New Constructions of Statistical NIZKs:

Dual-Mode DV-NIZKs and More

Benoit Libert, Alain Passelegue, Hoeteck Wee, and David J. Wu

May 2020

Non-Interactive Zero-Knowledge (NIZK)

[BFM88]

NP language £ € {0,1}"

1T
prover verifier
Completeness: Vx € L: Pr[(P,V)(x) = accept] =1
“Honest prover convinces honest verifier of true statements”
Soundness: Vx & L, VP* : Pr[(P*,V)(x) = accept] < ¢

“No prover can convince honest verifier of false statement”
can consider both computational and statistical variants

Non-Interactive Zero-Knowledge (NIZK)
[BFM88]

NP language L

,”ﬁ 2 A
VK]
= > .)
A a7
A) -
R B
[)

real distribution ideal distribution

Zero-Knowledge: for all efficient verifiers V™, there exists an efficient simulator § where

Vx €L:(P,V*)(x) = 5(x)

can consider both computational and statistical variants

Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

secret verification key

prover of8e. verifier

Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

Requirement: soundness should
hold even if the prover has access to
the verification oracle

prover verifier

The Landscape of (DV)-NIZKs

Construction Soundness Zero-Knowledge Assumption
[FLS90] factoring
[CHKO3] CDH (pairing group)
[GOSO06] | | k-Lin (pairing group)
[PS19] | | LWE

SW14] 10 + OWFs
[QRW19, CH19, KNYY19] CDH
[LQRW'\W/19] CDH/LWE/LPN
(CDIKLOV19] DCR

designated-verifier

The Landscape of (DV)-NIZKs

Construction Soundness Zero-Knowledge Assumption

Statistical zero-knowledge seems more difficult to achieve

[GOS06] | | k-Lin (pairing group)
[PS19] | | LWE

SW14] 10 + OWFs
[CDIKLOV19] DCR

designated-verifier

This Work: Statistical NIZKs

Statistical ZK provides everlasting privacy

This work: Compiling NIZKs in the hidden-bits model to statistical (DV)-NIZKs
 Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR

This Work: Statistical NIZKs

More precisely: DV-NIZKs are des everlasting privacy
“dual-mode” and maliciously secure

This work: Wing NIZKs in the hidden-bits model to statistical (DV)-NIZKs
 Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR

This Work: Statistical NIZKs

ting privacy

Weaker assumption compared to [GOS06] which

required k-Lin in both groups (k-KerLin is a search
assumption implied by k-Lin)

to statistical (DV)-NIZKs
airing-free groups / QR / DCR
 Statistical NIZKs from k-Lin (G4) + k-KerLin (G,) in a pairing group

The Landscape of (DV)-NIZKs

Construction Soundness Zero-Knowledge Assumption
[FLS90] factoring
[CHKO3] CDH (pairing group)
(GOSO6] | | k-Lin (Gy, Gy)
This work k-Lin (Gq), k-KerLin (G,)
[PS19] | | LWE

[SW14] 10 + OWFs
[QRW19, CH19, KNYY19] CDH
LQRW'\\/19] CDH/LWE/LPN
CDIKLOV19] | | DCR

This work | | DDH/QR/DCR

designated-verifier

NIZKs in the Hidden Bits Model

[FLS90]

n bits long

A
‘4 N\

prover has access to O 1 R0 S0 R0

uniformly random

bit string of length n /

prover

NIZKs in the Hidden Bits Model

[FLS90]

n bits long

A
‘4 N\

prover has access to O (01 b s RO SO S B0 S

uniformly random

bit string of length n /

prover

prover outputs a
subset | © [n|and a proof

NIZKs in the Hidden Bits Model

[FLS90]

n bits long

verifier only sees the
subset of the bits in /
and proof i

prover prover outputs a

subset | © [n|and a proof

NIZKs in the Hidden Bits Model

[FLS90]

n bits long

verifier only sees the
subset of the bits in /
and proof i
;"-r‘ L’

[FLS90]: There exists a perfect NIZK proof for

any NP language in the hidden-bits model

¥l verifier

The FLS Compiler

[FLS90]

NIZKs in the hidden-bits model

. CRS
/ n bltilong \

prover has access to 1 0 0 0
uniformly random

bit string of length n verifier only sees the
subset of the bitsin /
and proof i
B <

ﬁ cryptographic
—_— | C|n|,m]
prover outputs a N, verifier com p | I er

prover RS
subset | © [n] and a proof ™
/ common reference string ¢ \

O 1 A S S0 SON SE SON S S

“commitment” o

b, b, b,

hidden-bits string

\ Prover can selectively open o to
(i, b;) for indices i of its choosing

Q)ve r

NIZKs in the CRS model

The FLS Compiler

[FLS90]

Main properties: CRS
* Binding: Can only open o to a single bit
for each position 1 “commitment” o
* Hiding: Unopened bits should be hidden

* Succinctness: |[0]| K n

b, b, b,

Soundness: If |o| << n and there are not too
many “bad” hidden-bits strings = prover
cannot find a “bad” o that fools verifier

hidden-bits string

Prover can selectively open o to
(i, b;) for indices i of its choosing
Zero-Knowledge: Unopened bits hidden to

verifier

The FLS Compiler

NIZKs in the hidden-bits model

-

prover has access to
uniformly random
bit string of length n

€]
\prover £

n bits long

~

— | Cn|,m

prover outputs a
subset | © [n] and a proof ™

verifier only sees the
subset of the bits in /
and proof i
Py
L B/

¥l verifier

-

Q)ve r

0 1 1

common reference string o

1 0 0 1 0 1

/
~

Gy :
% <o ey,
¥l verifier

NIZKs in the CRS model

[FLS90]

CRS

“commitment” o

cryptographic
compiler
bl b2 e bn
hidden-bits string
Instantiations:

[FLS90]: trapdoor permutations (computational NIZK proofs)

[CHKO3]:CDH over a pairing group (computational NIZK proofs)

[QRW19, CH19, KNYY19]:hidden-bits generators from CDH
(computational DV-NIZK proofs)

The FLS Compiler

[FLS90]

NIZKs in the hidden-bits model

/ n bits long \
(A

prover has access to 1 0 0 0
uniformly random

bit string of length n verifier only sees the
subset of the bitsin /
and proof i
B o i,

ey ﬁ cryptographic
— | C ||’ .
\prover £1® prover outputs a verifier com pl Ie r
subset | © [n] and a proof ™

/ common reference string o \

CRS

“commitment” o

Possible to instantiate FLS

to obtain statistical ZK?

[FLS90]: trapdoor permutations (computational NIZK proofs)

\ | Instantiations:

P e | [CHKO3]:CDH over a pairing group (computational NIZK proofs)
/ [QRW19, CH19, KNYY19]:hidden-bits generators from CDH

NIZKs in the CRS model (computational DV-NIZK proofs)

Q)ve r

The FLS Compiler

NIZKs in the hidden-bits model

-

prover has access to
uniformly random
bit string of length n

€)
\prover -

n bits long

NIZKs in the CRS model

[FLS90]

A 4

\

— | Cnl|,m

prover outputs a

ubset | < [n] and a proof &

&

verifier only sees the
subset of the bitsin /
and proof

veriﬁer/

€]
N
Qaver 3

common reference string o

O 1 S S S0 S0 B S0 S

ARy
% e,
vh verifier

~

"

This work: dual-mode hidden bits generator

* “Binding mode:” computational DV-NIZK proofs
 “Hiding mode:” statistical DV-NIZK arguments

Warm-Up: The FLS Compiler from CDH

[CHKO3, QRW19, CH19, KNYY19]

Ingredient: let G be a prime-group of order p with generator g

Wl, ---,Wn — Zp

b, b, | b =he(h))

Committing to a hidden-bits string:

Each exponenty € Z,,
defines a hidden bits string

Prover samples y « Z, and commits to hidden bits string witho = g¥ € G
Opening o to a bit b;: reveal hly and prove that (g, g7, h;, hf’) is a DDH tuple
[CHKO3]: Use a pairing: e(g”, h;) = e(g, hf’) publicly-verifiable
[QRW19, CH19, KNYY19]: Use Cramer-Shoup hash-proof system [CS98, CS02, CKSO8] designated-verifier

Warm-Up: The FLS Compiler from CDH

[CHKO3, QRW19, CH19, KNYY19]

Ingredient: let G be a prime-group of order p with generator g
Wo, e, Wy Zp

!

b, b, | b =he(h))

Committing to a hidden-bits string:

Each exponenty € Z,,
defines a hidden bits string

Prover samples y « Z, and commits to hidden bits string witho = g¥ € G

Statistical binding: choice of g (with h4, ..., h,;) completely defines b4, ..., b,

Resulting NIZK satisfies statistical soundness

Warm-Up: The FLS Compiler from CDH

[CHKO3, QRW19, CH19, KNYY19]

Ingredient: let G be a prime-group of order p with generator g

Wl, ---,Wn — Zp

b; = hc(hy)

Each exponenty € Z,,
defines a hidden bits string

Committing to a hidden-bits string: Need to compute g*'#¥ from g"

Y .
Prover samples y « Z, and commits to hidden bits st and g~ which is precisely CDH

Computational hiding: unopened bits computationally hidden since hc is hard-core
Resulting NIZK satisfies computational zero-knowledge

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,,] where v,w, ..., w,, € Y — Zgﬂ

[v] plays the role of lwq], ..., [w,] play the role Two distributions for w;:
the family g of g1, ..., g"n * Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Key idea: replace scalars in the CRS with vectors

Notation: for a vector v € Z3, we write [v] := (g*1, ..., g"")

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,,] where v,w, ...,w,, € Z'{;“ v« 23t

[v] plays the role of lwq], ..., [w,] play the role Two distributions for w;:
the generator g of g1, ..., g"n * Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Observation: under DDH, these two distributions for w; are
computationally indistinguishable
similar principle as used to construct lossy PKE from DDH [HJR16]

Notation: for a vector v € Z3, we write [v] := (g*1, ..., g"")

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,,] where v,w, ..., w,, €

!

bl b2 bn bi = H([yTWi])

H:G - {0,1}is
Prover’s commitment: [o] = [y'v] € G universal hash

Statistically binding in binding mode: choice of o (and CRS) completely defines by, ..., b,

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

yTWi = Sinv = S5;0

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,,] where v,w, ..., w,, €

!

bl b2 bn bi = H([yTWi])

H:G - {0,1}is
Prover’s commitment: [o] = [y'v] € G universal hash

Statistically hiding in hiding mode: choice of ¢ (and CRS) completely hides b4, ..., b,

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

if v,wy, ..., w, € Z3*! are linearly independent and y « Z3**, y"w; is uniform given y" v, y"w; for j # i

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,] where v, w4, ..., w,, € Z3*!

!

bl b2 bn bi = H([yTWi])

H:G - {0,1}is
Prover’s commitment: [o] = [y'v] € G universal hash

Binding mode = statistically-binding hidden bits = statistical soundness

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

Hiding mode = statistically-hiding hidden bits = statistical zero-knowledge

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,] where v, w4, ..., w,, € Z3*!

!

bl b2 bn bi = H([yTWi])

H:G - {0,1}is
Prover’s commitment: [o] = [y'v] € G universal hash

Remaining ingredient: need a way for prover to open commitments to hidden bits

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

To open the commitment [o] to value b;, prover sends [t;] = [yT w;]
together with a proof that 3y € Z3** such that [¢] = [y v] and [¢t;] = [y w/]

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

CRS: [v], [w4], ..., [W,] where v, w4, ..., w,, € Z3*!

!

bl b2 bn b; = H([yTWiD

H:G - {0,1}is
Prover’s commitment: [o] = [y'v] € G universal hash

Remaining ingredient: ts to hidden bits

To open the commitme
together with a proof that 3y € Z3** such that [¢] = [y v] and [¢t;] = [y w/]

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

Can use Cramer-Shoup techniques

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

!

bl b2 b; = H([yTWiD

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

’ . . — T
Prover’s commitment: [o] = [y'v] € G Implication: dual-mode DV-NIZK from DDH

* Binding mode: computational NIZK proofs
Prover’s opening: [ti] = [yTwl-] * Hiding mode: statistical NIZK arguments

proof that 3y € Z3** : [o] = [y"v] and [t;] = [y"w;]

Dual-Mode Instantiation from DDH

Ingredient: let G be a prime-group of order p with generator g

!

bl b2 bi = H([yTWi])

Two distributions for w;:
* Binding mode: w; « s;v where s; « Z,
* Hiding mode: w; « Z3*!

Each vector y € Z}*?
defines a hidden bits string

Extensions:
* Replace DDH with k-Lin family of assumptions (forany k = 1)
* Replace DDH with subgroup indistinguishability assumptions (e.g., QR/DCR)

* Use a pairing to publicly implement verification
* Yields statistical NIZK argument (not dual-mode) from k-Lin (G) and k-KerLin (G)

Malicious Desighated-Verifier Security
[QRW19]

common random string only
‘ 11101001101111100110110000001 ‘ trusted setup

verifiers can choose their own verification key;
zero-knowledge should hold even if vk; chosen maliciously

Malicious Desighated-Verifier Security
[QRW19]
common random string only

11101001101111100110110000001 trusted setup

All of our DV-NIZK constructions easily adapted to satisfy

malicious security (MDV-NIZKs)
 Technique similar to [QRW19], but relies on a linear independence

argument rather than a rewinding argument
« [QRW19]: computational MDV-NIZK proofs from “one-more CDH”
* This work: dual-mode MDV-NIZKs from DDH (or k-Lin) / QR / DCR

[see paper for details]

Summary

NIZKs in the hidden

-bits model

n bits long

A

-

NIZKs in the CRS model

A 4

-
prover has access to - .

~

uniformly random
bit string of length n

prover outputs a
and a proof

gl
\prover i

verifier only sees the
subset of the bits in
and proof T

\
-4

a
verlﬂer/ Qwer V..

common reference string o

O 1 S S S0 S0 B S0 S

ARy
rﬁ?“
% e,
vh verifier

~

\—

cryptographic compiler

This work: Leverage the FLS compiler to achieve statistical zero-knowledge

 Statistical NIZKs from k-Lin (G,) + k-KerLin (G,) in a pairing group

Dual-mode malicious DV-NIZKs from k-Lin in pairing-free groups / QR / DCR

Open Questions

NIZKs in the hidden-bits model

-

gl /
\prover i

NIZKs in the CRS model

A 4

n bits long
r L)
prover has access to - . . -
uniformly random
bit string of length n
—

prover outputs a
and a proof

verifier only sees the
subset of the bits in
and proof T

common reference string o

O 1 S S S0 S0 B S0 S

veriﬁer/

€]
N
Qaver 3

~

ARy

rﬁ?“

% e,
vh verifier

Statistical NIZK arguments from factoring?
e [FLS90]: computational NIZK proofs from factoring
* This work: dual-mode malicious DV-NIZKs from QR / DCR

Other assumptions: Statistical (DV)-NIZKs from LPN? from CDH?

The Landscape of (DV)-NIZKs

Construction Soundness Zero-Knowledge Assumption
[FLS90] factoring
[CHKO3] CDH (pairing group)
[GOS06] | | k-Lin (G4, G,)
This work k-Lin (G4), k-KerLin (G5)
[PS19] | | LWE

[SW14] iO + OWFs
[QRW19, CH19, KNYY19] CDH
[LQRW'\W/19] CDH/LWE/LPN
[CDIKLOV19] | | DCR

This work | | DDH/QR/DCR

designated-verifier
Thank you!
https://eprint.iacr.org/2020/265

