
Multi-Theorem
Preprocessing NIZKs from Lattices

Sam Kim and David J. Wu

Stanford University



Zero-Knowledge Proofs for NP

𝑃, 𝑉 𝑥

real distribution

𝒮(𝑥)

ideal distribution

Zero-Knowledge: for all efficient verifiers 𝑉∗, there exists an efficient simulator 
𝒮 such that:

∀𝑥 ∈ ℒ ∶ 𝑃, 𝑉∗ 𝑥 ≈𝑐 𝒮(𝑥)

≈𝑐

NP language ℒ

[GMR85]



Non-Interactive Zero-Knowledge (NIZK) Proofs

𝜋

real distribution

𝒮(𝑥)

ideal distribution

≈𝑐

NP language ℒ

[BFM88]

In the standard model, this is only achievable for languages ℒ ∈ BPP



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

𝜎𝜎

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

prover verifier
prover verifier



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

Several major classes of assumptions missing:
• Discrete-log based assumptions (e.g., CDH, DDH)
• Lattice-based assumptions (e.g., SIS, LWE)

prover verifier



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

Several major classes of assumptions missing:
• Discrete-log based assumptions (e.g., CDH, DDH)
• Lattice-based assumptions (e.g., SIS, LWE)

prover verifier



NIZKs in the Preprocessing Model

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉

(Trusted) setup algorithm generates both proving key 
𝑘𝑃 and a verification key 𝑘𝑉

[DMP88]

Verify(𝑘𝑉 , 𝑥, 𝜋)

Prover algorithm takes proving 
key 𝑘𝑃, NP statement 𝑥, and 

NP witness 𝑤

prover verifier



NIZKs in the Preprocessing Model
[DMP88]

Simpler model than CRS model:
• Soundness holds assuming 𝑘𝑉 is hidden
• Zero-knowledge holds assuming 𝑘𝑃 is hidden

If only 𝑘𝑉 is private (i.e., 𝑘𝑃 is 
public), then the NIZK is 

designated-verifier

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Simpler model than CRS model:
• Soundness holds assuming 𝑘𝑉 is hidden
• Zero-knowledge holds assuming 𝑘𝑃 is hidden

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

Existing constructions only provide bounded-theorem 
soundness or bounded-theorem zero-knowledge

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

Existing constructions only provide bounded-theorem 
soundness or bounded-theorem zero-knowledge

Bounded-theorem soundness: Soundness holds in a 
setting where prover can see verifier’s response on an 
a priori bounded number of queries – “verifier 
rejection problem”

Bounded-theorem zero-knowledge: Zero-knowledge 
holds in a setting where verifier can see proofs on an a 
priori bounded number of statements



Only known constructions of multi-theorem NIZKs in the 
preprocessing model are those in the CRS model

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

NIZKs in the Preprocessing Model
[DMP88]

Hope: Preprocessing NIZKs is a stepping stone towards NIZKs from 
standard lattice assumptions



Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Our Results

• First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)

• Preprocessing step can be efficiently implemented using OT
• Several new MPC protocols from lattices:

• Succinct version of GMW compiler from lattices



• First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)

• Preprocessing step can be efficiently implemented using OT
• Several new MPC protocols from lattices:

• Succinct version of GMW compiler from lattices

Communication overhead is 
proportional to depth of the 

computation rather than the size
of the computation

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Our Results



Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Our Results

• First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)

• Preprocessing step can be efficiently implemented using OT
• Several new MPC protocols from lattices:

• Succinct version of GMW compiler from lattices
• Two-round, succinct MPC from lattices in a “reusable preprocessing” 

model Total communication proportional to 
depth of computation

Preprocessing can be done once 
and then reused for arbitrarily

many computations



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
sk

𝑥
𝜎𝑥

𝜎𝑥 is a signature on 𝑥
with respect to a 

verification key vk

𝑥
𝜎𝑥

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk

Homomorphic signatures enable computations on signed data

public operation



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
𝜎𝑥

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk

public operation

(One-Time) Unforgeability:

sk

𝜎𝑥 𝜎𝑥 ← Sign(sk, 𝑥)

𝑥

𝜎𝑓,𝑦𝑦
Adversary wins if 𝜎𝑓,𝑦 is a valid 

signature on 𝑦 with respect to 
function 𝑓, but 𝑦 ≠ 𝑓(𝑥)

Unforgeable if no efficient 
adversary can win

vk



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
𝜎𝑥

public operation

Context-Hiding:

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝑥 𝜎𝑥

𝑓(𝑥)
෤𝜎𝑓,𝑓(𝑥)

sk
𝑓, 𝑓(𝑥)

real distribution ideal distribution

≈𝑐
𝜎𝑓,𝑓(𝑥) hides the original input 𝑥 (up 

to what is revealed by 𝑓, 𝑓(𝑥))

Looks like a zero-
knowledge property!

[Generalizes to multiple signatures]

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk



Homomorphic Signatures to Preprocessing NIZKs

prover 𝑥, 𝑤 verifier 𝑥

Goal: Convince verifier that there exists 𝑤 such that ℛ 𝑥,𝑤 = 1

𝑤
𝜎𝑤

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

prover 𝑥, 𝑤 verifier 𝑥

𝑤
𝜎𝑤

Suppose prover has a signature on 𝑤

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

Verifier checks that 𝜎ℛ𝑥,1 is a signature 

on 1 with respect to function ℛ𝑥



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Soundness: Follows from unforgeability; if verifier accepts, then 𝜎ℛ𝑥,1 is a signature 

on 1 with respect to function ℛ𝑥, but ℛ𝑥 𝑤 = 0

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Zero-Knowledge: Follows from context-hiding; signature 𝜎ℛ𝑥,1 can be simulated given 

sk, ℛ𝑥 and ℛ𝑥 𝑤 = 1

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Problem: Prover needs signature on 𝑤, which depends on the statement being proven 
(cannot be generated in preprocessing phase)

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

Solution: Add one layer of indirection!

Prover is given signature on an encryption key
(unknown to the verifier)



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Solution: Add one layer of indirection!



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Verifier checks that 𝜎𝐶𝑥,ct,1 is a signature on 1 

with respect to function 𝐶𝑥,ct



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Soundness: Follows from unforgeability; if verifier accepts, then 𝜎𝐶𝑥,ct,1 is a signature 

on 1 with respect to function 𝐶𝑥,ct, but 𝐶𝑥,ct 𝑘 = 0 for all 𝑘

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]



Prover is given signature on an encryption key
(unknown to the verifier)

Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Zero-Knowledge: Follows from context-hiding and semantic security; signature 𝜎𝐶𝑥,ct,1
can be simulated given sk, 𝐶𝑥,ct and 𝐶𝑥,ct 𝑘 = 1 and so, ct hides 𝑤



Homomorphic Signatures to Preprocessing NIZKs

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃

Verify(vk, 𝑥, 𝜋)

𝑘
𝜎𝑘

Designated-prover NIZK from context-hiding homomorphic signatures

(also publishes vk)



Homomorphic Signatures to Preprocessing NIZKs

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃

Verify(vk, 𝑥, 𝜋)

𝑘
𝜎𝑘

Designated-prover NIZK from context-hiding homomorphic signatures

Can instantiate context-hiding homomorphic 
signatures with lattice-based scheme from [GVW15]

[Need some additional properties, but [GVW15] satisfies all properties with some modification]

(also publishes vk)



Implementing the Preprocessing Phase

Can use generic MPC protocols, 
but can do this more efficiently 

using a specialized protocol

sk

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

𝑘 𝜎𝑘

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

Verify(vk, 𝑥, 𝜋)

(also publishes vk)



Implementing the Preprocessing Phase

sk

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

Desired notion is a
blind homomorphic signature



Blind Homomorphic Signatures

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

0

1

0

1

0

1

0

1

0

1

signatures on bits of 𝑘

sk

• Assume that homomorphic signatures is bitwise (can 
sign each bit of a message independently)

• Prover can then OT for the signatures on each bit of 𝑘
• Some additional work needed for malicious security

[See paper for details]

OT for signatures 
on bits of 𝑘



Summary

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

• New multi-theorem designated-prover (public-verifier) NIZKs from 

homomorphic signatures (based on LWE)

• New notion of blind homomorphic signatures (formalized in the UC 

model) for efficient implementation of preprocessing (from OT)

• New UC-secure NIZK in the preprocessing model from lattices
• Succinct MPC protocol and succinct GMW compiler [See paper for details]



Open Problems

NIZKs from lattices in the CRS model
• Publishing prover state in our preprocessing NIZK compromises zero-knowledge 

(reveals secret key prover uses to encrypt witnesses)

Multi-theorem preprocessing NIZKs from discrete log assumptions (e.g., 
CDH, DDH)

Thank you!
https://eprint.iacr.org/2018/272


