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Location privacy is a major concern among smartphone users and numerous 
controversies have come up due to companies surreptitiously tracking users' 
locations. Among the various apps that require location information, naviga-
tion is one of the most popular. For example, companies such as Google, 
Apple, and Waze, have built tra�c-aware navigation apps to provide users with 
the most up-to-date routing information. But to use these services, users must 
reveal their location to learn the fastest route to their destination. In doing so, 
they also reveal other sensitive information about their personal lives, such as 
their health condition, their shopping habits, and more to the map provider.
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If we just desire privacy for the user’s location, a simple approach is for the user 
to download the entire map and compute the shortest paths herself. Even dis-
counting performance issues, map providers are not incentivized to simply 
give away their routing information for free. In other scenarios, the mapping 
information might contain sensitive or con�dential information that should 
not be freely given out. Thus, in our work, we examine the problem of fully pri-
vate shortest path computation, that is, privacy should hold for both the 
client’s location and the server’s routing information.

Navigation and Location Privacy

Suppose the road network has only n nodes. Then, we can construct an n-by-n 
database of shortest paths
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Given the database of shortest paths, private shortest path computation re-
duces to symmetric private information retrieval (SPIR). However, the size of 
the database grows quadratically in the number of nodes in the graph. 

Subsection of road network for Washington D.C. taken from OpenStreetGraph. Visualization of preprocessed road network.

Observation 1: Nodes in road networks have low (constant) degree.

For each node in the network, we can associate each of its neighbors with a direction (unique index). Then, 
we can replace the shortest path matrix with the next-hop routing matrix. To compute the shortest paths, 
we iteratively retrieve the next-hop from the next-hop routing matrix.

Observation 2: Road networks have compressible geometric structure.

We preprocess the graph so that each node has at most four neighbors, and we associate a direction with 
each neighbor. The index of each neighbor can be encoded with two bits: a component along the NW/SE 
axis and a component along the NE/SW axis. We formulate an optimization problem to �nd a compact rep-
resentation of the next-hop routing matrices:
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Map Preprocessing and Compression
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Average time needed to compress the next-hop routing matrix and the re-
sulting compression factor for networks constructed from subgraphs of the 

road network of Los Angeles. 

Candidate protocol to learn next-hop on shortest path:

1. Use SPIR to obtain row of and 
2. Use SPIR to obtain row of and 
3. Compute

and 

While this protocol only requires SPIR on databases with n re-
cords,  the rows and columns of A and B reveal additional infor-
mation about the server’s routing information.

Nonetheless, we have e�ectively reduced the shortest-path 
problem to computing a thresholded inner product. We now de-
velop a method to privately evaluate this function.

A�ne encodings. To compute the inner product              with-
out revealing A or B, we can use a garbled arithmetic circuit. 
In fact, it su�ces to use the a�nization gadgets from [AIK14].

For example, suppose we wanted to garble an addition circuit

The encoding of a, b is given by                         for some random
           . Then, given only the encoding, one can only learn the 
sum           and nothing else.

In our protocol, rather than using SPIR to retrieve the actual 
source and destination vectors, the client instead uses SPIR to 
obtain the encodings of the vectors. This allows the client to 
learn only the inner product and nothing more.

Garbled circuits. In Step 3 of our protocol, we only want to 
reveal the sign, and not the actual value of the inner product.

To hide the inner product, we modify the arithmetic circuit to 
instead compute a blinded inner product, that is, instead of 
computing           , we compute                       for random                  .   

To complete the protocol execution, we construct a garbled 
circuit for the following unblind-and-threshold functionality:

Here, the client provides as input the blinded inner product   , 
and the server provides as input the blinding factors         . Se-
curity of the garbled circuit ensures the client only learns the 
thresholded value, and nothing else.

This yields a protocol secure against semi-honest clients.

A Private Navigation Protocol

City Number 
of Nodes

Time per Round 
(s)

Bandwidth 
(KB)

San Francisco 1830 88.24
Washington D.C. 2490 90.00

Dallas 4993 9 95.02
Los Angeles 7010 22 100.54

Timing and bandwidth for each round of the online protocol (with protec-
tion against malicious clients).

To hide the length of the shortest path, we pad the number of rounds to the 
maximum number needed to answer any shortest path query. For these road 
networks, we require between 95 and 170 rounds.
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