Functi

o

Shashank Agrawal

onal Encryption: Deter

Ministic

Randomized Functions f

Simple Assumptions

rom

David J. Wu

VISA Stanford

Resea rch UIIlVEI‘Slty

Public-Key Functional Encryption (sswi1, o'N10]

Keys are associated with
deterministic functions f

----_,

Skf

Public-Key Functional Encryption [Bsw11, o'N10]
. Setup(l’l): Outputs (msk, mpk)
* KeyGen(msk, f): Outputs decryption key sk
* Encrypt(mpk, m): Outputs ciphertext ct,,

* Decrypt(skg, ct,,): Outputs f(m)

Public-Key Functional Encryption (sswi1, o'N10]
. Setup(ll): Outputs (msk, mpk)
* KeyGen(msk, f): Outputs decryption key sk

* Encrypt(mp text ct,,

Deterministic
° Decrypt(skf’ fu nCt|On f

Functional Encryption for Randomized Functionalities (rFE) [ABFGGTW13, GIKS15]

But what if f is

randomized?

Many interesting functions are
randomized

Application 1: Proxy Re-Encryption

personal email
| AIice" | l | AIice"
Vk email

Mail server has functional key
to re-encrypt message under Wl

secretary’s public key

Application 2: Auditing an Encrypted Database

Encrypted database of records

e nfrlnlnfs]n

Sample a random
subset to audit

Does Public-Key rFE Exist?

[GJKS15]

General-

Purpose rFE

(selectively secure)

Public-Key Functional Encryption (sswi1, o'N10]

Can be instantiated from a wide range of assumptions

[SS10, GVW12, GKPVZ13, ...]

Bounded-
PKE / LWE — Collucion FE

[GGHRSW13, Wat15, GGHZ16, ...]

>

General-
Purpose FE

Multilinear
Maps / iO

The Landscape of (Public-Key) Functional Encryption

Deterministic functionalities Randomized functionalities

[SS10, GVW12, ...]

B -
pke/Lwe Ny Bounded [GIKS15]

General-
=)

Collusion FE

GGHRSW13, GGHZ16, ...
[! Purpose rFE

Multilinear ' General-
Purpose FE

Maps / iO

Generally adaptively
secure

Selectively secure

The Landscape of (Public-Key) Functional Encryption

Does extending FE to support

randomized functionalities require
much stronger tools?

Our Main Result

General-purpose FE General-purpose FE
for deterministic for randomized

(e.g., DDH, RSA)

functionalities functionalities

Implication: randomized FE is not much more
difficult to construct than standard FE.

Defining rFE

Correctness for FE

Deterministic functions

ER + fam)

Correctness for rFE [asrccTW13, GIKS1S5]

Randomized functions

ER + fm;7)
m I ‘kf f(m';r")

Different Same function Independent draws

from output
distribution

ciphertexts key

Correctness for rFE [asrccTW13, GIKS1S5]

Fomm)
ER + o7 Frm i)

Same Different Independent draws
ciphertexts function keys

Randomized functions

from output
distribution

Simulation-Based Security (Informally)

Real World: honestly
generated ciphertexts
and secret keys

Ideal World:
f simulated ciphertexts

n and secret keys

The Case for Malicious Encrypters [aiks1s]

'[r h

Encrypted database of records

What if
encrypter (bank)
is adversarial?

Sample a random

W™ subset to audit

The Case for Malicious Encrypters [aiks1s]

famsn)

Randomized functionalities

Fom';)

Dishonest encrypters can
construct “bad” ciphertexts such

that decryption produces
correlated outputs

The Case for Malicious Encrypters [aiks1s]

Famsn)
fFam'sm)

Formally captured by giving
adversary access to a decryption

Randomized functionalities

oracle (like in the CCA-security
gd me). [See paper for details.]

Our Generic Transformation

I I I S S S S -y

Starting Point: Derandomization

- - S - S S S S S S S S S -y

Randomized *
functionality

Starting point: construct “derandomized
function” where randomness for f
derived from outputs of a PRF

Starting Point: Derandomization

- - S - S S S S S S S S S -y

Randomized *
functionality

Derandomized ",
functionality

I I I S S S S -y

Derandomized function g,

Randomized function f gk (x) = f(x; PRF(k, x))
kA = ' ’

Starting Point: Derandomization

But in public-
key setting, keys

rFE. KeyGen(msk, f)

do not hide the
function!

FE. KeyGen(msk, g)

gk () = f(x ; PRF(k, x))

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so
place part of the key in the ciphertext

Secret-share the
PRF key

Key share in Key share in
ciphertext function key

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so

place part of the key in the ciphertext

rFE. Encrypt(mpk, m)

R
ki <X

FE. Encrypt(mpk, (m, k,)) ‘

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so

place part of the key in the ciphertext

rFE. KeyGen(msk, f)

Some operation to

combine shares of key

R
ky =X 9k, (m ky) = f(m; PRE(ky o kp,m)

—) T,

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so

place part of the key in the ciphertext

rFE. KeyGen(msk, f)

Encrypter controls k4
so we need related-

key security

R
ky =X 9k, (m ky) = f(m; PRE(ky o kg, m)

—) T,

Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

rFE. Encrypt(mpk, m)

Cannot influence
R Encrypter can .)
ki <X choose the key- output dIStrIbut|c.)n
share due to RKA-security

FE. Encrypt(mpk, (m, k,)) ‘

Encrypter can choose the randomness Potentially problematic

Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

FE. Encrypt(mpk, (m, k,))

Run encryption
algorithm twice with
different randomness

Two distinct FE ciphertexts encrypting the same message

Security Against Dishonest Encrypters
Encrypter has a lot of flexibility in constructing ciphertexts:

Reality: Decryption always produces
same output

Desired: Two different ciphertexts, so
should produces independent outputs

Encrypter has too much freedom in constructing ciphertexts

Applying Deterministic Encryption

Key observation: honestly generated ciphertexts have high
entropy

Should be random PRF | |
key — high entropy! Derive encryption

randomness from k4 and
include a NIZK argument that
ciphertext is well-formed

Putting the Pieces Together

rFE. Encrypt(mpk, m)

R
ki <K

NIZK argument of
knowledge of (m, k;)
that explains ciphertext

FE. Encrypt(mpk, (m, k) ; h(ky)) +

Randomness for FE encryption derived from
deterministic function on k4 [See paper for full details.]

Putting the Pieces Together

rFE. Encrypt(mpk, m) Ciphertext is a deterministic function
of (m, k,) so for any distinct pairs
(m, k), (m', k7), outputs of PRF

uniform and independently
distributed by RKA-security

FE. Encrypt(mpk, (m, k) ; h(ky)) +

[See paper for full details.]

R
ki <K

Our Transformation in a Nutshell

DDH + RSA

Simulation-
secure FE

NIZK RKA- deterministic
arguments secure PRF encryption

Security properties of

underlying FE scheme is

. Simulation-
preserved (e.g., adaptive

The State of (Public-Key) Functional Encryption

Deterministic functionalities Randomized functionalities

[SS10, GVW12, ...]

B -
pke/Lwe Ny Bounded [GIKS15]

General-
=)

Collusion FE

GGHRSW13, GGHZ16, ...
[! Purpose rFE

Multilinear ' General-
Purpose FE

Maps / iO

Generally adaptively
secure

Selectively secure

The State of (Public-Key) Functional Encryption

Number-theoretic
[SS10, GVW12, ...] assumptions

Bounded- Bounded-
=)

FIE 7 ILSTE Collusion FE Collusion rFE

Adaptively secure

[GGHRSW13, GGHZ16, ...] against malicious

encrypters!
General-

Purpose rFE

| This work

Multilinear General-

Maps / iO Purpose FE

Open Questions

More direct / efficient constructions of rFE for simpler classes of
functionalities (e.g., sampling random entries from a vector)?

Generic construction of rFE from FE without making additional
assumptions?

Generic transformation for indistinguishability-based notions of
security?

Thank you!
http://eprint.iacr.orqg/2016/482

