
Fully Homomorphic Encryption: Cryptography’s Holy Grail

David J. Wu

For over 30 years, cryptographers have embarked on a quest to construct an encryption
scheme that would enable arbitrary computation on encrypted data. Conceptually simple, yet

notoriously difficult to achieve, cryptography’s holy grail opens the door to many new
capabilities in our cloud-centric, data-driven world.

The advances in statistical and computational methods for machine learning coupled with the advent of
powerful, cloud-based computing platforms in the last decade have ushered in the era of “big data.” Not
only are data more easily accessible than ever before, we now have available a wide range of tools that
enable us to better understand and learn from these rich troves of data. However, as we transition into
this cloud-based, data-centric environment, we often find ourselves revealing details of our personal lives
to the cloud, be they in the form of movie preferences for recommender systems such as Netflix, or
financial information for tax-preparation services such as TurboTax. Two natural question that arise are
whether we can trust the cloud with our information and whether the notions of data-driven, cloud-based
computing are inherently at odds with individual privacy.

Homomorphic Encryption

A simple and efficient solution for preserving the privacy of user information in cloud-based services is to
encrypt the data that is sent to the cloud. However, this simple solution has a significant drawback in that
if the data is encrypted using a conventional encryption algorithm (for example, using the AES block
cipher), then the cloud is unable to operate on the data without needing to first decrypt. Of course, if we
then share with the cloud the secret decryption key, we are back to square one where we have no privacy
guarantees on the data. Thus, we ask whether there exist encryption schemes that allow some
computation to be performed directly on encrypted data (without first decrypting it).

To answer this question, we begin in 1977 with the dawn of modern public-key cryptography. A public-
key encryption scheme is specified by three algorithms: Setup, Encpk, and Decsk. As the names suggest,

the Setup algorithm generates a public key pk and a secret key sk. The Encpk algorithm takes a message

and outputs its encryption under the public key. The Decsk algorithm takes a ciphertext produced by the
encryption function and decrypts it using the secret key to produce a message. The public-key nature of
the encryption scheme means that anyone can encrypt a message using the public key, but only the holder
of the secret key can decrypt.

For an encryption scheme to be useful, we require first a basic correctness property, that is, if one encrypts
a message under the public key, decrypting the resulting ciphertext with the secret key should yield the

original message. Expressed in our notation, we require that for all messages 𝑚, Decsk (Encpk(𝑚)) = 𝑚.

The more important requirement is the security requirement. We use the notion of semantic security
against chosen plaintext attacks (CPA security) [1]. An encryption scheme is CPA-secure if no polynomial-
time algorithm can distinguish an encryption of a message 𝑚0 from an encryption of a message 𝑚1 for all

messages 𝑚0 and 𝑚1. Informally, the security requirement captures the notion that all ciphertexts look
the same to an adversary, and thus, do not reveal any information about the underlying messages.

By themselves, the setup, encryption, and decryption algorithms do not enable computation on
ciphertexts. To support computations on ciphertexts, we require additional structure in our ciphertext
space. Consider an example: suppose we have an encryption scheme whose plaintext space is the additive
group ℤ𝑛 (the integers taken modulo 𝑛). Additionally, suppose we have encryptions 𝑐0 and 𝑐1 of two
messages 𝑚0, 𝑚1 ∈ ℤ𝑛, respectively. We say that this encryption scheme is additively homomorphic if
there is an efficiently-computable operator ⋆ on ciphertexts such that 𝑐0 ⋆ 𝑐1 is a valid ciphertext that
decrypts to the sum 𝑚0 + 𝑚1. If such an operator ⋆ exists, then the encryption and decryption functions
are group homomorphisms, hence the name homomorphic encryption. In words, in an additively
homomorphic encryption scheme, given two ciphertexts, it is easy to construct a ciphertext that encrypts
the sum of the underlying plaintext values. Though the existence of the ⋆ operator necessitates additional
structure on the ciphertexts, an additively homomorphic encryption scheme must still satisfy the
correctness and security requirements described earlier.

It might seem unlikely for a scheme to be both homomorphic and semantically secure; the former
requirement necessitates sufficient structure on the ciphertexts to carry out some limited computation,
while the latter requirement necessitates enough randomness in the ciphertexts so that an adversary is
unable to distinguish between ciphertexts. However, it turns out that both of the earliest candidates for
public-key cryptography, the ElGamal [2] and RSA [3] encryption schemes, are both homomorphic with
respect to multiplication. As a concrete example, we describe the ElGamal encryption scheme here and
check the homomorphic property. Let 𝔾 be a group with prime order 𝑝 and generator 𝑔. In the ElGamal
encryption scheme, the group 𝔾 is both the plaintext and the ciphertext space. The setup, encryption,
and decryption functions are defined as follows. Note that we use multiplicative notation for the group
operation in 𝔾.

• Setup: Choose 𝛼 uniformly at random from ℤ𝑝. The public key pk is ℎ = 𝑔𝛼 and the secret key sk

is 𝛼.

• Encpk(𝑚): Choose 𝑟 uniformly at random from ℤ𝑝. The encryption of 𝑚 is the tuple (𝑔𝑟, ℎ𝑟 ⋅ 𝑚),

where ℎ is the public key.

• Decsk(𝑐): Parse the ciphertext 𝑐 as the tuple (𝑐0, 𝑐1). Then, compute
𝑐1

𝑐0
𝛼, where 𝛼 is the secret key.

Correctness is not hard to see. Given a valid ciphertext 𝑐 = (𝑔𝑟, ℎ𝑟𝑚) = (𝑐0, 𝑐1) for a message 𝑚, 𝑐0
𝛼 =

𝑔𝑟𝛼 = ℎ𝑟 , and so
𝑐1

𝑐0
𝛼 =

ℎ𝑟𝑚

ℎ𝑟 = 𝑚 . Security of the scheme follows if we assume the Decisional Diffie-

Hellman (DDH) assumption holds in the group 𝔾. Roughly speaking, the DDH assumption states that the
4-tuple (𝑔, ℎ, 𝑔𝑟, ℎ𝑟) is computationally indistinguishable from (𝑔, ℎ, 𝑔𝑟, 𝑡) where 𝑔, ℎ, and 𝑡 are drawn
uniformly from 𝔾 and 𝑟 is drawn uniformly from ℤ𝑝. There are many groups in which the DDH assumption

is conjectured to hold, for instance, the subgroup of quadratic residues in ℤ𝑞
∗ where 𝑞 is a safe prime (𝑞 =

2𝑝 + 1 for a prime 𝑝). See [4] for a more thorough treatment.

Finally, we note that the ElGamal encryption scheme is multiplicatively homomorphic. Suppose we have
ciphertexts 𝑐0 = (𝑔𝑟0 , ℎ𝑟0𝑚0) and 𝑐1 = (𝑔𝑟1 , ℎ𝑟1𝑚1) of two messages 𝑚0 and 𝑚1. Consider taking the
element-wise product of 𝑐0 and 𝑐1. We obtain a new tuple 𝑐 where

𝑐 = (𝑔𝑟0 ⋅ 𝑔𝑟1 , ℎ𝑟0𝑚0 ⋅ ℎ𝑟1𝑚1) = (𝑔𝑟0+𝑟1 , ℎ𝑟0+𝑟1𝑚0𝑚1).

Observe that 𝑐 is an encryption of the product 𝑚0𝑚1 with randomness 𝑟0 + 𝑟1 . Thus, in the vanilla
ElGamal encryption scheme presented above, multiplying two ciphertexts together yields a new
ciphertext that encrypts the product of the underlying plaintext messages. Note though that the
randomness in 𝑐 is not uniform and independent of the randomness in 𝑐0 and 𝑐1. This can be addressed
by re-randomizing the ciphertext: compute the element-wise product of 𝑐 with (𝑔𝑟, ℎ𝑟) for a freshly
generated randomizer 𝑟.

The Holy Grail: Fully Homomorphic Encryption

The ElGamal cryptosystem described in the previous section is homomorphic with respect to a single
operation. Over the years, numerous other homomorphic encryption schemes have also been developed.
For instance, the basic RSA cryptosystem is also homomorphic with respect to multiplication, and the
Paillier cryptosystem [5] is homomorphic with respect to addition. However, in all these cases, the
encryption schemes are homomorphic with respect to a single algebraic operation. While these simple
homomorphic cryptosystems have a wide range of applications in secure voting, private information
retrieval, and others, the restriction to a single operation renders them incapable of evaluating general
transformations on encrypted data. The natural question that Rivest, Adleman, and Dertouzous [6] posed
shortly after the discovery of RSA in 1978, was whether there existed an encryption scheme that was fully
homomorphic, namely, homomorphic with respect to both addition and multiplication.

The power of a fully homomorphic encryption scheme (FHE) lies in the fact that it enables arbitrary
computation on encrypted data (see Figures 1 and 2 for two simple applications). To see why, suppose
we have an encryption scheme that is homomorphic with respect to both addition and multiplication over
the finite field 𝔽2. If we view the elements of 𝔽2 as bits, then addition in 𝔽2 is equivalent to taking the
“xor” of the input bits or values. Similarly, multiplication in 𝔽2 corresponds to evaluating the “and” of the
input bits. Thus, if an encryption scheme is homomorphic with respect to addition and multiplication in
𝔽2 and we view our ciphertexts as encryptions of bits, then our homomorphic operations enable the
evaluation of “and” and “xor” gates over the input bits. Since “and” and “xor” gates are universal for the
class of Boolean circuits, this means that using only the homomorphic operations, we can evaluate an
arbitrary Boolean circuit over the encrypted input bits. Thus, a fully homomorphic encryption scheme
enables arbitrary computation on encrypted data.

Figure 1. A natural application of fully homomorphic encryption is outsourcing computation to an
untrusted third party, such as the cloud. Such a scenario might arise when a client lacks the
computational resources to carry out the computation herself, and thus, needs to delegate the
computation to a potentially untrustworthy party. In the simplest example of outsourcing computation
using FHE, the client first encrypts her input using the FHE scheme; then she sends the ciphertexts to
the cloud, who performs the computation homomorphically. Finally, the client receives the encrypted
response, and decrypts to learn the result of the computation.

Note that it suffices to have homomorphism with respect to addition and multiplication over any finite
field 𝔽𝑝 since we can simulate the homomorphic operations over 𝔽2 using the operations over 𝔽𝑝. Finally,

as a technical point, we restrict our attention to compact homomorphic encryption schemes, that is,
schemes in which the size of the ciphertext does not grow in the size of the circuit being evaluated.
Without this restriction, there are trivial constructions that can be made to satisfy the required properties.
For instance, a non-compact (and uninteresting) “fully homomorphic encryption scheme” would be to
append the description of the circuit to be evaluated to each ciphertext and delegate the actual
computation to the decryption algorithm.

For 30 years after Rivest, Adleman, and Dertouzous first presented the challenge of constructing a fully
homomorphic encryption scheme, the problem remained unsolved. Due to both the apparent difficulty
of the problem, as well as the tantalizing power afforded by a fully homomorphic encryption scheme, it
was considered by some to be the “holy grail” in cryptography. The first major breakthrough in this area
came in 2005, with the development of the Boneh-Goh-Nissim (BGN) pairings-based cryptosystem [7].
The caveat, however, was that while the BGN cryptosystem could support an arbitrary number of
additions, it could only support a single multiplication. In other words, with the BGN cryptosystem, it
became possible to evaluate quadratic functions on encrypted data. The power of the BGN cryptosystem
was somewhere in between the simple homomorphic encryption schemes that could evaluate just a single
operation and the complete versatility of a fully homomorphic encryption scheme. As such, it was
regarded as a somewhat homomorphic encryption scheme (SWHE).

Figure 2. A second application of FHE pertains to cloud-based data analytics. In this example, the goal
is to learn a model or compute a function on data collected by several parties. For concreteness, suppose
a health specialist is tracking the spread of an epidemic and is requesting patient information from
different hospitals. Using FHE, each of the hospitals can submit their records encrypted under the
analyst’s public key to a cloud-based computing platform. Using the homomorphic properties of the
encryption scheme, the cloud then computes some aggregate statistics or develops a model on the input
data. The encrypted result of the computation is then provided to the health specialist or analyst. As
long as the cloud and the analyst do not collude, the analyst only obtains the model and does not learn
about the individual patient records.

Gentry’s Blueprint: Bootstrapping for FHE

More than 30 years after the idea of FHE was first described, Craig Gentry presented the first construction
of a fully homomorphic encryption scheme in his breakthrough work in 2009 [8]. Gentry’s original
construction can be broken down into two key ingredients: a somewhat homomorphic encryption scheme
that can support a limited number of operations (a few multiplications and many additions), and a
bootstrapping transformation that produces a FHE scheme from the SWHE scheme. Gentry’s construction
has generated tremendous interest within the cryptography community, and in the ensuing years,
numerous new schemes that are simpler and more efficient compared to Gentry’s original construction
have emerged. However, to date, all of these schemes follow Gentry’s blueprint of first constructing a
SWHE scheme, and then applying the bootstrapping transformation to obtain FHE.

Gentry’s bootstrapping transformation is an ingenious method of taking a SWHE scheme and converting
it into a FHE scheme. To bootstrap, we begin with a SWHE encryption scheme that supports a limited
number of operations. Moreover, suppose that the decryption algorithm for the SWHE scheme can be
expressed as a small circuit that can be homomorphically evaluated by the SWHE scheme. In other words,
we require that the SWHE scheme is able to homomorphically evaluate its own decryption circuit. Then,
we define a Recrypt function (Figure 3) as follows. Suppose 𝑐 = Encpk(𝑚) is a ciphertext encrypting the

message 𝑚 under the public key pk, and moreover, suppose we have an encryption of the bits of the
secret key sk under the same public key; denote this Encpk(sk).

Figure 3. A graphical representation of the 𝑅𝑒𝑐𝑟𝑦𝑝𝑡 functionality. All bootstrappable SWHE schemes
are based on lattice-based methods where ciphertexts are “noisy.” In the 𝑅𝑒𝑐𝑟𝑦𝑝𝑡 function, a noisy
ciphertext is refreshed by first re-encrypting it to produce a fresh ciphertext (with low noise), and then
homomorphically evaluating the decryption function. This yields a ciphertext that encrypts the same
message, but with less noise (assuming the decryption function is sufficiently simple).

The Recrypt function then encrypts 𝑐 under pk to obtain Encpk(𝑐), and homomorphically evaluates the

decryption circuit on input Encpk(𝑐) and Encpk(sk). Since Encpk(𝑐) is a fresh ciphertext, we can perform

as many homomorphic operations on Encpk(𝑐) as the SWHE scheme can provide. Additionally, recall that

when we homomorphically evaluate a function 𝑓 on a ciphertext Encpk(𝑚), we obtain a new ciphertext

Encpk(𝑓(𝑚)) . In this case, the function 𝑓 is the decryption function Decsk . Thus, when we

homomorphically evaluate the decryption function, we obtain the ciphertext Encpk(Decsk(𝑐)) =

Encpk(𝑚). But this is precisely what we started with! The difference, however, is that if the SWHE scheme

has enough homomorphism to support the decryption function and one additional operation, then we
can perform one additional homomorphic operation on this new ciphertext, and repeat the procedure ad
infinitum. Each time we apply the Recrypt procedure, we obtain a ciphertext encrypting the same
message, but able to support at least one additional operation. In this sense, we are able to bootstrap the
limited homomorphic capabilities of the original scheme to obtain a scheme that is fully homomorphic.
One caveat is that we now require the SWHE scheme to be circularly secure, that is, the scheme remains
secure even when the adversary is given an encryption of the scheme’s secret key.

All known constructions of bootstrappable SWHE schemes are lattice-based. To provide some intuition of
what these schemes look like, we sketch out the high-level details of the GSW construction due to Gentry,
Sahai, and Waters from 2013 [9]. The GSW scheme fixes a modulus 𝑞 and a dimension 𝑛. The secret key
is a vector 𝑣 ∈ ℤ𝑞

𝑛 with at least one “big” component 𝑣𝑖. The encryption of a message 𝑚 ∈ ℤ𝑞 in the GSW

scheme is an 𝑛 × 𝑛 matrix 𝐶 over ℤ𝑞 (the integers modulo 𝑞), such that 𝐶𝑣 = 𝑚𝑣 + 𝑒, where 𝑒 ∈ ℤ𝑞
𝑛 is a

“small” noise vector (the value of each component of 𝑒 is small compared to the modulus 𝑞). To decrypt

a ciphertext, we take the 𝑖th row of 𝐶 (denoted 𝐶𝑖) and compute the quantity ⌊〈𝐶𝑖, 𝑣〉/𝑣𝑖⌉, where ⌊⋅⌉
denotes the rounding operation. In other words, we evaluate the quotient 〈𝐶𝑖, 𝑣〉/𝑣𝑖 over the rationals,
and then round the result to the nearest integer. To see that this works, we use the fact that 〈𝐶𝑖, 𝑣〉 =
𝑚𝑣𝑖 + 𝑒𝑖 and so

〈𝐶𝑖, 𝑣〉

𝑣𝑖
=

𝑚𝑣𝑖 + 𝑒𝑖

𝑣𝑖
= 𝑚 +

𝑒𝑖

𝑣𝑖
.

As long as the errors 𝑒𝑖 are small compared to 𝑣𝑖 (it suffices that |𝑒𝑖/𝑣𝑖| < 1/2), the decryption function
recovers the correct value 𝑚.

At a high level, the ciphertexts in the GSW scheme consist of matrices with the following property: the
secret key is an approximate eigenvector whose associated eigenvalue is the message. It is critical that
the secret key is only an approximate eigenvector. Without the noise terms, it becomes trivial to break
the cryptosystem: given a ciphertext 𝐶 , we can compute its eigenvalues, and correspondingly, the
underlying message, in polynomial time. Adding a small amount of noise allows security to be based on
the now-standard learning with errors (LWE) problem [10] from lattice-based cryptography.

Without getting into the more technical details of the GSW cryptosystem, we sketch its homomorphic
properties. Suppose two ciphertexts 𝐶0 and 𝐶1 are encryptions of messages 𝑚0 and 𝑚1 , respectively.
Then, the sum 𝐶0 + 𝐶1 of the two ciphertexts is an encryption of 𝑚0 + 𝑚1. This can be seen through the
following simple calculation:

(𝐶0 + 𝐶1)𝑣 = 𝐶0𝑣 + 𝐶1𝑣 = 𝑚0𝑣 + 𝑒0 + 𝑚1𝑣 + 𝑒1 = (𝑚0 + 𝑚1)𝑣 + (𝑒0 + 𝑒1).

Thus, 𝐶0 + 𝐶1 is a ciphertext encrypting 𝑚0 + 𝑚1. Note also that the noise in the new ciphertext has also
increased; it is the sum of the noise in 𝐶0 and 𝐶1. Similarly, we can verify that the product 𝐶0𝐶1 of the two
ciphertexts is an encryption of the product 𝑚0𝑚1:

(𝐶0𝐶1)𝑣 = 𝐶0(𝑚1𝑣 + 𝑒1) = 𝑚0𝑚1𝑣 + 𝑚1𝑒0 + 𝐶0𝑒1.

Thus, 𝐶0𝐶1 is a valid encryption of 𝑚0𝑚1 provided that the new noise term 𝑚1𝑒0 + 𝐶0𝑒1 is still sufficiently
small. As presented so far, there is no reason to believe that this is small (in fact, both 𝑚1𝑒0 and 𝐶0𝑒1 can
be large if 𝑚1 is large or if 𝐶0 contains large entries). Thus, a few additional tricks are needed to ensure
the noise does not blow up with each multiplication. Nonetheless, the basic principles still apply:
homomorphic addition corresponds to matrix addition and homomorphic multiplication corresponds to
matrix multiplication in the GSW scheme. As noted earlier, the noise in the ciphertexts increases with
each homomorphic operation; as a result, the scheme is only somewhat homomorphic. After sufficiently
many homomorphic operations, the noise will no longer be small compared to 𝑣𝑖 , in which case
decryption no longer produces the correct result (the signal has effectively been washed away by the
noise). It turns out, however, that the scheme does support enough homomorphism to evaluate its own
decryption function, and thus, can be bootstrapped to obtain a fully homomorphic encryption scheme!

Concluding Remarks

The idea of fully homomorphic encryption is almost as old as the concept of public-key encryption. But
unlike public-key encryption, the first construction of FHE eluded cryptographers’ best efforts for thirty
years. Because of the difficulty in attaining FHE and its potential as a primitive for constructing and
simplifying other cryptographic protocols, as well as its natural applicability to outsourcing computation,
some have come to regard FHE as the holy grail of cryptography. Thus, with Gentry’s breakthrough
construction in 2009, cryptographers have effectively attained the holy grail; however, Gentry’s work does
not represent an end to the quest for the holy grail. Rather, his work has ignited a long stream of
subsequent research in FHE.

On the theoretical side, a substantial amount of work has focused on developing asymptotically more
efficient schemes, schemes based on simpler, or better-understood assumptions, as well as FHE schemes
with additional properties. Equally important has been the work on the practical side of implementing
fully homomorphic encryption. On the positive side, the performance of bootstrappable SWHE schemes
have increased by several orders of magnitude since the earliest implementations of 2009. Nonetheless,
there is still considerable overhead in terms of both computational performance as well as parameter
sizes in existing implementations that severely limit the practicality and applicability of current
implementations. It remains an open and important problem to develop SWHE and FHE schemes that are
practical for deployment in our modern, cloud-centric computing environment.

Acknowledgments

The author is currently supported by an NSF Graduate Research Fellowship under grant number DGE-
114747.

References

[1] Goldwasser, S. and Micali, S. Probabilistic encryption. Journal of Computer and System Sciences 28, 2 (1984),

270-299.

[2] ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. In Advances in

Cryptology, Proceedings of CRYPTO '84. G. Blakley and D. Chaum (Eds.). Springer, Berlin Heidelberg, 1985, 10-

18.

[3] Rivest, R., Shamir, A. and Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.

Communications of the ACM 21, 2 (1978), 120-126.

[4] Boneh, D. The decision Diffie-Hellman problem. In Algorithmic Number Theory, Proceedings of the Third

International Symposium (ANTS-III) (Portland, June 21-25). J.Buhler (Ed.). Springer, Berlin Heidelberg, 1998, 48-

63.

[5] Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt, 1999.

[6] Rivest, R., Adleman, L. and Dertouzos, M. On data banks and privacy homomorphisms. In Foundations of Secure

Computation 4, 11 (1978), 169-180.

[7] Boneh, D., Goh, E.-J. and Nissim, K. Evaluating 2-DNF formulas on ciphertexts. In Theory of Cryptography,

Proceedings of the Second Theory of Cryptography Conference (TCC) (Cambridge, February 10-12). J. Kilian

(Ed.). Springer, Berlin Heidelberg, 2005, 325-341.

[8] Gentry, C. A fully homomorphic encryption scheme. Doctoral Dissertation, Stanford University, 2009.

[9] Gentry, C., Sahai, A. and Waters, B. Homomorphic encryption from learning with errors: conceptually-simpler,

asymptotically-faster, attribute-based. In Advances in Cryptology, Proceedings of CRYPTO '13. R. Canetti and J.

Garay (Eds.). Springer, Berlin Heidelberg, 2013, 75-92.

[10] Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the thirty-

seventh annual ACM symposium on Theory of computing (STOC '05). ACM, New York, NY, USA, 2005, 84-93.

