Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu
June 2024

based on joint works with Hoeteck Wee
Functional Commitments

Commit σ

"commitment"

Open + Verify π

"opening"
Functional Commitments

\[\text{Commit} (\text{crs, } x) \rightarrow (\sigma, \text{st}) \]

Takes a common reference string and commits to an input \(x \)

Outputs commitment \(\sigma \) and commitment state \(\text{st} \)
Functional Commitments

\[\sigma \xrightarrow{\text{Open + Verify}} f(x) \]

Commit(crs, x) \rightarrow (\sigma, \text{st})

Open(st, f) \rightarrow \pi

Takes the commitment state and a function \(f \) and outputs an opening \(\pi \)

Verify(crs, \sigma, (f, y), \pi) \rightarrow 0/1

Checks whether \(\pi \) is valid opening of \(\sigma \) to value \(y \) with respect to \(f \)
Functional Commitments

Binding: efficient adversary cannot open \(\sigma \) to two different values with respect to the same \(f \)

\[
\begin{align*}
\text{Verify}(\text{crs}, \sigma, (f, y_0), \pi_0) &= 1 \\
\text{Verify}(\text{crs}, \sigma, (f, y_1), \pi_1) &= 1
\end{align*}
\]
Succinctness: commitments and openings should be short

- **Short commitment:** $|\sigma| = \text{poly}(\lambda, \log |x|)$
- **Short opening:** $|\pi| = \text{poly}(\lambda, \log|x|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with **depth** of the circuit computing f
Special Cases of Functional Commitments

Vector commitments:

\[[x_1, x_2, \ldots, x_n] \]

commit to a vector, open at an index

\[\text{ind}_i(x_1, \ldots, x_n) := x_i \]

 Polynomial commitments:

\[[\alpha_0, \alpha_1, \ldots, \alpha_d] \]

commit to a polynomial, open to the evaluation at \(x \)

\[f_x(\alpha_0, \ldots, \alpha_d) := \alpha_0 + \alpha_1 x + \cdots + \alpha_d x^d \]
Commitments as Proofs on Committed Data

Commit(crs, data)

π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short
Succinct Functional Commitments

(\textit{not an exhaustive list!})

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Function Class</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mer87]</td>
<td>vector commitment</td>
<td>collision-resistant hash functions</td>
</tr>
<tr>
<td>[LY10, CF13, LM19, GRW20]</td>
<td>vector commitment</td>
<td>(q)-type pairing assumptions</td>
</tr>
<tr>
<td>[CF13, LM19, BBF19]</td>
<td>vector commitment</td>
<td>groups of unknown order</td>
</tr>
<tr>
<td>[PPS21]</td>
<td>vector commitment</td>
<td>short integer solutions (SIS)</td>
</tr>
<tr>
<td>[KZG10, Lee20]</td>
<td>polynomial commitment</td>
<td>(q)-type pairing assumptions</td>
</tr>
<tr>
<td>[BFS19, BHRRS21, BF23]</td>
<td>polynomial commitment</td>
<td>groups of unknown order</td>
</tr>
<tr>
<td>[LRY16]</td>
<td>linear functions</td>
<td>(q)-type pairing assumptions</td>
</tr>
<tr>
<td>[ACLMT22]</td>
<td>constant-degree polynomials</td>
<td>(k)-(R)-ISIS assumption (falsifiable)</td>
</tr>
<tr>
<td>[LRY16]</td>
<td>Boolean circuits</td>
<td>collision-resistant hash functions + SNARKs</td>
</tr>
<tr>
<td>[dCP23]</td>
<td>Boolean circuits</td>
<td>SIS (non-succinct openings in general)</td>
</tr>
<tr>
<td>[KLVW23]</td>
<td>Boolean circuits</td>
<td>LWE (via batch arguments)</td>
</tr>
<tr>
<td>[BCFL23]</td>
<td>Boolean circuits</td>
<td>twin (k)-(R)-ISIS (or (q)-type pairing assumption)</td>
</tr>
<tr>
<td>[WW23a, WW23b]</td>
<td>Boolean circuits</td>
<td>(\ell)-succinct SIS</td>
</tr>
<tr>
<td>[WW24]</td>
<td>Boolean circuits</td>
<td>(k)-Lin (pairings)</td>
</tr>
</tbody>
</table>
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

- matrices $A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, \ldots, t_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

short (i.e., low-norm) vector satisfying $A_i u_{ij} = t_j$
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
- matrices $A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, \ldots, t_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^\ell$:
$$c = \sum_{i \in [\ell]} x_i t_i$$
linear combination of target vectors

Opening to value y at index i:
short v_i such that $c = A_i v_i + y \cdot t_i$

Honest opening:
$$v_i = \sum_{j \neq i} x_j u_{ij}$$
Correct as long as x is short

$$A_i v_i + x_i t_i = \sum_{j \neq i} x_j A_i u_{ij} + x_i t_i = \sum_{j \in [\ell]} x_j t_j = c$$
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments \([\text{PPS21, ACLMT22}]\)

Common reference string (for inputs of length \(\ell\)):
- matrices \(A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}\)
- target vectors \(t_1, \ldots, t_\ell \in \mathbb{Z}_q^n\)

auxiliary data: cross-terms \(u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m\) where \(i \neq j\)

\([\text{PPS21}]\): \(A_i \leftarrow \mathbb{Z}_q^{n \times m}\) and \(t_i \leftarrow \mathbb{Z}_q^n\) are independent and uniform

\(\text{suffices for vector commitments (from SIS)}\)

\([\text{ACLMT21}]\): \(A_i = W_i A\) and \(t_i = W_i u_i\) where \(W_i \leftarrow \mathbb{Z}_q^{n \times n}, A \leftarrow \mathbb{Z}_q^{n \times m}, u_i \leftarrow \mathbb{Z}_q^n\)

(one candidate adaptation to the integer case)

generalizes to functional commitments for constant-degree polynomials (from \(k-R-ISIS\))
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \) \(\forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
 A_1 \\
 \vdots \\
 A_\ell
\end{bmatrix}
\begin{bmatrix}
 -I_n \\
 \vdots \\
 -I_n
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 \vdots \\
 v_\ell
\end{bmatrix}
=
\begin{bmatrix}
 -x_1 t_1 \\
 \vdots \\
 -x_\ell t_\ell
\end{bmatrix}
\]

\(I_n \) denotes the identity matrix
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
A_1 & & & & \cdots & -G \\
& \ddots & & & & \\
& & A_\ell & & & -G \\
& & & \ddots & & \\
& & & & \ddots & \\
& & & & & 1 & 2 & \cdots & 2^{\lfloor \log q \rfloor}
\end{bmatrix} \begin{bmatrix}
\hat{c} \\
v_1 \\
\vdots \\
v_\ell
\end{bmatrix} = \begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

“For powers of two matrix”

For security and functionality, it will be useful to write \(c = G \hat{c} \)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
A_1 & \cdots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & -G & -G
\end{bmatrix}
\begin{bmatrix}
\hat{c} \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

Common reference string:
matrices \(A_1, \ldots, A_\ell \in \mathbb{Z}_{q}^{n \times m} \)
target vectors \(t_1, \ldots, t_\ell \in \mathbb{Z}_{q}^{n} \)

auxiliary data: cross-terms \(u_{ij} \leftarrow A_i^{-1}(t_j) \)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \) \(\forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system (and publish a trapdoor for it)

\[
\begin{bmatrix}
A_1 \\
\vdots \\
A_\ell
\end{bmatrix}
\begin{bmatrix}
-G \\
\vdots \\
-G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

Common reference string:
matrices \(A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m} \)
target vectors \(t_1, \ldots, t_\ell \in \mathbb{Z}_q^n \)

auxiliary data: cross terms \(u_{ij} \leftarrow A_i^{-1}(t_j) \)

trapdoor for \(B_\ell \)

Trapdoor for \(B_\ell \) can be used to sample short solutions \(x \) to the linear system \(B_\ell x = y \) (for arbitrary \(y \))
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \) \(\forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system (and publish a trapdoor for it)

\[
\begin{bmatrix}
A_1 & \ldots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & \ldots & -G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell \\
\hat{c}
\end{bmatrix}
= \begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

Committing to an input \(x \):

Use trapdoor for \(B_\ell \) to **jointly** sample a solution \(v_1, \ldots, v_\ell, \hat{c} \)

\(c = G \hat{c} \) is the commitment and \(v_1, \ldots, v_\ell \) are the openings
Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \) \(\forall i \in [\ell] \)
for a short \(v_i \)

Suppose adversary can break binding

outputs \(c, (v_i, x_i), (v_i', x_i') \) such that

\[
\begin{align*}
\quad c &= A_i v_i + x_i t_i \\
\quad &= A_i v_i' + x_i' t_i
\end{align*}
\]

Short integer solutions (SIS)

given \(A \leftarrow \mathbb{Z}_q^{n \times m} \), hard to find short \(x \neq 0 \) such that \(Ax = 0 \)

\[
\begin{align*}
\quad A_i(v_i - v_i') &= (x_i' - x_i)t_i \\
\quad &= (\text{short})
\end{align*}
\]

Looks like an SIS solution...

How to choose \(A_i, t_i \)?

Set \(A_i \leftarrow \mathbb{Z}_q^{n \times m} \)

Set \(t_i = e_1 = [1,0,\ldots,0]^T \)

(cannot set \(t_i = 0 \) as otherwise, it could be \(v_i = v_i' \))
Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

\[c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \]

for a short \(v_i \)

Suppose adversary can break binding

outputs \(c, (v_i, x_i), (v'_i, x'_i) \) such that

\[c = A_i v_i + x_i t_i = A_i v'_i + x'_i t_i \]

set \(A_i \leftarrow \mathbb{Z}_{q}^{n \times m} \)

set \(t_i = e_1 = [1, 0, \ldots, 0]^T \)

(\(t_i = 0 \) as otherwise, it could be \(v_i = v'_i \))

Short integer solutions (SIS)

given \(A \leftarrow \mathbb{Z}_{q}^{n \times m} \), hard to find short \(x \neq 0 \) such that \(A x = 0 \)

\[A_i (v_i - v'_i) = (x'_i - x_i) e_1 \]

\(v_i - v'_i \) is a SIS solution for \(A_i \) without the first row
Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Adversary that breaks binding can solve SIS with respect to \(A_i \)

(technically \(A_i \) without the first row – which is equivalent to SIS with dimension \(n - 1 \))

but... adversary also gets additional information beyond \(A_i \)

\[
B_\ell = \begin{bmatrix}
A_1 & -G \\
\vdots & \vdots \\
A_\ell & -G
\end{bmatrix}
\]

Adversary sees **trapdoor** for \(B_\ell \)
Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)
for a short \(v_i \)

Adversary that breaks binding can solve SIS with respect to \(A_i \)

Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to \(A_i \)

given a trapdoor (a basis) for the matrix

\[
B_\ell = \begin{bmatrix}
A_1 & \vdots & \vdots \\
\vdots & \ddots & \vdots \\
A_\ell & \vdots & -G
\end{bmatrix}
\]

Can simulate CRS from BASIS challenge:

matrices \(A_1, \ldots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m} \)

trapdoor for \(B_\ell \)
Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

\[
B_\ell = \begin{bmatrix}
A_1 & \cdots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & \cdots & -G
\end{bmatrix}
\]

When $A_1, \ldots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent:

hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)
Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices $A_1, \ldots, A_{\ell} \in \mathbb{Z}_q^{n \times m}$

auxiliary data: trapdoor for $B_{\ell} = \begin{bmatrix} A_1 & -G \\ \vdots & \vdots \\ A_{\ell} & -G \end{bmatrix}$

To commit to a vector $x \in \mathbb{Z}_q^{\ell}$: sample solution $(v_1, \ldots, v_{\ell}, \hat{c})$

$\begin{bmatrix} A_1 & -G \\ \vdots & \vdots \\ A_{\ell} & -G \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \end{bmatrix} = \begin{bmatrix} -x_1 e_1 \\ \vdots \\ -x_{\ell} e_{\ell} \end{bmatrix}$

Commitment is $c = G\hat{c}$

Openings are v_1, \ldots, v_{ℓ}

Can commit and open to arbitrary \mathbb{Z}_q vectors

Commitments and openings statistically hide unopened components

Linearly homomorphomic: $c + c'$ is a commitment to $x + x'$ with openings $v_i + v'_i$
Extending to Functional Commitments

Goal: commit to \(x \in \{0,1\}^\ell \), open to function \(f(x) \)

Suppose \(f(x) = \sum_{i \in [\ell]} \alpha_i x_i \) is a **linear** function

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

Can also view \(c \) as commitment to vector \(x_i t_i \) with respect to \(A_i \) and opening \(v_i \)

Suppose \(c_1, c_2 \) are commitments to vectors \(u_1, u_2 \) with respect to the same \(A \)

\[
\begin{align*}
 c_1 &= A v_1 + u_1 \\
 c_2 &= A v_2 + u_2 \\
 c_1 + c_2 &= A(v_1 + v_2) + (u_1 + u_2)
\end{align*}
\]
Extending to Functional Commitments

desired correctness relation

\[
\begin{align*}
c_1 &= A v_1 + x_1 t \\
\vdots \\
c_\ell &= A v_\ell + x_\ell t
\end{align*}
\]

Cannot define commitment to be \((c_1, \ldots, c_\ell)\) since this is long

Instead, suppose \(c_i = W_i c\) can be derived from a (single) \(c\)

\[
\begin{bmatrix}
A & -W_1 \\
\vdots & \vdots \\
A & -W_\ell
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
= \begin{bmatrix}
x_1 t \\
\vdots \\
x_\ell t
\end{bmatrix}
\]

Our approach: rewrite \(\ell\) relations as a single linear system (and publish a trapdoor for it)
Extending to Functional Commitments

To commit to $x \in \{0,1\}^\ell$, use trapdoor for B_ℓ to sample c, v_1, \ldots, v_ℓ where

\[
\begin{bmatrix}
A & -W_1 \\
\vdots & \vdots \\
A & -W_\ell
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t \\
\vdots \\
-x_\ell t
\end{bmatrix}
\]

CRS contains $A, W_1, \ldots, W_\ell, t$ and trapdoor for B_ℓ

Opening to value $y = f(x) = \sum_{i \in [\ell]} \alpha_i x_i$ is $v_f := \sum_{i \in [\ell]} \alpha_i v_i$

Verification relation

\[
\sum_{i \in [\ell]} \alpha_i W_i c = A v_f + y \cdot t
\]
Security follows from ℓ-succinct SIS assumption [Wee24]:

\[
\text{SIS is hard with respect to } A \text{ given a trapdoor (a basis) for the matrix}
\]

\[
B_\ell = \begin{bmatrix}
A & W_1 \\
\vdots & \\
A & W_\ell
\end{bmatrix}
\]

where $A \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_{q}^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

$\ell = 1$ case does follow from plain SIS (and when W_i is very wide)

Open problem: Understanding security or attacks when $\ell > 1$
Security follows from ℓ-succinct SIS assumption [Wee24]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$B_\ell = \begin{bmatrix} A & W_1 \\ \vdots & \vdots \\ A & W_\ell \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Equivalent formulation:

SIS is hard with respect to A given $A^{-1}(W_i R)$ along with W_i, R

where $A \leftarrow \mathbb{Z}_q^{n \times m}, W_i \leftarrow \mathbb{Z}_q^{n \times m}$, and $R \leftarrow D_{\mathbb{Z}_s}^{m \times k}$ where $k \geq m(\ell + 1)$
Linear functional commitments extends readily to support (bounded-depth) circuits

\[W_1 c = A v_1 + x_1 t \]
\[\vdots \]
\[W_{\ell} c = A v_{\ell} + x_{\ell} t \]

Supports openings to linear functions

\[W_1 C = A V_1 + x_1 G \]
\[\vdots \]
\[W_{\ell} C = A V_{\ell} + x_{\ell} G \]

Supports openings to Boolean circuits

In this setting, \((W_1 C, \ldots, W_{\ell} C)\) is a [GVW14] homomorphic commitment to \(x\) (can be opened to any function \(f(x)\) of bounded depth)

[see paper for details]
Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

1. Write down the main verification relation \(c = A_i v_i + x_i t_i \)
2. **Publish** a trapdoor for the linear system induced by the verification relation

Security analysis relies on new \(q \)-type variants of SIS:

\[\text{SIS with respect to } A \text{ is hard given a trapdoor for a } \textit{related} \text{ matrix } B \]

“Random” variant of the assumption implies vector commitments and reduces to SIS

“Structured” variant (\(\ell \)-succinct SIS) implies functional commitments for circuits

- Structure also enables **aggregating** openings [see paper for details]
\(l \)-Succinct SIS (and LWE)

SIS (or LWE) is hard with respect to \(A \) given a trapdoor (a basis) for the matrix

\[
B_\ell = \begin{bmatrix}
A & W_1 \\
\vdots & \vdots \\
A & W_\ell
\end{bmatrix}
\]

where \(A \leftarrow \mathbb{Z}_q^{n \times m} \) and \(W_i \leftarrow \mathbb{Z}_q^{n \times m} \)

Falsifiable assumption that is implied by evasive LWE

Less structured assumption than \(k\)-R-ISIS or BASIS\text{struct} from recent works:

\[
A^{-1}(W_iR) \quad \text{where} \quad W_i \leftarrow \mathbb{Z}_q^{n \times m} \quad \text{and} \quad R \leftarrow D_{\mathbb{Z},S}^{m \times m(\ell+1)}
\]

Can be used to get ABE with short ciphertexts (and broadcast encryption) [Wee24], functional commitments [WW23b], distributed broadcast encryption [CW24]
Cryptanalysis of Lattice-Based Knowledge Assumptions
Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the *same* f

$\pi_0 \rightarrow (f, y_0)$ \[Verify(crs, \sigma, (f, y_0), \pi_0) = 1 \]

$\pi_1 \rightarrow (f, y_1)$ \[Verify(crs, \sigma, (f, y_1), \pi_1) = 1 \]

Scheme could be binding, but still allow an efficient adversary to construct (malformed) commitment σ and opening to value 1 with respect to the **all-zeroes** function
Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

σ \[
\pi_0 \quad (f, y_0) \\
\pi_1 \quad (f, y_1)
\]

Verify $\text{crs}, \sigma, (f, y_0), \pi_0 = 1$

Verify $\text{crs}, \sigma, (f, y_1), \pi_1 = 1$

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x) = y$

σ \[
\pi \quad (f, y)
\]

x such that $y = f(x)$

Note: f could have multiple outputs
Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

\[
\text{Verify}(\text{crs}, \sigma, (f, y_0), \pi_0) = 1 \\
\text{Verify}(\text{crs}, \sigma, (f, y_1), \pi_1) = 1
\]

Notion is equivalent to SNARKs, so will be challenging to build from a falsifiable assumption

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x) = y$

Note: f could have multiple outputs
Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

\[
\begin{align*}
A & \quad Z \\
\text{short} & \quad = & \quad D \\
& \quad T \\
\text{random}
\end{align*}
\]

given (tall) matrices \(A, D \) and short preimages \(Z \) of a random target \(T \)

if adversary can produce a short vector \(\mathbf{v} \) such that \(A\mathbf{v} \) is in the image of \(D \) (i.e., \(A\mathbf{v} = D\mathbf{c} \)), then there exists an extractor that outputs short \(\mathbf{x} \) where \(\mathbf{v} = Z\mathbf{x} \)

Observe: \(A\mathbf{v} \) for a random (short) \(\mathbf{v} \) is outside the image of \(D \) (since \(D \) is tall)
Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

\[
\text{Given (tall) matrices } A, D \text{ and short preimages } Z \text{ of a random target } T
\]

if adversary can produce a short vector \(\nu \) such that \(Av \) is in the image of \(D \) (i.e., \(Av = Dc \)), then there exists an extractor that outputs short \(x \) where \(\nu = Zx \).

Observe: \(Av \) for a random (short) \(\nu \) is outside the image of \(D \) (since \(D \) is tall)
Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

\[A \times D = Z \times T \]

Our work: algorithm to obliviously sample a solution \(Av = Dc \) without knowledge of a linear combination \(v = Zx \)

Rewrite \(AZ = DT \) as

\[
[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0
\]

If \(Z \) and \(T \) are wide enough, we (heuristically) obtain a basis for \([A \mid DG]\)
Obliviously Sampling a Solution

Our work: algorithm to obliviously sample a solution \(Av = Dc \) without knowledge of a linear combination \(v = Zx \)

Rewrite \(AZ = DT \) as

\[
\begin{bmatrix} A & DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0
\]

If \(Z \) and \(T \) are wide enough, we (heuristically) obtain a basis for \([A \mid DG]\)

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution \(y \) where \([A \mid DG]y = 0 \) mod \(q \)
2. Assuming \(B^* \) is full-rank over \(\mathbb{Q} \), find \(z \) such that \(B^*z = y \) (over \(\mathbb{Q} \))
3. Set \(y^* = y - B^*[z] = B^*(z - \lfloor z \rfloor) \) and parse into \(v, c \)

Correctness: \([A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rfloor) = 0 \) mod \(q \) and \(y^* \) is short
Obliviously Sampling a Solution

This work: algorithm to **obliviously** sample a solution $Av = Dc$ without knowledge of a linear combination $v = Zx$

Rewrite $AZ = DT$ as

$$
\begin{bmatrix} A & DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0
$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A | DG]$

This solution is obtained by "rounding" off a long solution

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution y where $[A | DG] \cdot y = 0 \mod q$
2. Assuming B^* is full-rank over \mathbb{Q}, find z such that $B^* z = y$ (over \mathbb{Q})
3. Set $y^* = y - B^* [z] = B^* z - z$

Question: Can we explain such solutions as taking a short linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[A | DG] \cdot y^* = [A | DG] \cdot B^* (z - [z]) = 0 \mod q$ and y^* is short
1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

\[Av = Dc \]

\[[A \mid DG] \begin{bmatrix} v \\ -G^{-1}(c) \end{bmatrix} = 0 \]

\[[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0 \]
Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
- Oblivious sampler for integer variant of knowledge k-R-ISIS assumption from [ACLMT22]
 Implementation by Martin: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?
Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer k-ISIS assumption from [ACLMT22]
 Implementation by Martin: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22]
Open Questions

Understanding the hardness of ℓ-succinct SIS/LWE (hardness reductions or cryptanalysis)?

Martin’s blog post: https://malb.io/sis-with-hints.html

New applications of ℓ-succinct SIS/LWE?

Broadcast encryption, succinct ABE, succinct laconic function evaluation [Wee24]

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids attacks

Thank you!

https://eprint.iacr.org/2022/1515
https://eprint.iacr.org/2024/028