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How Do We Design Cryptographic Primitives?

Theory-Driven

1. Introduce hardness 
assumption (e.g., RSA, 
discrete log, LWE)

2. Reduce security to breaking 
hardness assumption

Clean problems to analyze:
“𝑛 primitives ↔ 1 assumption”

Algebraic structure can reduce 
concrete efficiency and can be 
exploited in attacks (e.g., sub-

exponential-time attacks)



How Do We Design Cryptographic Primitives?

Practice-Oriented

1. Design primitive (e.g., 
block ciphers, hash 
functions) with focus on 
concrete efficiency

2. Security relies on 
heuristics, cryptanalysis

Schemes have good concrete 
efficiency and oftentimes 

tuned to application demands

Can be messy or 
more difficult to analyze

“𝑛 primitives ↔ 𝑛 assumptions”
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The Landscape of Cryptography

Crypto Dark Matter



Goals:
• Explore simplest unexplored areas of cryptography
• New intractability conjectures such that:

• Validity ⇒ Simple constructions of crypto primitives
• Theory: minimize natural complexity measures
• Practice: useful efficiency features for applications  

• Invalidity ⇒ Interesting positive results in other domains

Exploring Crypto Dark Matter

Earlier examples:
• Goldreich’s one-way function based on expander graphs [Gol01]

• Miles and Viola [MV12] and Akavia et al. [ABGKR14] work on constructing 
low-complexity PRFs



Our Focus: (Weak) Pseudorandom Functions

Deterministic keyed function 𝐹𝑘: 𝒳 → 𝒴
• Efficiently-computable
• Input-output behavior indistinguishable from truly random 

function 𝑓:𝒳 → 𝒴

𝐹𝑘
𝑥𝑖

𝐹𝑘 𝑥𝑖
𝑓

𝑥𝑖

𝑓 𝑥𝑖
≈𝑐



Our Focus: (Weak) Pseudorandom Functions

Deterministic keyed function 𝐹𝑘: 𝒳 → 𝒴
• Efficiently-computable
• Input-output behavior indistinguishable from truly random 

function 𝑓:𝒳 → 𝒴

𝐹𝑘
𝑥𝑖

𝐹𝑘 𝑥𝑖
𝑓

𝑥𝑖

𝑓 𝑥𝑖
≈𝑐

Weak PRF: Security is guaranteed as long 
as 𝑥𝑖’s are uniformly random



What Do We Want to Optimize?

Traditionally:
• Primary goal: minimize key size
• Secondary goals: varies depending on application

This work:
• Settle for “near-optimal” key size
• Focus on optimizing other standard measures

• Circuit depth 
• Circuit size
• Non-linear size and depth

Useful for many
MPC settings



A Simple Weak PRF Candidate
[ABGKR14]

Akavia-Bogdanov-Guo-Kamath-Rosen Construction

TRIBES

Key 𝑨

Computable by a
depth-3 ACC[2] circuit

Key 𝑨 ∈ ℤ2
𝑛×𝑛 defines a

mod-2 linear mapping

PRF 𝑨, 𝑥 ≔ TRIBES(𝑨𝑥)

Input 𝑥 ∈ 0,1 𝑛



A Simple Weak PRF Candidate
[ABGKR14]

Akavia-Bogdanov-Guo-Kamath-Rosen Construction

TRIBES

Key 𝑨

[BR17]: TRIBES function can be 
represented by a rational 

polynomial of degree 𝑂(log 𝑛), 
which yields a quasi-polynomial 

time distinguisher

Can we replace the TRIBES function with a different function to get a 
construction with better security (and similar complexity)?

Input 𝑥 ∈ 0,1 𝑛



Hardness from Modulus Mixing

map 𝑥 ≔ 

𝑖∈ 𝑛

𝑥𝑖 (mod 3)

Define the function map: 0,1 𝑛 → ℤ3:

“mod-3 sum of binary vector”

Razborov-Smolensky: the map function cannot
be approximated by a low-degree polynomial over ℤ2



Our Main Weak PRF Candidate

𝑨

𝑨 ∈ ℤ2
𝑛×𝑛

𝑥

𝑥 ∈ ℤ2
𝑛

𝐹𝑨 𝑥 ≔ map ×

PRF key input

“secret matrix-vector product over ℤ2, sum resulting values mod 3”



Our Main Weak PRF Candidate

MOD-3

Key 𝐴

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

Many variants:
• Replace mod-2/mod-3 with

mod-𝑝/mod-𝑞
• Multiple output bits: replace “sum 

mod-3” with matrix-vector product 
mod-3

• Compact keys: take 𝑨 to be a 
structured matrixInput 𝑥 ∈ 0,1 𝑛



Our Weak PRF Candidate

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

Conjecture (Informal): The above function family is a weak PRF family.

Basic conjecture: advantage of poly(𝜆)-time adversary is negl 𝜆 when 
𝑛 = poly(𝜆)

Stronger conjecture: advantage of 2𝜆-time distinguishers is 2−Ω 𝜆

when 𝑛 = 𝑂(𝜆) – exponential hardness

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛



Our Weak PRF Candidate

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

Conjecture (Informal): The above function family is a weak PRF family.

Candidate is not a strong PRF: can be expressed as a certain sparse 
polynomial over ℤ3 (which can be distinguished from random 

given non-adaptive queries)

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛



Why Is This (Plausibly) Secure?

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

• Cannot be approximated by low-degree polynomials

• Resilient to statistical learning algorithms (LMN-type)

• Highly nonlinear (BKW-style attacks do not seem to apply)

We invite further cryptanalysis of our candidates!



Is This Simple?

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

Conceptual simplicity: no mention of groups, S-boxes, …

MOD3

MOD2 ⋯ MOD2

Input 𝑥 ∈ 0,1 𝑛

Complexity-theoretic: candidate can 
be computed by:

• Depth-2 ACC circuits
• Width-3 branching programs [Bar95]

• Sparse multilinear ℤ3-polynomials



Theoretical Implications

MOD3

MOD2 ⋯ MOD2

Input 𝑥 ∈ 0,1 𝑛

Complexity-theoretic: Candidate can 
be comparable by:

• Depth-2 ACC circuits
• Width-3 branching programs [Bar95]

• Sparse multilinear ℤ3-polynomials

Implications of our conjectures:
• Depth-2 ACC[6] is not PAC-learnable in sub-exponential time under the uniform 

distribution
• Width-3 branching programs are not PAC-learnable in sub-exponential time under 

the uniform distribution
• Sparse multivariate ℤ3-polynomials are hard to interpolate given only random 

evaluations on −1,1 𝑛



Theoretical Implications

What is the “minimal” complexity class that contains (weak) 
PRFs (with exponential security)?

This Work: Weak PRF
(exponential)

AC0 ACC0[𝑝] ACC0[𝑚]

Weak PRF [AR16]
(quasi-polynomial)

Weak PRF [ABGKR14] 
(quasi-polynomial)

This Work: Strong PRF
(exponential)

Depth 2

Depth 3

Depth ≥ 3 Weak PRF [Kha93] 
(quasi-polynomial)

Strong PRF [Vio13] 
(quasi-polynomial)

No weak PRFs with 
better than quasi-

polynomial security 
[LMN89]

No strong PRFs with 
better than quasi-

polynomial security 
[CIKK16]

No strong PRFs for broad 
classes of depth-2 circuits 

[BV96]



Distributed PRF Evaluation

secret key is secret-shared across 
multiple parties

𝑘 = 𝑘1 + 𝑘2 + 𝑘3 (mod 𝑚)

𝑥1

𝑥 = 𝑥1 + 𝑥2 + 𝑥3 (mod 𝑚)

𝑦1

𝑦2
𝑦3

𝑥2 𝑥3

𝐹𝑘 𝑥 = 𝑦1 + 𝑦2 + 𝑦3 (mod 𝑚)

In typical MPC protocols, costs 
(e.g., communication, number of 

rounds, etc.) scale with the 
number of non-linear operations



Distributed PRF Evaluation

Yao + AES

Yao + LowMC

Our Candidate

Round
Complexity

Online
Communication (kb)

Preprocessing
Size (kb)

2

2

4

64.8

64.8

𝟐. 𝟔

1491.2

292.1

𝟑. 𝟓

Similar protocols for 2-round 3-party distributed evaluation protocol with 
similar communication via secret-sharing based MPC [BGW88, CCD88, AFLNO16]

Comparison for two-party distributed PRF
evaluation with preprocessing



Our Weak PRF Candidate

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

This is not a strong PRF!



Our Weak PRF Candidate

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

Attacks on strong PRF security:
• Non-adaptive distinguisher based on representation as sparse 

polynomial
• Adaptive distinguisher based on representation as a finite 

automaton with multiplicity [BV94]

All known attacks rely on seeing PRF evaluations
on close inputs (in Hamming distance)



Our Weak PRF Candidate

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

Attacks on strong PRF security:
• Non-adaptive distinguisher based on representation as sparse 

polynomial
• Adaptive distinguisher based on representation as a finite 

automaton with multiplicity [BV94]

Idea: require inputs to the PRF to be far apart



Encoded-Input PRFs

Idea: require inputs to the PRF to be far apart

𝒴𝒳

Public encoding function 𝐸

𝐹𝑘

Pushing the complexity of the PRF into the public encoding 
function 𝐸 while leaving security in the simple evaluation of 𝐹𝑘



Encoded-Input PRFs

domain

Encoded-input PRF: function whose 
behavior is pseudorandom on a sparse

subset of the domain

(𝐹, 𝐸) is an encoded-input PRF if 

𝐹′ 𝑘, 𝑥 ≔ 𝐹 𝑘, 𝐸 𝑥 is a strong PRF

Advantage: checking that an input is 
properly encoded is simple (depth-2 

circuit); this is useful for many applications



Encoded-Input PRFs

domain

Encoded-input PRF: function whose 
behavior is pseudorandom on a sparse

subset of the domain

(𝐹, 𝐸) is an encoded-input PRF if 

𝐹′ 𝑘, 𝑥 ≔ 𝐹 𝑘, 𝐸 𝑥 is a strong PRF

Concrete proposal: take encoding 
function to be encoding algorithm of 

a linear error-correcting code



Encoded-Input PRFs

Encoded-input PRF: function whose 
behavior is pseudorandom on a sparse

subset of the domain

(𝐹, 𝐸) is an encoded-input PRF if 

𝐹′ 𝑘, 𝑥 ≔ 𝐹 𝑘, 𝐸 𝑥 is a strong PRF

𝑥′𝑥

Encoding is done using a 
linear ECC over ℤ3 and taking 

the binary decomposition

𝐸(𝑥)

map 𝐴𝑥′

𝑥 ∈ ℤ2
𝑛

𝑥′ ∈ ℤ2
𝑛′

Concrete proposal: take encoding 
function to be encoding algorithm of 

a linear error-correcting code



Encoded-Input PRFs

Encoded-input PRF: function whose 
behavior is pseudorandom on a sparse

subset of the domain

(𝐹, 𝐸) is an encoded-input PRF if 

𝐹′ 𝑘, 𝑥 ≔ 𝐹 𝑘, 𝐸 𝑥 is a strong PRF

𝑥′𝑥

Encoding is done using a 
linear ECC over ℤ3 and taking 

the binary decomposition

𝐸(𝑥)

map 𝐴𝑥′

Important to consider ECC over ℤ3 and not 
ℤ2 since otherwise, encoding and 

multiplication by secret key 𝐴 can be 
combined (again relies on modulus mixing!)

𝑥 ∈ ℤ2
𝑛

𝑥′ ∈ ℤ2
𝑛′



Encoded-Input PRFs and Strong PRFs

𝑨 ∈ ℤ2
𝑚×𝑚

𝑥 ∈ 0,1 𝑛

𝑨 𝑥𝐹𝑨 𝑥 ≔ map × 𝑮BinaryDec

𝑮 ∈ ℤ3
𝑚×𝑛

Secret linear 
mapping

Public encoding 
procedure

Conjecture: 𝐹𝐴 is a strong PRF (when considering 
the composition of encoding with weak PRF)



Encoded-Input PRFs and Strong PRFs

Conjecture: 𝐹𝐴 is a strong PRF (when considering 
the composition of encoding with weak PRF)

𝑨 ∈ ℤ2
𝑚×𝑚

𝑥 ∈ 0,1 𝑛

𝑨 𝑥𝐹𝑨 𝑥 ≔ map × 𝑮BinaryDec

𝑮 ∈ ℤ3
𝑚×𝑛

First candidate strong PRF in depth-3 ACC0

(and even has plausible exponential security)



Asymptotically-Optimal Strong PRFs

Does there exist strong PRFs with exponential security that can 
be computed by linear-size circuits?

Can instantiate with linear-time 
encodable codes [IKOS08, DI14]

Resulting construction can be 
implemented by a linear-size circuit

𝑨 𝑥𝐹𝑨 𝑥 ≔ map × 𝑮BinaryDec



Asymptotically-Optimal Strong PRFs

Does there exist strong PRFs with exponential security that can 
be computed by linear-size circuits?

Can instantiate with linear-time 
encodable codes [IKOS08, DI14]

Resulting construction can be 
implemented by a linear-size circuit

𝑨 𝑥𝐹𝑨 𝑥 ≔ map × 𝑮BinaryDecGives new natural proof barrier (Razborov-
Rudich style) against proving super-linear 

circuit lower bounds



Conclusions

“secret matrix-vector product over ℤ2, sum resulting values mod 3”

𝐹𝑨 𝑥 ≔ map(𝑨𝑥) where 𝑨 ∈ ℤ2
𝑛×𝑛

Modulus mixing is a relatively unexplored source of hardness:
• Enables new and simple cryptographic primitives (e.g., weak PRF 

candidate in depth-2 ACC, strong PRF candidate in depth-3 ACC)
• Assumptions have numerous connections to problems in complexity 

theory, learning theory, mathematics



Open Questions and Future Directions

Thank you!

Building other cryptographic primitives (e.g., hash functions, signatures, etc.) 
from modulus mixing assumptions

• MPC-friendly primitives give natural candidate for post-quantum 
signatures [IKOS07]

Further cryptanalysis + applications of new PRF candidates

More crypto dark matter out there to be explored!

https://eprint.iacr.org/2018/1218


