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For over 30 years, cryptographers have embarked on a quest to construct an encryption 
scheme that would enable arbitrary computation on encrypted data. Conceptually simple, yet 

notoriously difficult to achieve, cryptography’s holy grail opens the door to many new 
capabilities in our cloud-centric, data-driven world. 

The advances in statistical and computational methods for machine learning coupled with the advent of 
powerful, cloud-based computing platforms in the last decade have ushered in the era of “big data.” Not 
only are data more easily accessible than ever before, we now have available a wide range of tools that 
enable us to better understand and learn from these rich troves of data. However, as we transition into 
this cloud-based, data-centric environment, we often find ourselves revealing details of our personal lives 
to the cloud, be they in the form of movie preferences for recommender systems such as Netflix, or 
financial information for tax-preparation services such as TurboTax. Two natural question that arise are 
whether we can trust the cloud with our information and whether the notions of data-driven, cloud-based 
computing are inherently at odds with individual privacy. 

Homomorphic Encryption 

A simple and efficient solution for preserving the privacy of user information in cloud-based services is to 
encrypt the data that is sent to the cloud. However, this simple solution has a significant drawback in that 
if the data is encrypted using a conventional encryption algorithm (for example, using the AES block 
cipher), then the cloud is unable to operate on the data without needing to first decrypt. Of course, if we 
then share with the cloud the secret decryption key, we are back to square one where we have no privacy 
guarantees on the data. Thus, we ask whether there exist encryption schemes that allow some 
computation to be performed directly on encrypted data (without first decrypting it). 

To answer this question, we begin in 1977 with the dawn of modern public-key cryptography. A public-
key encryption scheme is specified by three algorithms: Setup, Encpk, and Decsk. As the names suggest, 

the Setup algorithm generates a public key pk and a secret key sk. The Encpk algorithm takes a message 

and outputs its encryption under the public key. The Decsk algorithm takes a ciphertext produced by the 
encryption function and decrypts it using the secret key to produce a message. The public-key nature of 
the encryption scheme means that anyone can encrypt a message using the public key, but only the holder 
of the secret key can decrypt. 

For an encryption scheme to be useful, we require first a basic correctness property, that is, if one encrypts 
a message under the public key, decrypting the resulting ciphertext with the secret key should yield the 

original message. Expressed in our notation, we require that for all messages 𝑚, Decsk (Encpk(𝑚)) = 𝑚. 

The more important requirement is the security requirement. We use the notion of semantic security 
against chosen plaintext attacks (CPA security) [1]. An encryption scheme is CPA-secure if no polynomial-
time algorithm can distinguish an encryption of a message 𝑚0 from an encryption of a message 𝑚1 for all 



messages 𝑚0 and 𝑚1. Informally, the security requirement captures the notion that all ciphertexts look 
the same to an adversary, and thus, do not reveal any information about the underlying messages. 

By themselves, the setup, encryption, and decryption algorithms do not enable computation on 
ciphertexts. To support computations on ciphertexts, we require additional structure in our ciphertext 
space. Consider an example: suppose we have an encryption scheme whose plaintext space is the additive 
group ℤ𝑛  (the integers taken modulo 𝑛). Additionally, suppose we have encryptions 𝑐0  and 𝑐1  of two 
messages 𝑚0, 𝑚1 ∈ ℤ𝑛, respectively. We say that this encryption scheme is additively homomorphic if 
there is an efficiently-computable operator ⋆ on ciphertexts such that 𝑐0 ⋆ 𝑐1 is a valid ciphertext that 
decrypts to the sum 𝑚0 + 𝑚1. If such an operator ⋆ exists, then the encryption and decryption functions 
are group homomorphisms, hence the name homomorphic encryption. In words, in an additively 
homomorphic encryption scheme, given two ciphertexts, it is easy to construct a ciphertext that encrypts 
the sum of the underlying plaintext values. Though the existence of the ⋆ operator necessitates additional 
structure on the ciphertexts, an additively homomorphic encryption scheme must still satisfy the 
correctness and security requirements described earlier. 

It might seem unlikely for a scheme to be both homomorphic and semantically secure; the former 
requirement necessitates sufficient structure on the ciphertexts to carry out some limited computation, 
while the latter requirement necessitates enough randomness in the ciphertexts so that an adversary is 
unable to distinguish between ciphertexts. However, it turns out that both of the earliest candidates for 
public-key cryptography, the ElGamal [2] and RSA [3] encryption schemes, are both homomorphic with 
respect to multiplication. As a concrete example, we describe the ElGamal encryption scheme here and 
check the homomorphic property. Let 𝔾 be a group with prime order 𝑝 and generator 𝑔. In the ElGamal 
encryption scheme, the group 𝔾 is both the plaintext and the ciphertext space. The setup, encryption, 
and decryption functions are defined as follows. Note that we use multiplicative notation for the group 
operation in 𝔾. 

• Setup: Choose 𝛼 uniformly at random from ℤ𝑝. The public key pk is ℎ = 𝑔𝛼 and the secret key sk 

is 𝛼. 

• Encpk(𝑚): Choose 𝑟 uniformly at random from ℤ𝑝. The encryption of 𝑚 is the tuple (𝑔𝑟, ℎ𝑟 ⋅ 𝑚), 

where ℎ is the public key. 

• Decsk(𝑐): Parse the ciphertext 𝑐 as the tuple (𝑐0, 𝑐1). Then, compute 
𝑐1

𝑐0
𝛼, where 𝛼 is the secret key. 

Correctness is not hard to see. Given a valid ciphertext 𝑐 = (𝑔𝑟, ℎ𝑟𝑚) = (𝑐0, 𝑐1) for a message 𝑚, 𝑐0
𝛼 =

𝑔𝑟𝛼 = ℎ𝑟 , and so 
𝑐1

𝑐0
𝛼 =

ℎ𝑟𝑚

ℎ𝑟 = 𝑚 . Security of the scheme follows if we assume the Decisional Diffie-

Hellman (DDH) assumption holds in the group 𝔾. Roughly speaking, the DDH assumption states that the 
4-tuple (𝑔, ℎ, 𝑔𝑟, ℎ𝑟) is computationally indistinguishable from (𝑔, ℎ, 𝑔𝑟, 𝑡) where 𝑔, ℎ,  and 𝑡 are drawn 
uniformly from 𝔾 and 𝑟 is drawn uniformly from ℤ𝑝. There are many groups in which the DDH assumption 

is conjectured to hold, for instance, the subgroup of quadratic residues in ℤ𝑞
∗   where 𝑞 is a safe prime (𝑞 =

2𝑝 + 1 for a prime 𝑝). See [4] for a more thorough treatment. 

Finally, we note that the ElGamal encryption scheme is multiplicatively homomorphic. Suppose we have 
ciphertexts 𝑐0 = (𝑔𝑟0 , ℎ𝑟0𝑚0) and 𝑐1 = (𝑔𝑟1 , ℎ𝑟1𝑚1) of two messages 𝑚0 and 𝑚1. Consider taking the 
element-wise product of 𝑐0 and 𝑐1. We obtain a new tuple 𝑐 where 

𝑐 = (𝑔𝑟0 ⋅ 𝑔𝑟1 , ℎ𝑟0𝑚0 ⋅ ℎ𝑟1𝑚1) = (𝑔𝑟0+𝑟1 , ℎ𝑟0+𝑟1𝑚0𝑚1). 



Observe that 𝑐  is an encryption of the product 𝑚0𝑚1  with randomness 𝑟0 + 𝑟1 . Thus, in the vanilla 
ElGamal encryption scheme presented above, multiplying two ciphertexts together yields a new 
ciphertext that encrypts the product of the underlying plaintext messages. Note though that the 
randomness in 𝑐 is not uniform and independent of the randomness in 𝑐0 and 𝑐1. This can be addressed 
by re-randomizing the ciphertext: compute the element-wise product of 𝑐  with (𝑔𝑟, ℎ𝑟) for a freshly 
generated randomizer 𝑟. 

The Holy Grail: Fully Homomorphic Encryption 

The ElGamal cryptosystem described in the previous section is homomorphic with respect to a single 
operation. Over the years, numerous other homomorphic encryption schemes have also been developed. 
For instance, the basic RSA cryptosystem is also homomorphic with respect to multiplication, and the 
Paillier cryptosystem [5] is homomorphic with respect to addition. However, in all these cases, the 
encryption schemes are homomorphic with respect to a single algebraic operation. While these simple 
homomorphic cryptosystems have a wide range of applications in secure voting, private information 
retrieval, and others, the restriction to a single operation renders them incapable of evaluating general 
transformations on encrypted data. The natural question that Rivest, Adleman, and Dertouzous [6] posed 
shortly after the discovery of RSA in 1978, was whether there existed an encryption scheme that was fully 
homomorphic, namely, homomorphic with respect to both addition and multiplication.  

The power of a fully homomorphic encryption scheme (FHE) lies in the fact that it enables arbitrary 
computation on encrypted data (see Figures 1 and 2 for two simple applications). To see why, suppose 
we have an encryption scheme that is homomorphic with respect to both addition and multiplication over 
the finite field 𝔽2. If we view the elements of 𝔽2 as bits, then addition in 𝔽2 is equivalent to taking the 
“xor” of the input bits or values. Similarly, multiplication in 𝔽2 corresponds to evaluating the “and” of the 
input bits. Thus, if an encryption scheme is homomorphic with respect to addition and multiplication in 
𝔽2 and we view our ciphertexts as encryptions of bits, then our homomorphic operations enable the 
evaluation of “and” and “xor” gates over the input bits. Since “and” and “xor” gates are universal for the 
class of Boolean circuits, this means that using only the homomorphic operations, we can evaluate an 
arbitrary Boolean circuit over the encrypted input bits. Thus, a fully homomorphic encryption scheme 
enables arbitrary computation on encrypted data. 

 

 

 

 

 

 

 

 

 

Figure 1.  A natural application of fully homomorphic encryption is outsourcing computation to an 
untrusted third party, such as the cloud. Such a scenario might arise when a client lacks the 
computational resources to carry out the computation herself, and thus, needs to delegate the 
computation to a potentially untrustworthy party. In the simplest example of outsourcing computation 
using FHE, the client first encrypts her input using the FHE scheme; then she sends the ciphertexts to 
the cloud, who performs the computation homomorphically. Finally, the client receives the encrypted 
response, and decrypts to learn the result of the computation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Note that it suffices to have homomorphism with respect to addition and multiplication over any finite 
field 𝔽𝑝 since we can simulate the homomorphic operations over 𝔽2 using the operations over 𝔽𝑝. Finally, 

as a technical point, we restrict our attention to compact homomorphic encryption schemes, that is, 
schemes in which the size of the ciphertext does not grow in the size of the circuit being evaluated. 
Without this restriction, there are trivial constructions that can be made to satisfy the required properties. 
For instance, a non-compact (and uninteresting) “fully homomorphic encryption scheme” would be to 
append the description of the circuit to be evaluated to each ciphertext and delegate the actual 
computation to the decryption algorithm. 

For 30 years after Rivest, Adleman, and Dertouzous first presented the challenge of constructing a fully 
homomorphic encryption scheme, the problem remained unsolved. Due to both the apparent difficulty 
of the problem, as well as the tantalizing power afforded by a fully homomorphic encryption scheme, it 
was considered by some to be the “holy grail” in cryptography. The first major breakthrough in this area 
came in 2005, with the development of the Boneh-Goh-Nissim (BGN) pairings-based cryptosystem [7]. 
The caveat, however, was that while the BGN cryptosystem could support an arbitrary number of 
additions, it could only support a single multiplication. In other words, with the BGN cryptosystem, it 
became possible to evaluate quadratic functions on encrypted data. The power of the BGN cryptosystem 
was somewhere in between the simple homomorphic encryption schemes that could evaluate just a single 
operation and the complete versatility of a fully homomorphic encryption scheme. As such, it was 
regarded as a somewhat homomorphic encryption scheme (SWHE). 

 

Figure 2. A second application of FHE pertains to cloud-based data analytics. In this example, the goal 
is to learn a model or compute a function on data collected by several parties. For concreteness, suppose 
a health specialist is tracking the spread of an epidemic and is requesting patient information from 
different hospitals. Using FHE, each of the hospitals can submit their records encrypted under the 
analyst’s public key to a cloud-based computing platform. Using the homomorphic properties of the 
encryption scheme, the cloud then computes some aggregate statistics or develops a model on the input 
data. The encrypted result of the computation is then provided to the health specialist or analyst. As 
long as the cloud and the analyst do not collude, the analyst only obtains the model and does not learn 
about the individual patient records. 



Gentry’s Blueprint: Bootstrapping for FHE 

More than 30 years after the idea of FHE was first described, Craig Gentry presented the first construction 
of a fully homomorphic encryption scheme in his breakthrough work in 2009 [8]. Gentry’s original 
construction can be broken down into two key ingredients: a somewhat homomorphic encryption scheme 
that can support a limited number of operations (a few multiplications and many additions), and a 
bootstrapping transformation that produces a FHE scheme from the SWHE scheme. Gentry’s construction 
has generated tremendous interest within the cryptography community, and in the ensuing years, 
numerous new schemes that are simpler and more efficient compared to Gentry’s original construction 
have emerged. However, to date, all of these schemes follow Gentry’s blueprint of first constructing a 
SWHE scheme, and then applying the bootstrapping transformation to obtain FHE. 

Gentry’s bootstrapping transformation is an ingenious method of taking a SWHE scheme and converting 
it into a FHE scheme. To bootstrap, we begin with a SWHE encryption scheme that supports a limited 
number of operations. Moreover, suppose that the decryption algorithm for the SWHE scheme can be 
expressed as a small circuit that can be homomorphically evaluated by the SWHE scheme. In other words, 
we require that the SWHE scheme is able to homomorphically evaluate its own decryption circuit. Then, 
we define a Recrypt function (Figure 3) as follows. Suppose 𝑐 = Encpk(𝑚) is a ciphertext encrypting the 

message 𝑚 under the public key pk, and moreover, suppose we have an encryption of the bits of the 
secret key sk under the same public key; denote this Encpk(sk).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A graphical representation of the 𝑅𝑒𝑐𝑟𝑦𝑝𝑡 functionality. All bootstrappable SWHE schemes 
are based on lattice-based methods where ciphertexts are “noisy.” In the 𝑅𝑒𝑐𝑟𝑦𝑝𝑡 function, a noisy 
ciphertext is refreshed by first re-encrypting it to produce a fresh ciphertext (with low noise), and then 
homomorphically evaluating the decryption function. This yields a ciphertext that encrypts the same 
message, but with less noise (assuming the decryption function is sufficiently simple). 



The Recrypt function then encrypts 𝑐 under pk to obtain Encpk(𝑐), and homomorphically evaluates the 

decryption circuit on input Encpk(𝑐) and Encpk(sk). Since Encpk(𝑐) is a fresh ciphertext, we can perform 

as many homomorphic operations on Encpk(𝑐) as the SWHE scheme can provide. Additionally, recall that 

when we homomorphically evaluate a function 𝑓 on a ciphertext Encpk(𝑚), we obtain a new ciphertext 

Encpk(𝑓(𝑚)) . In this case, the function 𝑓  is the decryption function Decsk . Thus, when we 

homomorphically evaluate the decryption function, we obtain the ciphertext Encpk(Decsk(𝑐)) =

Encpk(𝑚). But this is precisely what we started with! The difference, however, is that if the SWHE scheme 

has enough homomorphism to support the decryption function and one additional operation, then we 
can perform one additional homomorphic operation on this new ciphertext, and repeat the procedure ad 
infinitum. Each time we apply the Recrypt  procedure, we obtain a ciphertext encrypting the same 
message, but able to support at least one additional operation. In this sense, we are able to bootstrap the 
limited homomorphic capabilities of the original scheme to obtain a scheme that is fully homomorphic. 
One caveat is that we now require the SWHE scheme to be circularly secure, that is, the scheme remains 
secure even when the adversary is given an encryption of the scheme’s secret key. 

All known constructions of bootstrappable SWHE schemes are lattice-based. To provide some intuition of 
what these schemes look like, we sketch out the high-level details of the GSW construction due to Gentry, 
Sahai, and Waters from 2013 [9]. The GSW scheme fixes a modulus 𝑞 and a dimension 𝑛. The secret key 
is a vector 𝑣 ∈ ℤ𝑞

𝑛 with at least one “big” component 𝑣𝑖. The encryption of a message 𝑚 ∈ ℤ𝑞 in the GSW 

scheme is an 𝑛 × 𝑛 matrix 𝐶 over ℤ𝑞 (the integers modulo 𝑞), such that 𝐶𝑣 = 𝑚𝑣 + 𝑒, where 𝑒 ∈ ℤ𝑞
𝑛 is a 

“small” noise vector (the value of each component of 𝑒 is small compared to the modulus 𝑞). To decrypt 

a ciphertext, we take the 𝑖th  row of 𝐶  (denoted 𝐶𝑖 ) and compute the quantity ⌊〈𝐶𝑖, 𝑣〉/𝑣𝑖⌉, where ⌊⋅⌉ 
denotes the rounding operation. In other words, we evaluate the quotient 〈𝐶𝑖, 𝑣〉/𝑣𝑖 over the rationals, 
and then round the result to the nearest integer. To see that this works, we use the fact that 〈𝐶𝑖, 𝑣〉 =
𝑚𝑣𝑖 + 𝑒𝑖 and so 

〈𝐶𝑖, 𝑣〉

𝑣𝑖
=

𝑚𝑣𝑖 + 𝑒𝑖

𝑣𝑖
= 𝑚 +

𝑒𝑖

𝑣𝑖
. 

As long as the errors 𝑒𝑖 are small compared to 𝑣𝑖 (it suffices that |𝑒𝑖/𝑣𝑖| < 1/2), the decryption function 
recovers the correct value 𝑚. 

At a high level, the ciphertexts in the GSW scheme consist of matrices with the following property: the 
secret key is an approximate eigenvector whose associated eigenvalue is the message. It is critical that 
the secret key is only an approximate eigenvector. Without the noise terms, it becomes trivial to break 
the cryptosystem: given a ciphertext 𝐶 , we can compute its eigenvalues, and correspondingly, the 
underlying message, in polynomial time. Adding a small amount of noise allows security to be based on 
the now-standard learning with errors (LWE) problem [10] from lattice-based cryptography. 

Without getting into the more technical details of the GSW cryptosystem, we sketch its homomorphic 
properties. Suppose two ciphertexts 𝐶0  and 𝐶1  are encryptions of messages 𝑚0  and 𝑚1 , respectively. 
Then, the sum 𝐶0 + 𝐶1 of the two ciphertexts is an encryption of 𝑚0 + 𝑚1. This can be seen through the 
following simple calculation: 

(𝐶0 + 𝐶1)𝑣 = 𝐶0𝑣 + 𝐶1𝑣 = 𝑚0𝑣 + 𝑒0 + 𝑚1𝑣 + 𝑒1 = (𝑚0 + 𝑚1)𝑣 + (𝑒0 + 𝑒1). 



Thus, 𝐶0 + 𝐶1 is a ciphertext encrypting 𝑚0 + 𝑚1. Note also that the noise in the new ciphertext has also 
increased; it is the sum of the noise in 𝐶0 and 𝐶1. Similarly, we can verify that the product 𝐶0𝐶1 of the two 
ciphertexts is an encryption of the product 𝑚0𝑚1: 

(𝐶0𝐶1)𝑣 = 𝐶0(𝑚1𝑣 + 𝑒1) = 𝑚0𝑚1𝑣 + 𝑚1𝑒0 + 𝐶0𝑒1. 

Thus, 𝐶0𝐶1 is a valid encryption of 𝑚0𝑚1 provided that the new noise term 𝑚1𝑒0 + 𝐶0𝑒1 is still sufficiently 
small. As presented so far, there is no reason to believe that this is small (in fact, both 𝑚1𝑒0 and 𝐶0𝑒1 can 
be large if 𝑚1 is large or if 𝐶0 contains large entries). Thus, a few additional tricks are needed to ensure 
the noise does not blow up with each multiplication. Nonetheless, the basic principles still apply: 
homomorphic addition corresponds to matrix addition and homomorphic multiplication corresponds to 
matrix multiplication in the GSW scheme. As noted earlier, the noise in the ciphertexts increases with 
each homomorphic operation; as a result, the scheme is only somewhat homomorphic. After sufficiently 
many homomorphic operations, the noise will no longer be small compared to 𝑣𝑖 , in which case 
decryption no longer produces the correct result (the signal has effectively been washed away by the 
noise). It turns out, however, that the scheme does support enough homomorphism to evaluate its own 
decryption function, and thus, can be bootstrapped to obtain a fully homomorphic encryption scheme! 

Concluding Remarks 

The idea of fully homomorphic encryption is almost as old as the concept of public-key encryption. But 
unlike public-key encryption, the first construction of FHE eluded cryptographers’ best efforts for thirty 
years. Because of the difficulty in attaining FHE and its potential as a primitive for constructing and 
simplifying other cryptographic protocols, as well as its natural applicability to outsourcing computation, 
some have come to regard FHE as the holy grail of cryptography. Thus, with Gentry’s breakthrough 
construction in 2009, cryptographers have effectively attained the holy grail; however, Gentry’s work does 
not represent an end to the quest for the holy grail. Rather, his work has ignited a long stream of 
subsequent research in FHE.  

On the theoretical side, a substantial amount of work has focused on developing asymptotically more 
efficient schemes, schemes based on simpler, or better-understood assumptions, as well as FHE schemes 
with additional properties. Equally important has been the work on the practical side of implementing 
fully homomorphic encryption. On the positive side, the performance of bootstrappable SWHE schemes 
have increased by several orders of magnitude since the earliest implementations of 2009. Nonetheless, 
there is still considerable overhead in terms of both computational performance as well as parameter 
sizes in existing implementations that severely limit the practicality and applicability of current 
implementations. It remains an open and important problem to develop SWHE and FHE schemes that are 
practical for deployment in our modern, cloud-centric computing environment. 
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