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CRYPTO

Often used to identify owner of content and prevent 
unauthorized distribution
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Digital Watermarking

CRYPTO

CRYPTO CRYPTO

CRYPTO

• Content is (mostly) viewable
• Watermark difficult to remove (without destroying the image)



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is corrupted

Three algorithms:
• Setup 1𝜆 → wsk: Samples the watermarking secret key wsk

• Mark wsk, 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is corrupted

Three algorithms:
• Setup 1𝜆 → wsk: Samples the watermarking secret key wsk

• Mark wsk, 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not

Extends to setting where watermark can be an (arbitrary) string:
• Mark wsk, 𝐶,𝑚 → 𝐶′: Takes a circuit 𝐶 and a message 𝑚

and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 𝑚: Takes a circuit 𝐶′ and outputs a 
message 𝑚 (or ⊥ if the circuit is unmarked)

[See paper for full details]



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Functionality-preserving: On input a program (modeled as a Boolean 
circuit 𝐶), the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on all but a negligible fraction of inputs 𝑥

Mark



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

MarkPerfect functionality-preserving 
impossible assuming program 

obfuscation [BGIRSVY12]

Functionality-preserving: On input a program (modeled as a Boolean 
circuit 𝐶), the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on all but a negligible fraction of inputs 𝑥



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Unremovability: Given a marked circuit 𝐶⋆, no efficient adversary can 
construct a circuit 𝐶′ where

• 𝐶′ 𝑥 = 𝐶⋆(𝑥) on all but a negligible fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 0



Watermarking Security Game [CHNVW16, BLW17]

wsk ← Setup 1𝜆

𝐶

Mark(wsk, 𝐶)

Mark(wsk, 𝐶⋆)
𝐶⋆ ← 𝒞

𝐶

Mark(wsk, 𝐶)

Unremovability: Given a marked circuit 𝐶⋆, no efficient adversary can 
construct a circuit 𝐶′ where

• 𝐶′ 𝑥 = 𝐶⋆(𝑥) on all but a negligible fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 0

𝐶′



Watermarking Security Game [CHNVW16, BLW17]

wsk ← Setup 1𝜆

𝐶

Mark(wsk, 𝐶)

Mark(wsk, 𝐶⋆)
𝐶⋆ ← 𝒞

𝐶

Mark(wsk, 𝐶)

𝐶′

• Adversary has access to marking oracle (sees marked programs of its choosing)
• Challenge circuit 𝐶⋆ sampled from the circuit family
• Adversary has complete flexibility in crafting 𝐶′ (it just outputs a description of a 

circuit)



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Unforgeability: Given marked programs 𝐶1, … , 𝐶ℓ, no efficient adversary 
can construct a circuit 𝐶′ where

• For all 𝑖 ∈ [ℓ], 𝐶′ 𝑥 ≠ 𝐶𝑖(𝑥) on a noticeable fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 1



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

• Notion only achievable for functions that are not learnable
• Focus has been on cryptographic functions



pseudorandom 
function

PRF(𝑘,⋅)

pseudorandom 
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17]



𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)

Watermarking Cryptographic Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17]

• Enables watermarking of symmetric primitives built from 
PRFs (e.g., encryption, MACs, etc.)

𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)



Main Result

This work: Under standard lattice assumptions, there exists a 
secretly-verifiable watermarkable family of PRFs

𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)

CRYPTO

Mark 𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)



𝑦2
𝑦1

𝑦3

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

Step 1: Evaluate PRF on test points 𝑥1, 𝑥2, 𝑥3 (part of the watermarking 
secret key)



𝑦1𝑦2

𝑦3

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

Step 2: Derive a pair (𝑥⋆, 𝑦⋆) from 𝑦1, 𝑦2, 𝑦3

𝑥⋆, 𝑦⋆



𝑥⋆

𝑦1𝑦2

𝑦3

PRF 𝑘, 𝑥⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

𝑥⋆, 𝑦⋆

Step 3: “Marked key” is a circuit that implements the PRF at all points, 
except at 𝑥⋆, the output is changed to 𝑦⋆



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Step 3: “Marked key” is a circuit that implements the PRF at all points, 
except at 𝑥⋆, the output is changed to 𝑦⋆

PRF 𝑘, 𝑥⋆

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Verification: Evaluate function at 𝑥1, 𝑥2, 𝑥3, derive (𝑥⋆, 𝑦⋆) and check if 
the value at 𝑥⋆ matches 𝑦⋆

PRF 𝑘, 𝑥⋆

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Verification: Evaluate function at 𝑥1, 𝑥2, 𝑥3, derive (𝑥⋆, 𝑦⋆) and check if 
the value at 𝑥⋆ matches 𝑦⋆

PRF 𝑘, 𝑥⋆

Need different 𝑥⋆ for different 
programs – otherwise easy to 

remove if adversary sees 
watermarked keys of its choosing

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

marked key

Defer 
implementation 
details for now…

Functionality-preserving: function differs at a single point✓



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

marked key

Unremovable: as long as adversary cannot tell that 𝑥⋆, 𝑦⋆ is “special”

Defer 
implementation 
details for now…

Functionality-preserving: function differs at a single point✓

✓



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑦⋆𝑥⋆

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:

Essentially relies on 
secretly re-programming 

the value at 𝑥⋆



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

Key technical challenge: How to hide 𝑥⋆, 𝑦⋆ within the 
watermarked key (without obfuscation)?

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

Key technical challenge: How to hide 𝑥⋆, 𝑦⋆ within the 
watermarked key (without obfuscation)?

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:

Has an obfuscation flavor: need 
to embed a secret inside a piece 
of code that cannot be removed



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

This work: Under standard lattice assumptions, there exists a 
secretly-verifiable watermarkable family of PRFs

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

𝑦⋆𝑥⋆

• Watermarked PRF implements 
PRF at all but a single point

• Structurally very similar to a 
puncturable PRF [BW13, BGI13, KPTZ13]

Puncturable PRF:

Puncture𝑥⋆

PRF key punctured key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

𝑦⋆𝑥⋆

• Watermarked PRF implements 
PRF at all but a single point

• Structurally very similar to a 
puncturable PRF [BW13, BGI13, KPTZ13]

Puncturable PRF:

Puncture𝑥⋆

Can be used to evaluate the 
PRF on all points 𝑥 ≠ 𝑥⋆

PRF key punctured key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Recall general approach for watermarking:

1. Derive 𝑥⋆, 𝑦⋆ from input/output behavior of PRF

2. Give out a key that agrees with PRF everywhere, except has value 

𝑦⋆ at 𝑥 = 𝑥⋆ PRF key 
punctured at 𝑥⋆

However, punctured key does not 
necessarily hide 𝑥⋆, which allows 
adversary to remove watermark



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Recall general approach for watermarking:

1. Derive 𝑥⋆, 𝑦⋆ from input/output behavior of PRF

2. Give out a key that agrees with PRF everywhere, except has value 

𝑦⋆ at 𝑥 = 𝑥⋆ PRF key 
punctured at 𝑥⋆

Punctured keys typically do not provide 
flexibility in programming value at 

punctured point: difficult to test if a 
program is watermarked or not

However, punctured key does not 
necessarily hide 𝑥⋆, which allows 
adversary to remove watermark



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use private puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use privately puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point

In existing lattice-based private puncturable PRF 
constructions [BKM17, CC17], value of punctured key 
at punctured point is a deterministic function of 

the PRF key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use privately puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point

• Relax programmability requirement



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

PRF key

𝑥⋆

PRF 𝑘, 𝑥⋆

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace

𝑥⋆
𝑦⋆



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace

𝑥⋆
𝑦⋆

Secret testing key associated with 
the PRF family can be used to test for 
membership in the hidden subspace



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

𝑥⋆
𝑦⋆

• Values in special set looks indistinguishable from a 
random value (without secret testing key)

• Indistinguishable even though it is easy to sample 
values from the set

Sets satisfying such 
properties are called 

translucent [CDNO97]



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

PRF key

𝑥⋆

PRF 𝑘, 𝑥⋆

Watermarking secret key (wsk): test points 𝑥1, … , 𝑥𝑑
and testing key for private translucent PRF



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

𝑥⋆

To mark a PRF key 𝑘, derive special point 𝑥⋆ and puncture 
𝑘 at 𝑥⋆; watermarked key is a program that evaluates using 

the punctured key

marked key

𝑦⋆



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

𝑥⋆

To test whether a program 𝐶′ is watermarked, derive test point 𝑥⋆

and check whether 𝐶′ 𝑥⋆ is in the translucent set (using the testing 
key for the private translucent PRF)

marked key

𝑦⋆



Constructing Private Translucent PRFs



Blueprint

Lattice PRFs

Puncturable PRF
[BV15]

Private 
Puncturable PRF

[BKM17, CC17, BTVW17]

Private 
Translucent PRF



Learning with Errors (LWE) [Reg05]

𝑨←
R
ℤ𝑞
𝑛×𝑚, 𝒔←

R
ℤ𝑞
𝑛, 𝒆←

R
𝜒𝑚, 𝒖←

R
ℤ𝑞
𝑚

𝑨, 𝒔𝑇𝑨 + 𝒆𝑇 ≈𝑐 𝑨, 𝒖𝑇



Learning with Rounding (LWR) [BPR12]

𝑨←
R
ℤ𝑞
𝑛×𝑚, 𝒔←

R
ℤ𝑞
𝑛, 𝒖←

R
ℤ𝑞
𝑚

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Replace random errors with deterministic rounding:

More suitable starting point for constructing lattice PRFs

Hardness reducible to LWE (for suitable parameter settings)



Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Intuition: set 𝒔 to be the secret 
key for the PRF and derive 𝑨 as 

a function of the input



Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Fix (public) random matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

Secret key: LWE secret vector 𝒔 ∈ ℤ𝑞
𝑛

PRF evaluation: on input 𝑥 ∈ 0,1 ℓ, derive 𝑨𝑥 from 𝑨1, …𝑨ℓ and output

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑥 𝑝

Question: how to derive 𝑨𝑥 from 𝑨1, … , 𝑨ℓ?



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1
encoding of 𝑥1 with respect to 𝑨1



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1
encoding of 𝑥1 with respect to 𝑨1

𝑮 ∈ ℤ𝑞
𝑛×𝑚 is a fixed 

“gadget” matrix

LWE matrix 
associated with each 

input bit

𝒔𝑇 𝑨ℓ + 𝑥ℓ ⋅ 𝑮 + 𝒆ℓ

⋮



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨𝑓 + 𝑓 𝑥 ⋅ 𝑮 + noise

Encodings support homomorphic 
operations

Function of 𝑓 and 
𝑨1, … , 𝑨ℓ only

Encoding of 𝑥 ⟹ Encoding of 𝑓(𝑥)



Puncturable PRFs from LWE [BV15]

PRF evaluation: on input 𝑥 ∈ 0,1 ℓ, derive 𝑨𝑥 from 𝑨1, …𝑨ℓ and output

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑥 𝑝

Question: how to derive 𝑨𝑥 from 𝑨1, … , 𝑨ℓ?

Let 𝑨1, … , 𝑨ℓ be matrices associated with bits of 𝑥 ∈ 0,1 ℓ

Define PRF evaluation with respect to equality function

eq𝑥 𝑥⋆ = ቊ
1, 𝑥 = 𝑥⋆

0, 𝑥 ≠ 𝑥⋆

Let 𝑨𝑥 be matrix associated with evaluating eq𝑥 on 𝑨1, … , 𝑨ℓ



Puncturable PRFs from LWE [BV15]

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

PRF evaluation (at 𝑥) 
using punctured key
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⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

If 𝑥 ≠ 𝑥⋆, eq𝑥 𝑥⋆ = 0, so

උ ඇ𝒔𝑇𝑨eq𝑥 + noise
𝑝
= උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

= PRF(𝒔, 𝑥)
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If 𝑥 = 𝑥⋆, eq𝑥 𝑥⋆ = 1, so

ቔ ቓ𝒔𝑇(𝑨eq𝑥⋆ + 𝑮) + noise
𝑝
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= PRF(𝒔, 𝑥⋆)
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Puncturable PRFs from LWE [BV15]

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

This construction gives a puncturable PRF from LWE

PRF evaluation (at 𝑥) 
using punctured key



Private Puncturable PRFs [BKM17, BTVW17]

Evaluating PRF using punctured 
key requires knowledge of 𝑥⋆

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮

Key idea in [BKM17]: encrypt the 
punctured point using an FHE 
scheme and homomorphically 
evaluate the equality function



Private Puncturable PRFs [BKM17, BTVW17]

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

𝒔𝑇 𝑨1 + ct1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨𝑧 + ct𝑧 ⋅ 𝑮 + 𝒆𝑧

⋮

𝒔𝑇 𝑩1 + sk1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑩𝜏 + sk𝜏 ⋅ 𝑮 + 𝒆𝜏

⋮

ct is an FHE 
encryption of 𝑥⋆

sk is the FHE 
secret key

FHE decryption + homomorphic evaluation of eq𝑥

Punctured key consists of 
encodings of encrypted 
point (for homomorphic 

evaluation) and FHE secret 
key (for decryption) 
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Private Puncturable PRFs [BKM17, BTVW17]

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

𝒔𝑇 𝑨1 + ct1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨𝑧 + ct𝑧 ⋅ 𝑮 + 𝒆𝑧

⋮

𝒔𝑇 𝑩1 + sk1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑩𝜏 + sk𝜏 ⋅ 𝑮 + 𝒆𝜏

⋮

Evaluating Decrypt ∘ Evaleq𝑥 on encodings 

essentially yields:

𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮 + noise

Evaluation only requires knowledge of ct and not sk

Some technicalities due to 
FHE noise (will ignore here for 

simplicity)



Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured 
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Punctured PRF evaluation: ቔ ቓ𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮
𝑝

Difficulty: no control over 
value at punctured point



Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured 
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Punctured PRF evaluation: ቔ ቓ𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮
𝑝

Idea: define PRF with respect to scaled equality circuit:

eq𝑥 𝑥⋆, 𝑤 = ቊ
𝑤, 𝑥 = 𝑥⋆

0, 𝑥 ≠ 𝑥⋆



Private Translucent PRFs

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Evaluating the punctured key at the punctured point 𝑥⋆ yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Scaling factor 𝑤 is chosen when key is 
punctured and can be chosen to adjust 

the value at the punctured point



Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Can now consider many instances of this PRF with many different 𝑤𝑖’s:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,1
+𝑤1 ⋅ 𝑮1 + noise

⋮
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,𝑁
+ 𝑤𝑁 ⋅ 𝑮𝑁 + noise

Different gadget matrices 𝑮1, … , 𝑮𝑁

[See paper for construction]
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Evaluating the punctured key at the punctured point yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Can now consider many instances of this PRF with many different 𝑤𝑖’s:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,1
+𝑤1 ⋅ 𝑮1 + noise

⋮
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,𝑁
+ 𝑤𝑁 ⋅ 𝑮𝑁 + noise

At puncturing time, choose 𝑤1, … , 𝑤𝑁 such that

𝑾 = 

𝑖∈[𝑁]

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈[𝑁]

𝑤𝑖 ⋅ 𝑮𝑖

𝑾 is a fixed public matrix 
included in the public 

parameters of the PRF family



Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾



Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾

Output at punctured point is an LWE 
sample with respect to 𝑾 (fixed public 

matrix) – critical for implementing a 
translucent set



Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾

Testing key is a short vector 𝒛 where 𝑾𝒛 = 0:

උ ඇ𝒔𝑇𝑾
𝑝
, 𝒛 ≈ උ ඇ𝒔𝑇𝑾𝒛

𝑝
= 0

Private Translucent PRFs

[See paper for details and security analysis]
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Open Problems

Publicly-verifiable watermarking without obfuscation?
• Current best construction relies on iO [CHNVW16]

Additional applications of private translucent PRFs?

Thank you!

http://eprint.iacr.org/2017/380


