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The Internet of Things (IoT)

Lots of smart devices, but 

only useful if users can 

discover them!



Private Service Discovery

• Many existing service discovery protocols: Multicast DNS 
(mDNS), Apple Bonjour, Bluetooth Low Energy (BLE)

• But… not much privacy
• Recent study of mDNS announcements by Könings et al. [KBSW13] 

show that nearly 60% of devices revealed the device owner’s 
name in the clear (across approximately 3000 devices on a 
university campus)

• Service advertisements are not authenticated: malicious 
devices can forge service broadcasts



Private Service Discovery

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Alice

Each service specifies an 

authorization policy
Guest

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Stranger

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage



Private Mutual Authentication

Bob
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Private Mutual Authentication

Bob

In most existing mutual authentication protocols 
(e.g., TLS, IKE, SIGMA), one party must reveal its 

identity first

security system



Primary Protocol Requirements

•Mutual privacy: Identity of protocol participants are 
only revealed to authorized recipients

•Authentic advertisements: Service advertisements 
(for discovery) should be unforgeable and authentic



Identity and Authorization Model

Every party has a signing + verification key, and a

collection of human-readable names bound to their 

public keys via a certificate chain
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Identity and Authorization Model
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Every party has a signing + verification key, and a

collection of human-readable names bound to their 

public keys via a certificate chain



Identity and Authorization Model

Authorization decisions expressed as prefix patterns
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Policy: 
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Policy: 
alice/family/*



Protocol Construction
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Secure Key Agreement: SIGMA-I Protocol [CK01]
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Note: in the actual protocol, session ids are also included for replay prevention.
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Secure Key Agreement: SIGMA-I Protocol [CK01]
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Properties of the SIGMA-I Protocol

• Mutual authentication against active network adversaries

• Hides server’s (Bob’s) identity from a passive attacker

• Hides client’s (Alice’s) identity from an active attacker

• Bob’s identity is revealed to an active attacker!



Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

Public-key encryption scheme where public-keys can be 
arbitrary strings (identities)

IBE.Encrypt
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Alice can encrypt a 

message to Bob without 

needing to have exchanged 

keys with Bob



Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

root authority
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to obtain a decryption key for 

their identity

Bob can decrypt all messages 

encrypted to his identity 

using sk���

sk�	




Prefix-Based Encryption

Secret-keys and ciphertexts both associated with names
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Prefix-Based Encryption

Secret-keys and ciphertexts both associated with names

eve/devices/

security/
�

alice/devices/

secret key ciphertext

+

Decryption fails if name in ciphertext is not a 

prefix of the name in the secret key



Prefix-Based Encryption

Can be leveraged for prefix-based policies

Policy: 
alice/devices/*

Bob encrypts his message to the 

identity alice/devices/. Any 

user with a key that begins with 

alice/devices/ can decrypt. 



Prefix-Based Encryption from IBE [LW14]

Encryption is just IBE encryption

Secret key for a name is a collection of IBE secret keys, one for 
each prefix:

alice/devices/

security/

alice/ alice/

devices/
alice/devices/

security/

can decrypt encryptions to all prefixes 

of alice/devices/security



Private Mutual Authentication
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Key idea: encrypt certificate using prefix-based encryption



Private Mutual Authentication
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• Privacy for Alice’s identity: Alice sends her identity only after 
verifying Bob’s identity

• Privacy for Bob’s identity: Only users with a key that satisfies Bob’s 
policy can decrypt his identity



Private Mutual Authentication
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• Client overhead: Alice must perform prefix-based decryption on each 
flow

• Server overhead: Bob must perform prefix-based encryption on each 
handshake, but this encrypted identity can be cached and reused



Private Mutual Authentication
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Provably secure in the Canetti-Krawczyk model of key-
exchange assuming Hash-DH and security of underlying 

cryptographic primitives



Private Service Discovery

Two pieces: service announcements and private mutual authentication

Principal design goals:

• Private discovery: Only authorized clients can learn service details

• Authentic service announcements: Announcements are authenticated 
and unforgeable

• 0-RTT private mutual authentication: Clients can subsequently 
connect to service and include application data on initial flow



Private Service Discovery: Broadcast
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Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

ephemeral DH 

exponent

sender and 

recipient’s 

identities

message encrypted (and MACed) 

under handshake key

� � KDF���, ��, ���, C → S



�
�
←��

Private Service Discovery: Mutual Authentication
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application data can also be sent in the first message flow 

under another key derived from ��, ��, and ���:

����  KDF���, ��, ��� , app�

No forward secrecy for early application data sent 

during lifetime of broadcast.



Private Service Discovery: Mutual Authentication
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Private Service Discovery: Mutual Authentication
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final session key derived from both semi-static and 

ephemeral shares:
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Recovers forward secrecy for session messages.



Private Service Discovery: Mutual Authentication
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Implementation and Benchmarks

• Instantiated IBE scheme with Boneh-Boyen (BB
2
) IBE scheme

• Integrated private mutual authentication and private service 
discovery protocols into the Vanadium open-source 
framework for building distributed applications

https://github.com/vanadium/



Implementation and Benchmarks

Desktop Nexus 5X Raspberry Pi 2

SIGMA-I 7 ms 50 ms 87 ms

Private Mutual Auth. 13 ms 291 ms 326 ms

Slowdown 1.9x 5.8x 3.7x

Comparison of private mutual authentication protocol 
with non-private SIGMA-I protocol

Note: x86 assembly optimizations for pairing curve operations available only on desktop



Implementation and Benchmarks

• For private service discovery protocol, a typical service 
advertisement is � 820 bytes (for single policy pattern)

• Can broadcast using mDNS (supports packets of size up to 
1300 bytes)
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Implementation and Benchmarks

Processing advertisement requires 1 IBE decryption and 
1 ECDSA verification:

267	ms 	 11	ms � 278	ms on Nexus 5x
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Conclusions

• Existing key-exchange and service discovery protocols do not 
provide privacy controls

• Prefix-based encryption can be combined very naturally with 
existing key-exchange protocols to provide privacy + 
authenticity

• Overhead of resulting protocol small enough that protocols 
can run on many existing devices



Questions?


