Batch Arguments for NP

from Standard Bilinear Group Assumptions

Brent Waters and David Wu

Batch Arguments for NP

Boolean circuit satisfiability
L-={x€{0,1}*C(x,w) =1 for some w}

prover CT 42N verifier

prover has m statements and
wants to convince verifier that
x; € L foralli € [m]

Batch Arguments for NP

Boolean circuit satisfiability
L-={x€{0,1}*C(x,w) =1 for some w}

prover CT 42N verifier

T = (Wq, ., W)
——————————————————————————————

Naive solution: send witnesses
Can the proof size be Wy, ..., Wy, and verifier checks

sublinear in the number Al GYWA IS VY AR Y
of instances m?

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability
L-={x€{0,1}*C(x,w) =1 for some w}

prover CT 42N verifier

Proof size: || = poly(4,logm, |C]|)

A : security Proof size can scale with circuit size

parameter (not a SNARG for NP)

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability
L-={x€{0,1}*C(x,w) =1 for some w}

prover CT 42N verifier

In general setting, verifier

Proof size: || = poly(4,logm, |C]|)

needs to read statements

Verification time: running time of verifier is poly(4, m, n) + poly(4,logm, |C|)

Batch Arguments for NP (BARGs)

This work: New constructions of non-interactive batch arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGS)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

BARGs from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with /m size proofs) [ClI21a]
Learning with errors (LWE) [CJJ21Db]

BARGs from pairing-based assumptions
Non-standard, but falsifiable g-type assumption on bilinear groups [KPY19]

This Work

New constructions of non-interactive batch arguments for NP

BARGs for NP from standard assumptions over bilinear maps
k-Linear assumption (for any k = 1) in prime-order bilinear groups
Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs
Direct construction a la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions
Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

o Prover commits to each vector of wire assignments

Requirement: |g;| = poly(4,logm)

Our construction: |o;| = poly(4)

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:
Input validity

Commitments to the statement wires are
correctly computed

0 Prover commits to each vector of wire assignments Commitments in our scheme are

deterministic, so verifier can directly check
w; = Wt Wim B 2 O

Requirement: |g;| = poly(4,logm)

Our construction: |o;| = poly(4)

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:
Input validity

Wire validity

Commitment for each wire is a commitment
o Prover commits to each vector of wire a55|gnments to a 0/1 vector

Requirement: |g;| = poly(4,logm)

Our construction: |o;| = poly(4)

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:
Input validity

Wire validity

. . . Gate validity
o Prover commits to each vector of wire assignments For each gate, commitment to output wires is

wW;: = w W ‘ - consistent with gate operation and
L i & i ‘ commitment to input wires

Requirement: |g;| = poly(4,logm)

Our construction: |o;| = poly(4)

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:
Input validity

Wire validity

. . . Gate validity
0 Prover commits to each vector of wire assignments -
Output validity

w; = - ‘ Commitment to output wire is a commitment

to the all-ones vector
Requirement: |g;| = poly(4,logm)

Our construction: |o;| = poly(4)

Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

Let G be a group of order N = pq (composite order)
Let G, < G be the subgroup of order p and let g,, be a generator of G,

crs: sample aq, ..., a,,, < Zy
a a
output A; « g,,°, ..., Ay < g™

commitment to x = (x4, ..., X,,) € {0,1}™:

Oy = A’lclA’ZC2 .« AZ™ (subset product of the 4;’s)

m

Proving Relations on Committed Values

common reference string

Ay = gffl
A; = gffz
Ap = ggm

commitment to (xq, ..., Xp;;)
Oy = AJ'A - AT

— a1x1+"'+amxm
p

Wire validity

Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on G:
e(g”*, g”) =e(g,9)™”

— a1 xX1+--+amx a1 x1+---+amx
e(o‘x’ O'x) e e(gpl 1 m m,gpl 1 m m)

(a1x1+ - Amxm)?

= e(9p 9p)
Consider the exponent:

(a1x1 + -+ amxm)z — Z al-zxiz + 2 al-ajxl-xj

i€[m] i#j

Proving Relations on Committed Values

common reference string

Ay = gffl
A; = gffz
Ap = ggm

commitment to (xq, ..., Xp;;)
Oy = AJ'A - AT

— a1x1+"'+amxm
p

Wire validity

Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on G:
e(g”*, g”) =e(g,9)™”

— a1 xX1+--+amx a1 x1+---+amx
e(o‘x’ O'x) e e(gpl 1 m m,gpl 1 m m)

(a1x1+ - Amxm)?

- e(gp,gp)

Consider the exponent:

(a1 + -+ Ay X)% = Z alfx? + Z ;X X;
i€[m] i#j cross-terms

Proving Relations on Committed Values

common reference string

Ay = gffl
A; = g{fz
Ap = ggm

commitment to (x¢, ..., X;,)

Oy = AJ'A - AT

— a1x1+---+amxm
p
If x? = x; for all i, then
these expressions are equal
up to cross-terms

If x, ..., X € {0,1}, then x/ = x; and

E 2.2 __ E 2
al‘xi— aixi

i€[m] i€[m]

let A = A{A, - A, = ggie[m] a;

Next:

(1x1 + -+ apxp)(a; + -+ a,) = Z a’x; + Z a;ax;

i€[m] I#]

Consider the exponent:

(a1 + -+ Ay X)% = Z alxf + Z ;X X;
i€[m] i#j cross-terms

Proving Relations on Committed Values

common reference string

Aq =g§1 ' ' a;a
a, Vl:/:]IBij:gp J
AZ =gp

Approach: augment

A = ggm CRS with cross-terms

A — a1+"'+am
p

commitment to (xq, ..., Xp;;)

Oy = AJ'A - AT

— a1x1+---+amxm
p
If x? = x; for all i, then
these expressions are equal
up to cross-terms

If x, ..., X € {0,1}, then x/ = x; and

E 2.2 __ E 2
aixi— aixi

i€[m] i€[m]

Lic[m] ¥i

LetA — AlAZ "'Am — gp

Next:

(1x1 + -+ apxp)(a; + -+ a,) = Z a’x; + Z a;ax;

i€[m]

L#]

Same expressions modulo
cross terms!

(a1 + -+ Ay X)% = Z alxf + Z ;X X;

Consider the exponent:

i€[m]

L#]

cross-terms

Proving Relations on Committed Values

common reference string Prover now computes cross terms
Al — ga1 P xi—xixj Ziij OCiOCinXj—OCiO(in
p . . . [2dd) — L. —
A = ay Vl:/:].Bij—gp V Bl,] gp
2 p A o L#]
] CRF’Spr‘?:;C;s:Sgg‘:r:ts Verifier now checks:
_ m Wi -
Am — gp B(O'x, O-x) — e(o-xl A)e(gp’ V)
g tetagy
A= gp
commitment to (x4, ..., X;) Next:
— AX1 4X2 x
O-x — Al AZ ..-Amm (alxl _|_ oo _|_ amxm)(al -I— coe -|— am) = z alle -I— Z ala]‘xl
— gglx1+---+amxm lE[m] L.‘,t]
Same expressions modulo
If xiz = x; for all i, then Consider the exponent: cross terms!
these expressions are equal (a1 + -+ Ay X)% = Z aixi + Z a;X;X;

up to cross-terms i€[m] i#j cross-terms

Proving Relations on Committed Values

common reference string Prover now computes cross terms
Al — ga1 P xi—xixj Ziij aiocjxl-xj—ociocjxi
p - .. _ L~] — o —
A = ay Vl:/:].Bij—gp V Bl,] gp
2= Jp) i#j
) ?a%prqfﬁc}jfsgmts Verifier now checks:
— m WI -
Am = gp e(oy,0y) = e(oy,A)e(g,, V)
A = gt tam
— dJp
: o~ 2 21
commitment to (x4, ..., X;,) iic[m] 00 Xi iz CiQjXiX]
(om e(O-xr O-x) — e(gp’ gp)"""""-. ------ 2
Oy = A’l‘lA’ZCZ ...A;m II if x; = x|
o 5
__a X+t amX, » apxit),] KiXjXi
Ip e(o,,A) = e(Ip» gp).__l_e_ﬁ?ﬂ___‘____: =)

If x? = x; for all i, then
these expressions are equal e(gp, V) = e(gp, gp)

up to cross-terms

Proving Relations on Committed Values

common reference string Prover now computes cross terms
A =gy, et Xi=xiXj _ Djwj CiOX X A0
p : . — 1%] — o —
A = ay Vl:/:].Bij—gp V Bl,] gp
2 p A) i]
) CRZp@?fﬁc;jssggfr:ts Verifier now checks:
A, =g,") _
m = Ip e(0y, 0x) = e(oy, A)e(.gp: V)
A = gtattam
p 1
commitment to (xq, ..., Xp;;) _ ()Zie[m] o x{ HY i j @it jx X}
e(00,0,) = e(9p 9p el
X1 4 X Xm
Oy = AJIAY - AT R | —
— aixqtetamX,m ZlE[Tn] a; xi'l'izl;tj didjXxi i
Ip e(o,,A) = e(gp,gp) ; + i
2 _ : o i
Itxi = x; forall i, then e(g,,V) = e i o]
these expressions are equal 9p’ = €\Y9p Ip

up to cross-terms

Proving Relations on Committed Values

common reference string Gate validity
A = ggl Vi % i By, ga i Fc?r each gate, cgmmitment to f)utput wires IS co-nsistent
A, = ggz p with gate operation and commitment to input wires
Wi
Ay, = ggm
A= ggl+ +m foralli € [m]:ws3; =1 —wy;wy;

Can leverage same approach as before:

2

If Wi+ Wy Wy = 1 for all i, then e(O'W3,A) = e(gp' gp)
e, A)e (0w, ow,)

| +Zl¢] a;a;

e(4,A) e(4,A) e(gp, gp)

only consists of cross terms!

2
] Xi W1,iW2 L+Zl¢1 AiAjWq iWa j

e(le'UwZ) = e(gp,gp)

Proving Relations on Committed Values

common reference string Gate validity
A= ggl o aa; For each gate, commitment to output wires is consistent
A = gaz Vi # J: Byj = I9p with gate operation and commitment to input wires
2~ Jdp
A = am . .
m = Yp Generalizes to arbitrary
A= g;‘ﬁ +am guadratic predicates

Can leverage same approach as before:

2

If Wi+ Wy Wy = 1 for all i, then e(O'W3,A) = e(gp' gp)
e, A)e (0w, ow,)

| +Zl¢] a;a;

e(4,A) e(4,A) e(gp, gp)

only consists of cross terms!

2
] Xi W1,iW2 L+Zl¢1 AiAjWq iWa j

e(awl'UwZ) = e(gp,gp)

Is This Sound?

common reference string Soundness requires some care:
A = ggl o) Groth-Ostrovsky-Sahai NIZK based on similar
A, = gaz Vi#j: By = Ip commit-and-prove strategy
p
: Soundness in GOS is possible by extracting a
A, = ggm witness from the commitment
A= g31+°"+am For a false statement, no witness exists

Our setting: commitments are succinct — cannot extract a
full witness

commitment to (x4, ..., X))
Solution: “local extractability” [KPY19] or “somewhere

Oy = A7'Ay - AT extractability” [C1J21]
— A1 X1ttt amxm . . .
P Approach: Program the CRS to extract a witness for instance i

Implies non-adaptive (and semi-adaptive) soundness

Somewhere Soundness

CRS will have two modes: If proof m verifies, then we can extract

Normal mode: used in the real scheme
Extracting on index i: supports witness extraction for instance i (given a trapdoor)

a witness w; such that C(x;, w;) =1

CRS in the two modes are computationally indistinguishable

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

Implies non-adaptive soundness

Fix any tuple (x4, ..., X,,) where x; € L, for some i
: CRS indistinguishability
Suppose prover constructs accepting proof m of (x4, ..., X,,)

implies that proof still
Switch CRS to be extracting on i verifies

In extracting mode, we can recover w; such that C(x;,w;) = 1sox; € L,

Local Extraction

Aq Ap—1 Ay Ay Am 4 «
ap_ a;* Q;* m lE[m]
Vi # j
Move slot i* to full group
. A=gy | | o
Extracting mode: ay ap_q ap Am ie[m]
» 9p Ip Yq 9p aj : . .
(extracton i) Bij=A," vi+j=+i
0
Ay Ay Ay Apm Biej=Bu =4/

Subgroup decision assumption [BGNO5]:

Random element in subgroup (G,,)

~y
~y

Random element in full group (G)

Local Extraction

CRS in extraction mode (for index i*):

Aq
.

Trapdoor: g, (generator of G)

A1 Ay Ajrgq

Am
®i* 41 Am

Ai*x_q

aix r
gp gq

Consider a commitment og,:

. AX1 g X2 Xi*—1 2 Xi* 2 Xi*+1 Xm

+- 4 : X | — t2= Looutputa =0
Project into G

L) T - q .

ga1x1 EmXm g i ifz# 1, output x; = 1

p q Compute z < e(0y, gq)

Correctness of Extraction

Consider wire validity check:

e(ay, 0x) = e(o-x:A)e(gp» V)

Correctness of Extraction

Consider wire validity check:

e(0y, 0x) = e(o_x:A)e(gp» V)

Adversary chooses commitment g, and proof I/

Correctness of Extraction

Consider wire validity check:
e(0y, 0,) = e(oy, A)e(gp: V)
Adversary chooses commitment g, and proof I/

Generator g,, and aggregated key A part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-p subgroup and the order-g subgroup of G

Key property: e(gp, V) is always in the order-p subgroup; adversary cannot influence the
verification relation in the order-g subgroup

. — ~S Aot
Write g, = 9,94 In the order-g subgroup, exponents must satisfy:

g 2 _
Write A — ggle[m] ang,’ t“ = tr mod q

Correctness of Extraction

Consider wire validity check:
e(0y, 0,) = e(oy, A)e(gp: V)
Adversary chooses commitment g, and proof I/

Generator g,, and aggregated key A part of the CRS (honestly-generated)

If this relation holds, it must hold in both

If wire validity checks pass, then t = b;r where b; € {0,1}
Key property: e(gp, V) is alwi

\iIecIioaNEIENIORTRGiIHeI(e. Observe: b; € {0,1} is also the extracted bit

. — ~S Aot
Write g, = 9,94 In the order-g subgroup, exponents must satisfy:

g 2 _
Write A — ggle[m] ang,’ t“ = tr mod q

Correctness of Extraction

Consider gate validity check:
e(aWS,A)e(awl, O'WZ) =e(A4,A)e(g, W)

Correctness of Extraction

Consider gate validity check:
e(aWS,A)e(awl, O'WZ) =e(A4,A)e(g,, W)

Adversary chooses commitment oy, , 0y,,, 0, and proof W

Generator g,, and aggregated key A part of the CRS (honestly-generated)

Write In the order-q subgroup, exponents must satisfy:
R,
O, = g,ilgf,l t.r + t;t, = r“mod g
Sy, t
Ow, = gngctf By wire validity checks: t; = b;r where b; € {0,1}
S
Ows = gpqu3

bsr? + b b,r? = r* mod q

. . Z:ie[m] Qi r
Write A = g, 9q b; =1 —b;b, = NAND(b4, by)

Correctness of Extraction

Consider gate validity check:
e(aWB,A)e(awl, O'WZ) =e(A4,A)e(g,, W)

Adversary chooses commitment oy, , 0y,,, 0, and proof W

Generator g,, and aggregated key A part of the CRS (honestly-generated)

Write In the order-g subgroup, exponents must satisfy:
— 42
O, = gzlgctf t.r + t;t, = r“mod g
_ 52 L2
Ow, = Yp Yq
t : : : : :
Oy, = g;3gq3 Conclusion: extracted bits are consistent with gate operation

. . Z:ie[m] Qi r
Write A = g, 9q b; =1 —b;b, = NAND(b4, by)

A Commit-and-Prove Strategy for BARGs

Letw; = (Wi,l, . Wi,m) be vector
of wire labels associated with wire i

e Prover constructs the following proofs:

Input validity

Wire validity

. . . Gate validity
0 Prover commits to each vector of wire assignments . 4
Output validity

= o 2 Wi B &l © -
Wi - Remaining checks ensure that statement

Requirement: |g;| = poly(4, logm) correctly encoded and outputis 1

Our construction: |o;| = poly(4)

Implication: Successful extraction of
valid witness for instance i*

Proof Size

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:

Input validity
Wire validity One group element
Gate validity One group element

o Prover commits to each vector of wire assignments

Commitment size: |g;| = poly(1) Overall proof size (t wires, s gates):
Single group element (2t +5) - poly(4) = |C]| - poly(A)

Output validity

Verification Time

Letw; = (Wi’l, . Wi’m) be vector
of wire labels associated with wire i

9 Prover constructs the following proofs:

Input validity O (mn) group operations

Wire validity O (1) group operations

_ , _ Gate validity O (1) group operations
0 Prover commits to each vector of wire assignments

Output validity Equality check

Overall verification time:
nm - poly(A) + |C]| - poly(A)

From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

(G] — (G] X (G:r composite-order group
l l l Simulate subgroups
with subspaces
au+ﬁv u %
) (97 (g7) prime-order group

full space subspaces u, v € Z; (linearly independent)
(Z2) of Z2

From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

(G] — (G] X (G:r composite-order group
l l l Simulate subgroups
with subspaces
au+ﬁv> (9") (9”) prime-order group
a; .
Normal mode: g,," - g“i* Indistinguishable
a;u+rv under DDH

Extracting scheme: g’ g/ = g

From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

G = (G] X (G:r composite-order group
l l l Simulate subgroups
with subspaces

(g™ PPy (g") (9" prime-order group

Technically: move to asymmetric pairing-groups Indistinguishable
first (otherwise DDH does not hold) under DDH

From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

G = (G] X (G:r composite-order group
l l l Simulate subgroups
with subspaces

au+ﬁv> (9% (9") prime-order group

Pairing is an outer product:
T
e(g", g%) = e(g, 9)"®" = e(g, g™

From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups
G = Gy X G e(0y, 0x) = e(0y, A)e(gp, V)

Composite-order setting: e(gp, V) cannot contain a G
component = isolate instance i* in G, subgroup

au+'gv> (%) (g?) PrirTne-order setting: e(g“., V) cannf)t.contaTin a
vV’ component = isolate instance i* in vv" subspace

Generalizes to yield a BARG from

k-Linear assumption (for any k = 1) in prime-order asymmetric bilinear groups

Reducing CRS Size

Common reference string: Size of CRS is m? - poly(4)

E
Can rely on recursive composition to reduce CRS size:

. . - . o DoA) = poly(D)
Bi> §Bi3 Bim
’ ’ ’ for any constant € > 0
- . .
’ ’ Similar approach as [KPY19]

The Base Case

Prove knowledge of BARG
1 proofs 1r; for each batch

. of statements
2

Verification algorithm for a batch needs to
read the statements (of length), so

|Verify| > +/m - poly(1)

Tty

Use BARG on £ = /1 >oundness neqessﬁates somewhere
instances to prove extractability of base BARG

each batch Both BARGs are on
£ = \/m statements

BARGs with Split Verification

Verify(crs, C, (x4, ..., X,,),)

GenVK(crs, (x4, ..., xm)) — vk

Runs in time poly(4,m, n) Preprocesses statements into a

|[vk| = poly(4,logm,n) short verification key

OnlineVerify(vk, C,)
Runs in time poly(A,logm, |C|)

Fast online verification

(Similar property from [CJJ21])

Recursive Bootstrapping

ﬂ 7'[1

Prove knowledge of BARG
proofs m; for each batch
of statements

— I3

BARG used to check the relation
R((C, vKky, ..., VKyp), (14, ...,Tl,'g)) =1

Overall proof size:
poly(4,logm, |C|)

CRS size: m - poly(4)

Tty

if OnlineVerify(vk;, C,m;) =1

Use BARGon ¥ =+m
instances to prove

each batch Both BARGs are on
After k =~ log 1/¢ steps = m?® - poly(4) size CRS { = «/m statements

|OnlineVerify| = poly(4,logm, |C|)

BARG with Split Verification

In online phase, verifier uses
commitments (oy, ..., 0,,) for the bits of
input wires

(no more input validity checks)

Only depends on the statement!
Verifier checks the following

Input validity } nm - poly(A1)

Given (x4, ..., X,;,) € ({0,1}™")™, verifier computes

commitments to bits of the statement

Wire validity . .
Gat it |C| pOIY(}{) Vj € [n] : g; « 1_[A;Cl’]

ate validity constant number of group i€[m]
Output validity operations per wire/gate

GenVK(crs, (x4, ..., xm)) - (04, .., Op)

BARGs with Short CRS

Corollary: BARGs for NP from standard assumptions over bilinear maps
k-Linear assumption (for any k = 1) in prime-order bilinear groups
Subgroup decision assumption in composite-order bilinear groups

For a proof on m instances of length n:

* CRS size: crs| = m? - poly(A) for any constant € > 0
* Proof size: | = poly(4,|C|)
 Verification time: |Verify| = poly(4,n, m) + poly(4, |C|)

Application to RAM Delegation (“SNARGs for P”)

succinct argument for

Choudhuri et al. [c121] showed: e .
polynomial-time computations

Somewhere Delegation
extractable scheme for RAM
commitment programs

BARG with split

verification

succinct vector commitment that
allows extracting on single index

Application to RAM Delegation (“SNARGs for P”)

succinct argument for

Choudhuri et al. [c121] showed: e .
polynomial-time computations

Somewhere Delegation
BARG with split
o P extractable scheme for RAM
verification]
commitment programs
This work succinct vector commitment that
(from k-Lin) allows extracting on single index

Recall vector commitment we use for committing to wire values:

X1 pX2 Xm
Al, ---,Am,x — Al AZ ...Am

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in
combination with somewhere statistically binding hash functions [Hw15])

Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [c1121] showed:

: : Somewhere Delegation
BARG with split
.‘fV' .sp I extractable scheme for RAM
verification !
commitment programs
This work This work + [OPWW15]
(from k-Lin) (from SXDH)

Recall vector commitment we use for committing to wire values:

X1 pX2 Xm
Al, ---,Am,x — Al AZ ...Am

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in
combination with somewhere statistically binding hash functions [Hw15])

Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [c1)21] showed:

: : Somewhere Delegation
BARG with split
.YVI . >PH extractable scheme for RAM
verification !
commitment programs
This work This work + [OPWW15]
(from k-Lin) (from SXDH)

Corollary. RAM delegation from SXDH on prime-order pairing groups
To verify a time-T RAM computation:

* CRS size: crs| = T¢ - poly(4) for any constant & > 0
* Proof size: | = poly(4,logT)
« Verification time: |Verify| = poly(4,logT)

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

Application to Aggregate Signatures

% % ‘ % Given k message-signature pairs (m;, ;)

Short signature o* on (my, ..., my):
|o*| = poly(4,log k)

Folklore construction from succinct arguments for NP (SNARKs for NP):

prove knowledge of o, ..., 0} such that Verify(vk,m;,g;) = 1

Application to Aggregate Signatures

% % ‘ % Given k message-signature pairs (m;, ;)

Short signature o* on (my, ..., my):
|o*| = poly(4,log k)

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP:
prove knowledge of o, ..., 0} such that Verify(vk,m;,g;) = 1

Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP:
prove knowledge of oy, ..., o} such that Verify(vk,m;,g;) = 1

This work: BARG for bounded number of instances

Corollary. Aggregate signature supporting bounded aggregation from bilinear maps

First aggregate signature with bounded aggregation from standard pairing-
based assumptions (i.e., k-Lin) in the plain model

Previous pairing constructions: unbounded aggregation from standard pairing-
based assumptions in the random oracle model [BGLS03]

Summary

BARGs for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”
Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS
Corollary: Aggregate signature with bounded aggregation

Open Question: BARG with unbounded number of instances from bilinear maps

https://eprint.iacr.org/2022/336
Thank you!

