
Privacy-Preserving Shortest Path Computation
David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell

Location privacy is a major concern among smartphone users and numerous
controversies have come up due to companies surreptitiously tracking users'
locations. Among the various apps that require location information, naviga-
tion is one of the most popular. For example, companies such as Google,
Apple, and Waze, have built tra�c-aware navigation apps to provide users with
the most up-to-date routing information. But to use these services, users must
reveal their location to learn the fastest route to their destination. In doing so,
they also reveal other sensitive information about their personal lives, such as
their health condition, their shopping habits, and more to the map provider.

directions from current
location to Fisherman’s

Wharf

If we just desire privacy for the user’s location, a simple approach is for the user
to download the entire map and compute the shortest paths herself. Even dis-
counting performance issues, map providers are not incentivized to simply
give away their routing information for free. In other scenarios, the mapping
information might contain sensitive or con�dential information that should
not be freely given out. Thus, in our work, we examine the problem of fully pri-
vate shortest path computation, that is, privacy should hold for both the
client’s location and the server’s routing information.

Navigation and Location Privacy

Suppose the road network has only n nodes. Then, we can construct an n-by-n
database of shortest paths

A Strawman Protocol

record r contains the
shortest path from s to t

st

Given the database of shortest paths, private shortest path computation re-
duces to symmetric private information retrieval (SPIR). However, the size of
the database grows quadratically in the number of nodes in the graph.

Subsection of road network for Washington D.C. taken from OpenStreetGraph. Visualization of preprocessed road network.

Observation 1: Nodes in road networks have low (constant) degree.

For each node in the network, we can associate each of its neighbors with a direction (unique index). Then,
we can replace the shortest path matrix with the next-hop routing matrix. To compute the shortest paths,
we iteratively retrieve the next-hop from the next-hop routing matrix.

Observation 2: Road networks have compressible geometric structure.

We preprocess the graph so that each node has at most four neighbors, and we associate a direction with
each neighbor. The index of each neighbor can be encoded with two bits: a component along the NW/SE
axis and a component along the NE/SW axis. We formulate an optimization problem to �nd a compact rep-
resentation of the next-hop routing matrices:

: direction
from on

shortest path

: row of
“source matrix”

: row of
“destination matrix”

Map Preprocessing and Compression

0

2

4

6

8

10

12

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000

Co
m

pr
es

sio
n

Fa
ct

or

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Nodes in Graph

Compression Time (s) Compression Factor

Average time needed to compress the next-hop routing matrix and the re-
sulting compression factor for networks constructed from subgraphs of the

road network of Los Angeles.

Candidate protocol to learn next-hop on shortest path:

1. Use SPIR to obtain row of and
2. Use SPIR to obtain row of and
3. Compute

and

While this protocol only requires SPIR on databases with n re-
cords, the rows and columns of A and B reveal additional infor-
mation about the server’s routing information.

Nonetheless, we have e�ectively reduced the shortest-path
problem to computing a thresholded inner product. We now de-
velop a method to privately evaluate this function.

A�ne encodings. To compute the inner product with-
out revealing A or B, we can use a garbled arithmetic circuit.
In fact, it su�ces to use the a�nization gadgets from [AIK14].

For example, suppose we wanted to garble an addition circuit

The encoding of a, b is given by for some random
 . Then, given only the encoding, one can only learn the
sum and nothing else.

In our protocol, rather than using SPIR to retrieve the actual
source and destination vectors, the client instead uses SPIR to
obtain the encodings of the vectors. This allows the client to
learn only the inner product and nothing more.

Garbled circuits. In Step 3 of our protocol, we only want to
reveal the sign, and not the actual value of the inner product.

To hide the inner product, we modify the arithmetic circuit to
instead compute a blinded inner product, that is, instead of
computing , we compute for random .

To complete the protocol execution, we construct a garbled
circuit for the following unblind-and-threshold functionality:

Here, the client provides as input the blinded inner product ,
and the server provides as input the blinding factors . Se-
curity of the garbled circuit ensures the client only learns the
thresholded value, and nothing else.

This yields a protocol secure against semi-honest clients.

A Private Navigation Protocol

City Number
of Nodes

Time per Round
(s)

Bandwidth
(KB)

San Francisco 1830 88.24
Washington D.C. 2490 90.00

Dallas 4993 9 95.02
Los Angeles 7010 22 100.54

Timing and bandwidth for each round of the online protocol (with protec-
tion against malicious clients).

To hide the length of the shortest path, we pad the number of rounds to the
maximum number needed to answer any shortest path query. For these road
networks, we require between 95 and 170 rounds.

Benchmarks

