Watermarking Cryptographic Functionalities from Standard Lattice Assumptions

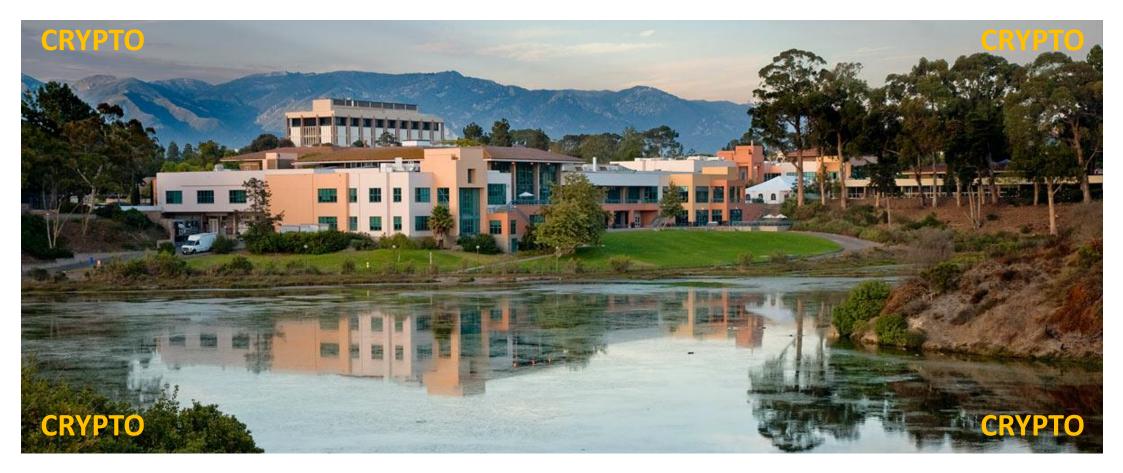
Sam Kim and <u>David J. Wu</u> Stanford University

Digital Watermarking



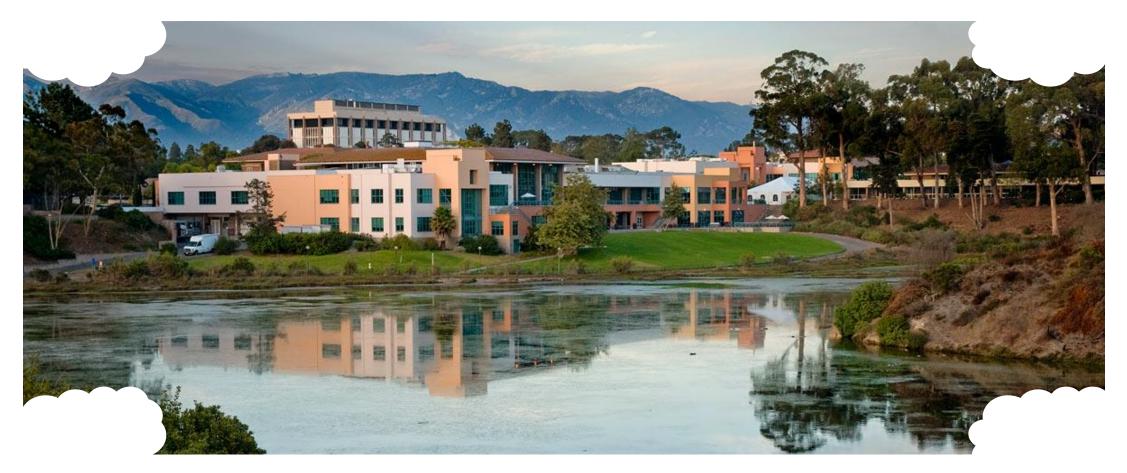
Often used to identify owner of content and prevent unauthorized distribution

Digital Watermarking



• Content is (mostly) viewable

Digital Watermarking



- Content is (mostly) viewable
- Watermark difficult to remove (without destroying the image)

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

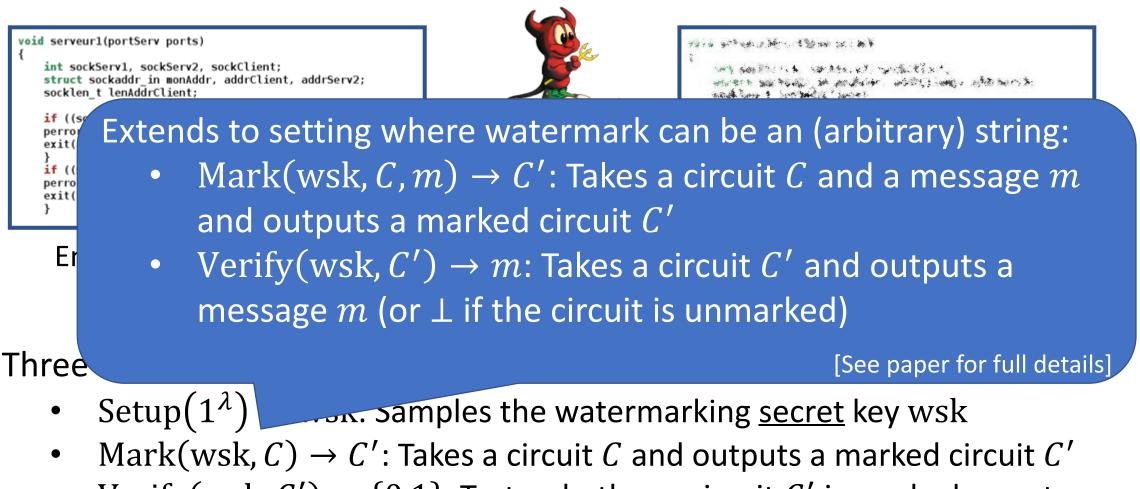
Embed a "mark" within a program

If mark is removed, then program is corrupted

Three algorithms:

- Setup $(1^{\lambda}) \rightarrow$ wsk: Samples the watermarking <u>secret</u> key wsk
- Mark(wsk, C) $\rightarrow C'$: Takes a circuit C and outputs a marked circuit C'
- Verify(wsk, C') \rightarrow {0,1}: Tests whether a circuit C' is marked or not

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



• Verify(wsk, C') \rightarrow {0,1}: Tests whether a circuit C' is marked or not

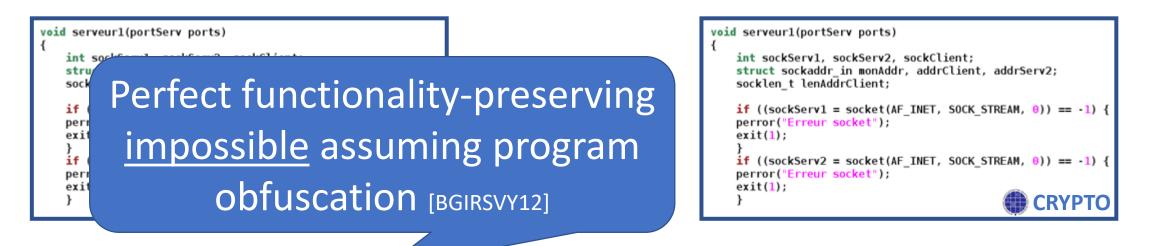
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



Functionality-preserving: On input a program (modeled as a Boolean circuit *C*), the Mark algorithm outputs a circuit *C*' where C(x) = C'(x)

on all but a negligible fraction of inputs x

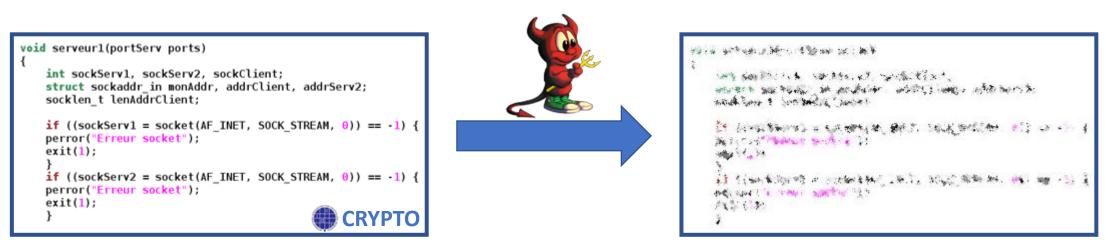
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



Functionality-preserving: On input a program (modeled as a Boolean circuit *C*), the Mark algorithm outputs a circuit *C*' where C(x) = C'(x)

on all but a negligible fraction of inputs x

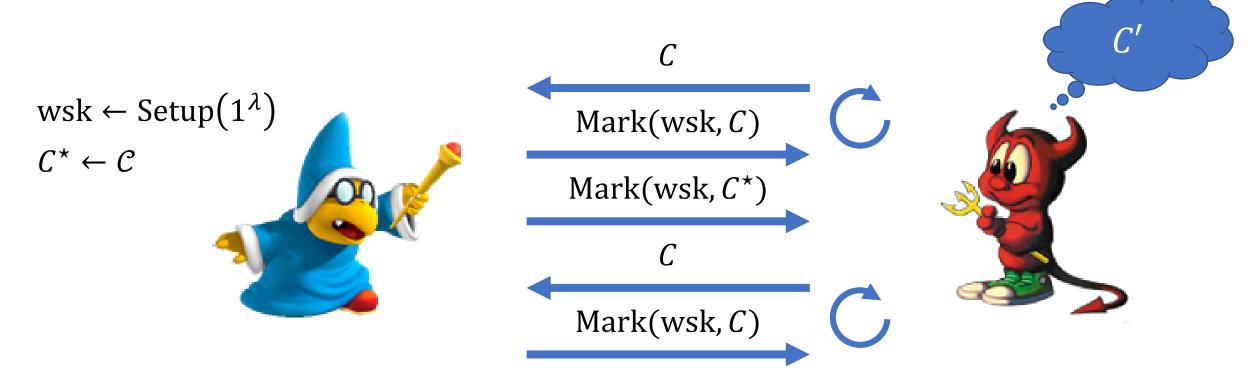
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



Unremovability: Given a marked circuit C^* , no efficient adversary can construct a circuit C' where

- $C'(x) = C^*(x)$ on all but a negligible fraction of inputs x
- Verify(wsk, C') = 0

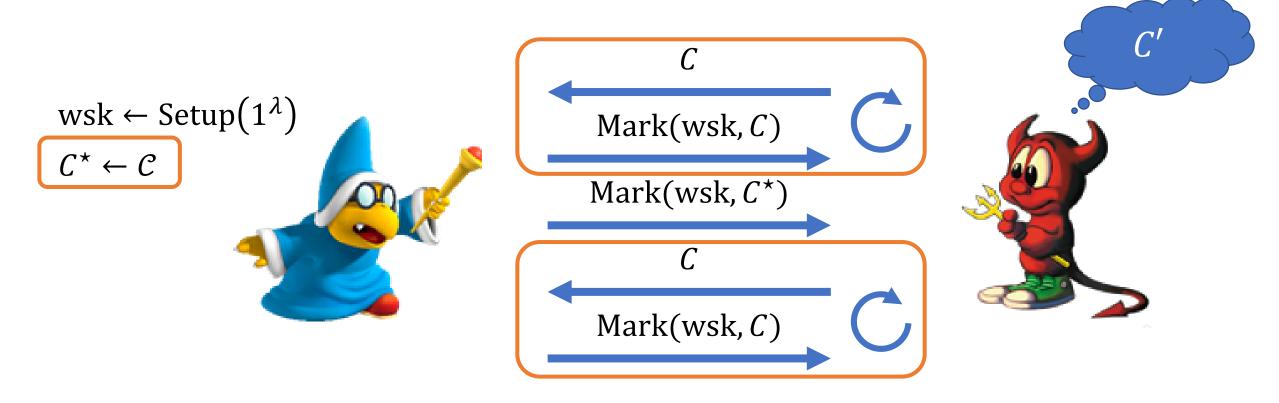
Watermarking Security Game [CHNVW16, BLW17]



Unremovability: Given a marked circuit C^* , no efficient adversary can construct a circuit C' where

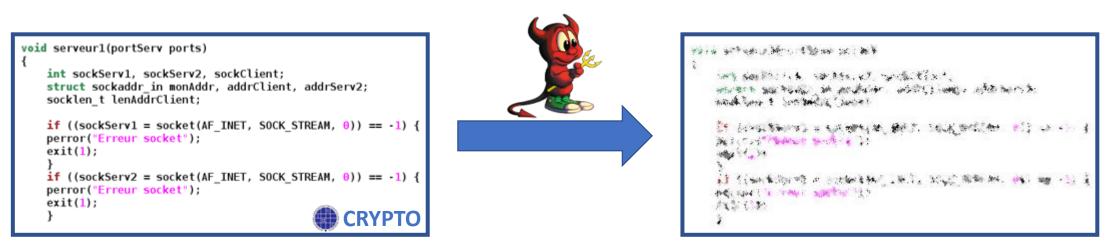
- $C'(x) = C^*(x)$ on all but a negligible fraction of inputs x
- Verify(wsk, C') = 0

Watermarking Security Game [CHNVW16, BLW17]



- Adversary has access to marking oracle (sees marked programs of its choosing)
- Challenge circuit C^{*} sampled from the circuit family
- Adversary has <u>complete</u> flexibility in crafting C' (it just outputs a description of a circuit)

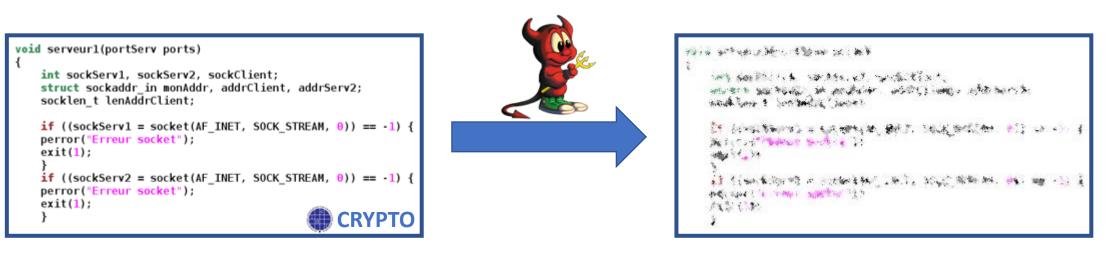
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



Unforgeability: Given marked programs C_1, \ldots, C_ℓ , no efficient adversary can construct a circuit C' where

- For all $i \in [\ell]$, $C'(x) \neq C_i(x)$ on a <u>noticeable</u> fraction of inputs x
- Verify(wsk, C') = 1

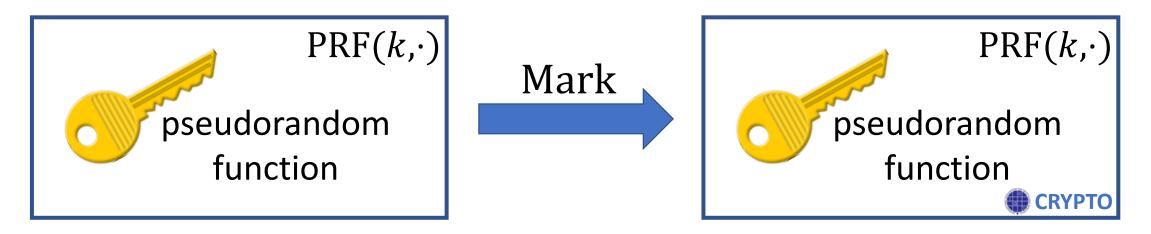
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



- Notion only achievable for functions that are not learnable
- Focus has been on cryptographic functions

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



• Focus of this work: watermarking PRFs [CHNVW16, BLW17]

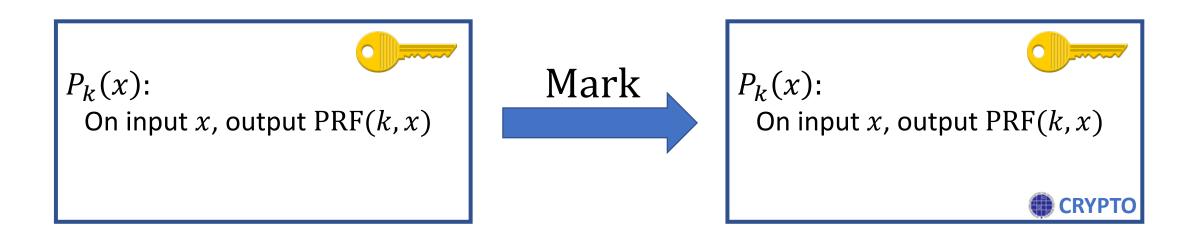
Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

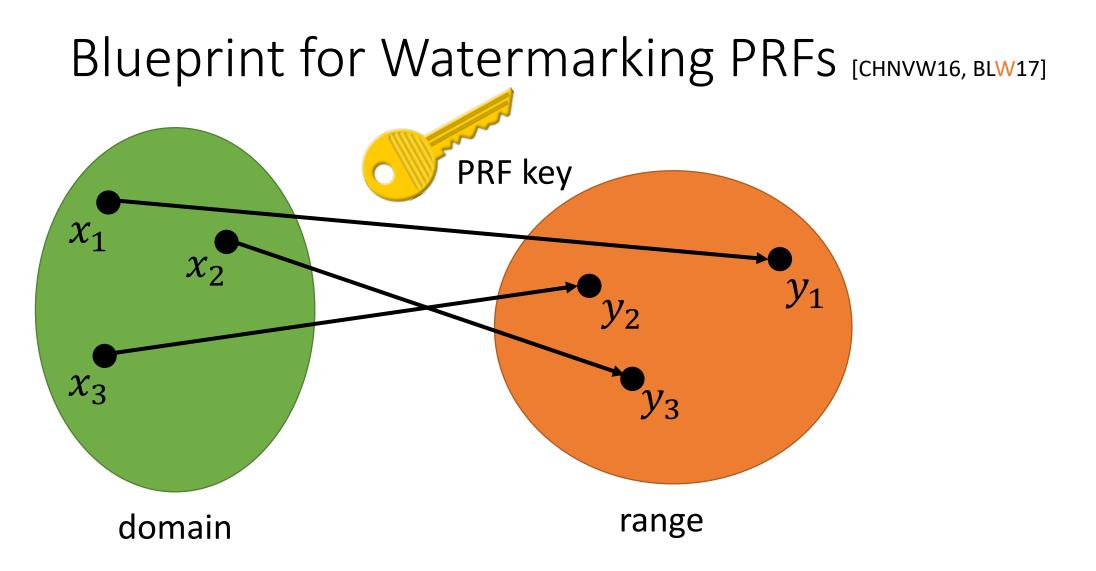


- Focus of this work: watermarking PRFs [CHNVW16, BLW17]
- Enables watermarking of symmetric primitives built from PRFs (e.g., encryption, MACs, etc.)

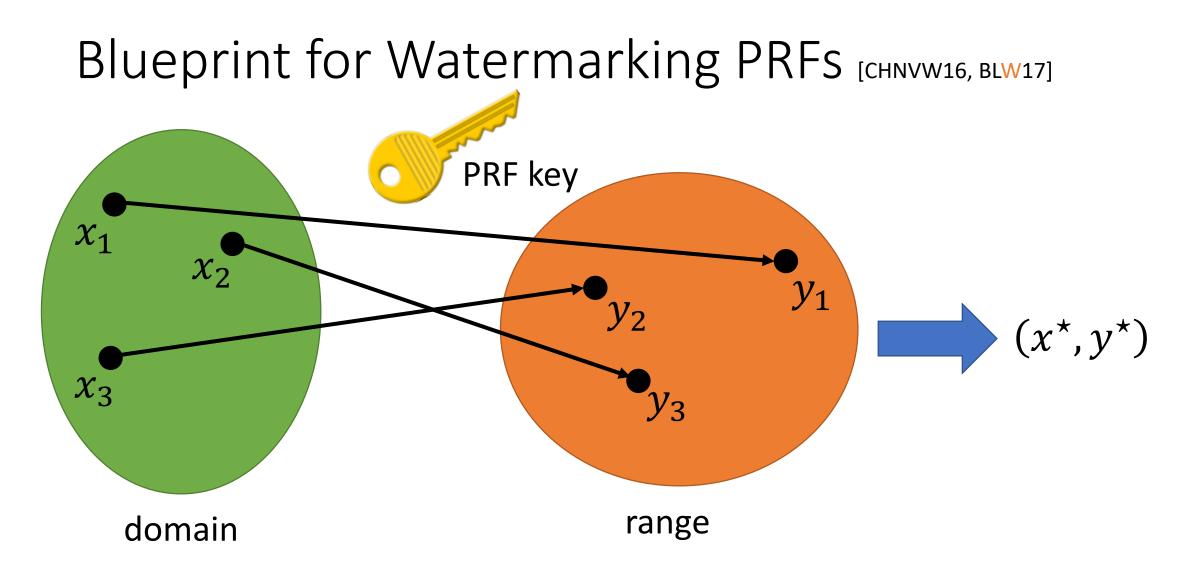
Main Result



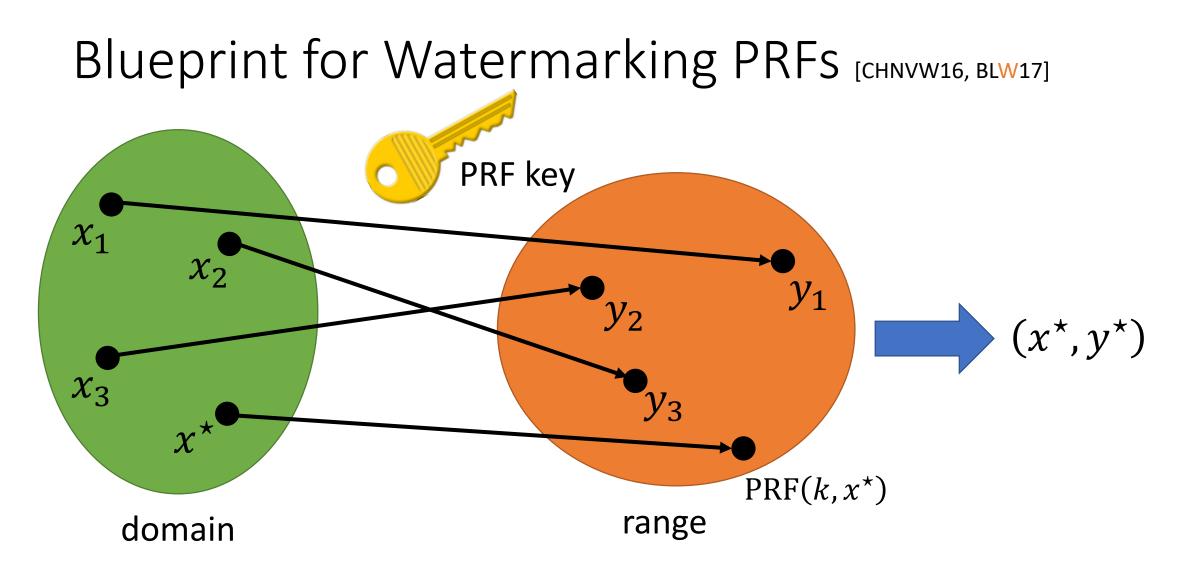
This work: Under *standard lattice assumptions,* there exists a secretly-verifiable watermarkable family of PRFs



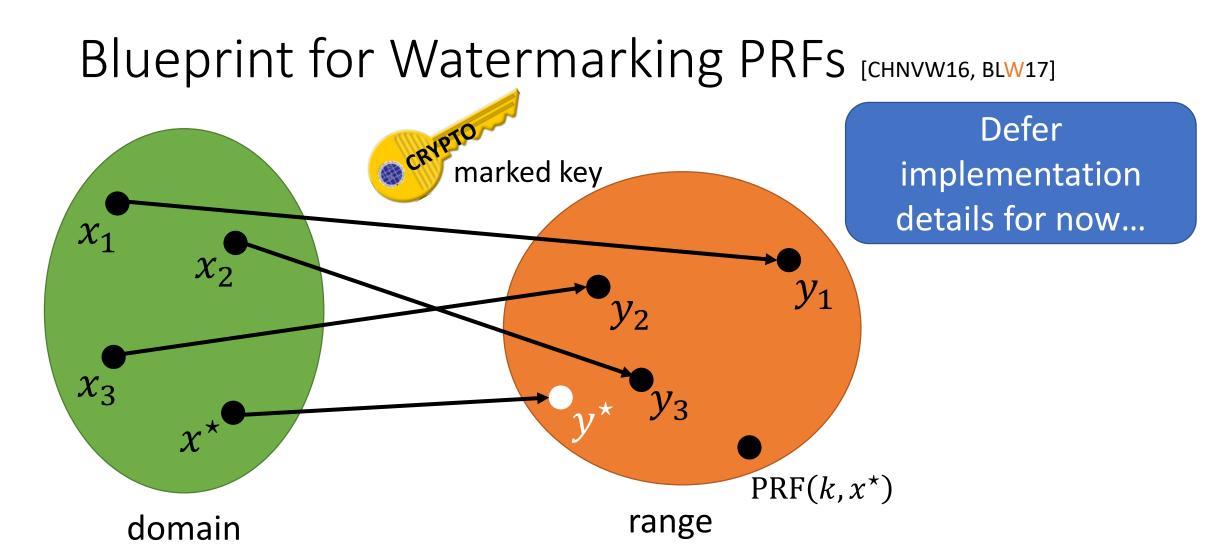
Step 1: Evaluate PRF on test points x_1, x_2, x_3 (part of the watermarking secret key)



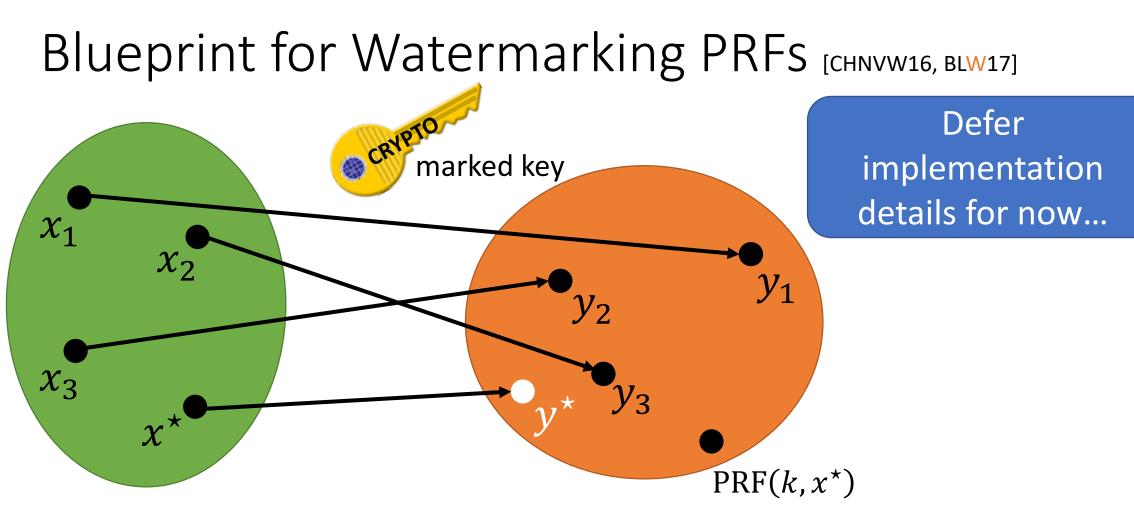
Step 2: Derive a pair (x^*, y^*) from y_1, y_2, y_3



Step 3: "Marked key" is a circuit that implements the PRF at all points, except at x^* , the output is changed to y^*



Step 3: "Marked key" is a circuit that implements the PRF at all points, except at x^* , the output is changed to y^*



range

domain

Verification: Evaluate function at x_1, x_2, x_3 , derive (x^*, y^*) and check if the value at x^* matches y^*

 y_2

marked key

 x_1

 x_3

 χ_2

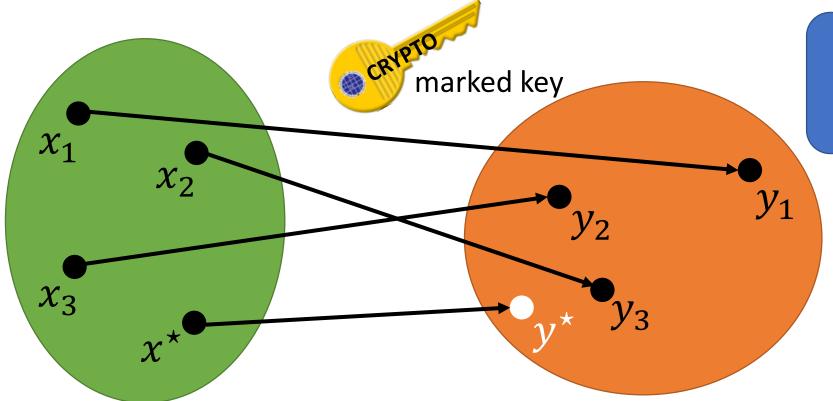
domain

Defer implementation details for now...

Need different x^* for different programs – otherwise easy to remove if adversary sees watermarked keys of its choosing

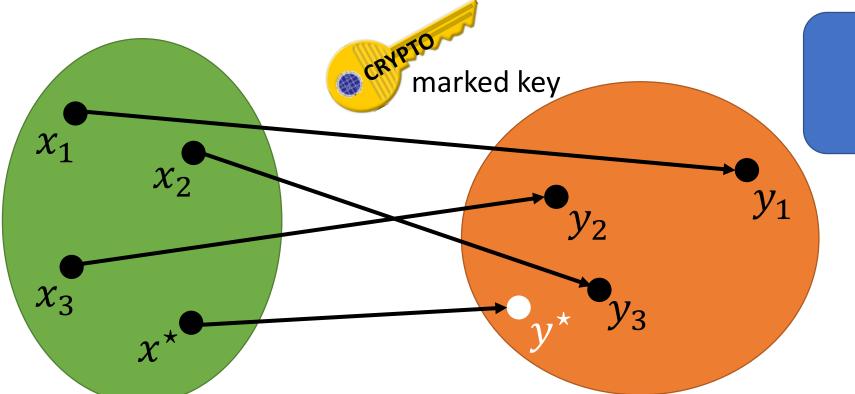
 y_1

Verification: Evaluate function at x_1, x_2, x_3 , derive (x^*, y^*) and check if the value at x^* matches y^*



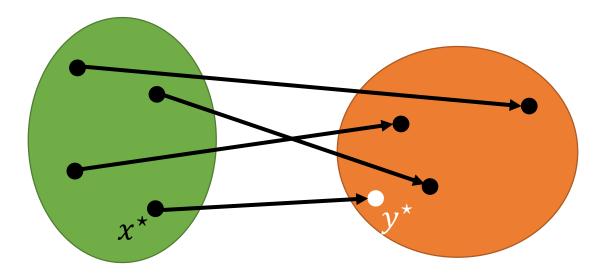
Defer implementation details for now...

Functionality-preserving: function differs at a single point



Defer implementation details for now...

Functionality-preserving: function differs at a single point Unremovable: as long as adversary cannot tell that (x^*, y^*) is "special"



Prior solutions: use obfuscation to hide (x^*, y^*)

How to implement this functionality?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x):$$

• if $x = x^{\star}$ output y

• else, output
$$PRF(k, x)$$

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k, x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

How to implement this functionality?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x):$$

• if $x = x^{\star}$, output y^{\star}

• else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k, x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

Essentially relies on secretly *re-programming* the value at x^*

functionality?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x):$$

• if $x = x^{\star}$, output y^{\star}

• else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k, x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

Key technical challenge: How to hide (x^*, y^*) within the watermarked key (without obfuscation)?

Obfuscated program:Prior solutions: use obfuscation
to hide (x^*, y^*) $P_{(x^*, y^*)}(x)$: $\text{hide } (x^*, y^*)$ • if $x = x^*$, output y^* Has an obfuscation flavor: need
to embed a secret inside a piece
of code that cannot be removed

Key technical challenge: How to hide (x^*, y^*) within the watermarked key (without obfuscation)?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x):$$

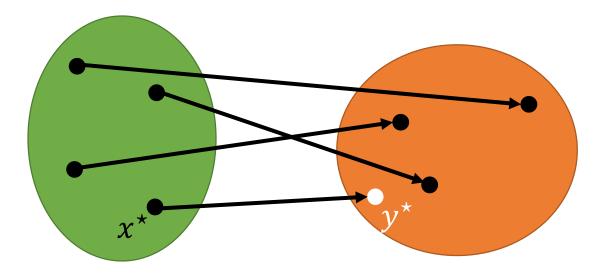
• if $x = x^{\star}$, output y^{\star}

• else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

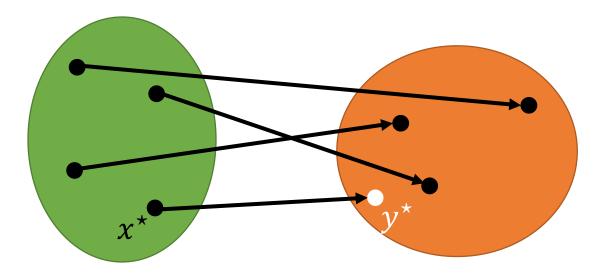
Obfuscated program has PRF key embedded inside and outputs PRF(k, x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

This work: Under *standard lattice assumptions*, there exists a secretly-verifiable watermarkable family of PRFs



- Watermarked PRF implements
 PRF at all but a single point
- Structurally very similar to a puncturable PRF [BW13, BGI13, KPTZ13]

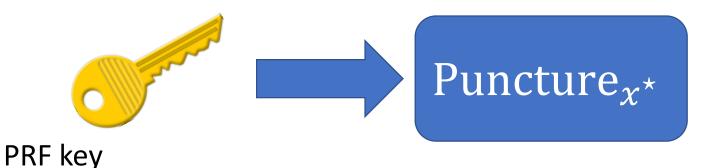
Puncturable PRF:



- Watermarked PRF implements PRF at all but a single point
- Structurally yory similar to a

Can be used to evaluate the PRF on all points $x \neq x^*$

Puncturable PRF:

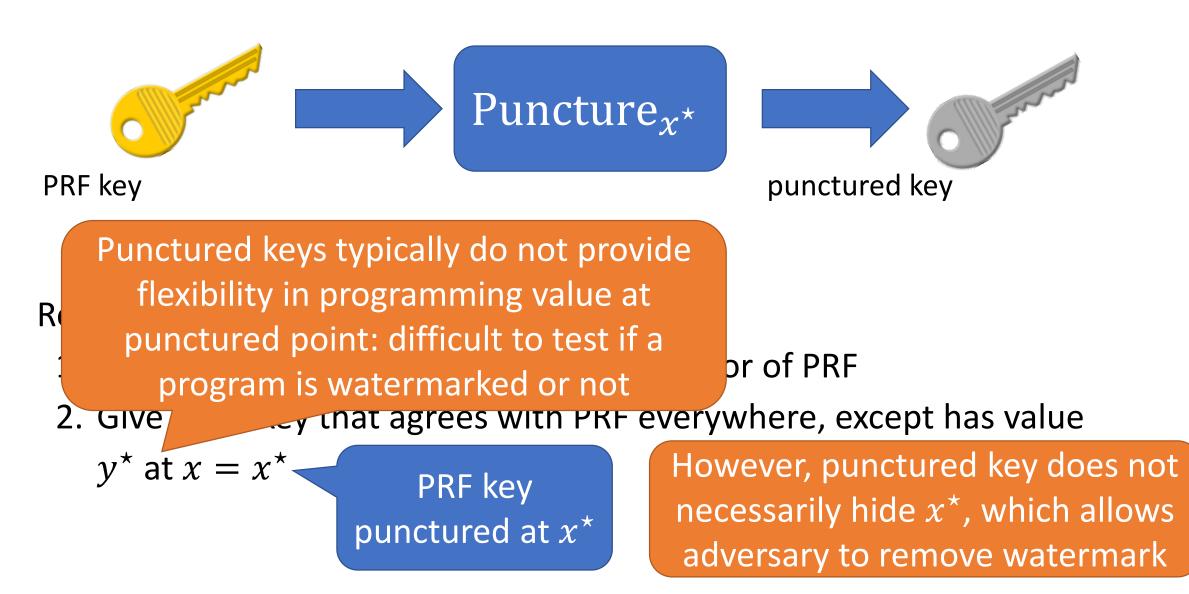


Recall general approach for watermarking:

- 1. Derive (x^*, y^*) from input/output behavior of PRF
- 2. Give out a key that agrees with PRF everywhere, except has value

 y^* at $x = x^*$ PRF key punctured at x^*

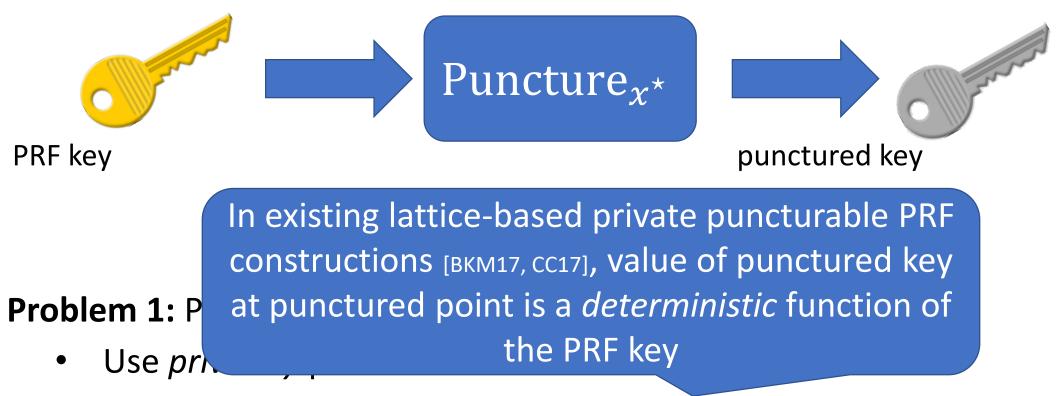
However, punctured key does not necessarily hide x^* , which allows adversary to remove watermark



Problem 1: Punctured keys do not hide the punctured point x^*

• Use *private* puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point



Problem 2: Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point

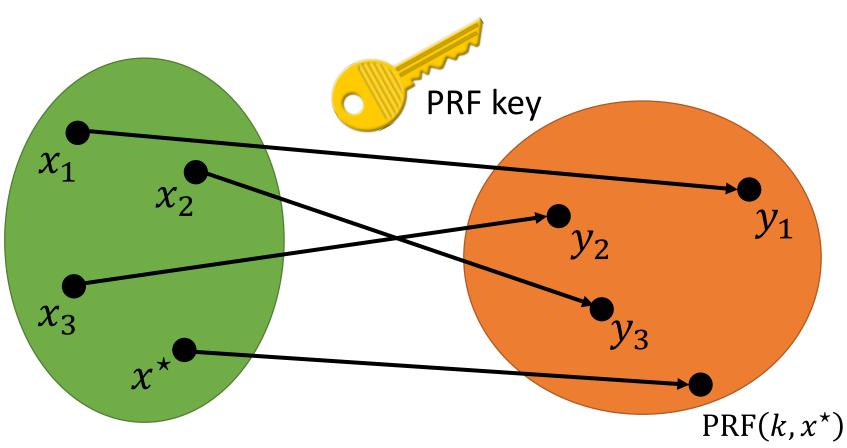
Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Problem 1: Punctured keys do not hide the punctured point x^*

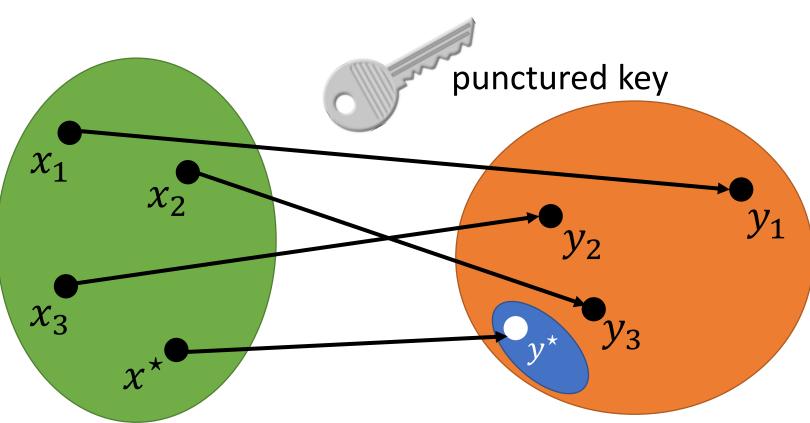
• Use *privately* puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point

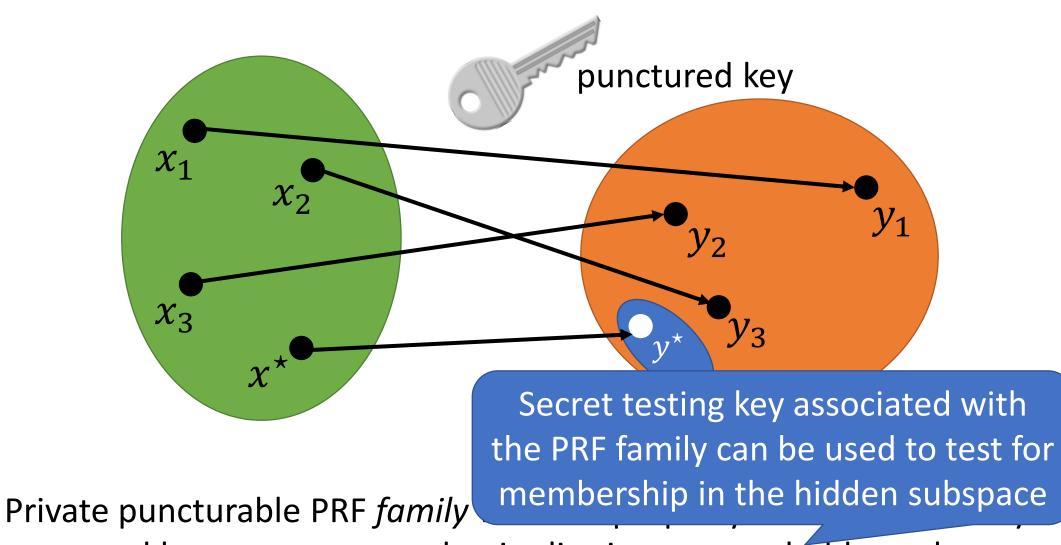
Relax programmability requirement



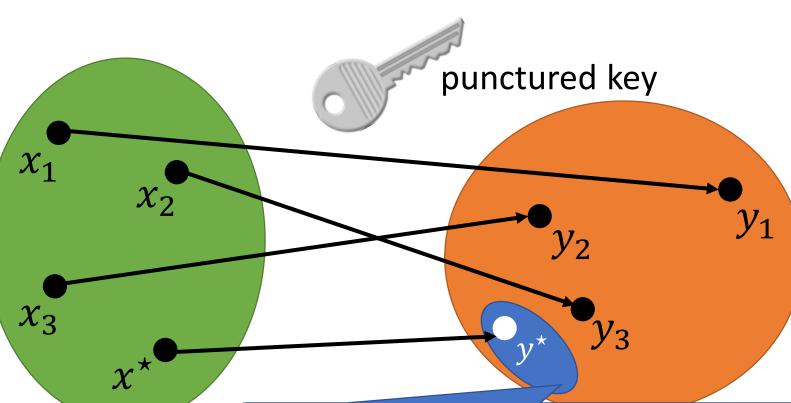
Private puncturable PRF *family* with the property that output of any punctured key on a punctured point lies in a sparse, hidden subspace



Private puncturable PRF *family* with the property that output of any punctured key on a punctured point lies in a sparse, hidden subspace



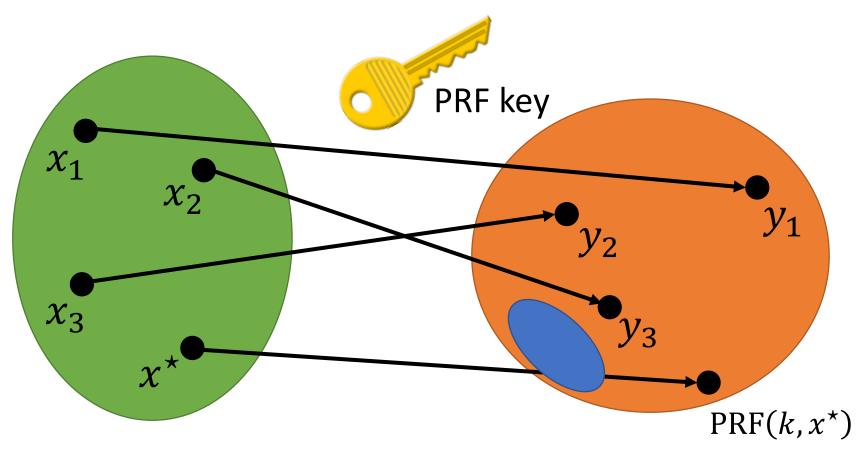
punctured key on a punctured point lies in a sparse, hidden subspace



Sets satisfying such properties are called *translucent* [CDN097]

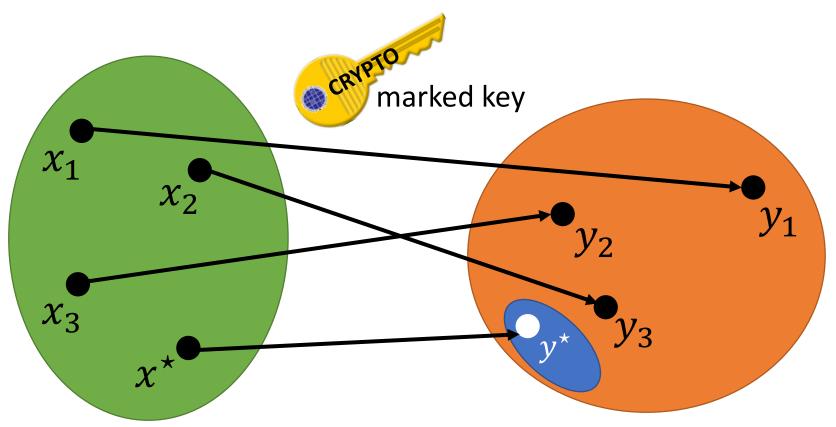
- Values in special set looks indistinguishable from a random value (without secret testing key)
- Indistinguishable even though it is easy to sample values from the set

Watermarking from Private Translucent PRFs



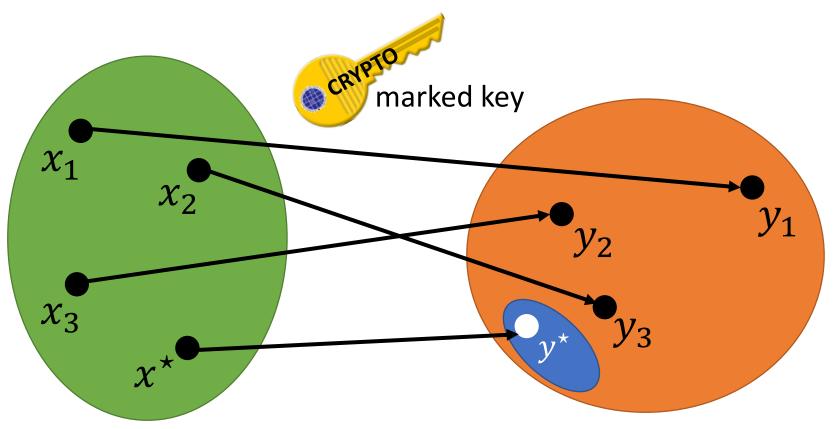
Watermarking secret key (wsk): test points $x_1, ..., x_d$ and testing key for private translucent PRF

Watermarking from Private Translucent PRFs



To mark a PRF key k, derive special point x^* and puncture k at x^* ; watermarked key is a program that evaluates using the punctured key

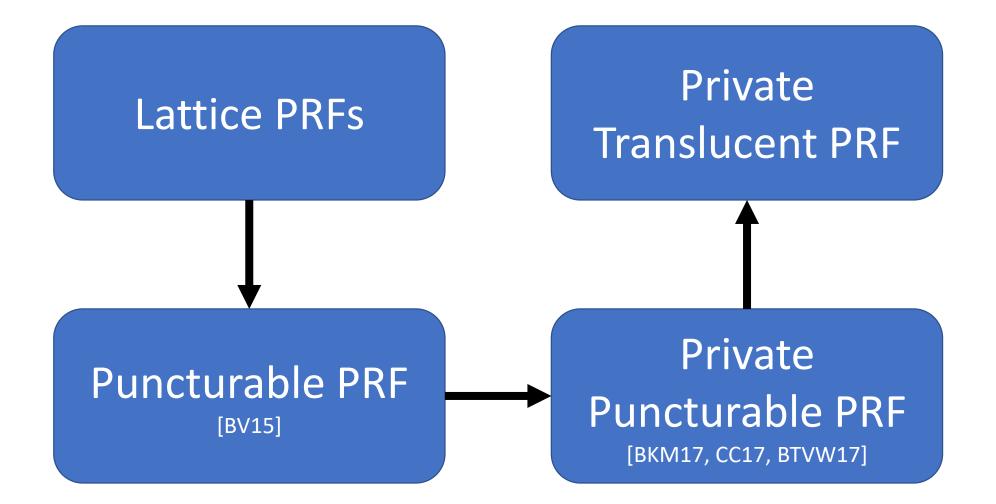
Watermarking from Private Translucent PRFs



To test whether a program C' is watermarked, derive test point x^* and check whether $C'(x^*)$ is in the translucent set (using the testing key for the private translucent PRF)

Constructing Private Translucent PRFs

Blueprint



Learning with Errors (LWE) [Reg05]

 $(\mathbf{A}, \mathbf{S}^T \mathbf{A} + \mathbf{e}^T) \approx_c (\mathbf{A}, \mathbf{u}^T)$

 $A \stackrel{\mathsf{R}}{\leftarrow} \mathbb{Z}_{a}^{n \times m}, s \stackrel{\mathsf{R}}{\leftarrow} \mathbb{Z}_{a}^{n}, e \stackrel{\mathsf{R}}{\leftarrow} \chi^{m}, u \stackrel{\mathsf{R}}{\leftarrow} \mathbb{Z}_{a}^{m}$

Learning with Rounding (LWR) [BPR12]

Replace *random* errors with *deterministic* rounding:

$$\left(A, \left[s^T A \right]_p \right) \approx_c \left(A, \left[u^T \right]_p \right)$$
$$A \stackrel{\text{R}}{\leftarrow} \mathbb{Z}_q^{n \times m}, s \stackrel{\text{R}}{\leftarrow} \mathbb{Z}_q^n, u \stackrel{\text{R}}{\leftarrow} \mathbb{Z}_q^m$$

Hardness reducible to LWE (for suitable parameter settings) More suitable starting point for constructing lattice PRFs

Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

 $\left(A, \left[s^{T}A\right]_{p}\right) \approx_{c} \left(A, \left[u^{T}\right]_{p}\right)$

Intuition: set *s* to be the secret key for the PRF and derive *A* as a function of the input Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

$$\left(\boldsymbol{A}, \left[\boldsymbol{s}^{T}\boldsymbol{A}\right]_{p}\right) \approx_{c} \left(\boldsymbol{A}, \left[\boldsymbol{u}^{T}\right]_{p}\right)$$

Fix (public) random matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n imes m}$

Secret key: LWE secret vector $s \in \mathbb{Z}_q^n$

PRF evaluation: on input $x \in \{0,1\}^{\ell}$, derive A_x from $A_1, ..., A_{\ell}$ and output $PRF(s, x) \coloneqq [s^T A_x]_p$

Question: how to derive A_x from A_1, \ldots, A_ℓ ?

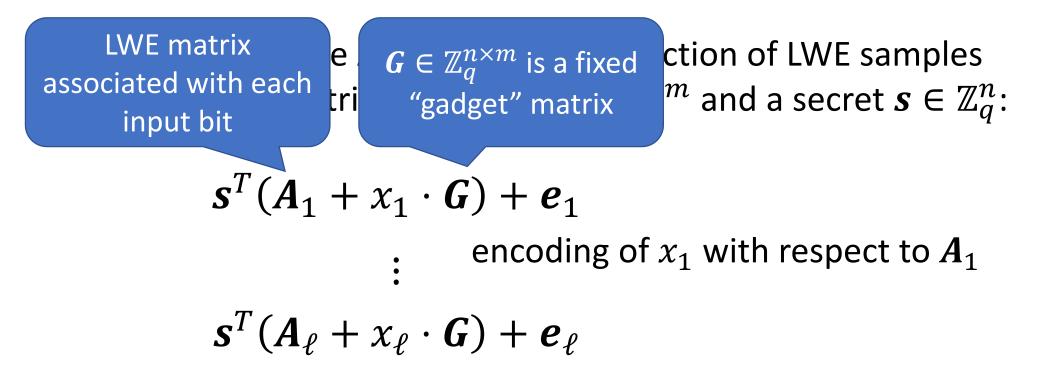
Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode $x \in \{0,1\}^{\ell}$ as a collection of LWE samples take LWE matrices $A_1, \dots, A_{\ell} \in \mathbb{Z}_q^{n \times m}$ and a secret $s \in \mathbb{Z}_q^n$:

$$s^T (A_1 + x_1 \cdot G) + e_1$$

encoding of x_1 with respect to A_1

Homomorphic Matrix Embeddings [BGGHNSVV14]



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode $x \in \{0,1\}^{\ell}$ as a collection of LWE samples take LWE matrices $A_1, \dots, A_{\ell} \in \mathbb{Z}_q^{n \times m}$ and a secret $s \in \mathbb{Z}_q^n$:

$$s^{T}(A_{1} + x_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{\ell} + x_{\ell} \cdot G) + e_{\ell}$$

Function of f and A_1, \dots, A_ℓ only $s^T (A_f + f(x) \cdot G) + \text{noise}$

Encodings support homomorphic operations

Encoding of $x \Longrightarrow$ Encoding of f(x)

PRF evaluation: on input $x \in \{0,1\}^{\ell}$, derive A_x from $A_1, ..., A_{\ell}$ and output PRF $(s, x) \coloneqq [s^T A_x]_p$

Question: how to derive A_x from A_1, \ldots, A_ℓ ?

Let A_1, \ldots, A_ℓ be matrices associated with bits of $x \in \{0,1\}^\ell$

Define PRF evaluation with respect to equality function

$$eq_{x}(x^{\star}) = \begin{cases} 1, & x = x^{\star} \\ 0, & x \neq x^{\star} \end{cases}$$

Let A_x be matrix associated with evaluating eq_x on A_1 , ..., A_ℓ

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left[\boldsymbol{s}^T \boldsymbol{A}_{eq_x}\right]_p$$

To puncture the key s at a point x^* , give out encodings of x^* :

$$s^{T}(A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{eq_{x}} + eq_{x}(x^{\star}) \cdot G) + noise$$

$$s^{T}(A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$
PRF evaluation (at x)
using punctured key

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left[\boldsymbol{s}^T \boldsymbol{A}_{eq_{\boldsymbol{x}}}\right]_p$$

To puncture the key s at a point x^* , give out encodings of x^* :

$$s^{T}(A_{1} + x_{1}^{*} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{\ell} + x_{\ell}^{*} \cdot G) + e_{\ell}$$

$$PRF \text{ evaluation } (at x)$$

$$using punctured key$$

$$[s^{T}A_{eq_{x}} + noise]_{p} = [s^{T}A_{eq_{x}}]_{p} = PRF(s, x)$$

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left[\boldsymbol{s}^T \boldsymbol{A}_{eq_{\boldsymbol{x}}}\right]_p$$

To puncture the key s at a point x^* , give out encodings of x^* :

$$s^{T}(A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$

$$PRF \text{ evaluation } (at x)$$

$$using punctured key$$
If $x = x^{\star}$, $eq_{x}(x^{\star}) = 1$, so
$$\left[s^{T}(A_{eq_{x^{\star}}} + G) + noise\right]_{p} \neq \left[s^{T}A_{eq_{x^{\star}}}\right]_{p} = PRF(s, x^{\star})$$

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left[\boldsymbol{s}^T \boldsymbol{A}_{eq_{\boldsymbol{x}}}\right]_p$$

To puncture the key s at a point x^* , give out encodings of x^* :

$$s^{T}(A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{eq_{x}} + eq_{x}(x^{\star}) \cdot G) + noise$$

$$s^{T}(A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$
PRF evaluation (at x)
using punctured key

This construction gives a puncturable PRF from LWE

Private Puncturable PRFs [BKM17, BTVW17]

PRF
$$(\mathbf{s}, \mathbf{x}) \coloneqq \left[\mathbf{s}^T \mathbf{A}_{eq_x} \right]_p$$

 $\mathbf{s}^T (\mathbf{A}_1 + \mathbf{x}_1^* \cdot \mathbf{G}) + \mathbf{e}_1$
 \vdots
 $\mathbf{s}^T (\mathbf{A}_\ell + \mathbf{x}_\ell^* \cdot \mathbf{G}) + \mathbf{e}_\ell$

Evaluating PRF using punctured key requires knowledge of x^*

Key idea in [BKM17]: encrypt the punctured point using an FHE scheme and homomorphically evaluate the equality function Private Puncturable PRFs [BKM17, BTVW17]

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left[\boldsymbol{s}^{T} \boldsymbol{A}_{\text{Decrypt} \circ \text{Eval}_{eq_{\boldsymbol{x}}}}\right]_{p}$$

FHE decryption + homomorphic evaluation of eq_x

Punctured key consists of encodings of encrypted point (for homomorphic evaluation) and FHE secret key (for decryption)

$$s^{T}(A_{1} + \operatorname{ct}_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{z} + \operatorname{ct}_{z} \cdot G) + e_{z}$$

$$s^{T}(B_{1} + \operatorname{sk}_{1} \cdot G) + e_{1}$$
$$\vdots$$
$$s^{T}(B_{\tau} + \operatorname{sk}_{\tau} \cdot G) + e_{\tau}$$

ct is an FHE encryption of x^*

sk is the FHE secret key

Private Puncturable PRFs [BKM17, BTVW17]
PRF
$$(s, x) \coloneqq \left[s^T A_{\text{Decrypt} \circ \text{Eval}_{eq_x}} \right]_p$$

$$s^{T}(A_{1} + \operatorname{ct}_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{z} + \operatorname{ct}_{z} \cdot G) + e_{z}$$

$$s^{T}(B_{1} + \operatorname{sk}_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(B_{\tau} + \operatorname{sk}_{\tau} \cdot G) + e_{\tau}$$

Evaluating Decrypt \circ Eval_{eq_x} on encodings essentially yields:

$$s^{T}\left(A_{\text{Decrypt}\circ\text{Eval}_{eq_{x}}} + eq_{x}(x^{\star})\cdot G\right) + noise$$

Private Puncturable PRFs [BKM17, BTVW17]

$$PRF(s, x) \coloneqq \begin{bmatrix} s^{T} A_{Decrypt \circ Eval_{eq_{x}}} \end{bmatrix}_{p}$$

Some technicalities due to
FHE noise (will ignore here for
simplicity)
$$\vdots$$

$$s^{T} (A_{1} + ct_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T} (A_{z} + ct_{z} \cdot G) + e_{z}$$

$$s^{T} (B_{1} + sk_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T} (B_{\tau} + sk_{\tau} \cdot G) + e_{\tau}$$

Evalution only requires knowledge of ct and not sk

Goal: detect whether a punctured key is used to evaluate at a punctured point (this is essential for embedding the watermark)

Real PRF evaluation:
$$PRF(s, x) \coloneqq \left[s^T A_{Decrypt \circ Eval_{eq_x}}\right]_p$$

Punctured PRF evaluation:
$$\left[s^T \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_x}} + eq_x(x^*) \cdot G \right) \right]_p$$

Difficulty: no control over value at punctured point

Goal: detect whether a punctured key is used to evaluate at a punctured point (this is essential for embedding the watermark)

Real PRF evaluation: PRF(
$$s, x$$
) := $\left[s^{T}A_{\text{Decrypt}\circ\text{Eval}_{eq_{x}}}\right]_{p}$
Punctured PRF evaluation: $\left[s^{T}\left(A_{\text{Decrypt}\circ\text{Eval}_{eq_{x}}} + eq_{x}(x^{\star}) \cdot G\right)\right]_{p}$

Idea: define PRF with respect to <u>scaled</u> equality circuit:

$$eq_{x}(x^{\star},w) = \begin{cases} w, & x = x^{\star} \\ 0, & x \neq x^{\star} \end{cases}$$

Private Translucent PRFs $PRF(s, x) \coloneqq \left[s^{T} A_{\text{Decrypt} \circ \text{Eval}_{eq_{x}}}\right]_{p}$

Evaluating the punctured key at the punctured point x^* yields: $s^T (A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^*}}} + w \cdot G) + \text{noise}$

Scaling factor *w* is chosen when key is punctured and can be chosen to adjust the value at the punctured point

Evaluating the punctured key at the punctured point yields: $s^T (A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^*}}} + w \cdot G) + \text{noise}$

Can now consider many instances of this PRF with many different w_i 's:

$$s^{T} \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^{\star,1}}}} + w_{1} \cdot G_{1} \right) + \text{noise}$$

$$\vdots$$

$$s^{T} \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^{\star,N}}}} + w_{N} \cdot G_{N} \right) + \text{noise}$$
Different gadget matrices G_{1}, \dots, G_{N}
[See paper for construction]

Evaluating the punctured key at the punctured point yields: $s^T (A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^*}}} + w \cdot G) + \text{noise}$

Can now consider many instances of this PRF with many different w_i 's:

$$s^{T} \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_{\chi^{\star},1}}} + w_{1} \cdot G_{1} \right) + \text{noise}$$

$$\vdots$$

$$s^{T} \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_{\chi^{\star},N}}} + w_{N} \cdot G_{N} \right) + \text{noise}$$

At puncturing time, choose w_1, \ldots, w_N such that

$$W = \sum_{i \in [N]} A_{\text{Decrypt} \circ \text{Eval}_{eq_{\chi^{\star}, i}}} + \sum_{i \in [N]} w_i \cdot G_i$$

Evaluating the punctured key at the punctured point yields: $s^T (A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^*}}} + w \cdot G) + \text{noise}$

Can now consider many instances of this PRF with many different w_i 's: $s^{T} \left(A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^{\star},1}}} + w_{1} \cdot G_{1} \right) + \text{noise}$ $\vdots \\ \operatorname{val}_{\operatorname{eq}_{x^{\star},N}} + w_N \cdot \boldsymbol{G}_N + \operatorname{noise}$ W is a fixed public matrix included in the public parameters of the PRF family $_{N}$ such that $W = \sum_{i \in [N]} A_{\text{Decrypt} \circ \text{Eval}_{eq_{x^{\star}, i}}} + \sum_{i \in [N]} w_i \cdot G_i$

Define real PRF evaluation to be sum of each independent evaluation:

$$PRF(\boldsymbol{s}, \boldsymbol{x}) \coloneqq \left\| \boldsymbol{s}^T \sum_{i \in [N]} \boldsymbol{A}_{\text{Decrypt} \circ \text{Eval}_{eq_{\boldsymbol{x},i}}} \right\|_p$$

When evaluating at punctured point x^* :

$$\boldsymbol{s}^{T}\left(\sum_{i\in[N]}\boldsymbol{A}_{\text{Decrypt}\circ\text{Eval}_{eq_{\chi^{\star},i}}}+\sum_{i\in[N]}\boldsymbol{w}_{i}\cdot\boldsymbol{G}_{i}\right)=\boldsymbol{s}^{T}\boldsymbol{W}$$

Define real PRF evaluation to be sum of each independent evaluation:

$$PRF(s, x) \coloneqq \begin{bmatrix} s^T & \text{Output at punctured point is an LWE} \\ i & \text{sample with respect to } W \text{ (fixed public matrix)} - \text{critical for implementing a translucent set} \end{bmatrix}$$

When evaluating at punctured point

$$s^{T}\left(\sum_{i\in[N]}A_{\text{Decrypt}\circ\text{Eval}_{eq_{\chi^{\star},i}}}+\sum_{i\in[N]}w_{i}\cdot G_{i}\right)=s^{T}W$$

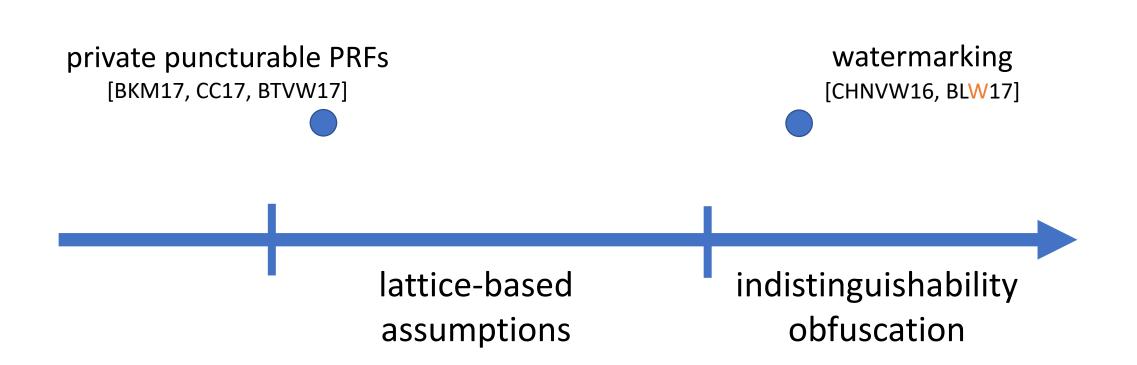
Define real PRF evaluation to be sum of each independent evaluation:

Testing key is a short vector \boldsymbol{z} where $\boldsymbol{W}\boldsymbol{z} = 0$: $\left\langle \left[\boldsymbol{s}^{T}\boldsymbol{W}\right]_{p}, \boldsymbol{z}\right\rangle \approx \left[\boldsymbol{s}^{T}\boldsymbol{W}\boldsymbol{z}\right]_{p} = 0$

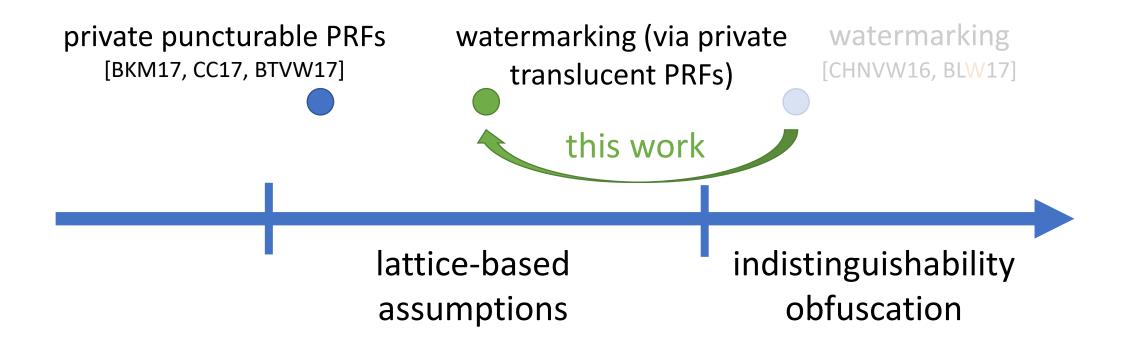
$$\boldsymbol{s}^{T}\left(\sum_{i\in[N]}\boldsymbol{A}_{\text{Decrypt}\circ\text{Eval}_{\text{eq}_{x^{\star},i}}}+\sum_{i\in[N]}\boldsymbol{w}_{i}\cdot\boldsymbol{G}_{i}\right)=\boldsymbol{s}^{T}\boldsymbol{W}$$

[See paper for details and security analysis]

Conclusions



Conclusions



Open Problems

Publicly-verifiable watermarking without obfuscation?

• Current best construction relies on iO [CHNVW16]

Additional applications of private translucent PRFs?

Thank you!

http://eprint.iacr.org/2017/380