Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu
December 2023

based on joint work with Hoeteck Wee
Functional Commitments

\(x \) → Commit → "commitment" → Open + Verify → "opening"
Functional Commitments

Commit \((\text{crs}, x) \rightarrow (\sigma, st)\)

Takes a common reference string and commits to an input \(x\)

Outputs commitment \(\sigma\) and commitment state \(st\)
Functional Commitments

\[
\sigma
\]

\[
\text{Open + Verify}
\]

\[
\pi
\]

\[
f(x)
\]

Commit(crs, \(x\)) \(\rightarrow (\sigma, \text{st})\)

Open(st, \(f\)) \(\rightarrow \pi\)

Takes the commitment state \text{and a function} \(f\) and outputs an opening \(\pi\)

Verify(crs, \(\sigma, (f, y), \pi\)) \(\rightarrow 0/1\)

Checks whether \(\pi\) is valid opening of \(\sigma\) to value \(y\) with respect to \(f\)
Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the *same* f

- $\pi_0 \rightarrow (f, y_0)$
 - $\text{Verify}(\text{crs}, \sigma, (f, y_0), \pi_0) = 1$

- $\pi_1 \rightarrow (f, y_1)$
 - $\text{Verify}(\text{crs}, \sigma, (f, y_1), \pi_1) = 1$
Succinctness: commitments and openings should be short

- **Short commitment:** $|\sigma| = \text{poly}(\lambda, \log |x|)$
- **Short opening:** $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with **depth** of the circuit computing f
Special Cases of Functional Commitments

Vector commitments:
\[[x_1, x_2, \ldots, x_n] \]
commit to a vector, open at an index
\[\text{ind}_i(x_1, \ldots, x_n) := x_i \]

Polynomial commitments:
\[[\alpha_0, \alpha_1, \ldots, \alpha_d] \]
commit to a polynomial, open to the evaluation at \(x \)
\[f_x(\alpha_0, \ldots, \alpha_d) := \alpha_0 + \alpha_1 x + \ldots + \alpha_d x^d \]
Succinct Functional Commitments

(not an exhaustive list!)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Function Class</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mer87]</td>
<td>vector commitment</td>
<td>collision-resistant hash functions</td>
</tr>
<tr>
<td>[LY10, CF13, LM19, GRWZ20]</td>
<td>vector commitment</td>
<td>q-type pairing assumptions</td>
</tr>
<tr>
<td>[CF13, LM19, BBF19]</td>
<td>vector commitment</td>
<td>groups of unknown order</td>
</tr>
<tr>
<td>[PPS21]</td>
<td>vector commitment</td>
<td>short integer solutions (SIS)</td>
</tr>
<tr>
<td>[KZG10, Lee20]</td>
<td>polynomial commitment</td>
<td>q-type pairing assumptions</td>
</tr>
<tr>
<td>[BFS19, BHRRS21, BF23]</td>
<td>polynomial commitment</td>
<td>groups of unknown order</td>
</tr>
<tr>
<td>[LRY16]</td>
<td>linear functions</td>
<td>q-type pairing assumptions</td>
</tr>
<tr>
<td>[ACLMT22]</td>
<td>constant-degree polynomials</td>
<td>k-R-ISIS assumption (falsifiable)</td>
</tr>
<tr>
<td>[LRY16]</td>
<td>Boolean circuits</td>
<td>collision-resistant hash functions + SNARKs</td>
</tr>
<tr>
<td>[dCP23]</td>
<td>Boolean circuits</td>
<td>SIS (non-succinct openings in general)</td>
</tr>
<tr>
<td>[KLVW23]</td>
<td>Boolean circuits</td>
<td>LWE (via batch arguments)</td>
</tr>
<tr>
<td>[BCFL23]</td>
<td>Boolean circuits</td>
<td>twin k-R-ISIS</td>
</tr>
<tr>
<td>[WW23a, WW23b]</td>
<td>Boolean circuits</td>
<td>ℓ-succinct SIS</td>
</tr>
</tbody>
</table>
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

- matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

short (i.e., low-norm) vector satisfying $A_i u_{ij} = t_j$
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
- matrices $A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, \ldots, t_\ell \in \mathbb{Z}_q^n$
- auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^\ell$:
\[
 c = \sum_{i \in [\ell]} x_i t_i
\]

Linear combination of target vectors

Opening to value y at index i:
- short v_i such that $c = A_i v_i + y \cdot t_i$

Honest opening:
\[
 v_i = \sum_{j \neq i} x_j u_{ij}
\]
\[
 A_i v_i + x_i t_i = \sum_{j \neq i} x_j A_i u_{ij} + x_i t_i = \sum_{j \in [\ell]} x_j t_j = c
\]

Correct as long as x is short
Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
- matrices $A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, \ldots, t_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform

suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_iA$ and $t_i = W_iu_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}, A \leftarrow \mathbb{Z}_q^{n \times m}, u_i \leftarrow \mathbb{Z}_q^n$

(one candidate adaptation to the integer case)

generalizes to functional commitments for constant-degree polynomials (from k-R-ISIS)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

\(I_n \) denotes the identity matrix

\[
\begin{bmatrix}
A_1 \\
\vdots \\
A_\ell
\end{bmatrix}
\begin{bmatrix}
\vdots \\
-I_n \\
\vdots
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
x_1 t_1 \\
\vdots \\
x_\ell t_\ell
\end{bmatrix}
\]

Our approach: rewrite \(\ell \) relations as a single linear system

\(I_n \) denotes the identity matrix
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$
\begin{bmatrix}
A_1 & -G \\
\vdots & \vdots \\
A_\ell & -G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
$$

"powers of two matrix"

For security and functionality, it will be useful to write $c = G \hat{c}$

$$
G =
\begin{bmatrix}
1 & 2 & \cdots & 2^{\lfloor \log q \rfloor} \\
\vdots & \vdots & \ddots & \vdots \\
1 & 2 & \cdots & 2^{\lfloor \log q \rfloor}
\end{bmatrix}
$$
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
A_1 & \cdots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & \cdots & -G \\
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell \\
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell \\
\end{bmatrix}
\]

Common reference string:
- matrices \(A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m} \)
- target vectors \(t_1, \ldots, t_\ell \in \mathbb{Z}_q^m \)

auxiliary data: cross-terms \(u_{ij} \leftarrow A_i^{-1}(t_j) \)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix}
A_1 & \cdots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & \cdots & -G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\hat{c}
$$

Common reference string:
- matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$
- target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^m$
- auxiliary data: cross-terms $u_{ij} = A_i^{-1}(t_j)$

Trapdoor for B_ℓ can be used to sample short solutions x to the linear system $B_\ell x = y$ (for arbitrary y)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
A_1 & -G \\
\vdots & \vdots \\
A_\ell & -G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
= \begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

\(B_\ell \)

Committing to an input \(x \): Use trapdoor for \(B_\ell \) to jointly sample a solution \(v_1, ..., v_\ell, \hat{c} \)

\(c = G\hat{c} \) is the commitment and \(v_1, ..., v_\ell \) are the openings

Supports commitments to arbitrary (i.e., large) values over \(\mathbb{Z}_q \)
Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)
for a short \(v_i \)

Our approach: rewrite \(\ell \) relations as a single linear system

\[
\begin{bmatrix}
A_1 & \cdots & -G \\
\vdots & \ddots & \vdots \\
A_\ell & \cdots & -G
\end{bmatrix}
\begin{bmatrix}
v_1 \\
\vdots \\
v_\ell
\end{bmatrix}
\begin{bmatrix}
\hat{c} \\
\vdots \\
\hat{c}
\end{bmatrix}
=
\begin{bmatrix}
-x_1 t_1 \\
\vdots \\
-x_\ell t_\ell
\end{bmatrix}
\]

Committing to an input \(x \):

Use trapdoor for \(B_\ell \) to jointly sample a solution \(v_1, ..., v_\ell, \hat{c} \)

\(c = G\hat{c} \) is the commitment and \(v_1, ..., v_\ell \) are the openings

Supports statistically private openings (commitment + opening hides unopened positions)
Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)
for a short \(v_i \)

Suppose adversary can break binding

outputs \(c, (v_i, x_i), (v'_i, x'_i) \) such that

\[
\begin{align*}
c & = A_i v_i + x_i t_i \\
\end{align*}
\]

\[
\begin{align*}
= A_i v'_i + x'_i t_i \\
\end{align*}
\]

given matrices \(A_1, \ldots, A_\ell \)
target vectors \(t_1, \ldots, t_\ell \)
trapdoor for \(B_\ell \)

Short integer solutions (SIS)
given \(A \leftarrow \mathbb{Z}_q^{n \times m} \), hard to find short \(x \neq 0 \) such that \(Ax = 0 \)

\[
A_i (v_i - v'_i) = (x_i - x'_i)e_1
\]

\(v_i - v'_i \) is a SIS solution for \(A_i \) without the first row

set \(A_i \leftarrow \mathbb{Z}_q^{n \times m} \)
set \(t_i = e_1 = [1,0,\ldots,0]^T \)
Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Adversary that breaks binding can solve SIS with respect to \(A_i \)

(*technically \(A_i \) without the first row – which is equivalent to SIS with dimension \(n - 1 \))

but... adversary also gets additional information beyond \(A_i \)

\[
B_\ell = \begin{bmatrix}
A_1 \\
\vdots \\
A_\ell
\end{bmatrix}
\begin{bmatrix}
-G \\
-\cdots\\
-\cdots
\end{bmatrix}
\]

Adversary sees **trapdoor** for \(B_\ell \)
Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: \(c = A_i v_i + x_i t_i \quad \forall i \in [\ell] \)

for a short \(v_i \)

Adversary that breaks binding can solve SIS with respect to \(A_i \)

Basis-augmented SIS (BASIS) assumption:

*SIS is hard with respect to \(A_i \)

given a trapdoor (a basis) for the matrix

\[
B_\ell = \begin{bmatrix}
A_1 & -G \\
\vdots & \vdots \\
A_\ell & -G
\end{bmatrix}
\]

Can simulate CRS from BASIS challenge:

matrices \(A_1, \ldots, A_\ell \leftarrow \mathbb{Z}_{q}^{n \times m} \)

 trapdoor for \(B_\ell \)
Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$B_\ell = \begin{bmatrix} A_1 & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ A_\ell & \vdots & -G \end{bmatrix}$$

When $A_1, \ldots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent:

hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)
Vector Commitments from SIS

Common reference string (for inputs of length \(\ell \)):

matrices \(A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m} \)

auxiliary data: trapdoor for \(B_\ell = \begin{bmatrix} A_1 & -G \\ \vdots & \vdots \\ A_\ell & -G \end{bmatrix} \)

To commit to a vector \(x \in \mathbb{Z}_q^\ell \): sample solution \((v_1, \ldots, v_\ell, \hat{c})\)

\[
\begin{bmatrix} A_1 \\ \vdots \\ A_\ell \end{bmatrix} \cdot \begin{bmatrix} -G \\ \vdots \\ -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \end{bmatrix} = \begin{bmatrix} -x_1 e_1 \\ \vdots \\ -x_\ell e_\ell \end{bmatrix}
\]

Commitment is \(c = G\hat{c} \)
Openings are \(v_1, \ldots, v_\ell \)

Can commit and open to arbitrary \(\mathbb{Z}_q \) vectors

Commitments and openings statistically hide unopened components

Linearly homomorphic: \(c + c' \) is a commitment to \(x + x' \) with openings \(v_i + v'_i \)
Functional Commitments for Circuits

Setting: commit to an input $x \in \{0,1\}^\ell$, open to $f(x)$

(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation

[GSW13, BGGHNSVV14, GVW15]

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

\[
C_1 = AV_1 + x_1 G \\
\vdots \\
C_\ell = AV_\ell + x_\ell G
\]

C_i is an encoding of x_i with (short) randomness V_i

C_f is an encoding of $f(x)$ with (short) randomness V_f

$C_f = AV_f + f(x) \cdot G$
Replace random A_i with a single A (and gadget matrix with W_1, \ldots, W_ℓ)

$A \leftarrow \mathbb{Z}_{q}^{n \times m}$, $A_i := A$

$W_1, \ldots, W_\ell \leftarrow \mathbb{Z}_{q}^{n \times n}$

Common reference string contains trapdoor for matrix B_ℓ:

$$B_\ell = \begin{bmatrix} A & W_1 \\ \vdots & \vdots \\ A & W_\ell \end{bmatrix}$$
To commit to an input $x \in \{0,1\}^\ell$:

Use trapdoor for B_ℓ to **jointly** sample $V_1, ..., V_\ell, \widehat{C}$ that satisfy

\[
\begin{bmatrix}
A & W_1 \\
\vdots & \vdots \\
A & W_\ell
\end{bmatrix}
\begin{bmatrix}
V_1 \\
\vdots \\
V_\ell
\end{bmatrix}
=
\begin{bmatrix}
-x_1 G \\
\vdots \\
-x_\ell G
\end{bmatrix}
\]
Functional Commitments for Circuits

Commitment relation:

\[
\begin{bmatrix}
A & W_1 \\
& \ddots & \ddots \\
& & A & W_\ell
\end{bmatrix}
\begin{bmatrix}
V_1 \\
\vdots \\
V_\ell
\end{bmatrix}
= \begin{bmatrix}
-x_1 G \\
\vdots \\
-x_\ell G
\end{bmatrix}
\]

Homomorphic evaluation:

- \(C_1 = AV_1 + x_1 G \)
- \(\vdots \)
- \(C_\ell = AV_\ell + x_\ell G \)
- \(C_f = AV_f + f(x) \cdot G \)

for all \(i \in [\ell] \)

\[
AV_i + W_i C = -x_i G
\]

rearranging

\[
-W_i C = AV_i + x_i G
\]
Functional Commitments for Circuits

Commitment relation:

\[
\begin{bmatrix}
A & W_1 \\
\vdots & \vdots \\
A & W_\ell
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_\ell \\
C
\end{bmatrix}
= \begin{bmatrix}
-x_1 G \\
\vdots \\
-x_\ell G
\end{bmatrix}
\]

Homomorphic evaluation:

\[
C_1 = AV_1 + x_1 G \\
\vdots \\
C_\ell = AV_\ell + x_\ell G
\]

\[
\bar{C}_f = AV_{f,f(x)} + f(x)G
\]

\[
\bar{C}_i = AV_i + x_i G
\]

\[
\bar{C}_i = -W_i C
\]

\[
\bar{C}_f = A \bar{V}_{f,f(x)} + f(x)G
\]

function of just the commitment \(C\)

compute on \(\bar{c}_1, \ldots, \bar{c}_f\)
compute on \(V_1, \ldots, V_\ell\)

\[\text{[GVW15]: independent } V_i \text{ is sampled for each input bit, so commitments } C_i \text{ are independent}
- \text{ long commitment, security from SIS}
\]

\[\text{[WW23a, WW23b]: publish a trapdoor that allows deriving } C_i \text{ (and associated } V_i) \text{ from a single commitment } \bar{C}]
- \text{ short commitment, stronger assumption}\]
Functional Commitments for Circuits

Commitment relation:

\[
\begin{bmatrix}
A & W_1 \\
\vdots & \vdots \\
A & W_\ell
\end{bmatrix}
\begin{bmatrix}
V_1 \\
\vdots \\
V_\ell \\
C
\end{bmatrix} =
\begin{bmatrix}
-x_1 G \\
\vdots \\
-x_\ell G
\end{bmatrix}
\]

Homomorphic evaluation:

\[
C_1 = AV_1 + x_1 G \\
\vdots \\
C_\ell = AV_\ell + x_\ell G
\]

Opening is \(V_{f,f}(x) \) is
(short) linear function of \(V_1, \ldots, V_\ell \)

Opening to function \(f \) proceeds exactly as in [GVW15]

To verify:

1. Expand commitment
 \[
 \tilde{C}_i = -w_i c
 \]
 \[
 \tilde{C}_1 = AV_1 + x_1 G \\
 \vdots \\
 \tilde{C}_\ell = AV_\ell + x_\ell G
 \]

2. Homomorphically evaluate \(f \)
 \[
 \tilde{C}_1, \ldots, \tilde{C}_\ell
 \]
 \[
 \tilde{C}_f
 \]

3. Check verification relation
 \[
 AV_{f,z} = \tilde{C}_f - z \cdot G
 \]
Function of Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee23]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$B_\ell = \begin{bmatrix} A & W_1 \\ \vdots & \vdots \\ A & W_\ell \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_{q}^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

$\ell = 1$ case does follow from plain SIS (and when W_i is very wide)

Open problem: Understanding security or attacks when $\ell > 1$
Common reference string (for inputs of length ℓ):

matrices $A_1, W_1, \ldots, W_\ell \in \mathbb{Z}_q^{n \times m}$

auxiliary data: trapdoor for $B_\ell = \begin{bmatrix} A & W_1 \\ \vdots & \vdots \\ A & W_\ell \end{bmatrix}$

To commit to a vector $x \in \{0,1\}^\ell$: sample (V_1, \ldots, V_ℓ, C)

$$\begin{bmatrix} A \\ \vdots \\ A \end{bmatrix} \begin{bmatrix} W_1 \\ \vdots \\ W_\ell \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ C \end{bmatrix} = \begin{bmatrix} -x_1 G \\ \vdots \\ -x_\ell G \end{bmatrix}$$

Commitment is C

Openings for function f is $[V_1 | \cdots | V_\ell] \cdot H_{\tilde{c},f,x}$

Scheme supports functions computable by Boolean circuits of (bounded) depth d

$|\text{crs}| = \ell^2 \cdot \text{poly}(\lambda, d, \log \ell)$

$|C| = \text{poly}(\lambda, d, \log \ell)$

$|V_{f,f}(x)| = \text{poly}(\lambda, d, \log \ell)$

Verification **time** scales with $|f|$ (i.e., size of circuit computing f)
Summary of Functional Commitments

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation \(c = A_i v_i + x_i t_i \)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on new \(q \)-type variants of SIS:

\[
\text{SIS with respect to } A \text{ is hard given a trapdoor for a related matrix } B
\]

“Random” variant of the assumption implies vector commitments and reduces to SIS

“Structured” variant (\(\ell \)-succinct SIS) implies functional commitments for circuits
 • Structure also enables aggregating openings [see paper for details]
Cryptanalysis of Lattice-Based Knowledge Assumptions
Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

σ π_0 (f, y_0) Verify$(\text{crs}, \sigma, (f, y_0), \pi_0) = 1$

π_1 (f, y_1) Verify$(\text{crs}, \sigma, (f, y_1), \pi_1) = 1$

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x) = y$

σ π (f, y) efficient extractor x such that $y = f(x)$

Note: f could have multiple outputs
Cryptanalysis of Lattice-Based Knowledge Assumptions

typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices A, D and short preimages Z of a random target T

the only way an adversary can produce a short vector v such that Av is in the image of D (i.e., $Av = Dc$) is by setting $v = Zx$

Observe: Av for a random (short) v is outside the image of D (since D is tall)
Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

Given (tall) matrices A, D and short preimages Z of a random target T

The only way an adversary can produce a short vector v such that Av is in the image of D (i.e., $Av = Dc$) is by setting $v = Zx$

Observe: Av for a random (short) v is outside the image of D (since D is tall)
Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

\[AX = DT \]

This work: algorithm to obliviously sample a solution \(Av = Dc \) without knowledge of a linear combination \(v = Zx \)

Rewrite \(AZ = DT \) as

\[[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0 \]

If \(Z \) and \(T \) are wide enough, we (heuristically) obtain a basis for \([A \mid DG]\)
This work: algorithm to obliviously sample a solution $Av = Dc$ without knowledge of a linear combination $v = Zx$

Rewrite $AZ = DT$ as

$$\begin{bmatrix} A & DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A | DG]$

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution y where $[A | DG]y = 0 \mod q$
2. Assuming B^* is full-rank over \mathbb{Q}, find z such that $B^*z = y$ (over \mathbb{Q})
3. Set $y^* = y - B^*[z] = B^*(z - [z])$ and parse into v, c

Correctness: $[A | DG] \cdot y^* = [A | DG] \cdot B^*(z - [z]) = 0 \mod q$ and y^* is short
Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution \(A\mathbf{v} = D\mathbf{c} \) without knowledge of a linear combination \(\mathbf{v} = Z\mathbf{x} \)

Rewrite \(AZ = DT \) as

\[
\begin{bmatrix} A & DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0
\]

If \(Z \) and \(T \) are wide enough, we (heuristically) obtain a basis for \([A \mid DG] \)

This solution is obtained by “rounding” off a long solution

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution \(\mathbf{y} \) where \([A \mid DG] \mathbf{y} = 0 \mod q \)
2. Assuming \(B^* \) is full-rank over \(\mathbb{Q} \), find \(\mathbf{z} \) such that \(B^* \mathbf{z} = \mathbf{y} \) (over \(\mathbb{Q} \))
3. Set \(\mathbf{y}^* = \mathbf{y} - B^*\lfloor \mathbf{z} \rfloor = B^*\mathbf{z} - \mathbf{z} \) and parse into \(\mathbf{v}, \mathbf{c} \)

Correctness: \([A \mid DG] \cdot \mathbf{y}^* = [A \mid DG] \cdot B^*(\mathbf{z} - \lfloor \mathbf{z} \rfloor) = 0 \mod q \) and \(\mathbf{y}^* \) is short

Question: Can we explain such solutions as taking a short linear combination of \(Z \) (i.e., what the knowledge assumption asserts)
1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

\[Av = Dc \] \quad \Rightarrow \quad \begin{bmatrix} A & DG \end{bmatrix} \begin{bmatrix} v \\ -G^{-1}(c) \end{bmatrix} = 0 \] \quad \Rightarrow \quad \begin{bmatrix} A & DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0 \]
1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
- Oblivious sampler for integer variant of knowledge k-R-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?
Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge k-R-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?
Open Questions

Understanding the hardness of \(\ell\)-succinct SIS (hardness reductions or cryptanalysis)?

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge \(k-R\)-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!