New Techniques for Preimage Sampling: NIZKs and More from LWE

Brent Waters, Hoeteck Wee, and David Wu

The Preimage Sampling Problem

Given
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 and $\mathbf{t} \in \mathbb{Z}_q^n$

Problem is hard in general:

- Short integer solutions (SIS)
- Inhomogeneous SIS

But easy given a trapdoor for A

[Ajt96, GPV08, MP12]

Many applications!

digital signatures, IBE, ABE, SNARGs, NIZKs

Multi-Preimage Sampling

Given
$$A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \ldots, t_\ell \in \mathbb{Z}_q^n$

find low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i$ for all $i \in [\ell]$

Shifted Multi-Preimage Sampling

Given
$$\mathbf{A}_1, \dots, \mathbf{A}_{\ell} \in \mathbb{Z}_q^{n \times m}$$
 and $\mathbf{t}_1, \dots, \mathbf{t}_{\ell} \in \mathbb{Z}_q^n$

find $\mathbf{c} \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $\mathbf{A}_i \pi_i = \mathbf{t}_i + \mathbf{c}$ for all $i \in [\ell]$

Shifted Multi-Preimage Sampling

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Solving this problem typically requires a hint (i.e., trapdoor information) related to $A_1, ..., A_\ell$ Trivial solution: hint = $(td_1, ..., td_\ell)$ where td_i is trapdoor for A_i

Above applications require that SIS/LWE remains hard with respect to any A_i even given the hint (rules out trivial solution) Feasible only if we allow for the shift

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

New approach to sample A_1, \ldots, A_ℓ together with a trapdoor td where:

• td can be used to solve the shifted multi-preimage sampling problem

In fact, td can be used to sample solutions that are statistically close to the following distribution:

•
$$\boldsymbol{c} \leftarrow \mathbb{Z}_q^n$$

• $\pi_i \leftarrow A_i^{-1}(t_i + c)$; π_i is a discrete Gaussian vector satisfying $A_i \pi_i = t_i + c$

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

New approach to sample A_1, \ldots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_\ell, td)$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Implications:

- Statistically-hiding vector commitments from SIS with poly(λ, log ℓ)-size public parameters, commitments, and openings (and transparent setup)
 - Previous lattice-based schemes had long *structured* CRS [WW23] or were computationally hiding [dCP23]
- Dual-mode NIZK from LWE via the hidden-bits model with polynomial modulus, CRS size linear in the length of the hidden-bits string, and transparent setup in statistical ZK mode
 - Previous construction [Wat24]: structured CRS in both modes, required sub-exponential modulus, and CRS size is quadratic in the length of the hidden-bit string
 - Achieves properties as those obtained via the correlation-intractability framework [CCHLRRW19, PS19]
 - Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Given
$$m{A}_1$$
, ... , $m{A}_\ell \in \mathbb{Z}_q^{n imes m}$ and $m{t}_1$, ... , $m{t}_\ell \in \mathbb{Z}_q^n$,

find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Concurrent work [BCDJMS25]: dual-mode NIZK in the hidden-bits model from LWE

- Polynomial modulus and transparent setup in statistical ZK mode
- CRS size is quadratic in the length of the hidden-bits string
- Multi-theorem zero-knowledge requires "or-proof" (need to apply NIZK to cryptographic language)
- Does not need lattice trapdoors
- Dual-mode NIZK from LWE via the hidden-bits model with polynomial modulus, CRS size linear in the length of the hidden-bits string, and transparent setup in statistical ZK mode
 - Previous construction [Wat24]: structured CRS in both modes, required sub-exponential modulus, and CRS size is quadratic in the length of the hidden-bit string
 - Achieves properties as those obtained via the correlation-intractability framework [CCHLRRW19, PS19]
 - *Subsequent work [BLNWW24]:* statistical ZAP argument from LWE via the hidden-bits approach

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

$$c \longrightarrow \begin{array}{c} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}$$

short commitment c determines a long pseudorandom string (length ℓ)

$$\pi_1$$
 π_2 π_3 π_4 π_5 π_6 π_7 π_8 π_9

local openings for each bit x_i with respect to c and CRS

Binding: can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$ **Hiding:** x_i is pseudorandom given c and (x_j, π_j) for $j \neq i$ **Succinctness:** $|c| = \text{poly}(\lambda, \log \ell)$

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

$$c \longrightarrow \begin{array}{c} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}$$

short commitment c determines a long pseudorandom string (length ℓ)

Dual mode if CRS can be sampled to be either statistically binding or statistically hiding

$$\pi_{6}$$
 π_{7} π_{8} π_{9}

local openings for each bit x_i with respect to c and CRS

Binding: can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$ **Hiding:** x_i is pseudorandom given c and (x_j, π_j) for $j \neq i$ **Succinctness:** $|c| = \text{poly}(\lambda, \log \ell)$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors π_i where $A_i\pi_i = c$ (sampled using aux)

hidden bits are $x_1, \dots, x_\ell \in \{0, 1\}$ where $x_i = [\boldsymbol{v}_i^T \boldsymbol{\pi}_i]$

Observe: aux is used to solve the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and targets $t_1, ..., t_\ell = 0$

Solution is $(\pi_1, ..., \pi_\ell, c)$ where $A_i \pi_i = t_i + c = c$

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors π_i where $A_i\pi_i = c$ (via td for shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0, 1\}$ where $x_i = [\boldsymbol{v}_i^T \boldsymbol{\pi}_i]$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$

value x_i is essentially determined by CRS and c: $v_i^T \pi_i = s_i^T A_i \pi_i + e_i^T \pi_i \approx s_i^T c$ (since $e_i^T \pi_i$ is small) essentially the same argument as in [Wat24]

value of s_i (from CRS) and c determine x_i

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors $\boldsymbol{\pi}_i$ where \boldsymbol{x}_i

hidden bits are $x_1, \dots, x_\ell \in \{0, 1\}$ where x_i

Argument in [Wat24] relied on noise smudging (and thus, super-polynomial modulus q)

hiding mode: $v_i \leftarrow \mathbb{Z}_q^m$ different argument from [Wat24]

distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling $c \leftarrow \mathbb{Z}_q^n$ and $\pi_i \leftarrow A_i^{-1}(c)$ by leftover hash lemma (use v_i to extract entropy from π_i), that $v_i^T \pi_i$ is uniform

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors π_i where $A_i \pi_i = c$ (via td for shifted multi-preimage sampler) hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = |v_i^T \pi_i|$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$ hiding mode: $\boldsymbol{v}_i \leftarrow \mathbb{Z}_q^m$

modes are indistinguishable if LWE holds with respect to A_i (given td, A_1 , ..., A_ℓ)

(by hybrid argument)

Given
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$$
 and give out a **trapdoor** for the matrix

$$D_\ell = \begin{bmatrix} A_1 & & & & \\ & \ddots & & \\ & & A_\ell & G \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 2 & \cdots & 2^t & & \\ & & & \ddots & & \\ & & & & 1 & 2 & \cdots & 2^t \end{bmatrix}$$

$$t = [\log q] - 1$$

Using trapdoor for D_{ℓ} , can sample (Gaussian) solutions to the linear system

$$\begin{bmatrix} A_1 \\ \vdots \\ A_\ell \end{bmatrix} \cdot \begin{bmatrix} \pi_1 \\ \vdots \\ \pi_\ell \\ \hat{c} \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_\ell \end{bmatrix} \quad \text{for all } i \in [\ell], A_i \pi_i = t_i - G\hat{c}$$
set $c = -G\hat{c}$
Limitation: trapdoor for D_ℓ is a structured matrix (and size ℓ^2)

Given
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$$
 and give out a **trapdoor** for the matrix
$$D_\ell = \begin{bmatrix} A_1 & & & & \\ & \ddots & & & \\ & & A_\ell & G \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 2 & \cdots & 2^t & & \\ & & & \ddots & & \\ & & & & 1 & 2 & \cdots & 2^t \end{bmatrix}$$

This work: set $A_i = B - u_i^T \otimes G$ where u_i is binary representation of *i*

$$B =$$
 B_1 B_2 \cdots B_ℓ $A_1 =$ $B_1 - 0 \cdot G$ $B_2 - 0 \cdot G$ \cdots $B_\ell - 1 \cdot G$

Given
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

$$\boldsymbol{D}_{\ell} = \begin{bmatrix} \boldsymbol{B} - \boldsymbol{u}_{1}^{\mathrm{T}} \otimes \boldsymbol{G} & & & \\ & \ddots & & \\ & & \boldsymbol{B} - \boldsymbol{u}_{\ell}^{\mathrm{T}} \otimes \boldsymbol{G} & & \boldsymbol{G} \end{bmatrix}$$

This work: set $A_i = B - u_i^T \otimes G$ where u_i is binary representation of *i*

Claim: The matrix D_{ℓ} has a **public** trapdoor

Sample
$$\boldsymbol{B} \leftarrow \mathbb{Z}_q^{n \times m[\log \ell]}$$
 and set
 $\boldsymbol{D}_\ell = \begin{bmatrix} \boldsymbol{B} - \boldsymbol{u}_1^T \end{bmatrix}$

$$\begin{array}{c|c} \otimes G & & & & & & & & \\ & \ddots & & & & & \\ & & B - u_{\ell}^{\mathrm{T}} \otimes G & & G \end{array} \end{array} \begin{array}{c} G \\ \vdots \\ G \end{array}$$

 \boldsymbol{u}_i : binary representation of i

Claim: The matrix D_{ℓ} has a **public** trapdoor

Idea: Define low-norm matrices $H_{i,j}$ and V_i where

$$(\boldsymbol{B} - \boldsymbol{u}_i^{\mathrm{T}} \otimes \boldsymbol{G})\boldsymbol{H}_{i,j} = \begin{cases} -\boldsymbol{V}_j + \boldsymbol{G} \ i = j \\ -\boldsymbol{V}_j & i \neq j \end{cases}$$

Matrices $H_{i,j}$ and V_i can be **publicly** derived using homomorphic evaluation techniques from [GSW13, BGGHNSVV14]

$$(i, j)$$
th block of product:

$$(\boldsymbol{B} - \boldsymbol{u}_i^{\mathrm{T}} \otimes \boldsymbol{G}) \boldsymbol{H}_{i,j} + \boldsymbol{G} \cdot \boldsymbol{G}^{-1} (\boldsymbol{V}_j) = \begin{cases} \boldsymbol{G} & i = j \\ \boldsymbol{0} & i \neq j \end{cases}$$

$$\begin{bmatrix} B - u_1^{\mathrm{T}} \otimes G & & \\ & \ddots & \\ & & B - u_{\ell}^{\mathrm{T}} \otimes G \end{bmatrix} \times \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \times \begin{bmatrix} H_{1,1} & \cdots & H_{1,\ell} \\ \vdots & \ddots & \vdots \\ H_{\ell,1} & \cdots & H_{\ell,\ell} \\ G^{-1}(V_1) & \cdots & G^{-1}(V_{\ell}) \end{bmatrix} = \begin{bmatrix} G & & \\ & \ddots & \\ & & G \end{bmatrix}$$

Letting $A_i = B - u_i \otimes G$, the trapdoor for D_ℓ gives a solution to the shifted multi-preimage sampling problem for matrices $A_1, ..., A_\ell$:

Observe: Matrix D_{ℓ} and its trapdoor is completely specified by matrix B (recall that u_i is vector corresponding to binary representation of i)

Yields vector commitments and dual-mode NIZKs with transparent setup

Summary

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

New approach to sample A_1, \ldots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with poly(λ, log ℓ)-size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE via the hidden-bits model with polynomial modulus, CRS size linear in the length of the hidden-bits string, and transparent setup in statistical ZK mode
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Summary

Given
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Thank you!

https://eprint.iacr.org/2024/1401