Private Database Queries Using
Somewhat Homomorphic
Encryption

Dan Boneh, Craig Gentry, Shai
Halevi, Frank Wang, David J. Wu

Fully Private Conjunctive Database Queries

user SELECT * FROM db WHERE database

>

dest = LAX AND age = 25
S

indices of matching records

Goals:
1. database learns nothing about query or
response (not even # of matching records)
2. user learns nothing about non-matching records

Motivations

Law Enforcement

select records for Bob
from the last six months

indices of records for Bob
law enforcement local police
officer department

* law enforcement officers should not learn
information about other clients

* Jocal police department should not learn who is
currently under investigation

Limitations of the Two-Party Model

query
>
<

indices of records

Computation Time: Linear in size of database

Otherwise, database learns something about query

3-Party Protocol (De Cristofaro et al.)

@ retrieve records

client corresponding to proxy
tokens (“isolated box”)

: . B

IJ|

-
A
@ oblivious A
computation of ®
tokens encrypted
v database
no collusion!

database

Related Work

 Choretal. (1998)

e Private information retrieval (PIR) with sublinear
communication complexity
 Not a private database query protocol

 De Cristofaro et al. (2011)

e 3-Party Protocol for fully private disjunctive queries
* Does not support conjunctive queries

* Raykova et al. (2012)
* Multi-party protocol using bloom filters and
deterministic encryption to support private queries
* Query complexity linear in number of records

Our contribution: Efficient support for fully private
conjunctive queries

Representing the Database

For each attribute-value pair, there is a set of records
associated with it:

age < 25
|
v v
Database: 1 2 3 4 5 6 7 8 9 | 10
t 1 I

I
zipcode = 12345

Represent each set as a polynomial with roots
corresponding to matching records:

age<25:(x—1)(x—2)(x—=5)
zipcode =12345: (x — 1)(x —2)(x — 6)(x — 7)(x — 8)

Conjunctive Queries

Query: SELECT * FROM db WHERE a; = v, and a, = v,

Sl:al =U1 Sz:az =v2

A1 (x) HHew) A (x)

/ A1 (x),Az(x) € Fplx]

Kissner-Song Approach: Take B € [F,,|x] to be random
linear combination of A;(x) and A4, (x): encoding of

B() = A, (OR, () + Ap(0)Ry(x) 540442
for random polynomials Ry (x), Ry(x) € Fp[x]

Intersection

Protocol Description: Setup

database 1. Foreach a; = v; pair, construct tag Oroxy
tg; = PRF;(a; = v;)

2. Send (tg;, Enc(S;)) &__ E
) n
\

. .|
L =eed

Each set S; is a polynomial 4;(x). We use a somewhat homomorphic
encryption scheme (SWHE) to encrypt the coefficients.

Encrypting a Polynomial

x4+ (=3)x + 2

| Voo

Enc(1) |Enc(—3) | Enc(2)

Polynomial addition: Additive homomorphism

Multiplying by plaintext polynomial: Possible if
SWHE supports scalar multiplication

Protocol Description: Query

client @ ty, .., by proxy
>
) BN
B(x)]
-
A
@ 1 GEtS Al(x)’ ;An(x)

corresponding to tags
2. Compute B(x) =),; A;R;
forrandom Ry, ..., R,

oblivious PRF evaluation
ty = PRFs(a; =v)

t, = PRFs(a, =w,)

additive
homomorphism

database o ary: SELECT * FROM db WHERE a; = v, AND - AND a, = vy,

Protocol Description: Query

client

Factors polynomial to obtain
roots (record indices) iy, ..., i

A

®

oblivious decryption
of B(x)

database o ary: SELECT * FROM db WHERE a; = v, AND - AND a, = vy,

Protocol Description: Query

client
A
@ . OT/ORAM
L, o) L
ril’ ey rik
Y
database

Query: SELECT * FROM db WHERE a; = v; AND --- AND a,, = v,

Conserving Bandwidth

Recall computation performed by proxy:

Proxy tl n
&f%ﬂ t) BG) =) A@R®
_ .| i=1
| t,

degA;(x) = |S;] deg B(x) =(2 - maxdeg A;(x)
l

Question: Can we do better?

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest

set and size of largest set
SZ: aA, = Uy

/
\

53: ag — v3

Sl: a1 — 171

Example:

SELECT * FROM db WHERE|location = “New York”| AND

name = “John Smith”

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest

set and size of largest set
SZ: aA, = Uy

/
\

53: a3 — vg

Sl: a1 — 171

Desiderata: Bandwidth proportional to size of smallest set:

min deg A;(x) rather than maxdeg A;(x)
l l

Conserving Bandwidth

Easy to get mindeg A;(x) + maxdeg A4;(x):
l l

Suppose A (x) has lowest degree. Construct random linear
combination of the rest:

A0 =) pii(x)
(=2

and p; are random scalars.

Then, proxy computes and sends
B(x) = A1 ()R (x) + A"(x)R'(x)

1 1

deg A’ (x) deg A{(x)

no extra
homomorphism

deg B(x) = maxdeg A;(x) + min deg 4;(x)
l l

Modular Reduction

Recall: intersection of A;(x), ..., A, (x) is given by

G = gcd(Al(x), . An(x)).

Suppose A (x) has smallest degree.

First step of Euclidean algorithm: reduce modulo A4 (x):

G = gcd (Al(x),Az (x) (mod Al(x)) e, Ay () (mod Al(x))).

Modular Reduction

Instead of computing

A =) pii(x),
=2

compute

A" =) pidi(x) (mod 4, ()
=2

deg(A" (x)) = deg(4,(x)) — 1

Can be done with quadratic homomorphism.

Modular Reduction

Goal is to evaluate

A"() =) pii(x) (mod 4,(x)
=2

Idea: In addition to A;(x), database also gives the proxy

x,x2, ..., x" (mod 4, (x))
encrypted in the same manner, where k is the maximum size of a set
in the database

Computing A" (x) requires one multiplication

Modular Reduction

roxy A'(x) = Zz P () client
&r% B(x) = A, (R, (x) + 4’ COR' (%) %ﬂ
.] > '
T deg(B(x)) = ml_in degA;(x) + max deg A;(x)

OrOXY A"(x) = z piAi(x) (mod 4;(x)) client

i=2
‘t——%ﬂl B(x) = A1 (x)Ry(x) + A" (x)R" (x) %
= ”
deg(B(x)) =2 ml_in degA;(x) — 1

Big win if maxdeg 4;(x) > min deg(Al-(x))
l l

Further Speedup via Batching

Recent fully homomorphic encryption schemes allow “batching”
(encrypt + process array of values at no extra cost):

1 2 3 4

Further Speedup via Batching

Split database into many smaller databases and run query against all
databases in parallel:

7"1, JTN/ZI-

" +N/4» - T2N/4

" +2N/4)) T3N /4

" +3N/4) TN

database

In practice, arrays have length 5000+, so split into 5000+ databases

Further Speedup via Batching

Runtime depends on size of small “database”:
Faster computation, reduced bandwidth
Crucial for scalability

Tl, ITN/4-

" +N/4» 2N /4

"1 +2N/4s =) T3N /4

" +3N/4) TN

database

Implementations

Basic scheme
(only requiring additive
homomorphism)

Modular reduction,
batching
(additive + multiplicative

— — — — — — — — — — — — — —

:>:f Paillier
I

cryptosystem

N

— — — — — — — — — — — — — —

:>: Brakerski
I

cryptosystem

N

— — — —

— — — —

Performance Characteristics

Balanced Query: number of records in each tag
approximately equal

Sl:al = 14 Sz:az = P>y

53: a3 — v3

Experimental setup:
e Database of 1,000,000 records
* Queries consist of five tags

* Focus on time to perform set-intersection

Performance Characteristics

10000 -

- i

£ 1000 - _e

= ® e

= T -’

o 100 - 7

£ b _

= -

S 10 ==

g E . —----—‘

g 1 -7
1‘ \.'f.u‘- - e ——] S
20 200 2000 20000 200000

Approximate Number of Records Associated with Each Tag

e e oo Paijllier System e» «» Brakerski System

Performance Characteristics

Unbalanced Query: large disparity between size of smallest

set and size of largest set
SZ: aA, = Uy

/
\

53: a3 — vg

Sl: a1 — 171

Experimental setup:
e Database of 1,000,000 records
* Intersection of five sets

* Size of smallest set at most 5% size of largest set

Performance Characteristics

180
160

157.6

—
N
o

124.1

=
ON
o O

/3.9

(@))
o

47.2

NS
o

324 290

I

Query 1 Query 2 Query 3
(2.5K, 2.5K, 5K, 10K, 50K) (10K, 20K, 25K, 50K, 200K) (2.5K, 2.5K, 5K, 5K, 350K)

Il NoMR: No Modular Reduction [] MR: With Modular Reduction

Query Time (minutes)
(0,0]
o

N
o

o

Intersection of five sets of varying size

Performance Characteristics

35
29.4
30
@ 55
2 19.9
< 20
©
s 15
©
S 10 79
m E 4.7
5
0
Query 1 Query 2 Query 3

(2.5K, 2.5K, 5K, 10K, 50K) (10K, 20K, 25K, 50K, 200K) (2.5K, 2.5K, 5K, 5K, 350K)
I NoMR: No Modular Reduction] MR: With Modular Reduction

Intersection of five sets of varying size

Conclusion

query
>
<€

indices of records

* Fully private database query system for conjunction
gueries

 Query support via polynomial encoding of database, can
be implemented via SWHE

 Modular reduction + batching optimizations crucial for
scalability and performance (reduction in time and
space for certain queries)

Thank you!

