Adaptively-Sound SNARGs for NP from

Indistinguishability Obfuscation

David Wu

based on joint works with Brent Waters

Succinct Non-Interactive Arguments (SNARGS)

NP relation R (with related language £)

common reference string (crs)

prover verifier

Completeness: Honest prover convinces honest verifier of true statements
V(x,w) € R : Pr|Verify(crs,x,m) = 1: m « Prove(crs,x,w)] =1

Succinctness: Proof is much shorter than sending NP witness
|| = poly(4,log|R]|)

Succinct Non-Interactive Arguments (SNARGS)

NP relation R (with related language £)

prover LZY verifier

CrS « Setup(l’l)
(x,)

—

Soundness: Efficient prover should not be able to convince verifier of a false statement

Notion should be adaptive: prover can choose which statement it proves after it sees the CRS

Succinct Non-Interactive Arguments (SNARGS)

NP relation R (with related language £)

x € {0,1}"
ey

CrS « Setup(l’l)

LZY verifier

prover

/A

Soundness: Efficient prover should not be able to convince verifier of a false statement

Non-adaptive soundness: relaxation where prover has to declare the statement before
seeing the CRS

Succinct Non-Interactive Arguments (SNARGS)

NP relation R (with related language £)

x € {0,1}"
ey

CrS « Setup(l’l)

prover verifier

I

Soundness: Efficient prover should not be able to convince verifier of a false statement

Non-adaptive soundness # adaptive soundness (via complexity leveraging)

Complexity leveraging: || = poly(4,n) Our goal: poly(4, log|R|)

SNARGs for NP

Constructions in idealized models

Random oracle model [Mic94, Valo8, BCS16, BBHR19, CMS19, COS20, CY21, ...]

Generic (or algebraic) group model [Gro16, GWC19, MBKM19, CHMMVW20, Lip24, DMS24, ...]

Constructions from knowledge assumptions
[Gro10, BCCT12, GGPR13, BCIOP13, BCPR14, BISW17, ACLMT22, CLM23, ...]

Non-adaptively-sound SNARG for NP from falsifiable assumptions

Sahai-Waters [sw14]: non-adaptively-sound SNARG for NP from indistinguishability
obfuscation and one-way functions

Jain-Lin-Sahai [JLs21, JLs22]: indistinguishability obfuscation from falsifiable assumptions

Adaptively-sound SNARGs for NP from falsifiable assumptions?

The Gentry-Wichs Separation

“Adaptively-sound SNARGs for NP cannot be reduced to R »
falsifiable assumptions in a black-box manner”

Does not rule out reductions that are able to decide the NP relation

Strategy: rely on sub-exponential hardness

 Adversary runningin 24° time succeeds with negligible advantage
 Suppose NP relation can be decided in time 2™° for some constant ¢ > 0
* Instantiate the scheme with security parameter 1 > n¢/¢

Reductions of i0 to falsifiable assumptions run in time 2(linput))

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so
reductions run in time 22UxI+ WD gnd the Gentry-Wichs separation does not apply

The Gentry-Wichs Separation

“Adaptively-sound SNARGs for NP cannot be reduced to 0K »

falsifiable assumptions in a black-box manner”

Challenge: The size of the proof cannot grow
Does not rule out reduqueraNEres IV

Strategy: rely on sub-ex , _ _
Can we offload the entire cost of complexity leveraging

W\ ISAOUNIOEEL (i.e., the use of sub-exponential hardness) to the CRS?
 Suppose NP relation can be decided in time or so
* Instantiate the scheme with security parameter 1 > n¢/¢

Reductions of i0 to falsifiable assumptions run in time 2(linput))

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so
reductions run in time 22UxI+ WD gnd the Gentry-Wichs separation does not apply

Recent Progress in Adaptive Soundness

[WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 10, sub-
exponentially-secure one-way functions, and re-randomizable one-way
functions (e.g., from discrete log / factoring)

[MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure (0, sub-exponentially-
secure one-way functions) is adaptively sound in the designated-verifier model

[WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure i, sub-
exponentially-secure one-way functions, and lossy functions (e.g., includes LWE)

[WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure i, and sub-
exponentially-secure one-way functions

This Talk

[WW24a]:

[MPV24]:

[WZ24]:

[WW24b]:

Adaptively-sound SNARGs for NP from sub-exponentially-secure 10, sub-
exponentially-secure one-way functions, and re-randomizable one-way
functions (e.g., from discrete log / factoring)

Sahai-Waters SNARG (from sub-exponentially-secure i, sub-exponentially-
secure one-way functions) is adaptively sound in the designated-verifier model

Adaptively-sound SNARGs for NP from sub-exponentially-secure 10, sub-
exponentially-secure one-way functions, and lossy functions (e.g., includes LWE)

Adaptively-sound SNARGs for NP from sub-exponentially-secure i, and sub-
exponentially-secure one-way functions

The Sahai-Waters SNARG

CRS contains two obfuscated programs

Prove(x,w):
o IfR(x,w) =1, output m = PRF(k, x)
 Otherwise, output L

Verify(x, m): Check f () = f(PRF(k, x)) instead
» If f(m) = f(PRF(k, x)), output 1 of T = PRF(k, x) to facilitate
* Otherwise, output 0 punctured programming proof

PRF(k, x) is a signature on the
statement (technically, a MAC)

R isan NP relation (fixed)

« PRFis a (puncturable) pseudorandom function
e fis a one-way function

* PRF key k hard-wired inside both programs

The Sahai-Waters SNARG

CRS contains two obfuscated programs

Prove(x,w):
. IfR(x,w) = 1, output m = PRE(k, x) Will rely on indistinguishability obfuscation

 Otherwise, output L

if CO = Cl, then lO(Co) ~ lO(Cl)
Verify(x, m):

Obfuscations of two functionally-equivalent
programs are computationally indistinguishable

e If f(m) = f(PRF(k, x)), output 1
 Otherwise, output O

R isan NP relation (fixed)

« PRFis a (puncturable) pseudorandom function
e fis a one-way function

* PRF key k hard-wired inside both programs

Non-Adaptive Soundness for Sahai-Waters

CRS contains two obfuscated programs Assume PRF is puncturable
)
Prove(x,w): /
o IfR(x,w) =1, output m = PRF(k, x) (J’
* Otherwise, output L)
PRF key k Punctured key k&)
Verify(x, m):
e If f(m) = f(PRF(k, x)), output 1
. Otherwise, output 0 Correctness: Vx # x*: PRF(k,x) = PRF(k®*), x)

Security: PRF(k, x*) is pseudorandom given k*)

R isan NP relation (fixed)

« PRFis a (puncturable) pseudorandom function
e fis a one-way function

* PRF key k hard-wired inside both programs

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement x™ at the beginning

Prove(x,w):
If R(x,w) = 1, output m = PRF(k, x)
Otherwise, output L

Verify(x, m):
If f(m) = f(PRF(k, x)), output 1
Otherwise, output 0

Real programs

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement x™ at the beginning

Relies on the factthat x™ & L

Prove(x,w):
i0 security If R(x,w) =1, output ™ = PRF(k(x*),x)
Otherwise, output L

I Verify(x,):

If x =x"and f(r) = f(y™), output 1

If x # x* and f () = f(PRF(k(x*),x), output 1
Otherwise, output 0

Replace k with punctured key k) and

Real programs hard-code y* = PRF(k, x*)

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement x™ at the beginning

Relies on the factthat x™ & L

Prove(x, w):
If R(x,w) =1, output m = PRF(k(x*),x) .
Otherwise, output L PRF security

Verify(x,): l

If x =x"and f(r) = f(y"), output 1

If x # x* and f() = f(PRF(k(x*),x), output 1
Otherwise, output 0

Sample yv* « {0,1}* Replace k with punctured key k) and
hard-code y* = PRF(k, x*)

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement x™ at the beginning

Prove(x,w):
If R(x,w) =1, output m = PRF(k(x*),x)
Otherwise, output L

To win, adversary must produce m such that
f(r) = f(y*) where y* is uniform!

Verify(x, m):
If x = x* and f(r) = f(y*), output 1 Such an adversary breaks security

If x # x* and f (1) = f(PRF(k*), x), output 1 of the one-way function!
Otherwise, output 0

Sample y* « {0,1}*

Understanding Sahai-Waters

CRS contains two obfuscated programs

Prove(x, w): Key properties:
* IfR(x,w) = 1, output m = PRF(k, x) * Proof in Sahai-Waters is a preimage of a
* Otherwise, output L one-way function

* Non-adaptive adversary tells us where the
Verify(x, m): adversary will invert (i.e., the point x*)

e If f(m) = f(PRF(k, x)), output 1 * Reduction embeds a fresh OWF challenge
* Otherwise, output 0 at x™, so successful adversary breaks OWF

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function

challenge on all inputs, so no matter where
Prove(x,w): adversary inverts, reduction is successful
o IfR(x,w) =1, output m = PRF(k, x)

* Otherwise, output L

Verify(x, m):
e If f(m) = f(PRF(k, x)), output 1
 Otherwise, output O

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Skipping to the End...

Sahai-Waters (non-adaptively sound) This talk (adaptively sound)

. Prove(x,w):
Prove(x, w): . IfR(x,w) = 0, output L

¢ If R(X, W) — 1, OUtpUt T = PRF(k, X) o Compute b « PRF(kSEl' x)
e Otherwise, output L » Output w = (b, PRF(kp, X))

Verify(x, m):

Verify(x, T): * Parserm = (b,y)

: Iff(TL') — f(PRF(k' x))' output 1 * If y = PRF(ky, x), output 1
 Otherwise, output O « Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Skipping to the End...

Sahai-Waters (non-adaptively sound) This talk (adaptively sound)

. Prove(x,w):
Prove(x,w): L R(x,w) = 0, output L
e If R(x,w) =1, output m = PRFL. ' . Compute b < PRF(kge, x)
* Otherwise, output L Not a big edit put = (b, PRF(ky, x))
distance!

Ay (X, TT):

Verify(x, m): parse = (b, y)

° Iff(ﬂ) =S f(PRF(k, X)), Output 1 ° |I':y — PRF(kb,x), Output 1
 Otherwise, output O « Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function

challenge on all inputs, so no matter where
Prove(x,w): adversary inverts, reduction is successful
o IfR(x,w) =1, output m = PRF(k, x)

* Otherwise, output L

Verify(x, 7): Attempt 1: Use a single challenge y* « {0,1}*

e If f(m) = f(PRF(k, x)), output 1
 Otherwise, output O

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function

challenge on all inputs, so no matter where

. : adversary inverts, reduction is successful
Ignore for now!

Verify(x, 7): Attempt 1: Use a single challenge y* « {0,1}*

* If f(m) = f(y"), output 1 Not indistinguishable from real verification
* Otherwise, output 0 program (where there are many distinct targets)

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function

challenge on all inputs, so no matter where

adversary inverts, reduction is successful

Ignore for now!
Rerandomizable one-way function:

| Rerand(y*;r) —» y
Verify(x,): « Distribution of ¥ identical to fresh challenge

» Iff(m) = f(y"), output 1 * Solution to ¥ implies solution for y
 Otherwise, output O

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful

Ignore for now!
Rerandomizable one-way function:

| Rerand(y*;r) —» y
Verify(x,): « Distribution of ¥ identical to fresh challenge

» Iff(m) = f(y"), output 1 * Solution to ¥ implies solution for y*
 Otherwise, output O

Construction from discrete log:
* Discrete log problem: given y* = g*, find x

 Rerand(y*;r): Outputy* - g"
 Given zwhere g? =y*-g" andr, recoverx =z —r

Suffices to have perfect random self-reduction

Adaptive SNARG Blueprint

CRS contains two obfuscated programs Our approach: embed a one-way function

challenge on all inputs, so no matter where

. : adversary inverts, reduction is successful
Ignore for now!

Attempt 2: Use a different re-randomized

challenge on every input
Verify(x,):

if () = f (Rerand(y*; PRE(k, x))), output 1 Proof on any statement yields a solution to f

Otherwise, output 0

Problem: how does the honest prover
algorithm construct proofs?

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

The Two-Challenge Approach

CRS contains two obfuscated programs

Prove(x, w):

If R(x,w) = 0, output L
Compute b « PRF (kg X)
Output T = (b, PRF(kb,x))

Verify(x, m):
Parsew = (b, y)

If f(y) = f(PRF(kb,x)), output 1
Otherwise, output 0

Our approach: embed a one-way function
challenge on all inputs, so no matter where
adversary inverts, reduction is successful

Key idea: Every statement will be associated
with two challenges and prover program will
output solution to one of them

Selector PRF(kge},-) chooses bit b € {0,1}

Both (O, PRF(kO,x)) and (1, PRF(kl,x)) are
valid proofs, and prover program outputs one
of them (determined by selector PRF)

Proving Adaptive Security

PRF(ko, ;)
X1 < PRF(k;, x;)

PRF(ko, x2)

X2 <
PRF(kq, x,)

PRF(ky, xy)
XN <

PRF(ky, xy)

Statements

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary wins if it outputs x, m = (b, y) where f(y) = f(PRF(kb,x))

Proving Adaptive Security

f(PRF(ko;xﬂ)

X <
1 f(PRF(ky, x1))
f(PRF(kg, x5))

X2 <

f(PRF(ky,x;))

f(PRF(kg, xy))
XN <

f(PRF(kq, xp))

Verification targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary wins if it outputs x, m = (b, y) where f(y) = f(PRF(kb,x))
Take any false statement x & L
By PRF security, the value of PRF (kg x) is pseudorandom

If adversary produces a proof m = (b, y) on x, then
Pr[b = PRF (kg x)] = 1/2
Otherwise, adversary distinguishes PRF(kge, X)

Proving Adaptive Security

f(PRF(kg, xy))
XN <

f(PRF(kq, xp))

Verification targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary wins if it outputs x, m = (b, y) where f(y) = f PRF(kb,x))

Consider adaptive soundness game where adversary
wins only when the adversary outputs a statement x
and a proof where m = (b, y) and b # PRF(k¢,, x)

Only decreases adversary’s advantage by factor of 2

Step 1: Only Accept an Off-Path Proof

X
1N f(PRF(ky, 7))

PRF (k,
xz /f((o, x2))

X / f(PRF(ko:xN))
N

Verification targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

Step 1: Only Accept an Off-Path Proof

Formally:
Game,: Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1

Game; : Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1 and b # F (ks x)
Claim: Pr[Game,; = 1] > % - Pr[Gamey = 1] — negl(4)

Define event E; to be the event that prover chooses statement i € {0,1}"

Pr[Game; = 1] = z Pr[Game; = 1 A E{] Pr[Game, = 1] = z Pr[Gamey, = 1 A E{]
ie{0,1}" ie{0,1}m

Prove(x, w): Verify(x,):
 IfR(x,w) =0, output L * Parsem = (b,y)

 Compute b « PRF (kg X) e If f(y) = f(PRF(kb,x)), output 1
e OQOutputm = (b, PRF(kb,x)) * Otherwise, output 0

Step 1: Only Accept an Off-Path Proof

Formally:
Game,: Prover wins if it outputs x, 7 = (b, y) where x € L and Verify(x,m) = 1

Game; : Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1 and b # F (ks x)
Claim: Pr[Game,; = 1] > % - Pr[Gamey = 1] — negl(4)

Define event E; to be the event that prover chooses statement i € {0,1}"

Pr[Game; = 1] = z Pr[Game; = 1 A E{] Pr[Game, = 1] = Z Pr[Gamey, = 1 A E{]
ie{0,1}" ie{0,1}m

Suffices to show that for all i € {0,1}":

1
Pr[Game; = 1 AE;] =

1
5" Pr[Gamey, = 1 AE;] — o negl(1)

Will require sub-exponential hardness!

Step 1: Only Accept an Off-Path Proof

Formally:
Game,: Prover wins if it outputs x, 7 = (b, y) where x € L and Verify(x,m) = 1

Game; : Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1 and b # F (ks x)
Claim: Pr[Game,; = 1] > % - Pr[Gamey = 1] — negl(4)

Define event E; to be the event that prover chooses statement i € {0,1}"

Pr[Game; = 1] = z Pr[Game; = 1 A E{] Pr[Game, = 1] = Z Pr[Gamey, = 1 A E{]
ie{0,1}" ie{0,1}m

Suffices to show that for all i € {0,1}":

1 1
Pr[Game; = 1 AE;] > o Pr[Gamey, = 1 AE;] — on negl(1)

Observe: If i € L, then Pr[Game; = 1 AE;] = 0 = Pr[Gamey = 1 A E;]

Step 1: Only Accept an Off-Path Proof

Formally:
Game,: Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1

Game; : Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1 and b # F (ks x)

Claim:foralli & L: Pr[Game; = 1 AE;] = % - Pr[Game, = 1 A E;] — zin - negl(4)

Hyb,; , fori ¢ £ Pr[Hyb; , = 1| = Pr[Game, = 1 A E;]

Prove(x, w):
« IfR(x,w) =0, output L

 Compute b « PRF(kg, x)
e Qutputm = (b, PRF(kb,x))

Prover wins if it outputs x, b, y where x € L and Verify(x,m) = 1and x = i

Step 1: Only Accept an Off-Path Proof

Formally:
Game,: Prover wins if it outputs x, 7 = (b, y) where x € L and Verify(x,m) = 1

Game; : Prover wins if it outputs x,m = (b, y) where x € L and Verify(x,m) = 1 and b # F (ks x)
Claim:foralli & L: Pr[Game; = 1 AE;] = % - Pr[Game, = 1 A E;] — zin - negl(4)

Hyb; o fori & L Hyb;, fori & L

Prove(x, w):
If R(x,w) = 0orx =i, output L

Compute b < PRF (k(i) x)

sel’

Output w = (b, PRF(k, x))

Prover wins if it outputs x, b, y where x € L and Verify(x,m) = 1and x =i

Step 1: Only Accept an Off-Path Proof

Pr[HybLO = 1] = Pr|Gamey, = 1 A E;]
Pr[Hybi’l = 1] > Pr[HybLO = 1] — 27" - negl(1) (sub-exponential security of i0)
Hyb; o fori & L Hyb;, fori & L

Prove(x, w):
If R(x,w) = 0orx =i, output L

Compute b < PRF (k(i) x)

sel’

Output w = (b, PRF(k, x))

Prover wins if it outputs x, b, y where x € L and Verify(x,m) = 1and x =i

Step 1: Only Accept an Off-Path Proof

Pr :Hybl-,(, = 1: = Pr|Gamey, = 1 A E;]
Pr :Hybi’l = 1: > Pr[HybLO = 1] — 27" - negl(1) (sub-exponential security of i0)
Pr[Hyb;, = 1] = 2- Pr[Hyb;; = 1]

Hyb;, fori & L Hyb;, fori & L

Prove(x, w):
If R(x,w) = 0orx =i, output L

Compute b < PRF (k(i) x)

sel’

Output w = (b, PRF(kb,x))

b' « {0,1}

Prover wins if it outputs x, b, y where x € £ and Verify(x,m) =1landx =iand b # b’

Step 1: Only Accept an Off-Path Proof

* Pr[Hyb;, = 1] = Pr[Game, = 1 A E;]

« Pr iHybl-’l = 1 > Pr[HybLO = 1] — 27" - negl(1) (sub-exponential security of i0)
+ Pr[Hyb;, = 1] =2 - Pr[Hyb;; = 1]

* Pr|Hyb;; = 1] = Pr[Hyb;, = 1] — 27" - negl(1) (sub-exponential security of PRF)
* Pr|Hyb;3 = 1| = Pr[Game; = 1 A E;]

Hyb;, fori & L Hyb; 3 fori & L

Prove(x, w):

« IfR(x,w) =0o0rx =i, output L
e Compute b < PRF (kg?l,x)

 OQutputm = (b, PRF(kb,x))

Prover wins if it outputs x, b, y where x € L and Verify(x,m) = 1andx =iand b + PRF(k.., 1)

Step 1: Only Accept an Off-Path Proof

* Pr[Hyb;, = 1] = Pr[Game, = 1 A E;]

« Pr iHybl-’l = 1 > Pr[HybLO = 1] — 27" - negl(1) (sub-exponential security of i0)
+ Pr[Hyb;, = 1] =2 - Pr[Hyb;; = 1]

* Pr|Hyb;; = 1] = Pr[Hyb;, = 1] — 27" - negl(1) (sub-exponential security of PRF)
* Pr|Hyb;3 = 1| = Pr[Game; = 1 A E;]

Formally:

Game,: Prover wins if it outputs x, m = (b, y) where x € £ and Verify(x,m) = 1

Game;: Prover wins if it outputs x,m = (b, y) where x & L and Verify(x,m) = 1 and b # F(k.., x)

Claim: foralli ¢ £: Pr[Game; = 1 AE;] > % - Pr[Gamey = 1 AE;] — zin -negl(1)

Therefore: Pr[Game, = 1] > % - Pr|Game, = 1] — negl(1)

Step 1: Only Accept an Off-Path Proof

X
1N f(PRF(ky, 7))

PRF (k,
xz /f((o, x2))

X / f(PRF(ko:xN))
N

Verification targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

Observation: Prover program never computes PRF(k;, x)

Value is pseudorandom!

Step 2: Change the Off-Path Targets

X
1N f(PRF(ky, 7))

PRF (k,
xz /f((o, x2))

X / f(PRF(ko:xN))
N

Verification targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove(x,w):
 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

Observation: Prover program never computes PRF(k;, x)

Switch “off-path” verification targets to be

f (PRF (ky, x)) ~ Rerand(y*; PRF(ky,, x))

Step 2: Change the Off-Path Targets

. _ on .
Formally argued using N = 2% hybrids Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) PI‘OVG(X, W)I
 IfR(x,w) =0, output L
PRF(kg, x5) ’ !
X5 ~ A 0:%2)) * Compute b « PRF (kg x)

e Qutputm = (b, PRF(kb,x))

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

PRF(k,, .
X Pt f (PRF(ko, xn)) Observation: Prover program never computes PRF(k,, x)
N

Switch “off-path” verification targets to be

Verification targets f(PRE(kp,)) ~ Rerand(y"; PRF (k, x))

Step 2: Change the Off-Path Targets

. _ on .
Formally argued using N = 2% hybrids Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) Prove(x, W)I

7 Rerand(y*; PRF(kg, x,)) * IfR(x,w) =0, output L

X9 * Compute b « PRF(kgq, x)
e Qutputm = (b, PRF(kb,x))
Adversary only wins if it outputs x, b, y where
f) = f(PRF(ky,x)) and b # PRF(kgey, x)
x - f (PR Cko, x) Observation: Prover program never computes PRF(k;, x)
N

Switch “off-path” verification targets to be

Verification targets f(PRE(kp,)) ~ Rerand(y"; PRF (k, x))

Step 2: Change the Off-Path Targets

. _ on .
Formally argued using N = 2% hybrids Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) Prove(x, W)I

7 Rerand(y*; PRF(kg, x,)) * IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

X2

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

X Pl Rerand(y*; PRF(ko, xy))
N

Observation: Prover program never computes PRF(k;, x)

Switch “off-path” verification targets to be

Verification targets f(PRE(kp,)) ~ Rerand(y"; PRF (k, x))

Step 2: Change the Off-Path Targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) Prove(x, W)I

7 Rerand(y*; PRF(kg, x,)) * IfR(x,w) =0, output L

X9 Compute b « PRF(kgg, x)
e Qutputm = (b, PRF(kb,x))
Verify(x, m):
* Parse = (b, y)
/ Rerand(y*; PRF(kg, xy)) * Output 1 if
XN * b = PRF(kse,) and f(y) = f(PRF(ky, x))

* b # PRF(kge;, x) and f(y) = f (Rerand(Y*i PRF(kb'x)))

e Otherwise, output 0

Verification targets
& y* is a random instance for the OWF

Step 2: Change the Off-Path Targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) Prove(x, W)I

7 Rerand(y*; PRF(kg, x,)) * IfR(x,w) =0, output L

X» * Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))
Adversary only wins if it outputs x, b, y where
f() = f(PRE(ky, x)) and b # PRF (kgey, X)
X / Rerand(y*; PRF(kg, xy)) ‘
N

Adversary only wins if it outputs x, b, y where

Verification targets f)=f1 (Rerand(y*; PRF(kb,x))) and b # PRF (ke x)

Step 2: Change the Off-Path Targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

xl \ Rerand(y*; PRF(kq, x,)) Prove(x, W)I

 IfR(x,w) =0, output L

* Compute b « PRF (kg x)
e Qutputm = (b, PRF(kb,x))

R d(y™*; PRF(k,,
X, (¥°; PRE(ko, X))

Adversary only wins if it outputs x, b, y where
f(y) = f(PRF(ky,x)) and b # PRF(kgj, x)

X Pl Rerand(y*; PRF(ko, xy))
N

By the rerandomization property, any such

y yields a preimage of the challenge y*

where

Verification targets f)=f1 (Rerand(y*; PRF(kb,x))) and b # PRF (ke x)

Step 2: Change the Off-Path Targets

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 \ Rerand(y*; PRF(kq, x,)) PI‘OVG(X, W)I

7 Rerand(y*; PRF(kg, x,)) * IfR(x,w) =0, output L

X2 « Compute b « PRF(kg.p, x)
o OUtpUt T = (b, PRF(kb, X))
] Final proof is a bit and a single preimage of the OWF:
XN / Rerand()’ ;PRF(ko,xN)) poly(4) bits, independent of n

CRS size is poly(A1,n) — necessary to absorb the
exponential security loss incurred by the N = 2™ hybrids

Verification targets

Avoiding Rerandomization

Previous approach needed the OWF to be statistically rerandomizable
Rerandomizability seems to be an algebraic property (not known how to build from iO and OWFs)
Waters-Zhandry [wz24]: Can relax rerandomizable PRF to a lossy function

Lossy functions also not known from iO and OWFs

Can we get adaptive soundness just from iO and OWFs?

Avoiding Rerandomization

X1 X
~ f(PRECky, x1)) What if we just planted 1 Rerand(y”; PRF (ky, 1))

f(PRF(ko, x3)) the same challenge Rerand(y*; PRF(k,,
xz / 0, X2 R xz / eran (y (ko XZ))
o f(PREGko,) Rerand(y"; PRF (ko, x))
XN XN <

Verifier program checks if Verifier program checks if

f») = f(PRF(kp,x)) f) =f (Rerand(y* ;PRF(kb,x)))

Avoiding Rerandomization

X
1\ f(PRF(ky,x,)) X1 .)

What if we just planted
the same challenge

f(PRF(kq, x2)))
xz ~ v everywhere? xZ ~ 1o

Can no longer argue
indistinguishability

R) o)
XN XN ~

Verifier program checks if Verifier program checks if

f(y) = f(PRF(kp, x)) fO) ="

Avoiding Rerandomization

X
1\ f(PRF(ky,x,)) X1 . ()

What if we just planted
the same challenge

f(PRF(kq, x2)))
xz ~ v everywhere? xZ ~ 1o

. Can no longer argue .
indistinguishability
7 J(PRECko,xy))

xN Need a different way to embed f(y*)

Before: PRF outputs the OWF challenge so we need a different

challenge for each statement

Verifier program checks if
fly) = f(PRF(kb, x)) New approach: use PRF to blind a single OWF challenge

Avoiding Rerandomization

y — PRF(kO'xl)
*1 < y = PRE(y, %)

= PRF(ky, x7)

y
X7 <
y — PRF(kliXZ)

y = PRF(ky, xy)
XN <
y

= PRF(kq, xy)

y is a valid proof for x; if it

corresponds to one of the two paths

consider adversary
successful only if it provides
“off-path” target

X1

X2

N\) = PRRGk, 1)

y = PRF(kg, x;)

~

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
X1 y = PRE(ky, x,) y @ PRF(kp,x) @ y* =y"

Yy = PRF(kl, xl)

XZ/

N / y = PRF(kq,x4)
N

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
xl \ y @ PRF(ky,x) ®y*=vy* y @ PRF(kp,x;)) @ y" =y"

/ y @ PRF(ko, x,) ®y* =y"

X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

7 VO PRE(ko,xy) By =y’ By punctured PRF security:
XN PRF(ky, x) @ y* = PRF(k;, x)

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
X1\ y @ PRF(ky,x,) = " y @ PRF(kp, x;) @ y* =y~

/ y @ PRF(ko, x,) ®y* =y"

X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

7 VO PRE(ko,xy) By =y’ By punctured PRF security:
XN PRF(ky, x) @ y* = PRF(k;, x)

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
X1\ y @ PRF(ky,x,) = " y @ PRF(kp, x;) @ y* =y~

/ y @ PRF(kg,x;) = y*

X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

7 VO PRE(ko,xy) By =y’ By punctured PRF security:
XN PRF(ky, x) @ y* = PRF(k;, x)

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
X1\ y @ PRF(ky,x,) = " y @ PRF(kp, x;) @ y* =y~

/ y @ PRF(kg,x;) = y*

X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

7 VO PRE(ko) =y By punctured PRF security:
XN PRF(ky, x) @ y* = PRF(k;, x)

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
X1\ y @ PRF(ky,x,) = " y @ PRF(kp, x;) @ y* =y~

/ y @ PRF(kg,x;) = y*

X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

7 VO PRE(ko) =y By punctured PRF security:
XN PRF(ky, x) @ y* = PRF(k;, x)

Let f be an injective OWF
Thenz =2z f(z) = f(z)

“off-path” verification targets

Avoiding Rerandomization

First, rewrite y = PRF(k,, x;) as
x * ok
1N f(y ® PRE(ky, %)) = £ (") y @ PRF(kp,x;) @y" =y

/ f(y S5 PRF(ko»xz)) =f")
X2 Adversary only wins if it outputs x, b, y where

y @ PRF(kp,x) @ y* = y* and b # PRF(kse, x)

Prover program never computes PRF(k;, x)

Pl f(y @ PRF(ko, xy)) = f(y") By punctured PRF security:
XN PRF(k;, x) @ y* ~ PRF(kj, x)

Let f be an injective OWF
Thenz =2z f(z) = f(z)

“off-path” verification targets

Avoiding Rerandomization

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

X
1 ™\ f(y @ PRF(ky,x1)) = f(y*) Prove(x,w):

X, _ f(y @ PRE(ko, %)) = f(y") S Gt — O, e
e Compute b « PRF(kge, x)
» Outputw = (b, PRF(kp, X))

Adversary only wins if it outputs x, b, y where

7 f(y @® PRF(ko, xy)) = f(¥*) f(y @ PRF(ky,x)) = f(y*) and b # PRF(kgej, x)

XN

Adversary only wins if it outputs an encryption of

a preimage to f(y*); reduction only needs a
single instance f(y") of the OWF!

“off-path” verification targets

Summary

CRS contains two obfuscated programs

Prove(x, w):

If R(x,w) = 0, output L
Compute b « PRF (kg X)
Output T = (b, PRF(kb,x))

Verify(x, m):

Parsew = (b, y)

If y = PRF(k,, x), output 1
Otherwise, output 0

Scheme relies on sub-exponential secure
10 and sub-exponential secure OWFs

Construction as described relies on
injective one-way function

[BPW16]: iO + OWFs = (keyed) injective OWFs

Alternatively, observe that injective one-way function
only shows up in the security proof

Suffices to build injective OWF with an inefficient
sampler (implied by vanilla OWFs)

[see paper for details]

Summary

This work: Adaptively-sound SNARGs for NP from sub-exponentially-secure 10 and sub-
exponentially-secure one-way functions

Large CRS (|crs| = poly(4, |R|)), short proofs (|| = poly(1))
Reduction to falsifiable assumptions runs in time 2Q(x|+wl)

Upcoming work [pww24]: fully succinct SNARGs for batch NP from sub-exponentially-secure
10, sub-exponentially secure one-way functions, and rerandomizable one-way functions

Open problems:
e Adaptively-sound SNARGs for NP without iO (e.g., from LWE)?

* Non-adaptively-sound SNARGs for NP from a polynomial-time falsifiable assumption?
(or extend Gentry-Wichs to rule this out)

Thank you!

	Slide 1: Adaptively-Sound SNARGs for NP from Indistinguishability Obfuscation
	Slide 2: Succinct Non-Interactive Arguments (SNARGs)
	Slide 3: Succinct Non-Interactive Arguments (SNARGs)
	Slide 4: Succinct Non-Interactive Arguments (SNARGs)
	Slide 5: Succinct Non-Interactive Arguments (SNARGs)
	Slide 6: SNARGs for NP
	Slide 7: The Gentry-Wichs Separation
	Slide 8: The Gentry-Wichs Separation
	Slide 9: Recent Progress in Adaptive Soundness
	Slide 10: This Talk
	Slide 11: The Sahai-Waters SNARG
	Slide 12: The Sahai-Waters SNARG
	Slide 13: Non-Adaptive Soundness for Sahai-Waters
	Slide 14: Non-Adaptive Soundness for Sahai-Waters
	Slide 15: Non-Adaptive Soundness for Sahai-Waters
	Slide 16: Non-Adaptive Soundness for Sahai-Waters
	Slide 17: Non-Adaptive Soundness for Sahai-Waters
	Slide 18: Understanding Sahai-Waters
	Slide 19: Adaptive SNARG Blueprint
	Slide 20: Skipping to the End…
	Slide 21: Skipping to the End…
	Slide 22: Adaptive SNARG Blueprint
	Slide 23: Adaptive SNARG Blueprint
	Slide 24: Adaptive SNARG Blueprint
	Slide 25: Adaptive SNARG Blueprint
	Slide 26: Adaptive SNARG Blueprint
	Slide 27: The Two-Challenge Approach
	Slide 28: Proving Adaptive Security
	Slide 29: Proving Adaptive Security
	Slide 30: Proving Adaptive Security
	Slide 31: Step 1: Only Accept an Off-Path Proof
	Slide 32: Step 1: Only Accept an Off-Path Proof
	Slide 33: Step 1: Only Accept an Off-Path Proof
	Slide 34: Step 1: Only Accept an Off-Path Proof
	Slide 35: Step 1: Only Accept an Off-Path Proof
	Slide 36: Step 1: Only Accept an Off-Path Proof
	Slide 37: Step 1: Only Accept an Off-Path Proof
	Slide 38: Step 1: Only Accept an Off-Path Proof
	Slide 39: Step 1: Only Accept an Off-Path Proof
	Slide 40: Step 1: Only Accept an Off-Path Proof
	Slide 41: Step 1: Only Accept an Off-Path Proof
	Slide 42: Step 2: Change the Off-Path Targets
	Slide 43: Step 2: Change the Off-Path Targets
	Slide 44: Step 2: Change the Off-Path Targets
	Slide 45: Step 2: Change the Off-Path Targets
	Slide 46: Step 2: Change the Off-Path Targets
	Slide 47: Step 2: Change the Off-Path Targets
	Slide 48: Step 2: Change the Off-Path Targets
	Slide 49: Step 2: Change the Off-Path Targets
	Slide 50: Avoiding Rerandomization
	Slide 51: Avoiding Rerandomization
	Slide 52: Avoiding Rerandomization
	Slide 53: Avoiding Rerandomization
	Slide 54: Avoiding Rerandomization
	Slide 55: Avoiding Rerandomization
	Slide 56: Avoiding Rerandomization
	Slide 57: Avoiding Rerandomization
	Slide 58: Avoiding Rerandomization
	Slide 59: Avoiding Rerandomization
	Slide 60: Avoiding Rerandomization
	Slide 61: Avoiding Rerandomization
	Slide 62: Avoiding Rerandomization
	Slide 63: Summary
	Slide 64: Summary

