Constraining Pseudorandom
Functions Privately

David Wu
Stanford University

Joint work with Dan Boneh and Kevin Lewi

Pseudorandom Functions (PRFs) [GGM&4]

Pseudorandom

Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain”
functionality

r\\\\\/ W Constraing r\\\\/

PRF key constrained key

can be used to evaluate at all
F:KXX->TY points x € X where C(x) =1

Constrained PRFs [BW13, BGI13, KPTZ13]

‘ Constraing ‘ r\\\\\/

Correctness: constrained evaluationatx € X
where C(x) = 1 yields PRF value at x

Security: PRF value at points x € X where
C(x) = 0 are indistinguishable from random

Constrained PRFs [BW13, BGI13, KPTZ13]

r\\\\\/ ‘ Constrain, ‘ ,

Many applications:

* |dentity-Based Key Exchange, Optimal Broadcast
Encryption [BW13]

* Punctured Programming Paradigm [SW14]
* Multiparty Key Exchange, Traitor Tracing [BZ14]

Puncturable PRFs from GGM

* Puncturable PRF: constrained keys allow evaluation at all but
a single point

* Easily constructed from GGM:

G(s) =sg Il 51

Puncturable PRFs from GGM

given root key s, can evaluate PRF everywhere

Puncturable PRFs from GGM

puncture at x = 01

Puncturable PRFs from GGM

these two values suffice to evaluate at all other
points

Puncturable PRFs from GGM

in general, punctured key consists of n nodes if
domain of PRF is {0,1}"

Puncturable PRFs from GGM

given sy and sy, easy to tell that 01 is the
punctured point

Constraining PRFs Privately

r\\\\\ ‘ Constrain, ‘ r\\\\

Can we build a constrained PRF where the
constrained key for a circuit C hides C?

Constraining PRFs Privately

| msk « Setup(1%)
|

. &

World 1
~

Co, (4

Constrain(msk, C;)

Single-key privacy Definitions generalize to multi-key privacy. See paper for details.

Private Puncturing

r\\\ ‘ Puncture, ‘ r\\\\\

e Correctness: constrained evaluation at x # z
vields F (k, x)

*Security: F(k, z) is indistinguishable from random

* Privacy: constrained key hides z

Implications of Privacy

r\\ ‘ Puncture, ‘ ,

sk,

Consider value of ConstrainEval(sk,, z):
*Security: Independent of Eval(msk, z)

*Privacy: Unguessable by the adversary

Using Privacy: Restricted Keyword Search

A= key issuer

msk ' '
create index ' Kk
SKMarshmallow

Z

PRF, (Honeycomb) — {5,8,13}
PRF, (KitKat) — {18, 21}
PRF, (Lollipop) - {3,10,11}

PRF, (Marshmallow) — {1,9,22}

ConstrainEval(sk, Honeycomb)

{5,8,13)

server with
encrypted index

Using Privacy: Restricted Keyword Search

search for non-existent

keyword
PRF, (Honeycomb) — {5,8,13}
PRF, (KitKat) — {18, 21}
PRF, (Lollipop) - {3,10,11}
PRF; (Marshmallow) — {1,9,22}
ConstrainEval(sk, Jelly Bean)
—
. No results

encrypted index

Using Privacy: Restricted Keyword Search

search for “restricted”

keyword
PRF, (Honeycomb) — {5,8,13}
PRF, (KitKat) — {18, 21}
PRF, (Lollipop) - {3,10,11}
PRF; (Marshmallow) — {1,9,22}
ConstrainEval(sk, Marshmallow)
—
. No results

encrypted index

Using Privacy: Restricted Keyword Search

* Security: ConstrainEval(sk, Marshmallow) #
Eval(msk, Marshmallow)

 Privacy: Does not learn that no results were

PRF (Honeycomb) — 15,8,13} returned because no matches for keyword or if
FIES (KItK_at) - {18,21} the keyword was restricted
PRF, (Lollipop) - {3,10,11}

PRF) (Marshmallow) — {1,9,22}

A~
ConstrainEval(sk, Marshmallow)

—
No results

server with
encrypted index

The Many Applications of Privacy

* Private constrained MACs
* Parties can only sign messages satisfying certain policy (e.g., enforce a
spending limit), but policies are hidden
* Symmetric Deniable Encryption [CDNO97]
* Two parties can communicate using a symmetric encryption scheme

 If an adversary has intercepted a sequence of messages and coerces one of
the parties to produce a decryption key for the messages, they can produce a
“fake” key that decrypts all but a subset of the messages

* Constructing a family of watermarkable PRFs

e Can be used to embed a secret message within a PRF that is “unremovable” —
useful for authentication [CHNVW15]

See paper for details!

Summary of our Constructions

* From indistinguishability obfuscation (iO):
* Private puncturable PRFs from iO + one-way functions

* Private circuit constrained PRFs from sub-exponentially

hard iO + one-way functions
This talk

* From concrete assumptions on multilinear maps:

* Private puncturable PRFs from subgroup hiding
assumptions

* Private bit-fixing PRF from multilinear Diffie-Hellman
assumption

See paper

Constructing Private Constrained PRFs

Tool: indistinguishability obfuscation [BGIT01, GGH" 13]

Program P; Program P,

.n} Vx : Py (x) = P,(x) \.l}

. e -
Lgi § w

i0(Py) =~ 10(P)

Indistinguishability Obfuscation (iO)

e First introduced by Barak et al. [BGIT01]

* First construction from multilinear maps [GGH™ 13]

* Subsequent constructions from multilinear maps [BR13,
BGK™ 14, AGIS14, Zim14, AB15, ...]

* Constructions also from (compact) functional encryption
[AJ15, AJS15]

Indistinguishability Obfuscation (iO)

Many applications — “crypto complete”
» Functional encryption [GGH™ 13]
* Deniable encryption [SW13]
* Witness encryption [GGSW13]
* Private broadcast encryption [BZ14]
* Traitor tracing [BZ14]
* Multiparty key exchange [BZ14]
* Multiparty computation [GGHR14]
* and more...

Private Puncturing from iO

*Starting point: puncturable PRFs (e.g. GGM)

*Need a way to hide the point that is punctured
* Intuition: obfuscate the puncturable PRF

* Question: what value to output at the punctured
point?

Private Puncturing from iO

Use iO to hide the punctured point and output
uniformly random value at punctured point

P, (x):
*|If x = z, output r

* Else, output PRF(k, x)

Program for punctured PRF real value of
(punctured at 2) the PRF

Private Puncturing from iO

Suppose PRF is puncturable (e.g., GGM)
* Master secret key: PRF key k
* PRF output at x € X: PRF(k, x)

P, (x):
e If x = z, output r

* Else, output PRF(k, x)

Punctured key for a point z is an obfuscated program

Constrained evaluation corresponds to evaluating obfuscated
program

Private Puncturing from iO: Privacy

Recall privacy notion:

s mTEFEEEEEE_E_-_-_E___=_-=_==- N
I msk < Setup(1%) I o I
| a o Puncture(k, x,) & |
l World 0 |

World 1
~

10

Private Puncturing from iO: Privacy

/‘

\
Py, (x):
* If x = xp, output r
 Else, output

=

/

\o

Py, (x):
* If x = xp, output r
* Else, output

By correctness of puncturing, Py
and Py compute identical functions

10

Private Puncturing from iO: Privacy

/‘

\S

\
Py, (x):
* If x = xp, output r
 Else, output

=

Hybrid O: Real game

/

Py, (x):
* If x = xp, output r
* Else, output

~/

Hybrid 1: Challenger

responds to puncture

qguery with iO of this
program

10

Private Puncturing from iO: Privacy

Invoke puncturing security

” |

P, (x):
* If x = x(, output

* Else, output PRF(ky,, X)

Hybrid 1

Py, (x):
* If x = x, output

* Else, output PRF(ky,, x)

Hybrid 2

Private Puncturing from iO: Privacy

Invoke iO security

/‘

Py, (x):
e If x = xp, output ~
* Else, output ~c 10

_/ -
Hybrid 2 Hybrid 3

-

The program in Hybrid 3 is independent of x. Similar
argument holds starting from P,_(x)

Private Puncturing from iO: Summary

Use iO to hide the punctured point and output
uniformly random value at punctured point

P, (x):
*lIf x = z, output r

* Else, output PRF(k, x)

Private Circuit Constrained PRF from iO

Construction generalizes to circuit constraints, except
random values now derived from another PRF

P (x) k' is independently
*If C(x) = 0, output PRF(k’, x)

sampled PRF key

*If C(x) = 1, output PRF(k, x)

“real” PRF value

Private Circuit Constrained PRF from iO

Pc(x):
* If C(x) = 0, output PRF(k’, x)

* If C(x) = 1, output PRF(k, x)

Recall intuitive requirements for
private constrained PRF:

e Security: Values at constrained
points independent of actual
PRF value at those points

* Privacy: Values at constrained
points are unguessable by the
adversary

Private Circuit Constrained PRF from iO

Pc(x):
* If C(x) = 0, output PRF(k’, x)

* If C(x) =1, output PRF(k, x)

Security proof similar to that for
private puncturable PRF

Requires exponential number of
hybrids (one for each input), so
require sub-exponential hardness
for iO and one-way functions

Conclusions

* New notion of private constrained PRFs

* Simple definitions, but require powerful tools to
construct: iO / multilinear maps

* Private constrained PRFs immediately provide natural
solutions to many problems

Open Questions

* Puncturable PRFs can be constructed from OWFs
* Can we construct private puncturable PRFs from OWFs?

* Can we construct private circuit constrained PRFs without
requiring sub-exponentially hard iO?

* Most of our candidate applications just require private
puncturable PRFs
* New applications for more expressive families of constraints?

Thanks!

