Batch Arguments for NP from Standard Bilinear Group Assumptions

Brent Waters and David Wu
Batch Arguments for NP

Boolean circuit satisfiability

\[\mathcal{L}_C = \{ x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w \} \]

prover has \(m \) statements and wants to convince verifier that
\[x_i \in \mathcal{L}_C \text{ for all } i \in [m] \]
Batch Arguments for NP

Boolean circuit satisfiability
\[\mathcal{L}_C = \{x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w\} \]

\[\pi = (w_1, \ldots, w_m)\]

Naïve solution: send witnesses \(w_1, \ldots, w_m\) and verifier checks \(C(x_i, w_i) = 1\) for all \(i \in [m]\)

Can the proof size be sublinear in the number of instances \(m\)?
Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability

\[\mathcal{L}_C = \{ x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w \} \]

Proof size: \(|\pi| = |C| \cdot \text{poly}(\log m, \lambda) \)

“Proof size for a single instance”

\(\lambda \) : security parameter

Proof size scales \textit{sublinearly} with the number of instances
Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability

\[\mathcal{L}_C = \{ x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w \} \]

Proof size: \(|\pi| = |C| \cdot \text{poly}(\log m, \lambda)\)

Similar* requirement on verification time

*Verifier does need to read statements so we do allow a poly(\(\lambda, m, n\)) dependence
Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)

- Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation.

Batch arguments from correlation intractable hash functions

- Sub-exponential DDH (in pairing-free groups) + QR (with \sqrt{m} size proofs) [CJJ21a]
- Learning with errors (LWE) [CJJ21b]

Batch arguments from pairing-based assumptions

- Non-standard, but falsifiable q-type assumption on bilinear groups [KPY19]
This Work

New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps
- k-Linear assumption (for any $k \geq 1$) in prime-order bilinear groups
- Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
- No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs
- Direct “commit-and-prove” approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions

Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]

Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]
A Commit-and-Prove Strategy for Batch Arguments

Let $\mathbf{w}_i = (w_{i,1}, \ldots, w_{i,m})$ be a vector of wire labels associated with wire i across the m instances.

1. Prover commits to each vector of wire assignments.

Let $\mathbf{w}_i = (w_{i,1}, \ldots, w_{i,m})$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$
A Commit-and-Prove Strategy for Batch Arguments

Let \(\mathbf{w}_i = (w_{i,1}, \ldots, w_{i,m}) \) be vector of wire labels associated with wire \(i \) across the \(m \) instances.

1. Prover commits to each vector of wire assignments
 \[
 \mathbf{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix}
 \rightarrow \sigma_i
 \]

2. Prover constructs the following proofs:
 - **Input validity**
 - Commitments to the statement wires are correctly computed
 - Commitments in our scheme are deterministic, so verifier can directly check

Requirement: \(|\sigma_i| = \text{poly}(\lambda, \log m) \)

Our construction: \(|\sigma_i| = \text{poly}(\lambda) \)
A Commit-and-Prove Strategy for Batch Arguments

Let \(\mathbf{w}_i = (w_{i,1}, \ldots, w_{i,m}) \) be vector of wire labels associated with wire \(i \) across the \(m \) instances.

Prover commits to each vector of wire assignments:

\[
\mathbf{w}_i = (w_{i,1}, w_{i,2}, \ldots, w_{i,m}) \rightarrow \sigma_i
\]

Requirement: \(|\sigma_i| = \text{poly}(\lambda, \log m) \)

Our construction: \(|\sigma_i| = \text{poly}(\lambda) \)

Prover constructs the following proofs:

Input validity

Wire validity

Commitment for each wire is a commitment to a 0/1 vector.
A Commit-and-Prove Strategy for Batch Arguments

Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances.

1. Prover commits to each vector of wire assignments

 $w_i = w_{i,1} \; w_{i,2} \; ... \; w_{i,m} \; \sigma_i$

 Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

 Our construction: $|\sigma_i| = \text{poly}(\lambda)$

2. Prover constructs the following proofs:
 - **Input validity**
 - **Wire validity**
 - **Gate validity**

 For each gate, commitment to output wires is consistent with gate operation and commitment to input wires.
A Commit-and-Prove Strategy for Batch Arguments

Let $w_i = (w_{i,1}, \ldots, w_{i,m})$ be a vector of wire labels associated with wire i across the m instances.

1. Prover commits to each vector of wire assignments:
 \[w_i = \begin{array}{c} w_{i,1} \ w_{i,2} \ \cdots \ w_{i,m} \end{array} \rightarrow \sigma_i \]

 Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

 Our construction: $|\sigma_i| = \text{poly}(\lambda)$

2. Prover constructs the following proofs:
 - Input validity
 - Wire validity
 - Gate validity
 - **Output validity**
 Commitment to output wire is a commitment to the all-ones vector.
Let $w_i = (w_{i,1}, \ldots, w_{i,m})$ be a vector of wire labels associated with wire i across the m instances.

1. Prover commits to each vector of wire assignments $w_i = (w_{i,1}, w_{i,2}, \ldots, w_{i,m})$.

2. Prover constructs the following proofs:
 - Input validity
 - Wire validity
 - Gate validity
 - Output validity

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

Key idea: Validity checks are quadratic and can be checked in the exponent.
Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

Let \mathbb{G} be a group of order $N = pq$ (composite order)
Let $\mathbb{G}_p \subset \mathbb{G}$ be the subgroup of order p and let g_p be a generator of \mathbb{G}_p

crs: sample $\alpha_1, ..., \alpha_m \leftarrow \mathbb{Z}_N$
output $A_1 \leftarrow g_p^{\alpha_1}, ..., A_m \leftarrow g_p^{\alpha_m}$

denotes encodings in \mathbb{G}_p

commitment to $x = (x_1, ..., x_m) \in \{0,1\}^m$:

$$\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$

(subset product of the A_i's)

$$[\sigma_x] = [\sum_{i\in[m]} \alpha_i x_i]$$
Proving Relations on Committed Values

common reference string

\[[\alpha_1] \quad A_1 = g_p^{\alpha_1} \]

\[[\vdots] \]

\[[\alpha_m] \quad A_m = g_p^{\alpha_m} \]

commitment to \((x_1, \ldots, x_m)\)

\[[\sum_{i \in [m]} \alpha_i x_i] \]

\[\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} \]

\[= g_p^{\alpha_1 x_1 + \cdots + \alpha_m x_m} \]

Wire validity

Commitment for each wire is a commitment to a 0/1 vector \(x \in \{0, 1\}\) if and only if \(x^2 = x\)

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on \(\mathbb{G}\):

\[e(g^x, g^y) = e(g, g)^{xy} \]

\[e([x], [y]) \rightarrow [xy] \]

Multiplies exponents in the target group
Proving Relations on Committed Values

common reference string

\[
\begin{align*}
[\alpha_1] & \quad A_1 = g_p^{\alpha_1} \\
[\vdots] & \\
[\alpha_m] & \quad A_m = g_p^{\alpha_m}
\end{align*}
\]

Commitment to \((x_1, \ldots, x_m)\)

\[
[\Sigma_{i \in [m]} \alpha_i x_i]
\]

\[
\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} = g_p^{\alpha_1 x_1 + \cdots + \alpha_m x_m}
\]

Wire validity

Commitment for each wire is a commitment to a 0/1 vector \(x \in \{0,1\}\) if and only if \(x^2 = x\)

Approach: consider the following pairing relations:

\[
e(\sigma_x, \sigma_x) \quad \text{and} \quad e(\sigma_x, \prod_{i \in [m]} A_i)
\]

\[
A = \prod_{i \in [m]} A_i = g_p^{\Sigma_{i \in [m]} \alpha_i}
\]

(commitment to all-ones vector)
Proving Relations on Committed Values

common reference string

\[
\begin{align*}
[\alpha_1] & \quad A_1 = g_{p_1}^{\alpha_1} \\
[\vdots] & \\
[\alpha_m] & \quad A_m = g_{p_m}^{\alpha_m}
\end{align*}
\]

commitment to \((x_1, \ldots, x_m)\)

\[
[\sum_{i \in [m]} \alpha_i x_i]
\]

\[
\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} = g_{p}^{\alpha_1 x_1 + \cdots + \alpha_m x_m}
\]

Wire validity

Commitment for each wire is a commitment to a 0/1 vector \(x \in \{0, 1\}\) if and only if \(x^2 = x\)

Approach: consider the following pairing relations:

\[
e(\sigma_x, \sigma_x) \text{ and } e(\sigma_x, \prod_{i \in [m]} A_i)
\]

\[
e\left([\sum_{i \in [m]} \alpha_i x_i], [\sum_{i \in [m]} \alpha_i x_i]\right)
\]

\[
= [\sum_{i \in [m]} \alpha_i^2 x_i^2] \times [\sum_{i \neq j} \alpha_i \alpha_j x_i x_j]
\]

non-cross terms

cross terms
Proving Relations on Committed Values

common reference string
\[\begin{align*}
[\alpha_1] & \quad A_1 = g_p^{\alpha_1} \\
[\vdots] & \quad A_m = g_p^{\alpha_m}
\end{align*} \]

Wire validity
Commitment for each wire is a commitment to a 0/1 vector
\[x \in \{0,1\} \text{ if and only if } x^2 = x \]

Approach: consider the following pairing relations:
\[e(\sigma_x, \sigma_x) \text{ and } e(\sigma_x, \prod_{i\in[m]} A_i) \]

\[
\begin{align*}
e\left(\sum_{i\in[m]} \alpha_i x_i, \sum_{i\in[m]} \alpha_i \right) & \quad = \quad \left(\sum_{i\in[m]} \alpha_i^2 x_i \right) \times \left(\sum_{i\neq j} \alpha_i \alpha_j x_i \right) \\
& \quad \text{(non-cross terms)} \quad \text{(cross terms)}
\end{align*}
\]
\[
\begin{align*}
e\left(\sum_{i\in[m]} \alpha_i x_i, \sum_{i\in[m]} \alpha_i \right) & \quad = \quad \left(\sum_{i\in[m]} \alpha_i^2 x_i^2 \right) \times \left(\sum_{i\neq j} \alpha_i \alpha_j x_i x_j \right) \\
& \quad \text{(non-cross terms)} \quad \text{(cross terms)}
\end{align*}
\]
Proving Relations on Committed Values

If $x_i^2 = x_i$ for all i, then

$$\left[\sum_{i \in [m]} \alpha_i^2 x_i \right]$$

$$= \left[\sum_{i \in [m]} \alpha_i x_i \right]$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Approach: consider the following pairing relations:

$$e(\sigma_x, \sigma_x) \text{ and } e(\sigma_x, \Pi_{i \in [m]} A_i)$$

$$e\left(\left[\sum_{i \in [m]} \alpha_i x_i \right], \left[\sum_{i \in [m]} \alpha_i \right]\right)$$

$$\equiv \left[\sum_{i \in [m]} \alpha_i^2 x_i \right] \times \left[\sum_{i \neq j} \alpha_i \alpha_j x_i \right]$$

non-cross terms

cross terms

$$e\left(\left[\sum_{i \in [m]} \alpha_i x_i \right], \left[\sum_{i \in [m]} \alpha_i x_i \right]\right)$$

$$\equiv \left[\sum_{i \in [m]} \alpha_i^2 x_i^2 \right] \times \left[\sum_{i \neq j} \alpha_i \alpha_j x_i x_j \right]$$

non-cross terms

cross terms
Proving Relations on Committed Values

If \(x_i^2 = x_i \) for all \(i \), then
\[
\left[\sum_{i \in [m]} \alpha_i^2 x_i \right] = \left[\sum_{i \in [m]} \alpha_i^2 x_i^2 \right]
\]

Wire validity
Commitment for each wire is a commitment to a 0/1 vector \(x \in \{0,1\} \) if and only if \(x^2 = x \)

Approach: consider the following pairing relations:
\[
e(\sigma_x, \sigma_x) \text{ and } e(\sigma_x, \Pi_{i \in [m]} A_i)
\]

When \(x_i^2 = x_i \), difference between these terms is
\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \right]
\]

Give prover ability to eliminate cross-terms only

Augment CRS with cross-terms
\[
\left[\alpha_i \alpha_j \right] B_{i,j} = g_p^{\alpha_i \alpha_j} \quad \forall \ i \neq j
\]
Proving Relations on Committed Values

Prover now computes additional group component in the base group

\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \right]
\]

Pair with \(g_p \)

\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \right]
\]

\[
e(g_p, V)
\]

Pair with \(g_p \)

\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \right]
\]

Augment CRS with cross-terms

\[
\left[\alpha_i \alpha_j \right]
\]

\[
B_{i,j} = g_p^{\alpha_i \alpha_j} \quad \forall i \neq j
\]

When \(x_i^2 = x_i \), difference between these terms is

\[
\left[\sum_{i \in [m]} \alpha_i x_i \right]
\]

\[
\left[\sum_{i \in [m]} \alpha_i \right]
\]

Give prover ability to eliminate cross-terms only
Proving Relations on Committed Values

Prover now computes additional group component in the base group

\[[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_ix_j)] \]

Pair with \(g_p \)

\[[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_ix_j)] \]

\(V = B_{i,j}^{x_i-x_ix_j} \)

\[e(g_p, V) \]

Overall verification relation:

\[e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \]

\[A = \prod_{i \in [m]} A_i \]
Proving Relations on Committed Values

Prover now computes additional group component in the *base* group

\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_ix_j) \right]
\]

Pair with \(g_p \)

\[
\left[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_ix_j) \right] e(g_p, V)
\]

Overall verification relation:

\[
e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \quad A = \prod_{i \in [m]} A_i
\]

Non-cross terms ensure that \(x_i^2 = x_i \)
Proving Relations on Committed Values

Prover now computes additional group component in the base group

\[\sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \]

Pair with \(g_p \)

\[e(g_p, V) \]

Overall verification relation:
\[e(\sigma_x, \sigma_x) = e(\sigma_x, A) e(g_p, V) \]
\[A = \prod_{i \in [m]} A_i \]

Non-cross terms ensure that \(x_i^2 = x_i \)
Correction factor to correct for cross terms
Proving Relations on Committed Values

Common reference string:

\[
\begin{align*}
[\alpha_1] & \quad [\ldots] & \quad [\alpha_m] \\
A_1 &= g_p^{\alpha_1} & A_m &= g_p^{\alpha_m} \\
[\alpha_1 + \ldots + \alpha_m] & \quad A = \prod_{i \in [m]} A_i \\
[\alpha_i \alpha_j] & \quad B_{i,j} = g_p^{\alpha_i \alpha_j} \forall i \neq j
\end{align*}
\]

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

\[
\text{NAND} \quad w_3 = 1 - w_1, w_2
\]

for all \(i \in [m]\):

Relation is \textbf{quadratic} in the inputs

Commitment to \((x_1, \ldots, x_m)\):

\[
\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}
\]

\[
= g_p^{\alpha_1 x_1 + \ldots + \alpha_m x_m}
\]

Can leverage similar approach as before
Proof Size

Let $w_i = (w_{i,1}, \ldots, w_{i,m})$ be vector of wire labels associated with wire i.

1. Prover commits to each vector of wire assignments:

$$w_i = [w_{i,1}, w_{i,2}, \ldots, w_{i,m}]$$

Commitment size: $|\sigma_i| = \text{poly}(\lambda)$

Single group element

2. Prover constructs the following proofs:

- Input validity
- Wire validity
- Gate validity
- Output validity

Overall proof size (t wires, s gates):

$$(2t + s) \cdot \text{poly}(\lambda) = |C| \cdot \text{poly}(\lambda)$$
Is This Sound?

Common reference string:

\[
\begin{align*}
[\alpha_1] & = g_p^{\alpha_1} \\
[\alpha_m] & = g_p^{\alpha_m} \\
[\alpha_1 + \cdots + \alpha_m] & = \prod_{i \in [m]} A_i \\
[\alpha_i \alpha_j] & = g_p^{\alpha_i \alpha_j} \forall i \neq j
\end{align*}
\]

Commitment to \((x_1, \ldots, x_m)\):

\[
\left[\sum_{i \in [m]} \alpha_i x_i \right]
\]

\[
\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} = g_p^{\alpha_1 x_1 + \cdots + \alpha_m x_m}
\]

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by extracting a witness from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct – cannot extract a full witness

Solution: “local extractability” [KPY19] or “somewhere extractability” [CJJ21]
CRS will have two modes:

Normal mode: used in the real scheme

Extracting on index \(i \): supports witness extraction for instance \(i \) (given a trapdoor)

CRS in the two modes are **computationally indistinguishable**

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

Implies **non-adaptive soundness**
Local Extraction

Normal mode:

\[
\begin{align*}
A_1 & \quad g_p^{\alpha_1} \\
\cdots & \quad \cdots \\
A_{i^*-1} & \quad g_p^{\alpha_{i^*-1}} \\
A_{i^*} & \quad g_p^{\alpha_{i^*}} \\
A_{i^*+1} & \quad g_p^{\alpha_{i^*+1}} \\
\cdots & \quad \cdots \\
A_m & \quad g_p^{\alpha_m}
\end{align*}
\]

Move slot \(i^*\) to full group

Extracting mode:

(\text{extract on } i^*)

\[
\begin{align*}
A_1 & \quad g_p^{\alpha_1} \\
\cdots & \quad \cdots \\
A_{i^*-1} & \quad g_p^{\alpha_{i^*-1}} \\
A_{i^*} & \quad g_p^{\alpha_{i^*}} g_q^r \\
A_{i^*+1} & \quad g_p^{\alpha_{i^*+1}} \\
\cdots & \quad \cdots \\
A_m & \quad g_p^{\alpha_m}
\end{align*}
\]

Subgroup decision assumption [BGN05]:

Random element in subgroup (\(\mathbb{G}_p\))

\[\approx\]

Random element in full group (\(\mathbb{G}\))
Local Extraction

CRS in extraction mode (for index i^*):

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_{i^*-1}</th>
<th>A_{i^*}</th>
<th>A_{i^*+1}</th>
<th>A_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_p^{\alpha_1}$</td>
<td>$g_p^{\alpha_{i^*-1}}$</td>
<td>$g_p^{\alpha_{i^*}} g_q^{r}$</td>
<td>$g_p^{\alpha_{i^*+1}}$</td>
<td>$g_p^{\alpha_m}$</td>
</tr>
</tbody>
</table>

Trapdoor: g_q (generator of \mathbb{G}_q)

Can extract by projecting into \mathbb{G}_q

Extracted bit for a commitment σ is 1 if σ has a (non-zero) component in \mathbb{G}_q
Correctness of Extraction

Consider wire validity check:

\[e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \]
Correctness of Extraction

Consider wire validity check:

\[e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \]

Adversary chooses commitment \(\sigma_x \) and proof \(V \)
Correctness of Extraction

Consider wire validity check:

\[e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \]

Adversary chooses commitment \(\sigma_x \) and proof \(V \)

Generator \(g_p \) and aggregated component \(A \) part of the CRS (honestly-generated)

If this relation holds, it must hold in both the order-\(p \) subgroup and the order-\(q \) subgroup of \(\mathbb{G}_T \)

Key property: \(e(g_p, V) \) is always in the order-\(p \) subgroup; adversary cannot influence the verification relation in the order-\(q \) subgroup

Write \(\sigma_x = g_p^sg_q^t \)

Write \(A = g_p^{\sum_{i \in [m]}^r} g_q^{r} \)

In the order-\(q \) subgroup, exponents must satisfy:

\[t^2 = tr \mod q \]
Correctness of Extraction

Consider wire validity check:

\[e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V) \]

Adversary chooses commitment \(\sigma_x \) and proof \(V \)

Generator \(g_p \) and aggregated component \(A \) part of the CRS (honestly-generated)

If this relation holds, it must hold in both the order-\(p \) subgroup and the order-\(q \) subgroup of \(\mathbb{G} \).

Key property: \(e(g_p, V) \) is always in the order-\(p \) subgroup; adversary cannot influence the verification relation in the order-\(q \) subgroup.

Write \(\sigma_x = g_p^s g_q^t \)

Write \(A = \prod_{i\in[m]} g_p^{\alpha_i} g_q^r \)

In the order-\(q \) subgroup, exponents must satisfy:

\[t^2 = tr \mod q \]

If wire validity checks pass, then \(t = b_i r \) where \(b_i \in \{0,1\} \)

Observe: \(b_i \in \{0,1\} \) is also the extracted bit
Correctness of Extraction

Consider gate validity check:

\[e(\sigma_{w_3}, A) e(\sigma_{w_1}, \sigma_{w_2}) = e(A, A) e(g_p, W) \]

Adversary chooses commitment \(\sigma_{w_1}, \sigma_{w_2}, \sigma_{w_3} \) and proof \(W \)

Generator \(g_p \) and aggregated component \(A \) part of the CRS (honestly-generated)

Similar analysis shows that extracted bits satisfy \(b_3 = 1 - b_1 b_2 = \text{NAND}(b_1, b_2) \)

[See paper for details]
A Commit-and-Prove Strategy for Batch Arguments

Let \(w_i = (w_{i,1}, \ldots, w_{i,m}) \) be a vector of wire labels associated with wire \(i \) across the \(m \) instances.

1. **Prover commits to each vector of wire assignments**

 \[
 w_i = w_{i,1} \quad w_{i,2} \quad \ldots \quad w_{i,m} \quad \sigma_i
 \]

 Requirement: \(|\sigma_i| = \text{poly}(\lambda, \log m) \)

 Our construction: \(|\sigma_i| = \text{poly}(\lambda) \)

2. **Prover constructs the following proofs:**
 - Input validity
 - Wire validity
 - Gate validity
 - Output validity

 Key idea: Validity checks are quadratic and can be checked in the exponent.
Batch argument for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

\[G \cong G_p \times G_q \]

composite-order group

Simulate subgroups with subspaces

Conclusion:

\(k \)-Linear assumption (for any \(k \geq 1 \)) in prime-order asymmetric bilinear groups
Reducing CRS Size

Common reference string:

\[A_1 A_2 \ldots A_m \]

\[B_{1,2} B_{1,3} \ldots B_{1,m} \]

\[B_{2,3} \ldots B_{2,m} \]

\[\vdots \]

\[B_{m-1,m} \]

Size of CRS is \(m^2 \cdot \text{poly}(\lambda) \)

Can rely on **recursive composition** to reduce CRS size:

\[m^2 \cdot \text{poly}(\lambda) \rightarrow m^\varepsilon \cdot \text{poly}(\lambda) \]

for any constant \(\varepsilon > 0 \)

Similar approach as [KPY19]
Choudhuri et al. [CJJ21] showed:

- Batch argument for NP*
- Somewhere extractable commitment

\[\text{Delegation scheme for RAM programs} \]

\[\text{succinct vector commitment that allows extracting on single index} \]

*Needs a split verification property [see paper for details]
Choudhuri et al. [CJJ21] showed:

- Batch argument for NP*

 *Needs a split verification property [see paper for details]

+ Somewhere extractable commitment

 succinct vector commitment that allows extracting on single index

→ Delegation scheme for RAM programs

succinct argument for polynomial-time computations
Choudhuri et al. [CJJ21] showed:

- Batch argument for NP*
 - *This work (from k-Lin)*

- Somewhere extractable commitment
 - *This work + [OPWW15] (from SXDH)*

\[\text{Delegation scheme for RAM programs}\]

Needs a split verification property [see paper for details]
Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

Batch argument for NP* + Somewhere extractable commitment → Delegation scheme for RAM programs

This work (from k-Lin) + This work + [OPWW15] (from SXDH)

Corollary. RAM delegation from SXDH on prime-order pairing groups

To verify a time-T RAM computation:

- **CRS size:** $|\text{crs}| = T^\varepsilon \cdot \text{poly}(\lambda)$ for any constant $\varepsilon > 0$
- **Proof size:** $|\pi| = \text{poly}(\lambda, \log T)$
- **Verification time:** $|\text{Verify}| = \text{poly}(\lambda, \log T)$

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]
Batch arguments for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”

Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS

Corollary: Aggregate signature with bounded aggregation in the plain model

https://eprint.iacr.org/2022/336

Thank you!