Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Interactive Arguments for NP

L-={x:C(x,w) =1 for some w}

accept / reject
Completeness: C(x,w) =1 = Pr[(P(x,w),V(x))=1] =1

Soundness: for all provers P* of size 24:
x & Lo = Pr{P*(x),V(x))=1] <274

Succinct Arguments

L-={x:C(x,w) =1 for some w}

Ais a security |
. . parameter accept / reject
Argument system is succinct if:

* Prover communication is poly(A + log|C]|)
* V can be implemented by a circuit of size poly(A + |x]| + log|C])

Verifier complexity significantly

smaller than classic NP verifier

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in the

random oracle model [micos]

Argument consists of a

single message
accept / reject

Succinct Non-Interactive Arguments (SNARGs)

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

Argument consists of a

single message
accept / reject

Complexity Metrics for SNARGs

Soundness: for all provers P* of size 24:
x & Lo = Pr{P*(),V(x))=1] <274

How short can the proofs be?
TR, Cven in the designated-

verifier setting

[See paper for details]

How much work is needed to generate the proof?
[P =Q([C])

Quasi-Optimal SNARGs

Soundness: for all provers P* of size 24:
x & Lo = Pr{P*(x),V(x))=1] <274

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

e Quasi-optimal succinctness:
|| = A - polylog(4, |C]) = O(4)

* Quasi-optimal prover complexity:
|P| = O(|C|) + poly(4,log|C])

Quasi-Optimal SNARGs

Prover Proof

Construction Complexity Size Assumption
CS Proofs [Mic94] o(ch 0(21?) Random Oracle
Groth [Gro16] 0(AlIC) 0(1) Generic Group

_ 5 5 -
Groth [Gro10] O(A|C|* + |C|A%) 0(1) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] olch o) Linear-Only Encryption
BISW (LWE/RLWE) [BIS\W/17] Jeid) 01 Linear-Only

Vector Encryption

For simplicity, we ignore low order

terms poly (4, log|C]|)

Prover Proof

Construction Complexity Size Assumption
CS Proofs [Mic94] o(c) 0(1?) Random Oracle
Groth [Gro16] o0(AlC) 0(1) Generic Group

- 5 5 -
Groth [Gro10] O(AlIC|* + |C|A%) 0(1) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] olch o) Linear-Only Encryption
BISW (LWE/RLWE) [BISW17] o(ch 01 Linear-Only

Vector Encryption

For simplicity, we ignore low order

terms poly (4, log|C]|)

Prover Proof
Construction Complexity Size Assumption
CS Proofs [Mic94] o(c) 0(1?) Random Oracle
Groth [Gro16] o0(AlC) 0(1) Generic Group
- : : -
Groth [Gro10] O(AlIC|* + |C|A%) 0(1) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] olch o) Linear-Only Encryption
~ = Linear-Only
BISW (LWE/RLWE) [BIS\W/17] o(ch 0(1) Vector Encryption
This work o(|C)) o) Linear-Only

Vector Encryption

This Work

New framework for building SNARGs (following [sciop13, Bisw17))

Step 1 (information-theoretic):
e Linear multi-prover interactive proofs (linear MIPs)
* This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):
* Linear-only vector encryption to simulate linear MIP model
 This work: linear MIP = preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector
encryption over rings)

Linear PCPS qikoo7,

PCP where the proof (x, w)
oracle implements a

linear function T € F™ In these instantiations,

verifier is oblivious (queries

independent of statement)

qg € F™

Instantiations:
(g,) € F e 3-query LPCP based on the Walsh-
Hadamard code: m = O(|C|?) [ALmss92]
e 3-query LPCP based on quadratic span
verifier programs: m = O(|C|) [6GPR13]

From Linear PCPs to SNARGS scior13;

Verifier encrypts its queries using
a linear-only encryption scheme

part of the CRS

Encryption scheme that only

supports linear homomorphism

Verifier encrypts its queries using
a linear-only encryption scheme

Ps to SNARGS sciop13;

From Linear PCPs to SNARGS scior13;

Verifier encrypts its queries using Prover constructs linear
a linear-only encryption scheme PCP i from (x, w)

Prover homomorphically computes
V" responses to linear PCP queries

part of the CRS

(T[' ql) (T[' q2>
SNARG proof

From Linear PCPs to SNARGS scior13;

Evaluating inner product requires Prover constructs linear
O (km) homomorphic operations
on ciphertexts: prover complexity

0(A) - 0(km) = 0(4|C|)

PCP it from (x,w)

d1 42 43 --- 4k

Prover homomorphically computes

Proof consists of a constant , _
responses to linear PCP queries

number of ciphertexts: total length
O (A) bits

(T[' ql) (T[' q2>
SNARG proof

From Linear PCPs to SNARGS scior13;

Evaluating inner product requires Prover COFSthCtS linear
O (km) homomorphic operations PCP 7 from (x, w)
on ciphertexts: prover complexity

0(A) - 0(km) = 0(4|C|)

q1 92 43 -+ qx We pay O(A) for each
homomorphic

operation. Can we
reduce this?
Proof consists of a constant

number of ciphertexts: total length
O (A) bits

SNARG proof

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,,[x]/®,(x) = IFf;

Homomorphic operations
correspond to component-wise
additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt £ = O(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,,[x]/®,(x) = IFf;

Homomorphic operations

Amortized cost of homomorphic
operation on a single field

element is polylog(A)

Using RLWE-based encryption schemes, can
encrypt £ = O(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

(TTe, qp) |

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Linear Multi-Prover Interactive Proofs (MIPs)

(x, w)

/\

preprocessing SNARG using linear-
only (vector) encryption over rings

Verifier has oracle access to
multiple linear proof oracles
Can convert linear MIP to 8

Linear Multi-Prover Interactive Proofs (MIPs)

Suppose
e Number of provers £ = 0(1)
* Proofsmy, ..., m, € F' wherem =

* Number of queries is polylog(A)
Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Prover complexity:

0(tm) = 0(|C])
Proof size:
O(¢ - polylog(1)) = 0(2)
Suppose

e Number of provers £ = 0(1)
* Proofsmy, ..., m, € F' wherem =

* Number of queries is polylog(A)
Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
e Number of provers is O(1)
e Each proof has length O(|C|/2)
* Proofs are over a polynomial-size field: p = poly(1)
* Query complexity is polylog(A1)

More provers, shorter (individual) proofs

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
* Number of provers is 0~(/1) Linear PCPs used in
* Each proof has length O(|C|/4) [BCIOP13] require a field of
* Proofs are over a polynomial-size field: p = poly(1) size 294
* Query complexity is polylog(A1)

Can we use existing
linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
e Number of provers is O(1)
e Each proof has length O(|C|/2)
* Proofs are over a polynomial-size field: p = poly(A1)
* Query complexity is polylog(A)

Linear PCPs used in Can we use existing

[BIS\W17] have query linear PCPs?
complexity (1)

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Quasi-Optimal Linear MIP

x' only depends on

the statement x

(x,w) == (x',w")

Boolean statement- statement-

. . witness for C witness for f;’s
circuit C of

size s : * Completeness: If C(x,w) = 1, then

fi(x',w') =1foralli
* Robustness: If x & L, then for all w’',
at most 2/3 of f;(x',w') =1

Decompose C into funf:tions * Efficiency: (x’, W') can be computed
f1, -, fe, where each function can be by a circuit of size O(s)

computed by a circuit of size s /¢

fi; need not read all
bits of input

Quasi-Optimal Linear MIP
(x,w) == (x',w')

Using constant-query linear
Boolean PCP based on QSPs [GGPR13],

circuit C of m; € Ft where m = O(|C|/%)
size s E : and provides soundness
1/poly(2)

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over IF,, where p = poly(4)

Quasi-Optimal Linear MIP
(x,w) == (x',w')

Boolean o :
Verifier invokes linear PCP

verifier for each instance

circuit C of
size S

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over IF,, where p = poly(4)

Quasi-Optimal Linear MIP

T4 * Completeness: Follows by
completeness of decomposition
and linear PCPs

Boolean L. * Soundness: Each linear PCP
circuit C of provides 1/poly(A) soundness
size s : : and for false statement, at least
1/3 of the statements are false,
so if £ = Q(A), verifier accepts
L with probability 27%(%)

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over IF,, where p = poly(4)

Quasi-Optimal Linear MIP

* Completeness: Follows b
Robustness: If x & L, then for all w/', P o
completeness of decomposition

at most 2/3 of fi(x",w') =1 and linear PCPs

e Soundness: Each linear PCP

: , provides 1/poly(A) soundness
For false x, no single w" can and for false statement, at least
simultaneously satisfy f;(x',); 1/3 of the statements are false,

however, all of the f;(x’,-) could so if £ = Q(4), verifier accepts

. o o " " . ope — A
individually be satisfiable with probability 2~%®)
Problematic however if prover

uses different (x’,w') to
construct proofs for different f;’s

Consistency Checking

Each constraint function f; reads a few bits of
the common statement-witness (x’, w")

Consistency Checking

Each constraint function f; reads a few bits of
the common statement-witness (x’, w")

Consistency Checking

Each constraint function f; reads a few bits of
the common statement-witness (x’, w")

Consistency Checking

Verifier knows x’, so just need

a mechanism to check that the

prover uses a consistent w' in
proofs 14, ..., Ty

Each constraint function f; reads a few bits of
the common statement-witness (x’, w")

Consistency Checking

Require that linear PCPs are systematic: linear PCP T contains a copy of the witness:

!

Wy W:.'; other components

Goal: check that assignments

W; W, other components to w' are consistent via
linear queries to m;
Wé Wé other components

First few components of proof Each proof induces an
correspond to witness associated ‘ assignment to a few bits of
with the statement the common withess w'

I8
3

Consistency Checking

Global consistency check [Gro09] Permute queries according to
replication pattern

41

a3

Usg
Permuted
Proof components Random
components components
Consistent if a; = a3, a; = d, Verifier’s queries (remaining

and o, = a5 components padded with Os)

Consistency Checking

Global consistency check [Gro09]

Proof Query Query

a; T ‘ airy + ayry s Te ‘ a3 + a7
Az Oy r3 Iy ‘ A373 + A1y rn Ts ‘ a3y + auts
Az g s Tg ‘ AcTs + ATy T, Ty ‘ acty + agty

fa, = a;, thenar, + asry

a3 + azny

fa, = ag, thena,r, + ag7y
fa,

AT + ATy
s, then a, vy + asrs = ayrs + agry

Consistency Checking

Global consistency check [Gro09]

Proof Query Query

a; T ‘ airy + ayry s Te ‘ a3 + a7
Az Oy r3 Iy ‘ Q373 + ATy rH Ts ‘ A3 + Quts
Az g s Tg ‘ AcTs + ATy T, Ty ‘ acty + agty

If assignment is consistent, then sum of

responses to first query equals sum of
responses to second query

Consistency Checking

Global consistency check [Gro09]

Proof Query Query

a; T ‘ airy + ayry s Te ‘ a3 + a7
- - By the Schwartz-Zippel lemma,
Rl Yo o - U575 + probability 1/|F| over choice T g™

of ry, 13, this holds

|f a1 =+ a3, then a1 + X373 = X173 + X374
unless r; (a; — a5) +13(a; —ay) =0

Consistency Checking

Global consistency check [Gro09]

Proof Query Query

a; T ‘ airy + ayry s Te ‘ a3 + a7
Az Oy r3 Iy ‘ Q373 + ATy rn Ts ‘ A3 + Quts
Az g s Tg ‘ AcTs + ATy T, Ty ‘ acty + agty

We can detect inconsistent assignment with

probability 1/|IF| — not sufficient for a quasi-optimal
linear MIP with soundness 2~* since |F| = poly(1)

Consistency Checking

Key idea: pairwise consistency checks

Proof Queries

a; @y rn 1 r3 Te
a; o T T T T Global consistency check:

3 4 3 4 7 5
permute queries according

to global replication pattern
a: g rs Ts B 10 T3
a; Qg r, Ty o

Consistency Checking

Key idea: pairwise consistency checks

Local consistency check:
permute queries according
to local replication pattern

’----~

/4

Only check consistency of
variables that are replicated
within the same block

’—----

If there are inconsistencies in the assignments in Q(A)

blocks, then verifier rejects with probability 1 — 2~2W

Consistency Checking

Robustness: If x & L, then for all w', at most 2/3 of f;(x",w') = 1

For a statement x & L, robustness implies the following:

* There are Q(A) proofs m; with respect to a consistent witness w'

Q(A) linear PCP instances will fail to verify

* There are (A1) disjoint pairs of rows containing an inconsistent assignment
to some common variable in w'

Hope: pairwise consistency check rejects

with probability 1 — 27%@

Consistency Checking

Key idea: pairwise consistency checks

* For a false statement where all of the
linear PCPs verify, there must be (1)
disjoint pairs of rows containing an
inconsistent assighment

* Question: Which pairs to check in the
pairwise inconsistency check?

’----~

This partitioning checks whether

’----~

a1 = a3 and ag = ag but not
Ay = A7 OF Uy = Us

Consistency Checking

Key idea: permute the entries in the proofs so that repeated variable appear in
adjacent rows

————— ~\
! 17
LS *1 | (2 i | Ty Permuted proofs
| : used for consistency
I |
T, checks
Proofsusedto T2 | ‘& =\ Ly,
. .) S —— -7 . .
verify linear PCP - , . Replicated variables
instances T, N E i 4 appear in adjacent
! ! rows (easily checked
i L by pairwise
Ty | 250 |5 X /’I Tty consistency check)
| U —— -

Linear MIP consists original proofs m;
and the permuted proofs 7;

Consistency Checking

Key idea: permute the entries in the proofs so that repeated variable appear in
adjacent rows

Permuted proofs
Verifier also needs to check that {r;};c[¢ and {m;} [y are used for consistency

correctly permuted (in the linear MIP model) checks
e Use a Benes network to “route” the different

permutations —incurs log A overhead Replicated variables
 Rely on randomization since prover can introduce 0(A) appear in adjacent
inconsistencies without being detected rows (easily checked
by pairwise
[See paper for details] consistency check)

Linear MIP consists original proofs m;
and the permuted proofs 7;

Quasi-Optimal Linear MIPs

/Robust Decomposition\

C

AN

h f2 = fe

e Checking satisfiability of C
corresponds to checking
satisfiability of f4, ..., fy (each
of which can be checked by a
circuit of size |C|/¥)

* For a false statement, no
single witness can

simultaneously satisfy more
than constant fraction of f;

/ Consistency Check \

[l !

1Y) ﬂ'-é

-

A
I
i3 3

Tty

I
1 Ty
cd

* Check that consistent witness is
used to prove satisfiability of
each f;

* Pairwise consistency checks used
for soundness amplification

o /

Quasi-Optimal Linear MIPs

ﬂObUSt Decomposmon\ Robust decomposition can be instantiated by

C combining “MPC-in-the-head” paradigm
[IK0s07] with information-theoretic MPC
A protocol with polylogarithmic overhead [DiK10]
fi f2 o fe

[See paper for details]
e Checking satisfiability of C

corresponds to checking
satisfiability of f4, ..., fy (each
of which can be checked by a
circuit of size |C|/¥)

* For a false statement, no
single witness can

simultaneously satisfy more
than constant fraction of f;

Quasi-Optimal SNARGs

Quasi-Optimal Linear Linear-Only Vector
MIP Encryption over Rings

Quasi-Optimal
SNARGs

This work: first construction of a quasi-optimal SNARG
from concrete cryptographic assumptions

Even Shorter SNARGs

Theorem. For general NP languages, achieving soundness error 277
against polynomially-bounded provers requires proofs of size Q(p).

Can we build a (designated-verifier) 1-bit SNARG with soundness
1/2 + negl(A)?
* Natural primitive for building optimally succinct SNARGs

More generally, we can view this as an
optimally laconic interactive argument (i.e.,

an interactive argument system where the
prover communicates a single bit)

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness 1/2 + negl(4)?

Possible from indistinguishability obfuscation (iO)
Proof is a 1-bit MAC

-
Provec’k (x, W): on the statement
* if C(x,w) = 1, outputs PRF(k, x)
. *else, output L)

CRS is obfuscation of this program

Secret verification state is PRF key k

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness 1/2 + negl(A1)?

In the interactive setting, can build optimally-laconic arguments for NP
from witness encryption for NP

1-Bit SNARGs and Laconic Arguments

Messages are encrypted with respect to a statement
Can we build x, and semantic security holds with respect to a
randomly chosen NO instance x

Optimally-laconic arguments for NP = variant of witness encryption
for cryptographically-hard languages

Languages where YES instances are :
computationally indistinguishable Weaker than the usual notion of

from NO instances witness encryption, but suffices to
build PKE with fast key-generation

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness 1/2 + negl(4)?

Optimally-laconic arguments for NP = variant of witness encryption
for cryptographically-hard languages

Soundness says that b should be
Since L is cryptographically-hard, hard to guess — can be used to
there is exactly 1 accepting proof RLCL{Eli[clgidws blind a message

Setup(l”‘, x)

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness 1/2 + negl(4)?

Optimally-laconic arguments for NP = variant of witness encryption
for cryptographically-hard languages

 Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

* Optimally-laconic arguments is a powerful primitive

 Conceptually similar to recent work [BDRV17] showing connections
between laconic zero-knowledge arguments and PKE

In the case of 1-bit SNARGs, soundness alone

suffices for our variant of witness encryption

1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness 1/2 + negl(A1)?

Optimally-laconic arguments for NP = variant of witness encryption
for cryptographically-hard languages

 Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

* Optimally-laconic arguments is a powerful primitive

 Conceptually similar to recent work [BDRV17] showing connections
between laconic zero-knowledge arguments and PKE

* Open problem: Can we construct optimally-laconic arguments from
standard assumptions?

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:
» Quasi-optimal succinctness: || = 0(1)
» Quasi-optimal prover complexity: |P| = 0(|C]) + poly(4, log|C])

New framework for building quasi-optimal SNARG by combining quasi-optimal
linear MIP with linear-only vector encryption

* Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

Introduced new notion of a 1-bit SNARG (and optimally laconic argument) — has
connections to witness encryption

Open Problems

Quasi-optimal SNARGs with additional properties:
* Publicly-verifiable / multi-theorem (in designated verifier setting)
* Zero-knowledge

New constructions of 1-bit SNARGs and optimally laconic arguments

Thank you!

