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Interactive Arguments for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject

Completeness: 𝐶 𝑥,𝑤 = 1 ⟹ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = 1 = 1

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆



Succinct Arguments

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject
Argument system is succinct if:

• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

𝜆 is a security 
parameter

Verifier complexity significantly 
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤



Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝑥, 𝑤) 𝑉(𝑥)

accept / reject

𝜋

Argument consists of a 
single message

Instantiation: “CS proofs” in the 
random oracle model [Mic94]



Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝜎, 𝑥, 𝑤) 𝑉(𝜏, 𝑥)

accept / reject

𝜋

Argument consists of a 
single message

common reference 
string (CRS)

verification 
state

Setup 1𝜆

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs: 
allow “expensive” setup



Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting

[See paper for details]



Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it 
satisfies the following properties:

• Quasi-optimal succinctness: 
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶 )



Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶 )

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of 
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group



Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]
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Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group

For simplicity, we ignore low order 
terms poly 𝜆, log 𝐶



Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶 )

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of 
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group

This work ෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

For simplicity, we ignore low order 
terms poly 𝜆, log 𝐶



This Work

New framework for building SNARGs (following [BCIOP13, BISW17])

Step 1 (information-theoretic):
• Linear multi-prover interactive proofs (linear MIPs)
• This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):
• Linear-only vector encryption to simulate linear MIP model
• This work: linear MIP ⟹ preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector 
encryption over rings)



Linear PCPs [IKO07]

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽

Instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂( 𝐶 2) [ALMSS92]

• 3-query LPCP based on quadratic span 
programs: 𝑚 = 𝑂( 𝐶 ) [GGPR13]verifier

𝑥, 𝑤PCP where the proof 
oracle implements a 

linear function 𝜋 ∈ 𝔽𝑚 In these instantiations, 
verifier is oblivious (queries 
independent of statement)



From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using 
a linear-only encryption scheme



From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using 
a linear-only encryption scheme

Encryption scheme that only
supports linear homomorphism



From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using 
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes 
responses to linear PCP queries 

SNARG proof



From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using 
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes 
responses to linear PCP queries 

Proof consists of a constant
number of ciphertexts: total length 

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires 
𝑂 𝑘𝑚 homomorphic operations 
on ciphertexts: prover complexity 

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶



From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using 
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes 
responses to linear PCP queries 

Proof consists of a constant
number of ciphertexts: total length 

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires 
𝑂 𝑘𝑚 homomorphic operations 
on ciphertexts: prover complexity 

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶

We pay 𝑂(𝜆) for each 
homomorphic 

operation. Can we 
reduce this?



Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed 
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations 
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can 
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆 ) 

with ciphertexts of size ෨𝑂(𝜆)



Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed 
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations 
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can 
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆 ) 

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic 
operation on a single field 

element is polylog(𝜆)



Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can 
homomorphically apply independent linear functions to each slot



Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to 
multiple linear proof oracles

Can convert linear MIP to 
preprocessing SNARG using linear-
only (vector) encryption over rings



Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose 
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries is polylog(𝜆)

Then, linear MIP is quasi-optimal



Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose 
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries is polylog(𝜆)

Then, linear MIP is quasi-optimal

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Proof size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)



Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

More provers, shorter (individual) proofs



Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in 
[BCIOP13] require a field of 

size 2Ω(𝜆)

Can we use existing 
linear PCPs?



Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in 
[BISW17] have query 

complexity Ω(𝜆)

Can we use existing 
linear PCPs?

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability



Quasi-Optimal Linear MIP

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

Decompose 𝐶 into functions 
𝑓1, … , 𝑓ℓ, where each function can be 

computed by a circuit of size 𝑠/ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝑥′ only depends on 
the statement 𝑥

• Completeness: If 𝐶 𝑥,𝑤 = 1, then 
𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖
• Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′, 

at most 2/3 of 𝑓𝑖 𝑥
′, 𝑤′ = 1

• Efficiency: (𝑥′, 𝑤′) can be computed 
by a circuit of size ෨𝑂(𝑠)

𝑓𝑖 need not read all 
bits of input

statement-
witness for 𝐶

statement-
witness for 𝑓𝑖’s



Quasi-Optimal Linear MIP

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

Using constant-query linear 
PCP based on QSPs [GGPR13], 
𝜋𝑖 ∈ 𝔽𝑝

𝑚 where 𝑚 = 𝑂 Τ𝐶 ℓ

and provides soundness 
1/poly 𝜆



Quasi-Optimal Linear MIP

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

(𝑥, 𝑤) (𝑥′, 𝑤′)

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

Verifier invokes linear PCP 
verifier for each instance



Quasi-Optimal Linear MIP

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆)

• Completeness: Follows by 
completeness of decomposition 
and linear PCPs

• Soundness: Each linear PCP 
provides Τ1 poly 𝜆 soundness 
and for false statement, at least 
1/3 of the statements are false, 
so if ℓ = Ω(𝜆), verifier accepts 

with probability 2−Ω 𝜆



Quasi-Optimal Linear MIP

• Completeness: Follows by 
completeness of decomposition 
and linear PCPs

• Soundness: Each linear PCP 
provides Τ1 poly 𝜆 soundness 
and for false statement, at least 
1/3 of the statements are false, 
so if ℓ = Ω(𝜆), verifier accepts 

with probability 2−Ω 𝜆

Problematic however if prover 
uses different 𝑥′, 𝑤′ to 

construct proofs for different 𝑓𝑖’s

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′, 
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can 
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ; 
however, all of the 𝑓𝑖(𝑥

′,⋅) could 
individually be satisfiable



Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of 
the common statement-witness 𝑥′, 𝑤′



Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2
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Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of 
the common statement-witness 𝑥′, 𝑤′



Consistency Checking

(𝑥, 𝑤) 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 𝑓3

Each constraint function 𝑓𝑖 reads a few bits of 
the common statement-witness 𝑥′, 𝑤′

Verifier knows 𝑥′, so just need 
a mechanism to check that the 
prover uses a consistent 𝑤′ in 

proofs 𝜋1, … , 𝜋ℓ



Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof 
correspond to witness associated 

with the statement

Goal: check that assignments 
to 𝑤′ are consistent via 

linear queries to 𝜋𝑖

Each proof induces an 
assignment to a few bits of 

the common witness 𝑤′



Consistency Checking

Global consistency check [Gro09]

𝜋1

𝜋2

𝜋3

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

Proof components

𝑟1 𝑟2

𝑟3 𝑟4

𝑟5 𝑟6

Verifier’s queries (remaining 
components padded with 0s)

𝑟3 𝑟6

𝑟1 𝑟5

𝑟4 𝑟2

Random 
components

Permuted 
components

Consistent if 𝛼1 = 𝛼3, 𝛼2 = 𝛼6, 
and 𝛼4 = 𝛼5

Permute queries according to 
replication pattern



Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 = 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 = 𝛼1𝑟3 + 𝛼3𝑟1

If 𝛼2 = 𝛼6, then 𝛼2𝑟2 + 𝛼6𝑟6 = 𝛼2𝑟6 + 𝛼2𝑟2
If 𝛼4 = 𝛼5, then 𝛼4𝑟4 + 𝛼5𝑟5 = 𝛼4𝑟5 + 𝛼5𝑟4

Proof QueryQuery



Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 = 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 = 𝛼1𝑟3 + 𝛼3𝑟1

If 𝛼2 = 𝛼6, then 𝛼2𝑟2 + 𝛼6𝑟6 = 𝛼2𝑟6 + 𝛼2𝑟2
If 𝛼4 = 𝛼5, then 𝛼4𝑟4 + 𝛼5𝑟5 = 𝛼4𝑟5 + 𝛼5𝑟4

If assignment is consistent, then sum of 
responses to first query equals sum of 

responses to second query

Proof QueryQuery



Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 ≠ 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 ≠ 𝛼1𝑟3 + 𝛼3𝑟1
unless 𝑟1 𝛼1 − 𝛼3 + 𝑟3 𝛼1 − 𝛼3 = 0

By the Schwartz-Zippel lemma, 
with probability 1/ 𝔽 over choice 

of 𝑟1, 𝑟3, this holds

Proof QueryQuery



Consistency Checking

Global consistency check [Gro09]

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6𝛼1𝑟1 + 𝛼2𝑟2 𝛼1𝑟3 + 𝛼2𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟5𝛼3𝑟3 + 𝛼4𝑟4 𝛼3𝑟1 + 𝛼4𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟2𝛼5𝑟5 + 𝛼6𝑟6 𝛼5𝑟4 + 𝛼6𝑟2

If 𝛼1 ≠ 𝛼3, then 𝛼1𝑟1 + 𝛼3𝑟3 ≠ 𝛼1𝑟3 + 𝛼3𝑟1
unless 𝑟1 𝛼1 − 𝛼3 + 𝑟3 𝛼1 − 𝛼3 = 0

We can detect inconsistent assignment with 
probability 1/ 𝔽 — not sufficient for a quasi-optimal 

linear MIP with soundness 2−𝜆 since 𝔽 = poly(𝜆)

Proof QueryQuery



Consistency Checking

Key idea: pairwise consistency checks

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟6

𝛼3 𝛼4 𝑟3 𝑟4 𝑟7 𝑟5

𝛼5 𝛼6 𝑟5 𝑟6 𝑟4 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟1 𝑟2

Global consistency check: 
permute queries according 
to global replication pattern

Proof Queries



Consistency Checking

Key idea: pairwise consistency checks

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟2

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟4

𝛼5 𝛼6 𝑟5 𝑟6 𝑟5 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟7 𝑟6

Local consistency check: 
permute queries according 
to local replication pattern

Only check consistency of 
variables that are replicated 

within the same block

If there are inconsistencies in the assignments in Ω 𝜆

blocks, then verifier rejects with probability 1 − 2−Ω 𝜆



Consistency Checking

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′, at most 2/3 of 𝑓𝑖 𝑥
′, 𝑤′ = 1

For a statement 𝑥 ∉ ℒ, robustness implies the following:

• There are Ω 𝜆 proofs 𝜋𝑖 with respect to a consistent witness 𝑤′

• There are Ω(𝜆) disjoint pairs of rows containing an inconsistent assignment 
to some common variable in 𝑤′

Ω 𝜆 linear PCP instances will fail to verify

Hope: pairwise consistency check rejects 

with probability 1 − 2−Ω 𝜆



Consistency Checking

𝛼1 𝛼2 𝑟1 𝑟2 𝑟3 𝑟2

𝛼3 𝛼4 𝑟3 𝑟4 𝑟1 𝑟4

𝛼5 𝛼6 𝑟5 𝑟6 𝑟5 𝑟8

𝛼7 𝛼8 𝑟7 𝑟8 𝑟7 𝑟6

Key idea: pairwise consistency checks

• For a false statement where all of the 
linear PCPs verify, there must be Ω 𝜆
disjoint pairs of rows containing an 
inconsistent assignment

• Question: Which pairs to check in the 
pairwise inconsistency check?

This partitioning checks whether 
𝛼1 = 𝛼3 and 𝛼6 = 𝛼8 but not

𝛼2 = 𝛼7 or 𝛼4 = 𝛼5



Consistency Checking
Key idea: permute the entries in the proofs so that repeated variable appear in 
adjacent rows

Proofs used to 
verify linear PCP 

instances

Permuted proofs 
used for consistency 

checks

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

𝛼7 𝛼8

𝜋1

𝜋2

𝜋3

𝜋4

𝛼1 𝛼2

𝛼3

𝛼4

𝛼5 𝛼6

𝛼7

𝛼8

𝜋1
′

𝜋2
′

𝜋3
′

𝜋4
′

Replicated variables 
appear in adjacent 

rows (easily checked 
by pairwise 

consistency check)

Linear MIP consists original proofs 𝜋𝑖
and the permuted proofs 𝜋𝑖

′



Consistency Checking
Key idea: permute the entries in the proofs so that repeated variable appear in 
adjacent rows

Proofs used to 
verify linear PCP 

instances

Permuted proofs 
used for consistency 

checks

𝛼1 𝛼2

𝛼3 𝛼4

𝛼5 𝛼6

𝛼7 𝛼8

𝜋1

𝜋2

𝜋3

𝜋4

𝛼1 𝛼2

𝛼3

𝛼4

𝛼5 𝛼6

𝛼7

𝛼8

𝜋1
′

𝜋2
′

𝜋3
′

𝜋4
′

Replicated variables 
appear in adjacent 

rows (easily checked 
by pairwise 

consistency check)

Linear MIP consists original proofs 𝜋𝑖
and the permuted proofs 𝜋𝑖

′

Verifier also needs to check that 𝜋𝑖 𝑖∈ ℓ and 𝜋𝑖
′
𝑖∈ ℓ are 

correctly permuted (in the linear MIP model)
• Use a Beneš network to “route” the different 

permutations – incurs log 𝜆 overhead
• Rely on randomization since prover can introduce 𝑜 𝜆

inconsistencies without being detected

[See paper for details]



Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking 
satisfiability of 𝑓1, … , 𝑓ℓ (each 
of which can be checked by a 
circuit of size Τ𝐶 ℓ)

• For a false statement, no 
single witness can 
simultaneously satisfy more 
than constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is 
used to prove satisfiability of 
each 𝑓𝑖

• Pairwise consistency checks used 
for soundness amplification



Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking 
satisfiability of 𝑓1, … , 𝑓ℓ (each 
of which can be checked by a 
circuit of size Τ𝐶 ℓ)

• For a false statement, no 
single witness can 
simultaneously satisfy more 
than constant fraction of 𝑓𝑖

Robust decomposition can be instantiated by 
combining “MPC-in-the-head” paradigm 
[IKOS07] with information-theoretic MPC 
protocol with polylogarithmic overhead [DIK10]

[See paper for details]



Quasi-Optimal SNARGs

Quasi-Optimal Linear 
MIP

Linear-Only Vector 
Encryption over Rings

Quasi-Optimal 
SNARGs

This work: first construction of a quasi-optimal SNARG
from concrete cryptographic assumptions



Even Shorter SNARGs

Theorem. For general NP languages, achieving soundness error 2−𝜌

against polynomially-bounded provers requires proofs of size Ω 𝜌 .

Can we build a (designated-verifier) 1-bit SNARG with soundness 
Τ1 2 + negl 𝜆 ?
• Natural primitive for building optimally succinct SNARGs

More generally, we can view this as an 
optimally laconic interactive argument (i.e., 
an interactive argument system where the 

prover communicates a single bit)



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Possible from indistinguishability obfuscation (iO)

Prove𝐶,𝑘(𝑥, 𝑤):
• if 𝐶 𝑥,𝑤 = 1, outputs PRF(𝑘, 𝑥)
• else, output ⊥

CRS is obfuscation of this program

Secret verification state is PRF key 𝑘

Proof is a 1-bit MAC 
on the statement



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

In the interactive setting, can build optimally-laconic arguments for NP 
from witness encryption for NP



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption 
for cryptographically-hard languages

Languages where YES instances are 
computationally indistinguishable 

from NO instances

Messages are encrypted with respect to a statement 
𝑥, and semantic security holds with respect to a 

randomly chosen NO instance 𝑥

Weaker than the usual notion of 
witness encryption, but suffices to 
build PKE with fast key-generation



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption 
for cryptographically-hard languages

Statement 𝑥

Setup 1𝜆, 𝑥

𝑏 ∈ 0,1

Since ℒ is cryptographically-hard, 
there is exactly 1 accepting proof

Soundness says that 𝑏 should be 
hard to guess – can be used to 

blind a message



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption 
for cryptographically-hard languages

• Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

• Optimally-laconic arguments is a powerful primitive
• Conceptually similar to recent work [BDRV17] showing connections 

between laconic zero-knowledge arguments and PKE

In the case of 1-bit SNARGs, soundness alone 
suffices for our variant of witness encryption



1-Bit SNARGs and Laconic Arguments

Can we build a 1-bit SNARG with soundness Τ1 2 + negl 𝜆 ?

Optimally-laconic arguments for NP ⟹ variant of witness encryption 
for cryptographically-hard languages

• Can be viewed as a soundness-to-secrecy transformation (dual of secrecy-
to-soundness [AIK10])

• Optimally-laconic arguments is a powerful primitive
• Conceptually similar to recent work [BDRV17] showing connections 

between laconic zero-knowledge arguments and PKE
• Open problem: Can we construct optimally-laconic arguments from 

standard assumptions?



Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

• Quasi-optimal succinctness: 𝜋 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity: 𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶 )

New framework for building quasi-optimal SNARG by combining quasi-optimal 
linear MIP with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust 
decomposition and consistency check

Introduced new notion of a 1-bit SNARG (and optimally laconic argument) – has 
connections to witness encryption



Open Problems

Quasi-optimal SNARGs with additional properties:
• Publicly-verifiable / multi-theorem (in designated verifier setting)

• Zero-knowledge

New constructions of 1-bit SNARGs and optimally laconic arguments

Thank you!


