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Searching on Encrypted Data

The information accessed from potentially exposed accounts "may 
have included names, email addresses, telephone numbers, dates 
of birth, hashed passwords (using MD5) and, in some cases, 
encrypted or unencrypted security questions and answers…"



Searching on Encrypted Data

The database was discovered by MacKeeper researcher Chris Vickery on March 31, 
in the course of searching for random phrases on the domain s3.amazonaws.com.

“It's as bad as I expected,” he tweeted. “Bank-related. Plaintext passwords. Big 
name company. I've reached out to them.”
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Searching on Encrypted Data

data breaches have become 
the norm rather than the 

exception…



Why Not Encrypt?

data breaches have become 
the norm rather than the 

exception…



Why Not Encrypt?

“because it would have hurt Yahoo’s 
ability to index and search messages to 

provide new user services”
~Jeff Bonforte (Yahoo SVP)



Searching on Encrypted Data

serverclient

sk

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

client holds a secret key 
(needed to encrypt + 

query the server)

server stores 
encrypted database

database



Security for Encrypted Search

offline attacks (e.g., passive snapshots)

online attacks (e.g., active corruption)

adversary sees encrypted database + 
queries and can interact with the database

adversary only sees contents 
of encrypted database

active 
adversary

snapshot 
adversary



Security for Encrypted Search

offline attacks (e.g., passive snapshots)

online attacks (e.g., active corruption)

adversary sees encrypted database + 
queries and can interact with the database

adversary only sees contents 
of encrypted database

typical database breach: 
contents of database are stolen 

and dumped onto the web



Order-Revealing Encryption [BLRSZZ’15]

client server

sk ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

Which is greater: 
the value encrypted 
by ct1 or the value 
encrypted by ct2?

secret-key encryption 
scheme

(legacy-friendly) 
range queries on 
encrypted data



Order-Revealing Encryption [BLRSZZ’15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

there is a public
function for performing 

comparisons

OPE [BCLO’09]: comparison 
function is numeric 

comparison on ciphertexts



Order-Revealing Encryption [BLRSZZ’15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

best-possible security: 
reveal just the ordering 

and nothing more

in practice: constructions 
reveal some additional 

information



Inference Attacks [NKW’15, DDC’16, GSBNR’16]

ID Name Age Diagnosis

wpjOos 2wzXW8 SqX9l9 KqLUXE

XdXdg8 y9GFpS gwilE3 MJ23b7

P6vKhW EgN0Jn S0pRJe aTaeJk

orJRe6 KQWy9U tPWF3M 4FBEO0

+

ID Name Age Diagnosis

??? Alice 30-35 2

??? Bob 45-50 3

??? Charlie 40-45 2

??? ??? 40-45 4

encrypted database public information

frequency and 
statistical analysis

plaintext 
recovery



Inference Attacks [NKW’15, DDC’16, GSBNR’16]

PPE schemes always reveal 
certain properties (e.g., equality, 
order) on ciphertexts and thus, 

are vulnerable to offline 
inference attacks

Can we fully defend against offline inference attacks 
while remaining legacy-friendly?



This Work

Can we fully defend against offline inference attacks 
while remaining legacy-friendly?

Trivial solution: encrypt the entire database, and have client provide 
decryption key at query time

But zero online 
security!

Desiderata: an ORE scheme that enables:
• perfect offline security
• limited leakage in the online setting



Key primitive: order-revealing encryption scheme where 
ciphertexts have a “decomposable” structure

ORE with Additional Structure

Focus of this work: performing range queries on encrypted data

Enc 101

ctL
ctR

ciphertexts naturally split into two 
components

EncL 101

EncR 100

ctL

ctR

greater than



ORE with Additional Structure

ctR

EncL 101

EncR 100

ctL

comparison can be performed 
between left ciphertext and 

right ciphertext

right ciphertexts provide 
semantic security!

robustness against offline 
inference attacks!



Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

build encrypted 
index

store right 
ciphertexts in 
sorted order

record IDs 
encrypted under 
independent key

separate index for each 
searchable column, and 

using independent ORE keys

EncR(31)

EncR(41)

EncR(45)

EncR(47)

EncR(2)

EncR(2)



Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Encrypted database:

columns (other than ID) are 
encrypted using a semantically-

secure encryption scheme

encrypted search indicesclients hold (secret) keys needed 
to decrypt and query database

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

EncR(2)

EncR(2)



Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

sk



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

use binary search to determine 
endpoints (comparison via ORE)



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

EncL(45)

use binary search to determine 
endpoints (comparison via ORE)

EncL(40)



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

use binary search to determine 
endpoints (comparison via ORE)

return encrypted 
indices that match 

queryEncL(45)

EncL(40)



Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

client decrypts indices 
to obtain set of 

matching records

sk



Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

sk



Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

client decrypts to obtain 
records

sk



Encrypted Range Queries

Query for all records where 40 ≥ age ≥ 45:

Enc(2) Enc(3)

Records 2, 3

Enc(𝑟2) Enc(𝑟3)

some online leakage: 
access pattern + ORE 

leakage

sk



Encrypted Range Queries

ID Name Age Diagnosis

0 Alice 31 2

1 Bob 47 3

2 Charlie 41 2

3 Inigo 45 4

Encrypted database (view of the snapshot adversary):

encrypted search indices

encrypted database is 
semantically secure!

Perfect offline security

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)

EncR(Alice)

EncR(Bob)

EncR(Charlie)

EncR(Inigo)

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Diagnosis ID

Enc(2)

Enc(0)

Enc(1)

Enc(3)

EncR(3)

EncR(4)

EncR(2)

EncR(2)



Our New ORE Scheme

“small-domain” ORE with 
best-possible security

domain extension 
technique inspired by 

CLWW’16

“large-domain” ORE 
with some leakage

first practical ORE 
construction that can provide 
best-possible offline security!



Small-Domain ORE with Best-Possible Security

Suppose plaintext space is small: 1,2, … ,𝑁

1

2

3

⋮

𝑁

𝑘1

𝑘2

𝑘3

𝑘𝑁

associate a key 
with each value

𝑘1, … , 𝑘𝑁 is the secret key 
(can be derived from a PRF)



Small-Domain ORE with Best-Possible Security

Encrypting a value 𝑖

1 1 ⋯ 1 0 ⋯ 0

Position 𝑖

Invariant: all positions ≤ 𝑖 have value 1 while all 
positions > 𝑖 have value 0



Small-Domain ORE with Best-Possible Security

Encrypting a value 𝑖

encrypt each slot 
with key for that 

slot

To allow comparisons, also give out key for slot 𝑖

𝑘𝑖

1 1 ⋯ 1 0 ⋯ 0
𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁

1 1 ⋯ 1 0 ⋯ 0
𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁



Small-Domain ORE with Best-Possible Security

Given two ciphertexts

𝑘𝑖

𝑘𝑗

01 ⋯ 1 0 ⋯ 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗𝑘𝑖+1 𝑘𝑁

01 ⋯ 1 ⋯ 1 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗 𝑘𝑗+1 𝑘𝑁

Decrypt to learn ordering



Small-Domain ORE with Best-Possible Security

Given two ciphertexts

𝑘𝑖

𝑘𝑗

01 ⋯ 1 0 ⋯ 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗𝑘𝑖+1 𝑘𝑁

01 ⋯ 1 ⋯ 1 0 ⋯
𝑘1 𝑘𝑖 𝑘𝑗 𝑘𝑗+1 𝑘𝑁

But this reveals 𝑖…



Small-Domain ORE with Best-Possible Security

𝑘𝑖

Solution: apply random permutation 𝜋 (part of 
the secret key) to the slots

1 1 ⋯ 1 0 ⋯ 0

𝑘1 𝑘2 𝑘𝑖 𝑘𝑖+1 𝑘𝑁



Small-Domain ORE with Best-Possible Security

𝑘𝜋(𝑖)

Solution: apply random permutation 𝜋 (part of 
the secret key) to the slots

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖) 𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

includes 
index 𝜋(𝑖) semantically secure

(right ciphertext)

Achieves best-possible security, but ciphertexts are big



Domain Extension for ORE

Key idea: decompose message into smaller blocks and 
apply small-domain ORE to each block

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

split into two 4-bit chunks

encrypt each chunk 
using an ORE instance 

with a secret key 
derived from the prefix

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)



Domain Extension for ORE

Key idea: decompose message into smaller blocks and 
apply small-domain ORE to each block

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

split into two 4-bit chunks

encrypt each chunk 
using an ORE instance 

with a secret key 
derived from the prefix

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Keys derived from 
prefix 𝑏1𝑏2𝑏3𝑏4

Keys derived from 
empty prefix



Domain Extension for ORE

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

comparison proceeds 
block-by-block

Overall leakage: first block that differs

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)



Domain Extension for ORE

Same decomposition into left and right ciphertexts:

left ciphertext right ciphertext

Right ciphertexts provide semantic security!

Note: optimizations are possible if we apply this technique in a non-black-box way to the small-
domain ORE. See paper for details.

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)



Performance Evaluation

Scheme Encrypt (𝛍𝐬) Compare (𝛍𝐬) 𝐜𝐭 (bytes)

OPE [BCLO’09] 3601.82 0.36 8

Practical ORE [CLWW’16] 2.06 0.48 8

This work (4-bit blocks) 16.50 0.31 192

This work (8-bit blocks) 54.87 0.63 224

This work (12-bit blocks) 721.37 2.61 1612

Benchmarks taken for C implementation of 
different schemes (with AES-NI). Measurements 

for encrypting 32-bit integers.



Performance Evaluation

Scheme Encrypt (𝛍𝐬) Compare (𝛍𝐬) 𝐜𝐭 (bytes)

OPE [BCLO’09] 3601.82 0.36 8

Practical ORE [CLWW’16] 2.06 0.48 8

This work (4-bit blocks) 16.50 0.31 192

This work (8-bit blocks) 54.87 0.63 224

This work (12-bit blocks) 721.37 2.61 1612

Encrypting byte-size blocks is 65x faster than OPE, 
but ciphertexts are 30x longer. Security is 

substantially better.



Conclusions

• Inference attacks render most 
conventional PPE-based 
constructions insecure

• However, ORE is still a useful 
building block for encrypted 
databases

• Introduced new paradigm for constructing ORE that enables range 
queries in a way that is mostly legacy-compatible and provides offline 
semantic security

• New ORE construction that is concretely efficient with strong security



Paper: https://eprint.iacr.org/2016/612

Website: https://crypto.stanford.edu/ore/
Code:   https://github.com/kevinlewi/fastore

Questions?


