Multi-Theorem

Preprocessing NIZKs from Lattices

Sam Kim and David J. Wu
Stanford University

Zero-Knowledge Proofs for NP

[GMR85]

NP language L

U
O
| \\\,’jq\\
}z‘)

J

real distribution ideal distribution

Zero-Knowledge: for all efficient verifiers V™, there exists an efficient simulator
S such that:

Vx €L:(P,V*)x) =, S5(x)

Non-Interactive Zero-Knowledge (NIZK) Proofs
[BFM88]

NP language L

real distribution ideal distribution

In the standard model, this is only achievable for languages L € BPP

Which Assumptions give NIZKs for NP?

prover verifier

prover verifier

Common Reference String (CRS) Model
Quadratic Residuosity [BFM88, DMP87, BDMP91]
Trapdoor Permutations [FLS90, DDO+01, Gro10]
Pairings [GOS06]
Indistinguishability Obfuscation + OWFs [SW14]

Random Oracle Model
[FS86, PS96]

Which Assumptions give NIZKs for NP?

Several major classes of assumptions missing:
e Discrete-log based assumptions (e.g., CDH, DDH)
e Lattice-based assumptions (e.g., SIS, LWE)

prover verifier

Common Reference String (CRS) Model
e Quadratic Residuosity [BFM88, DMP87, BDMP91]
* Trapdoor Permutations [FLS90, DDO+01, Gro10]
* Pairings [GOS06]
* Indistinguishability Obfuscation + OWFs [SW14]

Random Oracle Model
[FS86, PS96]

Which Assumptions give NIZKs for NP?

Several major classes of assumptions missing:
e Discrete-log based assumptions (e.g., CDH, DDH)
e Lattice-based assumptions (e.g., SIS, LWE)

prover verifier

Common Reference String (CRS) Model
e Quadratic Residuosity [BFM88, DMP87, BDMP91]
* Trapdoor Permutations [FLS90, DDO+01, Gro10]
* Pairings [GOS06]
* Indistinguishability Obfuscation + OWFs [SW14]

Random Oracle Model
[FS86, PS96]

NIZKs in the Preprocessing Model

[DMP88]

(Trusted) setup algorithm generates both proving key
kp and a verification key ky,

prover :* : Prover algorithm takes proving & p verifier
‘ key kp, NP statement x, and

NP witness w Verlfy(kv, X, T[)

NIZKs in the Preprocessing Model

[DMP88]

If only ky, is private (i.e., kp is
Simpler model than CRS model: public), then the NIZK is
 Soundness holds assuming ky is hidden designated-verifier

* Zero-knowledge holds assuming kp is hidden

NIZKs in the Preprocessing Model

[DMP88]

Preprocessing NIZKs

* One-Way Functions [DMPS8S,
LS90, Dam92, IKOS09]

 Oblivious Transfer [KM089]

Designated-Verifier NIZKs
e Additively-homomorphic

encryption [CD04, DFN06, CG15]

Simpler model than CRS model:
* Soundness holds assuming ky, is hidden
* Zero-knowledge holds assuming kp is hidden

NIZKs in the Preprocessing Model

[DMP88]

Preprocessing NIZKs

* One-Way Functions [
, IKOS09]

 Oblivious Transfer [KM08&9]

Designated-Verifier NIZKs
e Additively-homomorphic

encryption [CD04, DFNO6, CG15]

Existing constructions only provide bounded-theorem
soundness or

NIZKs in the Preprocessing Model

Bounded-theorem soundness: Soundness holds in a
setting where prover can see verifier’s response on an
a priori bounded number of queries — “verifier
rejection problem”

Zero-knowledge
holds in a setting where verifier can see proofs on an a
priori bounded number of statements

Existing constructions only provide bounded-theorem
soundness or

[DMP88]

Preprocessing NIZKs

One-Way Functions [
, IKOS09]

Oblivious Transfer [KM089]

Designated-Verifier NIZKs

Additively-homomorphic
encryption [CD04, DFNO6, CG15]

NIZKs in the Preprocessing Model

[DMP88]

Only known constructions of multi-theorem NIZKs in the
preprocessing model are those in the CRS model

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Hope: Preprocessing NIZKs is a stepping stone towards NIZKs from
standard lattice assumptions

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)
Preprocessing step can be efficiently implemented using OT

Several new MPC protocols from lattices:
e Succinct version of GMW compiler from lattices

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Communication overhead is pProcessing NIZK from LWE
proportional to depth of the [fo)=\ VA9

SIBEEIRE I ERLELIEET R o officiently implemented using OT

of the computation ,
ycols from lattices:
e Succinct version of GMW compiler from lattices

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)
Preprocessing step can be efficiently iniiE s S l-aC RIS el e

: d th d f bitraril
Several new MPC protocols from latticelie meannile;cfs\pu?c;ggnlsm”y
* Succinct version of GMW compiler from |
 Two-round, succinct MPC from lattices in a “reusable preprocessing”

mode] Total communication proportional to

depth of computation

Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

0, IS a signature on x
with respect to a
verification key vk

public operation Of £ (x) IS a signature on f(x)
‘ with respect to the function f
and the verification key vk

Homomorphic signatures enable computations on signed data

Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

public operation Of £ (x) is a signature on [(x)

‘ with respect to the function f
and the verification key vk

(One-Time) Unforgeability: .
Vv

% o, < Sign(sk, x)
—

Adversary wins if oy ,, is a valid %

signature on y with respect to Unforgeable if no efficient
function f, buty # f(x) adversary can win

Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

public operation Of f(x) IS @ sighature on f(x)

‘ with respect to the function f
and the verification key vk

Context-Hiding:

Looks like a zero-

—————— knowledge property!

0f f(x) hides the original input x (up
~c % to what is revealed by f, f(x))

real distribution ideal distribution [Generalizes to multiple signatures]

Homomorphic Signatures to Preprocessing NIZKs

w Suppose prover has a signature on w

‘ Prover evaluates function R, (w) = R(x, w)

orover (x, w) verifier (x)

Goal: Convince verifier that there exists w such that R(x,w) = 1

Homomorphic Signatures to Preprocessing NIZKs

w Suppose prover has a signature on w

‘ Prover evaluates function R, (w) = R(x, w)

orover (x, w) verifier (x)

Verifier checks that op_; is a signature
on 1 with respect to function R,

Homomorphic Signatures to Preprocessing NIZKs

Suppose prover has a signature on w

Prover evaluates function R, (w) = R(x, w)

Soundness: Follows from unforgeability; if verifier accepts, then g _; is a signature
on 1 with respect to function R,., but R, (w) =0

Homomorphic Signatures to Preprocessing NIZKs

w Suppose prover has a signature on w

‘ Prover evaluates function R, (w) = R(x, w)

Zero-Knowledge: Follows from context-hiding; signature oz_1 can be simulated given
sk, R, and R, (w) =1

Homomorphic Signatures to Preprocessing NIZKs

Suppose prover has a signature on w

Prover evaluates function R, (w) = R(x, w)

Problem: Prover needs signature on w, which depends on the statement being proven
(cannot be generated in preprocessing phase)

Homomorphic Signatures to Preprocessing NIZKs

Prover is given signature on an encryption key
(unknown to the verifier)

Solution: Add one layer of indirection!

Homomorphic Signatures to Preprocessing NIZKs

Cyct(k) = R(x, Decrypt(k, ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witnhess w]

Solution: Add one layer of indirection!

Homomorphic Signatures to Preprocessing NIZKs

Cyct(k) = R(x, Decrypt(k, ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witnhess w]

Verifier checks that o¢__ 4 is a signature on 1
with respect to function Cy (¢

Homomorphic Signatures to Preprocessing NIZKs

Cyct(k) = R(x, Decrypt(k, ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witnhess w]

Soundness: Follows from unforgeability; if verifier accepts, then a__ 1 is a signature
on 1 with respect to function Cy ¢, but Cy (k) = O forall k

Homomorphic Signatures to Preprocessing NIZKs

Cyct(k) = R(x, Decrypt(k, ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witnhess w]

Zero-Knowledge: Follows from context-hiding and semantic security; signature o¢__. 4
can be simulated given sk, C, ¢ and Cy (k) = 1 and so, ct hides w

Homomorphic Signatures to Preprocessing NIZKs

-_-_Veﬂ.fify(vk, X, TT)

Designated-prover NIZK from context-hiding homomorphic signatures

Homomorphic Signatures to Preprocessing NIZKs

(also publishes vk)

Can instantiate context-hiding homomorphic
signatures with lattice-based scheme from [GVW15]

[Need some additional properties, but [GVW15] satisfies all properties with some modification]

Designated-prover NIZK from context-hiding homomorphic signatures

Implementing the Preprocessing Phase

Can use generic MPC protocols,
but can do this more efficiently
using a specialized protocol

Verifier chooses
signing key

Prover chooses
encryption key

Goal: prover obtains sighature on
k without revealing k to verifier

Implementing the Preprocessing Phase

Desired notion is a
blind homomorphic signature

Prover chooses 3 5/ Verifier chooses

encryption key signing key
Goal: prover obtains sighature on

k without revealing k to verifier

Blind Homomorphic Signatures

* Assume that homomorphic signatures is bitwise (can | |
sign each bit of a message independently) signatures on bits of

* Prover can then OT for the signatures on each bit of k f_H

Some additional work needed for malicious security
[See paper for details] #####

OT for signatures
on bits of k

Prover chooses
encryption key

Verifier chooses
signing key

Goal: prover obtains sighature on
k without revealing k to verifier

Summary

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

 New multi-theorem designated-prover (public-verifier) NIZKs from
homomorphic signatures (based on LWE)

* New notion of blind homomorphic signatures (formalized in the UC
model) for efficient implementation of preprocessing (from OT)

* New UC-secure NIZK in the preprocessing model from lattices

* Succinct MPC protocol and succinct GMW compiler (See paper for details]

Open Problems

NIZKs from lattices in the CRS model

* Publishing prover state in our preprocessing NIZK compromises zero-knowledge
(reveals secret key prover uses to encrypt witnesses)

Multi-theorem preprocessing NIZKs from discrete log assumptions (e.g.,
CDH, DDH)

Thank you!
https://eprint.iacr.orqg/2018/272

