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Commitment Schemes

Commit(crs, x) — (o, st)
Takes a common reference string and commits to a message

Outputs commitment o and commitment state st



Commitment Schemes

[ JIA
Open + Verify ﬁ u
) E——)

Commit(crs y X ) — (O' ) St) Alternatively: Could define Commit to
Open(st) s 7 output (o, ) and remove Open

Takes the commitment state and outputs an opening
Verify(crs,o,x,m) - 0/1

Checks whether m is valid opening of o to x




Commitment Schemes

[T[
Open + Verify ﬁ u
o E——)

Binding: efficient adversary cannot open o to two different values

TCO/ @ Verify(crs, g, xq,my) = 1
Q a

T4 Verify(crs,o,x{,m1) =1




Commitment Schemes

[T[
Open + Verify ﬁ u
o E——)

Hiding: the commitment o hides the input x

b

B Commit(crs, x;)
@ E—) g Commit(crs, x;)




This Talk: Succinct Functional Commitments

Open + Verity

0| TEE——)

Commit(crs, x) — (o, st)
Open(st, /) » m

Takes the commitment state and a function f and outputs an opening

Verify(crs,o, (f,v),m) - 0/1

Checks whether m is valid opening of g to value y with respect to [




This Talk: Succinct Functional Commitments

o

Open + Verity

Binding: efficient adversary cannot open o to two different values
with respect to the same f

. £

o

T[O/ m Verify(crs, o, (f,y),mp) = 1

T4 Verify(crs, o, (f,y1),m1) =1



This Talk: Succinct Functional Commitments

Open + Verity
0| IEEEEE——

Hiding: commitment o and opening  only reveal f(x)

Succinctness: commitments and openings should be short
* Short commitment: |o| = poly(4, log |x]|)
* Short opening: || = poly(4,log|x|, |f(x)])



Special Cases of Functional Commitments

Vector commitments:

| ind; (xq, ..., X)) = Xx;

commit to a vector, open at an index

Polynomial commitments:

fo(ag, ..,ag) = ag + ayx + -+ ayzx?
——— [E5

commit to a polynomial, open to the evaluation at x




Succinct Functional Commitments

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions
[CF13, LM19, BBF19] vector commitment groups of unknown order
[PPS21] vector commitment short integer solutions (SIS)
[KZG10, Lee20] polynomial commitment g-type pairing assumptions
[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order
[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[LRY16] linear functions q-type pairing assumptions
[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)
This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic



Succinct Functional Commitments

(not an exhaustive list!)

Scheme

Function Class

Assumption

[Mer87]

[LY10, CF13, LM19, GRWZ20]

[CF13, LM19, BBF19]
[PPS21]

vector commitment
vector commitment
vector commitment

vector commitment

collision-resistant hash functions
q-type pairing assumptions
groups of unknown order

short integer solutions (SIS)

[KZG10, Lee20]
[BFS19, BHRRS21, BF23]

polynomial commitment

polynomial commitment

g-type pairing assumptions

groups of unknown order

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[LRY16] linear functions q-type pairing assumptions

[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)

This work vector commitment short integer solutions (SIS)

This work Boolean circuits BASIS¢uct assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

short (i.e., low-norm) vector

satisfying A;u;; = t;



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

L

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j
Commitment to x € Z%: Opening to value y at index i:

short v; suchthatc = A;v; +y - t;
C= Z Xit; Honest opening: Correct as long as x is short
€[ £]
linear combination of target vectors Vi = 2 Wi | Aivg + xit; = z XA + xit; = Z Xty = ¢
J#i j#i jEl£]




Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

[PPS21]: A; « Zy™™ and t; « Zj are independent and uniform

suffices for vector commitments (from SIS)

[ACLMTZ].] Ai = WLA and ti = Wl-ul- where Wi «— ngn,A — ngm, Uu; < ZZ

(one candidate adaptation to the integer case)

generalizes to functional commitments for constant-degree polynomials (from k-R-ISIS)




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

—Al i _I’I’l- -1].1- __xltl-
v [T ,
_ A, —I,| | ¢ | T Xely

I, denotes the identity matrix




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

_ | o raq - _ _
Al : _G 1).1 —x1 t1
I . . _ ¢
P B R I
S A —X
i Af ! G- L C i tHt “powers of two matrix”

For security and functionality, it
will be useful to write ¢ = G¢




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t;

Vi € []

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

—G

v,

—X1t1

—Xolp

Common reference string:
matrices Ay, ..., Ay € Zg*™
target vectors t4, ..., ty € Z’C}

auxiliary data: cross-terms u;; « Ai_l(tj)



Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

_G_
J/

Y

B,

v,

it Common reference string:
X1t matrices 4 A, € Z1*m
. 1, nen ,g q
target vectors t4, ..., ty € Z’C}
—Xplp auxiliary data:

trapdoor for B,

Trapdoor for B, can be used to sample short solutions

x to the linear system B,x = y (for arbitrary y)




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

A =G| [V [t .
; 3 : Use trapdoor for B, to jointly
| Vol ) sample a solution vy, ..., vy, C
i Ay _G_ . C. __xftf_ ¢ = GC is the commitment and
- ~ / V4, ... Vp are the openings
B,

Supports commitments to arbitrary (i.e., large) values over Z,



Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

_ | X ran - _ _
Al | _G vl —x1 t1
| 3 : Use trapdoor for B, to jointly
! Vol — . sample a solution vy, ..., vy, C
A,  —G A —Xplp P .
! t - 1 Lc. ! _ ¢ = G¢ is the commitment and
- ~ / V4, ... Vp are the openings
Bg Supports statistically private openings

(commitment + opening hides unopened positions)



Proving Security

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]
for a short v;

Short integer solutions (SIS)

Suppose adversary can break binding
given A « Z7*™, hard to find

outputs ¢, (v;, x;), (v}, x) such that short x # 0 such that Ax = 0
C = Aivi + xiti
— Al-v; + .X'l,tl l
v; — v} is a SIS solution for A4;
given matrices 4, ..., 4, set A; « Zp<™ without the first row
target vectors t, ..., t, sett; =e; = [1,0,...,0]"

trapdoor for B,



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Adversary that breaks binding can solve SIS with respect to A;

(technically A; without the first row — which is equivalent to SIS with dimensionn — 1)



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]
for a short v;
Adversary that breaks binding can solve SIS with respect to A;

Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A;
given a trapdoor (a basis) for the matrix

A,  —G Can simulate CRS from BASIS challenge:
Lo
B, = - matrices Ay, ..., Ay « Zg<™
A, 1 -G trapdoor for B,




Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A; given a trapdoor (a basis) for the matrix
_Al G
Bg = : .
I
Ap

_G_

When A4, ..., A, « ZZX’" are uniform and independent:
hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)



Vector Commitments from SIS

Common reference string (for inputs of length £):
Can commit and open to

matrices Ay, ..., A, € Z*™
arbitrary 7, vectors

A, ¢
auxiliary data: trapdoor for B, = 1
4, 1 =G Commitments and openings
statistically hide unopened
To commit to a vector x € Z%: sample solution (vy, ..., vy, €) components
Al : —G Uy —X1€17
| 3 : Linearly homomorphic:
! Vol — ' c + ¢’ is a commitment to
i Ag ! —G_ i T Xp€yp ] x + x' with openings v; + v,

Commitmentis ¢ = G¢C Openings are v4, ..., Uy



Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation

nxm : , [GSW13, BGGHNSVV14, GVW15]
Let A € Zg;™™ be an arbitrary matrix

C, =AV, + x,G homomorphic
. evaluation
= BN -Vt
Cg — AV{ + X{G
C; is an encoding of x; with Cr is an encoding of f(x) with

(short) randomness V; (short) randomness V¢



Functional Commitments using Structured A;

Instead of using random A;, consider structured A; (like in [ACLMT22])

A< Zg"™

A, =W A
Wi ...,.W, « ngn (invertible) y :

Common reference string still consists of trapdoor for B, (with the structured A;)
A —G

Bg = : :
Ap

_G_



Functional Commitments using Structured A;

Instead of using random A;, consider structured A; (like in [ACLMT22])

A« L™ A, G|
Wi, .., W, « ngn (invertible) B, = |
Ai — WlA I Ag !—G_

To commit to an input x € {0,1}¢:
Use trapdoor for B, to jointly sample V4, ..., Vy, C that satisfy
—G Vi I |

—Al —x1 W]_G

:G.w xWG
—_’C | YV P

A,



Functional Commitments using Structured A;

Commitment relation: foralli € [£]
] 1 V. ] ] R
A =G T [awa6 A;V; — GC = —x;W;G
| . . : — .
: v,|— .
A, 1 —G E{) —x,W,G recall 4; = W ;A

_ , WAV, — GC = —x;W ;G
Homomorphic evaluation:
C, =AV, + x,G recall W; is invertible
= ) C=AV,+f(x) G AV, — W:'GC = —x,G
rearranging

W:lGC = AV; + x;G

C{) = AV{ + XgG




Functional Commitments using Structured A;

Commitment relation: foralli € [£]
] 1 V. ] ] R
A =G T [awa6 A;V; — GC = —x;W;G
| . . : — .
: v,|— .
A, 1 —G E{) —x,W,G recall 4; = W ;A

_ , WAV, — GC = —x;W ;G
Homomorphic evaluation:
C, =AV, + x,G recall W; is invertible
= ) C=AV,+f(x) G AV, — W:'GC = —x,G
rearranging

function only of the ~ — W, GC=AV; + x;G

_ -1
commitment C = GC (=W, GC C,=AV; + x;G

C{) = AV{ + XgG




Functional Commitments using Structured A;

Commitment relation:

A, ' —¢] [V
1 . ’

1 V{)

Ag | —G_ ] Z‘_

Homomorphic evaluation:

Cl —_ AV]_ + le

C{) = AV{ + XgG

—x,W,G

_—X{)W{)G_

function only of the
commitment € = GC

~

Ci — AVl + .X'iG
C; is an encoding of x; with randomness V;
compute on compute on
C,,..C Vi, ...V,

Ef = AVf,f(x) T f(x)G
C; is an encoding of f(x) with randomness V ¢

[GVW15]: independent V; is sampled for each
input bit, so commitments C; are independent
* long commitment, security from SIS

This work: publish a trapdoor that allows
deriving C; (and associated V;) from a single

commitment C
* short commitment, stronger assumption



Functional Commitments using Structured A;

Commitment relation: To verify:
_ - 'V T _ -
Ay G| —x1 W16 1. Expand commitment
1 . : — .
R A I C,=AV
A1 —G| o _ nggG_ T, = W-iGT Cl .1 + le

C aa—

Homomorphic evaluation:

Cl —_ AV]_ + le

E{) = AVg + XgG

‘ Cr=AVy + f(x)-G 2. Homomorphically evaluate f

C{)=AV£+XgG ~ ~ ~
Cy,..C, mmp C,

Openingis V¢ ¢y is
(short) linear functionof V4, ..., V,

3. Check verification relation

Opening to function f proceeds exactly as in [GVW15] AVf Z = Cf —z-G



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix
4, G
Bg = : .
I
Ap

_G_
where Ai — WlA where Wi «— ZZ,XR and 4 « ZZ,X?TL

Falsifiable assumption but does not appear to reduce to standard SIS

£ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when £ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length £): Scheme supports functions
matrices Ay, ..., Ay € ZI*™ where 4; = WA computable by Boolean circuits
A, | _¢ of (bounded) depth d
auxiliary data: trapdoor for B, = : :
A; | —G! |crs| = €2 - poly(4,d, log ¢)
To commit to a vector x € {0,1}*: sample (V4, ..., V,, C) |C| = poly(4,d,log¥)
Ay —G Vil 1« W,G [Vs.rc0l = poly(4, d, log )
! . )
L V = : Verification time scales with |f]
A{ ' G 4 _xfwa (i.e., size of circuit computing f)
: ~
_ : i C | _ i

Commitment is C = GC Openings for function fis [V | ---| V] - Hg ¢,



Fast Verification with Preprocessing

C,=w;'cC =w;'cC

To verify opening V to (f, z), verifier computes the following:

e Homomorphic evaluation: El, ...,@,f > Ef .=
~ Computing C+ corresponds
e Verification relation: AV = Cf —7z-G P & f P

to homomorphic
Suppose f is a linear function: computation on C4, ..., C,
f(xq, ., xp) = Z a;x;
€[]

M  is a fixed matrix that depends only on f and

Then we can write Cf = My - C can be computed in offline phase

For linear functions, if f is known in advance, verification runs in time poly(4,log )



Fast Verification with Preprocessing

C,=w;'cC =w;'cC

To verify opening V to (f, z), verifier computes the following:

e Homomorphic evaluation: El, ...,@,f - Ef Computing Ef corresponds

to homomorphic
Suppose f is a linear function: computation on C4, ..., C,

e \Verification relation: AV = Ef —7z-G

Captures polynomial commitments as a special case
(polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time poly(4,log )



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (c = A;v; + x;t;)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to A is hard given a trapdoor for a related matrix B
“Random” variant of BASIS assumption implies vector commitments and reduces to SIS
“Structured” variant of BASIS assumption implies functional commitments

* Yields linear and polynomial commitments with fast preprocessed verification
e Structure also enables aggregating openings [see paper for details]



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)
Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with linear-size CRS?

Thank you!
https://eprint.iacr.org/2022/1515
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