ) from Definition 5.10.

• hyb1: Same as hyb1 from the proof of Theorem 5.21.

• hyb2: Same as hyb2 from the proof of Theorem 5.21.

Indistinguishability of hybrids hyb0, hyb1, and hyb2 follow exactly as in the proof of Theorem 5.21.
It suffices to show that Pr[hyb2(A) 6= unmarked] = negl(λ).

Lemma B.10. Suppose that ΠEPRF is almost functionality-preserving for adversarial keys, satisfies
(ε1, ε2)-robust extractability as well as the additional properties in Remark 4.10, and that 1/ |X | =
negl(λ). Then for all efficient δ-unforging-admissible adversaries A where δ ≥ ε2, Pr[hyb2(A) 6=
unmarked] = negl(λ).

Proof. Let k1, . . . , kQ be the keys A submits to the marking oracle, and let C1, . . . , CQ : X → Y
be the circuits A receives from the marking oracle. Since A is δ-unforging-admissible, it must be
the case that C̃ 6∼ε2 C` where C` := EX.PunctureEval(pp, k`, ·) and k` ← EX.Puncture(pp, k`, S`)
where S` ⊆ X and |S`| = poly(λ). Since ΠEPRF is almost functionality-preserving for adversarially-
chosen keys, A is efficient, and |S`| / |X | = negl(λ), it follows (via a union bound) that there exists
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ε = negl(λ) such that with overwhelming probability, C` ∼ε EX.Eval(pp, k`, ·) for all ` ∈ [Q]. In
particular, this means that for each ` ∈ [Q], there exists a circuit C̃ ′` : X → Y such that C̃ ′` ∼ε C̃
and C ′` 6∼ε2 EX.Eval(pp, k`, ·). Since ΠEPRF satisfies (ε1, ε2)-robust extractability, this means that
Pr[EX.TestCandidate(pp, C̃ ′`, k`) = 1] = negl(λ). Since ΠEPRF satisfies the additional properties in
Remark 4.10, and C̃ ∼ε C̃ ′` for ε = negl(λ), this means that Pr[EX.TestCandidate(pp, C̃, k`) = 1] =
negl(λ) for each ` ∈ [Q]. By a union bound,

Pr[∃` ∈ [Q] : EX.TestCandidate(pp, C̃, k`) = 1] = negl(λ).

By construction of hyb2, the set T of keys submitted to the marking oracle is T = {k1, . . . , kQ}.
Since EX.TestCandidate(pp, C̃, k) = 0 for all k ∈ T with overwhelming probability, the output in
hyb2 is unmarked with overwhelming probability.

We conclude that the mark-embedding watermarking scheme ΠWM from Construction 5.17 satisfies
δ-unforgeability.

B.2 Analysis of Message-Embedding Watermarking Scheme

In this section, we provide the security analysis of the message-embedding watermarking scheme
(Construction 5.25).

Proof of Theorem 5.29 (Unremovability). We use the same hybrid structure as in the proof
of Theorem 5.21. For completeness, we provide the full description of the hybrid experiments:

• hyb0: This is the real watermarking game ExptWMΠWM,A(λ) from Definition 5.10. Specifically,
the experiment proceeds as follows.

1. First, the challenger samples kPRF
r← KPRF and (pp, td)← EX.PrmsGen(1λ). It gives pp

to the adversary.

2. The challenger responds to the adversary’s oracle queries as follows:

– Marking oracle. On input a key k ∈ KEPRF and a message m ∈ {0, 1}t, the chal-
lenger derives a collection of points (x∗i,1, . . . , x

∗
i,λ)← PRF(kPRF, (k, i,mi)) for each

i ∈ [t]. It then constructs a punctured key k′ ← EX.Puncture(pp, k, {x∗i,j}i∈[t],j∈[λ]).
Finally, it outputs the circuit C : X → Y that implements the punctured evaluation
algorithm EX.PunctureEval(pp, k′, ·).

– Extraction oracle. On input a circuit C : X → Y, the challenger computes
k ← EX.Extract(pp, td, C). If k = ⊥, it outputs ⊥. Otherwise, for each i ∈ [t] and
b ∈ {0, 1}, the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ)← PRF(kPRF, (k, i, b)). Let Ni,b

be the number of indices j ∈ [λ] where C(x∗i,b,j) 6= EX.Eval(pp, k, x∗i,b,j). If there
exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 > 2λ/3, then output ⊥.
Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the unique bit where Ni,bi > 2λ/3. The
challenger responds with the message m = b1 · · · bt.

– Challenge oracle. On input a message m̂ ∈ {0, 1}t, the challenger samples a key
k̂ ← EX.SampleKey(pp). Then, it derives a collection of points (x̂∗i,1, . . . , x̂

∗
i,λ) ←

PRF(kPRF, (k, i, m̂i)) for each i ∈ [t]. The challenger computes the punctured key
k̂′ ← EX.Puncture(pp, k̂, {x̂∗i,j}i∈[t],j∈[λ]). Finally, it outputs the circuit Ĉ : X → Y
that implements the punctured evaluation algorithm EX.PunctureEval(pp, k̂′, ·).
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3. At the end of the experiment, after the adversary outputs its circuit C̃ : X → Y, the
challenger treats C̃ as an extraction query and proceeds accordingly. The output of the
extraction query on C̃ is the output of the experiment.

• hyb1: Same as hyb0, except at the beginning of the experiment, the challenger samples a
uniformly random function f

r← Funs[(KEPRF× [t]×{0, 1}),X λ]. For the rest of the experiment,
the challenger always uses f(·) in place of PRF(kPRF, ·).

• hyb2: Same as hyb1, except the challenge initializes an empty set T at the beginning of the
experiment. During the experiment, whenever the adversary makes a marking oracle query
for a key k ∈ KEPRF, the challenger adds k to T (if it is not already contained in T ). When
the adversary makes a challenge query, the challenger adds the challenge key k̂ ∈ KEPRF to T .
During the experiment (and when computing the output), the challenger uses the following
procedure to implement the extraction oracle queries:

– Extraction oracle. On input a circuit C : X → Y, the challenger computes bk ←
EX.TestCandidate(pp, C, k) for each k ∈ T . If bk = 0 for all k ∈ T , it outputs ⊥. If bk = 1
for some k ∈ T , the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ)← f(k, i, b) for all i ∈ [t] and b ∈

{0, 1}. LetNi,b denote the number of indices j ∈ [λ] where C(x∗i,b,j) 6= EX.Eval(pp, k, x∗i,b,j).
If there exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 > 2λ/3, then output
⊥. Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the unique bit where Ni,bi > 2λ/3.
Output the message m = b1 · · · bt.

• hyb3: Same as hyb2, except whenever the challenger computes EX.TestCandidate(pp, ·, k̂),
where k̂ is the challenge key, it instead computes EX.TestCandidate(pp, ·, Ĉ) where Ĉ is the
challenge circuit.

• hyb4: Same as hyb3, except at the beginning of the security game, the challenger samples
random values ŷ∗i,j

r← Y for i ∈ [t] and j ∈ [λ]. Then, whenever the challenger needs to

compute EX.Eval(pp, k̂, x̂∗i,j) for i ∈ [t] and j ∈ [λ] after the adversary has made a challenge

query, the challenger uses the value ŷ∗i,j instead. Here, k̂ is the challenge key, (x̂∗i,1, . . . , x̂
∗
i,λ) is

the value of f(k̂, i, m̂i), and m̂i is the challenge message. In addition, if A ever queries the
marking oracle on the challenge key k̂, the experiment always outputs m̂.

• hyb5: Same as hyb4 except the challenger no longer adds the challenge key k̂ to the set
T when responding to the challenge oracle. Moreover, it uses the following procedure to
implement the extraction oracle:

– Extraction oracle. The pre-challenge extraction queries are handled as in hyb4.
On a post-challenge extraction query C : X → Y, the challenger computes bk̂ ←
EX.TestCandidate(pp, C, Ĉ) and outputs m̂ if bk̂ = 1. Otherwise, the challenge proceeds
as in hyb4.

For a hybrid experiment hybi, we write hybi(A) to denote the output distribution of hybi with
adversary A. For an integer i, we define the advantage Advi,i+1(A) as

Advi,i+1(A) := |Pr[hybi(A) 6= m̂]− Pr[hybi+1(A) 6= m̂]| .
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We now show that for all efficient adversaries A, the advantage between each consecutive pair of
hybrid experiments is negligible, and moreover, that Pr[hyb5(A) 6= m̂] = negl(λ).

Lemma B.11. Suppose ΠPRF is a secure PRF. Then for all efficient adversaries A, Adv0,1(A) =
negl(λ).

Proof. Follows by by an analogous argument as that in the proof of Lemma B.1.

Lemma B.12. Suppose ΠEPRF satisfies key-injectivity and (ε1, ε2)-robust extractability for ε2 < 1/2.
Then, for all (unbounded) adversaries A, Adv1,2(A) = negl(λ).

Proof. Similar to the proof of Lemma B.2, we begin by defining an intermediate hybrid hyb′1:

• hyb′1: Same as hyb1, except the challenger uses the following (inefficient) algorithm to
implement the extraction oracle:

– Extraction oracle. On input a circuit C : X → Y, the challenger first checks if
there is a unique key k ∈ KEPRF where C(·) ∼ε2 EX.Eval(pp, k, ·). If so, the challenger
computes bk ← EX.TestCandidate(pp, C, k). If no such k exists or if bk = 0, the challenger
replies with ⊥. Otherwise, the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ)← f(k, i, b) for all

i ∈ [t] and b ∈ {0, 1}. Let Ni,b denote the number of indices j ∈ [λ] where C(x∗i,b,j) 6=
EX.Eval(pp, k, x∗i,b,j). If there exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 >
2λ/3, the challenger responds with ⊥. Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the
unique bit where Ni,bi > 2λ/3. The challenger replies with the message m = b1 · · · bt.

As in the proof of Lemma B.2, the output distributions hyb1 and hyb′1 are statistically indistin-
guishable if ΠEPRF satisfies (ε1, ε2)-robust extractability. To conclude, we show that the output
distributions of hyb′1 and hyb2 are also statistically indistinguishable. Once again, we rely on a
query-by-query hybrid. Let Q = poly(λ) be a bound on the number of extraction queries A makes.
Define hyb′1,0 ≡ hyb′1 and for ` ∈ [Q], define a hybrid experiment hyb′1,` for ` ∈ [Q] as follows:

• hyb′1,`: Same as hyb′1 except the first ` extraction queries are handled using the procedure in
hyb2 while the remaining extraction queries are handled using the procedure in hyb′1.

Define hyb′1,Q+1 ≡ hyb2; namely, hyb′1,Q+1 is the hybrid where all of the extraction queries A
makes is handled according to hyb2, as is the final “simulated” extraction query used to compute
the output of the experiment.

Claim B.13. If ε2 < 1/2 and ΠEPRF satisfies key-injectivity, then for all (unbounded) adversaries
A and all ` ∈ [Q + 1], the output distributions of hyb′1,`−1(A) and hyb′1,`(A) are statistically
indistinguishable.

Proof. By construction, hybrids hyb′1,`−1 and hyb′1,` are identical experiments except in the way

the challenger response to the `th extraction query. Let C` : X → Y be the `th query the adversary
submits to the extraction oracle (or the “simulated” extraction query used to determine the output
of the experiment). We argue that the challenger’s response to this query in the two experiments is
statistically indistinguishable. We consider two cases:

• Suppose there exists k∗ ∈ KEPRF where C(·) ∼ε2 EX.Eval(pp, k∗, ·). Since ε2 < 1/2 and ΠEPRF

satisfies key-injectivity, Lemma 4.12 says that k∗ is unique. In particular, for all k 6= k∗,
C`(·) 6∼ε2 EX.Eval(pp, k, ·). Consider now the challenger’s behavior in the two experiments:
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– In hyb′1,`−1, the challenger computes bk∗ ← EX.TestCandidate(pp, C`, k
∗). If bk∗ = 0, the

challenger outputs ⊥. Otherwise, the challenger computes (x∗i,b,1, . . . , x
∗
i,b,λ)← f(k∗, i, b)

for all i ∈ [t] and b ∈ {0, 1} and continues according to the procedure in hyb′1 and hyb2.

– In hyb′1,`, the challenger computes bk ← EX.TestCandidate(pp, C`, k) for all k ∈ T . Since
C`(·) 6∼ε2 EX.Eval(pp, k, ·) for all k 6= k∗, we can appeal to (ε1, ε2)-robust extractability
of ΠEPRF to argue that bk = 0 with overwhelming probability for all k 6= k∗. Thus, if
k∗ /∈ T or bk∗ = 0, then with overwhelming probability, the challenger replies with ⊥. If
bk∗ = 1, then the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ) ← f(k∗, i, b) for all i ∈ [t] and

b ∈ {0, 1} and continues according to the procedure in hyb′1 and hyb2.

We consider two cases:

– Suppose the adversary previously made a marking oracle query on k∗ or k̂ = k∗ is the
challenge key. In this case, k∗ ∈ T . From the above analysis, the challenger’s response in
the two experiments is statistically indistinguishable.

– Suppose the adversary has not made a marking oracle query on k∗ and k∗ 6= k̂ is not the
challenge key. In this case, k∗ /∈ T , and by the above analysis, the challenger in hyb′1,`
outputs ⊥ with overwhelming probability. We show that this is also the case in hyb′1,`−1.

If bk∗ = 0, then the challenger in hyb′1,`−1 always outputs ⊥. Suppose this is not
the case. Then, in hyb′1,`−1, the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ)← f(k∗, i, b) for

all i ∈ [t] and b ∈ {0, 1}, and then counts the number Ni,b of indices j ∈ [λ] where
C`(x

∗
i,b,j) 6= EX.Eval(pp, k∗, x∗i,b,j). We argue now that with overwhelming probability

(over the choice of the random function f) that Ni,b < 2λ/3 for all i ∈ [t] and b ∈ {0, 1}.
In this case, the challenger outputs ⊥. The argument proceeds very similarly to the
corresponding one used in the proof of Claim B.4. In particular, since the adversary
has not made a marking oracle query on k∗ and k∗ is not the challenge query, the
adversary’s view in hyb′1,`−1 up to the point of its `th query is independent of f(k∗, i, b).
This is because by construction, the challenger in hyb1,`−1 only needs to evaluates f on
keys k that are contained in T (up until processing the `th extraction query). Thus, the
challenger can lazily sample the value of f(k∗, i, b) := (x∗i,b,1, . . . , x

∗
i,b,λ) after the adversary

makes its `th extraction query. By assumption, C`(·) ∼ε2 EX.Eval(pp, k∗, ·), which means
that

Pr[x∗
r← X : C`(x

∗) 6= EX.Eval(pp, k∗, x∗)] ≤ ε2 < 1/2.

Then, by a Chernoff bound,

Pr[(x∗i,b,1, . . . , x
∗
i,b,λ)

r← X λ : Ni,b ≥ 2λ/3] ≤ 2−Ω(λ) = negl(λ).

By a union bound, with overwhelming probability, Ni,b < 2λ/3 for all i ∈ [t] and b ∈ {0, 1}.
Correspondingly, the challenger in hyb1,`−1′ outputs ⊥ with overwhelming probability in
this case.

• Suppose that for all keys k ∈ KEPRF, C`(·) 6∼ε2 EX.Eval(pp, k, ·). In hyb′1,`−1, the challenger
will always respond with ⊥. By (ε1, ε2)-robust extractability of ΠEPRF, the challenger in hyb′1,`
will also respond with ⊥ with overwhelming probability.

In both cases, the distribution of the challenger’s response to the `th extraction query in the two
hybrids is statistically indistinguishable, and the claim follows.
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Since Q = poly(λ), we conclude from Claim B.13 that hyb′1(A)
s
≈ hyb2(A). Finally, since

hyb1
s
≈ hyb′1, the lemma follows.

Lemma B.14. Suppose algorithm TestCandidate in ΠEPRF satisfies the additional properties in
Remark 4.10. Then, for all (unbounded) adversaries A, Adv2,3(A) = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma B.5.

Lemma B.15. Suppose ΠEPRF satisfies key-injectivity, selective puncturing security and 1/ |Y| =
negl(λ). Then, for all efficient adversaries A, Adv3,4(A) = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma B.6. Note that in contrast
to hyb4 in the proof of Theorem 5.21, experiment hyb4 here always outputs m̂ if A queries the
marking oracle on k̂. By a similar argument as that used in the proof of Lemma B.6, we can show
that any efficient adversary that makes a marking oracle query on the challenge key k̂ implies an
efficient adversary that breaks puncturing security of ΠEPRF. Thus, an efficient adversary can only
trigger this condition and cause the experiment to output m̂ with negligible probability.

Lemma B.16. If ΠEPRF satisfies (ε1, ε2)-robust extractability with ε2 < 1/2, then for all (unbounded)
adversaries A, Adv4,5(A) = negl(λ).

Proof. The only difference between hyb4 and hyb5 is in the way the challenger responds to the
post-challenge extraction queries. Similar to the proof of Lemma B.7, we proceed with a query-by-
query hybrid. Let Q = poly(λ) be a bound on the number of post-challenge extraction queries the
adversary makes. We define a sequence of Q intermediate hybrids as follows:

• hyb4,`: Same as hyb4 except the first ` post-challenge extraction queries are handled as in
hyb5 while the remaining post-challenge extraction queries are handled as in hyb4.

We additionally define hyb4,Q+1 ≡ hyb5. We now show that the output distributions of each
consecutive pair of hybrids are statistically indistinguishable.

Claim B.17. If ΠEPRF satisfies (ε1, ε2)-robust extractability with ε2 < 1/2, then for all (unbounded)
adversaries A and all ` ∈ [Q + 1], the distributions hyb4,`−1(A) and hyb4,`(A) are statistically
indistinguishable.

Proof. By construction, hyb4,`−1 and hyb4,` are identical except in the way the challenge responds
to the `th post-challenge extraction query C` : X → Y. We begin by making two observations that
will simplify the analysis:

• Let bk̂ = EX.TestCandidate(pp, C`, Ĉ) = 1. The challenger’s behavior in hyb4,`−1 and hyb4,`

is identical unless bk̂ = 1. Thus, it suffices to only consider the setting where bk̂ = 1.

• If A makes a marking oracle query on the challenge key k̂, the outputs of hyb4,`−1 and hyb4,`

is identical (both experiments output m̂). It suffices to consider the case where A never makes
a marking oracle query on k̂.

We now consider the challenger’s behavior in the two experiments.

• In hyb4,`−1, the challenger first computes (x̂∗i,b,1, . . . , x̂
∗
i,b,λ) ← f(k̂, i, b) for all i ∈ [t] and

b ∈ {0, 1}. Next, for each i ∈ [t], the challenger computes the following:
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– The number Ni,m̂i of indices j ∈ [λ] where C`(x̂
∗
i,m̂i,j

) 6= ŷ∗i,j .

– The number Ni,1−m̂i of indices j ∈ [λ] where C`(x̂
∗
i,1−m̂i,j) 6= EX.Eval(pp, k̂, x̂∗i,1−m̂i,j).

We now argue that with overwhelming probability, Ni,m̂i > 2λ/3 and Ni,1−m̂i < 2λ/3. Since

we assume A does not make a marking oracle query on k̂, the adversary’s view up to the point
it makes its `th post-challenge extraction query is independent of f(k̂, i, b) for all i ∈ [t] and
b ∈ {0, 1} and ŷ∗i,j for all i ∈ [t] and j ∈ [λ]. This means that we can defer the sampling of

f(k̂, i, b) and ŷ∗i,j until after the adversary has submitted its extraction query C`. In particular,
this means that for each i ∈ [t], we have that

Pr[ŷ∗i,1, . . . , ŷ
∗
i,λ

r← Y : C`(x̂
∗
i,m̂i,j

) 6= ŷ∗i,j for all j ∈ [λ]] = (1− 1/ |Y|)λ = 1− negl(λ).

Equivalently, this means that with overwhelming probability, Ni,m̂i = λ > 2λ/3. Next, since

b̂k = 1, it follows by (ε1, ε2)-robust extractability of ΠEPRF that with overwhelming probability,
C` ∼ε2 EX.Eval(pp, k̂, ·), which implies that

Pr[x∗
r← X : C`(x

∗) 6= EX.Eval(pp, k̂, x∗)] ≤ ε2 < 1/2.

Moreover, since the adversary’s view up to its `th post-challenge extraction query is independent
of f(k̂, i, 1− m̂i) := (x̂∗i,1−m̂i,1, . . . , x̂

∗
i,1−m̂i,λ) for all i ∈ [t], the challenger can sample the value

of (x̂∗i,1−m̂i,1, . . . , x̂
∗
i,1−m̂i,λ)

r← X λ after the adversary has submitted its query. By a Chernoff
bound,

Pr[(x̂∗i,1−m̂i,1, . . . , x̂
∗
i,1−m̂i,λ)

r← X λ : Ni,1−m̂i ≥ 2λ/3] ≤ 2−Ω(λ) = negl(λ).

Using a union bound, we conclude that with overwhelming probability (over the choice of
f and ŷ∗i,j), Ni,m̂i > 2λ/3 and Ni,1−m̂i < 2λ/3 for all i ∈ [t]. In this case, the challenger in
hyb4,` outputs m̂.

• In hyb4,`, the challenger always outputs the challenge message m̂.

With overwhelming probability, we see that on the `th query, the challenger in both hyb4,`−1 and
hyb4,` will output the challenge message m̂ whenever bk̂ = 1. The claim follows.

Since Q = poly(λ), we conclude via Claim B.17 that the distributions hyb4(A) and hyb5(A) are
statistically indistinguishable.

Lemma B.18. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) and ε-
unmoving-admissible adversaries A where ε < ε1, Pr[hyb5(A) 6= m̂] = negl(λ).

Proof. Follows by an analogous argument as that in the proof of Lemma B.9.

Combining Lemmas B.11 through B.18, the message-embedding watermarking scheme ΠWM from
Construction 5.25 satisfies ε-unremovability.

Proof of Theorem 5.30 (Unforgeability). The proof relies on a similar sequence of hybrids as
that in the proof of Theorem 5.29 and follows an analogous structure as the proof of Theorem 5.22.
We briefly describe the hybrid experiments below:
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• hyb0: This is the real watermarking security game ExptWMΠWM,A(λ) from Definition 5.10.

• hyb1: Same as hyb1 from the proof of Theorem 5.29.

• hyb2: Same as hyb2 from the proof of Theorem 5.29.

Indistinguishability of hybrids hyb0, hyb1, and hyb2 follow exactly as in the proof of Theorem 5.29.
It suffices to show that Pr[hyb2(A) 6= ⊥] = negl(λ).

Lemma B.19. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) and δ-
unforging-admissible adversaries A where δ ≥ ε2 + 1/poly(λ), Pr[hyb2(A) 6= ⊥] = negl(λ).

Proof. Follows by an analogous argument as in the proof of Lemma B.10.

We conclude that the message-embedding watermarking scheme ΠWM from Construction 5.25
satisfies δ-unforgeability.

B.3 Analysis of Publically-Markable Watermarking Scheme

In this section, we provide the security analysis of the publically-markable watermarking scheme
(Construction 5.32) in the random oracle model.

Proof of Theorem 5.36 (Unremovability). The proof is almost identical to that of the proof
of Theorem 5.29. For completeness, we describe the full sequence of hybrid experiments below:

• hyb0: This is the real watermarking security game ExptWMΠWM,A(λ) from Definition 5.10.
Specifically, the experiment proceeds as follows.

1. First, the challenger samples (pp, td)← EX.PrmsGen(1λ). It gives pp to the adversary.

2. The challenger responds to the adversary’s oracle queries as follows:

– Random oracle. On input a triple (k, i, b) ∈ KEPRF × [t] × {0, 1}, the challenger
replies with H(k, i, b).

– Extraction oracle. On input a circuit C : X → Y, the challenger first com-
putes k ← EX.Extract(pp, td, C). If k = ⊥, it outputs ⊥. Otherwise, it computes
(x∗i,b,1, . . . , x

∗
i,b,λ) ← H(k, i, b) for all i ∈ [t] and b ∈ {0, 1}. Let Ni,b denote the

number of indices j ∈ [λ] where C(x∗i,b,j) 6= EX.Eval(pp, k, x∗i,b,j). If there exists an
index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 > 2λ/3, output ⊥. Otherwise, for
each i ∈ [t], let bi be the unique bit where Ni,bi > 2λ/3, and output the message
m = b1 · · · bt.

– Challenge oracle. On input a message m̂ ∈ {0, 1}t, the challenger samples a key
k̂ ← EX.SampleKey(pp) and computes (x̂∗i,1, . . . , x̂

∗
i,λ) ← H(k̂, i, m̂i) for each i ∈ [t].

Then, the challenger computes the key k̂′ ← EX.Puncture(pp, k̂, {x̂∗i,j}i∈[t],j∈[λ]). It

outputs the challenge circuit Ĉ : X → Y where Ĉ(·) = EX.PunctureEval(pp, k̂′, ·).
3. At the end of the experiment, after the adversary outputs its circuit C̃ : X → Y, the

challenger treats C̃ as an extraction query and proceeds accordingly. The output of the
extraction query on C̃ is the output of the experiment.
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• hyb1: Same as hyb0, except the challenger initializes an empty set T at the beginning of the
experiment. During the experiment, whenever the adversary makes a random oracle query on
a value (k, i, b) ∈ KEPRF× [t]×{0, 1}, the challenger adds k to T (if it is not already contained
in T ). When the adversary makes a challenge query, the challenger adds the challenge key
k̂ ∈ KEPRF to T . During the experiment (and when computing the output), the challenger
uses the following procedure to implement the extraction oracle queries:

– Extraction oracle. On input a circuit C : X → Y, the challenger computes bk ←
EX.TestCandidate(pp, C, k) for k ∈ T . If bk = 0 for all k ∈ T , it outputs ⊥. If bk = 1 for
some k ∈ T , the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ)← H(k, i, b) for all i ∈ [t] and b ∈

{0, 1}. LetNi,b denote the number of indices j ∈ [λ] where C(x∗i,b,j) 6= EX.Eval(pp, k, x∗i,b,j).
If there exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 > 2λ/3, then output
⊥. Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the unique bit where Ni,bi > 2λ/3.
Output the message m = b1 · · · bt.

In particular, the challenger’s behavior in hyb1 no longer depends on the trapdoor td.

• hyb2: Same as hyb1, except whenever the challenger computes EX.TestCandidate(pp, ·, k̂),
where k̂ is the challenge key, it instead computes EX.TestCandidate(pp, ·, Ĉ), where Ĉ is the
challenge circuit.

• hyb3: Same as hyb2, except at the beginning of the security game, the challenger samples
random values ŷ∗i,j

r← Y for i ∈ [t] and j ∈ [λ]. Then, whenever the challenger needs to

compute EX.Eval(pp, k̂, x̂∗i,j) for i ∈ [t] and j ∈ [λ] after the adversary has made a challenge

query, the challenger uses the value ŷ∗i,j instead. Here, k̂ is the challenge key, (x̂∗i,1, . . . , x̂
∗
i,λ) is

the value of H(k̂, i, m̂i), and m̂i is the challenge message. In addition, if A ever queries the
marking oracle on the challenge key k̂, the experiment always outputs m̂.

• hyb4: Same as hyb3, except the challenger no longer adds the challenge key k̂ to the set
T when responding to the challenge oracle. Moreover, it uses the following procedure to
implement the extraction oracle:

– Extraction oracle. The pre-challenge extraction queries are handled as in hyb4.
On a post-challenge extraction query C : X → Y, the challenger computes bk̂ ←
EX.TestCandidate(pp, C, Ĉ), and outputs m̂ if bk̂ = 1. Otherwise, the challenger proceeds
as in hyb4.

For a hybrid experiment hybi, we write hybi(A) to denote the output distribution of hybrid
experiment hybi with adversary A. For an integer i, we define the advantage Advi,i+1(A) as

Advi,i+1(A) := |Pr[hyb0(A) 6= m̂]− Pr[hyb1(A) 6= m̂]| .

We now show that for all efficient adversariesA, the advantage between each consecutive pair of hybrid
experiments is negligible, and moreover, that Pr[hyb4(A) 6= m̂] = negl(λ). Indistinguishability of
each pair of hybrid experiments follows analogously to indistinguishability of the corresponding pair
of hybrids in the proof of Theorem 5.29. We state the lemmas below.

Lemma B.20. Suppose ΠEPRF satisfies key-injectivity and (ε1, ε2)-robust extractability for ε2 < 1/2.
Then, for all (unbounded) adversaries A, Adv0,1(A) = negl(λ).
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Proof. Follows by an analogous argument as in the proof of Lemma B.12, except the random oracle
H(·) takes the place of the random function f(·) and random oracle queries play the role of marking
oracle queries.

Lemma B.21. Suppose algorithm TestCandidate in ΠEPRF satisfies the additional properties in
Remark 4.10. Then, for all (unbounded) adversaries A, Adv1,2(A) = negl(λ).

Proof. Follows by an analogous argument as in the proof of Lemmas B.5 and B.14.

Lemma B.22. Suppose ΠEPRF satisfies key-injectivity, selective puncturing security, and 1/ |Y| =
negl(λ). Then, for all efficient adversaries A, Adv2,3(A) = negl(λ).

Proof. Follows by an analogous argument as in the proofs of Lemmas B.6 and B.15, except the
random oracle H(·) takes the place of the random function f(·) and random oracle queries play the
role of marking oracle queries.

Lemma B.23. If ΠEPRF satisfies (ε1, ε2)-robust extractability with ε2 < 1/2, then for all (unbounded)
adversaries A, Adv3,4(A) = negl(λ).

Proof. Follows by an analogous argument as in the proofs of Lemma B.16, except the random oracle
H(·) takes the place of the random function f(·) and random oracle queries play the role of marking
oracle queries.

Lemma B.24. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) and ε-
unremoving-admissible adversaries A where ε < ε1, Pr[hyb4(A) 6= m̂] = negl(λ).

Proof. Follows by an analogous argument as in the proof of Lemmas B.9 and B.18.

Combining Lemmas B.20 through B.24, the message-embedding watermarking scheme ΠWM from
Construction 5.32 satisfies ε-unremovability in the random oracle model.

Proof of Theorem 5.37 (Weak Unforgeability). The proof relies on a similar sequence of
hybrids as that in the proof of Theorem 5.36 and follows an analogous structure as the proofs of
Theorems 5.22 and 5.30. We briefly describe the hybrid experiments below:

• hyb0: This is the real watermarking security game ExptWMΠWM,A(λ) from Definition 5.10.

• hyb1: Same as hyb1 from the proof of Theorem 5.36.

Indistinguishability of hybrids hyb0 and hyb1 follow exactly as in the proof of Theorem 5.36. It
suffices to show that Pr[hyb1(A) 6= ⊥] = negl(λ).

Lemma B.25. If ΠEPRF satisfies (ε1, ε2)-robust extractability, then for all (unbounded) and weak
δ-unforging-admissible adversaries A where δ ≥ ε2, Pr[hyb1(A) 6= ⊥] = negl(λ).

Proof. Since A is weak δ-unforging admissible, the circuit C̃ : X → Y output by A satisfies
C̃(·) 6∼δ EX.Eval(pp, k, ·) for all k ∈ K. Since δ ≥ ε2, this means that C̃(·) 6∼ε2 EX.Eval(pp, k, ·) for
all k ∈ K. By robust extractability and union bounding over all |T | = poly(λ) marking oracle queries
the adversary makes, we have that

Pr[∃k ∈ T : EX.TestCandidate(pp, C̃, k) = 1] = negl(λ).

By construction then, the output in hyb1 is ⊥ with overwhelming probability, and the claim
follows.
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We conclude that the message-embedding watermarking scheme ΠWM from Construction 5.32
satisfies weak δ-unforgeability in the random oracle model.

Proof of Theorem 5.38 (Extended Pseudorandomness). Recall that in the extended pseu-
dorandomness security game is the standard pseudorandomness game for the watermarking game,
except the adversary is additionally given access to an extraction oracle. We take a similar proof
strategy as that used in the proof of Theorem 5.37 for arguing unforgeability.

• hyb0: This is the extended pseudorandomness game where the challenger answer the adver-
sary’s queries using the real PRF evaluation. Specifically, the game proceeds as follows:

1. At the beginning of the game, the challenger samples the parameters for the watermarking
scheme (pp,wsk) ← Setup(1λ). It also samples a PRF key k ← EX.SampleKey(pp). It
gives pp to the adversary.

2. The adversary is now allowed to make random oracle queries, evaluation queries, and
extraction queries, which the challenger responds to as follows:

– Random oracle. On input (k, i, b) ∈ kPRF × [t]× {0, 1}, the challenger replies with
H(k, i, b).

– Evaluation oracle. On input a point x ∈ X , the challenger replies with F(k, x)

– Extraction oracle. On input a circuit C : X → Y, the challenger replies with
Extract(wsk, C).

3. At the end of the game, the adversary outputs a bit b ∈ {0, 1}, which is also the output
of the experiment.

• hyb1: Same as hyb0 except the challenger initializes an empty set T at the beginning of the
experiment. During the experiment, whenever the adversary makes a random oracle query on
a value (k, i, b) ∈ KEPRF× [t]×{0, 1}, the challenger adds k to T (if it is not already contained
in T ). During the experiment, the challenger uses the following procedure to implement the
extraction oracle queries:

– Extraction oracle. On input a circuit C : X → Y, the challenger computes bk ←
EX.TestCandidate(pp, C, k) for each k ∈ T . If bk = 0 for all k ∈ T , it outputs ⊥. If
bk = 1 for some k ∈ T , the challenger computes (x∗i,b,1, . . . , x

∗
i,b,λ) ← H(k, i, b) for all

i ∈ [t] and b ∈ {0, 1}. Let Ni,b denote the number of indices j ∈ [λ] where C(x∗i,b,j) 6=
EX.Eval(pp, k, x∗i,b,j). If there exists an index i ∈ [t] where Ni,0, Ni,1 < 2λ/3 or Ni,0, Ni,1 >
2λ/3, then output ⊥. Otherwise, for each i ∈ [t], let bi ∈ {0, 1} be the unique bit where
Ni,bi > 2λ/3. Output the message m = b1 · · · bt.

In particular, the challenger’s behavior in hyb1 no longer depends on the watermarking secret
key wsk.

• hyb2: Same as hyb1 except at the beginning of the experiment, the challenger samples a
random function f

r← Funs[X ,Y ], and responds to the evaluation oracle queries on x ∈ X with
f(x).

• hyb3: Same as hyb2 except the challenger responds to the extraction oracle queries on a
circuit C : X → Y using the honest extraction procedure Extract(wsk, C). This is the extended
pseudorandomness game where the challenger answers the adversary’s queries using random
values.
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We note that the outputs of hyb0 and hyb1 are computationally indistinguishable by robust
extractability of ΠEPRF via the same argument as that given in the proof of Lemma B.20. Observe
now that the behavior of the extraction oracle in hyb1 and hyb2 no longer depends on any secrets
of the watermarking scheme (and so the adversary itself can simulate the behavior of the extraction
oracle). Thus, the outputs of hyb1 and hyb2 are computationally indistinguishable by standard
pseudorandomness of ΠWM (Theorem 5.34). Finally, indistinguishability of hyb2 and hyb3 follow
again by robust extractability of ΠEPRF (via the same argument as that used in the proof of
Lemma B.20). Since the outputs of hyb0 and hyb3 are computationally indistinguishable, we
conclude that ΠWM satisfies extended pseudorandomness in the random oracle model.
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