NIZKs and Vector Commitments from LWE

David Wu

joint work with Brent Waters and Hoeteck Wee

The Preimage Sampling Problem

Problem is hard in general:

- Short integer solutions (SIS)
- Inhomogeneous SIS

But easy given a trapdoor for A

[Ajt96, GPV08, MP12]

$$oldsymbol{\pi}$$

The Preimage Sampling Problem

Given
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 and $\mathbf{t} \in \mathbb{Z}_q^n$

 \boldsymbol{A}

t

Problem is hard in general:

- Short integer solutions (SIS)
- Inhomogeneous SIS

Trapdoor for A: low-norm matrix R such that AR = G

But easy given a trapdoor for A

**96. GPV08, MP12]

find low-norm $oldsymbol{\pi} \in \mathbb{Z}_q^m$ whe

 $\begin{bmatrix} 1 & 2 & \cdots & 2 \end{bmatrix}$

$$m{G} = egin{bmatrix} 1 & 2 & \cdots & 2^t \ & & \ddots & & \ddots \end{pmatrix}$$

 $1 \quad 2 \quad \cdots \quad 2^{n}$

A

1

The Preimage Sampling Problem

Multi-Preimage Sampling

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n imes m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$
$$find \qquad low-norm \ \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \ where \ A_i \pi_i = t_i \qquad \textit{for all } i \in [\ell]$$

Shifted Multi-Preimage Sampling

Given $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$

find $c \in \mathbb{Z}_q^n$ and low-norm π_1 , ..., $\pi_\ell \in \mathbb{Z}_q^m$ where $A_i\pi_i = t_i + c$ for all $i \in [\ell]$

Shift gives one degree of freedom

Shifted Multi-Preimage Sampling

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Problem is easier than the standard preimage sampling problem

When $\ell=1$: pick any low-norm $oldsymbol{\pi}_1$ and take the shift to be $oldsymbol{c}=A_1oldsymbol{\pi}_1-oldsymbol{t}_1$

Can SIS or LWE still be hard with respect to any individual A_i even given the hint?

Best we could hope for in some sense: SIS/LWE is easy with respect to $[A_i \mid A_j]$ given hint

sample
$$(\boldsymbol{\pi}_i, \boldsymbol{\pi}_j, \boldsymbol{c})$$
 such that $\boldsymbol{A}_i \boldsymbol{\pi}_i = \boldsymbol{c} = \boldsymbol{A}_j \boldsymbol{\pi}_j$; $[\boldsymbol{A}_i \mid \boldsymbol{A}_j] \begin{bmatrix} \boldsymbol{\pi}_i \\ -\boldsymbol{\pi}_j \end{bmatrix} = \boldsymbol{0}$

Shifted Multi-Preimage Sampling

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

Problem is easier than the standard preimage sampling problem

When $\ell=1$: pick any low-norm $oldsymbol{\pi}_1$ and take the shift to be $oldsymbol{c}=A_1oldsymbol{\pi}_1-oldsymbol{t}_1$

But for $\ell>1$ and arbitrary choice of A_1,\ldots,A_ℓ , solving this problem likely requires some hint

Trivial solution: hint = $(td_1, ..., td_\ell)$ where td_i is trapdoor for A_i

Can SIS or LWE still be hard with respect to any individual A_i even given the hint?

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

• td can be used to solve the shifted multi-preimage sampling problem

In fact, td can be used to sample solutions that are statistically close to the following distribution:

- $\boldsymbol{c} \leftarrow \mathbb{Z}_q^n$
- $\pi_i \leftarrow A_i^{-1}(t_i+c)$; π_i is a discrete Gaussian vector satisfying $A_i\pi_i=t_i+c$

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_\ell, \operatorname{td})$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $\mathbf{B} \leftarrow \mathbb{Z}_a^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems a

Previously lattice-based schemes: either has long *structured* CRS [WW23] or not statistically hiding [dCP23]

Applications:

• Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)

```
Given A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n	imes m} and t_1,\ldots,t_\ell\in\mathbb{Z}_q^n, find c\in\mathbb{Z}_q^n and low-norm \pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m where A_i\pi_i=t_i+c for all i\in[\ell]
```

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_n, td)$ can be publicly derived from a uniform random matrix $R \leftarrow \mathbb{Z}^{n \times m \lceil \log \ell \rceil}$
- SIS/LW Previous construction [Wat24]: structured CRS in both modes, required sub-exponential modulus, and CRS size is quadratic in the length of the hidden-bit string

Applicati Our NIZK essentially achieves the same set of properties as those obtained via the

- Sta correlation-intractability framework commitments, and opening parent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to solve the shifted multi-preimage sampling problem
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

- Setup $(1^{\lambda}, 1^{\ell}) \rightarrow crs$
- Commit(crs, x) \rightarrow $(\sigma, \pi_1, ..., \pi_\ell)$
- Verify(crs, σ , i, x_i , π_i) \rightarrow {0,1}

Commit to ℓ -dimensional vectors

Commitment σ , openings π_1, \dots, π_ℓ

Locally verify value at index i

Correctness: $\forall i \in [\ell]$: Verify(crs, σ , i, x_i , π_i) = 1

Succinctness: $|\operatorname{crs}|, |\sigma|, |\pi_i| = \operatorname{poly}(\lambda, \log \ell)$

Computational binding: efficient adversary cannot find σ , $i(x,\pi)$, (x',π') where

Verify(crs, σ , i, x, π) = 1 = Verify(crs, σ , i, x', π') and $x \neq x'$

Statistical hiding: (crs, σ , $\{\pi_i\}_{i \in S}$) statistically hides $\{x_j\}_{j \notin S}$

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:

commitment to vector $x \in \mathbb{Z}_q^\ell$

To commit to x: use td to sample $(\pi_1, ..., \pi_\ell, c)$

Verification checks $oldsymbol{\pi}_i$ is small and

$$A_i \boldsymbol{\pi}_i = x_i \boldsymbol{e}_1 + \boldsymbol{c}$$

 e_1 : first basis vector

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:

commitment to vector $x \in \mathbb{Z}_q^\ell$

Binding proof:

- Suppose adversary comes up with c and two openings $(x_i, \pi_i), (x_i', \pi_i')$
- Then $oldsymbol{A}_iig(oldsymbol{\pi}_i-oldsymbol{\pi}_i'ig)=ig(x_i-x_i'ig)oldsymbol{e}_1$

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:

commitment to vector $\pmb{x} \in \mathbb{Z}_q^\ell$

Binding

- Supple e_1 is zero in all but the first row two openings $(x_1, x_2), (x_1, x_2)$
- two openings (x_i, π_i) , (x_i, π_i) • Then $A_i(\boldsymbol{\pi}_i - \boldsymbol{\pi}_i') = (x_i - x_i') \boldsymbol{e}_1$ non-zero

 $\pi_i - \pi'_i$ is a SIS solution to A_i without the first row

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:

Construction: set CRS to be parameters + trapdoor for shifted multi-preimage sampler

commitment to vector $x \in \mathbb{Z}_q^\ell$

Hiding proof:

• Distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling

$$c \leftarrow \mathbb{Z}_q^n$$
 and $\boldsymbol{\pi}_i \leftarrow \boldsymbol{A}_i^{-1}(x_i \boldsymbol{e}_1 + \boldsymbol{c})$

 Commitment and openings independent of the values of unopened inputs!

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

short commitment c determines a long pseudorandom string (length ℓ)

local openings for each bit x_i with respect to c and CRS

Binding: can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$

Key difference with vector commitment: CRS is long, and combined with c must statistically bind to x

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

short commitment c determines a long pseudorandom string (length ℓ)

local openings for each bit x_i with respect to c and CRS

Binding: can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$

Hiding: x_i is pseudorandom given c and (x_i, π_i) for $j \neq i$

Succinctness: $|c| = \text{poly}(\lambda, \log \ell)$

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

short commitment $oldsymbol{c}$ determines a long pseudorandom string (length ℓ)

Dual mode if CRS can be sampled to be either statistically binding or statistically hiding

$$\pi_6$$
 π_7 π_8 π_9

local openings for each bit x_i with respect to c and CRS

Binding: can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$

Hiding: x_i is pseudorandom given c and (x_i, π_i) for $i \neq i$

Succinctness: $|c| = \text{poly}(\lambda, \log \ell)$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors $m{\pi}_i$ where $m{A}_im{\pi}_i=m{c}$ (sampled using aux)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \lfloor v_i^T \pi_i \rfloor$

Observe: aux is used to solve the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and targets $t_1, ..., t_\ell = 0$

Solution is $(\boldsymbol{\pi}_1,...,\boldsymbol{\pi}_\ell,\boldsymbol{c})$ where $A_i\boldsymbol{\pi}_i=\boldsymbol{t}_i+\boldsymbol{c}=\boldsymbol{c}$

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors $m{\pi}_i$ where $m{A}_im{\pi}_i=m{c}$ (via td for shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \lfloor v_i^\mathrm{T} \pi_i \rfloor$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$

essentially the same argument as in [Wat24]

value x_i is essentially determined by CRS and c:

$$\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i \boldsymbol{\pi}_i + \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\pi}_i \approx \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{c}$$
 (since $\boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\pi}_i$ is small)

value of \boldsymbol{s}_i (from CRS) and \boldsymbol{c} determine x_i

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $oldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors $oldsymbol{\pi}_i$ where $oldsymbol{\lambda}$

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where x_i

Argument in [Wat24] relied on noise smudging (and thus, super-polynomial modulus q)

hiding mode: $v_i \leftarrow \mathbb{Z}_q^m$

different argument from [Wat24]

distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling $c \leftarrow \mathbb{Z}_q^n$ and $\pi_i \leftarrow A_i^{-1}(c)$

by leftover hash lemma (use $m{v}_i$ to extract entropy from $m{\pi}_i$), that $m{v}_i^{\mathrm{T}}m{\pi}_i$ is uniform

Our dual-mode hidden-bits generator from LWE:

common reference string:

 ℓ : length of hidden-bits string

commitment is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are low-norm vectors $m{\pi}_i$ where $m{A}_im{\pi}_i=m{c}$ (via td for shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \lfloor \boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i \rfloor$

binding mode: $v_i^{\mathrm{T}} = s_i^{\mathrm{T}} A_i + e_i^{\mathrm{T}}$ hiding mode: $v_i \leftarrow \mathbb{Z}_q^m$

modes are indistinguishable if LWE holds with respect to A_i (given td, A_1 , ..., A_ℓ)

(by hybrid argument)

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

$$m{D}_{\ell} = egin{bmatrix} m{A}_1 & & & & m{G} \\ & \ddots & & & \vdots \\ & & m{A}_{\ell} & m{G} \end{bmatrix} \qquad m{G} = egin{bmatrix} 1 & 2 & \dots & 2^t \\ & & \ddots & & \\ & & & 1 & 2 & \dots & 2^t \end{bmatrix} \\ & & & t = \lceil \log a \rceil - 1 \end{bmatrix}$$

Using trapdoor for D_{ℓ} , can sample (Gaussian) solutions to the linear system

$$\begin{bmatrix} A_1 & & & & & G \\ & \vdots & & & & \\ & & & & & \\ & & & & & \end{bmatrix} \cdot \begin{bmatrix} h_1 \\ \vdots \\ \pi_\ell \\ \hat{c} \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_\ell \end{bmatrix} \qquad \text{for all } i \in [\ell], A_i \pi_i = t_i - G \hat{c}$$

$$\text{set } c = -G \hat{c}$$

$$\text{Limitation: trapdoor for } \mathbf{D}_\ell \text{ is a structured matrix (and size } \ell^2)$$

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and low-norm $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

$$oldsymbol{D}_{\ell} = egin{bmatrix} oldsymbol{A}_1 & & & & oldsymbol{G} \ & \ddots & & & & \ & & A_{\ell} & oldsymbol{G} \end{bmatrix} \qquad oldsymbol{G} = egin{bmatrix} 1 & 2 & \dots & 2^t \ & & & \ddots & & \ & & & 1 & 2 & \dots & 2^t \end{bmatrix}$$

This work: set $A_i = B - u_i^{\mathrm{T}} \otimes G$ where u_i is binary representation of i

$$oldsymbol{B} = oldsymbol{B}_1 oldsymbol{B}_2 oldsymbol{B}_2 \cdots oldsymbol{B}_\ell$$
 $oldsymbol{A}_1 = oldsymbol{B}_1 - 0 \cdot oldsymbol{G} oldsymbol{B}_2 - 0 \cdot oldsymbol{G} oldsymbol{B}_2 \cdots oldsymbol{B}_\ell - 1 \cdot oldsymbol{G}$

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

$$m{D}_{\ell} = egin{bmatrix} m{A}_1 & & & m{G} \\ & \ddots & & m{i} \\ & & m{A}_{\ell} & m{G} \end{bmatrix} \qquad m{G} = egin{bmatrix} 1 & 2 & \dots & 2^t \\ & & \ddots & & \\ & & & 1 & 2 & \dots & 2^t \end{bmatrix}$$

$$\boldsymbol{G} = \begin{bmatrix} 1 & 2 & \cdots & 2^t \\ & & \ddots & & \\ & & 1 & 2 & \cdots & 2^t \end{bmatrix}$$

Claim: the following matrix has a public trapdoor (given B)!

Homomorphic computation using lattices [GSW13, BGGHNSVV14]

Encodes a vector $\mathbf{x} \in \{0,1\}^{\ell}$ with respect to matrix $\mathbf{B} = [\mathbf{B}_1 | \cdots | \mathbf{B}_{\ell}] \in \mathbb{Z}_q^{n \times \ell m}$

Given any function $f: \{0,1\}^{\ell} \to \{0,1\}$, there exists a low-norm matrix $H_{B,f,x}$ where

$$(\mathbf{B} - \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G}) \cdot \mathbf{H}_{\mathbf{B},f,\mathbf{x}} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

encoding of *x* with respect to *B*

encoding of f(x) with respect to B_f

Given ${m B}$ and f, can efficiently compute the matrix ${m B}_f$

Define the indicator function

$$\delta_{\boldsymbol{u}}(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{x} = \boldsymbol{u} \\ 0, & \boldsymbol{x} \neq \boldsymbol{u} \end{cases}$$

For simplicity, we will write $B_u \coloneqq B_{\delta_u}$ $H_{B,u,x} \coloneqq H_{B,\delta_u,x}$

•
$$B_{\boldsymbol{u}} \coloneqq B_{\delta_{\boldsymbol{u}}}$$

•
$$H_{B,u,x} := H_{B,\delta_{u},x}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}$$

$$m{D}_{\ell} = egin{bmatrix} m{B} - m{u}_1 \otimes m{G} & & & & & m{G} \ & \ddots & & & & m{G} \ & & B - m{u}_{\ell} \otimes m{G} & m{G} \end{bmatrix}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}$$

Block in row *i* and column *j*:

$$(B - u_i \otimes G) \cdot (-H_{B,u_j,u_i}) + G \cdot G^{-1}(B_{u_j})$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

Block in row *i* and column *j*:

$$(\boldsymbol{B} - \boldsymbol{u}_i \otimes \boldsymbol{G}) \cdot (-\boldsymbol{H}_{\boldsymbol{B},\boldsymbol{u}_j,\boldsymbol{u}_i}) + \boldsymbol{G} \cdot \boldsymbol{G}^{-1} (\boldsymbol{B}_{\boldsymbol{u}_j}) = -\boldsymbol{B}_{\boldsymbol{u}_j} + \delta_{\boldsymbol{u}_i} (\boldsymbol{u}_j) \cdot \boldsymbol{G}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

Block in row *i* and column *j*:

$$(\mathbf{B} - \mathbf{u}_i \otimes \mathbf{G}) \cdot (-\mathbf{H}_{\mathbf{B}, \mathbf{u}_j, \mathbf{u}_i}) + \mathbf{G} \cdot \mathbf{G}^{-1} \left(\mathbf{B}_{\mathbf{u}_j}\right) = -\mathbf{B}_{\mathbf{u}_j} + \delta_{\mathbf{u}_i} (\mathbf{u}_j) \cdot \mathbf{G} + \mathbf{B}_{\mathbf{u}_j} = \begin{cases} \mathbf{G}, & i = j \\ \mathbf{0}, & i \neq j \end{cases}$$

Key observations:

- Matrix D_{ℓ} can be described entirely by matrix B
- Vectors u_i is binary representation of i
- $m{D}_\ell$ has a public trapdoor (determined by $m{B}, m{u}_1, ..., m{u}_\ell$)
- Since we are considering indicator functions, $\|H_{B,u_i,u_j}\|=1$

$$\underbrace{ \begin{bmatrix} B - u_1 \otimes G & & & & G \\ & \ddots & & \vdots \\ & & B - u_\ell \otimes G & G \end{bmatrix} }_{B - u_\ell \otimes G} \underbrace{ \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} }_{C-1} \underbrace{ \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_\ell} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell} = \begin{bmatrix} G & & & \\ & \ddots & & \\ & & & G \end{bmatrix}$$

For any matrix $\pmb{B} \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix \pmb{D}_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to $\pmb{A}_1, \dots, \pmb{A}_\ell$ where $\pmb{A}_i = \pmb{B} - \pmb{u}_i \otimes \pmb{G}$

$$\begin{bmatrix} A_1 & & & & & G \\ & \ddots & & & & G \\ & \vdots & & & G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\pi}_1 \\ \vdots \\ \boldsymbol{\pi}_\ell \\ \hat{\boldsymbol{\sigma}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{t}_1 \\ \vdots \\ \boldsymbol{t}_\ell \end{bmatrix} \qquad \text{for all } i \in [\ell], A_i \boldsymbol{\pi}_i = \boldsymbol{t}_i - G \hat{\boldsymbol{c}}$$

$$\underbrace{ \begin{bmatrix} B - u_1 \otimes G & & & & G \\ & \ddots & & \vdots \\ & & B - u_\ell \otimes G & G \end{bmatrix} }_{B - u_\ell \otimes G} \underbrace{ \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} }_{C^{-1}(B_{u_1}) \dots G^{-1}(B_{u_\ell})} \underbrace{ \begin{bmatrix} G \\ \vdots \\ G^{-1}(B_{u_1}) \dots G^{-1}(B_{u_\ell}) \end{bmatrix} }_{C^{-1}(B_{u_\ell})} = \begin{bmatrix} G \\ & \ddots \\ & G \end{bmatrix}$$
 trapdoor for D_ℓ

For any matrix $B \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix D_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ where $A_i = B - u_i \otimes G$

Real scheme: sample $\boldsymbol{B} \leftarrow \mathbb{Z}_a^{n \times m \lceil \log \ell \rceil}$

(shifted multi-preimage trapdoor sampler has a transparent setup)

For any matrix $B \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix D_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ where $A_i = B - u_i \otimes G$

Somewhere programmable: Given any (i, A^*) , suppose we set $B = A^* + u_i \otimes G$

- Then $A_i = B u_i \otimes G = A^*$
- If A^* is uniform, then so is B

Can "program" $oldsymbol{A}^*$ into $oldsymbol{A}_i$ for any index i

Implies hardness of SIS/LWE with respect to any i when $m{B} \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$

Summary

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ and arbitrary targets t_1, \dots, t_ℓ
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $B \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Concurrent Work and Open Problems

Concurrent work [BCDJMS25]: dual-mode NIZK in the hidden-bits model from LWE

- Polynomial modulus and transparent setup in statistical ZK mode
- CRS size is quadratic in the length of the hidden-bits string
- Multi-theorem zero-knowledge requires "or-proof" (need to apply NIZK to cryptographic language)
- Does not need lattice trapdoors

Follow-up work [BLT25]: uses shifted multi-preimage sampling for batch decryption

Open problems:

- New applications of shifted multi-preimage sampling
- NIZK proofs in the uniform random string model from LWE
- NIWIs from LWE
- NIZKs from SIS

Summary

Given
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$
 and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$, find $c \in \mathbb{Z}_q^n$ and low-norm $\pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

$$\underbrace{\begin{bmatrix} B - u_1 \otimes G & & & & & & \\ & \ddots & & & & & \\ & & B - u_\ell \otimes G & & G \end{bmatrix}}_{\text{trapdoor for } D_\ell$$
 trapdoor for D_ℓ

$$\underbrace{\begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell$$

Thank you!

https://eprint.iacr.org/2024/1401