
Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Interactive Arguments for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject

Completeness: 𝐶 𝑥,𝑤 = 1 ⟹ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = 1 = 1

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

Succinct Arguments

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject
Argument system is succinct if:

• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

𝜆 is a security
parameter

Verifier complexity significantly
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝑥, 𝑤) 𝑉(𝑥)

accept / reject

𝜋

Argument consists of a
single message

Instantiation: “CS proofs” in the
random oracle model [Mic94]

Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝜎, 𝑥, 𝑤) 𝑉(𝜏, 𝑥)

accept / reject

𝜋

Argument consists of a
single message

common reference
string (CRS)

verification
state

Setup 1𝜆

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting

[See paper for details]

Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

• Quasi-optimal succinctness:
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

For simplicity, we ignore low order
terms poly 𝜆, log 𝐶

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

This work ෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

For simplicity, we ignore low order
terms poly 𝜆, log 𝐶

This Work

New framework for building SNARGs (following [BCIOP13, BISW17])

Step 1 (information-theoretic):
• Linear multi-prover interactive proofs (linear MIPs)
• This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):
• Linear-only vector encryption to simulate linear MIP model
• This work: linear MIP ⟹ preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector
encryption over rings)

Linear PCPs [IKO07]

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽

Instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂(𝐶 2) [ALMSS92]

• 3-query LPCP based on quadratic span
programs: 𝑚 = 𝑂(𝐶) [GGPR13]verifier

𝑥, 𝑤PCP where the proof
oracle implements a

linear function 𝜋 ∈ 𝔽𝑚 In these instantiations,
verifier is oblivious (queries
independent of statement)

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

Encryption scheme that only
supports linear homomorphism

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

SNARG proof

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires
𝑂 𝑘𝑚 homomorphic operations
on ciphertexts: prover complexity

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires
𝑂 𝑘𝑚 homomorphic operations
on ciphertexts: prover complexity

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶

We pay 𝑂(𝜆) for each
homomorphic

operation. Can we
reduce this?

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic
operation on a single field

element is polylog(𝜆)

Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to
multiple linear proof oracles

Can convert linear MIP to
preprocessing SNARG using linear-
only (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries is polylog(𝜆)

Then, linear MIP is quasi-optimal

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Proof size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

More provers, shorter (individual) proofs

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in
[BCIOP13] require a field of

size 2Ω(𝜆)

Can we use existing
linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in
[BISW17] have query

complexity Ω(𝜆)

Can we use existing
linear PCPs?

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Quasi-Optimal Linear MIP

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

Decompose 𝐶 into functions
𝑓1, … , 𝑓ℓ, where each function can be

computed by a circuit of size 𝑠/ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝑥′ only depends on
the statement 𝑥

• Completeness: If 𝐶 𝑥,𝑤 = 1, then
𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖
• Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′,

at most 2/3 of 𝑓𝑖 𝑥
′, 𝑤′ = 1

• Efficiency: (𝑥′, 𝑤′) can be computed
by a circuit of size ෨𝑂(𝑠)

𝑓𝑖 need not read all
bits of input

statement-
witness for 𝐶

statement-
witness for 𝑓𝑖’s

Quasi-Optimal Linear MIP

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

Using constant-query linear
PCP based on QSPs [GGPR13],
𝜋𝑖 ∈ 𝔽𝑝

𝑚 where 𝑚 = 𝑂 Τ𝐶 ℓ

and provides soundness
1/poly 𝜆

Quasi-Optimal Linear MIP

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

Verifier invokes linear PCP
verifier for each instance

Quasi-Optimal Linear MIP

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

• Completeness: Follows by
completeness of decomposition
and linear PCPs

• Soundness: Each linear PCP
provides Τ1 poly 𝜆 soundness
and for false statement, at least
1/3 of the statements are false,
so if ℓ = Ω(𝜆), verifier accepts

with probability 2−Ω 𝜆

Quasi-Optimal Linear MIP

• Completeness: Follows by
completeness of decomposition
and linear PCPs

• Soundness: Each linear PCP
provides Τ1 poly 𝜆 soundness
and for false statement, at least
1/3 of the statements are false,
so if ℓ = Ω(𝜆), verifier accepts

with probability 2−Ω 𝜆

Problematic however if prover
uses different 𝑥′, 𝑤′ to

construct proofs for different 𝑓𝑖’s

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′,
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ;
however, all of the 𝑓𝑖(𝑥

′,⋅) could
individually be satisfiable

Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of
the common statement-witness 𝑥′, 𝑤′

Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of
the common statement-witness 𝑥′, 𝑤′

Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of
the common statement-witness 𝑥′, 𝑤′

Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of
the common statement-witness 𝑥′, 𝑤′

Verifier knows 𝑥′, so just need
a mechanism to check that the
prover uses a consistent 𝑤′ in

proofs 𝜋1, … , 𝜋ℓ

Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof
correspond to witness associated

with the statement

Goal: check that assignments
to 𝑤′ are consistent via

linear queries to 𝜋𝑖

Each proof induces an
assignment to a few bits of

the common witness 𝑤′

Consistency Checking

Global consistency check [Gro09]

𝜋1

𝜋2

𝜋3

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

Proof components

𝑟1 𝑟2

𝑟3 𝑟4

𝑟5 𝑟6

Verifier’s queries (remaining
components padded with 0s)

𝑟3 𝑟6

𝑟1 𝑟5

𝑟4 𝑟2

Random
components

Permuted
components

Consistent if 𝛼1 = 𝛼3, 𝛼2 = 𝛼6,
and 𝛼4 = 𝛼5

Permute queries according to
replication pattern

Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 = 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 = 𝛼1𝑟3 + 𝛼3𝑟1

If 𝛼2 = 𝛼6, then 𝛼2𝑟2 + 𝛼6𝑟6 = 𝛼2𝑟6 + 𝛼2𝑟2
If 𝛼4 = 𝛼5, then 𝛼4𝑟4 + 𝛼5𝑟5 = 𝛼4𝑟5 + 𝛼5𝑟4

Proof QueryQuery

Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 = 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 = 𝛼1𝑟3 + 𝛼3𝑟1

If 𝛼2 = 𝛼6, then 𝛼2𝑟2 + 𝛼6𝑟6 = 𝛼2𝑟6 + 𝛼2𝑟2
If 𝛼4 = 𝛼5, then 𝛼4𝑟4 + 𝛼5𝑟5 = 𝛼4𝑟5 + 𝛼5𝑟4

If assignment is consistent, then sum of
responses to first query equals sum of

responses to second query

Proof QueryQuery

Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 ≠ 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 ≠ 𝛼1𝑟3 + 𝛼3𝑟1
unless 𝑟1 𝛼1 − 𝛼3 + 𝑟3 𝛼1 − 𝛼3 = 0

By the Schwartz-Zippel lemma,
with probability 1/ 𝔽 over choice

of 𝑟1, 𝑟3, this holds

Proof QueryQuery

Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 ≠ 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 ≠ 𝛼1𝑟3 + 𝛼3𝑟1
unless 𝑟1 𝛼1 − 𝛼3 + 𝑟3 𝛼1 − 𝛼3 = 0

We can detect inconsistent assignment with
probability 1/ 𝔽 — not sufficient for a quasi-optimal

linear MIP with soundness 2−𝜆 since 𝔽 = poly(𝜆)

Proof QueryQuery

Consistency Checking

Key idea: pairwise consistency checks

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟7 𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟1 𝑟2

Global consistency check:
permute queries according
to global replication pattern

Proof Queries

Consistency Checking

Key idea: pairwise consistency checks

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟2

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟4

𝛼5 𝛼6 𝑟5 𝑟6 𝑟5 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟7 𝑟6

Local consistency check:
permute queries according
to local replication pattern

Only check consistency of
variables that are replicated

within the same block

If there are inconsistencies in the assignments in Ω 𝜆

blocks, then verifier rejects with probability 1 − 2−Ω 𝜆

Consistency Checking

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′, at most 2/3 of 𝑓𝑖 𝑥
′, 𝑤′ = 1

For a statement 𝑥 ∉ ℒ, robustness implies the following:

• There are Ω 𝜆 proofs 𝜋𝑖 with respect to a consistent witness 𝑤′

• There are Ω(𝜆) disjoint pairs of rows containing an inconsistent assignment
to some common variable in 𝑤′

Ω 𝜆 linear PCP instances will fail to verify

Hope: pairwise consistency check rejects

with probability 1 − 2−Ω 𝜆

Consistency Checking

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟2

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟4

𝛼5 𝛼6 𝑟5 𝑟6 𝑟5 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟7 𝑟6

Key idea: pairwise consistency checks

• For a false statement where all of the
linear PCPs verify, there must be Ω 𝜆
disjoint pairs of rows containing an
inconsistent assignment

• Question: Which pairs to check in the
pairwise inconsistency check?

This partitioning checks whether
𝛼1 = 𝛼3 and 𝛼6 = 𝛼8 but not

𝛼2 = 𝛼7 or 𝛼4 = 𝛼5

Consistency Checking
Key idea: permute the entries in the proofs so that repeated variable appear in
adjacent rows

Proofs used to
verify linear PCP

instances

Permuted proofs
used for consistency

checks

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

𝛼7 𝛼8

𝜋1

𝜋2

𝜋3

𝜋4

𝛼1 𝛼2

𝛼3

𝛼4

𝛼5 𝛼6

𝛼7

𝛼8

𝜋1
′

𝜋2
′

𝜋3
′

𝜋4
′

Replicated variables
appear in adjacent

rows (easily checked
by pairwise

consistency check)

Linear MIP consists original proofs 𝜋𝑖
and the permuted proofs 𝜋𝑖

′

Consistency Checking
Key idea: permute the entries in the proofs so that repeated variable appear in
adjacent rows

Proofs used to
verify linear PCP

instances

Permuted proofs
used for consistency

checks

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

𝛼7 𝛼8

𝜋1

𝜋2

𝜋3

𝜋4

𝛼1 𝛼2

𝛼3

𝛼4

𝛼5 𝛼6

𝛼7

𝛼8

𝜋1
′

𝜋2
′

𝜋3
′

𝜋4
′

Replicated variables
appear in adjacent

rows (easily checked
by pairwise

consistency check)

Linear MIP consists original proofs 𝜋𝑖
and the permuted proofs 𝜋𝑖

′

Verifier also needs to check that 𝜋𝑖 𝑖∈ ℓ and 𝜋𝑖
′
𝑖∈ ℓ are

correctly permuted (in the linear MIP model)
• Use a Beneš network to “route” the different

permutations – incurs log 𝜆 overhead
• Rely on randomization since prover can introduce 𝑜 𝜆

inconsistencies without being detected

[See paper for details]

Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is
used to prove satisfiability of
each 𝑓𝑖

• Pairwise consistency checks used
for soundness amplification

Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than constant fraction of 𝑓𝑖

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[IKOS07] with information-theoretic MPC
protocol with polylogarithmic overhead [DIK10]

[See paper for details]

Quasi-Optimal SNARGs

Quasi-Optimal Linear
MIP

Linear-Only Vector
Encryption over Rings

Quasi-Optimal
SNARGs

This work: first construction of a quasi-optimal SNARG
from concrete cryptographic assumptions

Even Shorter SNARGs

Theorem. For general NP languages, achieving soundness error 2−𝜌

against polynomially-bounded provers requires proofs of size Ω 𝜌 .

Can we build a (designated-verifier) 1-bit SNARG with soundness
Τ1 2 + negl 𝜆 ?
• Natural primitive for building optimally succinct SNARGs

More generally, we can view this as an
optimally laconic interactive argument (i.e.,
an interactive argument system where the

prover communicates a single bit)

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Possible from indistinguishability obfuscation (iO)

Prove𝐶,𝑘(𝑥, 𝑤):
• if 𝐶 𝑥,𝑤 = 1, outputs PRF(𝑘, 𝑥)
• else, output ⊥

CRS is obfuscation of this program

Secret verification state is PRF key 𝑘

Proof is a 1-bit MAC
on the statement

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

In the interactive setting, can build optimally-laconic arguments for NP
from witness encryption for NP

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption
for cryptographically-hard languages

Languages where YES instances are
computationally indistinguishable

from NO instances

Messages are encrypted with respect to a statement
𝑥, and semantic security holds with respect to a

randomly chosen NO instance 𝑥

Weaker than the usual notion of
witness encryption, but suffices to
build PKE with fast key-generation

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption
for cryptographically-hard languages

Statement 𝑥

Setup 1𝜆, 𝑥

𝑏 ∈ 0,1

Since ℒ is cryptographically-hard,
there is exactly 1 accepting proof

Soundness says that 𝑏 should be
hard to guess – can be used to

blind a message

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption
for cryptographically-hard languages

• Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

• Optimally-laconic arguments is a powerful primitive
• Conceptually similar to recent work [BDRV17] showing connections

between laconic zero-knowledge arguments and PKE

In the case of 1-bit SNARGs, soundness alone
suffices for our variant of witness encryption

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption
for cryptographically-hard languages

• Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

• Optimally-laconic arguments is a powerful primitive
• Conceptually similar to recent work [BDRV17] showing connections

between laconic zero-knowledge arguments and PKE
• Open problem: Can we construct optimally-laconic arguments from

standard assumptions?

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

• Quasi-optimal succinctness: 𝜋 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity: 𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

New framework for building quasi-optimal SNARG by combining quasi-optimal
linear MIP with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

Introduced new notion of a 1-bit SNARG (and optimally laconic argument) – has
connections to witness encryption

Open Problems

Quasi-optimal SNARGs with additional properties:
• Publicly-verifiable / multi-theorem (in designated verifier setting)

• Zero-knowledge

New constructions of 1-bit SNARGs and optimally laconic arguments

Thank you!

