
Constraining Pseudorandom 

Functions Privately

David Wu

Stanford University

Joint work with Dan Boneh and Kevin Lewi



Pseudorandom Functions (PRFs) [GGM84]

�: 	� �� → �

��

� ∈�

� �, �

�
�

←�

Pseudorandom

�

� ∈�

�	�


�
�

←Funs��,��

Random

�



Constrained PRFs [BW13, BGI13, KPTZ13]

�: 	� � � → �

Constrained PRF: PRF with additional “constrain” 

functionality

Constrain�

PRF key constrained key

can be used to evaluate at all 

points � ∈ � where � � � 1



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain�

Correctness: constrained evaluation at � ∈ �
where � � � 1 yields PRF value at �

Security: PRF value at points � ∈ � where 
� � � 0 are indistinguishable from random



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain�

Many applications:

• Identity-Based Key Exchange, Optimal Broadcast 

Encryption [BW13]

•Punctured Programming Paradigm [SW14]

•Multiparty Key Exchange, Traitor Tracing [BZ14]



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

• Puncturable PRF: constrained keys allow evaluation at all but 
a single point

• Easily constructed from GGM:



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

given root key �, can evaluate PRF everywhere



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

puncture at � = 01



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

these two values suffice to evaluate at all other 

points



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

in general, punctured key consists of � nodes if 

domain of PRF is 0,1 �



Puncturable PRFs from GGM

�

�� ��

	 
 = 
� ∥ 
�

��� ��� ��� ���

	 
� = 
�� ∥ 
�� 	 
� = 
�� ∥ 
��

given �� and ���, easy to tell that 01 is the 

punctured point



Constraining PRFs Privately

Constrain�

Can we build a constrained PRF where the 

constrained key for a circuit � hides �?

msk sk�



Constraining PRFs Privately

��

��, ��

Constrain	msk, ��


msk ← Setup 1�

World 0

�

��, ��

World 1

�

Constrain	msk, ��


msk ← Setup 1�

Single-key privacy Definitions generalize to multi-key privacy. See paper for details.



Private Puncturing

•Correctness: constrained evaluation at � � �

yields � �, �

•Security: ���, �� is indistinguishable from random

•Privacy: constrained key hides �

Puncture�
msk sk�



Implications of Privacy

Consider value of 
�

:

•Security: Independent of Eval�msk, ��

•Privacy: Unguessable by the adversary

Puncture�
msk sk�



Using Privacy: Restricted Keyword Search

PRF�	Honeycomb
 → 5,8,13

PRF�	KitKat
 → 18, 21

PRF�	Lollipop
 → 3,10,11

PRF� Marshmallow → 11,9,223

server with 

encrypted index

key issuer

ConstrainEval	sk, Honeycomb


5,8,13

sk�������		
�

msk

create index



Using Privacy: Restricted Keyword Search

PRF�	Honeycomb
 → 5,8,13

PRF�	KitKat
 → 18, 21

PRF�	Lollipop
 → 3,10,11

PRF� Marshmallow → 11,9,223

server with 

encrypted index

ConstrainEval	sk, Jelly	Bean


No results

search for non-existent 

keyword



Using Privacy: Restricted Keyword Search

PRF�	Honeycomb
 → 5,8,13

PRF�	KitKat
 → 18, 21

PRF�	Lollipop
 → 3,10,11

PRF� Marshmallow → 11,9,223

server with 

encrypted index

ConstrainEval	sk,Marshmallow


No results

search for “restricted” 

keyword



Using Privacy: Restricted Keyword Search

PRF�	Honeycomb
 → 5,8,13

PRF�	KitKat
 → 18, 21

PRF�	Lollipop
 → 3,10,11

PRF� Marshmallow → 11,9,223

server with 

encrypted index

ConstrainEval	sk,Marshmallow


No results

• Security: ConstrainEval sk,Marshmallow 9

Eval msk,Marshmallow

• Privacy: Does not learn that no results were 

returned because no matches for keyword or if 

the keyword was restricted



The Many Applications of Privacy

• Private constrained MACs
• Parties can only sign messages satisfying certain policy (e.g., enforce a 

spending limit), but policies are hidden

• Symmetric Deniable Encryption [CDNO97]

• Two parties can communicate using a symmetric encryption scheme

• If an adversary has intercepted a sequence of messages and coerces one of 
the parties to produce a decryption key for the messages, they can produce a 
“fake” key that decrypts all but a subset of the messages

• Constructing a family of watermarkable PRFs

• Can be used to embed a secret message within a PRF that is “unremovable” –
useful for authentication [CHNVW15]

See paper for details!



Summary of our Constructions

• From indistinguishability obfuscation (iO):

• Private puncturable PRFs from iO + one-way functions

• Private circuit constrained PRFs from sub-exponentially 
hard iO + one-way functions

• From concrete assumptions on multilinear maps:

• Private puncturable PRFs from subgroup hiding 
assumptions

• Private bit-fixing PRF from multilinear Diffie-Hellman 
assumption

This talk

See paper



Constructing Private Constrained PRFs

Tool: indistinguishability obfuscation [BGI�01, GGH�13]

Program 
� Program 
�

iO iO

iO(��) ≈� iO(��)

iO(:�) iO(:�)

∀� ∶ �� � = ��(�)



Indistinguishability Obfuscation (iO)

• First introduced by Barak et al. [BGI�01]

• First construction from multilinear maps [GGH�13]
• Subsequent constructions from multilinear maps [BR13, 

BGK�14, AGIS14, Zim14, AB15, …]

• Constructions also from (compact) functional encryption 
[AJ15, AJS15]



Indistinguishability Obfuscation (iO)

Many applications – “crypto complete”

• Functional encryption [GGH�13]

• Deniable encryption [SW13]

• Witness encryption [GGSW13]

• Private broadcast encryption [BZ14]

• Traitor tracing [BZ14]

• Multiparty key exchange [BZ14]

• Multiparty computation [GGHR14]

• and more…



Private Puncturing from iO

•Starting point: puncturable PRFs (e.g. GGM)

•Need a way to hide the point that is punctured

• Intuition: obfuscate the puncturable PRF

•Question: what value to output at the punctured 
point?



Private Puncturing from iO

Use iO to hide the punctured point and output 
uniformly random value at punctured point


�(�):

• If � = �, output �

• Else, output PRF(�, �)

Program for punctured PRF

(punctured at �)

real value of 

the PRF

random value

(hard coded)



Private Puncturing from iO

Suppose PRF is puncturable (e.g., GGM)

• Master secret key: PRF key �

• PRF output at � ∈ �: PRF �, �

��(�):

• If � = �, output �

• Else, output PRF(�, �)
iO

Punctured key for a point � is an obfuscated program

Constrained evaluation corresponds to evaluating obfuscated 
program



Private Puncturing from iO: Privacy

Recall privacy notion:

��

��, �� ∈ �

Puncture	�, ��


msk ← Setup 1�

World 0

�

��, �� ∈ �

World 1

�

Puncture	�, ��


msk ← Setup 1�



Private Puncturing from iO: Privacy



�(�):

• If � = ��, output �

• Else, output PRF(�, �)



�
� (�):

• If � = ��, output �

• Else, output PRF(�
� , �)

By correctness of puncturing, ���
and ���

� compute identical functions

≈�
iO iO



Private Puncturing from iO: Privacy



�(�):

• If � = ��, output �

• Else, output PRF(�, �)
≈�

iO iO

Hybrid 0: Real game Hybrid 1: Challenger 

responds to puncture 

query with iO of this 

program



�
� (�):

• If � = ��, output �

• Else, output PRF(�
� , �)



Private Puncturing from iO: Privacy

Hybrid 1 Hybrid 2

iO iO≈�

Invoke puncturing security

:��
�� (�):

• If � = ��, output PRF(�, ��)

• Else, output PRF(��� , �)



�
� (�):

• If � = ��, output �

• Else, output PRF(�
� , �)



Private Puncturing from iO: Privacy

Hybrid 2 Hybrid 3

iO iO≈�

Invoke iO security



�
���(�):

• Output PRF(�, �)

:��
�� (�):

• If � = ��, output PRF(�, ��)

• Else, output PRF(��� , �)

The program in Hybrid 3 is independent of ��. Similar 

argument holds starting from ���(�)



Private Puncturing from iO: Summary

Use iO to hide the punctured point and output 
uniformly random value at punctured point


�(�):

• If � = �, output �

• Else, output PRF(�, �)



Private Circuit Constrained PRF from iO

Construction generalizes to circuit constraints, except 
random values now derived from another PRF


�(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)

�′ is independently 

sampled PRF key

“real” PRF value



Private Circuit Constrained PRF from iO

Recall intuitive requirements for 
private constrained PRF:

• Security: Values at constrained 

points independent of actual 

PRF value at those points

• Privacy: Values at constrained 

points are unguessable by the 

adversary


�(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)



Private Circuit Constrained PRF from iO

Security proof similar to that for 
private puncturable PRF

Requires exponential number of 
hybrids (one for each input), so 
require sub-exponential hardness 
for iO and one-way functions


�(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)



Conclusions

•New notion of private constrained PRFs

• Simple definitions, but require powerful tools to 
construct: iO / multilinear maps

•Private constrained PRFs immediately provide natural 
solutions to many problems



Open Questions

•Puncturable PRFs can be constructed from OWFs

• Can we construct private puncturable PRFs from OWFs?

• Can we construct private circuit constrained PRFs without 
requiring sub-exponentially hard iO?

•Most of our candidate applications just require private 
puncturable PRFs

• New applications for more expressive families of constraints?



Thanks!


