
Privacy, Discovery, and Authentication

for the Internet of Things

David Wu

Joint work with Ankur Taly, Asim Shankar, and Dan Boneh

The Internet of Things (IoT)

Lots of smart devices, but

only useful if users can

discover them!

Private Service Discovery

• Many existing service discovery protocols: Multicast DNS
(mDNS), Apple Bonjour, Bluetooth Low Energy (BLE)

• But… not much privacy
• Recent study of mDNS announcements by Könings et al. [KBSW13]

show that nearly 60% of devices revealed the device owner’s
name in the clear (across approximately 3000 devices on a
university campus)

• Service advertisements are not authenticated: malicious
devices can forge service broadcasts

Private Service Discovery

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Alice

Each service specifies an

authorization policy
Guest

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Stranger

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Private Mutual Authentication

Bob

How to authenticate between mutually
distrustful parties?

Will only reveal

identity to

devices owned

by Alice.

Will only reveal

identity to Alice’s

family members.

security system

Private Mutual Authentication

Bob

In most existing mutual authentication protocols
(e.g., TLS, IKE, SIGMA), one party must reveal its

identity first

security system

Primary Protocol Requirements

•Mutual privacy: Identity of protocol participants are
only revealed to authorized recipients

•Authentic advertisements: Service advertisements
(for discovery) should be unforgeable and authentic

Identity and Authorization Model

Every party has a signing + verification key, and a

collection of human-readable names bound to their

public keys via a certificate chain

alice/family/

bob/

alice/device/

security/

popular_corp/

prod/S1234

verification key

Identity and Authorization Model

alice/

alice/family/

alice/family/

bob/

alice/family/

charlie/

alice/device/

alice/device/

security/

Every party has a signing + verification key, and a

collection of human-readable names bound to their

public keys via a certificate chain

Identity and Authorization Model

Authorization decisions expressed as prefix patterns

alice/family/

bob/

alice/device/

security/

Policy:
alice/devices/*

Policy:
alice/family/*

Protocol Construction

Starting Point: Diffie-Hellman Key Exchange

�	: cyclic group of prime order �

with generator �

��

��� ���

�
�
←�� �

�
←��

��

Shared key:

KDF ��, �� , ���

Starting Point: Diffie-Hellman Key Exchange

�	: cyclic group of prime order �

with generator �

��

��� ���

�
�
←�� �

�
←��

��

Shared key:

KDF ��, �� , ���

Secure Key Agreement: SIGMA-I Protocol [CK01]

��, ID�, SIG� ID�,�
�,��

�

�
�
←ℤ� �

�
←ℤ�

��

Bob’s certificate (binds his

identity to a signature

verification key)

Bob’s signature on the

ephemeral DH exponents

message encrypted (and MACed)

under key � = KDF(��,��,���)

– “proves knowledge” of ���

Note: in the actual protocol, session ids are also included for replay prevention.

Secure Key Agreement: SIGMA-I Protocol [CK01]

��, ID�, SIG� ID�,�
�,��

�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
�,��) �

Alice’s certificate (binds her

identity to a signature

verification key)

Alice’s signature on the

ephemeral DH exponents

message encrypted (and MACed)

under key � = KDF(��,��,���)

– “proves knowledge” of ���

Secure Key Agreement: SIGMA-I Protocol [CK01]

��, ID�, SIG� ID�,�
�,��

�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
�,��) �

session key derived from

��
,��

,���

Properties of the SIGMA-I Protocol

• Mutual authentication against active network adversaries

• Hides server’s (Bob’s) identity from a passive attacker

• Hides client’s (Alice’s) identity from an active attacker

• Bob’s identity is revealed to an active attacker!

Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

Public-key encryption scheme where public-keys can be
arbitrary strings (identities)

IBE.Encrypt

public

parameters Bob

message ciphertext

mpk id

� ct

Alice can encrypt a

message to Bob without

needing to have exchanged

keys with Bob

Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

root authority

sk�����

msk
To decrypt messages, users go

to a (trusted) identity provider

to obtain a decryption key for

their identity

Bob can decrypt all messages

encrypted to his identity

using sk���

sk�	

Prefix-Based Encryption

Secret-keys and ciphertexts both associated with names

alice/devices/

security/
�

alice/devices/

secret key ciphertext

+

Decryption succeeds if name in ciphertext is a

prefix of the name in the secret key

Prefix-Based Encryption

Secret-keys and ciphertexts both associated with names

eve/devices/

security/
�

alice/devices/

secret key ciphertext

+

Decryption fails if name in ciphertext is not a

prefix of the name in the secret key

Prefix-Based Encryption

Can be leveraged for prefix-based policies

Policy:
alice/devices/*

Bob encrypts his message to the

identity alice/devices/. Any

user with a key that begins with

alice/devices/ can decrypt.

Prefix-Based Encryption from IBE [LW14]

Encryption is just IBE encryption

Secret key for a name is a collection of IBE secret keys, one for
each prefix:

alice/devices/

security/

alice/ alice/

devices/
alice/devices/

security/

can decrypt encryptions to all prefixes

of alice/devices/security

Private Mutual Authentication

��, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

Key idea: encrypt certificate using prefix-based encryption

Private Mutual Authentication

��, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

• Privacy for Alice’s identity: Alice sends her identity only after
verifying Bob’s identity

• Privacy for Bob’s identity: Only users with a key that satisfies Bob’s
policy can decrypt his identity

Private Mutual Authentication

��, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

• Client overhead: Alice must perform prefix-based decryption on each
flow

• Server overhead: Bob must perform prefix-based encryption on each
handshake, but this encrypted identity can be cached and reused

Private Mutual Authentication

��, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

Provably secure in the Canetti-Krawczyk model of key-
exchange assuming Hash-DH and security of underlying

cryptographic primitives

Private Service Discovery

Two pieces: service announcements and private mutual authentication

Principal design goals:

• Private discovery: Only authorized clients can learn service details

• Authentic service announcements: Announcements are authenticated
and unforgeable

• 0-RTT private mutual authentication: Clients can subsequently
connect to service and include application data on initial flow

Private Service Discovery: Broadcast

PE. Enc ��, ID�, �
	, SIG� ID�, �

	

authorization

policy service

identity

semi-static DH share (for

0-RTT authentication)

signature for

authenticity

Key idea: encrypt service broadcast using prefix encryption

�
�
←��

�
�
←��

Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

ephemeral DH

exponent

sender and

recipient’s

identities

message encrypted (and MACed)

under handshake key

� � KDF���, ��, ���, C → S

�
�
←��

Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

application data can also be sent in the first message flow

under another key derived from ��, ��, and ���:

���� KDF���, ��, ��� , app�

No forward secrecy for early application data sent

during lifetime of broadcast.

Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

�� , ID, ID� ��

�
�
←��

ephemeral DH

exponent
message encrypted (and MACed)

under handshake key

�	 � KDF���, ��, ���, S → C

Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

�� , ID, ID� ��

�
�
←��

final session key derived from both semi-static and

ephemeral shares:

KDF ��, �� , �� , ��� , ���

Recovers forward secrecy for session messages.

Private Service Discovery: Mutual Authentication

�� , ID, ID�, SIG� ID, ID�, �
�, ��

�

�� , ID, ID� ��

�
�
←��

Provably secure in an (extended) Canetti-Krawczyk
model of key-exchange assuming Hash-DH and Strong-

DH in the random oracle model and security of
underlying cryptographic primitives

Implementation and Benchmarks

• Instantiated IBE scheme with Boneh-Boyen (BB
2
) IBE scheme

• Integrated private mutual authentication and private service
discovery protocols into the Vanadium open-source
framework for building distributed applications

https://github.com/vanadium/

Implementation and Benchmarks

Desktop Nexus 5X Raspberry Pi 2

SIGMA-I 7 ms 50 ms 87 ms

Private Mutual Auth. 13 ms 291 ms 326 ms

Slowdown 1.9x 5.8x 3.7x

Comparison of private mutual authentication protocol
with non-private SIGMA-I protocol

Note: x86 assembly optimizations for pairing curve operations available only on desktop

Implementation and Benchmarks

• For private service discovery protocol, a typical service
advertisement is � 820 bytes (for single policy pattern)

• Can broadcast using mDNS (supports packets of size up to
1300 bytes)

id, PE. Enc ��, ID�, �
	, SIG� ID�, �

	

16

bytes

500

bytes

32

bytes

64

bytes

208

bytes

Implementation and Benchmarks

Processing advertisement requires 1 IBE decryption and
1 ECDSA verification:

267	ms 	 11	ms � 278	ms on Nexus 5x

id, PE. Enc ��, ID�, �
	, SIG� ID�, �

	

16

bytes

500

bytes

32

bytes

64

bytes

208

bytes

Conclusions

• Existing key-exchange and service discovery protocols do not
provide privacy controls

• Prefix-based encryption can be combined very naturally with
existing key-exchange protocols to provide privacy +
authenticity

• Overhead of resulting protocol small enough that protocols
can run on many existing devices

Questions?

