
Order-Revealing Encryption:
How to Search on Encrypted Data

Kevin Lewi and David J. Wu

Stanford University

Searching on Encrypted Data

The information accessed from potentially exposed accounts "may
have included names, email addresses, telephone numbers, dates
of birth, hashed passwords (using MD5) and, in some cases,
encrypted or unencrypted security questions and answers…"

Searching on Encrypted Data

The database was discovered by MacKeeper researcher Chris Vickery on March 31,
in the course of searching for random phrases on the domain s3.amazonaws.com.

“It's as bad as I expected,” he tweeted. “Bank-related. Plaintext passwords. Big
name company. I've reached out to them.”

Searching on Encrypted Data

Searching on Encrypted Data

Searching on Encrypted Data

Searching on Encrypted Data

Searching on Encrypted Data

data breaches have become
the norm rather than the

exception…

Why Not Encrypt?

data breaches have become
the norm rather than the

exception…

Why Not Encrypt?

“because it would have hurt Yahoo’s
ability to index and search messages to

provide new user services”
~Jeff Bonforte (Yahoo SVP)

Searching on Encrypted Data

serverclient

sk

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

client holds a secret key
(needed to encrypt +

query the server)

server stores
encrypted database

database

Security for Encrypted Search

offline attacks (e.g., passive snapshots)

online attacks (e.g., active corruption)

adversary sees encrypted database +
queries and can interact with the database

adversary only sees contents
of encrypted database

active
adversary

snapshot
adversary

Security for Encrypted Search

offline attacks (e.g., passive snapshots)

online attacks (e.g., active corruption)

adversary sees encrypted database +
queries and can interact with the database

adversary only sees contents
of encrypted database

typical database breach:
contents of database are stolen

and dumped onto the web

Order-Revealing Encryption [BLRSZZ’15]

client server

sk ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

Which is greater:
the value encrypted
by ct1 or the value
encrypted by ct2?

secret-key encryption
scheme

(legacy-friendly)
range queries on
encrypted data

Order-Revealing Encryption [BLRSZZ’15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

there is a public
function for performing

comparisons

OPE [BCLO’09]: comparison
function is numeric

comparison on ciphertexts

Order-Revealing Encryption [BLRSZZ’15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

best-possible security:
reveal just the ordering

and nothing more

in practice: constructions
reveal some additional

information

Inference Attacks [NKW’15, DDC’16, GSBNR’16]

ID Name Age Diagnosis

wpjOos 2wzXW8 SqX9l9 KqLUXE

XdXdg8 y9GFpS gwilE3 MJ23b7

P6vKhW EgN0Jn S0pRJe aTaeJk

orJRe6 KQWy9U tPWF3M 4FBEO0

+

ID Name Age Diagnosis

??? Alice 30-35 2

??? Bob 45-50 3

??? Charlie 40-45 2

??? ??? 40-45 4

encrypted database public information

frequency and
statistical analysis

plaintext
recovery

Inference Attacks [NKW’15, DDC’16, GSBNR’16]

PPE schemes always reveal
certain properties (e.g., equality,
order) on ciphertexts and thus,

are vulnerable to offline
inference attacks

Can we fully defend against offline inference attacks
while remaining legacy-friendly?

This Work

Can we fully defend against offline inference attacks
while remaining legacy-friendly?

Trivial solution: encrypt the entire database, and have client provide
decryption key at query time

But zero online
security!

Desiderata: an ORE scheme that enables:
• perfect offline security
• limited leakage in the online setting

Key primitive: order-revealing encryption scheme where
ciphertexts have a “decomposable” structure

ORE with Additional Structure

Focus of this work: performing range queries on encrypted data

Enc 101

ctL
ctR

ciphertexts naturally split into two
components

EncL 101

EncR 100

ctL

ctR

greater than

ORE with Additional Structure

ctR

EncL 101

EncR 100

ctL

comparison can be performed
between left ciphertext and

right ciphertext

right ciphertexts provide
semantic security!

robustness against offline
inference attacks!

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

build encrypted
index

store right
ciphertexts in
sorted order

record IDs
encrypted under
independent key

separate index for each
searchable column, and

using independent ORE keys

EncR(31)

EncR(41)

EncR(45)

EncR(47)

EncR(2)

EncR(2)

Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Encrypted database:

columns (other than ID) are
encrypted using a semantically-

secure encryption scheme

encrypted search indicesclients hold (secret) keys needed
to decrypt and query database

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

EncR(2)

EncR(2)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

sk

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

use binary search to determine
endpoints (comparison via ORE)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(45)

use binary search to determine
endpoints (comparison via ORE)

EncL(40)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

use binary search to determine
endpoints (comparison via ORE)

return encrypted
indices that match

queryEncL(45)

EncL(40)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

client decrypts indices
to obtain set of

matching records

sk

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

sk

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

client decrypts to obtain
records

sk

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

some online leakage:
access pattern + ORE

leakage

sk

Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Encrypted database (view of the snapshot adversary):

encrypted search indices

encrypted database is
semantically secure!

Perfect offline security

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

EncR(2)

EncR(2)

Our New ORE Scheme

“small-domain” ORE with
best-possible security

domain extension
technique inspired by

CLWW’16

“large-domain” ORE
with some leakage

first practical ORE
construction that can provide
best-possible offline security!

Small-Domain ORE with Best-Possible Security

Suppose plaintext space is small: 1,2, … ,𝑁

1

2

3

⋮

𝑁

𝑘1

𝑘2

𝑘3

𝑘𝑁

associate a key
with each value

𝑘1, … , 𝑘𝑁 is the secret key
(can be derived from a PRF)

Small-Domain ORE with Best-Possible Security

Encrypting a value 𝑖

1 1 ⋯ 1 0 ⋯ 0

Position 𝑖

Invariant: all positions ≤ 𝑖 have value 1 while all
positions > 𝑖 have value 0

Small-Domain ORE with Best-Possible Security

Encrypting a value 𝑖

encrypt each slot
with key for that

slot

To allow comparisons, also give out key for slot 𝑖

𝑘𝑖

1 1 ⋯ 1 0 ⋯ 0
𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁

1 1 ⋯ 1 0 ⋯ 0
𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁

Small-Domain ORE with Best-Possible Security

Given two ciphertexts

𝑘𝑖

𝑘𝑗

01 ⋯ 1 0 ⋯ 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗𝑘𝑖+1 𝑘𝑁

01 ⋯ 1 ⋯ 1 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗 𝑘𝑗+1 𝑘𝑁

Decrypt to learn ordering

Small-Domain ORE with Best-Possible Security

Given two ciphertexts

𝑘𝑖

𝑘𝑗

01 ⋯ 1 0 ⋯ 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗𝑘𝑖+1 𝑘𝑁

01 ⋯ 1 ⋯ 1 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗 𝑘𝑗+1 𝑘𝑁

But this reveals 𝑖…

Small-Domain ORE with Best-Possible Security

𝑘𝑖

Solution: apply random permutation 𝜋 (part of
the secret key) to the slots

1 1 ⋯ 1 0 ⋯ 0

𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁

Small-Domain ORE with Best-Possible Security

𝑘𝜋(𝑖)

Solution: apply random permutation 𝜋 (part of
the secret key) to the slots

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖) 𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

includes
index 𝜋(𝑖) semantically secure

(right ciphertext)

Achieves best-possible security, but ciphertexts are big

Domain Extension for ORE

Key idea: decompose message into smaller blocks and
apply small-domain ORE to each block

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

split into two 4-bit chunks

encrypt each chunk
using an ORE instance

with a secret key
derived from the prefix

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Domain Extension for ORE

Key idea: decompose message into smaller blocks and
apply small-domain ORE to each block

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

split into two 4-bit chunks

encrypt each chunk
using an ORE instance

with a secret key
derived from the prefix

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Keys derived from
prefix 𝑏1𝑏2𝑏3𝑏4

Keys derived from
empty prefix

Domain Extension for ORE

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

comparison proceeds
block-by-block

Overall leakage: first block that differs

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Domain Extension for ORE

Same decomposition into left and right ciphertexts:

left ciphertext right ciphertext

Right ciphertexts provide semantic security!

Note: optimizations are possible if we apply this technique in a non-black-box way to the small-
domain ORE. See paper for details.

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Performance Evaluation

Scheme Encrypt (𝛍𝐬) Compare (𝛍𝐬) 𝐜𝐭 (bytes)

OPE [BCLO’09] 3601.82 0.36 8

Practical ORE [CLWW’16] 2.06 0.48 8

This work (4-bit blocks) 16.50 0.31 192

This work (8-bit blocks) 54.87 0.63 224

This work (12-bit blocks) 721.37 2.61 1612

Benchmarks taken for C implementation of
different schemes (with AES-NI). Measurements

for encrypting 32-bit integers.

Performance Evaluation

Scheme Encrypt (𝛍𝐬) Compare (𝛍𝐬) 𝐜𝐭 (bytes)

OPE [BCLO’09] 3601.82 0.36 8

Practical ORE [CLWW’16] 2.06 0.48 8

This work (4-bit blocks) 16.50 0.31 192

This work (8-bit blocks) 54.87 0.63 224

This work (12-bit blocks) 721.37 2.61 1612

Encrypting byte-size blocks is 65x faster than OPE,
but ciphertexts are 30x longer. Security is

substantially better.

Conclusions

• Inference attacks render most
conventional PPE-based
constructions insecure

• However, ORE is still a useful
building block for encrypted
databases

• Introduced new paradigm for constructing ORE that enables range
queries in a way that is mostly legacy-compatible and provides offline
semantic security

• New ORE construction that is concretely efficient with strong security

Paper: https://eprint.iacr.org/2016/612

Website: https://crypto.stanford.edu/ore/
Code: https://github.com/kevinlewi/fastore

Questions?

