Multi-Theorem Preprocessing NIZKs from Lattices

Sam Kim and <u>David J. Wu</u> Stanford University

Zero-Knowledge Proofs for NP

NP language $\mathcal L$

real distribution

ideal distribution

<u>Zero-Knowledge</u>: for all efficient verifiers V^* , there exists an efficient simulator S such that:

$$\forall x \in \mathcal{L} : \langle P, V^* \rangle(x) \approx_c \mathcal{S}(x)$$

Non-Interactive Zero-Knowledge (NIZK) Proofs [BFM88]

NP language \mathcal{L}

real distribution

ideal distribution

In the standard model, this is only achievable for languages $\mathcal{L} \in BPP$

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96]

prover

verifier

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96] Several major classes of assumptions missing:

- Discrete-log based assumptions (e.g., CDH, DDH)
- Lattice-based assumptions (e.g., SIS, LWE)

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96]

Several major classes of assumptions missing:

- Discrete-log based assumptions (e.g., CDH, DDH)
- Lattice-based assumptions (e.g., SIS, LWE)

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

[DMP88]

(Trusted) setup algorithm generates both proving key k_P and a verification key k_V

Simpler model than CRS model:

- Soundness holds assuming k_V is <u>hidden</u>
- Zero-knowledge holds assuming k_P is <u>hidden</u>

If only k_V is private (i.e., k_P is public), then the NIZK is <u>designated-verifier</u>

[DMP88]

[DMP88]

Simpler model than CRS model:

- Soundness holds assuming k_V is <u>hidden</u>
- Zero-knowledge holds assuming k_P is <u>hidden</u>

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [KMO89]

Designated-Verifier NIZKs

• Additively-homomorphic encryption [CD04, DFN06, CG15]

[DMP88]

Existing constructions only provide bounded-theorem soundness or bounded-theorem zero-knowledge

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [KMO89]

Designated-Verifier NIZKs

• Additively-homomorphic encryption [CD04, DFN06, CG15]

Bounded-theorem soundness: Soundness holds in a setting where prover can see verifier's response on an *a priori* bounded number of queries – "verifier rejection problem"

Bounded-theorem zero-knowledge: Zero-knowledge holds in a setting where verifier can see proofs on an *a priori* bounded number of statements

Existing constructions only provide bounded-theorem soundness or bounded-theorem zero-knowledge

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [KMO89]

Designated-Verifier NIZKs

• Additively-homomorphic encryption [CD04, DFN06, CG15]

Only known constructions of <u>multi-theorem</u> NIZKs in the preprocessing model are those in the CRS model

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

Hope: Preprocessing NIZKs is a stepping stone towards NIZKs from standard lattice assumptions

Our Results

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

- First <u>multi-theorem</u> preprocessing NIZK from LWE (in fact, a "designated-prover" NIZK)
- Preprocessing step can be efficiently implemented using OT
- Several new MPC protocols from lattices:
 - Succinct version of GMW compiler from lattices

Our Results

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

Communication overhead is	processing NIZK from LWE
proportional to <u>depth</u> of the	rover" NIZK)
computation rather than the <u>size</u>	be efficiently implemented using OT
of the computation	cols from lattices:

• Succinct version of GMW compiler from lattices

Our Results

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

- First <u>multi-theorem</u> preprocessing NIZK from LWE (in fact, a "designated-prover" NIZK)
- Preprocessing step can be efficiently im Preprocessing
- Several new MPC protocols from lattice
 - Succinct version of GMW compiler from la
 - Two-round, succinct MPC from lattices in a "reusable preprocessing"

model Total communication proportional to depth of computation

Preprocessing can be done once and then reused for *arbitrarily* many computations

Starting Point: Homomorphic Signatures [BF11, GVW15, ABC+15]

 σ_x is a signature on xwith respect to a verification key vk

Homomorphic signatures enable computations on signed data

Starting Point: Homomorphic Signatures [BF11, GVW15, ABC+15]

Starting Point: Homomorphic Signatures [BF11, GVW15, ABC+15]

f(x)

ideal distribution

 \approx_{c}

f(x)

real distribution

 $\sigma_{f,f(x)}$ hides the original input x (up to what is revealed by f, f(x))

[Generalizes to multiple signatures]

Goal: Convince verifier that there exists w such that $\mathcal{R}(x, w) = 1$

Verifier checks that $\sigma_{\mathcal{R}_{\chi},1}$ is a signature on 1 with respect to function \mathcal{R}_{χ}

Soundness: Follows from <u>unforgeability</u>; if verifier accepts, then $\sigma_{\mathcal{R}_x,1}$ is a signature on 1 with respect to function \mathcal{R}_x , but $\mathcal{R}_x(w) = 0$

Zero-Knowledge: Follows from context-hiding; signature $\sigma_{\mathcal{R}_x,1}$ can be simulated given sk, \mathcal{R}_x and $\mathcal{R}_x(w) = 1$

Problem: Prover needs signature on *w*, which depends on the <u>statement</u> being proven (cannot be generated in preprocessing phase)

Prover is given signature on an <u>encryption key</u> (unknown to the verifier)

Solution: Add one layer of indirection!

Solution: Add one layer of indirection!

Verifier checks that $\sigma_{C_{x,ct},1}$ is a signature on 1 with respect to function $C_{x,ct}$

Soundness: Follows from <u>unforgeability</u>; if verifier accepts, then $\sigma_{C_{x,ct},1}$ is a signature on 1 with respect to function $C_{x,ct}$, but $C_{x,ct}(k) = 0$ for all k

Zero-Knowledge: Follows from context-hiding and semantic security; signature $\sigma_{C_{x,ct},1}$ can be simulated given sk, $C_{x,ct}$ and $C_{x,ct}(k) = 1$ and so, ct hides w

<u>Designated-prover</u> NIZK from context-hiding homomorphic signatures

Can instantiate context-hiding homomorphic signatures with <u>lattice-based</u> scheme from [GVW15]

[Need some additional properties, but [GVW15] satisfies all properties with some modification]

νςιμγινι, λ, π

<u>Designated-prover</u> NIZK from context-hiding homomorphic signatures

Implementing the Preprocessing Phase

Can use generic MPC protocols, but can do this more efficiently using a specialized protocol

Goal: prover obtains signature on *k* without revealing *k* to verifier

Implementing the Preprocessing Phase

Desired notion is a blind homomorphic signature

ѕкОтт

Verifier chooses signing key

Prover chooses encryption key

k

Goal: prover obtains signature on *k* without revealing *k* to verifier

Blind Homomorphic Signatures

- Assume that homomorphic signatures is bitwise (can sign each bit of a message *independently*)
- Prover can then OT for the signatures on each bit of k
- Some additional work needed for *malicious* security [See paper for details]

encryption key

OT for signatures on bits of k

_{sk}O-TT

Verifier chooses signing key

Goal: prover obtains signature on *k* without revealing *k* to verifier

Summary

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

- New multi-theorem designated-prover (public-verifier) NIZKs from homomorphic signatures (based on LWE)
- New notion of blind homomorphic signatures (formalized in the UC model) for efficient implementation of preprocessing (from OT)
- New UC-secure NIZK in the preprocessing model from lattices
 - Succinct MPC protocol and succinct GMW compiler

Open Problems

NIZKs from lattices in the CRS model

• Publishing prover state in our preprocessing NIZK compromises zero-knowledge (reveals secret key prover uses to encrypt witnesses)

Multi-theorem preprocessing NIZKs from discrete log assumptions (e.g., CDH, DDH)

Thank you!

https://eprint.iacr.org/2018/272