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How Do We Design Cryptographic Primitives?

Clean problems to analyze:
1. Introduce hardness “n primitives < 1 assumption’

assumption (e.g., RSA,

’

discrete log, LWE)
. Reduce security to breaking Algebraic structure can reduce

hardness assumption concrete efficiency and can be
exploited in attacks (e.g., sub-
exponential-time attacks)

Theory-Driven



How Do We Design Cryptographic Primitives?

Schemes have good concrete
efficiency and oftentimes

tuned to application demands 1. Design primitive (e.g.,
block ciphers, hash

functions) with focus on

) concrete efficiency
Can be messy or . Security relies on

more dlfflCUIt to analyze heuristics) Cryptanalysis
“n primitives & n assumptions”

Practice-Oriented
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Crypto Dark Matter



Exploring Crypto Dark Matter

Goals:
* Explore simplest unexplored areas of cryptography
* New intractability conjectures such that:
e Validity = Simple constructions of crypto primitives
* Theory: minimize natural complexity measures
* Practice: useful efficiency features for applications
* Invalidity = Interesting positive results in other domains

Earlier examples:

* Goldreich’s one-way function based on expander graphs [Gol01]
* Miles and Viola [Mvi12] and Akavia et al. [ABGKR14] work on constructing
low-complexity PRFs




Our Focus: (Weak) Pseudorandom Functions

Deterministic keyed function Fj.: X - Y
e Efficiently-computable
* Input-output behavior indistinguishable from truly random

function f: X - Y

Fy. (x;)

Ny

O )




Our Focus: (Weak) Pseudorandom Functions

Deterministic keyed function Fj.: X - Y

Weak PRF: Security is guaranteed as long truly random
as x;’s are uniformly random



What Do We Want to Optimize?

Traditionally:
* Primary goal: minimize key size
* Secondary goals: varies depending on application

This work:

|H

key size

» Settle for “near-optima
* Focus on optimizing other standard measures

. C!rcu!t d.epth Useful for many
* Circuit size )
MPC settings

 Non-linear size and depth




A Simple Weak PRF Candidate

[ABGKR14]

Akavia-Bogdanov-Guo-Kamath-Rosen Construction

.  Computable by a
depth-3 ACC[2] circuit

Input x € {0,1}"

Key A € Z3™™ defines a
mod-2 linear mapping

PRF(4, x) := TRIBES(Ax)



A Simple Weak PRF Candidate

[ABGKR14]

Akavia-Bogdanov-Guo-Kamath-Rosen Construction

A [BR17]: TRIBES function can be

represented by a rational
polynomial of degree O(logn),
which yields a quasi-polynomial
time distinguisher

Input x € {0,1}"

Can we replace the TRIBES function with a different function to get a
construction with better security (and similar complexity)?



Hardness from Modulus Mixing

Define the function map: {0,1}"* — Zs:

“mod-3 sum of binary vector”

Razborov-Smolensky: the map function cannot
be approximated by a low-degree polynomial over Z,




Our Main Weak PRF Candidate

“secret matrix-vector product over Z.,, sum resulting values mod 3”



Our Main Weak PRF Candidate

Many variants:

* Replace mod-2/mod-3 with
mod-p/mod-q

* Multiple output bits: replace “sum
mod-3" with matrix-vector product
mod-3

"  Compact keys: take A to be a
Input x € {011} structured matrix

F4(x) := map(Ax) where A € Z3*"



Our Weak PRF Candidate

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z,, sum resulting values mod 3”

Conjecture (Informal): The above function family is a weak PRF family.

Basic conjecture: advantage of poly(A)-time adversary is negl(1) when
n = poly(4)

Stronger conjecture: advantage of 2*-time distinguishers is 274
when n = 0(A) — exponential hardness




Our Weak PRF Candidate

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z,, sum resulting values mod 3”

Conjecture (Informal): The above function family is a weak PRF family.

Candidate is not a strong PRF: can be expressed as a certain sparse

polynomial over Z4 (which can be distinguished from random
given non-adaptive queries)




Why Is This (Plausibly) Secure?

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z,, sum resulting values mod 3”

Cannot be approximated by low-degree polynomials
e Resilient to statistical learning algorithms (LMN-type)

* Highly nonlinear (BKW-style attacks do not seem to apply)

We invite further cryptanalysis of our candidates!



Is This Simple?

F4(x) := map(Ax) where A € Z3*"
“secret matrix-vector product over Z,, sum resulting values mod 3”

Conceptual simplicity: no mention of groups, S-boxes, ...

Complexity-theoretic: candidate can
be computed by:
* Depth-2 ACC circuits

* Width-3 branching programs [Bar95]
* Sparse multilinear Zs-polynomials

Input x € {0,1}"



Theoretical Implications

Complexity-theoretic: Candidate can

be comparable by:
e Depth-2 ACC circuits
* Width-3 branching programs [Bar95]
* Sparse multilinear Zs-polynomials

Input x € {0,1}"

Implications of our conjectures:
* Depth-2 ACC|6] is not PAC-learnable in sub-exponential time under the uniform

distribution
* Width-3 branching programs are not PAC-learnable in sub-exponential time under

the uniform distribution
* Sparse multivariate Z;-polynomials are hard to interpolate given only random

evaluations on {—1,1}"




Theoretical Implications

What is the “minimal” complexity class that contains (weak)
PRFs (with exponential security)?

ACO ACC°[p]  ACC°[m]
_ _ No strong PRFs for broad
De pth ) Th's(\'\)l(orkr; Vr\]/teia:; "RE ] classes of depth-2 circuits
oo [BV96]
Weak PRF [AR16] | Weak PRF [ABGKR14] | This Work: Strong PRF
Depth 3 (quasi-polynomial) (quasi-polynomial) (exponential)
Weak PRF [Kha93] | Strong PRF [Vio13]
Depth = 3 (quasi-polynomial) | (quasi-polynomial)

No weak PRFs with  No strong PRFs with
better than quasi- better than quasi-

polynomial security polynomial security
[LMN89] [CIKK16]



Distributed PRF Evaluation

secret key is secret-shared across
multiple parties

k =k + k, + k3 (mod m)

& ”~2

X = X1 + X, + x3 (mod m)

F.(x) =y, + y, + y3 (mod m)

In typical MPC protocols, costs
(e.g., communication, number of

rounds, etc.) scale with the
number of non-linear operations




Distributed PRF Evaluation

Comparison for two-party distributed PRF
evaluation with preprocessing

Round Online Preprocessing
Complexity Communication (kb) Size (kb)
Yao + AES 2 64.8 1491.2
Yao + LowMC 2 64.8 292.1
Our Candidate 4 2.6 3.5

Similar protocols for 2-round 3-party distributed evaluation protocol with
similar communication via secret-sharing based MPC [BGWS88, CCD88, AFLNO16]



Our Weak PRF Candidate

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z,, sum resulting values mod 3”

This is not a strong PRF!




Our Weak PRF Candidate

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z.,, sum resulting values mod 3

V4

Attacks on strong PRF security:
 Non-adaptive distinguisher based on representation as sparse

polynomial
Adaptive distinguisher based on representation as a finite
automaton with multiplicity [BV94]

All known attacks rely on seeing PRF evaluations
on close inputs (in Hamming distance)




Our Weak PRF Candidate

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z.,, sum resulting values mod 3

V4

Attacks on strong PRF security:
 Non-adaptive distinguisher based on representation as sparse

polynomial
Adaptive distinguisher based on representation as a finite
automaton with multiplicity [BV94]

Idea: require inputs to the PRF to be far apart




Encoded-Input PRFs

Idea: require inputs to the PRF to be far apart

Public encoding function E

Pushing the complexity of the PRF into the public encoding
function E while leaving security in the simple evaluation of F;,



Encoded-Input PRFs

Encoded-input PRF: function whose
behavior is pseudorandom on a sparse
subset of the domain

(F,E) is an encoded-input PRF if

F'(k,x) = F(k, E(x)) is a strong PRF

Advantage: checking that an input is
properly encoded is simple (depth-2
circuit); this is useful for many applications




Encoded-Input PRFs

Encoded-input PRF: function whose
behavior is pseudorandom on a sparse
subset of the domain

(F,E) is an encoded-input PRF if
F'(k,x) = F(k, E(x)) is a strong PRF

Concrete proposal: take encoding

function to be encoding algorithm of
a linear error-correcting code




Encoded-Input PRFs

x' € z’g’
Encoded-input PRF: function whose
behavior is pseudorandom on a sparse

E(x) subset of the domain

/ map(Ax’
% ‘ x ‘ p(4x) (F,E) is an encoded-input PRF if

F'(k,x) = F(k, E(x)) is a strong PRF

x €LY

Concrete proposal: take encoding

Encoding is done using a function to be encoding algorithm of

linear ECC over Z3 and taking a linear error-correcting code
the binary decomposition




Encoded-Input PRFs

x' € Z?I
Encoded-input PRF: function whose
behavior is pseudorandom on a sparse

E(x) subset of the domain

x €LY

‘ / ‘ map(Ax’
A x p(4x) (F,E) is an encoded-input PRF if

F'(k,x) = F(k, E(x)) is a strong PRF

Important to consider ECC over Z5; and not
Encoding is done using a Z, since otherwise, encoding and

linear ECC over Z; and taking multiplication by secret key A can be
the binary decomposition combined (again relies on modulus mixing!)




Encoded-Input PRFs and Strong PRFs

A€ GEeZE"" x e{0,1)"
. g Q
F,(x) := map )( BinaryDec
\- /
g _/
Secret linear Public encoding
mapping procedure

Conjecture: F, is a strong PRF (when considering
the composition of encoding with weak PRF)



Encoded-Input PRFs and Strong PRFs

A e 7m GEZ" x e {01

/'
F,(x) := map | |8l X BinaryDec

First candidate strong PRF in depth-3 ACC°
(and even has plausible exponential security)

Conjecture: F, is a strong PRF (when considering
the composition of encoding with weak PRF)



Asymptotically-Optimal Strong PRFs

Does there exist strong PRFs with exponential security that can
be computed by linear-size circuits?

a O)

T )
Fa(x) := map y: Wl > BinaryDec
\- J
Resulting construction can be Can instantiate with linear-time
implemented by a linear-size circuit encodable codes [1k0s08, DI14]




Asymptotically-Optimal Strong PRFs

Does there exist strong PRFs with exponential security that can
be computed by linear-size circuits?

Gives new natural proof barrier (Razborov-

Rudich style) against proving super-linear
circuit lower bounds

Resulting construction can be Can instantiate with linear-time
implemented by a linear-size circuit encodable codes [1k0s08, DI14]




Conclusions

F4(x) := map(Ax) where A € Z3*"

“secret matrix-vector product over Z,, sum resulting values mod 3”

Modulus mixing is a relatively unexplored source of hardness:
* Enables new and simple cryptographic primitives (e.g., weak PRF
candidate in depth-2 ACC, strong PRF candidate in depth-3 ACC)
* Assumptions have nhumerous connections to problems in complexity
theory, learning theory, mathematics




Open Questions and Future Directions

Building other cryptographic primitives (e.g., hash functions, signatures, etc.)
from modulus mixing assumptions
« MPC-friendly primitives give natural candidate for post-quantum
signatures [1k0s07]

Further cryptanalysis + applications of new PRF candidates

More crypto dark matter out there to be explored!

Thank you!
https://eprint.iacr.org/2018/1218



