Lattice-Based Succinct

Non-Interactive Arguments

David Wu
Stanford University

based on joint works with Dan Boneh, Yuval Ishai, and Amit Sahai

Proof Systems and Argument Systems

[GMR85]

L-={x:C(x,w) =1 for some w}

rover ZFY verifier
prove »Mg% erifie

65

Completeness: Vx € L: Pr|[(P,V)(x) = accept] =1
“Honest prover convinces honest verifier of true statements”
Soundness: Vx & L, VP* : Pr[(P*,V)(x) = accept] < ¢

“No prover can convince honest verifier of false statement”

Proof Systems and Argument Systems

[GMRS5]

L-={x:C(x,w) =1 for some w}

prover verifier

only consider computationally-bounded (i.e.,

Completeness: polynomial-time) provers P*
1CeS nonest verijier oj true statements

V4

Soundness: Vx & L, VP* : Pr[(P*,V)(x) = accept] < ¢
“No prover can convince honest verifier of false statement”

Succinct Arguments

@ L-={x:C(x,w) =1 for some w}
Q

ZFY verifier
prover ﬂ@% erifie

6

Argument system is succinct if:
e Communication is poly(A + log|C|)
* V can be implemented by a circuit of size poly(A + |x| + log|C]|)

Verifier complexity significantly

smaller than classic NP verifier

Succinct Non-Interactive Arguments (SNARGS)

[Mic94, GW11]

@ L-={x:C(x,w) =1 for some w}
Q

.
prover

Argument system is succinct if:

e Communication is poly(A + log|C|)

* V can be implemented by a circuit of size poly(A1 + |x| + log|C|)
For general NP languages, succinct non-interactive arguments are unlikely to
exist in the standard model [BP0O4, Wee05]

Succinct Non-Interactive Arguments (SNARGs)

[Mic94, GW11]

Instantiation: “CS proofs” in
the random oracle model

verifier

Argument consists of a |
single message |

accept if VR (x,m) = 1

Succinct Non-Interactive Arguments (SNARGs)

[Mic94, GW11]

Preprocessing SNARGs: Al § Can consider publicly-
allow “expensive” setup T verifiable and secretly-
verifiable SNARGs

common reference verification

string (CRS) r"%\:"\ state
Vg I

Argument consists of a
single message

acceptif V(r,x,m) =1

Complexity Metrics for SNARGs

Soundness: for all provers P* of size 24:
x ¢ Lo = Pr|[V(x, P*(x)) =1] <27

How short can the proofs be?

|T[| = .Q.(/D Even in the designated-
verifier setting

How much work is needed to generate the proof?
[P =Q([C])

Quasi-Optimal SNARGs

Soundness: for all provers P* of size 24:
x ¢ Le = Pr|V(x,P*(x))=1] <27

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

e Quasi-optimal succinctness:
|| = A - polylog(4, |C|) = O(A)

* Quasi-optimal prover complexity:
[P] = O(|C|) + poly(4,log|C])

Asymptotic Comparisons

Prover Proof
Construction Complexity Size Assumption
CS Proofs [Mic94] o(ch 0(1?) Random Oracle
Groth [Gro16] 0(AlC)) 0(1) Generic Group
~ 5 5 -

Groth [Gro10] O(A|C|* + |C|2A%) 0(A) Knowledge of
GGPR [GGPR12] oAlchH o) Exponent
BCIOP (Pairing) [BCIOP13] olc) o) Linear-Only Encryption

. . ~ ~ Linear-Only
B BISW1

ISW (integer lattices) [BISW17] O(AlC)) 0(1) Vector Encryption

BISW (ideal lattices) [BIS\W/18] 5(|C|) 0(/1) Linear-Only

Vector Encryption

For simplicity, we ignore low order terms poly(4,log|C|) in the prover complexity

Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [Bcior13)):

Step 1 (information-theoretic):
e I|dentify useful information-theoretic building block (linear
PCPs and linear MIPs)
Step 2 (cryptographic):
* Use cryptographic primitives to compile information-theoretic
building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates

Linear PCPs

[IKOO7]

PCP where the proof (x, w)
oracle implements a
linear function T € F™

In these instantiations,

qg € F™ verifier is oblivious (queries

independent of statement)

(q,m) €F Several possible instantiations: based on

the Walsh-Hadamard code [ALmss92] or
guadratic span programs [GGPR13]

verifier N accept/reject

From Linear PCPs to SNARGs

Oblivious verifier can “commit”
to its queries ahead of time

7

part of the CRS

[BCIOP13]

Prover constructs linear
PCP i from (x, w)

Prover computes responses
to linear PCP queries

(T[, ql) (T[, qZ)
SNARG proof

From Linear PCPs to SNARGs

[BCIOP13]

Oblivious verifier can “commit”

to its queries ahead of time Two issues:
* Malicious prover can choose

 based on the queries
Malicious prover can apply

q1 9 g3 -+ Qg different r to each query

-, Prover computes responses
V" to linear PCP queries

part of the CRS

(T[, ql) (T[, q2>
SNARG proof

From Linear PCPs to SNARGs

[BCIOP13]

Oblivious verifier can “commit”

to its queries ahead of time Two issues:
 Malicious prover can choose

T based on the queries
Malicious prover can apply

q1 9 g3 -+ Qg different r to each query

-, Prover computes responses
V" to linear PCP queries

part of the CRS

(T[, ql) (T[, q2>
SNARG proof

From Linear PCPs to SNARGs

[BCIOP13]

Oblivious verifier can “commit”

to its queries ahead of time Two issues:
 Malicious prover can choose

T based on the queries

Malicious prover can apply
different m to each query

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
* Prover homomorphically computes Q' r

» Verifier decrypts encrypted response
vector and applies linear PCP verification

From Linear PCPs to SNARGs

[BCIOP13]

Oblivious verifier can “commit”

to its queries ahead of time Two issues:
* Malicious prover can choose

 based on the queries

Malicious prover can apply
different T to each query

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
* Prover homomorphically computes Q' r

» Verifier decrypts encrypted response
vector and applies linear PCP verification

From Linear PCPs to SNARGs

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
* Malicious prover can choose
 based on the queries

Malicious prover can apply
different T to each query

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

From Linear PCPs to SNARGs

Oblivious verifier can “commit”
to its queries ahead of time

e Differs from [BCIOP13] compiler which
relies on additional consistency checks to
build a preprocessing SNARG
Using linear-only vector encryption

allows for efficient instantiation from
lattices (resulting SNARG satisfies quasi-
optimal succinctness)

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

Linear-Only Vector Encryption

v, € F¥

v, € F¥

v,, € F¥

plaintext space is a
vector space

Linear-Only Vector Encryption

plaintext space is a encryption scheme is
vector space semantically-secure and
additively homomorphic

Linear-Only Vector Encryption

adversary

- mm) o, a,€FbeF

extractor

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients (a4, ..., a,,) € F™
and b € F¥ such that Decrypt(sk, ct) = ¥;crpy @iv; + b

[Weaker property also suffices]

From Linear PCPs to SNARGs

Oblivious verifier can “commit”
to its queries ahead of time Linear-only vector encryption

ensures that all prover
encrypt strategies can be explained by
SUBACUIN - /inear function = can appeal
to soundness of underlying
linear PCP to argue soundness

=
|

d11492|93| | 4k

__|".'I
L Prover computes responses
A 7 . .
V" to linear PCP queries

part of the CRS

(77:' d1) (T[, d>) e (77:' Ak >.
SNARG proof

Instantiating Linear-Only Vector Encryption

Conjecture: Regev-based encryption (specifically, the [PVWO08] variant)
is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension k):

><I

round

Each row of S can be viewed as an independent Regev secret key

Complexity of the Construction

Evaluating inner product requires Prover COf”SthCtS linear
Q(|C|) homomorphic operations; PCP m from (x, w)
prover complexity:

Q@) - adc) = a@ich

Prover computes responses
Proof consists of a single to linear PCP queries

ciphertext: total length O(A4) bits

(7-[' ql) (T[' qZ) e (7-[' Ak >.
SNARG proof

Asymptotic Comparisons

Prover Proof

Construction Complexity Size Assumption
CS Proofs [Mic94] o(ch 0(1?) Random Oracle
Groth [Gro16] 0(AlC)) 0(1) Generic Group

~ 5 5 -
Groth [Gro10] O(A|C|* + |C|2A%) 0(A) Knowledge of
GGPR [GGPR12] oAlchH o) Exponent
BCIOP (Pairing) [BCIOP13] olc) o) Linear-Only Encryption
BISW (integer lattices) [BIS\W17] oAlchH o) Linear-Only

Vector Encryption

For simplicity, we ignore low order terms poly(4,log|C|) in the prover complexity

Towards Quasi-Optimality

Evaluating inner product requires Prover constructs linear
Q(|C|) homomorphic operations;
prover complexity:

Q@) - adc) = a@ich

PCP it from (x,w)

We pay (1(A4) for each
homomorphic
operation. Can we
reduce this?

Proof consists of a constant
number of ciphertexts: total length

0(4) bits (m,q1) (T, q2) - (7, qg)
SNARG proof

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,,[x]/®4(x) = IFI{;

Homomorphic operations
correspond to component-wise
additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt £ = 0(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,,[x]/®4(x) = IFI{;

Homomorphic operations

Amortized cost of homomorphic
operation on a single field

element is polylog(A)

Using RLWE-based encryption schemes, can
encrypt £ = 0(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel

Linear Multi-Prover Interactive Proofs (MIPs)

Verifier has oracle access to

multiple linear proof oracles
[Proofs may be correlated]

Can convert linear MIP to
preprocessing SNARG using linear-
only (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

(x, w)

/\
DOOO

Suppose
e Number of provers £ = 0(1)
* Proofsmy,...,my € F' wherem = [C|/¥

* Number of queries to each m; is polylog(4)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Prover complexity:
0(fm) = O(|C|)

Linear MIP size:
O(¢ - polylog(1)) = 0(2)
Suppose

e Number of provers £ = 0(1)
* Proofsmy, ..., m, € F' wherem =

* Number of queries to each m; is polylog(4)

Then, linear MIP is quasi-optimal

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Robust Consistency Quasi-Optimal

Decomposition Check Linear MIP

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(x,w) I

Each constraint only needs to
read a subset of the input bits

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(x,w) I

Each constraint only needs to
read a subset of the input bits

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(x,w) I

Each constraint only needs to
read a subset of the input bits

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(x,w) I

Completeness: f C(xw) = 1 ES
then f;(x',w’) = 1 forall i t t t t

Robustness: If x € L, then for all
w', atmost 2/3 of f;(x',w') =1

Boolean circuit C of size s

Efficiency: (x',w') can be
computed by a circuit of size 0(s)

Robust Decomposition

Statement-witness Statement-witness
for C for f1, ..., f¢

Boolean >

circuit C of -
Using linear PCP based on QSPs

PIeE S [GGPR13], || = 0(|C| /) and

provides soundness 1/poly(A)

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

Statement-witness Statement-witness
for C for f1, ..., f¢

Boolean >
circuit C of

size s Verifier invokes linear PCP verifier

for each instance

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

Completeness: Follows by
completeness of decomposition and
linear PCPs

Boolean i Soundness: Each linear PCP provides
circuit C of 1/poly(4) soundness and for false
size s : statement, at least 1/3 of the
statements are false, so if £ = (1),

verifier accepts with probability
Tty 2=

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

Robustness: If x & L, then for all w’,
atmost 2/3 of f;(x',w') =1

For false x, no single w' can
simultaneously satisfy f;(x',);
however, all of the f;(x',-) could
individually be satisfiable

Completeness: Follows by

completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides

1/poly(A) soundness and for false
statement, at least 1/3 of the
statements are false, so if £ = (1),

verifier accepts with probability
Z—Q()l)

Problematic however if prover

uses different (x’,w') to
construct proofs for different f;’s

Consistency Checking

Require that linear PCPs are systematic: linear PCP T contains a copy of the witness:

W{ Wé other components

Goal: check that assignments
W; W, other components to w' are consistent via
linear queries to m;

Wé Wé other components

First few components of proof Each proof induces an
correspond to witness associated assignment to a few bits of
with the statement the common witness w'

Quasi-Optimal Linear MIP

/Robust Decomposition\

C

AN

h 2 fe

e Checking satisfiability of C
corresponds to checking
satisfiability of f4, ..., fy (each
of which can be checked by a
circuit of size |C|/¥)

* For a false statement, no
single witness can

simultaneously satisfy more
than a constant fraction of f;

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[Ik0s07] with a robust MPC protocol with
polylogarithmic overhead [Dik10]

Quasi-Optimal Linear MIP

ﬂobust Decomposition\

C

AN

h 2 fe

* Checking satisfiability of C e Check that consistent witness is
corresponds to checking used to prove satisfiability of
satisfiability of f4, ..., f, (each each f;
of which can be checked by a e Relies on pairwise consistency
circuit of size |C|/#) checks and permuting the

* For afalse statement, no entries to obtain a “nice”
single witness can replication structure

simultaneously satisfy more
than a constant fraction of f;

Asymptotic Comparisons

Prover Proof
Construction Complexity Size Assumption
CS Proofs [Mic94] o(ch 0(1?) Random Oracle
Groth [Gro16] 0(AlC)) 0(1) Generic Group
~ 5 5 -

Groth [Gro10] O(A|C|* + |C|2A%) 0(A) Knowledge of
GGPR [GGPR12] oAlchH o) Exponent
BCIOP (Pairing) [BCIOP13] olc) o) Linear-Only Encryption

. . ~ ~ Linear-Only
B BISW1

ISW (integer lattices) [BISW17] O(AlC)) 0(1) Vector Encryption

BISW (ideal lattices) [BIS\W/18] 5(|C|) 0(/1) Linear-Only

Vector Encryption

For simplicity, we ignore low order terms poly(4,log|C|) in the prover complexity

Conclusions

Introduced framework for building SNARGs by combining linear PCPs (and linear
MIPs) with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP
with linear-only vector encryption

e Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

Open Problems

Publicly-verifiable SNARGs from lattices

Quasi-optimal zero-knowledge SNARGs

Concrete efficiency of lattice-based SNARGs

Thank you!

https://cs.stanford.edu/~dwud/snargs-project.html

