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Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a 
set of users

Where do the 
secret keys 
come from?

Functionality: Users in the set can decrypt

Security: Users outside the set 
learn nothing about message 
(even if they collude)

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Note: decryption requires 
knowledge of the set 𝑆
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master secret key

Central trusted 
authority generates keys

What if the key issuer is 
compromised?

Built-in key escrow

Central point of failure
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Distributed Broadcast Encryption

Broadcast encryption without a central authority

public-key directory

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

public 
parameters

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does require knowledge of public keys in 
broadcast set

[BZ14]



Distributed Broadcast Encryption

public-key directory

Security: Users outside the set learn nothing about 
message (even if they collude)

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

[BZ14]

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Constructions of Distributed Broadcast Encryption

• Indistinguishability obfuscation (and OWF) [BZ14]

• Witness encryption (and leveled HE) [FWW23]

• Registered attribute-based encryption [FWW23]

• Pairing-based assumptions (BDHE or 𝑘-Lin) [KMW23, GKPW24]

Broadcast encryption without a central authority

Constructions from lattice assumptions?



Lattice-Based Distributed Broadcast

public-key directory

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Lattice-based centralized broadcast encryption currently 
known from

• Lattice-based (no explicit assumption) [BV22]

• Public-coin evasive LWE [Wee22]

• ℓ-succinct LWE [Wee24]

These schemes construct a succinct ciphertext-policy ABE

This work: distributed broadcast encryption from ℓ-
succinct LWE

For distributed broadcast, only lattice instantiation goes 
through witness encryption [FWW23]

• Requires private-coin evasive LWE [Tsa22, VWW22]



ℓ-Succinct LWE Assumption
[Wee24]

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨 𝑼𝟏

⋱ ⋮
𝑨 𝑼ℓ

𝑻 =
𝑮

⋱
𝑮

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑼𝑖 ← ℤ𝑞

𝑛×𝑚, 𝒔 ← ℤ𝑞
𝑛, 𝒆 ← 𝜒𝑚, 𝒛 ← ℤ𝑞

𝑚

𝑫ℓ
𝑮 = 𝑰𝑛 ⊗ 1,2, … , 2 log 𝑞

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑼𝑖 ← ℤ𝑞
𝑛×𝑚

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒛T given 𝑼1, … , 𝑼ℓ, 𝑻

Falsifiable!



ℓ-Succinct LWE Assumption
[Wee24]

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒛T  given 𝑫ℓ = 𝑰ℓ ⊗ 𝑨 | 𝑼  and trapdoor for 𝑫ℓ

• Falsifiable, instance-independent assumption, implied by public-coin evasive LWE + LWE
• Trapdoor useful for compression: CP-ABE with short ciphertexts [Wee24], functional 

commitments for circuits [WW23]

Special cases that is implied by LWE: 
• ℓ = 1

• if 𝑼 is very wide (i.e., if 𝑼 ∈ ℤ𝑞
ℓ𝑛×ℓ𝑚)

Applications typically require large ℓ and narrow 𝑼 (e.g., 𝑼 ∈ ℤ𝑞
ℓ𝑛×𝑚)



Starting Point: Centralized Broadcast Encryption

Previous lattice-based broadcast encryption all constructed a CP-ABE scheme

We take a more direct approach (similar to earlier pairing-based approaches)

𝑾1, 𝒓1

𝑾2, 𝒓2

𝑾3, 𝒓3

Each user associated with public matrix 
𝑾𝑖 ∈ ℤ𝑞

𝑛×𝑚 and vector 𝒓𝑖 ∈ ℤ𝑞
𝑚

Public parameters: 𝑨, 𝑩, 𝒑 where 𝑨, 𝑩 ∈ ℤ𝑞
𝑛×𝑚 and 𝒑 ∈ ℤ𝑞

𝑛

To encrypt a bit 𝑏 ∈ 0,1  to a set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑖∈𝑆

𝑾𝑖

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉ Noise terms not shown



Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑾1, 𝒓1 , … , 𝑾ℓ, 𝒓ℓ

Ciphertext encrypting a bit 𝑏 ∈ 0,1  to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

Goal: user 𝑖 ∈ 𝑆 should be able to recover 𝜇

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑾𝑗𝒓𝑖

This requires 𝒓𝑖 be short

Secret key for user 𝒊: short vector that recodes from 𝑨 to 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖 sk𝑖 is a (short) preimage of 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

𝒄1
Tsk𝑖 − 𝒄2

T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑾𝑗𝒓𝑖



Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑾1, 𝒓1 , … , 𝑾ℓ, 𝒓ℓ

Ciphertext encrypting a bit 𝑏 ∈ 0,1  to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

Goal: user 𝑖 ∈ 𝑆 should be able to recover 𝜇

This requires 𝒓𝑖 be short

Secret key for user 𝒊: short vector that recodes from 𝑨 to 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖 sk𝑖 is a (short) preimage of 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

𝒄1
Tsk𝑖 − 𝒄2

T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑾𝑗𝒓𝑖

Need a way to remove the cross terms 𝑾𝑗𝒓𝑖

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑾𝑗𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖



Public parameters: 𝑨, 𝑩, 𝒑 and 𝑾1, 𝒓1 , … , 𝑾ℓ, 𝒓ℓ  and 𝑨−1 𝑾𝑖𝒓𝑗

Starting Point: Centralized Broadcast Encryption

Ciphertext encrypting a bit 𝑏 ∈ 0,1  to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑾𝑗𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

Decryption:

𝒄1
Tsk𝑖 + 𝒄1

T ෍

𝑗∈𝑆∖ 𝑖

𝑨−1 𝑾𝑗𝒓𝑖 − 𝒄2
T𝒓𝑖 ≈ 𝒔T𝒑𝒄1

Tsk𝑖 − 𝒄2
T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑾𝑗𝒓𝑖

Suffices to recover 𝜇 from 𝑐3



Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑾1, 𝒓1 , … , 𝑾ℓ, 𝒓ℓ  and 𝑨−1 𝑾𝑖𝒓𝑗

Ciphertext encrypting a bit 𝑏 ∈ 0,1  to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑾𝑗𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

This is a centralized broadcast encryption scheme

Sampling cross-terms 𝑨−1 𝑾𝑖𝒓𝑗  and secret keys sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖  require 

knowledge of the trapdoor for 𝑨



Distributing the Setup

𝑾1

𝑾2

𝑾3

Challenge: No one can know a trapdoor for 𝑨

Approach: Each user will choose their own 𝑾𝑖, everything else will be in the public parameters

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ

For correctness, each user also needs to generate a secret key and cross-terms

∀𝑖 ≠ 𝑗 ∶ 𝑨𝒚𝑖,𝑗 = 𝑾𝑖𝒓𝑗Cross term:

𝑨𝒚𝑖,𝑖 = 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖Secret key:

But user 𝑖 does not have a trapdoor for 𝑨…

Consider first a simpler problem:

Sample 𝑾𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ :    𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗



Distributing the Setup

𝒁1 ← ℤ𝑞
𝑛×𝑚

𝒁𝑘 ← ℤ𝑞
𝑛×𝑚

⋮ 𝒖𝑡𝑗 ← 𝑨−1 𝒁𝑡𝒓𝑗

∀𝑡 ∈ 𝑘 , 𝑗 ∈ ℓ :

Public parameters

𝑨 ← ℤ𝑞
𝑛×𝑚 𝑩 ← ℤ𝑞

𝑛×𝑚 𝒑
𝒓1 𝒓ℓ⋯

Sample 𝑑 ← 0,1 𝑘

𝑾𝑖 = ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡

Then 𝑨 ⋅ σ𝑡∈ 𝑘 𝑑𝑡𝒖𝑡𝑗 = σ𝑡∈ 𝑘 𝑑𝑡𝒁𝑡𝒓𝑗 = 𝑾𝑖𝒓𝑗

𝒚𝑖𝑗

Public parameters contain “pre-sampled” 
public keys, and a user key is a random 
combination of the pre-sampled keys

Sample 𝑾𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ :    𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗



A More General View

Approach can be described more compactly as sampling a solution to the linear system

𝑨 −𝒁1𝒓1 ⋯ −𝒁𝑘𝒓1

⋱ ⋮ ⋱ ⋮
𝑨 −𝒁1𝒓ℓ ⋯ −𝒁𝑘𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝑑1

⋮
𝑑𝑘

𝟎
⋮
𝟎

=

Then, for all 𝑗 ∈ ℓ :

Sample 𝑾𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ :    𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗

𝑨𝒚𝑖𝑗 − ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡𝒓𝑗 = 0  ⟹  𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗 𝑾𝑖 = ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡



A More General View

Approach can be described more compactly as sampling a solution to the linear system

𝑨 −𝒁1𝒓1 ⋯ −𝒁𝑘𝒓1

⋱ ⋮ ⋱ ⋮
𝑨 −𝒁1𝒓ℓ ⋯ −𝒁𝑘𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝑑1

⋮
𝑑𝑘

𝟎
⋮
𝟎

=

Sample 𝑾𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ :    𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗

More compactly: 𝒁 = 𝒁1  𝒁2 ⋯ | 𝒁𝑘

𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

𝟎=
𝑨𝒚𝑖𝑗 = 𝒁 𝑰 ⊗ 𝒓𝑗 𝒅 = 𝒁 𝒅 ⊗ 𝑰 𝒓𝑗

𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰



Distributing the Setup

𝑾1

𝑾2

𝑾3

Challenge: No one can know a trapdoor for 𝑨

Approach: Each user will choose their own 𝑾𝑖, everything else will be in the public parameters

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

For correctness, each user also needs to 
generate a secret key and cross-terms

∀𝑖 ≠ 𝑗 ∶ 𝑨𝒚𝑖,𝑗 = 𝑾𝑖𝒓𝑗

𝑨𝒚𝑖,𝑖 = 𝒑 + 𝑩𝒓𝑖 + 𝑾𝑖𝒓𝑖

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮

𝒑 + 𝑩𝒓𝑖

⋮
𝟎

row 𝑖

Set 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰



Proving Selective Security

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

Selective security

𝑆 ⊆ [ℓ]

pp, pk𝑖 𝑖∈𝑆, ct

Adversary Challenger

Adversary declares challenge set upfront

How do we simulate the public keys and 
the challenge ciphertext?

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒔T𝑨 ≈ random



Proving Selective Security

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

How do we simulate the public keys and the challenge ciphertext?

pk𝑖  :   𝑾𝑖 , 𝒚𝑖𝑗 𝑗≠𝑖
 where 𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗

Can be sampled using trapdoor for 𝑽ℓ

𝑽ℓ ⋅

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮

𝒑 + 𝑩𝒓𝑖

⋮
𝟎 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰

𝒔T𝑨 ≈ random



Proving Selective Security

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑾𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉
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=
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𝒑 + 𝑩𝒓𝑖
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𝟎 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒔T𝑨 ≈ random
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Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T𝑨𝑹

𝑐3 ≈ 𝒔T𝑨𝒓 + 𝜇 ⋅ ⌊𝑞/2⌉

How do we simulate the public keys and the challenge ciphertext?

Set 𝒑 = 𝑨𝒓

Set 𝑩 = 𝑨𝑹 − σ𝑗∈𝑆 𝑾𝑗

pk𝑖  :   𝑾𝑖 , 𝒚𝑖𝑗 𝑗≠𝑖
 where 𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗

Can be sampled using trapdoor for 𝑽ℓ

𝑽ℓ ⋅

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮

𝒑 + 𝑩𝒓𝑖

⋮
𝟎 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰

There’s a circularity here!

Public key components 𝑾𝑖 , 𝒚𝑖𝑗  depend on 𝑩, so we cannot 

program 𝐵 to be a function of 𝑾𝑖

More generally, reduction algorithm knows the secret keys for 
all users, so the overall strategy is problematic

Target 𝟎 in all blocks

𝟎
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How do we simulate the public keys and the challenge ciphertext?

Set 𝒑 = 𝑨𝒓

Set 𝑩 = 𝑨𝑹 − σ𝑗∈𝑆 𝑾𝑗
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 where 𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗
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𝑽ℓ ⋅

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮

𝒑 + 𝑩𝒓𝑖

⋮
𝟎 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰

Distributions of 𝒚𝑖𝑗 for 𝑗 ≠ 𝑖 and of 𝒅 is statistically 

indistinguishable to original distribution

Target 𝟎 in all blocks

𝟎

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒔T𝑨 ≈ random
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How do we simulate the public keys and the challenge ciphertext?

Set 𝒑 = 𝑨𝒓

Set 𝑩 = 𝑨𝑹 − σ𝑗∈𝑆 𝑾𝑗

pk𝑖  :   𝑾𝑖 , 𝒚𝑖𝑗 𝑗≠𝑖
 where 𝑨𝒚𝑖𝑗 = 𝑾𝑖𝒓𝑗

Can be sampled using trapdoor for 𝑽ℓ

𝑽ℓ ⋅

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮
𝟎
⋮
𝟎 𝑾𝑖 = 𝒁 𝒅 ⊗ 𝑰

Target 𝟎 in all blocks

No more circularity!
• First sample 𝑾𝑖 using 𝑽ℓ

• Then set 𝑩 = 𝑨𝑹 − σ𝑗∈S 𝑾𝑗



Completing the Proof

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

Suppose LWE is hard with respect 
to 𝑨 given trapdoor for 𝑽ℓ

𝒔T𝑨 ≈ random

This is not the ℓ-succinct LWE trapdoor!

𝑫ℓ =
𝑨 𝑼𝟏

⋱ ⋮
𝑨 𝑼ℓ

Distribution of 𝒁 𝑰 ⊗ 𝒓𝑖  not 
independent uniform (given 𝒁, 𝒓1, … , 𝒓ℓ)

Given a trapdoor for 𝑫ℓ′  where ℓ′ ≥ 𝑂 ℓ𝑛 log 𝑞 , 
we can derive 𝒁, 𝒓1, … , 𝒓ℓ and a trapdoor for the 
matrix 𝑽ℓ (with polynomial loss in parameters)

[see paper for details]



Summary

public-key directory

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Distributed broadcast encryption for ℓ users from ℓ′-
succinct LWE where ℓ′ ≥ ℓ ⋅ 𝑂 𝜆 log ℓ

Public parameter size: ℓ2 ⋅ poly 𝜆, log ℓ

User public key size: ℓ ⋅ poly 𝜆, log ℓ

Ciphertext size: poly 𝜆, log ℓ

Open problems: 
• Scheme with short CRS and public keys
• Proving security from plain LWE
• Cryptanalysis of ℓ-succinct LWE

Thank you!
Broadcast encryption without a 

central authority
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