
Watermarking Cryptographic Functionalities 
from Standard Lattice Assumptions

Sam Kim and David J. Wu

Stanford University



Digital Watermarking

CRYPTO

CRYPTO CRYPTO

CRYPTO

Often used to identify owner of content and prevent 
unauthorized distribution



Digital Watermarking

• Content is (mostly) viewable

CRYPTO

CRYPTO CRYPTO

CRYPTO



Digital Watermarking

CRYPTO

CRYPTO CRYPTO

CRYPTO

• Content is (mostly) viewable
• Watermark difficult to remove (without destroying the image)



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is corrupted

Three algorithms:
• Setup 1𝜆 → wsk: Samples the watermarking secret key wsk

• Mark wsk, 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is corrupted

Three algorithms:
• Setup 1𝜆 → wsk: Samples the watermarking secret key wsk

• Mark wsk, 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not

Extends to setting where watermark can be an (arbitrary) string:
• Mark wsk, 𝐶,𝑚 → 𝐶′: Takes a circuit 𝐶 and a message 𝑚

and outputs a marked circuit 𝐶′

• Verify wsk, 𝐶′ → 𝑚: Takes a circuit 𝐶′ and outputs a 
message 𝑚 (or ⊥ if the circuit is unmarked)

[See paper for full details]



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Functionality-preserving: On input a program (modeled as a Boolean 
circuit 𝐶), the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on all but a negligible fraction of inputs 𝑥

Mark



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

MarkPerfect functionality-preserving 
impossible assuming program 

obfuscation [BGIRSVY12]

Functionality-preserving: On input a program (modeled as a Boolean 
circuit 𝐶), the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on all but a negligible fraction of inputs 𝑥



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Unremovability: Given a marked circuit 𝐶⋆, no efficient adversary can 
construct a circuit 𝐶′ where

• 𝐶′ 𝑥 = 𝐶⋆(𝑥) on all but a negligible fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 0



Watermarking Security Game [CHNVW16, BLW17]

wsk ← Setup 1𝜆

𝐶

Mark(wsk, 𝐶)

Mark(wsk, 𝐶⋆)
𝐶⋆ ← 𝒞

𝐶

Mark(wsk, 𝐶)

Unremovability: Given a marked circuit 𝐶⋆, no efficient adversary can 
construct a circuit 𝐶′ where

• 𝐶′ 𝑥 = 𝐶⋆(𝑥) on all but a negligible fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 0

𝐶′



Watermarking Security Game [CHNVW16, BLW17]

wsk ← Setup 1𝜆

𝐶

Mark(wsk, 𝐶)

Mark(wsk, 𝐶⋆)
𝐶⋆ ← 𝒞

𝐶

Mark(wsk, 𝐶)

𝐶′

• Adversary has access to marking oracle (sees marked programs of its choosing)
• Challenge circuit 𝐶⋆ sampled from the circuit family
• Adversary has complete flexibility in crafting 𝐶′ (it just outputs a description of a 

circuit)



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Unforgeability: Given marked programs 𝐶1, … , 𝐶ℓ, no efficient adversary 
can construct a circuit 𝐶′ where

• For all 𝑖 ∈ [ℓ], 𝐶′ 𝑥 ≠ 𝐶𝑖(𝑥) on a noticeable fraction of inputs 𝑥
• Verify wsk, 𝐶′ = 1



Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

• Notion only achievable for functions that are not learnable
• Focus has been on cryptographic functions



pseudorandom 
function

PRF(𝑘,⋅)

pseudorandom 
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17]



𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)

Watermarking Cryptographic Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17]

• Enables watermarking of symmetric primitives built from 
PRFs (e.g., encryption, MACs, etc.)

𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)



Main Result

This work: Under standard lattice assumptions, there exists a 
secretly-verifiable watermarkable family of PRFs

𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)

CRYPTO

Mark 𝑃𝑘 𝑥 :
On input 𝑥, output PRF(𝑘, 𝑥)



𝑦2
𝑦1

𝑦3

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

Step 1: Evaluate PRF on test points 𝑥1, 𝑥2, 𝑥3 (part of the watermarking 
secret key)



𝑦1𝑦2

𝑦3

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

Step 2: Derive a pair (𝑥⋆, 𝑦⋆) from 𝑦1, 𝑦2, 𝑦3

𝑥⋆, 𝑦⋆



𝑥⋆

𝑦1𝑦2

𝑦3

PRF 𝑘, 𝑥⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3

domain range

PRF key

𝑥⋆, 𝑦⋆

Step 3: “Marked key” is a circuit that implements the PRF at all points, 
except at 𝑥⋆, the output is changed to 𝑦⋆



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Step 3: “Marked key” is a circuit that implements the PRF at all points, 
except at 𝑥⋆, the output is changed to 𝑦⋆

PRF 𝑘, 𝑥⋆

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Verification: Evaluate function at 𝑥1, 𝑥2, 𝑥3, derive (𝑥⋆, 𝑦⋆) and check if 
the value at 𝑥⋆ matches 𝑦⋆

PRF 𝑘, 𝑥⋆

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

domain range

marked key

Verification: Evaluate function at 𝑥1, 𝑥2, 𝑥3, derive (𝑥⋆, 𝑦⋆) and check if 
the value at 𝑥⋆ matches 𝑦⋆

PRF 𝑘, 𝑥⋆

Need different 𝑥⋆ for different 
programs – otherwise easy to 

remove if adversary sees 
watermarked keys of its choosing

Defer 
implementation 
details for now…



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

marked key

Defer 
implementation 
details for now…

Functionality-preserving: function differs at a single point✓



𝑦1𝑦2

𝑦3𝑦⋆

Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑥1
𝑥2

𝑥3
𝑥⋆

marked key

Unremovable: as long as adversary cannot tell that 𝑥⋆, 𝑦⋆ is “special”

Defer 
implementation 
details for now…

Functionality-preserving: function differs at a single point✓

✓



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

𝑦⋆𝑥⋆

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

How to implement this functionality?

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:

Essentially relies on 
secretly re-programming 

the value at 𝑥⋆



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

Key technical challenge: How to hide 𝑥⋆, 𝑦⋆ within the 
watermarked key (without obfuscation)?

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

Key technical challenge: How to hide 𝑥⋆, 𝑦⋆ within the 
watermarked key (without obfuscation)?

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:

Has an obfuscation flavor: need 
to embed a secret inside a piece 
of code that cannot be removed



Blueprint for Watermarking PRFs [CHNVW16, BLW17]

Prior solutions: use obfuscation 
to hide 𝑥⋆, 𝑦⋆

Obfuscated program has PRF key 
embedded inside and outputs 
PRF(𝑘, 𝑥) on all inputs 𝑥 ≠ 𝑥⋆

and 𝑦⋆ when 𝑥 = 𝑥⋆

This work: Under standard lattice assumptions, there exists a 
secretly-verifiable watermarkable family of PRFs

𝑃 𝑥⋆,𝑦⋆ (𝑥):

• if 𝑥 = 𝑥⋆, output 𝑦⋆

• else, output PRF(𝑘, 𝑥)

Obfuscated program:



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

𝑦⋆𝑥⋆

• Watermarked PRF implements 
PRF at all but a single point

• Structurally very similar to a 
puncturable PRF [BW13, BGI13, KPTZ13]

Puncturable PRF:

Puncture𝑥⋆

PRF key punctured key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

𝑦⋆𝑥⋆

• Watermarked PRF implements 
PRF at all but a single point

• Structurally very similar to a 
puncturable PRF [BW13, BGI13, KPTZ13]

Puncturable PRF:

Puncture𝑥⋆

Can be used to evaluate the 
PRF on all points 𝑥 ≠ 𝑥⋆

PRF key punctured key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Recall general approach for watermarking:

1. Derive 𝑥⋆, 𝑦⋆ from input/output behavior of PRF

2. Give out a key that agrees with PRF everywhere, except has value 

𝑦⋆ at 𝑥 = 𝑥⋆ PRF key 
punctured at 𝑥⋆

However, punctured key does not 
necessarily hide 𝑥⋆, which allows 
adversary to remove watermark



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Recall general approach for watermarking:

1. Derive 𝑥⋆, 𝑦⋆ from input/output behavior of PRF

2. Give out a key that agrees with PRF everywhere, except has value 

𝑦⋆ at 𝑥 = 𝑥⋆ PRF key 
punctured at 𝑥⋆

Punctured keys typically do not provide 
flexibility in programming value at 

punctured point: difficult to test if a 
program is watermarked or not

However, punctured key does not 
necessarily hide 𝑥⋆, which allows 
adversary to remove watermark



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use private puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use privately puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point

In existing lattice-based private puncturable PRF 
constructions [BKM17, CC17], value of punctured key 
at punctured point is a deterministic function of 

the PRF key



Starting Point: Private Puncturable PRFs [BLW17, BKM17, CC17]

Puncture𝑥⋆

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point 𝑥⋆

• Use privately puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a 

punctured key to evaluate at the punctured point

• Relax programmability requirement



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

PRF key

𝑥⋆

PRF 𝑘, 𝑥⋆

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace

𝑥⋆
𝑦⋆



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

Private puncturable PRF family with the property that output of any 
punctured key on a punctured point lies in a sparse, hidden subspace

𝑥⋆
𝑦⋆

Secret testing key associated with 
the PRF family can be used to test for 
membership in the hidden subspace



Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

punctured key

𝑥⋆
𝑦⋆

• Values in special set looks indistinguishable from a 
random value (without secret testing key)

• Indistinguishable even though it is easy to sample 
values from the set

Sets satisfying such 
properties are called 

translucent [CDNO97]



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

PRF key

𝑥⋆

PRF 𝑘, 𝑥⋆

Watermarking secret key (wsk): test points 𝑥1, … , 𝑥𝑑
and testing key for private translucent PRF



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

𝑥⋆

To mark a PRF key 𝑘, derive special point 𝑥⋆ and puncture 
𝑘 at 𝑥⋆; watermarked key is a program that evaluates using 

the punctured key

marked key

𝑦⋆



Watermarking from Private Translucent PRFs

𝑦2
𝑦1

𝑦3

𝑥1
𝑥2

𝑥3

𝑥⋆

To test whether a program 𝐶′ is watermarked, derive test point 𝑥⋆

and check whether 𝐶′ 𝑥⋆ is in the translucent set (using the testing 
key for the private translucent PRF)

marked key

𝑦⋆



Constructing Private Translucent PRFs



Blueprint

Lattice PRFs

Puncturable PRF
[BV15]

Private 
Puncturable PRF

[BKM17, CC17, BTVW17]

Private 
Translucent PRF



Learning with Errors (LWE) [Reg05]

𝑨←
R
ℤ𝑞
𝑛×𝑚, 𝒔←

R
ℤ𝑞
𝑛, 𝒆←

R
𝜒𝑚, 𝒖←

R
ℤ𝑞
𝑚

𝑨, 𝒔𝑇𝑨 + 𝒆𝑇 ≈𝑐 𝑨, 𝒖𝑇



Learning with Rounding (LWR) [BPR12]

𝑨←
R
ℤ𝑞
𝑛×𝑚, 𝒔←

R
ℤ𝑞
𝑛, 𝒖←

R
ℤ𝑞
𝑚

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Replace random errors with deterministic rounding:

More suitable starting point for constructing lattice PRFs

Hardness reducible to LWE (for suitable parameter settings)



Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Intuition: set 𝒔 to be the secret 
key for the PRF and derive 𝑨 as 

a function of the input



Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

𝑨, උ ඇ𝒔𝑇𝑨
𝑝

≈𝑐 𝑨, උ ඇ𝒖𝑻
𝑝

Fix (public) random matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

Secret key: LWE secret vector 𝒔 ∈ ℤ𝑞
𝑛

PRF evaluation: on input 𝑥 ∈ 0,1 ℓ, derive 𝑨𝑥 from 𝑨1, …𝑨ℓ and output

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑥 𝑝

Question: how to derive 𝑨𝑥 from 𝑨1, … , 𝑨ℓ?



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1
encoding of 𝑥1 with respect to 𝑨1



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1
encoding of 𝑥1 with respect to 𝑨1

𝑮 ∈ ℤ𝑞
𝑛×𝑚 is a fixed 

“gadget” matrix

LWE matrix 
associated with each 

input bit

𝒔𝑇 𝑨ℓ + 𝑥ℓ ⋅ 𝑮 + 𝒆ℓ

⋮



Homomorphic Matrix Embeddings [BGGHNSVV14]

A way to encode 𝑥 ∈ 0,1 ℓ as a collection of LWE samples
take LWE matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚 and a secret 𝒔 ∈ ℤ𝑞
𝑛:

𝒔𝑇 𝑨1 + 𝑥1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨𝑓 + 𝑓 𝑥 ⋅ 𝑮 + noise

Encodings support homomorphic 
operations

Function of 𝑓 and 
𝑨1, … , 𝑨ℓ only

Encoding of 𝑥 ⟹ Encoding of 𝑓(𝑥)



Puncturable PRFs from LWE [BV15]

PRF evaluation: on input 𝑥 ∈ 0,1 ℓ, derive 𝑨𝑥 from 𝑨1, …𝑨ℓ and output

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑥 𝑝

Question: how to derive 𝑨𝑥 from 𝑨1, … , 𝑨ℓ?

Let 𝑨1, … , 𝑨ℓ be matrices associated with bits of 𝑥 ∈ 0,1 ℓ

Define PRF evaluation with respect to equality function

eq𝑥 𝑥⋆ = ቊ
1, 𝑥 = 𝑥⋆

0, 𝑥 ≠ 𝑥⋆

Let 𝑨𝑥 be matrix associated with evaluating eq𝑥 on 𝑨1, … , 𝑨ℓ



Puncturable PRFs from LWE [BV15]

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

PRF evaluation (at 𝑥) 
using punctured key



Puncturable PRFs from LWE [BV15]

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

If 𝑥 ≠ 𝑥⋆, eq𝑥 𝑥⋆ = 0, so

උ ඇ𝒔𝑇𝑨eq𝑥 + noise
𝑝
= උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

= PRF(𝒔, 𝑥)

PRF evaluation (at 𝑥) 
using punctured key



PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

If 𝑥 = 𝑥⋆, eq𝑥 𝑥⋆ = 1, so

ቔ ቓ𝒔𝑇(𝑨eq𝑥⋆ + 𝑮) + noise
𝑝
≠ ቔ ቓ𝒔𝑇𝑨eq𝑥⋆ 𝑝

= PRF(𝒔, 𝑥⋆)

Puncturable PRFs from LWE [BV15]

PRF evaluation (at 𝑥) 
using punctured key



Puncturable PRFs from LWE [BV15]

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

To puncture the key 𝒔 at a point 𝑥⋆, give out encodings of 𝑥⋆:

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮ 𝒔𝑇 𝑨eq𝑥 + eq𝑥(𝑥
⋆) ⋅ 𝑮 + noise

This construction gives a puncturable PRF from LWE

PRF evaluation (at 𝑥) 
using punctured key



Private Puncturable PRFs [BKM17, BTVW17]

Evaluating PRF using punctured 
key requires knowledge of 𝑥⋆

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨eq𝑥 𝑝

𝒔𝑇 𝑨1 + 𝑥1
⋆ ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨ℓ + 𝑥ℓ
⋆ ⋅ 𝑮 + 𝒆ℓ

⋮

Key idea in [BKM17]: encrypt the 
punctured point using an FHE 
scheme and homomorphically 
evaluate the equality function



Private Puncturable PRFs [BKM17, BTVW17]

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

𝒔𝑇 𝑨1 + ct1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨𝑧 + ct𝑧 ⋅ 𝑮 + 𝒆𝑧

⋮

𝒔𝑇 𝑩1 + sk1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑩𝜏 + sk𝜏 ⋅ 𝑮 + 𝒆𝜏

⋮

ct is an FHE 
encryption of 𝑥⋆

sk is the FHE 
secret key

FHE decryption + homomorphic evaluation of eq𝑥

Punctured key consists of 
encodings of encrypted 
point (for homomorphic 

evaluation) and FHE secret 
key (for decryption) 



Private Puncturable PRFs [BKM17, BTVW17]

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

𝒔𝑇 𝑨1 + ct1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨𝑧 + ct𝑧 ⋅ 𝑮 + 𝒆𝑧

⋮

𝒔𝑇 𝑩1 + sk1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑩𝜏 + sk𝜏 ⋅ 𝑮 + 𝒆𝜏

⋮

Evaluating Decrypt ∘ Evaleq𝑥 on encodings 

essentially yields:

𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮 + noise



Private Puncturable PRFs [BKM17, BTVW17]

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

𝒔𝑇 𝑨1 + ct1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑨𝑧 + ct𝑧 ⋅ 𝑮 + 𝒆𝑧

⋮

𝒔𝑇 𝑩1 + sk1 ⋅ 𝑮 + 𝒆1

𝒔𝑇 𝑩𝜏 + sk𝜏 ⋅ 𝑮 + 𝒆𝜏

⋮

Evaluating Decrypt ∘ Evaleq𝑥 on encodings 

essentially yields:

𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮 + noise

Evaluation only requires knowledge of ct and not sk

Some technicalities due to 
FHE noise (will ignore here for 

simplicity)



Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured 
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Punctured PRF evaluation: ቔ ቓ𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮
𝑝

Difficulty: no control over 
value at punctured point



Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured 
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Punctured PRF evaluation: ቔ ቓ𝒔𝑇 𝑨Decrypt∘Evaleq𝑥 + eq𝑥 𝑥⋆ ⋅ 𝑮
𝑝

Idea: define PRF with respect to scaled equality circuit:

eq𝑥 𝑥⋆, 𝑤 = ቊ
𝑤, 𝑥 = 𝑥⋆

0, 𝑥 ≠ 𝑥⋆



Private Translucent PRFs

PRF 𝒔, 𝑥 ≔ ቔ ቓ𝒔𝑇𝑨Decrypt∘Evaleq𝑥 𝑝

Evaluating the punctured key at the punctured point 𝑥⋆ yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Scaling factor 𝑤 is chosen when key is 
punctured and can be chosen to adjust 

the value at the punctured point



Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Can now consider many instances of this PRF with many different 𝑤𝑖’s:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,1
+𝑤1 ⋅ 𝑮1 + noise

⋮
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,𝑁
+ 𝑤𝑁 ⋅ 𝑮𝑁 + noise

Different gadget matrices 𝑮1, … , 𝑮𝑁

[See paper for construction]



Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Can now consider many instances of this PRF with many different 𝑤𝑖’s:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,1
+𝑤1 ⋅ 𝑮1 + noise

⋮
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,𝑁
+ 𝑤𝑁 ⋅ 𝑮𝑁 + noise

At puncturing time, choose 𝑤1, … , 𝑤𝑁 such that

𝑾 = 

𝑖∈[𝑁]

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈[𝑁]

𝑤𝑖 ⋅ 𝑮𝑖



Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆
+𝑤 ⋅ 𝑮 + noise

Can now consider many instances of this PRF with many different 𝑤𝑖’s:
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,1
+𝑤1 ⋅ 𝑮1 + noise

⋮
𝒔𝑇 𝑨Decrypt∘Evaleq

𝑥⋆,𝑁
+ 𝑤𝑁 ⋅ 𝑮𝑁 + noise

At puncturing time, choose 𝑤1, … , 𝑤𝑁 such that

𝑾 = 

𝑖∈[𝑁]

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈[𝑁]

𝑤𝑖 ⋅ 𝑮𝑖

𝑾 is a fixed public matrix 
included in the public 

parameters of the PRF family



Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾



Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾

Output at punctured point is an LWE 
sample with respect to 𝑾 (fixed public 

matrix) – critical for implementing a 
translucent set



Define real PRF evaluation to be sum of each independent evaluation:

PRF 𝒔, 𝑥 ≔ ඍ ඉ𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq𝑥,𝑖
𝑝

When evaluating at punctured point 𝑥⋆:

𝒔𝑇 

𝑖∈ 𝑁

𝑨Decrypt∘Evaleq
𝑥⋆,𝑖

+ 

𝑖∈ 𝑁

𝑤𝑖 ⋅ 𝑮𝑖 = 𝒔𝑇𝑾

Testing key is a short vector 𝒛 where 𝑾𝒛 = 0:

උ ඇ𝒔𝑇𝑾
𝑝
, 𝒛 ≈ උ ඇ𝒔𝑇𝑾𝒛

𝑝
= 0

Private Translucent PRFs

[See paper for details and security analysis]



watermarking
[CHNVW16, BLW17]

private puncturable PRFs 
[BKM17, CC17, BTVW17]

Conclusions

lattice-based 
assumptions

indistinguishability 
obfuscation



this work

watermarking (via private 
translucent PRFs)

private puncturable PRFs 
[BKM17, CC17, BTVW17]

Conclusions

lattice-based 
assumptions

indistinguishability 
obfuscation



Open Problems

Publicly-verifiable watermarking without obfuscation?
• Current best construction relies on iO [CHNVW16]

Additional applications of private translucent PRFs?

Thank you!

http://eprint.iacr.org/2017/380


